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Abstract

Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in

physics but are still scarce in biology. This situation restrains predictive theory. Here, we

build on bacterial “growth laws,” which capture physiological feedback between translation

and cell growth, to construct a minimal biophysical model for the combined action of ribo-

some-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy

solely from responses to individual drugs. We provide analytical results for limiting cases,

which agree well with numerical results. We systematically refine the model by including

direct physical interactions of different antibiotics on the ribosome. In a limiting case, our

model provides a mechanistic underpinning for recent predictions of higher-order interac-

tions that were derived using entropy maximization. We further refine the model to include

the effects of antibiotics that mimic starvation and the presence of resistance genes. We

describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and

verify it experimentally. Our extended model suggests a change in the type of drug interac-

tion that depends on the strength of resistance, which challenges established rescaling par-

adigms. We experimentally show that the presence of unregulated resistance genes can

lead to altered drug interaction, which agrees with the prediction of the model. While mini-

mal, the model is readily adaptable and opens the door to predicting interactions of second

and higher-order in a broad range of biological systems.

Author summary

Applying multiple antibiotics simultaneously can boost treatment effectiveness and aid

against rampant antibiotic resistance. Because of the impractically large number of possi-

ble combinations of drugs, those that are effective are found by trial and error. Hence, a

predictive theory to characterize drug cocktails would be of enormous value. Recently

identified phenomenological laws ease the construction of predictive models of bacterial

growth. Here, we build a model of the effects of antibiotic combinations on bacteria and

show that it makes reliable predictions for experimental outcomes. Our model takes

responses to individual drugs as inputs and predicts their combined effect. This output

determines the type of drug interaction, which can range from antagonistic (the combined
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effect is weaker) to synergistic (the combined effect is stronger). We broaden the model

by including the direct physical interaction on the target, drug resistance genes that alter

the drug interaction, and drugs that mimic poor growth environments by choking the

supply of growth-essential components, which we test experimentally. Our results prove

how biophysical models that use empirical laws can predict responses to drug combina-

tions. Importantly, such models can successfully predict mechanisms underlying interac-

tions of drug combinations. This approach is extensible to combinations of more than

two drugs and diverse biological systems.

Introduction

Antibiotics are small molecules that interfere with essential processes in bacterial cells, thereby

inhibiting growth or even killing bacteria [1]. Even though antibiotics have been used in the

clinic for nearly a century and have molecular targets that are often known, bacterial responses

to antibiotics are complex and largely unpredictable. Due to the looming antibiotic-resistance

crisis [2], understanding and predicting bacterial responses to antibiotics is becoming increas-

ingly important. A promising way to fight the emergence and spread of resistant pathogens is

to use more than one drug simultaneously [3]; however, predicting the effects of such drug

combinations is a great challenge.

The combined effect of antibiotics emerges from the complex interplay of individual drug

effects and the physiological response of the cell to the drug combination. Drug interactions

are determined by the combined effect of multiple drugs on cell growth and survival. These

interactions are defined with respect to an additive reference. By definition, additive drugs act

as substitutes for each other; synergy occurs if the combined effect of the drugs is stronger

than in the additive reference case, and antagonism occurs if the combined effect is weaker.

An extreme case of antagonism–termed suppression–occurs when one of the drugs loses its

potency in the presence of the other drug, i.e., bacterial growth is accelerated by adding one of

the drugs. In practice, such drug interactions are determined by measuring bacterial growth in

a two-dimensional assay in which each drug is dosed in a gradient along each axis.

By measuring the growth rate λ over a two-dimensional matrix of drug concentrations

(cA, cB), the dose-response surface y(cA, cB) = λ(cA, cB)/λ0 is obtained; here, λ0 is the growth

rate in the absence of antibiotics. The dose-response surface can be characterized by the shape

of its contours, i.e., the lines of equal growth rate (isoboles). By definition, in the additive case

these contours are linear (but not necessarily parallel) (Fig 1). Linear isoboles imply that

increasing the concentration of one drug is equivalent to increasing the concentration of the

other. Drug interactions according to the Loewe definition [4] occur when the dose-response

surface deviates from this additive expectation. The interaction is synergistic or antagonistic if

the drug combination is more or less potent than the additive expectation, respectively (Fig 1).

There are other definitions of drug interactions: In the Bliss definition, the responses to indi-

vidual drugs are multiplied to yield the reference response to the combination [5, 6]. The

definition of Bliss independence is intuitive and simple to evaluate; yet, it generally fails to rec-

ognize that the same drug should exhibit additivity, i.e., the combined effect of the drug with

itself should be y(a + b) = y(c + d), if a + b = c + d. If this is the case, then for Bliss indepen-

dence y(a + b) = y(a) × y(b)–this relation holds only if the dose-response curve is exponential.

Therefore, it is not possible to recognize additive interactions using Bliss independence for

drugs with non-exponential dose-response curve. In this work, we use the Loewe definition

because a predictive model of drug interactions has to produce an additive surface if a drug is
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combined with itself. However, we are principally interested in the shape of entire dose-

response surfaces, which is independent of the exact definition of drug interactions.

Higher-order interactions, which occur when more than two drugs are combined, can be

predicted to some extent using mechanism-independent models [7, 8]. However, such predic-

tions generally require prior knowledge of the pairwise interactions between all drugs

involved, which can usually not be predicted. One of the main reasons for this situation is that

the underlying mechanisms of drug interactions are largely unknown. Systematic measure-

ments of all pairwise drug interactions are hampered by the combinatorial explosion of possi-

ble drug-drug and concentration-concentration combinations, which prohibit such brute-

force approaches. Thus, to guide the design and analysis of drug combinations, it is crucial to

develop predictive theoretical models.

Apart from their clinical importance, antibiotics targeting the bacterial ribosome (transla-

tion inhibitors) are particularly well-suited for biophysical modeling since the physiological

response to perturbations of translation can be described quantitatively using bacterial growth

laws [9, 10]. These empirical relations offer a phenomenological description of the growth-

dependent state of the bacterial cell and provide a solid foundation for quantitative studies of

bacterial physiology. Similar to laws in physics, such as Fourier’s law of heat conduction or

Ohm’s law, these phenomenological relations enable the construction of predictive mathemat-

ical models without free parameters even if their microscopic origins are not yet understood

[11]. Translation inhibitors have the additional advantage that many of the drug interactions

occurring between them have been recently measured [12]. In Ref. [12] we introduced a bio-

physical model that we only used in a particularly simple limiting case to provide a null expec-

tation for the measured drug interactions. While predictive, the behavior of the model outside

the chosen limit, its broader implications, and possible extensions were left unexplored.

Here, we present a complete analysis of the biophysical model that predicts bacterial growth

responses to combinations of translation inhibitors and its non-trivial theoretical predictions.

Starting from responses to single antibiotics, we derive approximate analytical solutions of this

model and investigate the effects of direct physical or allosteric interactions between antibiotics

on the ribosome. We discuss several relevant extensions of the model, in particular (1) interac-

tions with antibiotics that induce starvation, (2) the effects of resistance genes, (3) the

Fig 1. Drug interaction types are defined by the shape of the dose-response surface. The dose-response surface is

given by the relative growth rate y as a function of the concentrations of two drugs (cA, cB). Here, the concentrations

are normalized such that ci = 1 corresponds to 50% growth inhibition in the presence of drug i alone. The dose-

response surface is defined by lines of constant growth rate (isoboles); the white isobole corresponds to 50% growth

inhibition; different shades of gray correspond to different relative growth rates. Additivity (left) represents the case in

which antibiotics act as substitutes for each other. Synergy (middle) and antagonism (right) are characterized by

convex or concave isoboles (curving towards or away from the origin), respectively. Isoboles corresponding to

suppression (dashed gray) are non-monotonic; in the example shown, this implies that adding drug A on top of drug B

increases the growth rate.

https://doi.org/10.1371/journal.pcbi.1008529.g001
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correspondence to non-mechanistic models of interactions between more than two drugs, and

(4) predictions for interactions of translation inhibitors with antibiotics that alter growth law

parameters. We validate several non-trivial predictions made by the biophysical model in

experiments.

Results

Model for a single translation inhibitor

First, we recapitulate the biophysical model for a single translation inhibitor [10]. The model

captures the kinetics of antibiotic transport into the cell and binding to the ribosome (Fig 2A

and 2B), as well as the physiological response of the cell to translation perturbation. This physi-

ological response is described by bacterial growth laws, which summarize the interdependence

of the intracellular ribosome concentration r and the growth rate λ (Fig 2B). Bacterial physiol-

ogy and the response to antibiotic treatment strongly depend on the nutrient environment. In

particular, the number of ribosomes per cell varies over approximately 5 − 75 × 103 [13]. The

ribosome concentration increases linearly with the growth rate when the latter is varied by

Fig 2. Main components of the model for a single translation inhibitor and exemplary dose-response curves.

(A) Schematic of processes captured by the model. Ribosomes (double ovals) are synthesized with the rate s(λ) and are

initially unbound by antibiotic (ru). Unbound ribosomes contribute to growth. Antibiotics enter the cell (aex! a) and

bind to and detach from ribosomes with second-order and first-order rate constants kon and koff, respectively. Bound

ribosomes (rb) do not contribute to growth [10]. (B) Bacterial growth laws. When the growth rate is varied by changing

the quality of the nutrient environment, the ribosome concentration increases linearly with growth rate (solid line). If

growth is inhibited by a translation inhibitor, the ribosome concentration increases with decreasing growth rate

(dashed lines). The intercepts of the solid and dashed lines determine the minimal (rmin) and maximal ribosome

concentration (rmax), respectively, which are Δr apart [9, 10]. (C) Examples of dose-response curves. The model can

produce both (i) steep and (ii) shallow dose-response curves, depending on the parameter α (see text). The steep dose-

response curve has a region of concentrations (gray shaded area) where one unstable (dashed line) and two stable

(solid lines) solutions exist. (D) Exact phase diagram for dose-response curves. The shaded area shows the region of

drug concentrations where two stable solutions exist. Gray arrows show α for the examples from (C); black arrow

shows the critical value acrit ¼ 2=3
ffiffiffi
3
p

above which no bistability can occur.

https://doi.org/10.1371/journal.pcbi.1008529.g002
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changing the quality of the growth medium:

ru ¼ rmin þ l=kt; ð1Þ

where κt = 0.06 μM−1h−1, ru and rmin = 19.3 μM are the translational capacity, the concentra-

tion of unperturbed ribosomes, and a minimal ribosome concentration, respectively [9, 10].

This first growth law states that unperturbed ribosomes synthesize new proteins, whose overall

synthesis rate is proportional to the growth rate. This relation holds across diverse growth

media and different Escherichia coli strains [9]. Typical values for doubling times range from

hours to approximately twenty minutes, corresponding to growth rates up to around 2.5 h−1.

However, when the growth rate is lowered by addition of a translation inhibitor in a constant

nutrient environment, the total ribosome concentration rtot and growth rate become nega-

tively correlated [9]. Mathematically, this dependency is given as:

rtot ¼ ru þ rb ¼ rmax � lDr½1=l0 � 1=ðktDrÞ�; ð2Þ

where rmax = 65.8 μM is the maximal ribosome concentration, Δr = rmax − rmin = 46.5 μM is

the dynamic range of ribosome concentration, rb is the concentration of antibiotic-bound

ribosomes, and λ0 is the maximal growth rate in the absence of antibiotics [9]. Eq (2) quantita-

tively describes the upregulation of ribosome production that occurs in response to translation

inhibition: Bacteria produce more ribosomes to compensate for the ribosomes blocked by

antibiotics.

When antibiotics enter the cell, they can bind to ribosomes. The net rate of forward and

reverse binding of antibiotics to the ribosome is given by f(ru, rb, a) = −kon a(ru − rmin) + koff rb,
where koff and kon are first and second order rate constants, and a is the intracellular antibiotic

concentration (Fig 2A). Here, we assumed that only ribosomes capable of translation (ru −
rmin) can be bound by the antibiotics [10, 14].

The intracellular antibiotic concentration is affected by the kinetics of antibiotic entry into

the cell, which is given by J(aex, a) = pinaex − pout a, where aex is the extracellular antibiotic con-

centration. Typical influx and efflux rates, pin and pout, for different translation inhibitors

range from 1 − 1000 h−1 and from 0.01 − 100 h−1, respectively. Typical rates of forward and

reverse binding, kon and koff, are around 1000 μM−1h−1 and between 0 − 105 h−1, respectively

[10, 14]. Here, koff = 0 corresponds to antibiotics with effectively irreversible binding such as

streptomycin [10, 15]. All molecular species in the cell are effectively diluted at rate λ as cells

grow and divide. Since the ribosome concentration is determined by Eq (2), the ribosome syn-

thesis rate s depends on the growth rate, i.e., s = s(λ). Together, these terms constitute a closed

system of ordinary differential equations:

da
dt
¼ � laþ f ðru; rb; aÞ þ Jðaex; aÞ; ð3aÞ

dru
dt

¼ � lru þ f ðru; rb; aÞ þ sðlÞ; ð3bÞ

drb
dt

¼ � lrb � f ðru; rb; aÞ: ð3cÞ

In a steady state of exponential growth, the ribosome synthesis rate reads

s(λ) = λrtot = λ{rmax − λΔr[1/λ0 − 1/(κtΔr)]}; we follow Ref. [14] by using this expression

to describe ribosome synthesis for cases in which dλ/dt 6¼ 0 as well. The steady-state solution

of Eq (3) represents a balanced-growth state of the system–the situation that is commonly
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investigated in experiments. The steady-state solution reads [10]

0 ¼
l
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where l
�

0
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
poutktKD
p

with KD = koff/kon, and IC�
50
¼ Drl�

0
=2pin. We can recast Eq (4) into:

1

a2 þ 1

a2

y
� a2 þ 4y � 4y2

� �

� c ¼ 0 ð5Þ

by defining aex = c × IC50, λ = y × λ0 and l
�

0
¼ a� l0, where IC50 is the extracellular antibiotic

concentration that leads to 50% growth inhibition, a common measure of drug sensitivity (S1

Appendix). Here, we call α the response parameter, as it describes the dose-response curve

shape: The higher the value taken by α, the shallower the dose-response curve (Fig 2C).

Since Eq (5) is cubic in the relative growth rate y, there are generally either one or three real

solutions for y (Fig 2C). This indicates that there is a parameter regime in which the dynamical

system can exhibit bistability [10, 16]. Previous studies identified the bistable parameter

regions numerically or in closed expression with many parameters [10, 14]. Notably, the

rescaling shown above enables the exact calculation of the bifurcation point (see S1 Appendix):

When a < acrit ¼ 2=ð3
ffiffiffi
3
p
Þ � 0:385 the system can be bistable (Fig 2D), i.e., there is a region

of concentrations with stable solutions at two different growth rates. At the border of this

region, the growth rate sharply declines when a critical concentration is exceeded. It is difficult

to measure such steep dose-response curves experimentally since very low growth rates are

challenging to detect and quantify. Additionally, bistability cannot be observed in population-

level experiments since the high-growth-rate branch will quickly dominate the population; sin-

gle-cell experiments are needed to observe growth bistability [17]. On the other hand, if the

antibiotic concentration can be varied during the experiment, bistability can be tested by

determining the hysteresis of the response, as observed for synthetic gene networks [18].

Steep dose-response curves (α< αcrit) occur for antibiotics with tight binding to the ribo-

some (KD! 0) or inefficient efflux (pout! 0). Alternatively, if these two quantities are

growth-rate invariant, dose-response curves become steeper with increasing growth rate in the

absence of drug, as α/ 1/λ0. For typical values of the relevant parameters (discussed above), α
ranges from 0 to*10. We have experimentally observed values of α for different translation

inhibitors in the range 0 − 2 [12]. In the limit α� 1, Eq (5) simplifies into y = 1/(1 + c); if

α! 0 then this expression becomes y ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1 � c
p

Þ=2 for c< 1, [10]. This biophysical

model for a single translation inhibitor provides the foundation for a predictive theory of mul-

tiple drug interactions between different translation inhibitors.

Model for interaction between two translation inhibitors

Dynamical system describing the binding of antibiotics and the physiological state of

the cell. When combinations of two different translation inhibitors are present, each ribo-

some can be bound by either of them alone or by both simultaneously. To generalize the

model described in the previous section to this situation, we need to introduce additional pop-

ulations of ribosomes. Extending the mathematical model [Eq (3)] to two translation
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inhibitors yields:

dai

dt
¼ � lai þ fiðru; rb;i; aiÞ þ doff;ikoff;ird � don;ikon;iairb;�i þ Jiðaex;i; aiÞ; ð6aÞ

drb;i
dt

¼ � lrb;i � fiðru; rb;i; aiÞ þ doff;�i koff;�i rd � don;�i kon;�ia�i rb;i; ð6bÞ

drd
dt

¼ � lrd þ
X

i¼A;B

don;ikon;iairb;�i �
X

i¼A;B

doff;ikoff;ird ð6cÞ

dru
dt

¼ � lru þ
X

i¼A;B

fiðru; rb;i; aiÞ þ sðlÞ: ð6dÞ

The terms fi(ru, rb,i, ai) and Ji(aex,i, ai) describe the first binding step and membrane transport

of antibiotic i, respectively. The additional terms δoff,i koff,i rd and don;ikon;iairb;�i describe the

unbinding of antibiotic i from double-bound ribosomes rd and the binding of antibiotic i to

ribosomes already bound by the other antibiotic �i (e.g., for antibiotics A and B, �A ¼ B), respec-

tively. The dimensionless parameters δσ,i with σ 2 {on, off} denote the relative change of the

rate of forward and reverse binding of antibiotic i to ribosomes already bound by the other

antibiotic. When the binding kinetics for both antibiotics are independent, all δσ,i = 1. When

both antibiotics compete for the same binding site on the ribosome, δon,i = 0. In general, the

parameters δσ,i can vary continuously to capture any changes in ribosome binding of one anti-

biotic due to the binding of the second, as long as the binding is described by mass-action

kinetics.

What is the main consequence of including the double-bound ribosomes? Below, we show

that in the absence of double-bound ribosomes, drug interactions are generally expected to be

additive. If we assume that no double-bound ribosomes can form, e.g., by setting δon,i = 0, Eq

(6c) becomes equal to zero and all terms associated with the second binding event disappear.

To show that this situation necessarily yields an additive drug interaction, we examine the sys-

tem along an isobole. At fixed growth rate, i.e., along an isobole, ru = λ/κt + rmin is constant.

This implies that the total concentration of ribosomes bound by either antibiotic (i.e., rb =

rb,A + rb,B) remains constant for all different concentration pairs (cA, cB) along the isobole.

In steady state, the concentration of ribosomes bound by antibiotic i is rb,i = ai × ξi, where ξi =

kon,iλ/[(koff,i + λ)κt]. The bound ribosome concentration reads

rb ¼ rb;A þ rb;B ¼ rtot � ru ¼ Drð1 � l=l0Þ ð7Þ

where we have taken into account Eqs (1) and (2). We express ai as a function of aex,i from Eq

(6a), which yields:

ai ¼ aex;i

pin;i

½lðkon;i=kt þ 1Þ þ pout;i � xikoff ;i�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ϒi

:
ð8Þ

The proportionality constant Ui in this expression depends only on λ and kinetic

parameters; in particular, it is independent of the concentration of the other antibiotic. Since

rb = rb,A + rb,B = ξA aA + ξB aB [Eq (7)], it follows that

Dr 1 �
l

l0

� �

¼ aex;AϒAxA þ aex;BϒBxB; ð9Þ
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which describes an isobole because the coefficients Ui ξi are independent of the other antibi-

otic. This argument shows that additivity generally occurs when double-bound ribosomes can-

not form. Additionally, this confirms that the model correctly predicts additivity when the

antibiotic is combined with itself–double-bound ribosomes cannot form in this case.

In the limit where koff, pout� λ, i.e., α!1, Eq (9) becomes cA + cB = λ0/λ − 1, where ci =

aex,i/IC50,i. To derive this expression, we noted the definitions of α and IC�
50;i used for a single

antibiotic (see preceding section) as well as that IC50;i � IC�
50;ia=2 for α� 1 (S1 Appendix).

This simplified expression clearly shows the linear dependency between external drug concen-

trations that result in growth rate λ.

To study the effect of double-bound ribosomes (Fig 3A), we systematically calculated dose-

response surfaces for both competitive and independent binding (Fig 3B; S1 Appendix). The

Loewe interaction score (LI) is a convenient way to characterize the type and strength of drug

interactions by a single number, with negative values corresponding to synergy and positive

values to antagonism [12]. The LI score quantifies the interaction using the volume under the

dose-response surface:

LI ¼ log
R
yðcA; cBÞdcAdcBR

yaddðcA; cBÞdcAdcB

� �

; ð10Þ

where yadd is the response surface of the additive expectation, which is calculated directly from

the responses to the individual drugs (see S1 Appendix). By calculating the LI score of the

dose-response surfaces for varying response parameters αA, αB of the two antibiotics that are

combined, we determined the complete phase diagram of drug interactions (Fig 3C). This pro-

cedure revealed that antagonism generally occurs for combinations of antibiotics with steep

dose-response curves, and the interaction becomes additive and then synergistic with increas-

ing response parameters (Fig 3B). The phase diagram (Fig 3C) is a useful tool, because we can
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Fig 3. Biophysical model of two antibiotics that can bind the ribosome simultaneously produces different types of drug interaction. (A) Schematic:

Ribosomes already bound by a single antibiotic (black and white circles) can be bound by another one. If the binding is independent of the presence of an

already bound antibiotic, the second binding step follows the same kinetics as for a single antibiotic. (B) Examples of dose-response curves of different

steepness and corresponding dose-response surfaces calculated from the model. Top: Dose-response curves with low or high α are steep (left) or shallow

(right), respectively. Bottom: Depending on the shape of the dose-response curves of the antibiotics that are combined, the calculated drug interactions

range from antagonism (left, low α) to synergy (right, high α). Combining antibiotics with different α results in a dose-response surface of more

complicated shape (middle). (C) Phase diagram of drug interactions: LI score for dose-response surfaces of antibiotic pairs with response parameters αA,

αB; white dashed line shows additive interactions (LI = 0). The left- and right-hand antibiotic pairs from (B) are shown by a purple triangle and a purple

square, respectively.

https://doi.org/10.1371/journal.pcbi.1008529.g003
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obtain the null expectation for the drug interaction between antibiotics with known response

parameters α simply by identifying their location in the phase diagram. The transition between

both interaction regions is smooth, which implies a gradual transition of the drug interaction

type. Because the LI score is an integrative measure of drug interaction strength, surfaces with

LI� 0 are not required to be perfectively additive but rather need antagonistic and synergistic

effects to cancel each other.

The fact that combinations of antibiotics that bind the ribosome irreversibly or are poorly

pumped out of the cell yield antagonism can be understood intuitively. Consider a situation in

which the antibiotics A and B are added to a bacterial population such that the concentration

of antibiotic A far exceeds the concentration of antibiotic B. If at some point the majority of

ribosomes is irreversibly bound by antibiotic A (due to its high intracellular concentration

and/or irreversible binding), then antibiotic B is likely to bind to already inactivated ribosomes

as well. Irreversibly-bound ribosomes thus effectively act as a “sponge” that soaks up antibiot-

ics which can then no longer contribute to growth inhibition–a situation that results in

antagonism.

What causes the transition from antagonism to synergy as α increases? Increasing α implies

that the binding of the antibiotic becomes more and more reversible or efflux becomes high

(i.e., KD pout!1). If the growth rate is low due to inhibition, then rtot� rmax as ribosome

synthesis is upregulated to its maximum. In this case, the typical rate of dilution by growth is

much slower than that of antibiotic-ribosome binding and we obtain ai� aex,i pin,i/pout,i. In

this regime, we can derive an approximate solution that yields a synergistic dose-response sur-

face, supporting the conclusion that qualitatively changing the binding kinetics alters the drug

interaction type.

The system becomes linear and analytically solvable (see S1 Appendix). The growth rate is

then:

y �
lmax=l0

f1þ cA½ða2
A þ 1Þlmax�=ða

2
Al0Þgf1þ cB½ða2

B þ 1Þlmax�=ða
2
Bl0Þg

¼

¼
lmax=l0

ð1þ c0AÞð1þ c0BÞ
;

ð11Þ

where c0i ¼ ci � ½ða2
i þ 1Þlmax�=ða

2
i l0Þ. This expression for y is simply a product of relative

responses, which is equivalent to the definition of Bliss independence but corresponds to a

synergistic interaction according to Loewe definition (Fig 4). This approximate solution agrees

well with the full numerical solution at lower growth rates and for antibiotics with higher α
(Fig 4). Eq (11) becomes even simpler in the limit λ0 = λmax and α!1 as these two limits

yield a product of two Langmuir-like equations with only relative concentrations cA, cB as

arguments, i.e., y = 1/[(1 + cA)(1 + cB)], which is independent of λ0 and α.

The results above can be experimentally verified. To predict the entire dose-response sur-

face, we require only the response parameters α, which can be obtained by fitting Eq (5) to

individual dose-response curves. We recently performed this comparison and found good

agreement of theory and experiment for most, but not all, drug pairs [12].

Symmetric direct interactions on the ribosome amplify drug interactions. We next

asked how more general binding schemes, in which two different antibiotics can directly inter-

act on the ribosome to stabilize or destabilize their binding affect the resulting drug interac-

tions. Two antibiotics do not need to come into direct, physical contact to affect each other’s

binding: Allosteric effects (i.e., changes in ribosome structure due to antibiotic binding) can

produce the same result. In the most plausible scenario, the antibiotics affect each other’s bind-

ing in a symmetric way, i.e., ds;i ¼ ds;�i (Fig 5A). For example, the antibiotics lankamycin and
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lankacidin (which interact synergistically [19]) are near each other when bound to the ribo-

some; their binding is stabilized by a direct physical interaction [20, 21]. Stabilization of bind-

ing could also increase the sequestration of tightly binding antibiotics or “lock” an antibiotic

that would rapidly unbind on its own in the bound state, thus potentially promoting prolonged

inhibition of the ribosome. In contrast, the two antibiotics may also mutually destabilize their

binding to the ribosome. The limiting case of this scenario is competition for the same binding
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Fig 4. Combining antibiotics with shallow dose-response curves yields synergistic drug interactions. (A)

Comparisons of numerically calculated dose-response surfaces and approximate solution. Purple isoboles (dashed and

solid lines correspond to 50% and 20% relative growth rate, respectively) show the approximate solution on top of the

dose-response surface calculated from the biophysical model (gray scale). Examples are shown for two pairs of

antibiotics with identical (left) or different α (right). (B) Pearson correlation ρ between approximate and numerically

calculated growth rate, evaluated for 121 × 121 equidistant concentration pairs. Solid and dashed line correspond to

the cases with identical or different α, respectively. The correlation increases for antibiotics with higher α. The arrow

shows α for the example on the left in (A).

https://doi.org/10.1371/journal.pcbi.1008529.g004
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Fig 5. Direct interactions between antibiotics on the ribosome can amplify drug interactions. (A) Schematic of antibiotics symmetrically affecting their binding on

the ribosome. (B) Changes in the shape of the dose-response surfaces for pairs of antibiotics with (i) identical α = 2−5 and (ii) identical α = 22, when δ is increased from 1

(left) to�5.0 (right). Purple dashed and solid line in the bottom-right panel show the approximate solution in Eq (14) for the 50% and 20% isoboles, respectively. (C)

Increase in absolute value of the LI score as a function of δ for pairs of antibiotics with different response parameters. Solid lines (i) and (ii) correspond to the examples

in (B); arrows show increase in |LI| at δ� 5.0. Note, that for both antibiotic combinations, LI collapses to 0 for competitive binding, i.e., δ = 0. The dotted line shows

the LI score calculated using the approximate solution in Eq (14). (D) Diagonal cross-section (αA = αB) through the phase diagram for different δ. Black solid line

corresponds to the case of independent binding (cf. Fig 3C); the two gray lines show examples with either δ< 1 or δ> 1. Irrespective of drug interaction type, the drug

interaction is amplified for δ> 1 and weakened for δ< 1.

https://doi.org/10.1371/journal.pcbi.1008529.g005
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site. To investigate such effects systematically, we computed dose-response surfaces for antibi-

otics with different response parameters α and varying kinetics for the second binding step.

We focused on pairs of antibiotics in which both drugs either have low or high α, corre-

sponding to steep or shallow dose-response curves, respectively. Numerical solutions for

continuously varying δon,i = δ at fixed δoff,i = 1 (Fig 5B and 5C) showed that a stabilizing inter-

action (δ> 1) enhances the resulting drug interaction. If the drug interaction is antagonistic

for δ = 1, stabilization amplifies this antagonism; synergistic interactions are amplified analo-

gously (Fig 5B). If one antibiotic destabilizes the binding of the other, i.e., δ< 1, a smooth tran-

sition to additivity occurs, independent of whether the dose-response curve of the antibiotic

pair is steep or shallow (Fig 5C). This result is further corroborated by fixing δ and continu-

ously varying α for the combined antibiotics (Fig 5D). Taken together, these numerical results

indicate that direct positive interactions of translation inhibitors on the ribosome (δ> 1)

amplify the drug interaction that occurs in the absence of such direct interactions, irrespective

of drug interaction type.

Experimentally, these results suggest that the presence of direct interactions on the ribo-

some between bound antibiotics would manifest in stronger synergy than predicted for inde-

pendent binding if the response parameters of the combined antibiotics are sufficiently high

(S1 Appendix). However, for a direct prediction of the dose-response surface one requires

the value for the parameter δ, which can only be extracted from dedicated biochemistry

measurements.

To corroborate these numerical results, we investigated the limit of reversibly binding anti-

biotics with rapid binding kinetics at low growth rates as for Eq (11). In this limit, there is

again an analytical solution for the dose-response surface:

y �
lmax=l0ðdoff;A þ doff;B þ c0Adon;Adoff ;B þ c0Bdon;Bdoff;AÞ
ð1þ c0A þ c0BÞ½doff;BFA þ doff;AFB� þ c0Ac0BFAB

; ð12Þ

where FAB ¼ ½don;A þ don;B þ don;Adon;Bðc0A þ c0BÞ�, FB ¼ ð1þ c0Bdon;BÞ, and FA ¼ ð1þ c0Adon;AÞ.
This closed-form expression facilitates the analysis of several limiting cases. For example, if the

antibiotics mutually stabilize their binding to the extreme extent that they cannot detach from

the double-bound ribosomes anymore (δoff,i = 0), Eq (12) returns y = 0 indicating strong syn-

ergism. In contrast, prohibiting the formation of double-bound ribosomes by setting δon,i = 0,

yields

yadd �
lmax=l0

1þ c0A þ c0B
; ð13Þ

which corresponds to Loewe additivity and is different from Bliss independence obtained in

Eq (11). This corroborates the previous result that competitively binding antibiotics interact

additively. For the case δon,i = δ and δoff,i = 1 the expression in Eq (12) simplifies to:

y �
lmax=l0

1þ c0A þ c0B þ dc0Ac0B
; ð14Þ

which becomes Eq (11) if δ = 1. We can further show that the effect of increasing δ on drug

interaction strength depends on the concavity of the individual dose-response curves: for

response parameters α> 2, increasing δ amplifies synergy (see S1 Appendix). Overall, this

analysis corroborates the general result that direct stabilizing interactions of reversibly-binding

antibiotics on the ribosome amplify synergistic interactions, while destabilizing interactions

weaken them up to the point where any drug interaction becomes additive.
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Asymmetric direct interactions alter the phase diagram. More generally, direct interac-

tions between the antibiotics on the ribosome could be asymmetric. For example, binding of

only one of the antibiotics could trap the ribosome in a conformation that facilitates the bind-

ing of the other antibiotic but not vice versa. To investigate such effects, we fixed δoff,i = 1 and

varied δon,i for antibiotics with different response parameters α (Fig 6). The resulting differ-

ence in kinetic parameters describes an asymmetric direct interaction on the ribosome. We

systematically calculated the shape of the dose-response surface for this situation.

When antibiotics with identical response parameters α are combined, the same trend as for

symmetric direct interactions occurs: Increasing δon enhances the drug interaction. For com-

binations of antibiotics with different dose-response curve shapes, asymmetric direct interac-

tions on the ribosome result in a different behavior (Fig 6A and 6B). If an antibiotic with a

Fig 6. Asymmetric direct interactions reshape the phase diagram of drug interactions. (A) Dose-response surfaces

for different instances of asymmetric direct interaction and response parameters; insets on top show schematics of the

type of direct interaction and top-right symbols correspond to those in (B). Antibiotics with shallow (αA = 22) and

steep (αB = 2−3) dose-response curves are shown by black and white disks, respectively. Left: Antagonism occurs when

an antibiotic with a steep dose-response asymmetrically hinders the binding of another one with a shallow dose-

response, which in turn promotes the binding of the former. Middle: Symmetrizing the direct interaction almost

completely abolishes antagonism. Right: Inverting the scenario from the left-most panel results in mild synergy. (B)

Phase diagram of drug interactions for asymmetric direct interactions between antibiotics with different response

parameters. Different response parameters (αA = 22 and αB = 2−3) profoundly affect the resulting drug interaction: A

continuous transition from antagonism to synergy occurs (white dashed line denotes LI = 0). Purple symbols show the

examples from (A) in the phase diagram.

https://doi.org/10.1371/journal.pcbi.1008529.g006
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steep dose-response curve asymmetrically hinders the binding of an antibiotic with a shallow

dose-response, while the binding of the former is stabilized by the latter, antagonism emerges

(Fig 6A). In contrast, synergy occurs if the roles of the antibiotics are inverted (Fig 6A). The

latter can be rationalized by interpreting the direct interaction on the ribosome as a change of

the effective binding characteristics of the antibiotics. Specifically, in the case where the steep-

response antibiotic promotes the binding of the shallow-response antibiotic, the latter will in

turn destabilize the binding of the former–effectively, the steep-response antibiotic will thus

behave as if it had a shallower response. As a result, synergy occurs–exactly as expected when

two shallow-response antibiotics are combined (Fig 3C). In the opposite situation, the binding

of the shallow-response antibiotic becomes even looser and the binding of the steep-response

antibiotic is stabilized. From the phase diagram in Fig 3C, antagonism is the expected outcome

in this case as we combine antibiotics with steep and shallow responses, respectively. Taken

together, these results show how complicated direct interactions between antibiotics bound to

their target can lead to unexpected emergent drug interactions.

Relation to mechanism-independent models of higher-order drug interactions. The

biophysical model described above can predict the pairwise drug interactions that are needed

to apply recently proposed mechanism-independent models for higher-order drug interac-

tions [8]. While a detailed analysis of higher-order drug interactions is beyond the scope of

this article, it is instructive to demonstrate how the pairwise interactions bridge the gap

between responses to individual drugs and higher-order drug combinations. In the framework

of Ref. [8], higher-order drug interactions can be predicted using an entropy maximization

method, in which the joint drug effects are fully determined by the responses to the individual

drugs (yi) and their pairwise combinations (yij):

yABC ¼ yAyBC þ yByAC þ yCyAB � 2yAyByC: ð15Þ

In the limit of slow growth used previously, it is straightforward to analyze the effects of

higher-order drug combinations. The approximate results below are based on the assumptions

that: (i) the growth rate is directly proportional to the concentration of unblocked ribosomes,

(ii) growth rate is nearly zero, (iii) the intracellular drug concentration depends only on trans-

port kinetics (i.e., a� aex pin/pout), and (iv) the growth rate is directly proportional to the con-

centration of unblocked ribosomes (Fig 7A). Under these assumptions, analytical solutions

can be obtained. For example, we can construct a system of differential equations describing

the binding of three different antibiotics (A, B, C); the steady-state solution of this system is:

y �
lmax=l0

ð1þ c0AÞð1þ c0BÞð1þ c0CÞ
: ð16Þ

To derive this result, we considered three different kinds of single- and double-bound

ribosomes as well as triple-bound ribosomes (Fig 7B); for simplicity, all binding steps were

considered to be independent of already bound antibiotics. To verify the consistency of the

mechanism-independent model with this fully specified but approximative mechanistic

model, we need to obtain responses to individual drugs yi and pairwise combinations yij. We

obtain responses yi ¼ 1=ð1þ c0iÞ and yij ¼ 1=½ð1þ c0iÞð1þ c0jÞ� from Eq (16) by setting all c0j
with (j 6¼ i) and all c0k with (k 6¼ i, j) to zero, respectively. If the mechanism-independent expres-

sion is consistent with our simplified model, then plugging these responses into Eq (15) should

yield Eq (16), which is indeed the case.

Next, we tested if the mechanism-independent formula for three drugs [Eq (15)] can be rec-

onciled with our model when there is one direct competitive interaction on the ribosome. If

the antibiotics B and C cannot bind to the ribosome simultaneously, the solution of the
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approximate system is:

yABC ¼
lmax=l0

ð1þ c0AÞð1þ c0B þ c0CÞ
: ð17Þ

By following same reasoning as for the independent case above, we see that the mechanism-

independent and the simplified mechanistic model are consistent.

The assumptions described above can be generalized to antibiotics with other modes of

action, provided that the combined antibiotics bind to the same target. For example, if growth

is limited by a specific enzyme due to antibiotic inhibition, we can consider the growth rate to

be proportional to the abundance of this limiting enzyme. If the enzyme concentration does

not change, the approximative mathematical framework from this section is applicable to anti-

biotics targeting this enzyme. These results provide a potential mechanistic explanation for the

apparent validity of the mechanism-independent model, at least for combinations of antibiot-

ics binding the same target.

Extensions of the model

Other phenomena than those treated so far can shape drug interactions. Below, we discuss two

cases in which (i) antibiotics perturb translation in orthogonal ways and (ii) the expression of

antibiotic resistance genes alters a drug interaction. While certainly not exhaustive, these two

cases illustrate relevant extensions of the model.

Effects of antibiotic-induced starvation. Translation inhibitors target the protein synthe-

sis machinery, which is carefully regulated in response to changes in the nutrient environment

[22]. Thus, if an antibiotic effectively interferes with cellular state variables that represent the

nutrient environment, it should be possible to predict its effect on the action of a translation

inhibitor and, in turn, its drug interaction with a translation inhibitor.

Fig 7. Assumptions and binding kinetics diagram underlying the calculation of higher-order drug interactions.

(A) Assumptions that simplify the system to allow obtaining a closed solution. (B) Binding kinetics diagram shows allowed

transitions between ribosome subpopulations. Different symbols on the ribosomes denote different antibiotics.

https://doi.org/10.1371/journal.pcbi.1008529.g007

PLOS COMPUTATIONAL BIOLOGY Minimal biophysical model of combined antibiotic action

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008529 January 7, 2021 14 / 22

https://doi.org/10.1371/journal.pcbi.1008529.g007
https://doi.org/10.1371/journal.pcbi.1008529


Bacterial growth strongly depends on the availability and quality of nutrients. Protein syn-

thesis requires that amino acids are delivered to the translation machinery (ribosomes) by ded-

icated proteins [elongation factors (EF-Tu)] [23]. The latter bring charged tRNAs (i.e., tRNAs

with an attached amino acid) to the ribosome (Fig 8B). tRNAs are charged (i.e., amino acids

are attached to them) by tRNA synthetases. Usually, the supply and demand of amino acids

can be considered to be nearly optimally regulated [22] (Fig 8A). However, under starvation, a

mismatch between the supply and demand of amino acids occurs [24]. Bacteria respond to

amino acid starvation by triggering the stringent response. This starvation response is primar-

ily controlled by the alarmone ppGpp (guanosine tetraphosphate) which down-regulates the

expression of the translation machinery (Fig 8A) [25]. Amino acid starvation is reflected in

reduced tRNA charging and usually occurs when the nutrient environment becomes poor.

However, amino acid starvation can also be caused by a starvation-mimicking antibiotic
(SMA) that blocks tRNA synthetases (Fig 8B) [26, 27].

We can capture the effect of an SMA in our model and thus make predictions for the drug

interactions between an SMA and translation inhibitors. To this end, we assume that the

growth rate in the absence of drug λ0, which characterizes the quality of the nutrient environ-

ment in Eq (4), depends on the concentration cs of the SMA only. Under this assumption, the

growth rate in the simultaneous presence of an SMA and a translation inhibitor can be derived

directly from the previous results for a single antibiotic [Eq (5)]. In the absence of translation

inhibitor, the growth rate is given by the dose-response function of the SMA g(cs). Since IC50

/ (α2 + 1)/α and α = αF/g(cs), the relative change in IC50 at constant SMA concentration

becomes

c ¼
IC50

IC50;F
¼

a2
F þ g2ðcsÞ
ða2

F þ 1ÞgðcsÞ
; ð18Þ

Fig 8. Effects of a starvation-mimicking antibiotic on the efficacy of translation inhibitors. (A) Schematic: Simplified regulation of translation coordination.

Nutrients are transported into the cell, where they serve as a source of amino acids. These amino acids are required for tRNA charging. Oversupply of amino acids

leads to down-regulation of the nutrient transport and processing machinery, and depletion of the intracellular signaling molecule ppGpp (guanosine tetraphosphate).

This in turn de-represses the expression of the translation machinery, which increases the overall translation capacity, leading to faster growth. In contrast, if amino acids

are in short supply, the translation machinery is down-regulated. (B) Translation inhibitors (TI) inhibit progression of the ribosome, while a starvation-mimicking

antibiotic (SMA) perturbs the amino acid supply. The ribosome progresses along the mRNA (black wavy line), if charged tRNAs (black fork with gray circle) deliver

amino acids (gray circles) at a sufficient rate to support the rapid synthesis. A starvation-mimicking antibiotic inhibits tRNA charging and thus mimics amino acid

depletion, a hallmark of starvation. (C) Dependence of relative change in IC50 on SMA inhibition (ψ = IC50/IC50,F). Example solutions of Eq (18) were calculated for

chloramphenicol (CHL; top solid line with αF = 1.04, white circles show experimental data) and streptomycin (STR; bottom solid line with αF = 0.46, gray squares show

experimental data). The gray areas correspond to the confidence intervals as obtained from standard errors in α. Values for response parameters α and their standard

errors are from Ref. [12]. In the experiments, mupirocin (MUP) was used as SMA. The horizontal dashed line indicates no change with respect to g(cs). Error bars

correspond to standard errors in IC50 as obtained from fitting; where error bars are not visible, they are smaller than the symbol size. (D) Measured (top) and predicted

(bottom) dose-response surfaces for CHL-MUP (left) and STR-MUP (right). Insets show scatter-plots of predicted and measured non-zero growth rates.

https://doi.org/10.1371/journal.pcbi.1008529.g008
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where αF and IC50,F are α and IC50 in the absence of the SMA, respectively. It follows that ψ
increases monotonically with SMA inhibition if αF> 1; this condition is obtained by solving

@g ψ = 0 for g(cs)�1. If αF� 1, then the minimal ψ is reached at g(cs) = αF. We further note that

two functional limits exist: in the limits α! 0 and α!1, Eq (18) becomes ψ = g(cs) and ψ =

1/g(cs), respectively.

The dose-response curve for a single antibiotic is given by y = f(α, c) [a solution of Eq (5)].

Since we know how IC50 [Eq (18)] and α change as a function of g(cs), we can evaluate the

entire dose-response surface:

yðc; csÞ ¼ gðcsÞ � f ðaF=gðcsÞ; c=cÞ: ð19Þ

Eq (19) deviates from a simple multiplicative expectation since the SMA affects the parame-

ters of the dose-response curve of the translation inhibitor as well. This result illustrates how

deviations from Bliss independence occur when the combined drugs mutually affect their

dose-response characteristics. Hence, this generalization of our model makes non-trivial

quantitative predictions for drug interactions that occur between an SMA and translation

inhibitors.

A specific example of an SMA is the antibiotic mupirocin (MUP), which reversibly binds to

isoleucin tRNA synthetase and prevents tRNA charging [28]. MUP, which is used against clin-

ically problematic methicillin-resistant Staphylococcus aureus (MRSA) infections [29], induces

the stringent response [26, 27] and can thus be used to test our theoretical prediction. To this

end, we measured the change of the IC50 of E. coli at different levels of growth inhibition

caused by MUP g(cs) for two translation inhibitors: chloramphenicol (CHL) and streptomycin

(STR); see S1 Appendix. CHL and STR have different response parameters α [12], which leads

to different dependencies of ψ on SMA inhibition (Fig 8C), an effect that is closely related to

the results for different nutrient environments in Ref. [10]. We note, that while the model pre-

dicts a shallower decrease in ψ for STR compared to the observed one, the data lies very close

to the border of the limiting case. This suggests that the discrepancy originates predominantly

from a poor fit of α; fitting Eq (5) to steep dose-response curves is notoriously difficult due to

the abrupt drop and the scarce data at low growth rate. Similarly, we measured the complete

dose-response surfaces for both drug pairs. The theoretically predicted dose-response surfaces

qualitatively agree with the experimentally observed ones (Fig 8D). In S1 Appendix we discuss

further examples of pairwise antibiotic combinations in which a translation inhibitor is com-

bined with a drug that alters the growth law parameters. Together, these results illustrate how

our theoretical model can be extended to predict the effects of drug combinations beyond anti-

biotics that directly target the ribosome.

Effect of constitutively expressed resistance genes. Our results show that the steepness

of the dose-response curve and the coupling between growth laws and antibiotic response play

a key role in determining drug interactions. Dose-response curve steepness can change if

genes that convey antibiotic resistance are present [17]. Thus, we investigated how the pres-

ence of such resistance genes affects the resulting drug interaction.

Bacterial resistance genes often code for dedicated enzymes that degrade the antibiotic or

pump it out of the cell. Resistance genes can be constitutively expressed, i.e., they lack specific

regulation and their expression depends only on the state of the gene expression machinery.

The expression of such constitutively expressed resistance genes (CERGs) under translation

inhibition is quantitatively predicted by a theory based on bacterial growth laws [9, 17]. When

the growth rate is varied by nutrient quality, the expression of a constitutively expressed gene q
linearly decreases until reaching zero at λmax = Δrκt, i.e., q/ (1 − λ0/λmax) (Fig 9A). Yet, if the

growth rate changes due to translation perturbation, expression decreases with decreasing
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growth rate, i.e., q/ λ/λ0 (Fig 9A). An experimentally verified mathematical model that is

based on this growth rate-dependent expression predicts growth bistability (i.e., coexistence of

growing and non- or slowly-growing cells) in bacterial populations that constitutively express

resistance genes [17]. In this model, the flux of antibiotic removal due to the resistance enzyme

is described by

jrem ¼ Vmax 1 �
l0

lmax

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
nutrient� dependent

l

l0

� �

�
a

aþ Krem
;

¼ V 0max

l

l0

� �

�
a

aþ Krem

ð20Þ

where Krem is a Michaelis-Menten dissociation constant and Vmax is the maximal antibiotic

removal rate, which bundles the maximal enzyme abundance and catalytic rate per enzyme. In

Eq (20), V 0max ¼ Vmaxð1 � l0=lmaxÞ.

Due to the linear relation between growth rate and the expression of the resistance gene,

the rate of antibiotic removal decreases with decreasing growth rate under translation inhibi-

tion. This constitutes a positive feedback loop that leads to growth bistability (Fig 9B and 9C),

Fig 9. Effects of constitutive resistance genes on the shape of dose-response curves and surfaces. (A) Expression of unregulated (constitutive) gene depends on

nutrient quality and degree of translation inhibition. Top: When growth is varied by nutrient quality, the expression of the gene decreases with increasing growth. The

highest expression achieved in the limit of low growth rates is determined by Vmax (different shades of gray). When λ0 = λmax, expression ceases, invariantly of Vmax.

Bottom: In a fixed nutrient environment (circles), expression decreases as the growth rate decreases upon translation inhibition. The expression in the absence of

antibiotic is V 0max ¼ Vmaxð1 � l0=lmaxÞ [gray arrow; for the environment with lower λ0 (white disk)]. (B) Schematic of positive feedback loop for unregulated antibiotic

resistance gene. A drug-resistance enzyme degrades the antibiotic, thus reducing growth inhibition and boosting its own expression. However, if the antibiotic

concentration exceeds the capacity of removal by the enzyme, growth rate starts to drop and so does the expression of the resistance enzyme, amplifying the growth rate

drop. The lightly drawn part (right) illustrates how two antibiotics can get coupled via the growth-rate dependent loop. (C) Examples of dose-response curves in the

presence or in the absence of a constitutively expressed resistance gene (CERG). Black line shows dose-response curve for α = 1. When a CERG is added [V 0max ¼ 1000

μM h−1, Krem = 0.1 μM the dose-response curve becomes steeper and exhibits an abrupt drop. Inset shows the increase in antibiotic concentration required to halve the

growth rate relative to the no-CERG case as a function of V 0max. (D) Dose-response surface for independently (top) and competitively (bottom) binding antibiotics with α
= 1; resistance activity V 0max (assumed to be identical for both antibiotics) increases from left to right: 0, 100 and 950 μM h−1. Concentration axes were rescaled with

respect to the increased IC50. Note the qualitative change in dose-response surface shape.

https://doi.org/10.1371/journal.pcbi.1008529.g009
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which is reflected in a steep dose-response curve of bacterial batch cultures [17]. However,

note that for very high values of Krem� a, Eq (20) becomes linear and the steepness of the

dose-response curve decreases, rendering the otherwise bistable system monostable (see S1

Appendix).

By extending this scenario to a pair of antibiotics, we can directly test how the presence of

resistance genes affects drug interactions. In the most relevant case, there are two CERGs each

of which specifically provides resistance to one of the antibiotics. For simplicity, we assume

that there is no cross-resistance, i.e., each enzyme specifically degrades only one of the drugs

(Fig 9B). We found that the synergistic interaction between two independently binding antibi-

otics with shallow dose-response curves turns slightly antagonistic due to the presence of resis-

tance genes (Fig 9D, top). For competitively binding antibiotics, this effect becomes more

pronounced (Fig 9D, bottom). In brief, our model predicts qualitative changes in drug interac-

tion type when resistance genes are present.

To test this prediction, we constructed an E. coli strain (see S1 Appendix) that carries two

constitutively expressed resistance genes. We chose TetA [a tetracycline (TET) efflux pump]

and CAT [an enzyme that degrades chloramphenicol (CHL)], which were previously charac-

terized in the context of bacterial growth laws (Fig 10A; [17]). Furthermore, the interaction

between CHL and TET is additive. Our model predicts this interaction to change into antago-

nism when CERGs are present. Consistent with previous results [17], the steepness of the

dose-response curve increased upon inclusion of each CERG (Fig 10B). We measured the

dose-response surface of the sensitive and the double-resistant strain: Notably, the resistant

Fig 10. Constitutively expressed resistance genes alter a drug interaction as predicted by theory. (A) Schematic

showing two common resistance mechanisms: Resistance can result from degradation of the drug [left:

chloramphenicol acetyltransferase (CAT) degrades chloramphenicol (CHL)] or from drug efflux [right: an antibiotic

efflux pump (TetA) removes tetracycline (TET) from the cell]. (B) Change in dose-response curve shape due to a

constitutively expressed resistance gene. CHL dose-response curves of sensitive (white circles) and resistant strain

(gray circles). (C) Measured CHL-TET dose-response surfaces for (i) sensitive and (ii) resistant strain. Concentrations

were normalized to the IC50 of respective strains. The strain with CERGs is 50.5 and 91.5 times more resistant to TET

and CHL, respectively, as measured by increase of IC50. Drug interaction changes from additive to antagonistic as

suggested by theory (Fig 9D).

https://doi.org/10.1371/journal.pcbi.1008529.g010
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strain showed a clear antagonistic drug interaction, while this interaction was additive in the

strain without CERGs (Fig 10C). This change to antagonism qualitatively agrees with the theo-

retical prediction (Fig 9D). This example shows how resistance genes can drastically alter drug

interactions–a phenomenon caused by a non-trivial interplay of gene-expression and cell

physiology predicted by our biophysical model.

In future work, this framework could be expanded to include resistance mechanisms other

than the efflux and degradation of the drug. Other resistance mechanisms include target modi-

fication, overproduction of a target mimic (decoy), and factor-associated protection [20].

These mechanisms offer attractive modeling and experimental opportunities. On the modeling

side, these additional mechanisms require the introduction of new sub-populations of ribo-

somes (modified or factor-associated) or target mimics. Experimentally, handling these highly

resistant strains is challenging as minimal inhibitory concentrations approach the solubility

limits of the relevant antibiotics, which requires fine-tuning of the expression system. Further,

the effects we predict above should be growth environment-dependent, which follows from Eq

(20): at low λ0, the expression of CERG should increase and thus its effects should manifest. If

λ0! λmax, then the effect of CERG should be less prominent and the drug interaction should

resemble the WT one. While these extensions are of high basic and clinical importance, they

are outside of the scope of this study. Here we included only the best-characterized examples

that required minimal genetic intervention in the system.

Discussion

We constructed a minimal biophysical model of antibiotic interactions that takes into account

the laws of bacterial cell physiology. Most parameters in our model are constrained by estab-

lished results or by the dose-response curves of the individual antibiotics that are combined

(Fig 3). Our approach offers a scalable theoretical framework for predicting drug interactions:

The number of parameters required for the independent binding model scales linearly with

the number of antibiotics. This framework is readily generalized to combinations of more

than two antibiotics. Ribosomal growth laws [9] were essential for building this predictive

framework, highlighting the importance of quantitative phenomenological descriptions of

physiological responses to drugs and other perturbations (Fig 2). The discovery of similar

quantitative relations between physiological parameters and growth rate for other classes of

antibiotics and other types of cells would greatly facilitate more general predictions of drug

interactions.

Our work highlights the advantages of a physiologically relevant “null model,” which cap-

tures all effects that are generally relevant for ribosome-binding antibiotics without trying to

describe any molecular details of specific antibiotics (Fig 3). While general multiplicative

(Bliss) or additive (Loewe) expectations are simple to construct, our work demonstrates that

their utility as a reference has clear limitations. Specifically, our model shows that both are

expected to be valid only in certain limits (Figs 4 and 5). Moreover, these standard null models

do not capture known effects of antibiotic binding and growth physiology, which suffice to

produce strong deviations from the standard null models. Our biophysical model captures

these effects and thus offers an improved expectation for drug interactions. Generalizing this

model to three drugs demonstrated that mechanism-independent predictions of higher-order

interactions [8] are consistent with simplified first-order kinetics. In summary, our model

serves as a bridge between mechanism-independent general predictions of drug interactions

and elusive quantitative descriptions of detailed molecular mechanisms that capture the idio-

syncrasies of each drug.
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We showed that direct physical (or allosteric) interactions of antibiotics on their target do

not necessarily lead to synergy (Fig 5 and S1 Appendix). Synergy only occurs if the dose-

response curves of the individual drugs are sufficiently shallow. While this insight is not easily

applied in the design of drug combinations, the identification of cooperatively binding drug

pairs still has considerable potential. Our results highlight that altering the steepness of indi-

vidual drug dose-response curves may offer under-appreciated opportunities for drug design.

The predictions of our model are directly testable in experiments (shown above and in

Ref. [12]). Perhaps the most striking experimental validation of our model is the change in

drug interaction type due to the presence of antibiotic resistance genes (Figs 9D and 10C).

This observation is notable since previous work concluded that most mutations and mecha-

nisms that provide resistance to individual drugs only rescale the effective antibiotic concen-

trations while preserving the shape of the dose-response curves and surfaces [30–33]. In

contrast, our results show that specific resistance genes for two antibiotics targeting the ribo-

some inevitably alter the drug interaction, even in the absence of more complicated

mechanisms.

Discrepancies between experimental results and model predictions can expose cases in

which more complicated mechanisms cause the observed drug interaction [12]. A limitation

of our model is that it considers fully assembled translating ribosomes as sole targets of the

antibiotics, without taking the exact stage of the translation cycle into account. In principle, a

model that describes ribosome assembly and more details of the translation cycle and the tran-

sitions between its different steps could provide a more detailed mechanistic picture. However,

since we currently do not know the in vivo parameter values that characterize the translation

cycle, such a model would not be predictive, but would rather rely on extensive fitting of free

parameters to limited experimental data. Instead, the underlying mechanisms of drug interac-

tions that cannot be captured by the minimal biophysical model presented here, and in partic-

ular suppression, can be elucidated by targeted phenomenological approaches [12].

Supporting information

S1 Appendix. Additional model analysis, numerical methods, and experimental consider-

ations.

(PDF)
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Investigation: Bor Kavčič, Gašper Tkačik, Tobias Bollenbach.

PLOS COMPUTATIONAL BIOLOGY Minimal biophysical model of combined antibiotic action

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008529 January 7, 2021 20 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008529.s001
https://doi.org/10.1371/journal.pcbi.1008529
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