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Abstract

We propose a general dual ascent framework for La-

grangean decomposition of combinatorial problems. Al-

though methods of this type have shown their efficiency for a

number of problems, so far there was no general algorithm

applicable to multiple problem types. In this work, we pro-

pose such a general algorithm. It depends on several param-

eters, which can be used to optimize its performance in each

particular setting. We demonstrate efficacy of our method on

graph matching and multicut problems, where it outperforms

state-of-the-art solvers including those based on subgradient

optimization and off-the-shelf linear programming solvers.

1. Introduction

Computer vision and machine learning give rise to a num-

ber of powerful computational models. It is typical that

inference in these models reduces to non-trivial combinato-

rial optimization problems. For some of the models, such

as conditional random fields (CRF), powerful specialized

solvers like [48, 49, 12, 52] were developed. In general, how-

ever, one has to resort to off-the-shelf integer linear program

(ILP) solvers like CPLEX [2] or Gurobi [36]. Although

these solvers have made a tremendous progress in the past

decade, the size of the problems they can tackle still remains

a limiting factor for many potential applications, as the run-

ning time scales super-linearly in the problem size. The goal

of this work is to partially fill this gap between practical

requirements and existing computational methods.

It is an old observation that many important optimization

ILPs can be efficiently decomposed into easily solvable com-

binatorial sub-problems [32]. The convex relaxation, which

consists of these sub-problems coupled by linear constraints

is known as Lagrangean or dual decomposition [31, 50]. Al-

though this technique can be efficiently used in various sce-

narios to find approximate solutions of combinatorial prob-

lems, it has a major drawback: In the most general setting

only slow (sub)gradient-based techniques [51, 57, 50, 42, 61]

can be used for optimization of the corresponding convex

relaxation.

In the area of conditional random fields, however, it

is well-known [41] that message passing or dual (block-

coordinate) ascent algorithms (like e.g. TRW-S [48]) signifi-

cantly outperform (sub)gradient-based methods. Similar ob-

servations were made much earlier in [59] for a constrained

shortest path problem.

Although dual ascent algorithms were proposed for a

number of combinatorial problems (see the related work

overview below), there is no general framework, which

would (i) give a generalized view on the properties of such

algorithms and more importantly (ii) provide tools to eas-

ily construct such algorithms for new problems. Our work

provides such a framework.

Related Work Dual ascent algorithms optimize a dual

problem and guarantee monotonous improvement (non-

deterioration) of the dual objective. The most famous exam-

ples in computer vision are block-coordinate ascent (known

also as message passing) algorithms like TRW-S [48] or

MPLP [28] for maximum a posteriori inference in condi-

tional random fields [41].

To the best of our knowledge the first dual ascent algo-

rithm addressing integer linear programs belongs to Bilde

and Krarup [11] (the corresponding technical report in Dan-

ish appeared 1967). In that work an uncapacitated facility

location problem was addressed. A similar problem (sim-

ple plant location) was addressed with an algorithm of the

same class in [30]. In 1980 Fisher and Hochbaum [22]

constructed a dual ascent-based algorithm for a problem of

database location in computer networks, which was used to

optimize the topology of Arpanet [1], predecessor of Internet.

The generalized linear assignment problem was addressed

by the same type of algorithms in [23]. The Authors con-

sidered a Lagrangean decomposition of this problem into

multiple knapsack problems, which were solved in each iter-

ation of the method. An improved version of this algorithm

was proposed in [34]. Efficient dual ascent based solvers

were also proposed for the min-cost flow in [25], for the set
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covering and the set partitioning problems in [24] and the

resource-constrained minimum weighted arborescence prob-

lem in [35]. The work [33] describes basic principles for

constructing dual ascent algorithms. Although the authors

provide several examples, they do not go beyond that and

stick to the claim that these methods are structure dependent

and problem specific.

The work [18] suggests to use the max-product belief

propagation [73] to decomposable optimization problems.

However, their algorithm is neither monotone nor even con-

vergent in general.

In computer vision, dual block coordinate ascent algo-

rithms for Lagrangean decomposition of combinatorial prob-

lems were proposed for multiple targets tracking [8], graph

matching (quadratic assignment) problem [78] and inference

in conditional random fields [48, 49, 28, 74, 75, 62, 37, 56,

72, 39]. From the latter, the TRW-S algorithm [48] is among

the most efficient ones for pairwise conditional random fields

according to [41]. The SRMP algorithm [49] generalizes

TRW-S to conditional random fields of arbitrary order. In a

certain sense, our framework can be seen as a generalization

of SRMP to a broad class of combinatorial problems.

Contribution. We propose a new dual ascent based com-

putational framework for combinatorial optimization. To

this end we:

(i) Define the class of problems, called integer-relaxed

pairwise-separable linear programs (IRPS-LP), our frame-

work can be used for. Our definition captures Lagrangean

decompositions of many known discrete optimization prob-

lems (Section 2).

(ii) Give a general monotonically convergent message-

passing algorithm for solving IRPS-LP, which in particu-

lar subsumes several known solvers for conditional random

fields (Section 4).

(iii) Give a characterization of the fixed points of our al-

gorithm, which subsumes such well-known fixed point

characterizations as weak tree agreement [48] and arc-

consistency [74] (Section 5).

We demonstrate efficiency of our method by outperform-

ing state-of-the-art solvers for two famous special cases of

IRPS-LP, which are widely used in computer vision: the

multicut and the graph matching problems. (Section 6).

A C++-framework containing the above mentioned

solvers and the datasets used in experiments can be obtained

at https://github.com/pawelswoboda/LP_MP.

We give all proofs in the supplementary material.

Notation. Undirected graphs will be denoted by G =
(V,E), where V is a finite node set and E ⊆

(

V
2

)

is the

edge set. The set of neighboring nodes of v ∈ V w.r.t. graph

G is denoted by NG(v) := {u : uv ∈ E}. The convex hull

of a set X ⊂ R
n is denoted by conv(X). Disjoint union is

denoted by ∪̇.

2. Integer-Relaxed Pairwise-Separable Linear

Programs (IRPS-LP)

Combinatorial problems of the form minx∈X θ(x), where

X ⊆ {0, 1}n are binary vectors, often have a decompos-

able representation as min xi∈Xi
i=1,...,k

∑k
i=1〈θi, xi〉 for Xi ⊆

{0, 1}di being sets of binary vectors, typically correspond-

ing to subsets of the coordinates of X . This decomposed

problem is equivalent to the original one under a set of linear

constraints A(i,j)xi = A(j,i)xj , which guarantee the mutual

consistency of the considered components. By replacing

Xi by its convex hull conv(Xi) we switching to real-valued

vectors from binary ones and obtain a convex relaxation of

the problem. It reads:

min
µ∈ΛG

k
∑

i=1

〈θi, µi〉 , where ΛG is defined as (1)

ΛG :=

{

(µ1 . . . µk)

∣

∣

∣

∣

µi ∈ conv(Xi) i ∈ F

A(i,j)µi = A(j,i)µj ∀ij ∈ E

}

. (2)

Here F := {1, . . . , k} are called factors of the decomposi-

tion and E ⊆

(

F

2

)

correspond to the coupling constraints.

The undirected graph G = (F,E) is called factor graph. We

will use variable names µ whenever we want to emphasize

µi ∈ conv(Xi) and x whenever xi ∈ Xi, i ∈ F.

Definition 1 (IRPS-LP). Assume that for each edge ij ∈ E

the matrices of the coupling constraints A(i,j), A(j,i) are

such that A(i,j) ∈ {0, 1}K×di and A(i,j)xi ∈ {0, 1}K

∀xi ∈ Xi for some K ∈ N, analogously for A(j,i). The prob-

lem minµ∈ΛG

∑

i∈F
〈θi, µi〉 is called an Integer-Relaxed

Pairwise-Separable Linear Program, abbreviated by IRPS-

LP.

In the following, we give several examples of IRPS-LP.

To distinguish between notation for the factor graph of IRPS-

LP, where we stick to bold letters (such as G, F, E) we

will use the straight font (such as G, V, E) for the graphs

occurring in the examples.

Example 1 (MAP-inference for CRF). A conditional ran-

dom field is given by a graph G = (V,E), a discrete label

space X =
∏

u∈V
Xu, unary θu : Xu → R and pairwise

costs θuv : Xu × Xv → R for u ∈ V, uv ∈ E. We also

denote Xuv := Xu ×Xv . The associated maximum a poste-

riori (MAP)-inference problem reads

min
x∈X

∑

u∈V
θu(xu) +

∑

uv∈E
θuv(xuv) , (3)

where xu and xuv denote the components corresponding to

node u ∈ V and edge uv ∈ E respectively. The well-known
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local polytope relaxation [74] can be seen as an IRPS-LP

by setting F = V ∪ E, that is associating to each node

v ∈ V and each edge uv ∈ E a factor, and introducing two

coupling constraints for each edge of the graphical model, i.e.

E = {{u, uv}, {v, uv} : uv ∈ E}. For the sake of notation

we will assume that each label s ∈ Xu is associated a unit

vector (0, . . . , 0, 1
︸︷︷︸

s

, 0 . . . , 0) with dimensionality equal to

the total number of labels |Xu| and 1 on the s-th position.

Therefore, the notation conv(Xu) makes sense as a convex

hull of all such vectors. After denoting an N -dimensional

simplex as ∆N := {µ ∈ R
N
+ :

∑N
i=1 µi = 1} the resulting

relaxation reads

min
µ∈LG

〈θ, µ〉 :=
∑

u∈V

〈θu, µu〉+
∑

uv∈E

〈θuv, µuv〉 (4)

in the overcomplete representation [71] and LG is defined as

µu ∈ conv(Xu) : µu ∈ ∆|Xu|, u ∈ V

µuv ∈ conv(Xuv) : µuv ∈ ∆|Xuv|, uv ∈ E

A(uv,u)µuv = A(u,uv)µu :
∑

xv∈Xv

µuv(xu, xv) = µu(xu),

uv ∈ E, (xu, xv) ∈ Xuv,

u ∈ uv, xu ∈ Xu .

(5)

Here µu(xu) and µuv(xu, xv) denote those coordinates of

vectors µu and µuv, which correspond to the label xu and

the pair of labels (xu, xv) respectively.

Example 2 (Graph Matching). The graph matching problem,

also known as quadratic assignment [13] or feature match-

ing, can be seen as a MAP-inference problem for CRFs (as

in Example 1) equipped with additional constraints: The

label set of G belongs to a universe L, i.e. Xu ⊆ L ∀u ∈ V

and each label s ∈ L can be assigned at most once. The

overall problem reads

min
x

∑

u∈V

θu(xu) +
∑

uv∈E

θuv(xu, xv) s.t. xu 6= xv∀u 6= v .

(6)

Graph matching is a key step in many computer vision ap-

plications, among them tracking and image registration,

whose aim is to find a one-to-one correspondence be-

tween image points. For this reason, a large number of

solvers have been proposed in the computer vision commu-

nity [18, 76, 78, 70, 53, 69, 63, 29, 79, 38, 54, 16]. Among

them two recent methods [70, 78] based on Lagrangean de-

composition show superior performance and provide lower

bounds for their solutions. The decomposition we describe

below, however, differs from those proposed in [70, 78].

Our IRPS-LP representation for graph matching consists

of two blocks: (i) the CRF itself (which further decomposes

into node- and edge-subproblems with variables (µu)u∈V

and (ii) additional label-factors keeping track of nodes as-

signed the label s. We introduce these label-factors for each

label s ∈ L. The set of possible configurations of this fac-

tor Xs := {u ∈ V : s ∈ Xu} ∪ {#} consists of those

nodes u ∈ V which can be assigned the label s and an

additional dummy node #. The dummy node # denotes

non-assignment of the label s and is necessary, as not every

label needs to be taken. As in Example 1, we associate a unit

binary vector with each element of the set Xs, and conv(Xs)
denotes the convex hull of such vectors. The set of factors

becomes F = V∪̇E∪̇L, with the set E = {{u, uv}, {v, uv} :
uv ∈ E} ∪ {{u, l} : u ∈ V, l ∈ Xu} of the factor-graph

edges. The resulting IRPS-LP formulation reads

min
µ,µ̃

∑

u∈V

〈θu, µu〉+
∑

uv∈E

〈θuv, µuv〉+
∑

s∈L

〈θ̃s, µ̃s〉 (7)

µ ∈ LG

µ̃s ∈ conv(Xs), s ∈ L
µu(s) = µ̃s(u), s ∈ Xu .

Here we introduced (i) auxiliary variables µ̃s(u) for all vari-

ables µu(s) and (ii) auxiliary node costs θ̃s ≡ 0 ∀s ∈ L,

which may take other values in course of optimization. Fac-

tors associated with the vectors µu and µuv correspond to the

nodes and edges of the graph G (node- and edge-factors), as

in Example 1 and are coupled in the same way. Additionally,

factors associated with the vectors µ̃s ensure that the label s

can be taken at most once. These label-factors are coupled

with node-factors (last line in (7)).

Example 3 (Multicut). The multicut problem (also known

as correlation clustering) for an undirected weighted graph

G = (V,E) is to find a partition (Π1, . . . , Πk), Πi ⊆ V,

V = ∪̇
k
i=1Πi of the graph vertexes, such that the total cost

of edges connecting different components is minimized. The

number k of components is not fixed but is determined by

the algorithm. See Fig. 1 for an illustration. Although the

problem has numerous applications in computer vision [4, 5,

6, 77] and beyond [7, 60, 14, 15], there is no scalable solver,

which could provide optimality bounds. Existing methods

are either efficient primal heuristics [66, 58, 27, 19, 20, 9, 10]

or combinatorial branch-and-bound/branch-and-cut/column

generation algorithms, based on off-the-shelf LP solvers [43,

44, 47, 77]. Move-making algorithms do not provide lower

bounds, hence, one cannot judge their solution quality or

employ them in branch-and-bound procedures. Off-the-shelf

LP solvers on the other hand scale super-linearly, limiting

their application in large-scale problems.

Instead of directly optimizing over partitions (which has

many symmetries making optimization difficult in a linear

programming setting), we follow [17] and formulate the

problem in the edge domain. Let θe, e ∈ E denote the cost of

graph edges and let C be the set of all cycles of the graph G.

Each edge that belongs to different components is called a

cut edge. The multicut problem reads

min
x∈{0,1}|E|

∑

e∈E

θexe , s.t. ∀C ∀e′ ∈ C :
∑

e∈C\{e′}

xe ≥ xe′ . (8)
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Here xe = 1 signifies a cut edge and the inequalities force

each cycle to have none or at least two cut edges. The formu-

lation (8) has exponentially many constraints. However, it

is well-known that it is sufficient to consider only chordless

cycles [17] in place of the set C in (8). Moreover, the graph

can be triangulated by adding additional edges with zero

weights and therefore the set of chordless cycles reduces to

edge triples. Such triangulation is refered to as chordal com-

pletion in the literature [26]. The number of triples is cubic,

which is still too large for practical efficiency and therefore

violated constraints are typically added to the problem iter-

atively in a cutting plane manner [43, 44]. To simplify the

description, we will ignore this fact below and consider all

these cycles at once. Assuming a triangulated graph and

redefining C as the set of all chordless cycles (triples) we

consider the following IRPS-LP relaxation of the multicut

problem 1:

min
µ,µ̃

∑

e∈E

θeµe +
∑

c∈C

∑

e∈c

θ̃e,cµ̃e,c , s.t. (9)























µe ∈ conv({0, 1}) = [0, 1], e ∈ E

∀c ∈ C, e ∈ c :
µ̃c := (µ̃e,c)e∈c ∈ conv({0, 1}3| ∀e′ ∈ c :

∑

e∈c\{e′}

µ̃e,c ≥ µ̃e′,c)

≡ conv({0, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1})
µe = µ̃e,c

(10)

For the sake of notation we shortened a feasible set def-

inition µ̃ ∈ conv(µ′ ∈ {0, 1}n : constraints on µ′) to

µ̃ ∈ conv({0, 1}n : constraints on µ̃). Here µe is the re-

laxed (potentially non-integer) variable corresponding to xe.

Variable µ̃e,c is a copy of µe, which corresponds to the cy-

cle c. Therefore, each µe gets as many copies µ̃e,c, as many

chordless cycles c contain the edge e. For each cycle the set

of binary vectors satisfying the cycle inequality is considered.

For a cycle with 3 edges this set can be written explicitly as

in (10). Along with copies of µe, e ∈ E we copy the corre-

sponding cost θe and create auxiliary costs θ̃e,c ≡ 0 for each

cycle c containing the edge e. During optimization, the cost

θe will be redistributed between θe itself and its copies θ̃e,c,

c ∈ C. The factors of the IRPS-LP are associated with each

edge (variable µe) and each chordless cycle (variable µ̃c).

Coupling constraints connect edge-factors with those cycle-

factors, which contain the corresponding edge (see the last

constraint in (10)). An in-depth discussion of message pass-

ing for the multicut problem with tighter relaxations can be

found in [67].

3. Dual Problem and Admissible Messages

Since our technique can be seen as a dual ascent, we will

not optimize the primal problem (1) directly, but instead

1One can show that this relaxation coincides with the standard LP

relaxation for the multicut problem [17]

Figure 1. Illustration of

Example 3. A multicut

of a graph induced by

three connected compo-

nents Π1, Π2, Π3 (green).

Red dotted edges indicate

cut edges xe = 1.

maximize its dual lower bound.

Dual IRPS-LP The Lagrangean dual to (1) w.r.t. the cou-

pling constraints reads

maxφ D(φ) :=
∑

i∈F
minxi∈Xi

〈θφi , xi〉

s.t. θ
φ
i := θi +

∑

j:ij∈E
A⊤

(i,j)φ(i,j) ∀i ∈ F

φ(i,j) = −φ(j,i) ∀ij ∈ E

(11)

Here φ(i,j) ∈ R
K for A(i,j) ∈ {0, 1}K×di for some K ∈ N.

The function D(φ) is called lower bound and is concave in φ.

The modified primal costs θφ are called reparametrizations

of the potentials θ. We have duplicated the dual variables

by introducing φ(i,j) := −φ(j,i) to symmetrize notation. In

practice, only one copy is stored and the other is computed on

the fly. Note that in this doubled notation the reparametrized

node and edge potentials of the CRF from Example 1 read

θφu(xu) = θu(xu) +
∑

v : uv∈E
φu,uv(xu)

θφuv(xu, xv) = θuv(xu, xv) + φuv,v(xv) + φuv,u(xu)
φu,uv = −φuv,u

It is well-known for CRFs that cost of feasible solutions

are invariant under reparametrization. We generalize this to

the IRPS-LP-case.

Proposition 1.
∑

i∈F
〈θi, µi〉 =

∑

i∈F
〈θφi , µi〉, whenever

µ1, . . . , µk obey the coupling constraints.

Admissible Messages While Proposition 1 guarantees

that the primal problem is invariant under reparametriza-

tions, the dual lower bound D(φ) is not. Our goal is to find

φ such that D(φ) is maximal. By linear programming du-

ality, D(φ) will then be equal to the optimal value of the

primal (1).

First we will consider an elementary step of our future al-

gorithm and show that it is non-decreasing in the dual objec-

tive. This property will ensure the monotonicity of the whole

algorithm. Let θφ be any reparametrization of the problem

and D(φ) be the corresponding dual value. Let us consider

changing the reparametrization of a factor i by a vector ∆

with the only non-zero components ∆(i,j) and ∆(j,i) . This

will change reparametrization of the coupled factors j (such

that ij ∈ E) due to ∆(i,j) = −∆(j,i). The lemma below

states properties of ∆(i,j) which are sufficient to guarantee

improvement of the corresponding dual value D(φ+∆):
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Lemma 1 (Monotonicity Condition). Let ij ∈ E be a pair

of factors related by the coupling constraints and φ(i,j) be

a corresponding dual vector. Let x∗
i ∈ argmin

xi∈Xi

〈θφi , xi〉 and

∆(i,j) satisfy

∆(i,j)(s)

{

≥ 0, ν(s) = 1

≤ 0, ν(s) = 0
, where ν := A(i,j)x

∗
i . (12)

Then x∗
i ∈ argmin

xi∈Xi

〈θφ+∆
i , xi〉 implies D(φ) ≤ D(φ+∆).

Example 4. Let us apply Lemma 1 to Example 1. Let ij

correspond to {u, uv}, where u ∈ V is some node and

uv ∈ E is any of its incident edges. Then x∗
i corresponds

to a locally optimal label x∗
u ∈ argmins∈Xu

θu(s) and

ν(s) = Js = x∗
uK. Therefore we may assign ∆u,uv(s)

to any value from [0, θu(x
∗
u) − θu(s)]. This assures that

(20) is fulfilled and x∗
u remains a locally optimal label after

reparametrization even if there are multiple optima in Xu.

Lemma 1 can be straightforwardly generalized to the

case, when more than two factors must be reparametrized

simultaneously. In terms of Example 1 this may correspond

to the situation when a graph node sends messages to several

incident edges at once:

Definition 2. Let i ∈ F be a factor and

J = {j1, . . . , jl} ⊆ NG(i) be a subset of its neigh-

bors. Let θ∆i := θi +
∑

j∈J A⊤
(i,j)∆(i,j), ∆(i,j)(= −∆(j,i))

satisfies (20) for all j ∈ J and all other coordinates of ∆

are zero. If there exists x∗
i ∈ argminxi∈Xi

〈θi, xi〉 such

that x∗
i ∈ argminxi∈Xi

〈θ∆i , xi〉, the dual vector ∆ is called

admissible. The set of admissible vectors is denoted by

AD(θi, x
∗
i , J).

Lemma 2. Let ∆ ∈ AD(θφi , x
∗
i , J) then D(φ) ≤ D(φ+∆).

Procedure 1: Message-Passing Update Step.

1 Input:Factor i ∈ F, neighboring factors

J = {j1, . . . , jl} ⊆ NG(i), dual variables φ

Compute x∗
i ∈ argminxi∈Xi

〈θφ, xi〉 (13)

Choose δ ∈ R
di s.t. δ(s)

{

> 0, x∗
i (s) = 1

< 0, x∗
i (s) = 0

(14)

2 Maximize admissible messages to J :

∆∗
(i,J) ∈ argmax

∆∈AD(θφ

i
,x∗

i
,J)

〈δ, θφ+∆
i 〉 (15)

3 Output: ∆∗
(i,J).

Message-Passing Update Step To maximize D(φ), we

will iteratively visit all factors and adjust messages φ con-

nected to it, monotonically increasing the lower bound (11).

Such an elementary step is defined by Procedure 1.

Procedure 1 is defined up to the vector δ, which

satisfies (14) (see Proc. 1). Usually, δ(s) =
{

1, x∗
i (s) = 1

−1, x∗
i (s) = 0

is a good choice. Although different δ

may result in different efficiency of our framework, fulfill-

ment of (14) is sufficient to prove its convergence properties.

The reparametrization adjustment problem (15) serves

the intuitive goal to move as much slack as possible from the

factor i to its neighbors J . For example, for the setting of

Example 4 its solution reads ∆u,uv(s) = θφu(x
∗
u) − θφu(s).

Depending on the selected δ it might correspond to maxi-

mization of the dual objective in the direction defined by

admissible reparametrizations. Although maximization (15)

is not necessary to prove convergence of our method (as we

show below, only a feasible solution of (15) is required for

the proof), (i) it leads to faster convergence; (ii) for the case

of CRFs (as in Example 1) it makes our method equivalent to

well established techniques like TRW-S [48] and SRMP [49],

as shown in Section 4.1.

The following proposition states that the elementary up-

date step defined by Procedure 1 can be performed efficiently.

That is, the size of the reparametrization adjustment prob-

lem (15) grows linearly with the size of the factor i and its

attached messages:

Proposition 2. Let conv(Xi) = {µi : Aiµi ≤ bi} with

Ai ∈ R
n×m. Let the messages in problem (15) have size

n1, . . . , n|J|. Then (15) is a linear program with O(n+n1+
. . .+n|J|) variables and O(m+n1+ . . .+n|J|) constraints.

4. Message Passing Algorithm

Now we combine message passing updates into Algo-

rithm 2. It visits every node of the factor graph and performs

the following two operations: (i) Receive Messages, when

messages are received from a subset of neighboring factors,

and (ii) Send Messages, when messages to some neighbor-

ing factors are computed and reweighted by ω. Distribution

of weights ω may influence the efficiency of Algorithm 2

just like it influences the efficiency of message passing for

CRFs (see [49]). We provide typical settings in Section 4.1.

Usually, factors are traversed in some given a-priori order

alternately in forward and backward direction, as done in

TRW-S [48] and SRMP [49]. We refer to [49] for a motiva-

tion for such a schedule of computations.

We will discuss parameters of Algorithm 2 (factor par-

titioning {Ji}, weights wJi
) right after the theorem stating

monotonicity for any choice of parameters.

Theorem 1. Algorithm 2 monotonically increases the dual

lower bound (11).
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Algorithm 2: One Iteration of Message-Passing

1 for i ∈ F in some order do

2 Receive Messages:

3 Choose a subset of connected factors

Jreceive ⊆ NG(i)
4 for j ∈ Jreceive do

5 Compute ∆∗
(j,{i}) with Procedure 1.

6 Set φ = φ+∆∗
(j,{i}).

7 end

8

9 Send Messages:

10 Choose partition J1∪̇ . . . ∪̇Jl ⊆ NG(i).
11 for J ∈ {J1, . . . , Jl} do

12 Compute ∆∗
(i,J) with Procedure 1.

13 end

14 Choose weights ωJ1
, . . . , ωJl

≥ 0 such that

ωJ1
+ . . .+ ωJl

≤ 1.

15 for J ∈ {J1, . . . , Jl} do

16 Set φ = φ+ ωJ∆
∗
(i,J).

17 end

18 end

4.1. Parameter Selection for Algorithm 2

There are the following free parameters in Algorithm 2:

(i) The order of traversing factors of F; (ii) for each factor

the neighboring factors from which to receive messages

Jreceive ⊆ NG(i); (iii) the partition J1∪̇ . . . ∪̇Jl ⊆ NG(i)
of factors to send messages to and (iv) the associated weights

ωJ1
, . . . , ωJl

for messages.

Although for any choice of these parameters Algorithm 2

monotonically increases the dual lower bound (as stated

by Theorem 1), its efficiency may significantly depend on

their values. Below, we will describe the parameters for

Examples 1-3, which we found the most efficient empirically.

Sending a message by some factor automatically implies

receiving this message by another, coupled factor. There-

fore, usually there is no need to go over all factors in Algo-

rithm 2. It is usually sufficient to guarantee that all coupling

constraints are updated by Procedure 1. Formally, we can

always exclude processing some factors by setting Jreceive
and Ji, i = 1, . . . , l to the empty set. Instead, we will ex-

plicitly specify, which factors are processed in the loop of

Algorithm 2 in the examples below.

Parameters for Example 1, MAP-inference in CRFs.

Pairwise CRFs have the specific feature that node factors are

coupled with edge factors only. This implies that processing

only node factors in Algorithm 2 is sufficient. Below, we de-

scribe parameters, which turn Algorithm 2 into SRMP [49]

(which is up to details of implementation equivalent to TRW-

S [48] for pairwise CRFs). Other settings, given in the

supplement, may turn it to other popular message passing

techniques like MPLP [28] or min-sum diffusion [64].

We order node factors and process them according to this

ordering. The ordering naturally defines the sets of incoming

E
+
u and outgoing E

−
u edges for each node u ∈ V. Here

uv ∈ E is incoming for u if v < u and outgoing if v > u.

Each node u ∈ V receives messages from all incoming edges,

which is Jreceive = NG(u) = E
+
u . The messages are sent

to all outgoing edges. Each edge uv ∈ E in the partition in

line 10 of Algorithm 2 is represented by a separate set. That

is, the partition reads ∪̇e∈E
−
u
{e}. Weights are distributed

uniformly and equal to we = { 1
max{|E−

u |,|E+
u |}

}, e ∈ E
−
u .

After each outer iteration, when all nodes were processed,

the ordering is reversed and the process repeats. We refer

to [49] for substantiation of these parameters.

Parameters for Example 2, Graph Matching. Addition-

ally to the node and edge factors, the corresponding IRPS-LP

has also label factors (7). To this end all node factors are

ordered, as in Example 1. Each node factor u ∈ V re-

ceives messages from all incoming edge factors and label

factors Jreceive(u) = E
+
u ∪ Xu and sends them to all out-

going edges and label factors. The corresponding partition

reads ∪̇f∈NG(u)\E
+
u
{f} ∪̇Xu. The weights are distributed

uniformly with wf = { 1
1+max{|E−

u |,|E+
u |}

}. The label factors

are processed after all node factors were visited. Each label

factor receives messages from all connected node factors

and send messages back as well: Jreceive(s) = {u ∈ V :
s ∈ Xu}. We use the same single set for sending messages,

i.e. J1 = Jreceive. After each iteration we reverse the factor

order.

Parameters for Example 3, Multicut. Similarly to Ex-

ample 1, it is sufficient to go only over all edge factors

in the loop of Algorithm 2, since each coupling constraint

contains exactly one cycle and one edge factor. Each edge

factor e receives messages from all coupled cycle factors

Jreceive = NG({c ∈ C : e ∈ c}) and sends them to the

same factors. As in Example 1, each cycle factor forms a

trivial set in the partition in line 10 of Algorithm 2, the parti-

tion reads ∪̇c∈C:e∈c{c}. Weights are distributed uniformly

with we = 1
|c∈C:e∈c| . After each iteration the processing

order of factors is reversed.

4.2. Obtaining Integer Solution

Eventually we want to obtain a primal solution x ∈ X

of (1), not a reparametrization θφ. We are not aware of any

rounding technique which would work equally well for all

possible instances of IRPS-LP problem. According to our

experience, the most efficient rounding is problem specific.

Below, we describe our choices for the Examples 1 – 3.
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Rounding for Example 1 coincides with the one sug-

gested in [48]: Assume we have already computed a primal

integer solution x∗
v for all v < u and we want to compute x∗

u.

To this end, right before the message receiving step of Algo-

rithm 2 for i = u we assign

x∗
u ∈ argmin

xu

θu(xu) +
∑

v<u:uv∈E

θuv(xu, x
∗
v) . (16)

Rounding for Example 2 is the same except that we se-

lect the best label xu among those, which have not been

assigned yet, to satisfy uniqueness constraints:

x∗
u ∈ argmin

xu:x∗
v 6=xu∀v<u

θφu(xu)+
∑

v<u:uv∈E

θφuv(xu, x
∗
v) . (17)

Rounding for Example 3. We use the efficient

Kernighan&Lin heuristic [45] as implemented in [46]. Costs

for the rounding are the reparametrized edge potentials.

5. Fixed Points and Comparison to Subgradi-

ent Method

Algorithm 2 does not necessarily converge to the op-

timum of (1). Instead, it may get stuck in suboptimal

points, similar to those correspoding to the ”weak tree agree-

ment” [48] or ”arc consistency” [74, 3] in CRFs from Exam-

ple 1. Below we characterise these fixpoints precisely.

Definition 3 (Marginal Consistency). Given a

reparametrization θφ, let for each factor i ∈ F a

non-empty set Si ⊆ argminxi∈Xi
〈θφ, xi〉, i ∈ F be

given. Define S =
∏

i∈F
Si. We call reparametrization θφ

marginally consistent for S on ij ∈ E if

A(i,j) (Si) = A(j,i) (Sj) . (18)

If θφ is marginally consistent for S on all ij ∈ E, we call θφ

marginally consistent for S.

Note that marginal consistency is necessary, but not suffi-

cient for optimality of the relaxation (1). This can be seen

in the case of CRFs (Example 1), where it exactly corre-

sponds to arc-consistency. The latter is only necessary, but

not sufficient for optimality [74].

Theorem 2. If θφ is marginally consistent, the dual lower

bound D(φ) cannot be improved by Algorithm 2.

Comparison to Subgradient Method. Decomposi-

tion IRPS-LP and more general ones can be solved via

the subgradient method [50]. Similar to Algorithm 2, it

operates on dual variables φ and manipulates them by

visiting each factor sequentially. Contrary to Algorithm 2,

subgradient algorithms converge to the optimum. Moreover,

on a per-iterations basis, computing subgradients is cheaper

than using Algorithm 2, as only (13) needs to be computed,

while Algorithm 2 needs to solve (15) additionally. How-

ever, for MAP-inference, the study [41] has shown that

subgradient-based algorithms converge much slower than

message passing algorithms like TRWS [48]. In Section 6

we confirm this for the graph matching problem as well.

The reason for this large empirical difference is that one

iteration of the subgradient algorithm only updates those co-

ordinates of dual variables φ that are affected by the current

minimal labeling x∗
i ∈ argminxi∈Xi

〈θφi , xi〉 (i.e. coordi-

nates k : (A⊤
(i,j)x

∗
i )k = 1), while in Algorithm 2 all coor-

dinates of φ are taken into account. Also message passing

implicitly chooses the stepsize so as to achieve monotoni-

cal convergence in Algorithm 1, while subgradient based

algorithms must rely on some stepsize rule.

6. Experimental Evaluation

Our experiments’ goal is to illustrate applicability of the

proposed technique, they are not an exhaustive evaluation.

The presented algorithms are only basic variants, which can

be further improved and tuned to the considered problems.

Both issues are addressed in the specialized studies [68,

67]. Still, we show that the presented basic variants are

already able to surpass state-of-the-art specialized solvers on

challenging datasets.

6.1. Graph Matching

Solvers. We compare against two state-of-the-art algo-

rithms: (i) the subgradient based dual decomposition

solver [70] abbreviated by DD and (ii) the recent “hungarian

belief propagation” message passing algorithm [78], abbrevi-

ated as HBP. While the authors of [78] have embedded their

solver in a branch-and-bound routine to produce exact solu-

tions, we have reimplemented their message passing com-

ponent but did not use branch and bound to make the com-

parison fair. Both algorithms DD and HBP outperformed

alternative solvers [18, 76, 53, 69, 63, 29, 79, 38, 54, 16]

at the time of their publication, hence we have not tested

against them. We call our solver AMP.

Datasets. We selected three challenging datasets. The first

two are the standard benchmark datasets car and motor,

both used in [55], containing 30 pairs of cars and 20 pairs of

motorbikes with keypoints to be matched 1:1. The images

are taken from the VOC PASCAL 2007 challenge [21]. Costs

are computed from features as in [55]. Instances are densely

connected graphs with 20 – 60 nodes. The third one is the

novel worms datasets [40], containing 30 problem instances

coming from bioimaging. The problems are made of sparsely

connected graphs with up to 600 nodes and up to 1500 labels.

To our knowledge, the worms dataset contains the largest
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Figure 2. Runtime plots comparing averaged log(primal energy − dual lower bound) values on car, motor and worms graph matching

datasets. Both axes are logarithmic.

10−2 10−1 100
−5,000

−4,800

−4,600

−4,400

−4,200

−4,000

runtime(s)
knott-3d-150

en
er
gy

MP-C
CGC

MC-ILP
CC-Fusion-RWS
CC-Fusion-RHC

10−1 100 101 102
−2.75

−2.74

−2.73

−2.72

−2.71

·104

runtime(s)
knott-3d-300

10−1 100 101 102

−8

−7.8

−7.6

·104

runtime(s)
knott-3d-450

Figure 3. Runtime plots comparing averaged primal/dual values on the three knott-3d-{150|300|450} multicut datasets. Values are

averaged over all instances in the dataset. The x-axis are logarithmic. Continuous lines are dual lower bounds while corresponding dashed

lines show primal solutions obtained by rounding.

graph matching instances ever considered in the literature.

For runtime plots showing averaged logarithmic primal/dual

gap over all instances of each dataset see Fig. 2.

Results. Our solver AMP consistently outperforms HBP

and DD w.r.t. primal/dual gap and anytime performance

Most markedly on the largest worms dataset, the subgra-

dient based algorithm DD struggles hard to decrease the

primal/dual gap, while AMP gives reasonable results.

6.2. Multicuts

Solvers. We compare against state-of-the-art multicut al-

gorithms implemented in the OpenGM [41] library, namely

(i) the branch-and-cut based solver MC-ILP [44] utilizing

the ILP solver CPLEX [2], (ii) the heuristic primal “fusion

move” algorithm CC-Fusion [9] with random hierarchical

clustering and random watershed proposal generator, de-

noted by the suffixes -RHC and -RWS and (iii) the heuristic

primal “Cut, Glue & Cut” solver CGC [10]. Those solvers

were shown to outperform other multicut algorithms [9]. Al-

gorithm MC-ILP provides both upper and lower bounds,

while CC-Fusion and CGC are purely primal algorithms.

We call our message passing solver with cycle constraints

added in a cutting plane fashion MP-C.

Datasets. We have selected three datasets

knott-3d-{150|300|450} from OpenGM [41].

The problems come from electron microscopy of brain

tissue, for which we wish to obtain a neuron segmentation.

Each dataset contains 8 instances with ≤ 972, 5896 and

17074 nodes and ≤ 5656, 36221, and 107060 edges

respectively.

Results. For plots showing dual bounds and primal solu-

tion objectives over time see Figure 3. Our algorithm MP-C

combines advantages of LP-based techniques awith those of

primal heuristics: It delivers high dual lower bounds faster

than MC-ILP. Its has fast primal convergence speed and

delivers primal solutions comparable/superior to CGC’s and

CC-Fusion’s.
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