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Abstract. While several tools have been developed to study the ground state
of many-body quantum spin systems, the limitations of existing techniques call
for the exploration of new approaches. In this manuscript we develop an alter-
native analytical and numerical framework for many-body quantum spin ground
states, based on the disentanglement formalism. In this approach, observables are
exactly expressed as Gaussian-weighted functional integrals over scalar fields. We
identify the leading contribution to these integrals, given by the saddle point of a
suitable effective action. Analytically, we develop a field-theoretical expansion of
the functional integrals, performed by means of appropriate Feynman rules. The
expansion can be truncated to a desired order to obtain analytical approxima-
tions to observables. Numerically, we show that the disentanglement approach
can be used to compute ground state expectation values from classical stochastic
processes. While the associated fluctuations grow exponentially with imaginary
time and the system size, this growth can be mitigated by means of an impor-
tance sampling scheme based on knowledge of the saddle point configuration.
We illustrate the advantages and limitations of our methods by considering the
quantum Ising model in 1, 2 and 3 spatial dimensions. Our analytical and numer-
ical approaches are applicable to a broad class of systems, bridging concepts
from quantum lattice models, continuum field theory, and classical stochastic
processes.
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1. Introduction

Lattice quantum spin systems constitute an important class of models in many-body
physics. Spin Hamiltonians represent different universality classes in condensed matter
systems [1–3]. More recently, advancements in the fields of ultracold atomic gases [4, 5]
and trapped ions [6, 7] have made it possible to experimentally realize isolated model
systems, enabling a direct investigation of fundamental concepts such as quantum phase
transitions (QPT) and entanglement. Away from exactly solvable integrable models [8,
9], which are mostly one dimensional, analytical treatments of quantum spin systems
are typically based on the spin coherent state path integral [10–15]. While path integrals
frequently elude an exact evaluation, they are often useful to develop approximations,
including semiclassical treatments and instanton techniques [13–15]. However, the con-
tinuum limit of the coherent state path integral is mathematically subtle [16–19], and
is still an area of current research [19–23]. When taking the continuum limit, the differ-
entiability of trajectories is incorrectly assumed [10, 13, 24], which can produce wrong
results even for simple models [19]. The lack of generally applicable analytical techniques
has also led to the development of several numerical schemes. Quantum Monte Carlo
(MC) methods [2, 25] have achieved great success for a range of systems [2, 26–34];
other applications (notably, frustrated magnets [35]) are however plagued by sign or
phase problems [36–38], which have been circumvented in special cases [39–45], but
whose general resolution has proved to be a hard task. More recent tensor network
approaches [46, 47] have been able to handle large or even infinite systems in one [48]
and higher dimensions [49–52]; however, their applicability in the latter case is signif-
icantly limited by the growth of entanglement and the computational cost associated
with contracting higher dimensional lattices [52–54].

An alternative framework for quantum spin systems has recently emerged, based on a
disentanglement approach [24, 55, 56] whereby quantum expectation values are exactly
expressed as functional integrals over single-spin trajectories. Said integrals are per-
formed with respect to the Wiener measure [57] and are thus straightforwardly amenable
to numerical evaluation [24, 58]. Furthermore, as noted in [24], this construction does
not assume the differentiability of paths, and is therefore free from the related issues
that affect coherent state path integrals [10, 13, 24]. The field theoretical description
provided by the disentanglement formalism has been used to obtain analytical results
for certain integrable models [24, 55]. However, a generally applicable analytical method
to compute observables from this approach is presently lacking. Alternatively, the path
integrals obtained from the disentanglement method can be evaluated by numerically
solving a set of stochastic differential equations (SDEs) [24, 55]. While this approach
has been recently investigated in non-equilibrium settings [58, 59], much less is known
in the context of ground states.

In this manuscript, we explore ground state applications of the disentanglement
approach, developing a set of analytical and numerical tools. In section 2, we briefly
review the disentanglement formalism and apply it in Euclidean time to exactly cast
ground state expectation values in path integral form. Going beyond previous appli-
cations of the disentanglement formalism, we then identify the trajectory yielding the
largest contribution to a given observable: this corresponds to the saddle point (SP)
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configuration extremizing a suitably defined effective action, as we illustrate for the
quantum Ising model in D spatial dimensions. On the analytical side, in section 3 we
then show how to systematically compute corrections beyond the SP approximation;
we provide an example for the quantum Ising chain, introducing an appropriate set of
Feynman rules and diagrams. On the numerical side, by biasing the measure toward the
SP configuration we obtain an exact importance sampling scheme, greatly improving
the performance of the method over direct sampling. We show this in section 4, where
we compute observables for 1, 2 and 3 dimensional systems and study the behavior of
fluctuations in the corresponding stochastic quantities. Finally, in section 5 we sum-
marize our findings, discussing the advantages and limitations of the disentanglement
method, and outline future directions.

2. Disentanglement formalism for quantum spin ground states

2.1. Disentanglement transformation

Consider a quantum spin system with Hamiltonian Ĥ. The ground state |ψG〉 of the
system can be obtained from a generic state |ψ0〉 by performing imaginary time evo-
lution: since at late imaginary times τ all excited states are exponentially suppressed
compared to the ground state, one has

|ψG〉 ∼ lim
τ→∞

e−Ĥτ |ψ0〉, (1)

where we set � = 1. It is then natural to introduce the Euclidean time evolution oper-

ator Û(τ) = e−Ĥτ . Without loss of generality, let us consider initial states |ψ0〉 that are
product states; these can be conveniently parameterized in terms of a single reference
state | ⇓〉 ≡

∏
i | ↓〉i, where Ŝ−

i |↓〉i = 0. The Euclidean time evolution from an arbitrary
state |ψ0〉 is then obtained by considering the modified time evolution operator

Û(τ) ≡ Û(τ)Û 0, (2)

where the unitary operator Û 0 satisfies

Û 0|⇓〉 = |ψ0〉. (3)

The ground state expectation value of an observable Ô can thus be written as

OG = lim
τ→∞

〈⇓|Û†(τ)ÔÛ(τ)|⇓〉
〈⇓|Û †(τ)Û(τ)|⇓〉

. (4)

The denominator of equation (4) provides the necessary normalization, since Û(τ) inher-
its the non-unitarity of Û(τ). All information about ground state expectation values is

then encoded in the late-time behavior of Û(τ). Let us consider spin systems with a
quadratic Hamiltonian

Ĥ = −J
∑
ijab

J ab
ij Ŝ

a
i Ŝ

b
j −

∑
ia

ha
i Ŝ

a
i , (5)
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where a, b ∈ {+,−, z} and the spin operators Ŝa
j on site j satisfy the SU(2) commutation

relations [Ŝz
j , Ŝ

±
j′ ] = ±δjj′ Ŝ

±
j , [Ŝ+

j , Ŝ
−
j′ ] = 2δjj′ Ŝ

z
j . We consider a symmetric interaction

matrix J ab
ij with interaction strength J and an applied magnetic field ha

i . For systems

whose Hamiltonian is of the form (5), the operator Û(τ) can be conveniently re-expressed
using a disentanglement formalism [24, 55, 56], recently applied in the context of real
time evolution [58, 59]. By performing a Hubbard–Stratonovich (HS) decoupling [60,

61] followed by a Lie-algebraic disentanglement transformation [24, 55, 56, 62, 63], Û(τ)
can be exactly represented as a functional integral [24, 55, 56]:

Û(τ) =
∫

Dϕ e−S0[ϕ]Û s(τ), (6)

where the noise action S0 is given by1

S0[ϕ] ≡
J

4

∫ τ

0

dτ ′
∑
abij

(J −1)abij ϕ
a
i (τ

′)ϕb
j(τ

′) (7)

and the stochastic time evolution operator Û s is defined as a product of on-site operators:

Û s(τ) ≡
∏
j

Û s
j(τ) =

∏
j

eξ
+
j (τ )Ŝ

+
j eξ

z
j (τ )Ŝ

z
j eξ

−
j (τ )Ŝ

−
j . (8)

The operators Û s
j have a functional dependence on the fields ϕ = {ϕa

i } via the

disentangling variables ξ ≡ {ξνj }, which satisfy [24]

ξ̇+j = Φ+
j +Φz

jξ
+
j − Φ−

i ξ
+
j
2
, (9a)

ξ̇zj = Φz
j − 2Φ−

j ξ
+
j , (9b)

ξ̇−j = Φ−
j exp ξzj , (9c)

where Φa
j = ha

j + Jϕa
j . The initial conditions of the disentangling variables are deter-

mined from Û(0) = Û 0; for example, for a spin-1/2 system, the general product state
|ψ0〉 ≡

∏
i(ai, bi) corresponds to the initial conditions

ξ+i (0) = ai/bi, (10a)

ξzi (0) = −2 log(bi), (10b)

ξ−(0) = −a∗i /b
∗
i . (10c)

For completeness, we outline the derivation of equations (6) and (9) in appendix A.
Equation (6) can be seen as an exact path integral representation of the time-evolution
operator. The operators inside the functional average (6) are decoupled over sites and
act in a simple way on any state of interest. While each trajectory parameterized by ξai
describes a non-interacting spin and has no entanglement, the effect of interactions is
encoded in the correlations between the fields ϕa

i , determined by the noise action (7); the

1This convention differs from that of [58, 59] by a rescaling of the scalar fields ϕa
i ; see appendix A.
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interacting quantum spin system is thus fully retrieved upon performing the functional
integral in (6). Equation (6) allows one to formulate an exact field theoretical description
of lattice spin systems, as we show in section 3. The noise action (7) can be diagonal-
ized in terms of a new set of fields φ = {φa

i } by performing the linear transformation
φa
i =

∑
bj O

ab
ij ϕ

b
j , where O is a matrix satisfying OTJ −1O/2J = �. With this transforma-

tion, the noise action takes the form [58]

S0[φ] ≡
1

2

∫ τ

0

dτ ′
∑
ai

φa
i (τ

′)φa
i (τ

′). (11)

Notably, due to the Gaussian nature of (11), the fields φ can also be interpreted as
delta-correlated, unit-variance Gaussian white noise variables [24, 55]. Thus, the func-
tional integral in equation (6) can be equivalently seen as an average over the stochastic
processes φa

i (τ) [24, 55, 58]:

Û(τ) =
〈∏

j

eξ
+
j (τ )Ŝ

+
j eξ

z
j (τ )Ŝ

z
j eξ

−
j (τ )Ŝ

−
j

〉
φ

. (12)

The notation 〈. . .〉φ denotes averaging with respect to the noise action (11), so that the
relevant probability law is the Wiener measure. The equations of motion equation (9)
are then interpreted as SDEs for the variables ξai [24, 55]. By representing each of
the time evolution operators in equation (4) using the disentangling formula (12), one
can express quantum ground state expectation values as classical averages. Introducing
independent sets of forwards and backwards fields (labeled by the additional subscripts
f, b), φf ≡ {φa

f,i} and φb ≡ {φa
b,i}, and the associated disentangling variables ξf ≡ {ξaf,i},

ξb ≡ {ξab,i}, one has

OG = lim
τ→∞

〈FO(τ)〉φf,φb

〈F�(τ)〉φf,φb

, (13)

where the classical function FO corresponding to the operator Ô is defined by

FO ≡ 〈⇓|[Û s(τ)]†ÔÛ s(τ)|⇓〉, (14)

and F� is obtained from (14) when Ô is replaced by the identity operator. It can be
readily seen that the functions FO take the same functional form as their real time
counterparts, given in [58, 59]. Here, in contrast to said references, we express all initial
states in terms of a single reference state and variable initial conditions ξai (0): in this
way, there is a one-to-one correspondence between observables and their classical coun-
terparts, regardless of the initial state. The reference state |⇓〉 was selected because it
results in the simplest classical expressions [58, 59]. For example, for spin-1/2 systems

one has Ŝa
i = σa

i /2, where σ
a
i are the Pauli matrices. In this case, by acting with (12) on

the reference state |⇓〉, the classical function for the normalization is found to be

F�(τ) =
∏
i

[1 + ξ+f,i(τ)ξ
+∗
b,i (τ)]e

− 1
2 [ξ

z
f,i(τ )+ξz∗b,i(τ )], (15)

https://doi.org/10.1088/1742-5468/abc7c7 6
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while the longitudinal magnetization Mz =
∑

j〈Ŝz
j〉/N corresponds to the classical

function [58]

FMz
(τ) =

F�(τ)

N

∑
j

1− ξ+f,j(τ)ξ
+∗
b,j (τ)

1 + ξ+f,j(τ)ξ
+∗
b,j (τ)

. (16)

For any observable, the appropriate classical function can be constructed using the
building blocks provided in [59]. The expectation values of functions such as (15) and
(16) can be evaluated numerically by averaging them over realizations of the stochastic
processes φa

i , as done in [58, 59] for real time evolution; the processes φa
i determine the

time evolution of the variables ξai via the SDEs (9). The key toward both analytical
and numerical developments is identifying the trajectories φ which provide the largest
contribution to each observable; we discuss this in the following section.

2.2. Extremal trajectories

In the disentanglement formalism, ground state expectation values can be numerically
computed by averaging classical functions over realizations of trajectories φa

i distributed
according to the action (11). In this approach, which we refer to as direct sampling , one
preferentially generates trajectories that are close to the non-interacting limit φa

i (τ) = 0,
as shown in appendix B. This was done for real-time evolution in [58, 59]. However, the
trajectories that contribute most significantly to a given functional integral may be
substantially different from the non-interacting trajectories, as also pointed out in [64].
Therefore, going beyond previous applications of the disentanglement formalism [24, 55,
56, 58, 59], we presently identify the trajectories yielding the dominant contributions.
To this end, it is convenient to work with the action (7) written in terms of the fields
ϕa
i . An observable O can be written as

O ≡ 〈Ô〉 = 〈FO[ϕ]〉ϕ (17)

where ϕ = {ϕα} denotes all of the HS fields: the collective index α runs over sites, Lie
algebra generators, and sets of fields (e.g. forwards and backwards). Equation (17) can
be equivalently written as

O ≡
∫

Dϕ e−SO[ϕ], (18)

which defines the effective action SO[ϕ] ≡ S0[ϕ]− log fO[ϕ] for the observable O. The
leading contribution to the integral (18) is given by the configuration ϕSP(τ) which
extremizes the effective action:

ϕSP :
δSO

δϕ

∣∣∣∣
ϕSP

= 0. (19)

We refer to ϕSP as the SP field. The trajectory corresponding to the field ϕSP provides
the leading order (LO) approximation to a given observable, as we further discuss in
section 3.1.
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One can regard equation (18) as an exact field theoretical formulation of the lattice
quantum spin system; equation (18) can then be expanded about the SP to analytically
obtain corrections to observables beyond LO, computed by using the associated Feyn-
man rules and diagrams. In practice, the expansion can be carried out up to a desired
order, providing approximate analytical results for ground state expectation values. This
approach is discussed and explicitly applied in section 3.

Alternatively, one can view the disentanglement approach as a numerical tool. ϕSP

can then be used to perform an exact change of variables in the functional integral
(18): this amounts to preferentially sampling trajectories near ϕSP, which yield the
largest contributions to the integral. Notably, in this approach one does not truncate
to a given order in the fluctuations: the resulting equations are still exact and fully
capture the corresponding quantum problem. The measure transformation amounts to
an importance sampling scheme to improve the numerical efficiency of the stochastic
approach, which is formally exact and whose practical accuracy is determined by the
finite number of simulations one performs. The importance sampling method is dis-
cussed in section 4, where we show how this can be used to numerically access much
larger system sizes than it is possible by sampling according to the naive measure
(11).

In the next section, we show how the SP trajectory is computed; this provides the
starting point for both analytical and numerical developments.

2.3. Ising saddle point equation

We wish to identify the leading contribution to a given functional integral by solving
equation (19). For definiteness, we illustrate this by considering the quantum Ising model
in D spatial dimensions, but the same formalism can be applied to any spin Hamiltonian
of the form (5). The quantum Ising model is given by the Hamiltonian

Ĥ I = −J
N∑
〈ij〉

Ŝz
i Ŝ

z
j − Γ

N∑
j=1

Ŝx
j , (20)

where 〈ij〉 denotes nearest-neighbor interactions. We consider a system of N = N 1 ×
· · · ×ND spin-1/2 degrees of freedom on a D-dimensional hypercubic lattice, with peri-
odic boundary conditions and ferromagnetic interactions J > 0. We begin by considering
the integrable one-dimensional case, and then generalize our results to D > 1, where the
model cannot be solved exactly. For D = 1, the model (20) reduces to the quantum Ising
chain and is solvable in terms of free fermions [65]; this allows the exact computation of
physical observables in the thermodynamic limit. In the present units, the Ising chain
has a QPT at Γ = J/2. For this model, the general result (9) specializes to the Euclidean
Ising SDEs [24, 58, 59]

ξ̇+i (τ) =
Γ

2
(1− ξ+i

2
) + Jξ+i ϕi, (21a)

ξ̇zi (τ) = −Γξ+i + Jϕi, (21b)
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ξ̇−i (τ) =
Γ

2
exp ξzi . (21c)

A natural choice of observable is the ground state energy density εG. This can be com-
puted using equation (13), according to the general formalism outlined in section 2.1.
Alternatively, εG can also be obtained as

εG = − lim
τf→∞

1

Nτf
log A(τf), (22)

where we defined the Euclidean Loschmidt amplitude A(τf) for the initial state |ψ0〉 as

A(τf) = 〈ψ0|Û(τf)|ψ0〉. (23)

By computing εG by means of equation (22), one only needs to consider a single
time evolution operator, which corresponds to a single set of HS fields φa

i . Thus,
using equation (22) allows us to simplify the subsequent analytical developments for
the purpose of illustrating the method. The same results can however be obtained
from the general formalism of section 2.1, involving two time evolution operators; see
appendix C. To further simplify our calculations, we choose the all-down initial state
|ψ0〉 = ⊗j |↓〉j ≡ |⇓〉; in this case, the Loschmidt amplitude is given by the functional
integral [58]

A(τf) =

∫
Dϕ e−S0[ϕ] e−

1
2

∑
iξ

z
i (τf ), (24)

where the equation of motion of ξzj is given by (21b) and the initial conditions are

ξai (0) = 0. Following the discussion of section 2.2, we write the Loschmidt amplitude
(24) as

A(τf) =

∫
Dϕ e−S[ϕ] (25)

which defines the Euclidean Loschmidt action:

S[ϕ] =
J

2

∫ τf

0

dτ

[
1

2

∑
ij

(J−1)ijϕi(τ)ϕj(τ)−
Γ

J

∑
i

ξ+i (τ) +
∑
i

ϕi(τ)

]
. (26)

The variables ξ+i featured in the action (26) are themselves functionals of ϕi, as deter-
mined by (21). It follows that S[ϕ] cannot be written in terms of a Lagrangian involving
only the fields ϕ and their time-derivatives, and it is thus not possible to obtain
Euler–Lagrange equations in the standard way. Rather, in order to obtain the SP field
configuration, one directly extremizes the action (26) with respect to varying the field
ϕi. This yields the Loschmidt SP equation

ϕi(τ
′)|SP =

Γ

J

∑
j

Jij

∫ τf

0

dτ
δξ+j (τ)

δϕj(τ ′)

∣∣∣∣
SP

− 1, (27)
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where we used
∑

j Jij = 1 ∀ i and δξ+i /δϕj ∝ δij. The subscript SP denotes quantities
that are evaluated at the SP. By varying equation (21a) with respect to ϕi(τ

′), one
obtains

δξ+i (τ)

δϕi(τ ′)
= Jξi(τ

′)θ(τ − τ ′)e−
∫ τ
τ ′ γi(s)ds ≡ Ξi(τ , τ

′), (28)

where θ(τ) is the Heaviside step function and we defined

γi(s) ≡ Γξ+i (s)− Jϕi(s). (29)

Due to the translational invariance of the model (20) and of the chosen initial state,
at the SP all ξ+i take the same value, ξ+i |SP ≡ ξ+SP. From the translational symme-
try of equation (27), it also follows that ϕi|SP = ϕSP and Ξi|SP = ΞSP. Hence, in the
translationally invariant case the SP equation for the field ϕSP simplifies to

ϕSP(τ
′) =

Γ

J

∫ τf

0

ΞSP(τ , τ
′)dτ − 1. (30)

From equations (30) and (28) one immediately obtains the boundary condition ϕSP(τ f) =
−1; equations (30), (28) and (21) further imply that ϕSP(τ

′) must remain real-valued at
all times. To the best of our knowledge, the functional equation (30) cannot be solved
analytically. However, for the computation of ground states one is only interested in the
limit τ f →∞. A recursive numerical solution of equation (30) shows that in this limit,
away from a transient near τ = 0 and a boundary region at τ � τ f, the SP equation
is dominated by a time-independent plateau value φP; see appendix C. We may then
assume that late-time plateau values, denoted by a subscript P, dominate the integrals,
and approximate

∫ τf

0

ΞP(τ , τ
′) ≈

∫ τf

0

θ(τ − τ ′)Jξ+P e−γP(τ−τ ′) =
Jξ+P
γP

, (31)

where γP ≡ Γξ+P − JϕP. Convergence of the integral in equation (31) requires γP < 0.
Assuming that this condition is satisfied, which can be self-consistently verified a pos-
teriori , in the τ f →∞ limit equation (30) is reduced to an algebraic equation for ϕP:

ϕP =
ΓξP

Γξ+P − JϕP

− 1. (32)

In the absence of translational invariance, an analogous set of equations for the plateau
fields can be obtained from (27). Equation (32) can be solved together with the condition
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that ξ+P is a fixed point of the Euclidean dynamics when ϕ = ϕP, yielding four solutions:

ξ+P =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[J −
√

J2 − Γ2]/Γ

[J +
√

J2 − Γ2]/Γ

1

−1

ϕP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
√

J2 − Γ2/J√
J2 − Γ2/J

0

0

γP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J

J

Γ

−Γ.

(33)

In order for the SP field to be real valued, the first and second solutions are only
acceptable when Γ < J ; they both give γP = J , and the corresponding ξ+P are reciprocal
to each other. The fourth solution is not acceptable as it gives γP < 0: it corresponds
to a maximum of the action (26). We refer to the first and second SPs as the small-Γ
SPs and to the third one as the large-Γ SP, as they give the LO contribution to the
ground state energy in these limits; see section 3.1 below. Notably, the plateau values ϕP

in equation (33) coincide with the effective fields acting on each spin within the mean
field (MF) approximation; similarly, the disentangling variables ξ+P parameterize the MF
ground states. For comparison, we provide details of the MF solution in appendix D. This
finding has a transparent physical interpretation: the path integral (24) is a sum over
configurations of non-interacting spins, i.e. product states, and the SP trajectory is the
single such configuration which gives the best approximation to the ground state energy.
The product state which best approximates a ground state is precisely given by MF; the
first and second SPs in (33), which have opposite ϕP, arise from spontaneous symmetry
breaking at the MF level. This interpretation suggests that the correspondence between
the SP configuration and MF is general. In order to compute ground state expectation
values using the present method, it is therefore convenient to initialize the system in
the MF ground state and subsequently perform imaginary time evolution toward the
true ground state. This is tantamount to initializing the disentangling variables at their
plateau values, ξai (0) = ξaP, which removes the initial transient behavior. In principle,
the above discussion should be repeated for every observable, since each corresponds to
a different effective action and therefore to a different SP equation. However, it can be
shown that the SP configuration of the Loschmidt action also extremizes the effective
action for all physical observables, as obtained from the general formalism of section 2.1;
see appendix C. The findings of this section also readily generalize to higher dimensions.
The SP solution corresponds to MF also for D > 1; a detailed derivation is provided in
appendix C. For instance, the plateau SP values for an isotropic quantum Ising model
in D spatial dimensions are given by
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ξ+P =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[DJ −
√

D2J2 − Γ2]/Γ

[DJ +
√

D2J2 − Γ2]/Γ

1

−1

ϕP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
√

D2J2 − Γ2/DJ√
D2J2 − Γ2/DJ

0

0

γP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DJ

DJ

Γ

−Γ.

(34)

3. Field theory

The disentanglement formalism provides an exact field theoretical representation of
lattice quantum spin systems, which is obtained directly from the physical spin degrees
of freedom and does not involve a continuum limit in space or the mapping of the
quantum system to a higher dimensional classical one. The disentanglement approach
also circumvents the use of coherent states, thus avoiding the related issues discussed in
the introduction. In this field theoretical framework, the SP field configurations give the
LO approximation to observables, with successive corrections corresponding to higher
order terms in the expansion of the path integral (18) about the SPs. These corrections
account for entanglement in the system and can be computed by using a set of Feynman
rules and the associated diagrammatic representation, introduced in this section. This
provides a method of broad applicability to obtain systematically improvable analytical
approximations from the disentanglement formalism. We illustrate this for the ground
state energy of the quantum Ising chain, whose exact solution provides a convenient
benchmark; however, the proposed method does not rely on integrability or assume a
specific dimensionality and is thus applicable to a wide range of models.

3.1. Leading order

We begin by considering the LO term; this is given by the plateau field configurations
(33) obtained in section 2.3. For the remainder of this section, it is convenient to initialize
the disentangling variables at their plateau values; since ξ+i (0) = ξ+P corresponds to the
MF ground state |MF〉, this is equivalent to expressing the ground state energy density
in the thermodynamic limit as

εG = lim
τf→∞

lim
N→∞

− 1

τfN
log〈⇓|Û(τf)|MF〉. (35)

Normalization of the initial state also implies ξzi (0) = log(1 + ξ+2
P ). Equation (35) can

thus be written as
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εG = lim
τf→∞

lim
N→∞

− 1

τfN
log A(τf) (36)

in terms of a modified Loschmidt amplitude, given by

A(τf) = 〈⇓|Û(τf)|⇓〉. (37)

The modified time evolution operator Û(τf) in equation (37) is given by equation (2) with

the condition Û(0)|⇓〉 = |MF〉; due to this definition, the modified Loschmidt amplitude
A(τf) corresponds to the same effective action (26) as A(τ f). The analysis of the action
(26) in section 2.3 concerns the infinite time limit and is independent of the initial
conditions. In this limit, we can again assume that all integrals are dominated by the
plateau values; therefore, the earlier discussion equally applies to the present case, and
the two amplitudes A(τf), A(τ f) are dominated by the same large-τ f plateaus.

The LO approximation to the ground state energy density in the thermodynamic
limit can then be obtained as

εG ≈ − lim
τf→∞

lim
N→∞

1

τfN
log

∑
s.p.

e−SP, (38)

where the sum runs over the different SPs and the plateau action is given by

SP =
NJ

4
ϕ2
Pτf −

Γ

2
ξPτf +

J

2
ϕPτf =

⎧⎪⎨
⎪⎩
−N(J2 + Γ2)

4J
τf

−NΓ

2
τf .

(39)

The top solution in equation (39) corresponds to the two small-Γ SPs, while the bottom
solution corresponds to the large-Γ SP. The double degeneracy of the former SP amounts
to a factor of 2 multiplying one of the exponentials in (38): this does not contribute to
the thermodynamic limit. Noticing that, for fixed J ,

lim
N→∞

1

N
log

∑
s.p.

e−NS̄P(Γ) = −min
Γ

S̄P(Γ), (40)

where we defined the intensive quantities S̄P = SP/N , we obtain

εG(Γ) ≈ min
Γ

(S̄P/τf) = −max
Γ

(
J2 + Γ2

4J
,
Γ

2

)
, (41)

where the first solution is only valid for Γ < J , as discussed. Consistently with the
findings of section 2.3, the LO result (41) is equal to the result of the MF approximation.
The energy density of the true, entangled ground state is then retrieved upon including
higher order terms in the expansion of (37).

3.2. Higher order corrections and quantum phase transitions

Having obtained the LO MF approximation, we now wish to compute corrections beyond
MF. In the presence of multiple SPs, it is customary to integrate Gaussian fluctuations

https://doi.org/10.1088/1742-5468/abc7c7 13

https://doi.org/10.1088/1742-5468/abc7c7


J.S
tat.

M
ech.

(2020)
013101

Disentanglement approach to quantum spin ground states: field theory and stochastic simulation

about each SP and add up the relative contributions [66]. Here, we assume that the
expansions about different SPs can be separately carried out and added up also for
corrections beyond Gaussian. Let us discuss the conditions under which this procedure
may be justified. Consider an integral whose integrand has several SPs. The expansion
about each SP can be seen as a way of grouping contributions together: by expanding to
higher and higher order, one progressively includes trajectories further and further from
each SP. Adding up separate expansions around different SPs is then justified provided
that there is no ‘overlap’: the trajectories included in one expansion are not significantly
contributing to any of the others. A toy example showing this is provided in appendix
C. In the present case, the requirement that there is no overlap is indeed satisfied: in the
thermodynamic limit, equation (40) implies that only one expansion contributes for each
value of Γ, and no double-counting can occur. Since the present discussion is not based
on any model-specific assumption, the parameter Γ can here be understood as a general
set of parameters specifying a given Hamiltonian. Additionally, in order to obtain finite
results, each expansion should only be considered in the region of parameter space where
it is convergent. This requirement can be physically understood as accounting for the
breakdown of, for example, a large-coupling expansion in the small-coupling regime.
With these caveats, let us carry out the full expansions as discussed; one has

εG = lim
τf→∞

lim
N→∞

1

τfN
log

∑
s.p.

e−NS̄ ′
P (42)

where, for each SP, the quantity S̄ ′
P includes all contributions from higher order terms.

Since the ground state energy density is finite and intensive, we expect S̄ ′
P to be

independent of the system size. By equation (40), this means that

εG = min
Γ

(S̄ ′
P/τf). (43)

Thus, the ground state energy is given by whichever of the series S̄ ′
P, obtained by

expanding around the different SPs, gives the lowest value of εG for a given value of the
physical parameters. For example, for a quantum Ising model with fixed J , equation (43)
implies that only one of the summands in (42) contributes for each choice of Γ. The
above structure then suggests an interpretation of QPTs in terms of an abrupt change
in which of the series S̄ ′

P yields the dominant contribution to the ground state energy.
Let us denote by ε±(Γ) the expansions corresponding to the two smallest S̄′

P in a given
range of the parameter Γ. In the thermodynamic limit, due to the minimum function
in (43), the functional form of εG changes abruptly at the value Γc such that ε− < ε+
if Γ < Γc and ε− > ε+ if Γ > Γc, so that the value Γc can be identified as the quantum
critical point. We refer to this condition as crossing of the two series, although both may
diverge at the critical point Γc itself; see appendix C. Equation (42) thus implies that
the GS energy density can only be non-analytic in the thermodynamic limit, and only
at the point where two different series cross in the above-defined sense. This expected
result is here retrieved purely on the basis of the disentanglement formalism, where it
emerges naturally as a consequence of equations (36), (40) and (42). In the next section,
we will show that for the Ising model the expansions around the small-Γ and large-
Γ SPs give rise to series in Γ/J and J/Γ respectively. These can be identified as the
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small-Γ and large-Γ perturbative expansions of the ground state energy. To benchmark
our analytical approach, we shall exploit the exact solvability of the Ising chain, whose
ground state energy density is given by [65]

εG = −2Γ + J

2π
E

(
8JΓ

(J + 2Γ)2

)
, (44)

in terms of the complete elliptic integral of the second kind E. Expanding equation (44)
for small or large Γ, one finds

εG =

⎧⎪⎨
⎪⎩
−J

4
− Γ2

4J
− Γ4

16J3
− Γ6

16J5
− . . . ,

−Γ

2
− J2

32Γ
− J4

2048Γ3 −
J6

32 768Γ5 − . . . ,
(45)

respectively. When all terms are resummed, the above perturbative series do indeed cross
only at the critical point Γc = J/2; see appendix C. The small-Γ expansion is seen to
be divergent for Γ > Γc; therefore, the relative terms will not contribute in this regime.
Similarly, the large-Γ series does not contribute when Γ < Γc. Below, we will show how
small- and large-Γ expansions for εG are obtained from the disentanglement approach.

3.3. Feynman rules

The evaluation of corrections to the GS energy beyond LO according to equation (42)
is carried out by expanding the functional integral representation of (37) around the
SPs and applying Wick’s theorem. This gives rise to a set of Feynman rules, which we
illustrate in this section by considering the quantum Ising chain. Since the expansions
around the different SPs take the same functional form, here we work in full generality,
specializing only the final results to each SP. In order to reveal the dependence of each
term on the physical parameters Γ and J , it is convenient to introduce dimensionless
times τ̄ = γPτ , where γP will eventually be set to the appropriate plateau value (33) for
each SP. The noise action becomes

S0 ≡
J

4γP

∫ τ̄ f

0

dτ
∑
ij

(J−1)ijϕi(τ)ϕj(τ) (46)

and the effective Loschmidt action is given by

S = S0 −
∫ τ̄ f

0

dτ̄

[
Γ

2γP

∑
i

ξ+i (τ̄) +
J

γP

∑
i

ϕi(τ̄)

]
. (47)

It is convenient to separately consider the variations of (47) which involve functional
derivatives of ξ+i and the term originating from the noise action S0: as we shall see, the
latter provides a simple and physically appealing propagator2. Thus, for each SP we
expand the action (47) as

2This is somewhat different from the standard QFT approach [67], where the propagator is obtained from the term in the action
that is quadratic in the fields. In the present case, this procedure would not yield a propagator in closed form. Instead, it is
convenient to obtain the propagator from S0 and treat the remaining term of quadratic order on an equal footing to higher order
terms, evaluating their contributions from Wick’s theorem.
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S = SP + S0 −
∞∑
n=2

T (n) (48)

where we defined

T (n) ≡ 1

n!

∑
i

∫ τ̄ f

0

. . .

∫ τ̄ f

0

S(n)(τ̄ 1, . . . , τ̄ n)ϕi(τ̄ 1) . . . ϕi(τ̄ n)dτ̄ 1 . . .dτ̄ n, (49)

S(n)(τ̄ 1, . . . , τ̄ n) ≡ − Γ

2γP

∫ τ̄ f

0

dτ̄
δnξ+i (τ̄)

δϕi(τ̄ 1) . . . δϕi(τ̄ n)

∣∣∣∣
P

, (50)

and we exploited translational invariance and δξ+i /δϕj ∝ δij . The functional integral (24)
can be expanded as

A(τf) =
∑
s.p.

e−SP

〈 ∞∑
m=0

(
∑∞

n=2 T
(n))m

m!

〉
0

, (51)

where the notation 〈. . .〉0 denotes averaging with respect to the noise action (46). Each
term in equation (51) can be evaluated using Wick’s theorem. The propagator Δ, which
accounts for interactions in the system, can be read off from the quadratic action (46)
and is found to be proportional to the interaction matrix:

Δij(τ̄ , τ̄
′) = 2

γP
J
Jijδ(τ̄ − τ̄ ′). (52)

The series obtained from (51) can then be formally re-exponentiated, giving
equation (42). Consider the averages 〈. . .〉0 in equation (51). We define the order of
a term 〈T (n1) . . . T (nm)〉0 to be l =

∑m
j=1 nj . Wick’s theorem implies that terms of odd

order vanish identically, while terms of even order are obtained by summing over all the
possible replacements of pairs of fields φi(τ̄ i), φj(τ̄ j) by propagators Δij(τ̄ i, τ̄ j). The eval-
uation of a given term in (51) is simplified by means of a diagrammatic representation
and the associated Feynman rules:

• Each T (n) provides a vertex and contributes a factor S(n)/n!. Diagrammatically, a
vertex is represented as n points arranged inside a box. Each vertex is labeled by
a site index, e.g. j. Individual points belonging to a given vertex are additionally
distinguished by a unique time label, τ̄ j1 . . . τ̄ jn.

• One then sums over all possible ways of joining pairs of points by lines; a line joining
the points labeled by (j, τ̄ j), and (k, τ̄ k) gives a propagator Δjk(τ̄ j , τ̄ k).

• The resulting quantity is then integrated over all times τ̄ i; the integrals run between
0 and τ̄ f .

• Finally, all site indices are summed over.

Examples of this diagrammatic representation are given in figures 1–3, discussed
below. In more usual field theories, such as φ4, vertices are typically represented by
single points [67]; in the above rules, this would correspond to setting all τ̄ ji to the same
value. The fact that here vertices consist of separate points is due to the non-locality
in time of the action (48). To simplify the evaluation of higher order terms, we identify
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two classes of diagrams which do not contribute. The first class includes diagrams where
lines join points within the same vertex: these are self-interaction diagrams. An example,
originating from 〈T (3)T (3)T (2)〉0, is shown in figure 1(a). Such diagrams feature at least
one term of the form Δii ∝ Jii, which is identically zero for the Hamiltonian (20) at
hand. The second class of non-contributing terms includes disconnected diagrams , in
which the vertices joined by internal lines form disjointed clusters. This class includes
the diagram in figure 1(b), which is produced by 〈T (4)T (4)〉0. It is easy to see that,
due to the Feynman rules and the form of the propagator (52), a connected cluster
of vertices gives a contribution proportional to the system size N . A term with m
disconnected clusters of vertices is then proportional to Nm. The origin of these terms
can be understood by considering the expansion

e−NS̄ ′
= 1−NS̄ ′ +

1

2!
N 2(S̄ ′)2 + . . . . (53)

The terms 〈. . .〉0 in (51), obtained from Wick’s theorem, correspond to the right-hand
side of (53). The ground state energy must be intensive and finite in the thermodynamic
limit; this implies that terms proportional to higher powers of N must cancel out when
exponentiating the series in (51) to obtain equation (42). This is precisely what happens
in equation (53). Since the desideratum here is S̄ ′, we only need to consider terms
proportional to N : these are given by connected diagrams. Finally, we note that for the
quantum Ising model all diagrams with an odd number m of vertices T (2) vanish: any
such diagram is either self-interacting (figure 1(c)), or it gives rise to a term ∝ TrJ m,
which vanishes for Jij = (δi,j+1 + δi+1,j)/2 (figure 1(d)).

In section 3.5, we apply the Feynman rules derived in this section to compute higher
order corrections to the ground state energy of the quantum Ising chain. Before turning
to this explicit example, in the next section we complete our theoretical overview by
considering how the terms in equation (51) depend on the physical parameters of the
model, elucidating the relation between the expansion about the SPs and perturbation
theory.

3.4. Relation to perturbation theory

In order to understand the nature of the terms produced by the expansion (51) we

need to consider the higher variations of the action, S(n) with n � 2. It is convenient to
compute these variations by initially imposing a time ordering τ̄ n > · · · > τ̄ 1, and then
symmetrizing the result with respect to the times τ̄ i. With said ordering, one obtains
for the second variation

S(2)(τ̄ 1, τ̄ 2) = −
(

J

γP

)2∫ τ̄ f

0

Γ

γP
Ξi(s̄1, τ̄ 1)

×
[
θ(s̄1 − τ̄ 2)−

Γ

γP

∫ s̄1

τ̄2

Ξi(s̄2, τ̄ 2)ds̄2

]
ds̄1

∣∣∣∣
P

, (54)

where we defined Ξ(s̄, τ̄ 1) ≡ J
γP
Ξ(s̄, τ̄ 1) to make the dependence on physical parameters

manifest. Equation (54) shows that all variations S(n) with n � 2 can be expressed in
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Figure 1. Examples of Feynman diagrams that give vanishing contributions to the
ground state energy of the quantum Ising chain. Each square represents a vertex,
as indicated underneath. Vertices are labeled by an overhead site index, e.g. i.
Each point within a vertex also has a unique time label. Dashed lines represent
propagators. (a) Diagrams where at least one line is internal to a vertex represent
self-interactions and vanish identically. (b) Disconnected diagrams, where vertices
that are connected by lines form disjointed clusters, do not contribute to the ground
state energy. (c), (d) Diagrams arising from an odd number m of T (2) vertices
always vanish (here we show m = 3). They either (c) feature internal lines, or (d)
are proportional to TrJ m, where J is the interaction matrix; all such quantities
vanishes for the Ising model.

terms of integrals of the first variation Ξi. Schematically, one obtains S(n+1) from S(n)

by summing over all possible ways of replacing

Ξ→ θ − Γ

γP

∫
Ξ

and multiplying by J/γP. When evaluated at the SP, each Ξ gives a factor of ξP and an
exponential depending on the dimensionless times τ̄ i only. Therefore, the nth variation
(with n � 2) evaluated at the plateau must be of the form

S(n)(τ̄ 1, . . . , τ̄ n) =

(
J

γP

)n n∑
m=1

Cn,m(τ̄)

(
Γξ+P
γP

)m

, (55)

where Cn,m(τ̄) are dimensionless functions depending only on the τ̄ i, which do not involve
any factor of Γ, J or γP. Using the form (55) of higher variations, it is possible to
determine the structure of the terms in equation (51). Terms of odd order l = 2m+ 1
do not contribute due to Wick’s theorem; see the discussion in section 3.3. Any given
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Figure 2. Diagrams contributing to T (4).

Figure 3. Diagrams contributing to T (6).

term of even order l = 2m features a product of variations, whose orders add up to 2m,
and m propagators, each of which carries a factor γP/J . Bringing everything together
and substituting the SP values (33), a general 2mth order term T 2m can be written as

T 2m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
n=1

C̄n,2m

(
Γ

J

)2n

D̄2m

(
J

Γ

)m (56)

where the top and bottom solutions refer to the small-Γ and large-Γ expansion respec-
tively, and C̄n,2m and D̄2m are dimensionless constants which do not depend on J or
Γ. The series of even powers of (Γ/J) in the former case arises from Taylor expand-
ing Γξ+P/γP. Equation (56) thus shows that the expansions around the SPs give rise to
series in (Γ/J)2 and J/Γ. These can be identified with the perturbative series as follows.
Equation (42) is valid for any value of Γ and, due to the thermodynamic relation (43),
only one expansion at a time contributes. Consider the Γ→ 0 limit; in this case, the LO
term (39) of the small-Γ expansion gives the exact value of the ground state energy. For
finite but sufficiently small Γ/J � 1, the small-Γ expansion will still be the dominant
one and give the ground state energy εG. The small-Γ expansion must therefore be equal
to the Γ/J perturbative series for εG, as they are both series in Γ/J and they both add
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up to εG. A symmetric argument holds for the large-Γ series in the corresponding limit.
Although we illustrated this result for the Ising model, the correspondence is expected
be more generally valid: both expansions yield the exact free energy ε(Γ) in the strong-
coupling (Γ = 0) or strong-field (Γ→∞) limits, and by smoothness of ε(Γ) it can be
expected that these expansions will continue to give the same result provided no phase
transition is crossed. In the case of the Ising model, the argument applies either side of
the transition, as discussed above.

Equation (56) further shows that the large-Γ expansion (bottom case) is in order-by-
order correspondence to the perturbative series: terms of order 2m are proportional to
(Γ/J)m. On the other hand, the small-Γ expansion (top case of equation (56)) is not in
one-to-one correspondence to perturbation theory: one needs to sum over m in order to
retrieve the perturbative series in Γ/J , since each of the terms in equation (56) may in
principle contain various powers of Γ/J . Such different behavior of the two expansions is
due to the nature of the plateau configuration or, equivalently, the MF ground state. For
large Γ, this is just the Γ = ∞ ground state |⇒〉; the large-Γ expansion is thus equivalent
order-by-order to the perturbative series around Γ = ∞. On the other hand, for small
Γ the MF ground state is not simply given by the Γ = 0 ground state |⇓〉. Consider for
instance the MF magnetization, given in appendix D; this can be expanded as a Taylor
series featuring all even powers of (Γ/J). An expansion around the MF ground state
is therefore not expected to be in order-to-order correspondence with a perturbative
expansion around Γ = 0.

One more comment is due concerning even and odd powers in the two expansions.
From expanding the exact ground state energy of the quantum Ising chain as in (45), we
see that the perturbative expression for εG/J around Γ = 0 features only even powers of
Γ/J and, similarly, the perturbative expansion of εG/Γ around Γ = ∞ contains only even
powers of J/Γ. This result is immediately retrieved from equation (56) for the small-Γ
expansion, and is due to spontaneous symmetry breaking at the MF level. However,
odd powers of J/Γ are not excluded a priori in the large-Γ expansion. The necessary
cancellation must therefore originate from the vanishing of the D̄2m coefficient in (56)
when m is odd. We explicitly show an example of such cancellation when computing
higher-order corrections to εG in section 3.5.

We have thus determined the structure of the terms produced by expanding about the
SPs, and clarified the relation of such expansions to perturbation theory. In summary,
the small-Γ and large-Γ expansions, taken as a whole, are respectively equal to the full
perturbative series around Γ = 0 and Γ = ∞. This correspondence is satisfied order-
by-order for the large-Γ expansion, but only when resumming the whole series for the
small-Γ expansion. This completes an overview of the field theoretical approach; in the
next section, we apply the concepts discussed so far to compute corrections to the ground
state energy of the quantum Ising chain.

3.5. Example: NLO and NNLO corrections to the ground state energy

In order to illustrate the machinery introduced in the previous sections, we compute the
next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) corrections to
the ground state energy density of the quantum Ising chain. The lowest order correction
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is naively given by 〈T (2)〉0; this term however vanishes, since the corresponding diagram
is self-interacting: see the discussion in section 3.3. The NLO correction is then given
by the next-higher term, which is of order four:

T (4) =
1

2
〈T (2)T (2)〉0 + 〈T (4)〉0. (57)

The second term on the right-hand side of equation (57) vanishes similarly to 〈T (2)〉0;
the remaining term corresponds to the diagrams in figure 2, and gives

1

2
〈T (2)T (2)〉0 = τ̄ fN

⎧⎪⎨
⎪⎩

Γ4

32J4

J2

32Γ2

(58)

where the top and bottom results are obtained from the small-Γ and large-Γ SPs
respectively. Thus, the NLO approximation to the ground state energy to is given by

εG ≈ −max
Γ

(
J

4
+

Γ2

4J
+

Γ4

32J3
,
Γ

2
+

J2

32Γ

)
. (59)

As discussed in section 3.2, each of the two series in equation (59) can only be considered
within its radius of convergence. In practice, one typically does not have access to the
full series; the radius of convergence can then be estimated by imposing that each term
be smaller than the lower-order one. In the present case, this criterion indicates that the
small-Γ series is valid for Γ < 1, while the large-Γ series is valid for Γ > 1/4. Including the
NLO correction as discussed provides an improvement over the LO approximation for
all values of Γ; see figure 4. Consistently with the discussion in section 3.4, equation (59)
matches the result of second-order perturbation theory about Γ = ∞, which is in one-
to-one correspondence with the expansion around the large-Γ SP. On the other hand, in
order to match the term of order Γ4/J3 of the perturbative series in (45), one needs to
include higher order contributions from the small-Γ SP expansion: this is again consis-
tent with the earlier discussion. The next-higher correction to the ground state energy,
NNLO, is of order 6, and is given by

T (6) =
1

3!
〈T (2)T (2)T (2)〉0 +

1

2!
〈T (3)T (3)〉0. (60)

The first term in equation (60) vanishes because it features an odd number of T (2)

vertices; see the discussion in section 3.3 and in particular figures 1(c) and (d). The
non-vanishing diagrams are shown in figure 3. They can be evaluated to give

T (6) = τ̄ fN

⎧⎨
⎩

Γ4

64J4
− Γ6

64J6

0
(61)

where again the top result corresponds to the small-Γ expansion and the bottom result to
the large-Γ expansion. Equation (61) shows that the NNLO correction from the large-Γ
expansion vanishes. This was anticipated in section 3.4, and is due to the fact that the SP

https://doi.org/10.1088/1742-5468/abc7c7 21

https://doi.org/10.1088/1742-5468/abc7c7


J.S
tat.

M
ech.

(2020)
013101

Disentanglement approach to quantum spin ground states: field theory and stochastic simulation

Figure 4. Approximations to the ground state energy of the quantum Ising chain
in the thermodynamic limit. Main panel: comparison of the exact energy to the
approximations obtained by expanding about the SP to LO, corresponding to the
MF solution, and to NLO, which includes corrections beyond MF. Inset: difference
ΔεG between the exact solution and the NLO (black dash-dotted line) and NNLO
(gray dashed line) results. Increasing the order of the expansion monotonically leads
to a better approximation.

expansions and the perturbative series must coincide order-by-order; by equation (56),
the large-Γ NNLO correction would be proportional to J3, but no such term appears
in the perturbative series (45): the coefficient multiplying J3 must therefore vanish.
Including the NNLO term (61) leads to a further improvement in the approximation to
the GS energy, as shown in the inset of figure 4.

We have thus illustrated how the disentanglement formalism provides a method
to analytically approximate ground state expectation values. The LO SP result corre-
sponds to MF, while analytical corrections beyond MF can be systematically obtained
by means of Feynman diagrams, which we explicitly showed. For simplicity, in this
section we focused on the ground state energy, but an analogous procedure can be car-
ried out for other observables by expanding the appropriate effective action SO, defined
as in equation (18). The machinery introduced above is qualitatively different from other
existing diagrammatic techniques. Diagrammatic expansions for spin systems conven-
tionally make use of a formal mapping to an auxiliary fermionic system with imaginary
chemical potential [68]; see e.g. [69–71] for recent applications. In contrast, the present
field theory is directly formulated in spin language. Furthermore, the present method
does not yield a perturbative expansion about a classical or non-interacting limit, respec-
tively given by Γ = 0 and J = 0 for the Ising model, but an expansion about the MF
solution. These are in general different, e.g. the MF magnetization for the D-dimensional

Ising model is given by
√

D2J2 − Γ2/2 for Γ < JD, whose small −Γ expansion fea-
tures all even powers of Γ; this cannot be matched by any order of perturbation
theory.

Beside the analytical field theoretical formalism outlined in this section, the dis-
entanglement method can alternatively be used as a numerical tool; we discuss this
approach in the following section.
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4. Importance sampling

4.1. Measure transformation

Knowledge of the SP trajectory can be used to implement an importance sampling
numerical algorithm. For this application, it is convenient to work with the diagonal
form (11) of the noise action, involving the fields φa

i . The corresponding SP values can
be readily determined using φa

i |SP =
∑

bj O
ab
ij ϕ

b
j |SP. The key step of the proposed approach

consists in using φSP ≡ {φa
i |SP} to perform the change of variables

φa
i = (φSP)

a
i + φ′a

i (62)

in the functional integral for a given observable:

〈Ô〉 = e−S0[φSP]

∫
Dφ′ e−S0[φ

′] e−
∫
dτφ′(τ )·φSP(τ )fO[φSP + φ′], (63)

where φ′ ≡ {φ′a
i } and φSP · φ′ ≡

∑
ia(φSP)

a
i φ

a
i . Due to the Gaussianity of the noise action

S0, equation (63) can be evaluated numerically in the spirit of the stochastic approach
of [58, 59]; this amounts to averaging a biased function over realizations of Gaussian-
distributed stochastic processes φ′:

〈Ô〉 = e−S0[φSP]〈e−
∫
dτφ′(τ )·φSP(τ )fO[φSP + φ′]〉φ′. (64)

By construction, the stochastic processes φ′ featured in (64) are fluctuations about the
dominant SP trajectories. In contrast, when equation (18) is sampled directly accord-
ing to (11), trajectories close to φ(τ) = 0 are sampled preferentially, even though they
may give a small contribution to the integral. Compared to more usual path inte-
gral approaches, here we do not truncate to a given order in the fluctuations, so that
equation (63) does not constitute a semiclassical approximation. Instead, a change of
variables is used to bias the sampling toward important trajectories; the exactness of
equation (18) is thus fully preserved in equation (63). This change of variables can be
seen as a particular measure (or Girsanov) transformation [57, 72]; in the context of
stochastic processes, this constitutes the continuum version of importance sampling.

4.2. Numerical results

To illustrate our method, we apply the measure transformation approach to the D-
dimensional quantum Ising model (20) for D ∈ {1, 2, 3} by numerically computing dif-
ferent observables from stochastic simulations. In our numerical simulations and in the
remainder of this section we set J = 1. In the stochastic approach, ground state expec-
tation values are computed according to equation (4). By appropriately choosing Û 0

in equation (3), any initial state |ψ0〉 can be considered. Following the discussion of
section 2.3, it is convenient to choose the initial state to be the mean-field ground state
for the desired value of Γ, |MF〉. As anticipated, this is equivalent to initializing the sys-
tem at the plateau SP configuration, ξ+i (0) = ξ+P , ξ

z
i (0) = log(1 + |ξ+P |2). For observables

computed from (4), the plateau values are fixed points of the SP equation, such that
one may perform the change of variables (62) with φSP(τ) = φP; see appendix C. The
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subsequent imaginary time evolution then projects the wavefunction from the MF to
the true ground state. The SDEs implementing the imaginary time evolution are solved
using the Euler scheme [57]. The statistical uncertainty on each quantity obtained as
a classical average is computed by partitioning the data set into nB batches of inde-
pendent simulations. We use nB = 100 unless otherwise stated. The data within each
batch are averaged, and the standard deviation σ of each quantity over the nB batches is
then computed. The uncertainty on the mean is estimated as the standard error σ/

√
nB.

Since observables are obtained from the ratio (4), we apply the appropriate uncertainty
propagation formula

σ2(X/Y )

(X/Y )2
=

σ2(X)

X2
+

σ2(Y )

Y 2
− 2

cov(X , Y )

XY
, (65)

where cov(X, Y ) is the covariance of X , Y . It is also convenient to exploit the real-
valuedness of the numerator and denominator of (4) to consider only the real parts of
quantities obtained from averaging. We estimate the error on a given observable O to
be σ(O) computed as above.

We begin by considering the D = 1 case, corresponding to the quantum Ising chain.
We consider the imaginary time evolution of the ground state longitudinal magnetization
Mz, transverse magnetization Mx ≡

∑N
i=1 〈Ŝx

i 〉/N and nearest-neighbor longitudinal

correlations Czz ≡
∑

〈ij〉〈Ŝz
i Ŝ

z
j〉/N . As per our general discussion, these quantities are

given by equation (13), where the numerator includes the appropriate stochastic function
for each observable. The stochastic functions are given by equation (16) for Mz and by

FMx
=

F�

N

∑
i

ξ+f,i(τ) + ξ+∗
b,i (τ)

1 + ξ+f,i(τ)ξ
+∗
b,i (τ)

, (66)

FCzz
=

F�

N

∑
〈ij〉

(
1− ξ+f,i(τ)ξ

+∗
b,i (τ)

1 + ξ+f,i(τ)ξ
+∗
b,i (τ)

)(
1− ξ+f,j(τ)ξ

+∗
b,j (τ)

1 + ξ+f,j(τ)ξ
+∗
b,j (τ)

)
, (67)

for Mx and Czz respectively [59]. The ground state energy density is obtained from
equations (66) and (67) as

εG = −ΓMx − JCzz. (68)

In figure 5 we compare our numerical results for a system of size N = 101 to imaginary
time evolution performed directly in the thermodynamic limit using iTEBD [48]. We
find excellent agreement across the imaginary time range we consider. The error on the
energy estimate ε(τ f) we obtain for τ f = 4 is approximately 1.5× 10−5 relative to the
exact ground state result. To show the improvement of importance sampling according to
equation (63) over direct sampling using the naive measure (11), in figure 6 we compare
the performance of the two approaches. We fix the physical parameters to N = 15,
Γ = 0.4 and compute the Euclidean time evolution of the energy using the same time step
and number of simulations; the results obtained from direct and importance sampling
are shown in panels (a) and (b) respectively. It is clear that the importance sampling
algorithm produces far better results for the same computational cost. This is further
discussed in section 4.3, where we study the behavior of fluctuations. The importance
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Figure 5. Imaginary time evolution for the one-dimensional quantum Ising chain
(20). We consider the ground state energy density ε (main panel), and local observ-
ables defined in the main text, including the longitudinal and transverse magneti-
zation, Mz and Mx, and the nearest neighbor correlation function Czz (insets, top
to bottom). The system is initialized in the MF ground state for Γ = 0.3 and subse-
quently evolved in Euclidean time toward the true ground state for the same value
of Γ. We show results obtained for a system of N = 101 spins using the importance
sampling scheme discussed in the main text. We compare the results obtained from
solving the SDEs for the importance sampling scheme (dots) against numerically
exact imaginary time evolution in the thermodynamic limit, given by iTEBD (solid
lines); we find excellent agreement. At the stopping time τ = 4, the relative error
compared to the exact ground state energy is of order 10−5, as found by compari-
son with the exact free-fermionic solution (dashed horizontal line). Our results were
obtained from 108 realizations of the stochastic process with time step Δt = 0.005.
The error bars, discussed in the main text, are not visible on the scale of the plot.

sampling algorithm can be equally applied to higher dimensional systems, for which
analytical solutions are typically not available. The relevant stochastic formulae take
a similar form to the one dimensional case [58]. For instance, the stochastic function
for the normalization and the longitudinal magnetization are given by equations (15)
and (16) respectively, where the sums and products are performed over all lattice sites.
Similarly, the measure transformation is carried out in complete analogy to the one-
dimensional case; see appendix C for further details. In figure 7, we consider the 2D
quantum Ising model, comparing the results obtained from importance sampling and
from exact diagonalization (ED) performed with the QuSpin package [73]. We consider
a 5× 5 system for Γ = 1, performing Euclidean time evolution from the MF ground
state. Again, we find excellent agreement between our result and ED; the relative error
on our estimate for the ground state energy is within 3× 10−5. Finally, in figure 8 we
consider the quantum Ising model in three spatial dimensions. Our results are again
in good agreement with ED for a system of size 3× 3× 3; for the chosen stopping
time τ f, we obtain a relative error on the GS energy within 10−3. We observe that the
stopping time τ f that can be accessed for a given number of simulations decreases with
the dimensionality of the system, due to the faster growth of fluctuations; this is due
to the greater connectivity in higher dimensions, and is further investigated in the next
section.
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Figure 6. Comparison of direct and importance sampling for the quantum Ising
chain. We consider a system with N = 15 spins, initialized in the MF ground state
for Γ = 0.4 and evolved with the same Γ using (a) direct sampling and (b) impor-
tance sampling. We compute the Euclidean time evolution of the ground state
energy from 2× 104 simulations, performed using the same time step Δτ = 0.01 for
both methods; the corresponding results are compared to ED (solid line). It can
be seen that the importance sampling method produces significantly better results
for the same computational cost. Due to the comparatively small number of sim-
ulations, we do not divide the data set into batches and estimate the uncertainty
by computing the standard deviation for the numerator and denominator of (4)
over the full data set and applying equation (65). The bars thus obtained show the
much faster growth of fluctuations for direct compared to importance sampling.
Both simulations took approximately 1 min on a desktop computer. Fluctuations
for the two methods are further discussed in figure 9.

4.3. Fluctuations

Having demonstrated the applicability of the method to higher dimensional systems,
we now turn to investigating its numerical performance, quantitatively comparing the
direct and importance sampling schemes. Fluctuations in the stochastic quantities play
a central role: for a given number of simulations, the growth of fluctuations ultimately
determines the time scale beyond which physical results are not correctly reproduced.
Therefore, an increasing number of simulations is needed as the stopping time is
increased. The central limit theorem implies that the fluctuations in the observable
O computed from the stochastic approach are determined by the variance σ2 of the
corresponding stochastic quantity fO [59]:

σ2(fO) ≡ 〈|fO|2〉φ − |〈fO〉φ|2. (69)

The variance σ2 is therefore directly related to the number of simulations required to
obtain a given accuracy. We illustrate this by considering the normalization function
(15): the behavior of this quantity is found to be representative of other observables,
due to the similar functional form of the corresponding stochastic functions; see for
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Figure 7. Imaginary time evolution for the 2D quantum Ising model. We show the
ground state energy (main panel), the longitudinal and transverse magnetization,
Mz and Mx, and the nearest neighbor correlation function Czz (insets, top to
bottom) for a 5× 5 system. The system is initialized in the MF ground state for
Γ = 1 and evolved with the same value of Γ. We compare our results, obtained
by solving the SDEs and applying the importance sampling scheme (dots), to ED
(lines), finding good agreement. At the stopping time τf = 1.8, the relative error
between our estimate of the ground state energy and the true value obtained from
ED (horizontal dashed line) is of order 10−5. Our results were obtained from 5× 107

realizations with Δτ = 0.01. The error bars are not visible on the scale of the plot.

example equation (16). In the classical case of the D-dimensional Ising model with
Γ = 0, the SDEs (21) are exactly solvable. For direct sampling, one obtains

σ2(τ) = e2NDJτ − eNDJτ (70)

where ND is the total number of interactions in the system. In contrast, the variance
σ2 for the importance sampling scheme vanishes identically and a single trajectory is
sufficient to give the exact result. For finite Γ, the behavior of fluctuations in the two
approaches can be investigated numerically. As shown in figure 9, we find that this is
captured by the functional form

σ2 = αeβτ , (71)

with β ≈ 2DN . Thus, the exponential growth of fluctuations with N , D and τ , which we
found for direct sampling in the classical case Γ = 0, survives for finite Γ, and also applies
to importance sampling. This is consistent with the numerical analysis carried out in
[59] for real time evolution, and with the argument of [24, 64] suggesting that a large
deviation principle (LDP) may be at play with respect to the system size N . However,
direct and importance sampling differ substantially in the prefactor α multiplying the
exponential. We find that α depends heavily on Γ, as shown in the tables of figure 9.
For direct sampling, one has α = O(1) for all Γ. On the other hand, for importance
sampling, α gradually increases from zero as Γ is increased. For small to intermediate
field strengths Γ ≈ O(1), α can be orders of magnitude smaller for importance sampling
than for direct sampling. Thus, the importance sampling scheme can strongly suppress
the growth of fluctuations with time and the system size. This significantly extends
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Figure 8. Imaginary time evolution for the 3D quantum Ising model. We consider
the same observables of figures 5 and 7 for a 3× 3× 3 system. The system is
initialized in the MF ground state for Γ = 2 and evolved using the same value of
Γ. Again, the results obtained by solving the SDEs and using importance sampling
(dots) are in good agreement with ED (lines). The SDE estimate for the ground
state energy at the stopping time τf = 0.8 is within 0.1% of the true ground state
energy, obtained from ED (dashed horizontal line). Our results were obtained from
7× 107 realizations of the stochastic process, with Δτ = 0.005. The error bars are
not visible on the scale of the plot.

the regime of applicability of the stochastic method before fluctuations become sizable,
although it does not eliminate their exponential growth. It would be interesting to clarify
the relation between stochastic fluctuations and entanglement. The importance sampling
method completely eliminates fluctuations when the true ground state is a product state
and does not have entanglement, as in the classical limit. Thus, both the presence of
residual fluctuations and the growth of entanglement signal the departure from a product
state; whether a direct connection between these exists will be investigated in future
work.

The computational cost of the numerical stochastic approach is mainly determined
by the growth of fluctuations. The runtime of a given stochastic simulation scales linearly
with N , τf and inversely with the time step Δτf. Such simulations are straightforwardly
parallelized, as they feature independent trajectories. For instance, the results of figure 5
were computed from 103 batches of 105 independent simulations each; each batch takes
approximately 0.8 h on 16 cores. For fixed computational resources, the observed growth
of fluctuations with τ and N then leads to a trade-off between accessible time scales
and system sizes. Thus, further developments will be needed for the numerical approach
to be effectively applicable to late times and large systems. However, the significant
suppression of fluctuations achieved using importance sampling could be particularly
interesting in view of real time applications: a generalization of this method might prove
useful in settings where existing techniques are significantly limited, such as higher
dimensions, to explore intermediate time and system size regimes before fluctuations
become dominant. The real time numerical approach [58, 59] is indeed fully analogous
to the present imaginary time case, suggesting that the approach may readily generalize;
however, a key difference is that for real time evolution it is not possible to make use
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Figure 9. Growth of fluctuations in the direct and the importance sampling algo-
rithms. Fluctuations are measured by considering the variance σ2 of the stochastic
function corresponding to the normalization, defined in equation (15). We begin
by considering the one-dimensional quantum Ising chain with N = 7, sampled
using (a) the direct method and (b) importance sampling. We find that in both
cases the behavior of fluctuations is well approximated by equation (71) with
β̄ ≡ β/2ND ≈ 1. However, the prefactor α multiplying the exponential is orders
of magnitude smaller for importance sampling than for direct sampling. (c), (d) We
extend this analysis to (c) a 3× 3 and (d) a 3× 3× 3 quantum Ising model. We
consider only the importance sampling method, as the rapid growth of fluctuations
would make it difficult to gather sufficient statistics for direct sampling. We find
that the functional form (71) accurately describes the growth of fluctuations also
in higher dimensions. For importance sampling, in all cases (b)–(d) the prefactor
α gradually increases from zero as Γ is increased. Data about the direct approach
(a) were obtained from 3× 107 simulations. Data about the importance sampling
approach (b)–(d) were obtained from 105 simulations; these were sufficient, due to
the smaller extent of fluctuations.

of the τ →∞ limit to simplify the SP equation, and a different method (e.g. recursion)
will generally be needed in order to obtain the SP configuration.

In summary, in this section we used the disentanglement approach to numerically
compute ground state expectation values as averages over classical stochastic trajecto-
ries. This approach is formally exact, and can be made more efficient by employing an
importance sampling scheme, based on preferentially sampling trajectories close to the
relevant SP configuration. Notably, this technique can be applied regardless of dimen-
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sionality. The proposed stochastic approach provides an alternative numerical method
for the evaluation of ground state expectation values, which is conceptually different
from existing techniques. For instance, in worldline quantum MC methods [74–77], one
splits the Hamiltonian into a diagonal, ‘classical’ term, and a non-diagonal term; the
latter is expanded in time-dependent perturbation theory, so that one is left with a sum
of classical integrals which can be evaluated by MC. In contrast, here the sampling is
performed over deviations from the mean field trajectory. Other classes of MC methods
for spins include the previously mentioned diagrammatic approaches [69–71], based on
mapping to fermions, or stochastic series expansions, whereby the whole Hamiltonian is
treated perturbatively [77, 78]. The numerical performance of the stochastic approach
is currently inferior to well-established numerical techniques for ground states, such as
quantum MC [26, 29] or tensor network approaches [50]. However, the importance sam-
pling method substantially extends the regime of applicability of the stochastic approach
by mitigating fluctuations. This suggests that the rate of growth of fluctuations is not
intrinsically fixed, and that it could be possible to suppress it even further by means of
appropriate sampling schemes or approximations.

5. Conclusions

In this manuscript, we showed that the disentanglement formalism [24, 55, 56, 58,
59] provides a broadly applicable framework to describe many-body quantum spin
ground states, bridging concepts from lattice spin systems, field theory and classical
stochastic processes. In this approach, expectation values are exactly expressed as func-
tional integrals over scalar fields, amenable to both analytical treatment and numerical
evaluation.

Considering the quantum Ising model in D spatial dimensions, we showed that the
leading mean-field contribution to observables corresponds to the SP of a suitable effec-
tive action. Analytical corrections beyond MF are then computed by expanding the
action about the SP to a desired order. Within this approach, QPTs are associated
to the expansions about different SPs abruptly swapping their role in providing the
dominating contribution to the ground state energy. It would be interesting to investi-
gate how the proposed picture generalizes in the presence of more complicated phase
diagrams.

In addition, we showed that the disentanglement method can alternatively be used
as a numerical tool to compute ground state expectation values from classical stochas-
tic processes. The main drawback of the numerical approach is the exponential growth
of fluctuations in the stochastic quantities with time and the system size, as previ-
ously found for real-time applications [58, 59]. Analogous exponential bottlenecks are
often encountered in quantum many-body physics, and can sometimes be circumvented.
Examples are the MC sign problem [36–38], which in certain systems is eliminated
through basis changes [39, 43–45], or the exact contraction of 2D tensor networks [54],
which can be replaced by more efficient approximate schemes [51, 79, 80]. Similarly, it
might be possible to suppress the growth of fluctuations in the stochastic approach by
means of suitable approximations or sampling schemes. As a promising step in this direc-
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tion, we introduced an importance sampling numerical technique, capable of significantly
mitigating the growth of fluctuations by biasing the measure toward the SP trajectory.
An interesting direction for future research would then be investigating whether basis
changes or approximate approaches can eliminate or further suppress the exponential
growth of fluctuations. Notably, the present method also applies in higher dimensions,
as we showed by considering the 2D and 3D quantum Ising model. A real-time general-
ization of this approach might then prove useful to study the non-equilibrium dynamics
of higher-dimensional quantum systems, where existing techniques are far less effective
than for ground states. In this context, the disentanglement method can provide an ana-
lytical formulation from which to develop approximations, as well as a numerical tool:
although fluctuations are likely to eventually prevail, a suitable importance sampling
scheme might still be able to access regimes beyond the reach of currently available
techniques.

Several directions for further development of the method can be envisaged, including
cluster approaches [81–84] or establishing connections to tensor networks [46, 47]. The
direct relation between exact equations and numerical sampling afforded by the disentan-
glement formalism might also aid the development of problem-specific approximations,
based on the physical understanding of a given system. Approximate analytical and
numerical approaches could prove useful in studying systems that pose severe challenges
to existing techniques, such as frustrated magnets [35, 55].
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Appendix A. Disentanglement transformation

In order to make the manuscript self-contained, in this appendix we recapitulate the
key steps of the disentanglement formalism, focusing on imaginary time dynamics and
providing additional details on the higher-dimensional case.

A.1. General case

In the disentanglement approach, the Euclidean time evolution operator corresponding
to the Hamiltonian (5),

Û(τ) ≡ e−τĤ = eτ (J
∑

ijabJ ab
ij Ŝa

i Ŝ
b
j+

∑
iah

a
i Ŝ

a
i ), (A1)
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is expressed as

Û(τ) =

∫
Dϕ e−S0[ϕ]

∏
i

eξ
+
i (τ )Ŝ

+
i eξ

z
i (τ )Ŝ

z
i eξ

−
i (τ )Ŝ

−
i , (A2)

where S0 is given by equation (7) and the disentangling variables ξai satisfy equation (9).
Equation (A2) is obtained in a two-step process [24, 55, 56, 58]. First, interactions are
decoupled thanks to the HS transformation [60, 61]. Following a Trotter decomposition
of the exponential in equation (A1), at each time slice one has

eΔτJ
∑

ijabJ ab
ij Ŝ

a
i Ŝ

b
j = C

∫ ∏
ai

dϕa
i e

− 1
4JΔτ

∑
ijab(J−1)abij ϕ

a
i ϕ

b
j+Δτ

∑
ajϕ

a
j Ŝ

a
j , (A3)

where C is a normalization constant and we neglected terms O(Δτ 2). Equation (A3) is
an operatorial identity; the fields ϕa

i are in general complex and their integration range
in the complex plane is chosen in such a way as to make the integral in equation (A3)
convergent [59]. It is convenient to rescale the fields as ϕa

i → Jϕa
i , in order to make them

dimensionless. Applying this rescaling and taking the continuum limit, equation (A3)
yields

Û(τ) =

∫
Dϕ e−S0[ϕ]T

∏
i

e
∑

a

∫ τ
0 [hai (τ

′)+Jϕa
i (τ

′)]Ŝa
i dτ

′
, (A4)

where the symbol T denotes time ordering. Equation (A4) describes a system of non-
interacting spins under the effect of complex valued stochastic fields ϕa

i [24, 55]. Since
interactions are decoupled inside the integral, the evolution of each spin occurs over its
(complexified) Bloch sphere. Time-ordered exponentials can then be expressed in terms
of ordinary exponentials by means of a Lie-algebraic disentanglement transformation,
also known as Wei–Norman–Kolokolov transformation [24, 55, 56, 62, 63]. Namely, at
each lattice site one has

T e
∑

a

∫ τ
0 [hai (τ

′)+Jϕa
i (τ

′)]Ŝa
i dτ

′
= eξ

+
i (τ )Ŝ

+
i eξ

z
i (τ )Ŝ

z
i eξ

−
i (τ )Ŝ

−
i . (A5)

This amounts to parameterizing the trajectory of each spin on its Bloch sphere in terms
of a set of coordinates ξai , termed the disentangling variables. Equation (A5) can be
seen as the defining equation of ξai ; differentiating both sides of (A5) and equating the
coefficients that multiply the spin operators yields the SDEs (9). Alternatively, these can
be obtained from differential geometry [24]. The initial conditions ξai (0) = 0 are fixed by

the requirement Û(0) = �. The discussion of this section can be readily generalized to

the modified time evolution operator Û(τ), given by equation (2); the initial conditions
of the disentangling variables are then given by (10).

A.2. Details on the disentanglement transformation in higher dimensions

While the formalism outlined in the previous section is fully general, in this section we
show in greater detail how the disentanglement transformation works in higher dimen-
sional settings of particular physical interest, providing useful formulae for analytical
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and numerical applications. Let us consider a Hamiltonian describing a system on a
D-dimensional hypercubic lattice:

Ĥ = −
∑
ij

∑
ab

J ab
ij Ŝ

a
i Ŝ

b
j −

∑
i

∑
a

ha
i Ŝ

a
i . (A6)

We focus on the case where J only couples spins along the lattice axes, i.e. the sites i ,
j coupled by Jij differ by a single index, id �= jd. For this choice of J , one has

J ab
ij =

∑
d

Jd(J d)abidjd

∏
d′ �=d

δid′ jd′ , (A7)

where Jd are interaction strengths and the matrices J d couple spins along the dimension
d. J d can be seen as 3Nd × 3Nd matrices J d

αβ by introducing multi-component indices
α = {id, a}, β = {jd, b}. One has

∑
ij

∑
ab

J ab
ij Ŝ

a
i Ŝ

b
j =

D∑
d=1

Jd

∑
i

Ŝa
i

∑
jd

(J d)abidjd Ŝ
b
i1...jd...iD

. (A8)

Exponentiating the interaction term in (A6) and considering an infinitesimal time slice,
one obtains

eΔτ
∑

ijabJ ab
ij Ŝ

a
i Ŝ

b
j =

D∏
d=1

∏
i�=id

eΔτ
∑

idjdab
Jd(J d)abidjd

Ŝa
i Ŝ

b
i1 ...jd...iD . (A9)

We can apply the HS transformation to each term:

eΔτ
∑

idjdab
Jd(J d)abidjd

Ŝa
i Ŝ

b
i1 ...jd...iD = C

∫ Nd∏
id=1

(
dϕd

i

)

× e
− Δτ

4Jd

∑
idjdab

[(J d)−1]abidjd
(ϕd)ai (ϕ

d)bi1...jd...iD
+Δτ

∑
jda

(ϕd)ai1...jd...iD
Ŝa
i1 ...jd...iD . (A10)

Taking the continuum limit and rescaling ϕd → Jdϕ
d, this yields

e−τĤ =

∫
Dϕ e−S0[ϕ]T e

∫ τ
0 dτ

[∑
d
Jd

∑
ia
(ϕd)ai+hai

]
Ŝa
i

(A11)

where the noise action in D dimensions is given by

S0[ϕ] =
1

4

∫ τ

0

dτ
∑
d

Jd

∑
ijdab

[
(J d)−1

]ab
idjd

(ϕd)ai (ϕ
d)bi1...jdiD . (A12)

It can be seen that for a D dimensional system with N = N 1 × · · · ×Nd spins, one
needs in general to introduce 3DN HS fields. The individual time ordered exponen-
tials in equation (A11) can then be expressed in terms of ordinary exponentials, as
done in appendix A.1. As in the 1D case, a change of variables can be performed to
make the noise action S0 diagonal. Let us introduce the notation īd ≡ i1 . . . id−1id+1 . . . iD
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and (ϕd)ai = (ϕd)īdα with α = {id, a}. Equation (A12) is then diagonalized by the
transformation

(ϕd)ai = (ϕd)īdα =

3Nd∑
β=1

(Od)αβ(φ
d)īdβ, (A13)

where Od is a 3Nd × 3Nd matrix defined as for the 1D case, but in terms of J d. Using
equation (A13), we obtain

eτ
∑

ijJijŜ
z
i Ŝ

z
j =

∫
Dφ e−S0[φ]+

∫ τ
0 dτ

∑
iaŜ

a
i

∑
dJd

∑3Nd
β=1 (O

d)αβ(φ
d)īdβ (A14)

with

S0[φ] =
1

2

∫ τf

0

dτ
∑
d

∑
ia

[(φd)ai ]
2. (A15)

Appendix B. Euclidean time dynamics

In this appendix we study the Euclidean time dynamics of the disentangling variables
(9), which fully encode the quantum system.

B.1. Ising SDEs

The stochastic representation (12) of the Euclidean time evolution operator is formally
exact; this implies that the statistics of the classical disentangling variables ξ = {ξai }
contain all the information about the corresponding quantum problem. In the case of real
time evolution, this observation was drawn upon in [58, 59] to numerically investigate
the relation between fluctuations in the disentangling variables and dynamical quantum
phase transitions (DQPTs) [85, 86]. Here we consider the imaginary time behavior of
the disentangling variables, which encodes all information about the ground state of
the corresponding quantum problem. For definiteness, we consider the quantum Ising
model, given by the Hamiltonian (20). For the one-dimensional quantum Ising chain,
the general result (9) specializes to the Euclidean Ising SDEs [24, 58, 59]

ξ̇+i (τ) =
Γ

2
(1− ξ+i

2
) + Jξ+i

∑
j

Oijφj , (B1a)

ξ̇zi (τ) = −Γξ+i + J
∑
j

Oijφj , (B1b)

ξ̇−i (τ) =
Γ

2
exp ξzi , (B1c)

which are here expressed in terms of the fields φi that diagonalize the noise action (7).
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B.2. Exactly solvable limits

To the best of our current knowledge, equation (B1) are only exactly solvable in the clas-
sical (Γ = 0) and non-interacting (J = 0) cases. This was discussed in [59] for real time
evolution and in the special case ξai (0) = 0; here we consider Euclidean time and general
initial conditions, as it is relevant for our current purposes. For the present discussion,
we focus on the one-dimensional case, which is sufficient to illustrate the relevant prop-
erties of the disentangling variables; the higher-dimensional version of equation (B1) is
given by equation (C8) in appendix C. In the classical case with Γ = 0, the non-linear
term in equation (B1a) vanishes and ξ+i performs driftless geometric Brownian motion.
This is exactly solvable, giving

ξ+i (τ) = ξ+i (0) exp

[∑
j

Oij

∫ τ

0

φj(s)ds

]
, (B2)

where we used (OOT)ii ∝ Jii = 0. In the classical limit, ξzi is decoupled from ξ+i and
satisfies Brownian motion:

ξzi (τ) = ξzi (0) +

∫ τ

0

∑
j

Oijφj(s)ds, (B3)

while ξ−i (τ) = ξ−i (0).
In the non-interacting limit J = 0, equation (B1) become deterministic and solvable,

yielding

ξ+i (τ) = ξ+i (0) +
1− ξ+2

i (0)

ξ+i (0) + coth(Γτ/2)
, (B4a)

ξzi (τ) = ξzi (0)− 2 log
[
cosh(Γτ/2) + ξ+i (0) sinh(Γτ/2)

]
, (B4b)

ξ−i (τ) = ξ−i (0) +
exp[ξzi (0)]

ξ+i (0) + coth(Γτ/2)
. (B4c)

B.3. Moments of the disentangling variables

In the general case with finite Γ and J , the SDEs (B1) cannot be solved exactly to the
best of our knowledge. However, analytical insights about (B1) can still be obtained.
Of particular interest is the behavior of the variables ξ+i : as observed in [24, 58, 59],
these play a key role, being the primary source of non-linearity in (B1) (the variable
ξ−i is seldom needed to compute observables) and the sole disentangling variable whose
equation of motion is autonomous, not involving any other ξai . The stationary probability
distribution attained at late times by ξ+i (τ) was obtained in [24, 64]. Additional infor-
mation is encoded in the moment-generating function Gi(λ, τ) of ξ

+
i (τ), which satisfies

∂n
λGi(λ, τ)|λ=0 = 〈ξ+n

i (τ)〉φ and gives access to the Euclidean time-dependent moments

of ξ+i . To compute this, we define the stochastic function gi(λ, τ) ≡ eλξ
+
i (τ ), such that

Gi(λ, τ) ≡ 〈gi(λ, τ)〉φ. The equation of motion of gi(τ) is obtained by applying the Ito

https://doi.org/10.1088/1742-5468/abc7c7 35

https://doi.org/10.1088/1742-5468/abc7c7


J.S
tat.

M
ech.

(2020)
013101

Disentanglement approach to quantum spin ground states: field theory and stochastic simulation

chain rule [57, 87]:

d

dτ
gi(λ, τ) = λ

Γ

2

(
1− ξ+i

2
)
gi(λ, τ) + λξ+i

∑
j

Oijφjgi(λ, τ)

+
1

2
λ2ξ+i

2
∑
j

OijOijgi(λ, τ). (B5)

It can be easily shown that the matrix OOT is proportional to J and hence has no
diagonal term [59]; this implies that the Ito drift term proportional to

∑
j OijOij gives

no contribution. It is also convenient to write ξ+i gi =
∂
∂λ
gi. With these simplifications,

we obtain

d

dτ
gi(λ, τ) =

[
λ
Γ

2

(
1− ∂2

∂λ2

)
+

∑
j

Oijφj
∂

∂λ

]
gi(λ, τ). (B6)

Considering the expectation value of equation (B6) and using the property of Ito cal-
culus 〈gi(τ)φj(τ)〉φ = 0 ∀ i, j we obtain the partial differential equation satisfied by the
moment-generating function:

∂

∂t
Gi(λ, τ) =

[
λ
Γ

2

(
1− ∂2

∂λ2

)]
Gi(λ, τ), (B7)

with initial conditions Gi(0, τ) = Gi(λ, 0) = 1. Equation (B7) can be solved exactly,
yielding

Gi(λ, τ) = exp

[
λ

(
ξ+i (0) +

1− ξ+2
i (0)

ξ+i (0) + coth(Γτ/2)

)]
. (B8)

This result predicts that all moments of ξ+i (τ) are given by powers of the deterministic
trajectory obtained in the non-interacting case with J = 0: the moments of each individ-
ual ξ+i contain no information about the interacting quantum system. All information is
therefore encoded in the correlations between variables at different sites. We note that
the findings of the present section do not apply to real time evolution: in that case, the
moments of ξ+i (t) for non-zero J differ from the non-interacting result. This discrepancy
can be traced back to the failure of the analytic continuation of equation (B8) to real
time.

B.4. Joint probability distribution

Since the information about interactions is contained in the joint statistics of the ξ+i vari-
ables, we investigate the joint probability distribution P [ξ+] ≡ P [{ξ+i }]. The stochastic
process ξ+i has drift and diffusion

ai(ξ
+
i ) =

Γ

2
(1− ξ+2

i ), (B9a)

Bij(ξ
+
i ) = ξ+i Oij (B9b)
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respectively. The probability distribution of its realizations is given by [24, 88–90]

P [ξ+] = Cξ e−I[ξ+], (B10)

where Cξ is a normalization constant and

I[ξ+] =

∫ τ

0

dτ ′L(ξ+, ξ̇+), (B11)

L(ξ+, ξ̇+) =
1

2

∑
ij

[ξ̇+i − ai(ξ
+
i )]B−1

ij (ξ
+)[ξ̇j − aj(ξ

+
j )], (B12)

Bij(ξ
+) =

∑
k

Bik(ξ
+
i )Bjk(ξ

+
j ). (B13)

Equation (B9) give Bij(ξ
+) = 2JJijξ

+
i ξ

+
j and

L(ξ+, ξ̇+) =
1

4J

∑
ij

1

ξ+i ξ
+
j

[
ξ̇+i − Γ

2
(1− ξ+i

2
)

]
J −1

ij

[
ξ̇+j − Γ

2

(
1− ξ+j

2
)]

. (B14)

Equation (B10) provides the measure when the stochastic expression for an observ-
able is expressed as a path integral over the variables ξ+i rather than the fields φi

[24]. When sampling according to the distribution (B10), the likeliest trajectory is
obtained by extremizing the weight I[ξ+] with respect to ξ+i (τ). By solving the cor-
responding Euler–Lagrange equations, we readily see that the dominant trajectory is
the non-interacting solution (B4a). Therefore, when applying the stochastic approach
using direct sampling [58, 59], one typically samples trajectories which are nearly
non-interacting.

We note that in the large Γ limit equation (B10) takes a large deviation form [91].
Since Γ multiplies time in ξ+NI, we rescale time as τ̃ = τΓ. The corresponding rescaled
stochastic equation for ξ+i is

ξ̇+i (τ̃) =
1

2

(
1− ξ+i

2
)
+ εξ+i

∑
j

Oijφj , (B15)

where we have defined the noise strength ε ≡ 1/Γ. The limit Γ→∞ is therefore equiva-
lent to the small-noise limit of (B15). SDEs in the limit of small noise are described by
the Freidlin–Wentzell large deviation theory [92, 93]: ξ+i obeys a LDP, with rate ε−2 and
rate function I[ξ+] ≡ ε2I[ξ+]. In this small-ε limit, the trajectories ξ+i are approximately
Gaussian distributed around the likeliest trajectory ξ+NI [91]:

P [ξ+i ] ∼ e−
ε−2

2

∫ τ̃
0

∑
ijI

(2)
ij [ξ+i (τ̃

′)−ξ+NI(τ̃
′)][ξ+j (τ̃

′)−ξ+NI(τ̃
′)]dτ̃ ′ , (B16)

where the second variation I(2)
ij is given by

I(2)
ij ≡ δ2I

δξ+i (τ̃
′)δξ+j (τ̃

′)

∣∣∣∣
ξ+NI

. (B17)
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Thus, trajectories that deviate significantly from the non-interacting limit are expo-
nentially suppressed. The large deviation formalism also applies to real time evolution,
where again the dominant trajectory is given by the deterministic result ξ+NI(t). However,
in contrast to ξ+NI(τ), ξ

+
NI(t) has an infinite number of singularities as a function of time

[59]. This leads to a breakdown of the expansion about the non-interacting SP, which
can be expected to have consequences for sampling. Even for large Γ, regions in time
that are close to the singularities in the SP trajectory are expected to be associated with
enhanced fluctuations, leading to difficulties in sampling. This observation may lie at
the root of the enhanced fluctuations of the disentangling variables found in the vicinity
of DQPTs [85, 86], reported in [58, 59].

Appendix C Saddle point equation

In this appendix, we provide details on the SP equation discussed in section 2.3, including
its numerical solution, its generalization to other observables and the higher dimensional
case. We also discuss a toy model of an integral for which several SPs exist, and provide
further details on our discussion of QPTs considering the quantum Ising chain as a
concrete example.

C.1. Numerical solution

The SP equation (30) for the Loschmidt amplitude can be solved recursively, exploiting
the intuition that the SP field configuration ϕSP(τ

′) ≡ ϕSP(τ
′|τf) should change little if

τf is increased by a small amount Δt. In practice, one assumes

ϕSP(τ
′|τf +Δt) ≈ ϕSP(τ

′|τf) (C1)

for τ ′ < τf +Δt. The field ϕSP(τ
′|τf) is then used to compute ξ+i |SP and Ξij|SP. Using

these quantities, one can in turn produce a better approximation of ϕSP(τ
′|τf +Δt)

according to the SP equation (30). This procedure can be iterated until the field config-
uration has converged to a desired level of accuracy. The convergence of the recursion
is determined by defining a quantity ε which measures how much the approximate SP
field varies after an iteration of the algorithm. A suitable definition is

ε ≡ 1

k

k∑
m=1

|ϕ̄SP(τm|τf +Δτ)− ϕSP(τm|τf +Δτ)| (C2)

where ϕSP and ϕ̄SP are the old and updated estimates of the SP field respectively, eval-
uated at the discrete times τm. Convergence is then defined as ε < ε∗, where ε∗ is a
threshold of choice. The runtime of this recursive algorithm scales quadratically with
the number of time steps n; this is because for each 1 < k < n one needs to perform k
calculations in order to compute ξ+i |SP, so that summing over all k the total number of
calculations to perform is of order n(n+ 1)/2. In principle, the computational cost is
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Figure 10. Behavior of the SP field ϕSP(τ |τf) obtained from the recursive solution
of the SP equation (30) for a quantum Ising chain with Γ = Γc/2, initialized in the
| ⇓〉 state. (a) At times τ � τf, for sufficiently large stopping time τf, the SP field
ϕSP(τ |τf) attains a τf-independent value and can be considered to have converged.
(b) At short times 0 � τ , we observe a transient behavior in the SP field, which
depends on initial conditions and corresponds to the imaginary time evolution of
the initial state toward the ground state. At late times τ � τf, the SP field is affected
by the constraint ϕSP(τf|τf) = −1. For intermediate times 0 � τ � τf the SP field
attains a plateau value ϕP, which gives the main contribution to observables as
τf →∞.

further increased by having to repeat each step multiple times to attain convergence.
However, for reasonable values of the threshold ε∗, numerical evaluation shows that
the recursive algorithm has rapid convergence, typically requiring only 1–2 iterations.
From recursively solving the SP equation, we find that for sufficiently large τf the value
ϕSP(τ

′|τf) with τ ′ � τf no longer changes with τf, settling to a value ϕSP(τ
′|∞) ≡ ϕSP(τ

′);
this is illustrated in figure 10(a). Because of this, when recursively solving the SP
equation one only needs to update the SP configuration at the times τ ′ such that
ϕSP(τ

′|τf) �= ϕSP(τ
′) to a desired level of precision; this speeds up the recursive solu-

tion significantly. The SP equation (30) prescribes that the value of the SP field at the
end time is always ϕSP(τ f|τf) = −1. Thus, the SP field ϕSP(τ

′|τf) cannot attain a steady
state, i.e. for finite τf there exists no time scale τ SS such that ∂τ ′ϕSP(τ

′, τf) ≈ 0∀τ ′ > τ SS.
However, the numerical results show that for sufficiently large τ f the SP field ϕSP(τ

′, τf)
attains a plateau value at times 0 � τ ′ � τf; this is illustrated in figure 10(b). The
extent of the plateau grows as τf is increased; since the action is extensive in time, the
plateau value provides the dominant contribution to observables in the large τf limit.
The plateau value of ϕSP can be found analytically, as discussed in section 2.3; the
analytical results are in perfect agreement with the numerical solution.
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C.2. Saddle point for general observables

In the disentanglement formalism, the Euclidean time evolution of an observable O is
given by

〈ψ0|Û(τ)ÔÛ(τ)|ψ0〉 =
∫

Dφ e−S0[φ]FO[φ], (C3)

where φ = {φa
f,i,φ

a
b,i} collectively denotes the two sets of HS fields introduced to decouple

the two time-evolution operators, and the classical function FO is given by equation (14).
As discussed in section 2.2, the trajectory yielding the largest contribution to the integral
can be found by extremizing the effective action

SO ≡ S0[φ]− log fO[φ]. (C4)

Consider the normalization function, corresponding to setting Ô = � in (C3) and given
by equation (15). For the 1D quantum Ising model, the effective action for this quantity
is given by

S� =
1

2

∫ τf

0

dτ
∑
i

[
J

2

∑
j

J −1
ij [ϕf,iϕf,j + ϕ∗

b,iϕ
∗
b,j ]− Γξ+f,i − Γξ+∗

b,i + Jϕf,i + Jϕ∗
b,i

]

−
∑
i

log
[
1 + ξ+f,i(τf)ξ

+∗
b,i (τf)

]
. (C5)

By varying equation (C5), we obtain the SP equations for the normalization:

J
∑
j

J −1
ij ϕf,j(τ

′)|SP = Γ

∫ τf

0

Ξf,i(τ , τ
′)dτ |SP − J +

2ξ+∗
b,iΞi(τf , τ

′)

1 + ξ+f,i(τf)ξ
+∗
b,i (τf)

∣∣∣∣∣
SP

. (C6)

The same equation is satisfied by ϕb,i|SP, with the replacement f ↔ b. By direct substi-
tution, one readily verifies that the plateau of the Loschmidt amplitude SP is a fixed
point of equation (C6) at all times. Thus, choosing the MF ground state as the initial
state eliminates both the transient and the late-time behavior of equation (C6) (in con-
trast, for any initial state, the solution of equation (30) deviates from the plateau at
late times due to the boundary condition φ(τ f) = −1). More generally, local observables
expressed in a translationally invariant way correspond to stochastic functions

fO(τf) = f�(τf)
∑
i

f̄O,i(τf), (C7)

where f̄O,i(τf) is a function of ξ+f,i(τf) only. For instance, for the magnetization one has

f̄M,i = (1− ξ+f,iξ
+∗
b,i )/(1 + ξ+f,iξ

+∗
b,i ); see equation (16). It can be readily seen that the SP

equation obtained by extremizing the effective action for (C7) differs by equation (C6)
by a term proportional to 1/N . Furthermore, the extra term is also proportional to

ΞSP(τ f, τ); at the plateau, one has ΞP(τf , τ) ∝ e−(Γξ+P−JφP)(τf−τ ), so that the extra term is
inconsequential as τf →∞. Thus, the SP equation for any local observable differs from
(C6) by a term which is suppressed both as τ f →∞ and as N →∞. This implies that
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the plateau SP trajectory for the Loschmidt amplitude can be used for all other ground
state expectation values, both for analytical and numerical applications.

C.3. Higher dimensions

For the D-dimensional quantum Ising model, the Euclidean SDEs are given by

ξ̇+i =
Γ

2
(1− ξ+i

2
) + ξ+i

D∑
d=1

Jdϕ
d
i , (C8a)

ξ̇zi = −Γξ+i +

D∑
d=1

Jdϕ
d
i , (C8b)

ξ̇−i =
Γ

2
exp ξzi , (C8c)

with multicomponent indices i = {i1, . . . , iD}. The Euclidean Loschmidt amplitude is
given by

A(τf) =

∫
Dϕ e

−S0[ϕ]− 1
2

∫ τf
0

∑
idτ

[∑D
d=1 Jdϕ

d
i (τ )−Γξ+i (τ )

]
. (C9)

The SP equation obtained by varying the effective action with respect to ϕd
i (τ

′) is then
given by

ϕd
i (τ

′)|SP =
Γ

Jd

∑
jd

J d
idjd

∫ τf

0

Ξd
i1...jd...iD

(τ , τ ′)
∣∣
SP
dτ − 1. (C10)

The functional derivative Ξdi (τ , τ ′) can be obtained by varying the equation of motion
of ξ+i , as in the one-dimensional case:

Ξd
i (τ , τ

′) = Jdξ
+
i (τ

′)θ(τ − τ ′)e
∫ τ
τ ′ ds

[
−Γξ+i (s)+

∑D
d=1 Jdϕ

d
i (s)

]
. (C11)

For a translationally invariant system one has ξi|SP = ξ+SP, Ξ
d
i,j|SP = Ξd

SP, ϕ
d
i |SP = ϕd

SP,
such that the SP equation simplifies to

ϕd
SP(τ

′) =
Γ

Jd

∫ τf

0

Ξd
SP(τ , τ

′)
∣∣
SP
dτ − 1. (C12)

For a fully isotropic system with J1 = · · · = JD = J , one additionally has ϕd
SP = ϕSP

and the SP equations further simplify to

ϕSP(τ
′) =

Γ

J

∫ τf

0

ΞSP(τ , τ
′)|SPdτ − 1, (C13)

ΞSP(τ , τ
′) = θ(τ − τ ′)ξ+SP(τ

′)e
∫ τ
τ ′ ds

[
−Γξ+SP(s)+DJϕSP(s)

]
, (C14)

ξ̇+SP =
Γ

2

(
1− ξ+2

SP

)
+DJξ+SPϕSP. (C15)
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Figure 11. Expansions of integrals in the presence of more than one SP. We show
the integrand f(x) defined in equation (C18), comparing the exact value (full
line), the approximation corresponding to truncating equation (C21) to Gaussian
order (dash-dotted line), and the approximation obtained from equation (C21) with
n = 10 (dashed line). (a) For a = 1.5, the SPs at xSP = ±a are close to each other
and the expansion (C21) produces a worse approximation to the integral for n = 10
(37% error) than for the Gaussian approximation n = 2 (3% error). (b) For a = 5,
the SPs are well separated and the higher order expansion closely approximates the
integrand, as shown in the inset. This leads to a better performance for the n = 10
approximation, which gives the correct integral within 1.4%, compared to an error
of 3.7% for the Gaussian approximation. For the present example, both expansions
eventually break down as n is increased due to their asymptotic nature.

Plateau equations can be derived from equations (C13) and (C15) in the large τ f limit:

ϕP =
DJϕP

Γξ+P −DJϕP

, (C16a)

ϕP = − Γ

2DJ

1− ξ+2
P

ξ+P
. (C16b)

These equations are solved by (34).

C.4. Multiple saddle points: toy example

Here we provide a toy example illustrating the expansion of an integral which has two
different SPs. We consider the integral

I(a) =

∫ ∞

−∞
f(x)dx, (C17)

f(x) = Ca e−S(x), (C18)

S(x) =
x4

4a2
− x2

2
, (C19)
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Figure 12. Crossing of different perturbative series for the quantum Ising chain in
the thermodynamic limit N →∞. The main panel shows the exact ground state
energy density (full gray line) as a function of the transverse field Γ for J = 1;
this is compared to the approximate values obtained by perturbatively expanding
the exact result to second order in small Γ (dashed line) or large Γ (dash-dotted
line). The small-Γ and large-Γ expansions cross at three points Γ1 < Γ2 < Γ3, where
Γ2 = 0.5 = Γc is the critical point of the model. As the order of the perturbative
expansions is increased, ΔΓ+ ≡ Γ3 − Γ2 approaches zero as a power law, as shown
in (a): the dashed gray line shows the power law fit. The same applies to ΔΓ− ≡
Γ2 − Γ1 (not shown). Furthermore, the small-Γ and large-Γ series rapidly diverge for
Γ� 0.5 and Γ � 0.5 respectively: this is illustrated in (b), where we show the 100th
order expansions of εG in small and large Γ. These observations corroborate the
picture proposed in the main text: within the present field theoretical description,
QPTs in spin chains can be understood as arising from an abrupt switch in which
SP expansion dominates in the thermodynamic limit. In the present case, for each
value of Γ one series is discarded since it is divergent, while the other provides the
correct result.

where Ca is a normalization constant defined by I(a) = 1. Extremization of S(x) with
respect to x yields two minima, xSP = ±a. One can then expand the action around each
SP as

S = SSP +
1

2!
S

(2)
SP (x− xSP)

2 + Sh, (C20)

where S(2) is the second variation evaluated at the SP and Sh includes all contributions
of higher order. We then approximate equation (C17) as

I(a) ≈ Ca
∑
s.p.

e−SSP

∫ ∞

−∞
e−

1
2S

(2)
SP (x−xSP)

2

[
1 +

n∑
m=3

αm(x− xSP)
m

]
dx, (C21)

where the coefficients αm are obtained by Taylor expanding eS
h
and the leftmost sum

runs over the two SPs. For n � 2, none of the αm is included and thus equation (C21)
reduces to the evaluation of Gaussian fluctuations around the SP. To show how well the
approximation (C21) captures the true value of I(a), in figure 11 we compare the exact
and approximate integrands for different values of a, n. We find that the approximation
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(C21) for fixed n gets more accurate as a increases, such that the SPs are better spaced
out. This is an example of the ‘small overlap’ condition discussed in the main text: one
can separately expand about the two SPs and add up the individual contributions of
the expansions, provided that regions (in this case, along the x axis) which contribute
significantly to one integral give negligible contribution to the other.

C.5. Quantum phase transitions

In section 3.2, we provided a general discussion of how QPTs emerge from the field
theoretical application of the disentanglement approach. Namely, due to equation (43),
a quantum critical point corresponds to the value for which there is an abrupt change
in the dominant contribution to the grand state energy. This can be visualized for the
quantum Ising chain, for which an exact analytical solution is available [65]. In figure 12,
we show the small-Γ and large-Γ perturbative expansions of the ground state energy (44),
given by (45). For any finite order in perturbation theory, the series cross at three points.
As the order of both expansions is increased, the three crossing points converge toward a
single point, the critical point Γc = J/2; see figure 12(a). Figure 12(b) further highlights
that the small-Γ expansion is divergent for Γ > Γc; therefore, the relative terms will not
contribute in this regime. Similarly, the large-Γ series does not contribute when Γ < Γc.

Appendix D. Mean field approximation

In section 3.1 we discussed the relation between MF theory and the disentanglement
method, showing that MF corresponds to the LO of a more general expansion. To aid
comparison with the results of the main text, here we outline the derivation of the
MF ground state for the D-dimensional quantum Ising model (20). The MF approach
consists in approximating the ground state by the product state which minimizes the
energy of the system. The ground state is thus parameterized via the variational ansatz

|MF〉 = ⊗i(cos θ|↑〉i + sin θ|↓〉i). (D1)

This ansatz gives a ground state energy density

εMF(θ) = −Γ

2

√
1− cos (2θ)2 − 1

4
JD cos (2θ)2. (D2)

Minimizing this with respect to x ≡ cos(2θ), one gets three solutions:

x = ±
√

D2J2 − Γ2

DJ
, (D3a)

x = 0, (D3b)

where the first solution is only valid for Γ < DJ . For each value of Γ, one then chooses
the solution in (D3) which minimizes ε. This yields the mean-field approximation to the
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ground state energy density:

εMF =

⎧⎪⎨
⎪⎩
−D2J2 + Γ2

4DJ
for Γ < DJ ,

−Γ

2
for Γ � DJ.

(D4)

Within the MF approximation, the ground state magnetization is then given by

mMF =

⎧⎨
⎩±

√
(DJ − Γ)(DJ + Γ)

2DJ
for Γ < DJ ,

0 for Γ � DJ.
(D5)

The MF approximation predicts a QPT at ΓMF
c = DJ . The same results may be

obtained by writing Ŝz
i = mz + δŜz

i and neglecting quadratic fluctuations, δŜz
i δŜ

z
j ≈ 0.

The definition mz ≡ 〈Ŝz
i 〉 then gives a self-consistency condition. The MF results pro-

vided in this section correspond to the SP result given in the main text; in particular,
ϕP = 2DmMF is precisely the effective field felt by each spin (i.e. the MF).
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