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Abstract
We show that the energy gap for the BCS gap equation is

Ξ = μ
(
8e−2 + o(1)

)
exp

(
π

2
√

μa

)

in the low density limit μ → 0. Together with the similar result for the critical
temperature by Hainzl and Seiringer (Lett Math Phys 84: 99–107, 2008), this shows
that, in the low density limit, the ratio of the energy gap and critical temperature is a
universal constant independent of the interaction potential V . The results hold for a
class of potentials with negative scattering length a and no bound states.
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1 Introduction andmain result

The Bardeen–Cooper–Schrieffer (BCS) gap equation at zero temperature

Δ(p) = − 1

(2π)3/2

∫

R3
V̂ (p − q)

Δ(q)

E(q)
dq,

where E(p) = √
(p2 − μ)2 + |Δ(p)|2, is an important part of the BCS theory of

superfluidity and conductivity [1]. The function Δ has the interpretation of the order
parameter describing pairs of Fermions (Cooper pairs). The potential V models an
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effective local interaction. (In the case of superconductivity it is between electrons.)
We will assume that V ∈ L1(R3), in which case V has a Fourier transform, V̂ (p) =
(2π)−3/2

∫
R3 V (x)e−i px dx . Under the assumption V̂ ≤ 0, it is proved in [7] that a

solution Δ to the BCS gap equation is unique (up to a constant global phase).
We will here study the low density limit, μ → 0, of the energy gap (at zero

temperature)

Ξ = inf E(p) = inf
√

(p2 − μ)2 + |Δ(p)|2.

The function E has the interpretation as the dispersion relation for the corresponding
BCS Hamiltonian, and so Ξ is indeed an energy gap, see [5, Appendix A]. This limit
has previously been studied in [6], where the critical temperature has been calculated,
and it is known that, in this limit, superfluid/conducting behaviour is well described by
BCS theory [10,12]. The critical temperature is another key feature of BCS theory. For
temperatures below the critical temperature, the system is in a superfluid/conducting
state. For temperatures above, it is not.

BCS theoryhas also been studied in theweak coupling limit [7],where one considers
a potential λV for a fixed V in the limit of a small coupling constant λ → 0. In that
limit, it is shown that the energy gap satisfiesΞ ∼ A exp(−B/λ) for explicit constants
A, B > 0.

In the low density limit, it turns out that the energy gap, as the critical temperature
[6], is related to the scattering length of the potential 2V , which we now define.

Definition 1 [6, Definition 2] Let V ∈ L1(R3)∩L3/2(R3) be real-valued. By V (x)1/2,
we will mean V (x)1/2 = sgn(V (x))|V (x)|1/2. Suppose that −1 is not in the spec-
trumof the associatedBirman–Schwinger operator V 1/2 1

p2
|V |1/2. Then, the scattering

length a of 2V is

a = 1

4π

〈
|V |1/2

∣∣∣∣
1

1 + V 1/2 1
p2

|V |1/2
∣∣∣∣V 1/2

〉
.

Here, operators that are functions of p are to be interpreted as multiplication operators
in Fourier space.

In [6, Appendix A] it is explained, why it is sensible to call this a scattering length.
With this, we may now state our main theorem.

Theorem 1 Let V be radial and assume that V (x)(1+|x |)∈ L1(R3)∩L3/2(R3), V̂ ≤0,
V̂ (0)<0, that ‖V ‖L3/2 < S3, and that the scattering length a<0 is negative. Then,

lim
μ→0

(
log

μ

Ξ
+ π

2
√

μa

)
= 2 − log 8.

That is, in the limit of low density, the energy gap satisfies

Ξ = μ
(
8e−2 + o(1)

)
exp

(
π

2
√

μa

)
.
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This is known in the physics literature [10]. Here, S3 = 3
42

2/3π4/3 ≈ 5.4779 is the best
constant in Sobolev’s inequality [11, Theorem8.3]. The assumption that ‖V ‖L3/2 < S3
gives that p2 + λV > 0 for any 0 < λ ≤ 1 by Sobolev’s inequality, see [11, section
11.3]. Thus, by the Birman–Schwinger principle, the operator λV 1/2 1

p2
|V |1/2 does not

have −1 as an eigenvalue. Varying λ we thus get that the spectrum of V 1/2 1
p2

|V |1/2
is contained in (−1,∞). In particular, the scattering length is finite. Also, for a V
satisfying the assumptions it also satisfies the assumptions of [6, Theorem 1]. This
states that the critical temperature satisfies

Tc = μ

(
8

π
eγ−2 + o(1)

)
exp

(
π

2
√

μa

)
,

where γ ≈ 0.577 is the Euler–Mascheroni constant. We thus immediately get the
following.

Corollary 1 Let V be radial and assume that V (x)(1 + |x |) ∈ L1(R3) ∩ L3/2(R3),
V̂ ≤ 0, V̂ (0) < 0, that ‖V ‖L3/2 < S3, and that the scattering length a < 0 is negative.
Then,

lim
μ→0

Ξ

Tc
= πe−γ ≈ 1.7639.

That is, in the lowdensity limit, the ratio of the energygap andcritical temperature tends
to some universal limit independent of the potential V . This is known in the physics
literature [4]. Also, this property has been observed before in the weak coupling
limit [1,7,12]. In [7], by considering the potential λV for V fixed, it is shown that
Ξ/Tc → πe−γ when λ → 0. That is, there exists such universal constants in both the
low density and weak coupling limits, and moreover, they are the same in both limits.

The assumptions we impose on the potential V is more or less the assumptions of
[6,7]. The only difference is the assumption that ‖V ‖L3/2 < S3 instead of the assump-
tion that V 1/2 1

p2
|V |1/2 has spectrum contained in (−1,∞). As discussed above, our

assumption here is stronger. We need such a stronger assumption, since we need to
control different scalings of the potential. As discussed in [6] our assumption captures
that the operator p2 + V does not have any bound states.

Wewill follow the description of BCS theorymade in [2,3,5–9]. There, the BCS gap
equation at zero temperature arises as the Euler–Lagrange equations for minimisers
of the BCS functional at zero temperature

Fμ,V (α) = 1

2

∫
|p2 − μ|

(
1 −

√
1 − 4|α̂(p)|2

)
dp +

∫
V (x)|α(x)|2 dx .

For a minimiser α one then defines

Δ(p) = −2V̂α(p).

This Δ then satisfies the BCS gap equation, see [9].
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The BCS functional satisfies the scaling

Fμ,V (α) = μ5/2F1,
√

μV√
μ(β)

= μ5/2
[
1

2

∫
|p2 − 1|

(
1 −

√
1 − 4|β̂(p)|2

)
dp + √

μ

∫
V√

μ|β|2 dx
]

, (1)

where β(x) = μ−3/2α(x/
√

μ) and V√
μ(x) = μ−3/2V (x/

√
μ). If we replaced the

potential V√
μ by some constant potential, this would correspond to the weak coupling

limit, studied in [7] (with coupling constant λ = √
μ). The potential V√

μ is of course
not constant, so the methods and results of [7] do not (immediately) apply.

We will not pursue the idea of trying to extend the results of [7] to our case. Instead,
we will use the methods of [6]. This approach has the advantage that the asymptotic
of Ξ comes out in a form, where the scattering length a appears explicitly, and thus
allows us to easily compare this asymptotic to that of Tc from [6], thus giving us
Corollary 1.

We nowgive the proof of our theorem. The first part is novel and consists of getting a
priori bounds on theminimiser α of the BCS functional and the corresponding solution
to the BCS gap equation Δ that are good enough for us to apply the methods of [6].
The second part applies the methods of [6] to our case.

2 Proof

One of the key ideas in the proof is to study the asymptotic of

mμ(Δ) = 1

(2π)3

∫
1

E(p)
− 1

p2
dp = 1

(2π)3

∫
1√|p2 − μ|2 + |Δ(p)|2 − 1

p2
dp.

This is similar to what is done in [6,7] for the study of the critical temperature and
energy gap in theweak coupling limit and for the critical temperature in the low density
limit.

In [7, Lemma 2], it is proven that there exists a unique minimiser α of the BCS
functional at zero temperature with (strictly) positive Fourier transform. This we will
denote by αμ,V . Since the BCS functional is invariant under rotation, it follows that

αμ,V and thus also Δ = −2V̂αμ,V are radial functions [7]. Additionally, since V̂ ≤ 0
we have that Δ ≥ 0. By the BCS equation, it follows that even Δ > 0, see [7].

By the scaling of the BCS functional, Eq. (1), we see that αμ,V satisfies the scaling

αμ,V (x) = μ3/2α1,
√

μV√
μ
(
√

μx), α̂μ,V (p) = α̂1,
√

μV√
μ
(p/

√
μ).

The asymptotics of mμ(Δ) and Ξ are as follows.

Lemma 1 In the limit μ → 0, we have

• mμ(Δ) =
√

μ

2π2

(
log

μ

Δ(
√

μ)
− 2 + log 8 + o(1)

)
,
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• mμ(Δ) = −1

4πa
+ o

(
μ1/2

)
,

• Ξ = Δ(
√

μ)(1 + o(1)).

By Δ(
√

μ), we mean the value of Δ on a sphere of radius
√

μ. Since Δ is radial,
this is well defined. The first equality here may be reformulated as Δ(

√
μ) =

μ
(
8e−2 + o(1)

)
exp

(
− 2π2mμ(Δ)√

μ

)
.

With this, we may prove our main theorem.

Proof (of theorem 1) By Lemma 1, we get

lim
μ→0

(
log

μ

Ξ
+ π

2
√

μa

)
= lim

μ→0

(
log

μ

Δ(
√

μ)
+ π

2
√

μa

)

= lim
μ→0

(
log

μ

Δ(
√

μ)
− 2π2mμ(Δ)√

μ

)
= 2 − log 8.

This concludes the proof of Theorem 1. �
We now give the proof of Lemma 1. The structure of the proof is as follows. First, we
find bounds on the minimiser α of the BCS functional. These then translate to bounds
on the function Δ, which gives some asymptotic behaviour of mμ(Δ). Armed with
this, we employ the methods of [6] to improve on these a priori results.

Proposition 1 In the limit μ → 0, the minimiser satisfies
∥∥αμ,V

∥∥
H1 ≤ Cμ3/4.

Proof By the scaling of αμ,V we compute (for μ ≤ 1)

∥∥αμ,V
∥∥2
H1 =

∫
|α̂μ,V (p)|2

(
1 + p2

)
dp

= μ3/2
∫

|α̂1,
√

μV√
μ
(q)|2

(
1 + μq2

)
dq ≤ μ3/2

∥∥∥α1,
√

μV√
μ

∥∥∥
2

H1
.

We now show, that this latter norm is bounded uniformly in μ.

Let λ = S3‖V ‖L3/2 > 1. Then, as
∥∥∥√μV√

μ

∥∥∥
L3/2

= ‖V ‖L3/2 it follows that

p2

λ
+ √

μV√
μ ≥ 0 by Sobolev’s inequality, see [11, section. 11.3]. Using that

1 − √
1 − 4x2 ≥ 2x2, we may bound for any α,

F1,
√

μV√
μ(α) ≥

∫
(p2 − 1)|α̂(p)|2 dp +

∫ √
μV√

μ(x)|α(x)|2 dx

=
〈
α

∣∣∣∣
p2

λ
+ √

μV√
μ

∣∣∣∣α
〉
+
∫ (

2εp2 − 1
)

|α̂(p)|2 dp

≥ ε

∫
|α̂(p)|2(1 + p2) dp +

∫
(εp2 − ε − 1)|α̂(p)|2 dp

≥ ε ‖α‖2H1 − A,

123
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where we introduced ε = 1
2 − 1

2λ > 0 and A = 1
4

∫ [
εp2 − 1 − ε

]
− dp < ∞. Since

F1,
√

μV√
μ(0) = 0, we get for the minimiser that

∥∥∥α1,
√

μV√
μ

∥∥∥
H1

is bounded uniformly

in μ. Thus,
∥∥αμ,V

∥∥
H1 ≤ Cμ3/4 for small μ. �

Proposition 2 For small enough μ, the minimiser satisfies

∥∥α̂μ,V 1{|p|>ε}
∥∥
L3/2 ≤ C

∥∥α̂μ,V 1{|p|≤ε}
∥∥
L1

for a small ε > 0 and a constant C, both independent of μ.

Proof By the continuity of V̂ , we may find ε > 0 such that 2V̂ (0) ≤ V̂ (p) ≤
1
2 V̂ (0) < 0 for all |p| ≤ 2ε. Let λ = S3‖V ‖L3/2 > 1. Then, p2

λ
+ V ≥ 0. For the

minimiser α = αμ,V , we have again using the inequality 1 − √
1 − 4x2 ≥ 2x2, the

following.

Fμ,V (α) = 1

2

∫
|p2 − μ|

(
1 −

√
1 − 4α̂(p)2

)
dp +

∫
V (x)|α(x)|2 dx

= 1

2

∫

|p|>ε

|p2 − μ|
(
1 −

√
1 − 4α̂(p)2

)
dp

+1

2

∫

|p|≤ε

|p2 − μ|
(
1 −

√
1 − 4α̂(p)2

)
dp

+ 1

(2π)3/2

∫∫
α̂(p)V̂ (p − q)α̂(q) dp dq

≥
∫

|p|>ε

(
p2 − μ

)
α̂(p)2 dp + 1

(2π)3/2

∫∫
α̂(p)V̂ (p − q)α̂(q) dp dq

=
∫

|p|>ε

(
p2 − μ

)
α̂(p)2 dp + 1

(2π)3/2

[∫

|p|≤ε

∫

|q|≤ε

α̂(p)V̂ (p − q)α̂(q) dp dq

+2
∫

|p|≤ε|

∫

|q|>ε

α̂(p)V̂ (p − q)α̂(q) dp dq

+
∫

|p|>ε|

∫

|q|>ε

α̂(p)V̂ (p − q)α̂(q) dp dq

]

≥
〈
α̂1{|p|>ε}

∣∣∣∣
p2

λ
+ V

∣∣∣∣α̂1{|p|>ε}
〉
+
∫

|p|>ε

((
1 − 1

λ

)
p2 − μ

)
α̂(p)2 dp

+ 1

(2π)3/2

[
2V̂ (0)

∥∥α̂1{|p|≤ε}
∥∥2
L1 + 2

∫

|p|≤ε

∫

|q|>ε

α̂(p)V̂ (p − q)α̂(q) dp dq

]

≥
∫

|p|>ε

((
1 − 1

λ

)
p2 − μ

)
α̂(p)2 dp

+ 1

(2π)3/2

[
2V̂ (0)

∥∥α̂1{|p|≤ε}
∥∥2
L1 + 2

∫

|p|≤ε

∫

|q|>ε

α̂(p)V̂ (p − q)α̂(q) dp dq

]
.

123
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We now bound the two remaining integrals. For the first integral, we have for suffi-
ciently small μ that

∫

|p|>ε

((
1 − 1

λ

)
p2 − μ

)
α̂(p)2 dp

≥ c
∫

|p|>ε

α̂(p)2
(
1 + p2

)
dp ≥ c

∥∥α̂1{|p|>ε}
∥∥2
L3/2 ,

by the bound
∥∥ĝ∥∥L3/2 ≤ C ‖g‖H1 , valid for any function g. To see this, simply write

∥∥ĝ∥∥3/2L3/2 =
∫

|ĝ(p)|3/2 (1 + p2)3/4

(1 + p2)3/4
dp

≤
(∫

|ĝ(p)|2
(
1 + p2

)
dp

)3/4 (∫ 1

(1 + p2)3
dp

)1/4

= C ‖g‖3/2
H1 .

For the double integral, we use the Young and the Hausdorff–Young inequalities [11,
Theorems 4.2 and 5.7]. This gives

∣∣∣∣
∫

|p|≤ε

∫

|q|>ε

α̂(p)V̂ (p − q)α̂(q) dp dq

∣∣∣∣ ≤ C
∥∥α̂1{|p|≤ε}

∥∥
L1

∥∥∥V̂
∥∥∥
L3

∥∥α̂1{|p|>ε}
∥∥
L3/2

≤ C ‖V ‖L3/2

∥∥α̂1{|p|≤ε}
∥∥
L1

∥∥α̂1{|p|>ε}
∥∥
L3/2 .

Combining all this, we get the bound

Fμ,V (α) ≥ c
∥∥α̂1{|p|>ε}

∥∥2
L3/2 − C1

∥∥α̂1{|p|>ε}
∥∥
L3/2

∥∥α̂1{|p|≤ε}
∥∥
L1

− C2
∥∥α̂1{|p|≤ε}

∥∥2
L1 ,

where we absorbed the factors of V into the constants C1,C2 > 0. The right hand
side above is a second-degree polynomial in

∥∥α̂1{|p|>ε}
∥∥
L3/2 . Moreover, the minimiser

α = αμ,V satisfies Fμ,V (α) ≤ 0. We conclude that
∥∥α̂1{|p|>ε}

∥∥
L3/2 is between the

two roots of the second-degree polynomial. In particular,

∥∥α̂1{|p|>ε}
∥∥
L3/2 ≤ C1

∥∥α̂1{|p|≤ε}
∥∥
L1 +

√
C2
1

∥∥α̂1{|p|≤ε}
∥∥2
L1 + 4cC2

∥∥α̂1{|p|≤ε}
∥∥2
L1

2c
≤ C

∥∥α̂1{|p|≤ε}
∥∥
L1

as desired. �
We now bound Δ = −2V̂αμ,V = −2(2π)−3/2V̂ ∗ α̂μ,V .

Proposition 3 The function Δ satisfies

Δ(p) ≤ Cμ3/4 and |Δ(p′) − Δ(p)| ≤ Cμ3/4|p′ − p|.

123
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Proof We compute

Δ(p) = 2

(2π)3/2

∫ ∣∣∣V̂ (p − q)

∣∣∣ α̂μ,V (q) dq

≤ C
∥∥∥V̂

∥∥∥
L3

∥∥α̂μ,V
∥∥
L3/2 ≤ C ‖V ‖L3/2

∥∥αμ,V
∥∥
H1 ≤ Cμ3/4

by the Hausdorff–Young inequality [11, Theorem 5.7] and the fact that
∥∥ĝ∥∥L3/2 ≤

C ‖g‖H1 . The bound for the difference is similar, using that

∥∥∥V̂ (p′ − ·) − V̂ (p − ·)
∥∥∥
L3

≤ C

(∫ ∣∣∣e−i p′x − e−i px
∣∣∣
3/2 |V (x)|3/2 dx

)2/3

≤ C

(∫ ∣∣p′ − p
∣∣3/2 |x |3/2|V (x)|3/2 dx

)2/3

= C ‖V | · |‖L3/2 |p′ − p|,

since V̂ (p′ − ·) − V̂ (p−·) is the Fourier transform of
(
e−i p′x−e−i px

)
V (−x). �

With this bound on Δ, we may prove the third equality in Lemma 1, i.e. that Ξ =
Δ(

√
μ)(1 + o(1)), as follows.

Clearly, Ξ ≤ Δ(
√

μ). On the other hand, for |p2 − μ| ≤ Ξ ≤ Δ(
√

μ) we have

|Δ(p) − Δ(
√

μ)| ≤ Cμ3/4||p| − √
μ| ≤ Cμ3/4 Δ(

√
μ)

|p| + √
μ

≤ Cμ1/4Δ(
√

μ)

and so Ξ ≥ min|p2−μ|≤Ξ Δ(p) ≥ Δ(
√

μ)(1 + o(1)). We conclude that Ξ =
Δ(

√
μ)(1 + o(1)).

We now use this bound on Δ to get some control over mμ(Δ). By computing the
spherical part of the integral, splitting the integral according to p2 < 2μ and p2 > 2μ,

and using the substitutions s = μ−p2

μ
and s = p2−μ

μ
, we may rewrite mμ(Δ) as

mμ(Δ) =
√

μ

4π2

⎡
⎢⎢⎣
∫ 1

0

√
1 − s − 1√

s2 +
(

Δ(
√

μ
√
1−s)

μ

)2 +
√
1 + s − 1√

s2 +
(

Δ(
√

μ
√
1+s)

μ

)2

− 1√
1 − s

− 1√
1 + s

ds

+
∫ 1

0

1√
s2 +

(
Δ(

√
μ

√
1−s)

μ

)2 + 1√
s2 +

(
Δ(

√
μ

√
1+s)

μ

)2 ds

123
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+
∫ ∞

1

√
1 + s√

s2 +
(

Δ(
√

μ
√
1+s)

μ

)2 − 1√
1 + s

ds

⎤
⎥⎥⎦ .

Here, by Δ(
√

μ
√
1 ± s) we (again) mean the value of Δ on a sphere with the given

radius. Since Δ is radial, this is well defined. We now claim that

Proposition 4 In the limit μ → 0, the value mμ(Δ) satisfies

mμ(Δ) =
√

μ

4π2

⎡
⎢⎢⎣
∫ 1

0

√
1 − s − 1√

s2 +
(

Δ(
√

μ)

μ

)2 +
√
1 + s − 1√

s2 +
(

Δ(
√

μ)

μ

)2 − 1√
1 − s

− 1√
1 + s

ds

+
∫ 1

0

2√
s2 +

(
Δ(

√
μ)

μ

)2 ds +
∫ ∞

1

√
1 + s√

s2 +
(

Δ(
√

μ)

μ

)2 − 1√
1 + s

ds + o(1)

⎤
⎥⎥⎦ .

Proof For the first and last integrals, this follows by a dominated convergence argu-
ment. One considers the difference between the claimed value and the known value and
uses a dominated convergence argument to shows that this vanishes. For the middle
integral, we use Propositions 2 and 3. The argument is as follows.

Define the function(s) x(s) = Δ(
√
1±s

√
μ)

μ
. We must then show that

lim
μ→0

∫ 1

0

1√
s2 + x(s)2

− 1√
s2 + x(0)2

ds = 0.

First, the function Δ satisfies (with ε > 0 chosen from Proposition 2)

Δ(p) = 2

(2π)3/2

∫
|V̂ (p − q)|α̂μ,V (q) dq

= 2

(2π)3/2

∫

|q|≤ε

|V̂ (p − q)|α̂μ,V (q) dq

+ 2

(2π)3/2

∫

|q|>ε

|V̂ (p − q)|α̂μ,V (q) dq.

This gives for |p| = √
μ that

Δ(
√

μ) = 2

(2π)3/2

∫

|q|≤ε

|V̂ (p − q)|α̂μ,V (q) dq

+ 2

(2π)3/2

∫

|q|>ε

|V̂ (p − q)|α̂μ,V (q) dq

≥ 1

(2π)3/2
|V̂ (0)| ∥∥α̂μ,V 1{|p|≤ε}

∥∥
L1 .
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Also, for any |p| = √
1 ± s

√
μ that

Δ(p) = 2

(2π)3/2

∫

|q|≤ε

|V̂ (p − q)|α̂μ,V (q) dq

+ 2

(2π)3/2

∫

|q|>ε

|V̂ (p − q)|α̂μ,V (q) dq

≤ 4

(2π)3/2
|V̂ (0)| ∥∥α̂μ,V 1{|p|≤ε}

∥∥
L1 + 2

(2π)3/2

∥∥∥V̂
∥∥∥
L3

∥∥α̂μ,V 1{|p|>ε}
∥∥
L3/2

≤ C
∥∥α̂μ,V 1{|p|≤ε}

∥∥
L1 ≤ CΔ(

√
μ),

by the Hausdorff–Young inequality [11, Theorem 5.7] and Proposition 2. Thus, the
function(s) x(s) satisfies x(s) ≤ Cx(0). With this, we may now prove the desired
convergence of integrals.

∣∣∣∣∣
1√

s2 + x(s)2
− 1√

s2 + x(0)2

∣∣∣∣∣

=
∣∣x(s)2 − x(0)2

∣∣
√
s2 + x(s)2

√
s2 + x(0)2

(√
s2 + x(s)2 +√

s2 + x(0)2
)

≤ Cμ1/4sx(0)√
s2 + x(s)2

√
s2 + x(0)2

(
s +√

s2 + x(0)2
)

≤ Cμ1/4 x(0)√
s2 + x(0)2

(
s +√

s2 + x(0)2
) ,

since |x(s) − x(0)| ≤ Cμ1/4s by Proposition 3. Now, one may compute that

∫ 1

0

x(0)√
s2 + x(0)2

(
s +√

s2 + x(0)2
) ds = O(1).

This shows that

∫ 1

0

1√
s2 + x(s)2

− 1√
s2 + x(0)2

ds = O
(
μ1/4

)

vanishes as desired. We conclude the desired. �

The remainder of this paper uses the methods of [6]. We decompose

BΔ := V 1/2 1

E
|V |1/2 = V 1/2 1

p2
|V |1/2 + mμ(Δ)

∣∣∣V 1/2
〉 〈

|V |1/2
∣∣∣+ AΔ,μ,
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where AΔ,μ is defined such that this holds. That is, its kernel is

AΔ,μ(x, y) = V (x)1/2|V (y)|1/2 1

2π2

∫ ∞

0

(
sin p|x − y|
p|x − y| − 1

)(
1

E
− 1

p2

)
p2 dp.

In order to see this, note that
∫
S2 e

i px dp = 4π sin |x |
|x | . The operator BΔ is the Birman–

Schwinger operator associated with E + V . One easily checks that E + V has its
lowest eigenvalue 0, see [7]. (This follows from the fact that V̂ ≤ 0 is negative and
so the ground state of E + V can be chosen to have non-negative Fourier transform.
Hence, it is not orthogonal to αμ,V , which is an eigenfunction with eigenvalue 0.)
Thus, BΔ has −1 as its lowest eigenvalue.

Proposition 5 In the limit μ → 0, the function Δ satisfies Δ(
√

μ) = o(μ).

Proof Suppose for contradiction that
Δ(

√
μ)

μ
does not vanish. That is, suppose that

there is some subsequence with Δ(
√

μ) > Bμ for μ → 0 for some constant B > 0.
We use the decomposition

BΔ = V 1/2 1

p2
|V |1/2 + mμ(Δ)

∣∣∣V 1/2
〉 〈

|V |1/2
∣∣∣+ AΔ,μ.

By the assumptions on V , the spectrum of V 1/2 1
p2

|V |1/2 is contained in (−1,∞).
We show that the remaining two terms in the decomposition above vanish in the limit
μ → 0, and so that the spectrum of BΔ approaches that of V 1/2 1

p2
|V |1/2. Since the

latter has its lowest eigenvalue strictly larger than −1, we get a contradiction.
For mμ(Δ), we use Proposition 4 above. The only term that does not immediately

vanish in the limit μ → 0 is the term

√
μ

4π2

∫ ∞

1

√
1 + s√

s2 +
(

Δ(
√

μ)

μ

)2 − 1√
1 + s

ds.

By splitting this integral according to s <
Δ(

√
μ)

μ
and s >

Δ(
√

μ)

μ
, we see that this

term may be bounded by Cμ−1/2Δ(
√

μ) ≤ Cμ1/4 by Proposition 3. Hence, this term
indeed also vanishes.

For the kernel of AΔ,μ, we use that
∣∣ sin b

b − 1
∣∣ ≤ C min{1, b2} ≤ Cbγ for any

0 ≤ γ ≤ 2 for the specific choice of γ = 1
2 . Then,

∣∣AΔ,μ(x, y)
∣∣ ≤ C |V (x)|1/2|V (y)|1/2|x − y|1/2

[∫ √
2μ

0

∣∣∣∣
1

E
− 1

p2

∣∣∣∣ p5/2 dp

+
∫ ∞

√
2μ

∣∣∣∣
1

E
− 1

p2

∣∣∣∣ p5/2 dp
]

.
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For the first integral, we bound E(p) ≥ Δ(p) ≥ Δ(
√

μ) − Cμ5/4 ≥ B ′μ for
sufficiently small μ and some B ′ > 0 by Proposition 3. Thus,

∫ √
2μ

0

∣∣∣∣
1

E
− 1

p2

∣∣∣∣ p5/2 dp ≤
∫ √

2μ

0

1

B ′μ
(2μ)5/4 + (2μ)1/4 dp ≤ Cμ3/4.

We bound the second integral as follows. First, with the substitution s = p2−μ
μ

we get

∫ ∞
√
2μ

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ p5/2 dp = μ3/4

2

∫ ∞

1

∣∣∣∣∣∣∣∣

1 + s√
s2 +

(
Δ(

√
μ

√
1+s)

μ

)2 − 1

∣∣∣∣∣∣∣∣

1

(1 + s)1/4
ds

≤ μ3/4

2

∫ ∞

1

1

s(1 + s)1/4
+

√
s2 +

(
Δ(

√
μ

√
1+s)

μ

)2
− s

s(1 + s)1/4
ds

≤ Cμ3/4 + Cμ−1/4
∫ ∞

1

Δ(
√

μ
√
1 + s)

s(1 + s)1/4
ds

≤ Cμ1/2,

where we used that |Δ(p)| ≤ Cμ3/4. The integral
∫∫ |V (x)||V (y)||x− y| dx dy < ∞

is finite by the assumptions on V . Thus,
∥∥AΔ,μ

∥∥
2 ≤ Cμ1/2 vanishes, and we get the

desired contradiction. We conclude that Δ(
√

μ) = o(μ). �
Using this refined bound, Δ(

√
μ) = o(μ), we may use a dominated convergence

argument to show that

mμ(Δ) =
√

μ

4π2

[ ∫ 1

0

√
1 − s − 1

s
+

√
1 + s − 1

s
− 1√

1 − s
− 1√

1 + s
ds

+
∫ 1

0

2√
s2 +

(
Δ(

√
μ)

μ

)2 ds +
∫ ∞

1

√
1 + s

s
− 1√

1 + s
ds + o(1)

]
.

These integrals can be computed (somewhat easily by hand). This is done in [7]. We
conclude that

mμ(Δ) =
√

μ

2π2

(
log

μ

Δ(
√

μ)
− 2 + log 8 + o(1)

)

in the limit μ → 0, i.e. this shows the first equality in Lemma 1. In particular,
mμ(Δ) � √

μ. Now, we are interested in bounding AΔ,μ.

Proposition 6 The operator AΔ,μ vanishes in the following sense.

lim
μ→0

∥∥AΔ,μ

∥∥
2

mμ(Δ)
= 0.
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Proof The proof is similar as above, only we give a more refined bound on the kernel.
We bound the sin b

b term by

∣∣∣∣
sin |p||x − y|

|p||x − y| − 1

∣∣∣∣ ≤ C
[
p2Z21{|x−y|<Z} + |p|1/2|x − y|1/21{|x−y|>Z}

]
1{p2<2μ}

+ C |p|1/2|x − y|1/21{p2>2μ}.

where Z > 0 is arbitrary, and the constant C does not depend on Z . Then,

∣∣AΔ,μ(x, y)
∣∣ ≤ C |V (x)|1/2|V (y)|1/2

[
Z2

∫ √
2μ

0

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ p4 dp

+ |x − y|1/21{|x−y|>Z}
∫ √

2μ

0

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ p5/2 dp

+ |x − y|1/2
∫ ∞

√
2μ

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ p5/2 dp
]

.

Now, the first and second integrals may be bounded by mμ(Δ)μ and mμ(Δ)μ1/4 as
follows. For any γ , we may bound

∫ √
2μ

0

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ pγ dp ≤
∫ √

2μ

0

(
1

EΔ

− 1

p2

)
pγ + 2pγ−2 dp ≤ Cmμ(Δ)μ

γ−2
2 .

Similarly as before, the last integral may be bounded by μ1/2 � mμ(Δ). Again, by
the assumptions on V it follows that

∫∫ |V (x)||V (y)||x − y| dx dy < ∞ is finite.

Thus, we get limμ→0
‖AΔ,μ‖2
mμ(Δ)

= 0 as desired. �

We may decompose

1 + BΔ =
(
1 + V 1/2 1

p2
|V |1/2

)

×
(
1 + mμ(Δ)

1 + V 1/2 1
p2

|V |1/2
(∣∣∣V 1/2

〉 〈
|V |1/2

∣∣∣+ AΔ,μ

mμ(Δ)

))
.

Since −1 is an eigenvalue of BΔ, we get that −1 is an eigenvalue of

mμ(Δ)

1 + V 1/2 1
p2

|V |1/2
(∣∣∣V 1/2

〉 〈
|V |1/2

∣∣∣+ AΔ,μ

mμ(Δ)

)
.
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Proposition 6 gives that the term AΔ,μ

mμ(Δ)
vanishes in the limit μ → 0. The other term

has rank one, and thus, we get

lim
μ→0

−1

mμ(Δ)
=
〈
|V |1/2

∣∣∣∣
1

1 + V 1/2 1
p2

|V |1/2
∣∣∣∣V 1/2

〉
= 4πa.

This is, apart from the (weaker) error term, the second equality in Lemma 1. We now
show that the rate of convergence is indeed o(μ1/2).

First, we improve on Proposition 6. Since mμ(Δ) is of order 1 in the limit μ → 0,
we get for the third integral in the proof of Proposition 6 that

∫ ∞
√
2μ

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ p5/2 dp ≤ Cμ1/2 � μ1/4.

Hence, for any Z > 0 and a constant C that does not depend on Z we get the bound

lim sup
μ→0

∥∥AΔ,μ

∥∥
2

μ1/4 ≤ C

(∫∫

{|x−y|>Z}
|V (x)||V (y)||x − y| dx dy

)1/2

.

By the assumptions on V , the integrand here is integrable and so taking Z → ∞ we
get that

lim
μ→0

∥∥AΔ,μ

∥∥
2

μ1/4 = 0. (2)

Additionally, AΔ,μ vanishes in the limit μ → 0. Thus, the operator

1 + V 1/2 1

p2
|V |1/2 + AΔ,μ

is invertible for small μ and so we may write

1 + BΔ =
(
1 + V 1/2 1

p2
|V |1/2 + AΔ,μ

)

×
(
1 + mμ(Δ)

1 + V 1/2 1
p2

|V |1/2 + AΔ,μ

∣∣∣V 1/2
〉 〈

|V |1/2
∣∣∣
)

.

Since−1 is an eigenvalue of BΔ, we get that−1 is an eigenvalue of the latter operator.
This has rank one and so we get that

−1

mμ(Δ)
=
〈
|V |1/2

∣∣∣∣
1

1 + V 1/2 1
p2

|V |1/2 + AΔ,μ

∣∣∣∣V 1/2

〉
. (3)
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We decompose the middle operator on the right hand side as

1

1 + V 1/2 1
p2

|V |1/2 + AΔ,μ

= 1

1 + V 1/2 1
p2

|V |1/2 − 1

1 + V 1/2 1
p2

|V |1/2 AΔ,μ

1

1 + V 1/2 1
p2

|V |1/2

+ 1

1 + V 1/2 1
p2

|V |1/2 AΔ,μ

1

1 + V 1/2 1
p2

|V |1/2 + AΔ,μ

AΔ,μ

1

1 + V 1/2 1
p2

|V |1/2 ,

which is perhaps most easily seen by writing the left hand side as a power series in
AΔ,μ. Plugging this into Eq. (3), we get 4πa for the first term. The second term gives

〈 f | sgn V AΔ,μ| f 〉, with f = 1

1 + V 1/2 1
p2

|V |1/2 V
1/2.

This function f is the same function f , which was studied in [6]. There, it was shown
that this function satisfies f (x)|V (x)|1/2(1 + |x |) ∈ L1.

The third term in the expansion above is o(μ1/2) by Eq. (2). We show that the
second term is o(μ1/2) as well.

Proposition 7 In the limit μ → 0, we have 〈 f | sgn V AΔ,μ| f 〉 = o(μ1/2).

Proof This is similar to the bound on AΔ,μ above. We bound the kernel of AΔ,μ by

|AΔ,μ(x, y)| ≤ C |V (x)|1/2|V (y)|1/2
[
Z2

∫ √
2μ

0

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ p4 dp

+ |x − y|1{|x−y|>Z}
∫ √

2μ

0

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ p3 dp

+ |x − y|3/4
∫ ∞

√
2μ

∣∣∣∣
1

EΔ

− 1

p2

∣∣∣∣ p11/4 dp
]

.

These integrals are bounded by μ,μ1/2 and μ5/8, respectively, similarly as in Propo-
sition 6. (Recall that mμ(Δ) is of order 1.) Thus,

lim sup
μ→0

|〈 f | sgn V AΔ,μ| f 〉|
μ1/2

≤ C
∫∫

{|x−y|>Z}
| f (x)||V (x)|1/2|x − y|| f (y)||V (y)|1/2 dx dy.

Since f (x)|V (x)|1/2(1 + |x |) ∈ L1, we get the desired by taking Z → ∞. �
We conclude that

mμ(Δ) = −1

4πa
+ o

(
μ1/2

)
.
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This concludes the proof of the second equality in Lemma 1 and thus the proof of
Theorem 1.
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