
When does frequency-independent selection maintain
genetic variation?

Sebastian Novak*,1 and Nicholas H. Barton*

*Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria

Abstract

Frequency-independent selection is generally considered as a force that acts to

reduce the genetic variation in evolving populations, yet rigorous arguments for this

idea are scarce. When selection fluctuates in time, it is unclear whether frequency-

independent selection may maintain genetic polymorphism without invoking addi-

tional mechanisms. We show that constant frequency-independent selection with

arbitrary epistasis on a well-mixed haploid population eliminates genetic variation if

we assume linkage equilibrium between alleles. To this end, we introduce the notion of

frequency-independent selection at the level of alleles, which is sufficient to prove our

claim and contains the notion of frequency-independent selection on haploids. When

selection and recombination are weak but of the same order, there may be strong

linkage disequilibrium; numerical calculations show that stable equilibria are highly

unlikely. Using the example of a diallelic two-locus model, we then demonstrate that

frequency-independent selection that fluctuates in time can maintain stable poly-

morphism if linkage disequilibrium changes its sign periodically. We put our findings

in the context of results from the existing literature and point out those scenarios

in which the possible role of frequency-independent selection in maintaining genetic

variation remains unclear.

1 Introduction

There is a general understanding in the population genetics community that constant2

frequency-independent selection on a well-mixed haploid population eliminates genetic

1 Corresponding author address: Institute of Science and Technology Austria, Am Campus 1, 3400
Klosterneuburg, Austria. Email: sebastian.novak@ist.ac.at.
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variation. Selection is called frequency-independent if the fitness of a genotype does not4

depend on the frequencies of the other genotypes in the population. If constant selection

acts on a haploid population, each haplotype (haploid genotype) has an externally de-6

termined fitness value. Hence, in the absence of recombination and mutation, it is clear

that the haplotype with the highest fitness replaces the other haplotypes (Bürger, 2000,8

Chapter I.9). With multiple recombining loci and epistasis between alleles, it is much

less evident that frequency-independent selection must reduce the population to a single10

haplotype. Even more, it remains an open task to identify and characterize the conditions

under which frequency-independent selection that fluctuates in time may maintain genetic12

variation.

The matter of debate concerns an idealized population, under the sole influence of se-14

lection and recombination. Understanding the action of natural selection is crucial and

justifies the analysis of pure selection models (c.f. Bürger, 2000, and references therein).16

We therefore neglect direct sources of genetic variation (mutation), spatial heterogeneities

in selection that may protect alleles in spatial refuges (Strobeck, 1979), and factors gen-18

erating frequency-dependent fitness, e.g., fluctuating selection in combination with over-

lapping generations (Ellner and Sasaki, 1996), or with explicit population regulation20

(Dean, 2005) and other ecological mechanisms. Similarly, a recent study (Gulisija et al.,

2016) showed that the presence of a modifier of phenotypic plasticity may shelter alleles at22

selected loci from adverse conditions (termed a “genomic storage effect”) and thus lead to

a protected polymorphism under temporally varying conditions. Here, however, we focus24

directly on fitness, as the only trait being modulated. Furthermore, we consider haploid

populations, since the random combination of gametes into diploid genotypes may induce26

frequency-dependent selection on alleles, even if the fitnesses of the diploid genotypes are

frequency-independent: with heterozygote advantage, even constant selection on diploids28

is capable of maintaining genetic variation. Similar mechanisms apply for diploid systems

under fluctuating selection, which can lead to effective heterozygote advantage in terms30

of geometric mean fitnesses over time (Haldane and Jayakar, 1963; Hoekstra, 1975;

Nagylaki, 1975).32

Mathematically precise arguments for the erosion of genetic variation under constant

frequency-independent selection are scarce. Various publications cover special cases of34

fixed numbers of loci and alleles (e.g., Appendix S.5 by Bank et al., 2012). For arbitrary

numbers of loci and alleles, Kirzhner and Lyubich (1997) showed that constant selection36

on haploids leads to genetic monomorphism in two extreme cases: strong linkage between
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loci allowing for epistasis between genes, and arbitrary linkage between loci, but assuming38

that contributions of individual alleles to fitness are additive. More recently, Mehta et al.

(2015) showed that the discrete replicator dynamics of coordination games always converges40

to pure Nash equilibria. It follows as a special case that constant haploid selection does

not support stable polymorphism under the assumption of linkage equilibrium between42

loci. However, their intricate proof is cast in the framework of game theory and computer

science, and thus may not be accessible to readers with a background in evolutionary44

biology.

Under temporally fluctuating frequency-independent selection on haploids, Kirzhner46

et al. (1994) showed numerically that stable polymorphism can be maintained with two di-

allelic loci, at least for a very narrow range of parameters. Their exemplary gene-frequency48

dynamics with periodic fluctuations exhibit cyclically converging trajectories, whose pe-

riod is typically much longer than the period of the selection coefficients. Their examples50

require strong selection such that gene frequencies change drastically between successive

generations. Thus, the parameters needed for maintaining polymorphism may not be rep-52

resentative for natural populations, where frequency changes due to selection are typically

small and selection is weaker than recombination, such that the latter efficiently breaks54

up associations between loci (Nagylaki, 1974, 1993). In particular, it has not yet been

shown if fluctuating selection may maintain genetic variation in the continuous-time limit,56

where selection and recombination are both weak.

We consider a well-mixed haploid population with non-overlapping generations and58

frequency-independent selection on multiple loci, each with any number of alleles. We allow

arbitrary epistasis between alleles. This includes non-linear selection on polygenic traits,60

where epistasis in fitness may emerge even if the underlying genes contribute additively

to the trait. First, we present a simple yet rigorous proof that at linkage equilibrium, no62

genetic variation can be maintained by constant frequency-independent selection alone.

We note that the result does not follow from frequency-independent selection at the level64

of genotypes as defined above, since frequency-dependence in the fitnesses of alleles may

be induced, e.g., in diploid organisms. Instead, we provide a formal criterion for frequency-66

independent selection at the allelic level that is sufficient for proving the loss of genetic

polymorphism. Our argument applies to haploid populations when the alleles are at or close68

to linkage equilibrium, which is the case when selection is weak relative to recombination

(Nagylaki, 1993). Next, we show numerically that stable equilibria are highly unlikely70

when selection and recombination are weak but of the same order, so that there may
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be strong linkage. Finally, we provide an example of weak and periodically fluctuating72

frequency-independent selection and recombination between two loci that maintains genetic

variation at a stable equilibrium. We find that linkage disequilibrium is required for stable74

polymorphism, though its magnitude can be small. We conclude by summarizing and

discussing our results, and by laying out the remaining open questions concerning the76

conundrum of frequency-independent selection and genetic variation.

2 Notation78

We assume that there are L genetic loci. Locus i has Ki possible allelic variants and we

write K =
∑L

i=1Ki for the total number of alleles across all loci. Denote the k-th allele80

at locus i by P i
k and the frequency of allele P i

k by pik. Furthermore, we write pi for the

vector of allele frequencies at locus i and collect the allele frequencies at all loci in a vector82

p = (p1, ...,pL).

The mean fitness w̄ of the population is obtained by averaging the fitnesses of the84

genotypes over their frequencies. Similarly, the marginal fitness wik of an allele P i
k is

defined as the mean fitness of all genotypes containing that allele. Consequently, the mean86

fitness w̄ of the population can be seen as an average over the marginal fitnesses of alleles

at any given locus,88

w̄ =

Ki∑
k=1

pikw
i
k (for all i = 1, ..., L). (1a)

Note that the choice of locus i to average across does not play a role here, i.e., the sum

evaluates to the same value for any locus i.90

We say that selection on haploids is frequency-independent (at the level of alleles) if

the marginal fitness of an allele does not depend on the frequencies of alleles at the same92

locus. That is, for every choice of alleles j and k on any locus i, we have

∂wik
∂pij

= 0. (1b)

This definition encompasses the case of frequency-independent selection on haploids, where94

every haplotype has a fixed fitness value (Appendix A.1). However, its scope of application

is broader, since it does not require a certain ploidy level and allows for certain kinds of96

frequency-dependent interactions between loci.

Importantly, the marginal fitnesses wik of alleles at locus i generally depend on the98
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allele frequencies at the other loci, leading to non-trivial interactions between alleles. From

equations (1a) and (1b), we may derive the familiar identity100

∂w̄

∂pik
= wik (2)

(c.f. Wright, 1937). Hence, the derivative of mean fitness with respect to an allele yields

the marginal fitness of that allele under frequency-independent selection.102

3 Results

3.1 Constant frequency-independent selection at linkage equilib-104

rium eliminates genetic variation

Assume that the L loci are at linkage equilibrium at all times. This is a restrictive as-106

sumption, but is valid in the limit where recombination breaks up linkage disequilibria

between loci quickly, relative to the rate of selection. At linkage equilibrium, the frequency108

of each haplotype is the product of the frequencies of its constituent alleles. Consequently,

it suffices to follow the dynamics of allele frequencies instead of those of the genotypes. We110

consider the standard selection dynamics from population genetics in discrete time (gen-

erations), neglecting all other evolutionary forces (e.g., mutation) and only describing the112

effect of selection. In particular, there is no genetic drift, i.e., the population is practically

infinite and the dynamics are deterministic. The frequency (pik)
′ of allele k on locus i in114

the next generation is calculated from the frequencies p in the previous generation as

(pik)
′ = pik

wik
w̄

= f ik(p) (i = 1, ..., L; k = 1, ..., Ki) . (3)

To prove that constant frequency-independent selection at linkage equilibrium elimi-116

nates genetic variation, we consider the dynamics (3) and assume frequency-independent

selection at the level of alleles as defined in equation (1b). Our argument consists of three118

parts. First, the selection dynamics converge to the set of its equilibrium points, i.e., there

is no complicated dynamical behaviour. This result has been established for a wide range of120

(mostly diploid) selection models, e.g., for additivity (Lyubich, 1992), weak epistasis, and

weak selection (Nagylaki et al., 1999). It is a consequence of the mean fitness increasing122

steadily under selection, which (assuming linkage equilibrium) is implied by Fisher’s Fun-
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damental Theorem of Natural Selection (Fisher, 1930) and by Wright’s selection gradient124

formula (Wright, 1937). Note that fitness may decrease when recombination breaks up

linkage disequilibria (Bürger, 2000, Chapter II.1). For our specific setting with linkage126

equilibrium, however, a commonly used argument that applies the inequality of Baum and

Eagon (1967) (a method noted by Nagylaki, 1977) shows that all trajectories of the128

dynamics (3) converge to the set of their equilibria (Appendix A.2). Since the haploid

selection dynamics can be seen as a special case of the diploid dynamics (c.f. Bürger,130

2000, p.30), the proof may be extended to loose linkage, analogous to Nagylaki et al.

(1999).132

Second, we establish that every polymorphic equilibrium of the selection dynamics is

generically unstable. A polymorphic equilibrium of equation (3) is a vector p̂ = (p̂1, ..., p̂L)134

of only non-zero entries that satisfy f ik(p̂) = p̂ik > 0. From standard linear stability

analysis, the stability of a polymorphic equilibrium p̂ is determined by the eigenvalues136

of the Jacobian matrix J(p̂) (see Appendix A.3 for details). If all eigenvalues of J(p̂)

have a modulus less than one, the equilibrium p̂ is asymptotically stable; if the modulus138

of a single eigenvalue is greater than one, it is unstable. In the case when the modulus

of the largest eigenvalue equals one, further analysis would be needed. Neglecting this140

degenerate case, a simple dimensionality argument shows that any polymorphic equilibria

of the dynamics (3) under frequency-independent selection, equation (1b), is unstable142

(Theorem A.1 in Appendix A.3).

Due to the first two parts, all trajectories converge to the boundary of the state space144

of the dynamics (3). Hence, the selection dynamics cannot maintain all alleles in the

population; some of them are lost and the set of possible genotypes is reduced. Thus third,146

we repeat the argument for the remaining genotypes by restricting the system to the loci

that are still polymorphic, thereby iteratively eliminating alleles from the population. This148

procedure ends when all loci have become monomorphic, i.e., when only a single genotype

is left. Therefore, in the absence of mechanisms creating variation, constant frequency-150

independent selection eventually deprives the population of all its genetic variation.

3.2 Constant frequency-independent selection with weak selec-152

tion and recombination rates eliminates variation

We have shown that when selection is much weaker than recombination, so that the pop-154

ulation is close to linkage equilibrium, constant frequency-independent selection cannot

maintain variation. At the opposite extreme, when selection is much stronger than re-156
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# loci λmin λmean λmax νmin νmean νmax # replicates
2 0.0000035 0.189 0.497 1 1 1 105

3 0.0338 0.374 0.886 1 1.61 2 104

4 0.130 0.507 1.108 1 2.36 4 104

5 0.207 0.593 1.267 2 3.21 5 104

6 0.365 0.638 1.049 3 4.1 5 103

Table 1: The minimum, mean, and maximum of the leading eigenvalue, λ, and of the
number of positive eigenvalues, ν. Values are scaled relative to the rate of recombination
between adjacent loci, which is assumed the same between all adjacent genes.

combination, we know that the fittest haplotype will fix. In the intermediate case, where

epistasis and recombination are of the same order, can constant frequency independent158

selection maintain variation? To simplify matters, we assume that selection and recombi-

nation are weak, but of the same order, so that we can assume continuous time.160

Appendix A.4 gives an expression for the Jacobian of the continuous-time dynamics in

terms of the equilibrium genotype frequencies and the selection coefficients for each haplo-162

type. Crucially, the equilibrium frequencies uniquely determine the selection coefficients,

which are proportional to the recombination rates. Necessarily, linkage equilibrium implies164

neutrality: both epistasis and directional selection on alleles must be zero. Linkage dise-

quilibrium requires epistasis, and directional selection must be set to the value that keeps166

allele frequencies constant.

We have not found a way to show that the Jacobian necessarily and in general implies168

instability. However, we have calculated eigenvalues numerically for random genotype

frequencies, for up to 6 loci. Table A.1 summarises the leading eigenvalue, and the number170

of positive eigenvalues, for L = 2, ..., 6 loci; calculations become prohibitively slow for

more than 6 loci, since they involve calculating a 2L × 2L matrix. Results are based172

on drawing genotype frequencies uniformly from the space of genotype frequencies. This

typically implies strong linkage disequilibrium, and hence epistasis of the same order as the174

recombination rate. Moreover, if some genotype is by chance very rare, the corresponding

selection coefficient is very negative. The leading eigenvalue λ is typically of the same order176

as the recombination rate between adjacent loci, implying that variation is lost over the

same time scale as recombination. However, with two loci the leading eigenvalue may by178

chance be extremely small, in which case variation would be lost extremely slowly. These

results show that stable equilibria are at best rare.180
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3.3 Weak periodically fluctuating frequency-independent selec-

tion may maintain stable polymorphism in a two-locus model182

3.3.1 Specification and intuition

We now drop the assumption of linkage equilibrium and consider two linked loci with two184

alleles each. The recombination rate between the two loci is r > 0. For convenience, we

denote the alleles at the first locus by P 1
1 = A and P 1

2 = a, and at the second locus by186

P 2
1 = B and P 2

2 = b. Thus, we have four possible genotypes with frequencies pAB, pAb,

paB, and pab. We assume a symmetric fitness model, in which the alleles A and B provide188

an additive selective advantage s > 0 and there is an epistatic coefficient ε in genotypes

consisting of an upper and a lower case allele, see Table 2.190

Instead of following the four genotype frequencies, we may describe the temporal dy-

namics of selection by the frequencies pA and pB of the alleles A and B, and the linkage192

disequilibrium

D = pAB pab − pAb paB.

Due to the symmetry of the parameters, however, it is useful to consider the mean P194

and difference δ of the upper case allele frequencies, i.e., we write pA = P − δ/2 and

pB = P + δ/2. We assume that selection and recombination are both weak, i.e., we196

consider the limit where s, ε and r go to zero simultaneously. Then, the dynamics can be

approximated by a set of differential equations in continuous time that may be written as198

(c.f. Appendix A.5.1)

Ṗ = P (1− P ) (s− ε(1− 2P )) +

(
D − δ2

4

)
(s+ ε(1− 2P )) , (4a)

δ̇ = δ

[
s(1− 2P )− ε

(
1− 2P (1− P ) + 2D − δ2

2

)]
, (4b)

Ḋ = 2ε

(
P 2 − δ2

4

)(
(1− P )2 − δ2

4

)
−D (r − 2s(1− 2P ) + 2εD) . (4c)

Genotype AB Ab aB ab

Frequency pAB pAb paB pab

Fitness wAB = 1 + 2s wAb = 1 + s− ε waB = 1 + s− ε wab = 1

Table 2: A genotype fitness configuration with an additive fitness increment s and an

epistatic coefficient ε. Fitness values are normalized with respect to the ab genotype.
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Note that the use of all three parameters, s, ε and r, is redundant in this limit, since200

we may always absorb any one of them into the time variable t by proper rescaling. For

clarity, however, we explicitly denominate all parameters. Consequently, the dynamics202

remain unchanged if we replace s 7→ αs, ε 7→ αε, r 7→ αr, and t 7→ αt, for any α > 0.

To further exploit the symmetry in the fitness coefficients we imposed above, we look204

for equilibria around δ ≈ 0. If additionally the alleles are at linkage equilibrium (D = 0),

the dynamics of P is inverted in time if we replace s and ε by −s and −ε. Thus, fixing206

s and ε and periodically applying equation (4a) with parameters (s, ε) and (−s,−ε) for

τ time units each leads to a trajectory that traces itself back to its initial point. This208

trivially maintains polymorphism, yet in a degenerate way: perturbations tip the balance

of forces and lead to the fixation of one of the alleles at each locus. However, as we see210

below, including the dynamics of linkage disequilibrium D may stabilize trajectories and

thus lead to protected polymorphism.212

To obtain an intuitive understanding of how stability may come about, assume that it

suffices to consider stability in the direction of P only. Then, the stability of a trajectory214

of P is given by the sign (negative sign implies stability) of

E

[
∂Ṗ

∂P

]
= E [s (1− 2P )]− E [ε (1− 6P (1− P ))]− 2E [εD] +O(δ2), (5)

where the expectation E[·] is taken across a period of selection of length 2τ . Note that216

besides the variables P , D, and δ, also the parameters s and ε are functions of time. We

conclude from this expression that including the dynamics of D explicitly may stabilize218

trajectories of P if D and ε correlate positively (E[εD] > 0). Equation (4c) indicates that

the latter may be the case at least for small D, when Ḋ ∝ ε.220

3.3.2 Stable polymorphism in the limit of rapid fluctuations

We assume that selection fluctuates through the course of two seasons of equal length τ . In222

the first season, the intensities of selection and epistasis are given by constant s and ε, see

Table 2. In the second season, selection and epistasis simultaneously change their signs, yet224

maintain their moduli. We further assume δ ≈ 0; the consistency of this assumption with

our results will be affirmed below. As a consequence, we may neglect terms containing δ2
226

in equations (4). Thus, the equations for P and D become independent of δ.

Finally, we assume quasi-linkage equilibrium, i.e., that D = D̂(P ) is at its equilibrium228

given P at all times. This quasi-steady state assumption is only approximate, but the
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absolute error in equations (4a)–(4b) is likely to be small, at least if D is small itself. By230

letting the recombination rate r be large relative to s and ε, the latter is satisfied and we

may neglect terms containing D2. From equation (4c), we then have232

D̂(P ) =
2εP 2(1− P )2

r − 2s+ 2sP
≈ 2εP 2(1− P )2

r
, (6)

for r � s, ε. Hence in particular, D correlates positively with ε.

We now iterate the two seasons as described in Table 3 with a very short duration,234

τ = ∆t/2 each, so that we may approximate the solution to the differential equations (4)

by a single step of the Euler method. For season 1 and the equation for P , this means236

P

(
t+

∆t

2

)
= F(s,ε)(P (t)) = P (t) +

∆t

2
F̃(s,ε) (P (t)) ,

where F̃(s,ε)(P ) = P (1− P ) (s+ ε(1− 2P )) − D̂(P ) (s+ ε (1− 2P )). Analogously, the

expression for season 2 is P (t + ∆t/2) = F(−s,−ε)(P (t)). To apply the two seasons in238

sequence, we thus need to calculate P (t+ ∆t) =
(
F(−s,−ε) ◦ F(s,ε)

)
(P (t)). Neglecting terms

of order O(∆t2), this yields240

∆P = P (t+ ∆t)− P (t) =
2ε

r
P (t)2 (1− P (t))2 [ε (1− 2P (t)) + s] ∆t. (7)

Equating this to zero produces a polymorphic equilibrium at P̂ = (ε+ s)/(2ε), given that

|s/ε| ≤ 1.242

Assuming that D is determined by equation (6), we thus have an equilibrium at P = P̂

and δ = δ̂ = 0 (the latter is evident from equation (4b)). Since for small δ the equation244

for P is independent of δ (see above), the Jacobian matrix at this equilibrium becomes

triangular, hence its eigenvalues that determine stability can be read from its diagonal.246

Thus, stability of P and δ can be assessed separately. For P , linearising the right-hand

side of equation (7) yields a negative eigenvalue248

∂∆P

∂P

∣∣
(P̂ ,δ̂)

= − (ε2 − s2)
2

2ε2r
∆t < 0. (8)

Deriving a dynamics for ∆δ similarly to equation (7) and taking the corresponding deriva-

tive shows that the second eigenvalue is negative as well, (∂∆δ/∂δ) |(P̂ ,δ̂) < 0. Thus, we250

have a stable polymorphism at P = P̂ and δ = δ̂ = 0. In particular, the above assumption
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δ ≈ 0 is justified.252

3.3.3 Stable oscillations in the symmetric case

The previous section shows that genetic variation can be maintained in the limit of rapid254

alternations of the two seasons, assuming quasi-linkage equilibrium. In this section, we

numerically demonstrate that protected polymorphism is possible for the full dynamics,256

equation (4), with a finite duration of seasons.

Assume that both seasons last for τ = 50 time units, and that s, ε, and r in the two258

seasons are given by Table 3. This conforms to the symmetric situation of the previous

section. We iterate the dynamics (4) through multiple seasons for various initial conditions.260

Initially, δ rapidly decays and converges to δ = 0. The variables P and D enter periodic

oscillations around the point P̂ = 0.375 and D = 0 (see Figure 1) as predicted by the262

above analysis. Their limit may be a global attractor of the system, since it is approached

from all initial conditions we tested, see Appendix A.5.2. The correlation between ε and264

D across one cycle of selection can be calculated to be about E[εD] ≈ 0.0045. This is

found to be the main contribution to the negativity of expression (5), indicating that these266

correlations secure the stability of the trajectory.

The stability of the equilibrium trajectory (P (t), δ(t), D(t)) can be confirmed numer-268

ically by linearising a suitable Poincaré map, see Appendix A.5.2 for details. Figure 2

shows the leading eigenvalue of this linearisation as a function of the recombination rate270

r. Its value is a measure of the stability of the limit trajectory; the further it is below

one, the larger the perturbations the system can sustain without the trajectory losing its272

stability. Interestingly, there is an intermediate value of r for which stability is greatest.

Since the variation in linkage disequilibrium D scales with r (larger r keeps D closer to274

zero) this implies that intermediate linkage disequilibrium is most likely to lead to stable

polymorphism. When recombination dominates, r →∞, the alleles remain at linkage equi-276

librium and polymorphism is maintained in the degenerate way discussed above for D = 0

(the leading eigenvalue equals 1). Without recombination (r = 0), we observe that the278

Selection Epistasis Recombination Duration

Season 1: s = 0.005 ε = −0.02 r = 0.01 τ = 50

Season 2: s = −0.005 ε = 0.02 r = 0.01 τ = 50

Table 3: A symmetric parameter configuration affording a stable trajectory under equa-

tions (4) with seasonal fluctuations.
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Figure 1: A stable trajectory in the P -D plane under equations (4). Seasonally fluctuating
parameters are specified in Table 3. From all tested initial conditions, the dynamics con-
verge to the shown periodic trajectory oscillating around P̂ = 0.375 with δ ≈ 0. In season
1, the dynamics evolve from P1 to P2; season 2 maps P2 back to P1.

dynamics (4) similarly become symmetric with respect to replacing (s, ε) 7→ (−s,−ε) and

the same logic applies. The latter is in concordance with the literature about fluctuating280

selection on a single haploid locus that predicts the fixation of the allele with the high-

est geometric mean fitness over time (Felsenstein, 1976). Thus, intermediate linkage282

disequilibrium is required to maintain stable polymorphism in our example.

3.3.4 Stable oscillations in asymmetric cases284

Our analysis of the leading eigenvalue confirms stability in two ways. First, the periodic

trajectory is dynamically stable with respect to perturbations of the variables, e.g. due to286

genetic drift. Second, the model is structurally stable because of its continuous dependence

on the model parameters. This implies that a stable periodic trajectory continues to exist288

under deviations from our reference parameters, even if they break the symmetry between

the two seasons we imposed earlier. In particular, this concerns variation in the selection290

or epistatic coefficients of one or both seasons (e.g. a systematic bias such that the mean

selection coefficient is non-zero), random perturbations to s and ε between seasons, and292

variation in the durations of seasons.

For example, consider two seasons as described in Table 4. Note that we chose a higher294

recombination rate of r = 0.05 to afford reasonably large perturbations of the parameters

relative to the previous example (compare Table 3). For initial conditions close to P = 0.5,296

δ = 0, and D = 0, the dynamics converge to a stable trajectory shown in Figure 3.
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Figure 2: Stability of periodic trajectories under equations (4) with seasonal fluctuations. A
periodic orbit corresponds to a fixed point of a suitable Poincaré map (c.f. Appendix A.5.2);
we plot the leading eigenvalue of its linearisation as a function of the recombination rate
r. Values below one (dashed line) indicate stability, which is greatest around r ≈ 0.06.

This trajectory can be shown to be locally stable by the same techniques we used in the298

symmetric case. However, stability is not global; initial conditions with appreciable δ 6= 0

converge towards the monomorphic equilibria given by P = 0.5, δ = ±1, and D = 0. Note300

that rescaling time during one of the seasons corresponds to rescaling s, ε, and r in this

season. Thus, this example also shows that stable polymorphism is possible if the two302

seasons do not have the same duration.

Stable polymorphism can also be maintained if the symmetry between the two loci304

is perturbed, i.e., if the two genotypes Ab and aB have different fitness values. This

can be parametrized by assuming two epistatic coefficients, ε1 6= ε2, for these genotypes.306

In Appendix A.5.3, we provide a numerical example for stable polymorphism under this

asymmetry with substantial differences between ε1 and ε2.308

Selection Epistasis Recombination Duration

Season 1: s = 0.00525 ε = −0.021 r = 0.05 τ = 50

Season 2: s = −0.00475 ε = 0.019 r = 0.05 τ = 50

Table 4: An asymmetric parameter configuration affording a stable trajectory under equa-

tions (4) with seasonal fluctuations.
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Figure 3: A stable trajectory in the P -D plane with the asymmetric parameter configura-
tion specified in Table 4. We confirmed local stability numerically (c.f. the main text), yet
the trajectory is approached only by a subset of tested initial conditions. In season 1, the
dynamics evolve from P̃1 to P̃2; season 2 maps P̃2 back to P̃1.

4 Discussion

When discussing the inability of frequency-independent selection to maintain genetic vari-310

ation, population geneticists implicitly refer to constant frequency-independent selection

at the allelic level or on haploid populations, rather than to the broader definition of312

frequency-independent selection at the level of genotypes. For example, consider constant

overdominance (heterozygote advantage) at a single diploid locus with alleles A and a.314

In this selection regime, the fitnesses of the three possible genotypes AA, Aa, and aa are

typically scaled as 1, 1 + hs, and 1 + s, respectively, where s > 0 and h > 1. These values316

are independent of the genotype frequencies, so that selection is frequency-independent

at the level of genotypes. Nevertheless, there is genetic polymorphism at equilibrium318

under selection; under the dynamics (3), the A allele is maintained at a frequency of

pA = (h− 1)/(2h− 1) > 0. The fact that genetic variation is maintained in this example320

is not surprising, since with random mating it is simply not possible to have a population

that consists solely of heterozygotes (unless both homozygotes are non-viable). One may322

thus argue that it is not selection that maintains genetic variation, but rather, the ran-

dom pairing of gametes to form diploid organisms. However, since the latter cannot be324

separated from the dynamics of diploid genotypes, such a discussion is futile. In contrast,

the dynamics of allele frequencies, equation (3), does not involve a pairing process. Ac-326

cordingly, the notion of frequency-independent selection at the allelic level, as introduced

by equation (1b), is sufficient to prove the erosion of genetic variation, and contains the328
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notion of frequency-independent selection on haploids.

In Section 3.1, we show that constant frequency-independent selection on a set of hap-330

loid loci at linkage equilibrium eliminates genetic variation. However, it is remains unclear

if genetic variation may be stably maintained when recombination and selection are com-332

parable. The case of complete linkage between loci is trivial, and Kirzhner and Lyubich

(1997) showed that no stable polymorphism is possible with recombination and additive334

selection. Our argument covers the complementary case of linkage equilibrium, yet allow-

ing for arbitrary epistasis between alleles. For two diallelic loci under constant selection, a336

complete analysis was performed by Bank et al. (2012), yet the interaction of recombina-

tion and epistasis in multi-locus systems is still not well understood.338

Trivially, fluctuating selection may maintain polymorphism indefinitely if the direction

of selection on two alleles at a single locus changes whenever either allele frequency falls340

below a threshold value. However, this example is artificial, since the pattern of fluctua-

tions depends on the frequencies of the alleles. In the time-varying framework, frequency-342

independent selection requires that the change of the fitness functions be independent of

the allele frequencies. Temporally fluctuating frequency-independent selection is capable344

of maintaining genetic polymorphism, as demonstrated by Kirzhner et al. (1994). Their

examples require strong selection such that gene frequencies undergo large changes between346

successive generations, which may be considered unrealistic in practice. In Section 3.3, we

provide an example of two diallelic loci under weak periodically fluctuating selection and348

recombination that maintains polymorphism in a stable periodic trajectory. Crucially, in-

cluding linkage disequilibrium D explicitly is necessary to stabilise the trajectory; under350

complete linkage or at linkage equilibrium, the effect vanishes.

Heuristically, we may conclude from equation (5) that the dynamics of D may lead to352

a stable trajectory if they correlate positively with epistasis. This is the case if we approx-

imate D by assuming quasi-linkage equilibrium at all times, when D has the sign of ε (see354

equation (6)). Fluctuating epistasis is thus a key element in the maintenance of genetic

polymorphism in our example. Patterns of positive correlation between linkage disequilib-356

rium and epistasis emerge naturally under quasi-linkage equilibrium. Thus, they may be

of general importance in maintaining stable polymorphism under frequency-independent358

selection.

Cycling linkage disequilibrium is also present in a study by Gulisija et al. (2016), who360

demonstrate that stable polymorphism can be maintained in a haploid system with a locus

subject to periodic frequency-independent selection and a modifier locus for phenotypic362
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plasticity. They argue that an allele that promotes phenotypic plasticity reduces the effect

of selection on linked alleles, hence may cause a “genomic storage effect” by sheltering364

deleterious alleles. Their model reduces to a dialellic two-locus selection model with epis-

tasis, in which the genotype fitnesses fluctuate periodically – its fitness structure, however,366

differs from the example we present above. Their study provides further indication that

the explicit process of recombination between loci is vital for maintaining genetic variation;368

in the limit of high recombination rate (i.e., at linkage equilibrium), their proposed mecha-

nism fails. In some cases, dynamically fluctuating linkage disequilibria may indeed give rise370

to effective negative frequency dependence over time, and thus to stable polymorphism.

Further analyses will be necessary to understand the dynamics of linkage disequilibria and372

their effect on the persistence of genetic variation.

We have shown that constant frequency-independent selection on haploids, or on diploids374

in the absence of dominance, cannot maintain variation at linkage equilibrium; our numer-

ical results show that constant and weak selection and recombination very likely do not376

maintain variation, even when linkage disequilibrium is strong. However, we do show, using

a two-locus example, that fluctuating epistasis can maintain variation when recombination378

is of the same order as the strength of epistasis. This works through a general mechanism,

whereby a positive correlation between linkage disequilibrium and epistasis helps stabilise380

the polymorphism. Since epistasis amongst a set of loci generates linkage disequilibrium

amongst those loci, we expect this mechanism to act as a general stabilising process.382

However, this process is likely to be weak, especially when epistasis is weak (ε� 1). The

stabilising force is proportional to E[εD], and since D is itself proportional to epistasis, the384

stabilising force is of order ε2. This makes polymorphisms sensitive to biases in directional

selection, E[s]; these must be weaker than ε2 for the polymorphism to be stable. Moreover,386

if such biases push the equilibrium away from the centre of allele frequency space, the

stabilising force becomes much weaker, since D ∼ ε pA qA pB qB. A caveat here is that it is388

not clear how these arguments scale with the numbers of loci: epistatic coefficients become

weaker relative to directional, but there are many more of them. An extension to many390

loci would be desirable, though not easy.

Is fluctuating frequency-independent selection likely to maintain variation in nature?392

We know that selection on traits is typically strong and typically fluctuates across gen-

erations (Kingsolver et al., 2001); classic examples of selection on discrete loci also394

involve strong selection that changes through time (Lewontin et al., 1981; Cook et al.,

1986; Lenormand et al., 1999). Recent genome-wide surveys of polymorphism in D.396
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melanogaster show that large numbers of SNP rapidly change frequency through the sea-

sons (Bergland et al., 2014), though it is not clear just how many causal loci drive this398

pattern. Over the longer time scale of the fossil record, we see that phenotypes may change

rapidly in the short term, and yet much more slowly in the long term (Gingerich, 2009).400

This suggests that selection may typically fluctuate strongly, yet largely cancel in the long

term.402

Nevertheless, we believe that the mechanism that we identify is unlikely to be signif-

icant in explaining the bulk of variation across the genome. Although selection on the404

organism can be strong, selection on nucleotide sites must typically be weak; indeed, indi-

rect estimates from patterns of molecular variation suggest selection coefficients that are406

typically small, even if often strong relative to drift (s < 10−2, say; Charlesworth,

2015). Most sets of loci are loosely linked (r ∼ 1/2), and so weak epistasis is unlikely to408

provide much stability. More important, as discussed above, systematic bias in directional

selection is likely to be much stronger than the stabilising interaction between epistasis410

and linkage disequilibrium. In principle, frequency dependent selection gives a much more

robust mechanism that can give an advantage to rare alleles, and thereby maintain varia-412

tion. Even here, though, many of the proposed mechanisms require either strong selection,

or a delicate balancing of parameters, e.g. the Levene Model (Levene, 1953) or more414

generally Maynard Smith and Hoekstra (1980). Thus, after half a century of debate,

it remains unclear that balancing selection can account for widespread variation across the416

genome.
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Appendices

A.1 Frequency-independence at the allelic level492

A haplotype (haploid genotype) {P 1
k1
, ..., PL

kL
} (where ki ∈ {1, ..., Ki}) is a list of alleles

that sit at their respective loci. Under the assumption of linkage equilibrium between loci,494

the frequency of any haplotype {P 1
k1
, ..., PL

kL
} is given by the product of the frequencies of

the alleles it consists of,496

p{P 1
k1
,...,PLkL

} =
L∏
i=1

piki .

We denote the fitness of the haplotype {P 1
k1
, ..., PL

kL
} by the constant w{P 1

k1
,...,PLkL

} > 0.

Note that this does not imply anything about epistatic interactions between the individual498

alleles.

The mean fitness w̄ of the population is obtained by averaging the haplotype fitnesses500

over the haplotype frequencies. Then, the mean fitness is a homogeneous polynomial of

degree L, whose positive coefficients are the fitness values of the haplotypes,502

w̄ =

K1∑
k1=1

· · ·
KL∑
kL=1

(
w{P 1

k1
,...,PLkL

}

L∏
i=1

piki

)
. (A.1a)

Similarly, the marginal fitness of an allele P iλ
kκ

can be written as

wiλkκ =

K1∑
k1=1

· · ·
Kiλ−1∑
kiλ−1=1

Kiλ+1∑
kiλ+1=1

· · ·
KL∑
kL=1

(
w{P 1

k1
,...,P

iλ
kκ
,...,PLkL

}

∏
i 6=iλ

piki

)
. (A.1b)

From the mean and marginal fitnesses under constant haploid selection, equations (A.1a)504

and (A.1b), it is straightforward to see that the marginal fitness of an allele is independent

of the allele frequency at its locus, equation (1b).506

Here, we show that frequency-independent selection at the allelic level, as defined by

equation (1b), implies that the mean and marginal fitnesses can be written by equa-508

tions (A.1a) and (A.1b) under the assumption of linkage equilibrium. In this sense, constant

haploid selection is contained in the notion of frequency-independent selection at the allelic510
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level. Due to its (verbal) definition as the average over genotypes (see the main text), the

mean fitness can generally be written as a linear combination of the marginal fitnesses,512

i.e., equation (1a) holds in general. It thus suffices to show that the mean fitness w̄(p)

can be written as a homogeneous polynomial of degree L with positive coefficients under514

the additional assumption of frequency-independent selection at the allelic level as given

by equation (1b).516

From equation (1a) and (1b), it follows that

∂2w̄

∂pij∂p
i
k

=
∂wij
∂pik

= 0 for all p (A.2)

at any locus i ∈ {1, ..., L} and for any choice of alleles j, k ∈ {1, ..., Ki}. Furthermore, from518

equation (2) we have
∂w̄

∂pij
= wij ≥ 0 for all p, (A.3)

since marginal fitnesses are always non-negative by definition. Thus, in terms of any given520

locus, the mean fitness w̄ is a linear function of the allele frequencies at the locus. Its

coefficients wij are non-negative functions only of the frequencies of alleles at other loci.522

For each pair of loci, i, j ∈ {1, ..., L}, i 6= j, we may write the mean fitness in two ways as

w̄ =

Kl∑
k=1

plkw
l
k =

Ki∑
j=1

pijw
i
j, (A.4)

c.f. equation (1a). Taking the derivative with respect to the frequency of any allele k at524

locus l yields

∂w̄

∂plk
= wlk =

Ki∑
j=1

pij
∂wij
∂plk

. (A.5)

The function wlk(p) is constant in the allele frequencies plj at locus l. Choosing pij = 1526

(which implies pim = 0 for m 6= j) shows that also the derivative ∂wij/∂p
l
k is constant in plj.

Hence, the marginal fitnesses wij are linear functions in the allele frequencies at the loci528

different from locus i.

Overall, it follows that w̄ is a polynomial with positive coefficients, whose degree is at530

most L. Furthermore, each term of this polynomial contains at most one allele frequency

from each locus. If a locus i is not represented in any one of the terms, we may multiply532

it with
∑Ki

j=1 p
i
j = 1 to homogenize the polynomial. Hence, w̄ is completed to degree L
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homogeneously and our claim is proved.534

A.2 Convergence to the set of equilibrium points

From equation (2), it follows that the dynamics (3) for allele k on locus i may be written536

as

(pik)
′ =

pik
∂w̄
∂pik∑Ki

j=1 p
i
j
∂w̄
∂pij

. (A.6)

Furthermore, w̄ is a homogeneous polynomial with positive coefficients, see Appendix A.1.538

Thus, the conditions for the inequality of Baum and Eagon (1967) are met. It follows

that the mean fitness w̄ = w̄(p) is strictly increasing along trajectories of p under the540

dynamics (3), remaining constant only at equilibrium,

w̄(p′) ≥ w̄(p) and w̄(p′) = w̄(p) ⇔ p′ = p.

The space of admissible p is a compact set, hence the values of w̄(p) are bounded from542

above. Thus, every trajectory of the dynamics (3) converges to the set of its equilibrium

points. This set may be complicated; nevertheless, the existence of other attractors (e.g.544

periodic orbits, chaotic attractors) can be excluded (e.g. Lyubich, 1992, Ch.9). Further

assuming that all equilibria are hyperbolic implies that there are only finitely many equi-546

libria (Nagylaki et al., 1999), hence each trajectory of the dynamics converges to an

equilibrium; in particular, there is no cycling behaviour. The hyperbolicity of equilibria is548

a generic property (Nagylaki et al., 1999, Appendix B) that implies the non-degeneracy

of equilibria we point out in Theorem A.1 below.550

A.3 Unstable polymorphism under constant selection

Because the pik are frequencies, we have
∑Ki

k=1 p
i
k = 1 for every i ∈ {1, ..., L}. The dynamics552

of allele frequencies at locus i with Ki alleles evolve on the (Ki − 1)-dimensional simplex

∆Ki−1 =

{
(pi1, ..., p

i
Ki

) ∈ RKi :

Ki∑
k=1

pik = 1

}
. (A.7)
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The joint equations (3) for the change of allele frequencies are thus a dynamical system on554

the product of simplices

∆ = ∆K1−1 ⊗∆K2−1 ⊗ · · · ⊗∆KL−1,

which has K − L degrees of freedom due to the constraints on the pik being frequencies.556

The linearisation of the dynamics (3) around an equilibrium p̂ is given by the Jacobian

J(p̂). This matrix has dimensions K×K, and its entry at position (m,n) is obtained from558

taking the derivative of the m-th function f ik with respect to the n-th variable plj (counting

contiguously across loci), and evaluating at p̂. For example, the diagonal entries of J(p̂)560

are given by

(J(p̂))m,m =
∂f ik(p̂)

∂pik
, (A.8)

where m =
∑i−1

j=1 Kj + k.562

According to Appendix A.2, the trajectories of allele frequencies under the dynamics (3)

converge to the set of their equilibrium points. These equilibria may be fully polymorphic564

or on the boundary of the state space ∆. Theorem A.1 below states that any polymorphic

equilibrium is unstable, hence trajectories converge to the latter type of equilibria and at566

least one allele is lost from the population.

Theorem A.1 (Instability of polymorphic equilibria). Under the assumptions of linkage568

equilibrium and constant frequency-independent selection, any fully polymorphic equilibrium

p̂ of the dynamics (3) is unstable. This holds for all but a set of degenerate cases of measure570

zero, where all eigenvalues of the Jacobian J(p̂) are equal to 1.

For the proof of the theorem, we note two simple results:572

Lemma A.1. The Jacobian J(p̂) at a polymorphic equilibrium p̂ of the dynamics (3) has

at most K − L non-zero eigenvalues.574

Proof. This is the case because the dynamics (3) are a projection on the space

∆ = ∆K1−1 ⊗∆K2−1 ⊗ · · · ⊗∆KL−1,

which has dimension K − L.576
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Lemma A.2. Consider a polymorphic equilibrium p̂ of the dynamics (3) under the same

assumptions as in Theorem A.1. Then, the trace of the Jacobian J(p̂) (i.e., the sum of its578

diagonal entries) is

tr(J(p̂)) = K − L.

Proof. At any polymorphic equilibrium of the dynamics (3) we have580

wik = w̄ for all i ∈ {1, ..., L} and k ∈ {1, ..., Ki}. (A.9)

Using this identity together with equations (1a) and (1b), we calculate the diagonal entries

of J(p̂) (equation (A.8)) as582

∂f ik(p̂)

∂pik
= 1− p̂ik.

It follows that the trace of J(p̂) is

tr(J(p̂)) =
L∑
i=1

Ki∑
ki=1

∂f iki(p̂)

∂piki
=

L∑
i=1

Ki∑
ki=1

(
1− p̂iki

)
=

=
L∑
i=1

(Ki − 1) = K − L.

584

Proof of the Theorem. Consider a polymorphic equilibrium p̂ of equation (3) and its Jaco-

bian J(p̂). Because J(p̂) is a matrix with dimensions K×K, it has K eigenvalues (counting586

multiplicities). Due to Lemma A.1, at most K−L are non-zero. According to Lemma A.2,

the trace and hence the sum of eigenvalues of J(p̂) is also K − L. Therefore, unless all588

eigenvalues equal one (the degenerate case), at least one of them has a modulus greater

than one. Thus, the polymorphic equilibrium p̂ is unstable.590

A.4 Stability of equilibria in the continuous-time limit

We assume that selection and recombination are weak, so that we can approximate time592

to be continuous. Selection and recombination are of the same order, so that there may

be strong linkage disequilibria. Since only the ratio of the two processes matters, selection594

scales relative to the recombination rate. We define the genotype by the list of alleles, X.

There may be multiple alleles per locus; gamete frequencies are g[X], and the corresponding596
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fitnesses are s[X]. Because we assume continuous time, s[X] can be positive or negative,

and adding a constant to s would make no difference.598

The rates of change of genotype frequencies are

∂t g[X] = (s[X]− s̄−R∗[X]) g[X] +
∑
Y,Z

g[Y ] g[Z]R[X|Y, Z], (A.10)

where s̄ =
∑

X s[X] g[X] and R[X|Y, Z] is the rate at which a pair {Y, Z} generates X.600

If we ignore multiple crossovers, this is a sum over the n− 1 single recombination events,

each with rate r1, ..., rn−1. R∗[X] is the rate at which X is broken down, which equals602

the sum of the recombination rates, rT =
∑n−1

i=1 ri. Note that this includes recombination

events that generate X itself, but these cancel with corresponding terms in the sum over604

Y, Z. Writing this explicitly:

∂t g[X] = (s[X]− s̄− rT ) g[X] +
n−1∑
i=1

ri g[Xi,←↩] g[Xi,↪→], (A.11)

where g[Xi,←↩] denotes the frequency of all gametes that match X to the left of breakpoint606

i, and similarly for g[Xi,↪→]. Because
∑

X g[X] = 1, the rates of change ∂t g[X] sum to zero

over X.608

At equilibrium, ∂t g[X] = 0 for all X, and the stability is determined by the matrix

∂ ∂t g[X]

∂ g[Y ]
= (s[X]− s̄− rT ) δX,Y +

n−1∑
i=1

ri
(
δXi,←↩,Yi,←↩ g[Xi,↪→] + g[Xi,←↩]δXi,↪→,Yi,↪→

)
−g[X] s[Y ],

(A.12)

where the last term arises from differentiating s̄, and δX,Y is 1 if X = Y and 0 otherwise. If610

we specify the equilibrium frequencies and recombination rates, that uniquely determines

the s[X]:612

(s[X]− s̄− rT ) g[X] = −
∑n−1

i=1 ri g[Xi,←↩] g[Xi,↪→]

⇒ s[X] = −
∑n−1

i=1 ri
g[Xi,←↩] g[Xi,↪→]

g[X]
+ (s̄+ rT ) .

(A.13)

Substituting into Equation (A.12) yields

∂ ∂t g[X]
∂ g[Y ]

=

=
∑n−1

i=1 ri

(
δXi,←↩,Yi,←↩ g[Xi,↪→] + g[Xi,←↩]δXi,↪→,Yi,↪→ −

g[Xi,←↩] g[Xi,↪→]

g[X]
δX,Y

)
− g[X] s[Y ].

(A.14)
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eigenvalue −r1 − r2 − r3 −r2 − r3 −r1 − r2 −r3 −r2 −r1 0 r1 + r2 + r3

multiplicity 4 2 2 1 1 1 4 1

Table A.1: Eigenvalues for the symmetric and neutral case, with 4 loci. The eigenvalue
rT = r1 +r2 +r3 corresponds to the trivial constant eigenvector, and should be disregarded.

Note that the sum over X is a constant,614

∑
X

∂ ∂t g[X]

∂ g[Y ]
= rT − s̄, (A.15)

which implies that there is a constant eigenvector with eigenvalue rT − s̄. This corresponds

to perturbations that violate the constraint
∑

X g[X] = 1, and therefore can be ignored.616

The stability of the equilibrium is determined by whether the largest real part of the

remaining eigenvalues is positive.618

We have not found a way to show analytically that this matrix implies instability, even

in the three-locus case. However, it is instructive to examine the completely symmetric620

case, with two alleles per locus, where all haplotypes are equally common. This corresponds

to linkage equilibrium, and allele frequencies all equal to 1/2. With complete symmetry,622

the eigenvalues can be calculated for up to 4 loci, and depend in a simple way on the

recombination rates; Table A.1 shows the 16 eigenvalues for four loci, and suggests the624

obvious generalisation to n loci. There are n zero eigenvalues, corresponding to neutral

change in allele frequency; the question is how these change when the frequencies are626

perturbed away from linkage equilibrium, and hence away from neutrality. Numerically,

one or more of these eigenvalues becomes positive, consistent with our previous result628

that when selection is much weaker than recombination, so that linkage equilibrium is

approached, polymorphism is unstable. However, this does not tell us whether stable630

equilibria exist when epistasis and linkage equilibria are strong. To investigate that, we

calculate eigenvalues of the stability matrix numerically (see the main text).632
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A.5 Stable polymorphism at two diallelic loci under

fluctuating selection634

A.5.1 Formulation of the dynamics

Consider two diallelic loci with genotype fitnesses as given in Table 2. Under weak selection636

and recombination (formally: replacing (s, ε, r) 7→ (αs, αε, αr) and letting α → 0), the

dynamics of genotype frequencies is638

ṗAB = pAB (2s− m̄)− rD, (A.16a)

ṗAb = pAb (s− ε− m̄) + rD, (A.16b)

ṗbB = pbB (s− ε− m̄) + rD, (A.16c)

ṗab = −pab m̄− rD, (A.16d)

as first derived by Kimura (1956) (see also Bürger, 2000, Ch.II.1). The measure of

linkage disequilibrium D is given by D = pABpab − pAbpaB as in the main text and m̄ =640

2spAB + (s− ε)(pAb + paB). Due to the constraint pAB + pAb + paB + pab = 1, one of these

equations is redundant. Rewriting the system (A.16) in terms of the allele frequencies642

pA = pAB + pAb and pB = pAB + paB yields

ṗA = pA qA (s− ε(qB − pB)) +D (s+ ε(qA − pA)) , (A.17a)

ṗB = pB qB (s− ε(qA − pA)) +D (s+ ε(qB − pB)) , (A.17b)

Ḋ = 2ε pA pB qA qA −D [r + 2s (pA pB − qA qB) + 2εD] , (A.17c)

where qA = 1− pA and qB = 1− pB. Introducing P = (pA + pB)/2 and δ = pB − pA then644

leads to the system (4).

A.5.2 Stability of a periodic trajectory under fluctuating selec-646

tion

Using numerical routines of the computer algebra software Mathematica, we simulate fluc-648

tuating selection on two diallelic loci by iterating two seasons as described in the main

text, Section 3.3. For all tested initial conditions (two sets of initial conditions were tested:650

(i) 103 randomly drawn starting points, and (ii) pA and pB distributed on a regular grid

in the pA-pB plane as displayed in Figure A.1, and D = ±0.1), the dynamics converge to652
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the periodic trajectory displayed in Figure 1. Through the course of the two seasons, the

periodic trajectory interpolates between the approximate values654

(P, δ,D) ≈ (0.3106, 0, 0.0471) and (P, δ,D) ≈ (0.4259, 0,−0.0560) ,

see the bold points in Figure 1. These values were calculated numerically as the fixed points

of two Poincaré maps, P1 and P2, defined by the values of P , δ and D at the transition656

between season 1 and 2, and season 2 and 1 (i.e., at the time points (2k− 1)τ and 2kτ for

k = 1, 2, 3, ... respectively),658

P1(k) =
(
P ((2k − 1)τ), δ((2k − 1)τ), D((2k − 1)τ)

)
P2(k) =

(
P (2kτ), δ(2kτ), D(2kτ)

) (k = 1, 2, 3, ...). (A.18)

Numerically calculating the eigenvalues λ1, λ2, λ3 of the linearisation of either Poincaré

map at its equilibrium yields660

λ1 ≈ 0.9823, λ2 ≈ 0.9822, and λ3 ≈ 0.3549,

hence the periodic trajectory is asymptotically stable. Repeating the procedure for different

recombination rates r produces the data presented in Figure 2.662

A.5.3 An asymmetric example of stable polymorphism

We simulate the dynamics given by equation (4) with different epistatic coefficients ε1 6= ε2664

in the fitness values of the two genotypes with mixed upper and lower case letters, Ab and

aB. The fitness configurations are given by Table A.2. We assume the two seasons to be666

of equal length τ = 50 and the recombination rate to be r = 0.05. The specific values of s,

ε1, and ε2 in each of the seasons are given in Table A.3. For a set of initial conditions (e.g.668

P = 0.5, δ = 0.1, D = 0), the temporal dynamics of the system converge to a periodic

orbit shown in Figure A.2. The asymptotic stability of this orbit can be established by the670

methods outlined above.
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Figure A.1: Each of these 25 points with both D = 0.1 and D = −0.1 were used as initial
conditions for the dynamics given by equations (4) and Table 3; each led to the convergence
of the simulation to the periodic trajectory displayed in Figure 1.
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Figure A.2: The stable trajectory in the P -D plane under equations (4), based on the
parameters given in Table A.3. The trajectory is locally stable. In season 1 the dynamics
evolve from P̄1 to P̄2, season 2 maps P̄2 back to P̄1.

Genotype AB Ab aB ab

Frequency pAB pAb paB pab

Fitness wAB = 1 + 2s wAb = 1 + s− ε1 waB = 1 + s− ε2 wab = 1

Table A.2: A genotype fitness configuration generalizing Table 2. Using two epistatic

coefficients ε1 and ε2 disrupts the symmetry between the two loci.

Selection Epistasis Recombination Duration

Season 1: s = 0.00525 ε1 = −0.021, ε2 = −0.031 r = 0.05 τ = 50

Season 2: s = −0.00475 ε = 0.019, ε2 = 0.029 r = 0.05 τ = 50

Table A.3: A parameter configuration that disrupts the symmetry between the two loci

and leads to a stable trajectory under equations (4) with seasonal fluctuations.
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