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Abstract

The oft-quoted dictum by Arthur Schawlow: “A diatomic molecule has one atom too

many” has been disavowed. Inspired by the possibility to experimentally manipulate

and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of

coupled cold molecules in the presence of a many-body environment.

In this thesis, we introduce new variational approaches to quantum impurities and

apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other

point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of

a rotating molecule in a bosonic bath.

With this theoretical toolbox, we reveal the self-localization transition for the an-

gulon quasiparticle. We show that, unlike for polarons, self-localization of angulons

occurs at finite impurity-bath coupling already at the mean-field level. The transition

is accompanied by the spherical-symmetry breaking of the angulon ground state and

a discontinuity in the first derivative of the ground-state energy. Moreover, the type

of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath

interaction, which leads to a number of distinct self-localized states.

For the system containing multiple impurities, by analogy with the bipolaron, we

introduce the biangulon quasiparticle describing two rotating molecules that align with

respect to each other due to the effective attractive interaction mediated by the excita-

tions of the bath. We study this system from the strong-coupling regime to the weak

molecule-bath interaction regime. We show that the molecules tend to have a strong

alignment in the ground state, the biangulon shows shifted angulon instabilities and an

additional spectral instability, where resonant angular momentum transfer between the

molecules and the bath takes place. Finally, we introduce a diagonalization scheme that

allows us to describe the transition from two separated angulons to a biangulon as a

function of the distance between the two molecules.
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is chosen as ln(ñ) = −3 and the distance in (b) is given by d̃ = 0.6.

Biangulon instabilities are highlighted by red dotted circles. For details

see the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



xiv
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1 Introduction

1.1 From single to multiple impurities: polaron and bipolaron

Impurity problems, describing the behavior of individual quantum particles coupled to a

complex many-body environment, amount to an active and important research field in

condensed matter, with far-reaching applications into chemistry and ultracold quantum

gases. Several examples show that the properties of a quantum many-body system

can be drastically modified by the presence of impurities. A spectacular example, for

instance, is the orthogonality catastrophe, where the unperturbed ground state of a

fermionic system has zero overlap, in the thermodynamic limit, with the ground state of

the same system in the presence of a single impurity. This phenomenon – a testimony

of the great importance of a single impurity even among a macroscopic number of other

particles – has been observed in X-ray absorption experiments [Anderson, 1967], as

well as in electron transport in quantum dots [Geim et al., 1994]. Another celebrated

example is the Kondo effect, in which scattering of conduction electrons from a localized

spin inhibits electron transport at low temperatures [Kondo, 1964].

Historically, the first impurity problem was originally introduced by Landau and Pekar [Lan-

dau, 1933b; Landau and Pekar, 1948], Fröhlich [Fröhlich, 1954], and Holstein [Holstein,

1959a; Holstein, 1959b], as they considered the interactions of an electron with a polar-

izable crystal. A charge-induced polarization cloud was shown to follow the electron

as it moves through the medium, thereby modifying the electron’s properties. In order

to describe the latter a quasiparticle was introduced – the polaron, which represents

an electron dressed by the cloud of lattice excitations. A distinction can be made
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Point-like impurity + boson bath

Spin ½ impurity + boson bath

Rydberg atom + Bose-Einstein Condensate Rotating impurity + boson bath

Spin1 impurity+ spin ½ bath Magnetic impurity + lattice

(a) (b) (c)

(d) (e) (f)

Figure 1.1: The “family” of impurity problems∗, as introduced in the main text.

(a) Fröhlich polaron (or boson polaron), adapted from Physics 9, 86 (2016), (b)

Rydberg impurity, adapted from http://www.rle.mit.edu/cua/highlights/

viewpoint-swimming-in-the-fermi-sea/, (c) angulon, adapted from Physics

10, 20 (2017), (d) spin-boson model, adapted from http://www.rle.mit.edu/cua/

highlights/wp-content/uploads/2009/06/swimming1.png, (e) NV center,

adapted from Scientific Reports (2) 382 (2012), and (d) magnetic impurity, adapted from

http://www.nanoscience.de/furore/projects.html.

http://www.rle.mit.edu/cua/highlights/viewpoint-swimming-in-the-fermi-sea/
http://www.rle.mit.edu/cua/highlights/viewpoint-swimming-in-the-fermi-sea/
http://www.rle.mit.edu/cua/highlights/wp-content/uploads/2009/06/swimming1.png
http://www.rle.mit.edu/cua/highlights/wp-content/uploads/2009/06/swimming1.png
http://www.nanoscience.de/furore/projects.html
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between polarons in the continuum approximation, where the long-range electron-lattice

interaction prevails (Fröhlich, or large polaron) [Devreese, 2007], and polarons for

which the short-range interaction is essential (Holstein or small polaron) [Holstein,

1959a; Holstein, 1959b; Devreese and Alexandrov, 2009]. In what follows, we will

mainly consider the former case. Recent revival of interest in the problem of Fröhlich

polaron [Devreese, 2007; Devreese and Alexandrov, 2009; Tempere et al., 2009a;

Bruderer et al., 2007; Rath and Schmidt, 2013; Li and Sarma, 2014; Ardila and Giorgini,

2015] comes from the rapid progress in the field of ultracold atoms: this new exper-

imental platform not only allows to create a large variety of polaronic systems with

different impurity masses and tunable interactions, but also provides a versatile tool-

box for studying equilibrium and dynamical properties of mobile impurities interacting

with a many-body environment [Spethmann et al., 2012; Koschorreck et al., 2012;

Chin et al., 2010].

The concept of polarons is essential to understand several solid state systems in-

cluding ionic crystals, polar semiconductors [Crawford and Slifkin, 2013] and has been

proposed a possible mechanism of high-temperature superconductivity [Devreese, 2007;

Salje et al., 2005]. More recently, the idea of polaronic dressing has been extended

to doped antiferromagnetic Mott insulators [Dagotto, 1994] and magnetic semiconduc-

tors [Kaminski and Sarma, 2002]. By now polarons emerged as a key theoretical tool to

describe electron transport in condensed matter physics and chemistry [Appel, 1968;

Emin, 2013; Kuper and Whitfield, 1962; Devreese, 2015], as well as to understand

the behaviour of atomic impurities in ultracold quantum gases [Chikkatur et al., 2000;

Schirotzek et al., 2009; Palzer et al., 2009; Kohstall et al., 2012; Koschorreck et al., 2012;

Spethmann et al., 2012; Fukuhara et al., 2013a; Scelle et al., 2013; Cetina et al., 2015;

Massignan et al., 2014; Jørgensen et al., 2016; Hu et al., 2016a; Cetina et al., 2016],

and also been fruitfully employed to describe electrons on the surface of liquid he-

lium [Devreese, 2007; Jackson and Platzman, 1981]..

Among various topics about the polaron, the self-localization has received interest

since 1933. Landau predicted that electrons moving in solids can undergo a self-

localization transition [Landau, 1933a]. The latter takes place when the electron-induced
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distortion of the crystal lattice is strong enough to affect the motion of the electron

itself, confining its wavefunction in space. While the phenomenon of self-localization

attracted attention of several generations of physicists, its existence in various polaron

models is still under an active debate. Several theories predicted the existence of a self-

localization transition in the Fröhlich polaron [Gross, 1959a; Matz and Burkey, 1971b;

Mańka, 1978; Lépine et al., 1979; Luttinger and Lu, 1980b] as well as in related mod-

els such as a polaronic exciton [Sumi, 1977] and an optical polaron in an external

magnetic [Peeters and Devreese, 1982c] or Coulomb potential [Tokuda et al., 1981].

Later, however, the effect had been proven to be a consequence of the approxima-

tions employed rather than an intrinsic property of the polaron Hamiltonian [Lieb, 1977;

Peeters and Devreese, 1982a; Gerlach and Löwen, 1991a; Mishchenko et al., 2000a].

Self-localization has been also predicted for a particle coupled to acoustic phonons

and collective excitations in a Bose-Einstein condensate (BEC) [Toyozawa, 1961;

Sumi and Toyozawa, 1973; Peeters and Devreese, 1985; Wang, 1998; Cucchietti and

Timmermans, 2006a; Kalas and Blume, 2006; Sacha and Timmermans, 2006a; Bruderer

et al., 2008; Tempere et al., 2009a; Roberts and Rica, 2009; Rica and Roberts, 2009;

Casteels et al., 2012; Fantoni, 2012; Boudjemâa, 2014; Shadkhoo and Bruinsma, 2015;

Vlietinck et al., 2015]. Still, recent numerical results reveal a smooth crossover of the

BEC-polaron energy between the weakly- and strongly-coupled regimes, suggesting an

absence of the self-localization transition [Grusdt et al., 2015; Grusdt and Demler, 2016;

Grusdt, 2016; Grusdt and Fleischhauer, 2016; Shchadilova et al., 2016a].

Single-impurity problems constitute an elementary ‘building block’ of strongly-correlated

systems and a convenient starting point to understand their properties. Therefore, a

natural question is: what happens if multiple impurities are simultaneously present in

the system? Due to the impurity-impurity interactions, the physics of the system is

expected to be much richer than a simple ‘linear combination’ of individual impurities. In

the context of solid state physics, where electrons (or holes) interact with each other,

simultaneously through the Coulomb force and via the phonon-mediated interaction, a

two-polaron bound state can arise, commonly known as the bipolaron [Devreese and

Alexandrov, 2009; Devreese, 2007; Kashirina and Lakhno, 2010]. Many theoretical

models exist for the Fröhlich bipolaron, and they can be classified into two kinds: one-
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center and two-center models [Kashirina and Lakhno, 2010]. Both of them reveal that

the correlations between the impurities can significantly reduce the bipolaron energy

and play an important role in the formation of the bound state.

Bipolarons have attracted considerable attention because of their possible role as

an unconventional pairing mechanism for high-temperature superconductivity [Kashirina

and Lakhno, 2010; Alexandrov, 2003]. Due to the possibility to engineer interparticle

interactions, ultracold Bose gases recently became a new testing ground for the bipo-

laron (and multi-polaron) theory. At weak polaronic coupling, the theoretical formalism

provides a precise description of the ground state properties and of the response to

Bragg spectroscopy of ultracold weakly interacting binary mixtures [Tempere and De-

vreese, 2001], to be compared with experiments. In the intermediate coupling regime, it

has been shown that the spatial structure of a bipolaron is that of an axially symmetric

quasi-molecular dimer [Mukhomorov, 2001]. Finally, in the strong coupling region, the

condensate-mediated interaction can lead to not only a bipolaron bound state, but also

the clustering of the impurities [Santamore and Timmermans, 2011]. Novel quantum

phases were predicted in multi-impurities system, e.g. impurity crystal which exhibits

supersolid behavior [Roberts and Rica, 2009] and bubble state of repulsive neutral-

atom impurities [Blinova et al., 2013]. The theory of multi-impurities is also relevant in

the description of optical lattice systems [Bruderer et al., 2007], and spin-wave mod-

els [Fukuhara et al., 2013b].

Even though the polaron constitutes the most paradigmatic – and historically the first –

impurity problem, the ‘family’ of impurity problems is large, comprising many members

of theoretical and experimental relevance. A few examples are illustrated in Fig. 1.1. A

local spin 1/2 impurity coupled to both a bath of harmonic oscillators and a transverse

field can be described by the spin-boson model, well known from the theory of dis-

sipative systems [Leggett et al., 1987]. In the nitrogen-vacancy (NV) center system,

on the other hand, an effective spin S = 1 – formed out of a substitutional N impurity

– interacts with surrounding bath of electron spins (S = 1/2) [De Lange et al., 2012].

Furthermore, a single highly-excited Rydberg atom in a Bose-Einstein condensate can

carry angular momentum that can be perturbed by the surrounding bosons [Dudin and
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Kuzmich, 2012], whereas magnetic impurities interacting with delocalized fermions lead

to the Kondo effect mentioned above.

An impurity problem becomes significantly more involved if the impurity possesses

internal degrees of freedom, such as orbital angular momentum. This situation can be

experimentally realized in molecules rotating in superfluid Helium nanodroplets [Toen-

nies and Vilesov, 2004a] or ultracold gases [Midya et al., 2016a], highly-excited Rydberg

states in Bose-Einstein condensates [Balewski et al., 2013], or in solids, where the

angular momentum is transferred from electrons to the crystal lattice [Stamm et al.,

2007].

1.2 Cold polar molecules

The structural complexity of molecules results in a richer, denser spectrum, as com-

pared to atoms. The rotational and vibrational modes couple to each other, as well

as with the electronic spin and orbital degrees of freedom [Lefebvre-Brion and Field,

2004], giving rise to an intricate phenomenology. Moreover, the ‘molecular’ degrees

of freedom occupy the low-energy part of the energy spectrum, and therefore can be

easily altered by the interactions with the surrounding medium, rendering molecules an

ideal candidate to study novel aspects of many-body physics.

During the last decades, great advances in experimental techniques have allowed

for the cooling of atoms and molecules to ultracold temperature, and for their sub-

sequent precise control. A Bose-Einstein condensate [Dürr et al., 2004], as well

as a degenerate Fermi gas [Regal et al., 2003; Cubizolles et al., 2003] can be ob-

tained combining a number of experimental techniques, among which we mention

Feshbach resonances [Chin et al., 2010], photoassociation [Krems et al., 2009], molec-

ular beam deceleration, and laser cooling [Carr et al., 2009]. The transfer from ex-

cited or only weakly bound molecular states to the lowest rotational and vibrational

state without major losses can be realized using a coherent population transfer tech-
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nique, known as stimulated Raman adiabatic passage (STIRAP) [Ni et al., 2008].This

progress played a key role in numerous applications of cold molecules [Carr et al., 2009;

Krems et al., 2009], from controllable cold chemical reactions, to measurements of

fundamental physical constants, to quantum simulation and quantum information pro-

cessing.

Experiments involving molecules entail completely new features, as compared with

the analogous experiments on atoms: apart from possessing vibrational and rotational

degrees of freedom, molecules may carry electric and magnetic dipole moments. Polar

molecules are characterized by large electric dipole moments associated with rotational

excitations, giving rise to large dipole-dipole interactions between molecules, which

can be manipulated with external electric and microwave fields [Krems et al., 2009;

Lemeshko et al., 2013]. These strong, long-range and anisotropic interactions raise

extremely interesting prospects for cold ensembles of polar molecules as strongly cor-

related systems. While two parallel dipoles repel each other, dipoles aligned along

the collision axis will attract each other, possibly leading to instabilities in a many-body

system, and influencing the collision properties of cold polar molecules [Carr et al., 2009;

Krems et al., 2009]. In addition to this, the long-range dipole-dipole interactions of-

fers the possibility of realizing off-site interactions in the Hubbard Hamiltonian. This

gives rise to novel previously unobserved quantum phenomena, such as checkerboard

solids and two-dimensional supersolids [Sengupta et al., 2005]. Moreover, various self-

assembled quantum structures [Pupillo et al., 2008; Hazzard et al., 2014] arising due to

the competition between short-range contact and long-range dipole-dipole interactions

were discovered. Finally, adding a spin degree of freedom to polar molecules trapped

in an optical lattice allows to construct a complete toolbox for the simulation of any

permutation-symmetric lattice spin model [Micheli et al., 2006].
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1.3 Molecules in superfluid helium

In the 1990s, it was demonstrated that atoms and molecules can be trapped in

helium if the latter forms small superfluid droplets [Toennies and Vilesov, 2004a;

Szalewicz, 2008]. Over the following years, this approach was established as one

of the most convenient ways to study molecular properties. Helium nanodroplets

– sometimes called nanocryostats – cool molecules down to about 0.4 Kelvin and

isolate them from external perturbations [Stienkemeier and Lehmann, 2006]. This

allows to record spectra free of collision and Doppler broadening, as well as to trap

and study otherwise reactive species. Currently, spectroscopy of molecules in helium

droplets represents a large and active field of its own [Toennies and Vilesov, 2004a;

Lemeshko and Schmidt, 2017].

How can this situation be understood from a theoretical point of view? A phenomenolog-

ical approach would describe the rotational spectrum of molecules in superfluid helium

droplets by considering them as free rotors with an effective, higher rotational inertia, to

account for the Helium-impurity interaction. Of course such an approach lacks a micro-

scopical understanding of the mechanism leading to the rotational inertia renormalization.

An alternative approach consists in employing Monte Carlo techniques, to numerically

study a molecule interacting with a finite cluster of helium. Even though many groups

performed sophisticated numerical calculations for several different molecules trapped

inside small and large Hen clusters, which has substantially advanced our understanding

of molecule-superfluid interactions [Szalewicz, 2008], these approaches have some

drawbacks. For instance, due to the computational complexity, Monte Carlo simulations

are not well-suited to study real-time dynamics. Very recently – in 2015 – a fully analytical

theory describing the redistribution of orbital angular momentum in quantum many-body

systems has been introduced by Schmidt and Lemeshko [Schmidt and Lemeshko, 2015;

Lemeshko and Schmidt, 2017], formalizing and rationalizing the concept of a rotor

interacting with a many-body environment by means of the angulon quasiparticle.
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1.4 The angulon quasiparticle

In 2015, it was shown that the problem of angular momentum redistribution between

an impurity and a bosonic environment can be efficiently described in terms of a new

quasiparticle, the angulon. The angulon can be understood as a quantum rotor dressed

by a quantum field of many-body excitations. As schematically illustrated in Fig 3.1,

the angulon is a collective object, characterized by the total angular momentum of the

system, of which it is an eigenstate. Ultracold molecules in optical lattices amount to one

of the most promising platforms for studying many-particle physics in a fully controlled

environment [Moses et al., 2017]. This includes both quantum simulation of condensed-

matter models, see e.g. [Gorshkov et al., 2011; Yan et al., 2013], as well as the study

of novel, previously unexplored phases of matter, e.g. [Cooper and Shlyapnikov, 2009;

Syzranov et al., 2014].

In the quasiparticle language, the renormalization of molecular moments of inertia

is a phenomenon similar to renormalization of the effective mass for electrons moving

in solids [Devreese and Alexandrov, 2009]. The angulon theory allows to describe

strong renormalization for heavy molecules by constructing a quantum many-body

wavefunction similar to the co-rotating ”non-superfluid shell“: if the molecule is rotating

slow enough, some helium atoms ”stick” to it and co-rotate with it [Koch et al., 2018;

Grebenev et al., 2000; Callegari et al., 1999]. On the other hand, weak renormalization

observed for light molecules has been described in terms of the ‘rotational Lamb shift’ –

differential renormalization of molecular states due to virtual phonon excitations carrying

angular momentum.

The angulon theory was able to describe, in good agreement with experiment,

renormalization of rotational constants [Lemeshko and Schmidt, 2017; Shchadilova et al.,

2016b; Cherepanov and Lemeshko, 2017] and laser-induced dynamics [Shepperson

et al., 2017b; Shepperson et al., 2017a] of molecules in superfluid helium nanodroplets.

The angulon theory offers a way to study the impurity properties with rotational degrees

of freedoms. The studies have shown novel phenomena the rotating impurity presents

in external field [Redchenko and Lemeshko, 2016b; Yakaboylu and Lemeshko, 2017;

Rzadkowski and Lemeshko, 2018; Cherepanov et al., 2019].
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Since the coupling in angular space follow the SO(3) algebra, and as a standard

quasiparticle concept, the angulon quasiparticle requires a series of new theoretical

techniques. In what follows, I will first briefly introduce the basic Fröhlich polaron theory

(chapter 2) and derive the angulon Hamiltonian (chapter 3). In chapter 4, several

variational approaches I developed during my study will be presented. Following it, we

shall discuss the self-localization in angular space and the concept of the biangulon

quasiparticle in chapter 5 and 6, respectively.
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2 The basic Fröhlich polaron theory

2.1 Bogoliubov approximation up to quadratic terms

Quantum gases are used as an excellent test-bed for many-body theory, and are

particularly useful to investigate strong-coupling regimes or strongly correlated regimes

that have remained out of reach in the solid state [Bloch et al., 2008]. The Hamiltonian of

an impurity in a Bose-Einstein condensate can be mapped onto the polaron Hamiltonian

when the Bogoliubov approximation is valid [Cucchietti and Timmermans, 2006b; Sacha

and Timmermans, 2006a; Tempere et al., 2009a]. The polaronic effects comes about

through the coupling of the impurity with the Bogoliubov excitations.

The Hamiltonian of a single atomic impurity in the presence of a Bose gas is given

by

H =
p2I
2m

+
∑︂
k

ϵka
+
k ak+

1

2

∑︂
k,k′,q

[︁
UBB(q)a

+
k′−qa

+
k+qakak′

]︁
+
∑︂
k′,q

[︁
UIB(q)ρq(q)a

+
k′−qak′

]︁
. (2.1)

The first term represents the kinetic energy of the “impurity” atom with mass m. The

operator â†k, âk create and annihilate a boson with mass mB, wave number k, and energy

ϵk = (ℏk)2/(2mB) − µ where µ is the chemical potential. These bosons interact, and

UBB(q) is the Fourier transform of the boson-boson interaction potential. The interaction

between the bosonic atoms and the impurity atom is described by a potential UIB(q)

coupling the boson density to the impurity density ρ̂I(q), which can be expressed as

a function of the impurity position operator r̂. The crucial point of the theory now is to

use the Bogoliubov approximation, i.e. substitute ak = a0δk,0 +
∑︁

k ̸=0 ak into (2.1), and
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neglect the cubic and quartic terms in ak,

H =
p2I
2m

+ ϵ0a
+
0 a0 +

∑︂
k ̸=0

ϵka
+
k ak

+
1

2

∑︂
k ̸=0

UBB(k)
(︁
a+0 a

+
0 a0a0 + 4a+0 a

+
k a0ak + a+0 a

+
0 aka−k + a+k a

+
−ka0a0

)︁
+
∑︂
k ̸=0

UIB(k)ρI(k)
(︁
a+0 a0 + a+k a0 + a+0 ak

)︁
+
∑︂
k,q ̸=0

UIB(k − q)ρI(k − q)a+q ak. (2.2)

In the last term, we have replaced the k′−q as q and k′ as k. It is worth to mention that the

potential UIB(k− q) and the density ρI(k− q) are the functions of the difference between

k and q. Under Bogoliubov approximation, a+0 and a0 can be replaced with
√
N , but

for high accuracy, the quadratic term need to be kept: a+0 a
+
0 a0a0 = N2 − 2N

∑︁
k ̸=0 a

+
k ak.

Now we have

H =
p2I
2m

+ ϵ0N +
∑︂
k ̸=0

ϵka
+
k ak +

1

2

∑︂
k ̸=0

[︁
UBB(k)(N

2 − 2Na+k ak)
]︁

+
1

2

∑︂
k ̸=0

UBB(k)
(︁
4Na+k ak +Naka−k +Na+k a

+
−k

)︁
+ UIB(0)ρI(0)N

+
∑︂
k ̸=0

UIB(k)ρI(k)
(︂√

Na+k +
√
Nak

)︂
+
∑︂
k,q ̸=0

UIB(k − q)ρI(k − q)a+q ak

= E0 +
∑︂
k ̸=0

E1A1 +
∑︂
k ̸=0

E2A2 +
∑︂
k ̸=0

E3

√
NA3 +

∑︂
k,q ̸=0

E3A4, (2.3)

where

E0 =

(︃
p2I
2m

+ ϵ0N +
1

2
UBB(0)N

2 + UIB(0)ρIN(0)

)︃
, (2.4a)

E1 = ϵk + UBB(k)N, (2.4b)

E2 =
1

2
UBB(k)N, (2.4c)

E3 = UIB(k − q)ρI(k − q), (2.4d)

A1 = a+k ak, (2.4e)

A2 = aka−k + a+k a
+
−k, (2.4f)

A3 = a+k + ak, (2.4g)

A4 = a+q ak. (2.4h)
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To diagonalize the Hamiltonian, we apply a Bogoliubov rotation which means substi-

tuting

ak = ukbk + v∗−kb
+
−k, a−k = u−kb−k + v∗kb

+
k (2.5)

and their complex conjugates into Hamiltonian (3). We calculate the transformation

assuming the symmetry between k and −k, we can separate the results of trans-

formation as diagonal terms and off-diagonal terms with the help of [bi, b
+
j ] = δij,

[bi, bj] = [b+i , b
+
j ] = 0:

A1d = |v−k|2 +
(︁
|uk|2 + |v−k|2

)︁
b+k bk, (2.6a)

A1o = ukv−kbkb−k + u∗kv
∗
−kb

+
k b

+
−k, (2.6b)

A2d = u∗kv−k + ukv
∗
−k +

(︁
2u∗kv−k + 2ukv

∗
−k

)︁
b+k bk, (2.6c)

A2o = (u2k + v2−k)bkb−k + (u∗2k + v∗2−k)b
+
k b

+
−k, (2.6d)

A3 = (uk + v−k)bk + (u∗k + v∗−k)b
+
k , (2.6e)

A4 = (u∗quk + v−qv
∗
−k)b

+
q bk + u∗qv

∗
−kb

+
q b

+
k + ukv−qbqbk. (2.6f)

Now the Hamiltonian can be rewritten as

H =

[︄
E0 +

∑︂
k ̸=0

E1|v−k|2 +
∑︂
k ̸=0

E2(u
∗
kv−k + ukv

∗
−k)

]︄
+
∑︂
k ̸=0

[︁
E1(|uk|2 + |v−k|2) + E2(2u

∗
kv−k + 2ukv

∗
−k)
]︁
b+k bk

+
∑︂
k ̸=0

E3

√
N
[︁
(uk + v−k)bk + (u∗k + v∗−k)b

+
k

]︁
+
∑︂
k,q ̸=0

E3

[︁
(u∗quk + v−qv

∗
−k)b

+
q bk ++u∗qv

∗
−kb

+
q b

+
k + ukv−qbqbk

]︁
+
∑︂
k ̸=0

{︁[︁
E1ukv−k + E2(u

2
k + v2−k)

]︁
bkb−k +

[︁
E1u

∗
kv

∗
−k + E2(u

∗2
k + v∗2−k)

]︁
b+k b

+
−k

}︁
.

(2.7)

The commutation relations for bk are satisfied if

|uk|2 − |v−k|2 = 1, (2.8)

i.e. if one can write

uk = coshαk, v−k = sinhαk. (2.9)



14

The parameter αk will be chosen in order to make the coefficients of the off-diagonal

terms bkb−k and b+k b
+
−k in the Hamiltonian (2.7) vanish. This condition takes the equations

(ϵk + UBBN)ukv−k +
1

2
UBBN(u2k + v2−k) = 0,

(ϵk + UBBN)u∗kv
∗
−k +

1

2
UBBN(u∗2k + v∗2−k) = 0, (2.10)

Using the properties cosh 2α = cosh2 α + sinh2 α and sinh 2α = 2 coshα sinhα, we find

the equations (2.10) can be solved by choosing

coth 2αk =
cosh 2αk

sinh 2αk

= −ϵk + UBBN

UBBN
= C, (2.11)

To solve out uk and v−k, we square both sides of

u2k + v2−k

2ukv−k

= C, (2.12)

and by taking v2−k = u2k − 1, we have

(2u2k − 1)2

4u2k(u
2
k − 1)

= C2

4u4k − 4u2k + 1

4u4k − 4u2k
= C2

(4− 4C2)u4k − (4− 4C2)u2k + 1 = 0, (2.13)

which is same to

ax2 − ax+ 1 = 0, (2.14)

where a = 4− 4C2 and x = u2k. Its solution is

u2k =
a+

√
a2 − 4a

2a

=
(4− 4C2) + 4C

√
C2 − 1

2(4− 4C2)

=
−C

2
√
C2 − 1

+
1

2

=
ϵk + UBBN

UBBN

1

2
√︂

(ϵk+UBBN)2

(UBBN)2
− 1

+
1

2

=
ϵk + UBBN

2
√︁
ϵ2k + 2ϵkUBBN

+
1

2
. (2.15)

Then we have

uk =

(︃
ϵk + UBBN

2Ek

+
1

2

)︃ 1
2

, (2.16a)

v−k = −
(︃
ϵk + UBBN

2Ek

− 1

2

)︃ 1
2

, (2.16b)
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where

Ek =
√︁
ϵk[ϵk + 2UBB(k)N ]. (2.17)

So we have u∗k = u∗−k = uk = u−k and v∗−k = v∗k = v−k = vk. Now, substitute solutions

(2.16b) into the first line of representation (2.7) and get

E0 +
∑︂
k ̸=0

[︄
(ϵk + UBBN)

(︄
ϵk + UBBN

2
√︁
ϵ2k + 2ϵkUBBN

− 1

2

)︄

−UBBN

⌜⃓⃓⎷(︄ ϵk + UBBN

2
√︁
ϵ2k + 2ϵkUBBN

+
1

2

)︄(︄
ϵk + UBBN

2
√︁
ϵ2k + 2ϵkUBBN

− 1

2

)︄]︄

= E0 +
∑︂
k ̸=0

[︄
(ϵk + UBBN)2

2
√︁
ϵ2k + 2ϵkUBBN

− ϵk + UBBN

2
− UBBN

√︄
(ϵk + UBBN)2

4(ϵ2k + 2ϵkUBBN)
− 1

4

]︄

= E0 +
∑︂
k ̸=0

[︄
(ϵk + UBBN)2 − (ϵk + UBBN)

√︁
ϵ2k + 2ϵkUBBN

2
√︁
ϵ2k + 2ϵkUBBN

−UBBN

√︁
ϵ2k + 2ϵkUBBN + U2

BBN
2 − ϵ2k − 2ϵkUBBN

2
√︁
ϵ2k + 2ϵkUBBN

]︄

= E0 +
∑︂
k ̸=0

[︄
ϵ2k + 2ϵkUBBN + U2

BBN
2 − (ϵk + UBBN)

√︁
ϵ2k + 2ϵkUBBN − U2

BBN
2

2
√︁
ϵ2k + 2ϵkUBBN

]︄

=
p2I
2m

+ ϵ0N +
1

2
UBB(0)N

2 + UIB(0)ρI(0)N +
1

2

∑︂
k ̸=0

[Ek − ϵk − UBB(k)N ]

= E ′
0, (2.18)

After neglect the energy off set, i.e., ϵ0N + 1
2
UBB(0)N

2 + UIB(0)ρI(0)N , we have

E ′
0 =

p2I
2m

+
1

2

∑︂
k ̸=0

[Ek − ϵk − UBB(k)N ] (2.19)

Then, substitute the solutions into the second line of Hamiltonian (2.7) and get

∑︂
k ̸=0

[︄(︄
(ϵk + UBBN)2√︁
ϵ2k + 2ϵkUBBN

− 2UBBN

√︄
(ϵk + UBBN)2

4(ϵ2k + 2ϵkUBBN)
− 1

4

)︄
b+k bk

]︄

=
∑︂
k ̸=0

[︄(︄
(ϵk + UBBN)2√︁
ϵ2k + 2ϵkUBBN

− U2
BBN√︁

ϵ2k + 2ϵkUBBN

)︄
b+k bk

]︄

=
∑︂
k ̸=0

[︄
ϵ2k + 2ϵkUBBN√︁
ϵ2k + 2ϵkUBBN

b+k bk

]︄
=

∑︂
k ̸=0

Ekb
+
k bk. (2.20)
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Then the third line∑︂
k ̸=0

[︄(︄
U

(︄√︄
ϵk + UBBN

2
√︁
ϵ2k + 2ϵkUBBN

+
1

2
−
√︄

ϵk + UBBN

2
√︁
ϵ2k + 2ϵkUBBN

− 1

2

)︄)︄
(b+k + bk)

]︄

=
∑︂
k ̸=0

⎡⎣⎛⎝U
⌜⃓⃓⎷(︄√︄ ϵk + UBBN

2
√︁
ϵ2k + 2ϵkUBBN

+
1

2
−
√︄

ϵk + UBBN

2
√︁
ϵ2k + 2ϵkUBBN

− 1

2

)︄2
⎞⎠ (b+k + bk)

⎤⎦
=

∑︂
k ̸=0

⎡⎢⎣
⎛⎜⎝U

⌜⃓⃓⎷ ϵk + UBBN√︁
ϵ2k + 2ϵkUBBN

− 2

√︄
(ϵk + UBBN)2 − (ϵ2k + 2ϵkUBBN)

4(ϵ2k + 2ϵkUBBN)

⎞⎟⎠ (b+k + bk)

⎤⎥⎦
=

∑︂
k ̸=0

[︄(︄
U

√︄
ϵk + UBBN√︁
ϵ2k + 2ϵkUBBN

− UBBN√︁
ϵ2k + 2ϵkUBBN

)︄
(b+k + bk)

]︄

=
∑︂
k ̸=0

[︄(︄
UIBρI

√︃
ϵkN

Ek

)︄
(b+k + bk)

]︄
.

(2.21)

The fourth line of (2.7) becomes∑︂
k,q ̸=0

UIB(k − q)ρI(k − q)
[︁
(uquk + vqvk)b

+
q bk + uqvkb

+
q b

+
k + ukvqbqbk

]︁
(2.22)

Specially, if UIB(k − q)ρI(k − q) both are even or odd functions, i.e. UIB(∆k)ρI(∆k) =

UIB(−∆k)ρI(−∆k), then we have∑︂
k,q ̸=0

UIB(k − q)ρI(k − q)
[︁
(uquk + vqvk)b

+
q bk + uqvkb

+
q b

+
k + ukvqbqbk

]︁
=

∑︂
k,q ̸=0

UIB(k − q)ρI(k − q)
[︂
(uquk + vqvk)b

+
q bk

+
1

2
(uqvk + ukvq)b

+
q b

+
k +

1

2
(uqvk + ukvq)bqbk

]︂
=

∑︂
k,q ̸=0

[︂
V

(1)
qk b

+
q bk + V

(2)
qk

(︁
b+q b

+
k + bqbk

)︁]︂
. (2.23)

where

V
(1)
qk = UIB(k − q)ρI(k − q)(uquk + vqvk), (2.24a)

V
(2)
qk =

1

2
UIB(k − q)ρI(k − q)(uqvk + ukvq). (2.24b)

Then we have a simplified representation of the Hamiltonian:

H = E ′
0 +

∑︂
k ̸=0

Ekb
+
k bk +

∑︂
k ̸=0

[︄(︄
UIBρI

√︃
ϵkN

Ek

)︄
(b+k + bk)

]︄
+

∑︂
k,q ̸=0

[︂
V

(1)
q,k b

+
q bk + V

(2)
q,k (b

+
q b

+
k + bqbk)

]︂
, (2.25)
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2.2 The Fröhlich Hamiltonian

The concept of polaron is first proposed by L. D. Landau [Landau, 1933b]. Nowadays

it is a well-known concept in solid-state physics, where it represents the quasiparticle

that consists of an electron in a polar or ionic lattice, dressed with the self-induced

polarization cloud, which is described by the lattice vibrations or phonons [Devreese,

2007]. In the context of ultracold atomic gases the electron is replaced by an impurity

atom, and the role of the phonons is played by the Bogoliubov excitations of the

condensate.

If the spatial extension of a polaron is large compared to the lattice parameter of

the solid, the latter can be treated as a polarizable continuum. This is the case of a

Fröhlich (large) polaron. The polarization, carried by the longitudinal optical phonons is

represented by a set of quantum oscillators with frequency ωLO, the long-wavelength

phonon frequency, and the interaction between the charge and the polarization field

is linear in the field. When the self-induced polarization caused by an electron or hole

becomes of the order of the lattice parameter, a Holstein (small) polaron can arise. As

distinct from large polarons, small polarons are governed by short-range interactions. In

the following, we will focus on the large polaron theory.

The Fröhlich Hamiltonian is

H =
p2

2mb

+
∑︂
k

ℏωLOâ
†
kâk +

∑︂
k

(Vkâke
ik·r + V ∗

k â
†
ke

−ik·r) (2.26)

where r is the position corrdinate operator of the electron with band mass mb, p is its

canonically conjugate momentum operator; â†k and âk are the creation and annihilation

operators for longitudinal optical phonons of wave vector k and energy ℏωLO. The Vk

are Fourier components of the electron-phonon interaction

Vk = −iℏωLO

k
(
4πα

V
)
1
2 (

ℏ
2mbωLO

)
1
4 (2.27)

The strength of the electron-phonon interaction is expressed by a dimensionless coupling

constant α, which is defined as:

α =
e2

ℏ

√︃
mb

2ℏωLO
(
1

ϵ∞
− 1

ϵ0
) (2.28)

Here, ϵ∞ and ϵ0 are the electronic and the static dielectric constant of the polar crystal,

respectively. In deriving the form of Vk, expressions (2.27) and (2.28), it was assumed
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that (i) the spatial extension of the polaron is large compared to the lattice parameter of

the solid (“continuum” approximation), (ii) spin and relativistic effects can be neglected,

(iii) the band-electron has parabolic dispersion, (iv) in line with the first approximation it is

also assumed that the LO-phonons of interest for the interaction, are the long-wavelength

phonons with constant frequency ωLO.

2.3 The Lee-Low-Pines transformation approach

Lee, Low and Pines introduce a canonical transformation when they studied the motion

of slow electrons in a polar crystal [Lee et al., 1953]. Using this approach, the Hamilto-

nian can be transformed from the laboratory frame to a moving frame of the impurity.

With this approach, one can obtain a variational upper bound for the ground-state

energy.

The wave equation corresponding to the Fröhlich Hamiltonian (2.26) is

Hϕ = Eϕ (2.29)

The total momentum of the system is a constant of motion because it commutes with

the Hamiltonian (2.26)

Pop =
∑︂
k

ℏkâ†kâk + p (2.30)

where p = −iℏ∇ is the momentum of the electron. Indeed, we have

[p, H] =
∑︂
k

ℏk(Vkâkeik·r + V ∗
k â

†
ke

−ik·r);[︄∑︂
k

ℏkâ†kâk, H

]︄
= −

∑︂
k

ℏk(Vkâkeik·r + V ∗
k â

†
ke

−ik·r)

[Pop, H] =

[︄∑︂
k

ℏkâ†kâk + p, H

]︄
= 0 (2.31)

Therefore, the operators H and Pop have a common set of basis functions: Hϕ = Eϕ

and Popϕ = Pϕ. It is possible to transform to a representation in which Pop becomes

a constant number P, and in which the Hamiltonian no longer contains the electron

coordinates. The canonical transformation required is ϕ = S1ψ, where

S1 = exp

[︄
− i

ℏ
(
∑︂
k

ℏkâ†kâk) · r

]︄
(2.32)
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With this transformation, one arrives at

H ′ = S−1
1 HS1 =

(︂
P−

∑︁
k ℏkâ

†
kâk

)︂
2mb

+
∑︂
k

ℏωLOâ
†
kâk +

∑︂
k

(Vkâk + V ∗
k â

†
k), (2.33)

where p is set to its eigenvalue P . The aim is to calculate for a given momentum P

the lowest eigenvalue E(P ) of the Hamiltonian (2.33). The canonical transformation

(2.32) formally eliminates the electron operators from the Hamiltonian. LLP use further a

variational method of calculation. The trial wave function is chosen as ψ = S2ψ0, where

ψ is the eigenstate of the unperturbed Hamiltonian with no phonons present (vacuum

state). Specifically, ψ0 is defined by âkψ0 = 0, and the second canonical transformation:

S2 = exp

[︄∑︂
k

(a†kfk − akf
∗
k )

]︄
, (2.34)

where fk are treated as variational functions and will be chosen to minimize the energy.

The physical significance of Eq. (2.34) is that it “dresses” the electron with the virtual

phonon field, which describes the polarization. Viewed as a unitary transformation, S2

is a displacement operator on âk and â†k. With virtue of transformation (2.34), we obtain:

S−1
2 H ′S2 =

[︂(︂
P−

∑︁
k ℏkâ

†
kâk

)︂
−
∑︁

k ℏk|fk|2 −
∑︁

k ℏk
(︂
â†kfk + akf

∗
k

)︂]︂2
2mb

+
∑︂
k

ℏωLO

(︂
hata†kâk + |fk|2 + â†kfk + âkf

∗
k

)︂
+

∑︂
k

[︂
Vk(ak + fk) + V ∗

k (a
†
k + f ∗

k )
]︂

= H0 +H1 (2.35)

where

H0 =

[︂
P−

∑︁
k ℏkâ

†
kâk

]︂2
+ [
∑︁

k ℏk|fk|2]
2

2mb

+
∑︂
k

[Vkfk + V ∗
k f

∗
k ]

+
∑︂
k

|fk|2
[︃
ℏωLO − ℏk ·P

mb

+
ℏ2k2

2mb

]︃
+

ℏ2

mb

∑︂
k

kâ†kâk
∑︂
k′

k′|fk′ |2

+

{︄∑︂
k

ak̂

[︄
Vk + f ∗

k

(︄
ℏωLO − ℏk ·P

mb

+
ℏ2k2

2mb

+
ℏ2k
mb

∑︂
k′

k′|fk′|2
)︄]︄

+H.c.

}︄
+

∑︂
k

ℏωLOâ
†
kâk (2.36)

H1 =
∑︂
k,k′

ℏ2k · k′

2mb

(︂
âkâk′f

∗
kf

∗
k′ + 2â†kâk′fkf

∗
k′ + â†kâ

†
k′fkfk′

)︂
+

∑︂
k,k′

ℏ2k · k′

2mb

(︂
â†kâkâk′f

∗
k′

)︂
(2.37)
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With the help of âkψ0 = 0, we can minimize the energy corresponding to (2.36) by

imposing
δE

δfk
= 0,

δE

δf †
k

= 0 (2.38)

The H0 is diagonal in a representation in which â†kâk is diagonal. Therefore, the vari-

ational calculation by LLP is equivalent to the use of (2.36) as the total Hamiltonian

provided f ∗
k sovled by minimization equations. An estimate of the accuracy of the

LLP variational procedure was obtained by an estimate of the effect of H1 using a

perturbation theory.

As a summary, Bogoliubov transformation and LLP transformation were introduced

in this chapter. These two methods are widely used to diagonalize Hamiltonians, which

yields the stationary solutions of the corresponding Schrödinger equation. In what

follows, we are going to apply these concepts to the ”angulon problem” - a rotating

impurity coupled to a many-body environment.
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3 The angulon Hamiltonian

3.1 The concept of angulon quasiparticle

Figure 3.1: Schematic illustration of the angulon: a quantum rotor dressed by a quantum

field (adapted from [Schmidt and Lemeshko, 2015]). (a) The interaction of a quan-

tum rotor with a quantum many-body system explicitly depends on the rotor angular

coordinates, (θ̂, ϕ̂), in the laboratory frame. (b) The anisotropic rotor-boson interac-

tion is defined in the rotor coordinate frame r. (c) Feynman diagrams for the angulon

quasiparticle.

The angulon can be understood as a quantum rotor dressed by a quantum field of

many-body excitations. As schematically illustrated in Fig 3.1, the angulon is a collective

object, characterized by the total angular momentum of the system, of which it is an

eigenstate. In 2017, it has been shown that the angulon quasiparticles are indeed

formed out of molecules rotating in superfluid 4He [Lemeshko, 2017]. One of the key

predictions of the angulon theory are the so called ‘angulon instabilities’ [Lemeshko

and Schmidt, 2017; Schmidt and Lemeshko, 2015; Schmidt and Lemeshko, 2016]

occurring at some critical value of the molecule-superfluid coupling, where the angulon
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quasiparticle becomes unstable and one or a few quanta of angular momentum are

transferred from the impurity to the superfluid. Further research [Lemeshko, 2017;

Cherepanov and Lemeshko, 2017; Shepperson et al., 2017b] has verified that the pre-

dictions of the angulon theory are in very good agreement with experiment for a broad

range of molecular impurities, and can be used to explain the anomalous broadening of

the spectroscopic lines observed for molecules in superfluid helium nanodroplets [Shep-

person et al., 2017a]. Very recently, the concept of rotating quasiparticle was also

tackled through a different approach based on the path-integral formalism [Bighin and

Lemeshko, 2017].

The angulon is quite different from other impurities: as opposed to translations, quan-

tum rotations in three dimensions are described by a non-Abelian SO(3) algebra and

possess a discrete energy spectrum. This leads to a series of novel, highly nontriv-

ial phenomena [Yakaboylu and Lemeshko, 2017; Redchenko and Lemeshko, 2016b;

Shepperson et al., 2017b; Yakaboylu et al., 2017; Midya et al., 2016a; Li et al., 2017]:

for instance, a strong screening can take place in the presence of a neutral polar-

izable environment [Yakaboylu and Lemeshko, 2017], and molecular impurities with

field induced pendular motion can form spherical harmonic librators, whose pendular

motion is altered by the field of phonon excitations. [Redchenko and Lemeshko, 2016b].

The first-principle Hamiltonian which describes the systems in terms of bosonic atoms

interacting with a single molecule can be written as

Ĥ = Ĥmol + Ĥbos + Ĥmol−bos (3.1)

where the three terms are, respectively, the Hamiltonians of the isolated molecule, the

unperturbed bath of bosons, and the interaction between molecule and bosonic bath. In

what follows we describe each term in detail.

3.2 Molecular Hamiltonian

Because of their much larger mass, the nuclei in a molecule move much slower than

electrons. This implies that the electrons can nearly immediately adjust their positions

to the new nuclear configuration when the nuclei move. Although the electronic wave

functions ψ(r, R) depend parametrically on the internuclear distance R they are barely
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affected by the velocity of the moving nuclei. The kinetic energy of the nuclear motion

Ekin = 1
2
Mv2 is small compared to that of the electrons. We therefore write the total

Hamiltonian of a diatomic molecule as the sum Hmol = H0 + Tk of the Hamiltonian

H0 of the rigid molecule and Tk of the kinetic energy of the nuclei. Since the latter is

small compared to the total energy of a rigid molecule we can regard Tk as a small

perturbation of Hmol. In this case the total wave function

ψ(ri,Rk) = χ(Rk) · Φ(ri,Rk) (3.2)

can be written as the product of the molecular wave function χ(Rk) (which depends on

the positions Rk of the nuclei), and the electronic wave function Φ(ri,Rk) of the rigid

molecule at arbityary but fixed nuclear positions Rk, where the electron coordinates ri

are the variables. The total energy is the sum of the energy the rigid molecule in the

nth electronic state and the kinetic energy (Evib + Erot) of the nuclei. The molecular

electronic energy depends only on the internuclear distance, and not on the angles,

therefore it is spherically symmetric. Moreover, interaction s with the environment are

rarely strong enough to disturb the electronic spectrum of the molecule. Therefore,

within the Born-Oppenheimer approximation Eq.(3.2), we set the electron wavefunction

Φ(ri,Rk) in its ground state, and focus exclusively on the rotational degrees of freedom.

The wave function χ(R) = χ(R, θ, φ) depends on all three variables, including the angles

θ and φ. We therefore try the product ansatz

χ(R, θ, φ) = S(R) · Y (θ, φ) (3.3)

The radial function S(R) depends on the radial form of the potential, while the spherical

surface harmonics Y (θ, φ) are solutions for all spherically symmetric potentials, inde-

pendent of their radial form. A diatomic molecule with the atomic masses MA and MB

can rotate around any axis through the center of mass perpendicular to the internuclear

axis with the angular velocity ω. Its rotational energy is then

Erot =
1

2
Iω2 = J2/(2I) (3.4)

Here I =MAR
2
A+MBR

2
B =MR2 and M =MAMB/(MA+MB) is the moment of inertia

of the molecule with respect to the rotational axis and |J | = Iω is its rotational angular

momentum. For a rotation around the internuclear axis the contribution of the nuclei to

the moment of inertia is vanishingly small, because they lie on this axis. The contribution
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of the electron shell is also small because of the small electron mass. Therefore, the

rotational energy for a rotation around this axis is very large and cannot be excited at

thermal energies. Since the square of the angular momentum |J |2 = J(J + 1)ℏ2 can

take only discrete values that are determined by the rotational quantum number J , the

rotational energies of a molecule in its equilibrium position with an internuclear distance

Re are represented by a series of discrete values

Erot =
J(J + 1)ℏ2

2MR2
e

(3.5)

In the spectroscopic literature, the rotational term values F (J) = E(J)/(hc) are used

instead of the energies, then we have

Frot(J) =
J(J + 1)ℏ2

2hcMR2
e

= BeJ(J + 1) (3.6)

with the rotational constatn

Be =
ℏ

4πcMR2
e

(3.7)

which is determined by the reduced mass M and the equilibrium nuclear distance Re.

For historical reasons one writes Be in units of cm−1 instead of m−1.

3.3 Boson Hamiltonian

Consider a system of interacting bosons without a molecule being present. Its Hamilto-

nian can be written in momentum representation as:

Ĥbos =
∑︂
k

ϵ(k)â†kâk +
1

2

∑︂
k,k′,q

Vbb(q)â
†
k′−qâ

†
k′+qâk′ âk (3.8)

The first term of Eq. (3.8) describes the kinetic energy of bosons, ϵ(k) = k2/(2m),

with m the bosonic mass. The second term gives the boson-boson interactions, whose

strength in momentum space is given by Vbb(q). Note that in our convention the operators

âk and âk are not dimensionless, but carry a dimension of [Length]−3. Furthermore,

since the Fourier transform involves three-dimensional integration in real space, the

momentum-dependent interaction potential Vbb(q) carries a unit of [Energy]×[Length]3.

In the region of weakly-interacting Bose gas, with the Bogoliubov approximation, âk =

(2π)3ϕ̂0δk,0 + ϕ̂k ̸=0, we can obtain

Ĥbos =
∑︂
k

[ϵ(k) + Vbb(k)n]ϕ̂
†
kϕ̂k +

n

2

∑︂
k

Vbb(k)
[︂
ϕ̂
†
kϕ̂

†
−k + ϕ̂kϕ̂−k

]︂
(3.9)
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As discussed in chapter 2, by applying Bogoliubov transformation of the field opera-

tors [Pitaevskii and Stringari, 2016]

ϕ̂k = ukb̂k + v∗−kb̂
†
−k (3.10)

ϕ̂
†
k = u∗kb̂

†
k + v∗−kb̂−k (3.11)

we can rewrite the (3.9) as (up to a constant shift)

Ĥbos =
∑︂
k

ω(k)b̂
†
kb̂k (3.12)

where ω(k) ≡ ω(k) is given by

ω(k) =
√︁
ϵ(k)[ϵ(k) + 2Vbb(k)n] (3.13)

Thus, the Bogoliubov transformation allows to describe the bosonic systems in terms of

non-interacting Bogoliubov quasiparticles with a dispersion relation ω(k). Since we are

interested in rotating impurities and the angular momentum properties of the condensate,

it is much more convenient to work in the angular momentum representation for the

single-particle basis instead of the Cartesian one. Hence we perform a single-particle

basis change which yields the following transformation of the creation operators:

b̂
†
kλµ =

k

(2π)3/2

∫︂
dΦkdΘk sinΘkb̂

†
ki

−λYλµ(Θk,Φk) (3.14)

b̂
†
k =

(2π)3/2

k

∑︂
λµ

b̂
†
kλµi

λY ∗
λµ(Θk,Φk) (3.15)

Here, the quantum numbers λ and µ label the angular momentum of the bosonic

excitation and its projection onto the laboratory-frame Z-axis, respectively.

3.4 Molecule-boson interaction

The interaction between an impurity and the bosonic gas is given in the most general

form by

Ĥmol−bos =
∑︂
k,q

V̂ mol−bos(q, ϕ̂, θ̂, γ̂)ρ̂(q)â
†
k+qâk (3.16)

where ρ̂(q) = e−iq·r is the Fourier-transformed density of an impurity which is situated

at position r, the corresponding density in real space is given by a Dirac δ-function.

The fact that anisotropic molecular geometry gives rise to anisotropic molecule-boson
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interactions is represented in Eq. (3.16) by the operator V̂ mol−bos(q, ϕ̂, θ̂, γ̂) which ex-

plicitly depends on the orientation of the molecule in space, as given by the Euler

angle operators (ϕ̂, θ̂, γ̂). Now, we define two coordinate frames: the laboratory frame,

(X, Y, Z), in which the bosonic atoms are at rest when the molecule is absent, and

the molecular one, (x, y, z), used to define the microscopic molecule-boson interaction

potential. The interaction potential between a molecule and an atom is a function of the

spherical coordinates in the molecular frame, (θr, ϕr). Such a potential can be expanded

over the spherical harmonics as:

Vmol−bos(r) =
∑︂
λ

Vλ(r)Yλ0(θr, ϕr) (3.17)

In order to transform Eq. (3.17) to the laboratory frame, where the bosonic part of the

Hamiltonian is defined, we use Wigner rotation matrices [Varshalovich et al., 1988b]:

Yλ0(θr, ϕr) =
∑︂
µ

D̂
λ

µ0(ϕ̂, θ̂, γ̂)Yλµ(ΘR,ΦR) (3.18)

For a linear molecule, the third angle, γ̂, can be set to zero. In this case, we obtain

V̂ mol−bos(r, θ̂, ϕ̂) =
∑︂
λµ

√︃
4π

2λ+ 1
Vλ(r)Yλµ(ΘR,ΦR)Ŷ

∗
λµ(θ̂, ϕ̂) (3.19)

Here r ≡ (r,ΘR,ΦR) gives the boson’s position in the laboratory-frame coordinates,

whose axis’ orientation is measured by the operators (θ̂, ϕ̂). The corresponding Fourier

transform is

V̂ mol−bos(k, θ̂, ϕ̂) =
∑︂
λµ

(2π)3/2i−λV̂ λ(k)Yλµ(Θk,Φk)Ŷ
∗
λµ(θ̂, ϕ̂) (3.20)

Then we apply the Bogoliubov approximation and transformation to Eq. (3.20) and

obtain:

Ĥmol−bos = nV̂ mol−bos(k = 0, θ̂, ϕ̂) +
√
n
∑︂
k

V̂ mol−bos(k, θ̂, ϕ̂)

√︄
ϵ(k)

ω(k)
(b̂

†
k + b̂−k) (3.21)

In the end, by substituting into Eq. (3.21) the spherical representation of the boson

operators, Eq. (3.14), and after integrating over angles, we finally have

Ĥmol−bos =
∑︂
kλµ

Uλ(k)
[︂
Ŷ

∗
λµ(θ̂, ϕ̂)b̂

†
kλµ + Ŷ λµ(θ̂, ϕ̂)b̂kλµ

]︂
(3.22)

where

Uλ(k) =

[︃
8nk2ϵ(k)

ω(k)(2λ+ 1)

]︃1/2 ∫︂
drr2Vλ(r)jλ(kr) (3.23)
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For the case of a linear-rotor molecule, we obtain the total Hamiltonian as

Ĥ = BĴ
2
+
∑︂
kλµ

ω(k)b̂
†
kλµb̂kλµ +

∑︂
kλµ

Uλ(k)
[︂
Ŷ

∗
λµ(θ̂, ϕ̂)b̂

†
kλµ +H.c.

]︂
(3.24)

It is important to note that although we have initially derived the specific form of ω(k)

and Uλ(k) in for the case of an ultracold molecule coupled to a weakly-interacting BEC,

this Hamiltonian can be used to study the transfer of angular momentum between a

localized impurity and a bath of harmonic oscillators in the context of other experiments.
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4 Variational approaches to quantum impurities

Over the years, the polaron became one of the standard, textbook models of condensed-

matter physics, which has been studied using (and thereby spurred the development

of) many theoretical approaches. Among those are perturbative techniques [Hubač

and Wilson, 2010], canonical transformations [Lee et al., 1953], the Landau-Pekar

strong-coupling approach [Casteels et al., 2011b], Feynman’s variational path integral

method [Feynman, 1955b; Tempere et al., 2009a], as well as numerical techniques

based on Monte Carlo [Becker et al., 1983; Peeters and Devreese, 1982c] and renor-

malization group [Grusdt and Demler, 2015a].

Notably, the polaron concept has proven useful far beyond the original physics

problem (electrons in crystals), and was successfully applied to systems as diverse

as electrons on the surface of liquid helium [Devreese, 2007; Jackson and Platzman,

1981], doped antiferromagnetic Mott insulators [Dagotto, 1994], magnetic semiconduc-

tors [Kaminski and Sarma, 2002], and ultracold gases [Tempere et al., 2009a]. In the

quasiparticle picture, the polaron accounts for the effect of the many-body environment

on the quantum impurity by means of the renormalisation of the particle parameters

– such as its energy and mass. In such a way, the effect of ∼ 1023 particles of the

bath can be understood in terms of a handful of renormalised parameters – a drastic

simplification, which in many cases allows to obtain extremely accurate results.

All quantum impurities described by the Fröhlich polaron model are structureless

(such as electrons) or can be considered structureless (such as atoms whose electronic

structure is not perturbed by their surroundings). A compelling question is whether

molecules and – in general – more complex quantum systems can be described as

quantum impurities using the quasiparticle approach. Recently, a new quasiparticle, the

angulon, has been introduced to describe a molecule interacting with a bosonic many-
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body field, such as a superfluid [Schmidt and Lemeshko, 2015; Lemeshko and Schmidt,

2017; Lemeshko, 2017]. While angulons can be thought of as “rotational analogues”

of polarons, there are several important differences. First, as opposed to translational

motion, rotations in three-dimensional space are described by a non-Abelian SO(3)

algebra, which leads to intricate theoretical machinery of angular momentum addition.

Furthermore, anisotropic molecular geometry results in anisotropic impurity-boson

coupling, which renders many-body interactions explicitly dependent on the molecular

orientation. The unique properties of such a system motivated the introduction of new

analytical [Lemeshko and Schmidt, 2017; Bighin and Lemeshko, 2017; Yakaboylu et al.,

2018] and numerical techniques [Bighin et al., 2018a], which can be applied to the

Fröhlich polaron as well.

In this chapter, we introduce new variational methods for the Fröhlich polaron and for

the angulon. In particular, we introduce two variational approaches based on a single-

phonon expansion either over the ground-state or after a canonical transformation,

leading to two different non-perturbative descriptions of the Fröhlich polaron, as well

as a diagonalization technique based on the well-known Pekar ansatz [Pekar, 1946b].

We dub this new technique as ‘Pekar diagonalization’. The results we obtain are

benchmarked against Feynman’s all-coupling theory [Feynman, 1955a] and against the

Pekar ansatz [Pekar, 1946b].

4.1 Fröhlich Hamiltonian

The Fröhlich Hamiltonian, describing an impurity immersed in a bosonic bath, is given

by:

ĤF =
P̂

2

2m
+
∑︂
k

ω(k)b̂
†
kb̂k +

∑︂
k

V (k)
(︂
e−ik·x̂b̂

†
k + eik·x̂b̂k

)︂
. (4.1)

Here the first term represents the kinetic energy of an impurity with mass m. The

second term, with
∑︁

k ≡
∫︁
d3k/(2π)3, corresponds to the kinetic energy of the bosons,

as parametrised by the dispersion relation ω(k). The bosonic creation and annihilation

operators, b̂
†
k and b̂k, obey the commutation relation [b̂k, b̂

†
k′ ] = (2π)3δ(k−k′). Finally, the

last term is the impurity-bath interaction, where V (k) determines the coupling strength,

and x̂ is the position operator of the impurity with respect to the laboratory frame.
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In what follows, we use Fröhlich’s original parameters, i.e. a constant dispersion

relation for gapped optical phonons, ω(k) = ω0, and the coupling strength,

V (k) =

√︃
23/2πα

k2
, (4.2)

α being the electron-phonon coupling constant in units of m = ω0 = ℏ ≡ 1. The

Hamiltonian of Equation (4.1) possesses translational symmetry, which follows from the

fact that the total linear momentum of the system,

Π̂ = P̂+
∑︂
k

kb̂
†
kb̂k , (4.3)

commutes with the Hamiltonian (4.1). Conservation of the total linear momentum allows

us to label the polaron quasiparticle with the momentum quantum number.

4.2 Single phonon expansion

Inspired by the so-called ‘Chevy ansatz’, originally introduced for an imbalanced Fermi-

gas [Chevy, 2006a; Ngampruetikorn et al., 2012; Lan and Lobo, 2014], we expand the

state vector up a single phonon excitation. Taking into account the conservation of the

total linear momentum, we write down the following variational ansatz:

|ψp⟩ =
√︁
Zp |p⟩ |0⟩+

∑︂
k

βp(k) |p− k⟩ b̂
†
k |0⟩ , (4.4)

where
√︁
Zp and βp(k) are variational parameters with the normalization condition√︁

Zp′
∗√︁

Zp +
∑︁

k βp′(k)∗βp(k) = δ(p′ − p). Minimization of the functional ⟨ψp′| ĤF −

E |ψp⟩ with respect to the parameters
√︁
Zp

∗
and βp(k)

∗ yields the following coupled

equations

∂F

∂
√︁
Zp

∗ = |Zp|
(︃
p2

2m
− E

)︃
+
∑︂
k

βp(k)V (k) = 0, (4.5)

∂F

∂βp(k)∗
= βp(k)

(︄
(p− k)2

2m
+ ω(k)− E

)︄
+
√︁
ZpV (k) = 0. (4.6)

If we substitute βp(k) from Equation (4.6) into Equation (4.5), we obtain the Dyson

equation

E =
p2

2m
− Σp(E) , (4.7)
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Figure 4.1: (a) The polaron energy as a function of the Fröhlich coupling constant,

α, for the Chevy ansatz, Eq.(4.4) (red solid line), coherent state on top of single

phonon excitation, Eqs.(4.12) and (4.16) (black dotted line), and the Feynman variational

method [Feynman, 1955a] (orange dash-dotted line). (b) Renormalization of the polaron

mass as a function of the Fröhlich coupling constant, α, for the Chevy ansatz (red solid

line), coherent state on top of single phonon excitation (black dot line), and the weak

coupling theory [Devreese, 2015] (purple circles). See the text.

which can be solved to obtain the variational energy E. The self-energy is given by

Σp(E) =
∑︂
k

V (k)2

(p− k)2/(2m) + ω(k)− E
, (4.8)
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which can be solved self-consistently. Combining the variational energy E, the nor-

malization condition, Equation (4.5) and Equation (4.6), one can obtain the values of

variational coefficients
√︁
Zp and βp(k).

In the iterative solution to Equation (4.7), the leading-order term is given by E(1) =

p2/(2M), and the second-order term reads E(2) = p2/(2M)− Σp(E
(1)), which matches

the result of second order perturbation theory. Therefore, the variational energy (4.7) is

non-perturbative as it corresponds to resummation over all diagrams describing single-

phonon excitations, see Refs. [Lemeshko and Schmidt, 2017; Bighin and Lemeshko,

2017] for further details.

Figure 4.1 (a) shows the Fröhlich polaron energy as calculated from Equation (4.7). In

1955, Feynman developed a superior all-coupling polaron theory using his path-integral

formalism, and obtained the self-energy and the effective mass of polarons [Feynman,

1955a]. A comparison with Feynman’s all-coupling theory shows that, the Chevy-like

ansatz in the case of the Fröhlich polaron, its effectiveness in determining the ground

state energy is limited to the weak-coupling region. In addition to this, Figure 4.1 (b),

present results for the renormalized polaron mass m∗, defined by

1

m∗ =
∂2E

∂p2

⃓⃓⃓⃓
p=0

. (4.9)

Here, except for very small values of the coupling α, our Chevy-like ansatz deviates

from the classical perturbation-theory result m∗/m = 1+α/6 [Feynman, 1955a], tending

to a constant value for sufficiently large α. The scope of applicability of the present

treatment, however, in the light of the results for the energy presented in Figure 4.1 (a),

should not be extended to that region.

In this section, we have shown that the variational ansatz of Equation (4.4) yields

a good prediction of ground energy in weak coupling region through a simple, fully

analytical calculation. Moreover, working with a variational ansatz makes the underlying

physics clear: the variational coefficient
√︁
Zp is the quasiparticle weight, i.e. a measure

of the overlap between the dressed impurity and a bare particle, whereas the variational

coefficient βp(k) contains information about the occupation of phonon states.
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4.3 Coherent state on top of single phonon excitation

Recently a new variational ansatz has been introduced in order to tackle the angulon

problem [Schmidt and Lemeshko, 2016] in the limit of a slowly-rotating impurity. This

method is based on single phonon excitation expansion after a coherent state transfor-

mation that brings the Hamiltonian to a diagonal form in the limit of a slowly rotating

impurity. Aiming to use this method for the Fröhlich polaron, we start by applying the

Lee-Low-Pines transformation [Lee et al., 1953],

T̂ = exp

(︄
−ix̂ ·

∑︂
k

kb̂
†
kb̂k

)︄
, (4.10)

after which the Fröhlich Hamiltonian then can be written as

Ĥ
′
F = T̂

−1
ĤF T̂ =

1

2m

(︄
P̂−

∑︂
k

kb̂
†
kb̂k

)︄2

+
∑︂
k

ω(k)b̂
†
kb̂k +

∑︂
k

V (k)
(︂
b̂
†
k + b̂k

)︂
, (4.11)

commuting with P̂, i.e., [Ĥ
′
F , P̂] = 0. Then, the corresponding state vector can be written

as a product state,

|Φp⟩ = |φ⟩ ⊗ |p⟩ . (4.12)

A similar approach having been introduced in [Shchadilova et al., 2016b]. Here the

state vector |p⟩ with p being the eigenvalue of the total momentum operator P̂ , while

the bosonic state |φ⟩ refers to the bosonic part of the following Hamiltonian

Ĥ
′
F =

p2

2m
+
∑︂
k

ω̃(k)b̂
†
kb̂k +

∑︂
k

V (k)
(︂
b̂
†
k + b̂k

)︂
+

1

2m
Γ̂ , (4.13)

where ω̃(k) = ω(k) − k · p/m + k2/(2m), and Γ̂ =
∑︁

k,k′ k · k′b̂
†
kb̂

†
k′ b̂kb̂k′. In the limit of

m→ ∞, the Hamiltonian (4.13) can be diagonalized using the following coherent state

transformation

Û = exp

(︄
−
∑︂
k

V (k)

ω̃(k)
(b̂

†
k − b̂k)

)︄
. (4.14)

After applying this transformation to Equation (4.13) we obtain

ĤF
′′ = Û

−1
Ĥ

′
F Û =

p2

2m
+
∑︂
k

ω̃(k)b̂
†
kb̂k −

∑︂
k

V (k)2

ω̃(k)
+

1

2m
Û

−1
Γ̂Û . (4.15)

Next we introduce the following variational ansatz for the bosonic state:

|φ⟩ = g |0⟩+
∑︂
k

α(k)b̂
†
k |0⟩ . (4.16)
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Then, minimization of the functional F = ⟨φ| ĤF
′′ −E |φ⟩ with respect to the parameters

g∗ and α(k)∗ gives the following system of equations

∂F

∂g∗
= −gẼ − 1

m

∑︂
k,k′

α(k)

(︃
V (k′)

ω̃(k′)

)︃2
V (k)

ω̃(k)
k · k′ = 0 (4.17)

∂F

∂α(k)∗
= − g

m

∑︂
k′

(︃
V (k′)

ω̃(k′)

)︃2
V (k)

ω̃(k)
k · k′ + α(k)

[︄
−Ẽ + ω̃(k) +

1

m

∑︂
k′

k · k′
(︃
V (k′)

ω̃(k′)

)︃2
]︄

+
1

m

∑︂
k′

α(k′)k · k′V (k′)

ω̃(k′)

V (k)

ω̃(k)
= 0 , (4.18)

where

Ẽ = E − p2

2m
+
∑︂
k

V (k)2

ω̃(k)
− 1

2m

∑︂
k,k′

k · k′
(︃
V (k)

ω̃(k)

)︃2(︃
V (k′)

ω̃(k′)

)︃2

. (4.19)

We further use the rotational symmetry of the problem, and, without loss of generality,

assume that p ∥ ẑ. Then, solving α(k) from Equation (4.18) as function of g and plugging

into Equation (4.17) gives us Dyson equation

E =
p2

2m
− Σp(E) , (4.20)

from which one can solve for the variational energy E. The self-energy here has the

following form

Σp(E) =
∑︂
k

V (k)2

ω̃(k)
− 1

2m
I2z + AzIz . (4.21)

Moreover, we have defined

Iz =
∑︂
k

kz (V (k)/ω̃(k))2 (4.22)

and

Az =
Iz
m

∑︂
k

k2z
m

(V (k)/ω̃(k))2

−Ẽ + ω̃(k) + kzIz/m

(︄
1 +

∑︂
k

k2z
m

(V (k)/ω̃(k))

−Ẽ + ω̃(k) + kzIz/m

)︄−1

. (4.23)

Of course, in the limit of m → ∞, we obtain the deformation energy of the bath,

E = −
∑︁

k V (k)2/ω(k).

In Figure 4.1 (a), we study the resulting polaron energy as a function of the Fröhlich

coupling constant, α. The treatment developed in the present Section provides an

energy estimate remarkably better than the Chevy-like ansatz introduced in the previous

Section, and in particular the energy is considerably close to Feynman’s all-coupling

theory [Feynman, 1955a] over a broad range of values of α. In addition to this, Figure 4.1
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(b) shows the renormalization of the polaron mass as a function of α, the result of the

approach developed in the present Section being considerably larger than that obtained

in previous Section, coinciding with the the perturbation-theory result m∗/m = 1 + α/6

up to α ∼ 1.

4.4 Pekar Diagonalization

4.4.1 Polaron
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Figure 4.2: The polaron energy as a function of the Fröhlich coupling constant, α,

for the Pekar ansatz, Eq.(4.24) (blue dash line), and the Pekar diagonalization tech-

nique, Eqs.(4.29) and (4.33) (green triangles). See the text.

The strong-coupling theory of the Fröhlich Hamiltonian can be studied within the

Pekar ansatz [Pekar, 1946b; Devreese, 2015]:

|ΨP ⟩ = |φ⟩ ⊗ |ξB⟩ , (4.24)

where |φ⟩ and |ξB⟩ correspond to the impurity wavefunction and the bosonic state,

respectively. The Pekar treatment that we are now going to briefly review essentially

corresponds to the Born-Oppenheimer approximation. It is assumed that the phonons

and the impurity have two completely different timescales, or, more precisely, that the
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phonons can adjust instantaneously as the slowly moving impurity changes its position.

In order to carry out this plan one takes the expectation value, ⟨φ| ĤF |φ⟩, the resulting

effective bosonic Hamiltonian can be diagonalized using the following coherent-state

transformation:

Û = exp

[︄
−
∑︂
k

V (k)

ω(k)

(︂
⟨e−ik·x̂⟩b̂

†
k − H.c.

)︂]︄
, (4.25)

where ⟨Â⟩ ≡ ⟨φ| Â |φ⟩. The bosonic state minimizing the Pekar energy is given by

|ξB⟩ = Û |0⟩, and the respective ground-state energy is:

ε0 =
1

2m
⟨P̂2⟩ −

∑︂
k

|V (k)⟨e−ik·x̂⟩|2

ω(k)
. (4.26)

In general, the impurity wavefunction is assumed to be a localized function in the real

space. Here we model it by the following radial Gaussian function [Devreese, 2015]

φ(x) =

(︃
β

π

)︃3/4

e−βr2/2 . (4.27)

Minimization of the Pekar energy (4.26) with respect to the variational parameter β

yields [Devreese, 2015]

ε0 = −α
2

3π
. (4.28)

In what follows we present an extension of the Pekar approach that we dub ‘Pekar

diagonalization’. For this purpose, we introduce the following state vectors

|Ψn⟩ = |φn⟩ exp
(︂
−X̂nn

)︂
|0⟩ , (4.29)

where

X̂nn =
∑︂
k

V (k)

ω(k)

(︂
⟨e−ik·x̂⟩nnb̂

†
k − H.c.

)︂
, (4.30)

with ⟨Â⟩nm ≡ ⟨φn| Â |φm⟩ and φn is the impurity wavefunction. Then, the corresponding

matrix element can be written as

HF nm ≡ ⟨Ψn| ĤF |Ψm⟩ =
e−Γnm

2m
⟨P̂2⟩nm + e−Γnm

∑︂
k

V (k)2

ω(k)
× (4.31)

(︁
Nnm⟨eik·x̂⟩nn⟨e−ik·x̂⟩mm − ⟨e−ik·x̂⟩nm⟨eik·x̂⟩nn − ⟨eik·x̂⟩nm⟨e−ik·x̂⟩mm

)︁
,

where we define Nnm ≡ ⟨φn|φm⟩, and

Γnm =
1

2

∑︂
k

(︃
V (k)

ω(k)

)︃2 (︁
⟨e−ik·x̂⟩nn⟨eik·x̂⟩mm − ⟨eik·x̂⟩nn⟨e−ik·x̂⟩mm

)︁
(4.32)
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Naturally, the diagonal terms correspond to Equation (4.26). We note that a similar

diagonal technique has been applied in ultracold fermionic and bosonic mixtures [Cao

et al., 2017; Mistakidis et al., 2018].

In order to use the diagonalization technique (4.31), we use the following ansatz for

the impurity wave function [Hagen et al., 1970]

φn(x) = Nne
−βr(1 + a1r + · · · anrn) , (4.33)

corresponding to s-wave states. Here β and an are the variational parameters with n

labeling excited states. After finding the optimum values of the variation parameters

for each excited state, we can diagonalize Equation (4.31). In Figure 4.2, we show

the corresponding energy, where we use only 2 basis vectors. It can be seen that the

Pekar diagonalization technique remarkably improves the Pekar ansatz Eq.(4.24) in

the strong-coupling region, and more accurate results can be given with larger matrix

or with a better trial state φn(x). Our aim here is to show the improvement of Pekar

diagonalization as compared to the Pekar treatment, the comparison with other methods

will be discussed in the next subsection.

4.4.2 Angulon

As a next step, we show that the Pekar diagonalization we have just introduced can be

applied to the angulon, i.e. a quasiparticle describing a quantum molecular impurity

with rotational degrees of freedom. In order to do so, let us introduce the angulon

Hamiltonian [Schmidt and Lemeshko, 2015; Lemeshko and Schmidt, 2017]:

HÂ = BĴ
2
+
∑︂
kλµ

ω(k)b̂
†
kλµb̂kλµ +

∑︂
kλµ

Uλ(k)
[︂
Y ∗
λµ(Ω̂)b̂

†
kλµ + H.c.

]︂
(4.34)

describing a molecular impurity – schematised as a rigid rotor exchanging angular

momentum with a bosonic many-body environment. Let us briefly discuss the structure

of Equation (4.34). In the first term, expressing the rotational kinetic energy of the

molecular impurity, B and Ĵ are the rotational constant and the angular momentum

operator, respectively. The second term of Equation (4.34) represents the kinetic

energy of the non-interacting bosons with dispersion relation ω(k); the bosonic creation

and annihilation operators, b̂
†
k and b̂k, are expressed in the angular momentum basis:

b̂
†
kλµ = k(2π)−3/2

∫︁
dΩkb̂

†
ki

λY ∗
λµ(Ωk), while λ and µ define the boson angular mementum
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Figure 4.3: The angulon ground state energy as a function of the angulon coupling

constant, αA, for the Chevy ansatz [Schmidt and Lemeshko, 2015; Lemeshko and

Schmidt, 2017] (red solid line), the Pekar ansatz [Li et al., 2017] (blue dashed line),

and the Pekar diagonalization method of Equation (4.35) (green triangles). The basis

consists of the vectors with j = 0, 1, 2. See the text.

and its projection onto the laboratory-frame z axis, see Ref. [Lemeshko and Schmidt,

2017] for more details. Finally, the third term of Equation (4.34) describes the impurity-

bath interaction, where the coupling potential, Uλ(k), parametrises the interaction of

impurity with bosons carrying angular momentum λ and linear momentum k.

To apply the Pekar diagonalization technique to the angulon, we consider the follow-

ing basis vector

|Ψjm⟩ = |jm⟩ exp
[︂
−X̂jm

]︂
|0⟩, (4.35)

where the free rotor eigenstates, |jm⟩, are labeled by the angular momentum, j, and

its projection, m, on the laboratory z axis. Furthermore, in writing Equation (4.35) we

introduced X̂jm defined as follows

X̂jm =
∑︂
kλµ

Uλ(k)

ω(k)

[︂
⟨jm|Y ∗

λµ(Ω̂)|jm⟩ b̂
†
kλµ − H.c.

]︂
. (4.36)
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Following the scheme outlined in Section 4.4, we obtain for the angulon

⟨j′m′|HA|jm⟩ = Be−Γj′m′,jm⟨j′m′|Ĵ
2
|jm⟩+ e−Γj′m′,jm

∑︂
kλµ

U2
λ(k)

ω(k)
×[︂

⟨j′m′|Yλµ(Ω̂)|j′m′⟩⟨jm|Y ∗
λµ(Ω̂)|jm⟩δj′jδm′m

−⟨j′m′|Y ∗
λµ(Ω̂)|jm⟩⟨j′m′|Yλµ(Ω̂)|j′m′⟩

−⟨j′m′|Yλµ(Ω̂)|jm⟩⟨jm|Y ∗
λµ(Ω̂)|jm⟩

]︂
(4.37)

where

Γj′m′,jm =
1

2

∑︂
kλµ

(︃
Uλ(k)

ω(k)

)︃2 (︂
⟨j′m′|Y ∗

λµ(Ω̂)|j′m′⟩⟨jm|Yλµ(Ω̂)|jm⟩

−⟨j′m′|Yλµ(Ω̂)|j′m′⟩⟨jm|Y ∗
λµ(Ω̂)|jm⟩

)︂
(4.38)

becomes zero due to the symmetry of Clebsch-Gordan coefficients [Varshalovich et al.,

1988a]. It is worth noting that this is due to the basis vector we chose, see Equation

(4.35), and would not necessarily be zero for other choices of basis vectors.

As a simplifying assumption, here we ignore the detailed structure of the anisotropic

interaction potential, introducing the following dimensionless impurity-bath interaction

parameters:

αλ =
∑︂
k

U2
λ(k)

ωkB
. (4.39)

and assuming Uλ(k) ≡ U(k), and therefore αλ ≡ αA.

In Figure 4.3 we compare the results of the Pekar diagonalization technique with the

‘standard’ Pekar approach [Pekar, 1946b; Li et al., 2017] and with the Chevy ansatz for

the angulon [Schmidt and Lemeshko, 2015; Lemeshko and Schmidt, 2017]. One can see

that, over the whole range of couplings we consider, the Pekar diagonalization technique

leads to a lower variational ground state-energy than the standard Pekar approach,

which only considers the diagonal term of Hamiltonian, i.e taking only j′ = j and m′ = m

in Equation (4.37). Figure 4.3 also shows that, beyond a critical coupling strength the

technique gives a lower ground state energy with respect to Chevy ansatz [Schmidt

and Lemeshko, 2015; Cherepanov and Lemeshko, 2017]. An all coupling theory for the

angulon system will be considered in further studies.

The Pekar diagonalization technique, as compared with the ‘standard’ Pekar ap-

proach, is particularly powerful in the angulon case as a consequence of the non-Abelian
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SO(3) algebra describing the coupling of angular momenta. More precisely: a phonon

coupling two impurity states with angular momentum j and j′ will have an angular

momentum λ in the range { |j′ − j|, |j′ − j| + 1, ..., j′ + j − 1, j′ + j }, thereby leading

to a number of nonzero off-diagonal terms in Equation (4.37). The technique we have

introduced allows one to obtain more accurate estimates since it accounts for these

off-diagonal entries, as opposed to the ‘standard’ Pekar treatment. This is particularly

evident when higher angular momenta are considered; in Figure 4.3, j = 0, 1, 2 and

λ = 0, 1, 2, 3, 4 due to the selection rules imposed by the Clebsch-Gordan coefficients.

In this chapter 4, we develop analytic approaches to quantum impurity problems,

namely two variational ansaetze and a new diagonalization approach that we called

‘Pekar diagonalization’. The results of the variational techniques were compared with

well-established benchmarks such as the Pekar ansatz – as far as the strong-coupling

regime is concerned – and Feynman’s all-coupling variational theory. As expected,

an approach inspired by the Chevy ansatz works accurately for smaller values of the

coupling whereas approaches based on the Pekar ansatz are reliable in the strong-

coupling region. On the other hand, the approximation involving a single-phonon

excitation on top of a coherent state transformation provides an estimate remarkably

close to Feynman’s all-coupling theory in a wide parameter region. A promising future

direction consists in using such an ansatz for other polaron problems beyond the Fröhlich

model, as well as for other quantum impurity problems.

We have also exemplified the Pekar diagonalization technique by studying the ground

energy of both the polaron and the angulon quasiparticles. The results have shown that

the diagonalization technique we developed here represents an improvement compared

to the ‘standard’ Pekar ansatz over a wide range of coupling strengths, especially in

the strong-coupling region. Pekar diagonalization represents a promising approach to

quantum impurities, especially for systems – such as the angulon – where the ‘standard’

Pekar approach can not provide reliable results.
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5 Angular self-localization of impurities rotating in a bosonic

bath

The possibility of self localization in electron-lattice system was first pointed out by

Landau as early as in 1933 [Landau, 1933a]. It was believed that if the interaction of an

electron with lattice vibration strong enough, the electron is supposed to dig its own hole

and be trapped there. This self localization transition characters itself by finding a critical

coupling strength where discontinuity in the first and/or second derivative of the polaron

ground state energy observed. Though the self localization transition is not a phase

transition in the strict sense due to the absence of a collective effect, its similarities with

the theory of phase transitions still attracted the attention of numerous physicists.

The first candidate for the self localization transition is the free optical polaron described

by the Fröhlich Hamiltonian [Fröhlich, 1954; Devreese, 2007]. The system is governed

by the long range interaction between polaron and long wavelength longitudinal optical

(LO) phonons. The self localization transition in such a system was directly obtained

by Lepine-Matz theory [Matz and Burkey, 1971a; Lépine and Matz, 1979], Gaussian

model [Gross, 1959b; Luttinger and Lu, 1980a], and Mańka approximation [Manka,

1978]. However, it was subsequently proved to be a property of the approximations

themselves rather than an intrinsic property of polaron [Peeters and Devreese, 1982b;

Mishchenko et al., 2000b]. The transition was also claimed to exist in the related sys-

tems, for instance, optical polaron in external magnetic field [Peeters and Devreese,

1982d], in external Coulomb like potential [Tokuda et al., 1981] and the Wannier exciton

system [Sumi, 1977]. Optical polarons in an external attractive short-range poten-

tial [Spohn, 1986; Löwen, 1988b; Löwen, 1988a] and in dissipative environment [Guinea

et al., 1985] are also believed to exhibit a self localization transition. However, the

mathematical proof given by B. Gerlach and H. Löwen argued that there is no self
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localization transition exist in optical polaron with the presence of external Coulomb like

potential [Gerlach and Löwen, 1991b].

The acoustic polaron corresponds to the interaction of a charge carrier with acous-

tic phonons, the acoustic phonons have a linear dispersion coupled to the electron

through a short-range potential (deformation potential), which is believed to play a crucial

role in forming the self localization state [Peeters and Devreese, 1985; Toyozawa, 1961;

Sumi and Toyozawa, 1973]. In 2009, Devreese et al. studied the impurity atom in

a Bose-Einstein condensate (BEC) with Feynman path-integral treatment [Tempere

et al., 2009b], casted the system Hamiltonian in the form of Fröhlich’s polaron Hamil-

tonian, and found the similarities between the impurity in BEC and the acoustic po-

laron. The self localization transition in BEC-impurity system is obtained with the Pekar

ansatz [Cucchietti and Timmermans, 2006a; Kalas and Blume, 2006]. Such a transi-

tion in acoustic polaron and BEC impurity was numerically analyzed with the Monte

Carlo approach [Wang, 1998; Kornilovitch, 2007; Fantoni, 2012; Vlietinck et al., 2015;

Akram and Pelster, 2016]. Various effects on localized impurity were studied in last

decade: the localization of a Fermion in a Bosonic bath [Lühmann et al., 2008;

Nakano and Yabu, 2016], localization in reduced dimensions [Casteels et al., 2012], at

a finite temperature [Boudjemâa, 2014], in the case of multiple bands [Yin et al., 2015],

and localization of impurity with a repulsive/attractive interaction potential [Bruderer

et al., 2008], to name a few It is also worth to mention that, an understanding of self-

localized impurities as a parametric soliton behavior was proposed by K. Sacha and E.

Timmermans [Sacha and Timmermans, 2006b], and was applied to study the behavior

of impurity in BEC coupled to a transversely laser-pumped multi-mode cavity [Shad-

khoo and Bruinsma, 2015] and in BEC with finite temperature [Boudjemâa, 2014].

But new theoretical approaches suggested by F. Grusdt et al. show that the effective

mass and energy of polaron have a smooth crossover between weak- and intermediate-

coupling strength, no non-analyticity in the accessible parameter range observed [Grusdt

et al., 2015; Grusdt and Demler, 2015b; Grusdt, 2016; Grusdt and Fleischhauer, 2016;

Shchadilova et al., 2016a]. These results type a question mark on the existence of self

localization transition in the BEC-impurity system.
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In this chapter, we introduce a novel platform to study the self-localization/delocalization

transition – that consisting of an impurity with nonzero orbital angular momentum

interacting with a bosonic bath. Such a setting can be represented e.g. by an ul-

tracold alkaline or alkaline-earth dimer immersed into a BEC [Krems et al., 2009;

Jin and Ye, 2012], a chemically relevant polyatomic molecule trapped inside a su-

perfluid helium nanodroplet [Toennies and Vilesov, 2004a], as well as by an elec-

tronic excitation in a BEC [Balewski et al., 2013] or a solid [Kazimierczuk et al., 2014;

Mahan, 1990; Weiss, 2012]. As it has been recently demonstrated, in such settings the

impurity-bath interaction leads to formation of quasiparticles of a new kind, the angu-

lons – quantum rotors dressed by a many-particle field [Schmidt and Lemeshko, 2015;

Lemeshko and Schmidt, 2017]. While the angulons can be thought of as rotational ana-

logues of polarons, the non-Abelian algebra and discrete energy spectrum associated

with quantum rotations makes the angulon physics remarkably different from that of any

other impurity problem [Schmidt and Lemeshko, 2015; Schmidt and Lemeshko, 2016;

Lemeshko and Schmidt, 2017; Midya et al., 2016a; Redchenko and Lemeshko, 2016a].

In what follows, we develop a strong-coupling angulon theory and reveal the angular

self-localization transition, corresponding to the breaking of the impurity spherical

symmetry. The transition takes place at a finite impurity-bath coupling strength and

is accompanied by a discontinuity in the first derivative of the angulon ground-state

energy. Furthermore, we demonstrate that the type of the symmetry breaking depends

on the symmetry of the microscopic impurity-atom potential, which results in a number

of distinct self-localized states. It is important to note that angulon self-localization takes

place in the continuous space of the impurity angles, and is therefore fundamentally

different from localization in the Caldeira-Leggett and related models [Leggett et al.,

1987; Weiss, 2012].

5.1 The Hamiltonian

We start from the angulon Hamiltonian as derived in Ref. [Schmidt and Lemeshko,

2015]:

H = BĴ
2
+
∑︂
kλµ

ωkb̂
+

kλµb̂kλµ +
∑︂
kλµ

Uλ(k)
[︂
Y∗

λµ(θ̂, ϕ̂)b̂
+

kλµ +Yλµ(θ̂, ϕ̂)b̂kλµ

]︂
(5.1)
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where
∑︁

k ≡
∫︁
dk and ℏ ≡ 1. For simplicity, we consider a linear-rotor impurity whose

kinetic energy is given by the first term of Eq. (5.1), where B is the rotational constant

and Ĵ is the angular momentum operator. The rotor eigenstates, |j,m⟩, are labeled by

the angular momentum, j, and its projection, m, onto the laboratory z-axis. While a

rigid linear rotor provides a perfect model for rotation of a diatomic molecule, the first

term of Eq. (5.1) is straightforward to extend to more complex polyatomic species or

electronic states with nonzero angular momentum [Bernath, 2005; Lefebvre-Brion and

Field, 2004; Rudzikas, 1997]. The second term of Eq. (5.1) gives the kinetic energy of

the bosons with a dispersion relation ωk. For convenience, the bosonic creation and

annihilation operators, b̂
+

k and b̂k, are expressed in the angular momentum basis, b̂
+

kλµ =

k(2π)−3/2
∫︁
dΩkb̂

+

k i
λY ∗

λµ(Ωk). Here, k = |k|, while λ and µ define the boson angular

momentum and its projection onto the laboratory-frame z-axis, see Refs. [Schmidt

and Lemeshko, 2015; Schmidt and Lemeshko, 2016; Lemeshko and Schmidt, 2017]

for details. The third term of Eq. (5.1) describes the impurity-bath interaction which

explicitly depends on the impurity orientation in the laboratory frame, as given by the

spherical harmonic operators, Yλµ(θ̂, ϕ̂) [Varshalovich et al., 1988a]. The coupling

constants, Uλ(k), parametrize the interaction of the impurity with phonons carrying

angular momentum λ and linear momentum k. In Ref. [Schmidt and Lemeshko, 2015]

we provided analytic expressions for ωk and Uλ(k) for the case of an ultracold molecule

rotating inside a weakly-interacting BEC. For more involved cases, such as molecules

in superfluid helium or electronic excitations in solids, the corresponding coupling

constants can be used as phenomenological parameters. However, as we demonstrate

below, the qualitative properties of the self-localization transition do not depend on the

momentum dependence of the impurity-bath interaction and are determined solely by

its symmetry. Therefore, in what follows we will consider the Hamiltonian (5.1) from a

completely general perspective, without focusing on a particular physical system.

5.2 Product ansatz

In the regime of strong impurity-bath interactions, the angulon ground state can be

described using the product (mean-field) ansatz [Landau, 1933a; Pekar, 1946a]:

|ψ⟩ = |imp⟩ ⊗ |bos⟩ (5.2)
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where |imp⟩ and |bos⟩ describe the impurity and the bosonic bath, respectively. By

evaluating the expectation value of the Hamiltonian (5.1) relatively to the state (5.2), we

obtain that the ground state of the bosonic bath is given by:

|bos⟩ = exp

[︄∑︂
kλµ

(︂
β imp
kλµ b̂kλµ − β imp∗

kλµ b̂
+

kλµ

)︂]︄
|0⟩ (5.3)

where β imp
kλµ = Uλ(k)⟨imp|Yλµ(θ̂, ϕ̂)|imp⟩/ωk parametrically depends on the state of the

impurity and |0⟩ is the bosonic vacuum.

The corresponding ground-state angulon energy is given by (in units of B):

E

B
= ⟨imp|Ĵ

2
|imp⟩ −

∑︂
λµ

αλ|⟨imp|Yλµ(θ̂, ϕ̂)|imp⟩|2, (5.4)

where the dimensionless impurity-bath interaction parameter αλ =
∑︁

k U
2
λ(k)/(ωkB).

From the form of Eq. (5.4), one can already see that the ground state energy depends

on the momentum distribution of the impurity-bath coupling only through the parameters

αλ.

In what follows, we solve Eq. (5.4) variationally assuming the most general form of

the impurity state:

|imp⟩ =
jmax∑︂
j=0

j∑︂
m=−j

cjm|jm⟩, (5.5)

where cjm are the variational parameters obeying a normalization condition,
∑︁

jm |cjm|2 ≡

1, and jmax provides the angular momentum cutoff. In order to simplify the variational

calculations, we assume the rotational symmetry with respect to z-axis and therefore

restrict the variational space to m = 0 subspace, and use the notation cj ≡ cj0. However,

the behavior of the ground-state energies does not change qualitatively if all m-levels

are taken into account.

5.3 Self-localization

Let us start from considering the most transparent model with the coupling constants

independent of angular momentum, α∀λ = α. Fig. 5.1(a) shows the dependence of the

ground state energy on the magnitude of the constant potential, α, for different values

of the cutoff jmax. We see that the energy possesses a nonanalyticity around a critical

value αc ∼ 6. The inset of Fig. 5.1(a) zooms into the vicinity of the non-analyticity point:



48

one can see that for larger jmax, the nonanaliticity reaches the value of αc ≈ 5.85. In

the limit of jmax → ∞, the minimizer for α < αc corresponds to a spherically-symmetric

ground state (cj = δj0), while for α > αc the ground state corresponds to a δ-function in

the angular space (all cj = j
−1/2
max ). This result coincides with the one obtained by solving

a corresponding nonlinear Schrödinger equation on a two-dimensional plane, where

α ≈ 1.86225π was found to be a critical coupling constant [Weinstein, 1983]. Since the

qualitative behavior of the ground-state energies does not depend on the cutoff, in what

follows we focus on the case of jmax = 6.

For most systems available in experiment, the impurity-bath interaction is dominated

by a few first λ-terms and is usually decaying such that αλ is negligibly small for

λ ≳ 5 [Stone, 2013a; Midya et al., 2016a]. In order to cover experimentally relevant

cases and illustrate the fact that the transition is universal, we consider several different

types of the impurity-bath interactions. Fig. 5.1(b) shows the behavior of ground-state

energies for the cases of α1 = α, α̸=1 = 0 (yellow crosses); α2 = α, α̸=2 = 0 (green

dotted line); αodd = α, αeven = 0 ; αeven = α, αodd = 0 ; as well as αλ = α/(1 + λ) (empty

triangles). For comparison, the case of α∀λ = α is shown by the blue solid line. One

can see that while the position of the transition point shifts depending on the form of the

interaction, the transition still takes place independently of the latter.

In order to get insight into the angular symmetry of the localized impurity, we plot

the orientation cosines, ⟨cos θ⟩ ≡ ⟨imp| cos θ̂ |imp⟩, and the alignment cosines, ⟨cos2 θ⟩ ≡

⟨imp| cos θ̂
2
|imp⟩, in Figs. 5.1(c) and (d), respectively. One can see that to the left of the

transition point, ⟨cos θ⟩ = 0 and ⟨cos2 θ⟩ = 1/3, which reflects the spherical symmetry

of the ground angulon state, i.e. cjm = δj,0 in Eq. (5.5). The transition, on the other

hand, is accompanied by an abrupt change in the alignment and/or orientation cosine,

which implies the breaking of the impurity spherical symmetry, i.e. angular localization

of the angulon. It is important to emphasize that such a symmetry breaking takes place

at a finite value of αc, which is clearly distinct from the case of polarons. There, the

same level of approximation – the Landau-Pekar ansatz [Devreese, 2015] – results in

a localized impurity with a nonzero ground-state momentum already at infinitely weak

coupling.

While the transition occurs independently of the exact form of the αλ distribution,

different symmetries of the impurity-bath interaction result in different symmetries of
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the localized states. In particular, the interaction dominated by even λ-terms results in

aligned states of definite parity, which are characterized by ⟨cos θ⟩ = 0 and ⟨cos2 θ⟩ > 1/3,

which implies ceven ̸= 0 and codd = 0 in Eq. (5.5). On the other hand, the αodd terms

break the parity symmetry, leading to the oriented localized states with both even and

odd cj ’s populated.

Unlike in polarons, the angulon Hamiltonian can feature competing interactions of

different symmetry, which results in a richer localization behavior. In order to illustrate

the latter, in Fig. 5.2(a) we show the ‘localization diagram’ describing the symmetry of

the impurity depending on the magnitudes of α1 and α2 (with other coupling constants

set to zero). The top subpanel illustrates the distribution of the cj coefficients and the

wavefunctions for corresponding states. The blue region corresponds to a delocalized,

spherically-symmetric ground state with cj = δj0, the red one corresponds to an aligned

impurity state with only even cj ’s populated, while the yellow one – to an oriented state

with the population spread over both even and odd cj ’s.

Fig. 5.2(b) illustrates the dependence of the ground-state energy on α2 for α1 = 0 and

α1 = 1, while Figs. 5.2(c) and (d) show the corresponding orientation cosine, ⟨cos θ⟩, and

alignment cosine, ⟨cos2 θ⟩. For the case of α1 = 0, there occurs a localization transition in

the vicinity of Ln[α2] = 3, which corresponds to a transition from a spherically symmetric

to an aligned impurity. As shown in Figs. 5.2(d), such an isotropic-to-aligned transition

is characterized by a sudden change in the alignment cosine, ⟨cos2 θ⟩.

At a finite value of α1 = 1, however, the behavior of the system changes. Around

Ln[α2] = 3 there occurs an isotropic-to-oriented transition, accompanied by a sudden

change in ⟨cos θ⟩, see Figs. 5.2(c). However, once the parity-preserving coupling

approaches the value of Ln[α2] = 5, a smooth crossover to the aligned phase occurs.

This crossover, marked in Figs. 5.2(a) by a dashed line, is not accompanied by a change

in the derivative of the ground-state energy and therefore does not represent a sharp

transition between the states of different symmetry.
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Figure 5.1: (a) Dependence of the impurity ground state energy on the magnitude of the

constant impurity-bath coupling strength, α∀λ = α, at different values of the cutoff jmax.

The inset shows the vicinity of the transition point. (b) The case of jmax = 6 for various

types of the impurity-bath interaction: α∀λ = α (blue solid line); α1 = α, α̸=1 = 0 (yellow

crosses); α2 = α, α ̸=2 = 0 (green dotted line); αodd = α, αeven = 0 ; αeven = α, αodd = 0 ;

as well as αλ = α/(1 + λ) (empty triangles). (c) Same as in (b), but for the orientation

cosine of the impurity. (c) Same as in (b), but for the alignment cosine of the impurity.
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Figure 5.2: (a) ‘Localization diagram’ of the angulon states, depending on the mag-

nitudes of α1 and α2 (all other couplings are set to zero). (b) Dependence of the

ground-state energy on α2 for α1 = 1. (c) Same as in (b), but for the orientation cosine

of the impurity. (c) Same as in (b), but for the alignment cosine of the impurity.



52



53

6 Intermolecular forces and correlations mediated by a phonon

bath

6.1 Introduction

Effective interactions between quantum particles play an important role in several

areas in physics. One of the most prominent effective interactions is the Coulomb

potential, which emerges in quantum electrodynamics from the exchange of virtual

photons in the non-relativistic limit [Feynman, 2018]. Other important examples are

provided by bath-mediated interactions as for example the phonon-mediated interaction

between two polarons [Devreese, 2015], that is, between two electrons in a crystal that

are dressed by a cloud of lattice excitations. This effective attractive interaction can

balance the Coulombic repulsion between the electrons and results in the formation

of the bipolaron quasiparticle [Devreese and Alexandrov, 2009; Kashirina and Lakhno,

2010] – a bound state that has been proposed as one of the mechanisms behind high-

temperature anomalous superconductivity [Alexandrov, 2003]. In case of sufficiently

strong electron-phonon interactions, also more complex polaronic structures such as

electronic Wigner crystals [Quémerais and Fratini, 1998; Fratini and Quémerais, 2002;

Iadonisi et al., 2007], polaron molecules and clusters [Kusmartsev, 2001; Perroni

et al., 2004; Bruderer et al., 2007] can form. Moreover, the electron-phonon coupling

has been used to explain the thermodynamic and optical properties of quantum dot

devices [Fomin et al., 1998; Klimin et al., 2004]. Finally, attractive electron interactions

mediated by phonons are found to be able to overcome the direct Coulomb repulsion

in deformable molecular quantum dots, paving the way for the realisation of polaronic

memory resistors [Alexandrov and Bratkovsky, 2003; Alexandrov and Bratkovsky, 2009].

In the context of ultracold atoms various theoretical methods have been devel-

oped to study bath-mediated correlations in Bose-Einstein condensates in the case
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of attractive/repulsive couplings [Jørgensen et al., 2016; Hu et al., 2016b] and for

weakly [Casteels et al., 2011a]/strongly interacting systems [Roberts and Rica, 2009;

Santamore and Timmermans, 2011; Blinova et al., 2013; Casteels et al., 2013]. Ef-

fective quasiparticle-quasiparticle interactions have been investigated using variational

methods [Devreese and Alexandrov, 2009; Kashirina and Lakhno, 2010], Dyson’s

equation [Utesov et al., 2018] and a scattering matrix approach [Camacho-Guardian

et al., 2018; Bijlsma et al., 2000] to name only a few. Besides electron-phonon cou-

pling, other kinds of indirect interactions play a key role in quantum systems, such

as e.g. the Ruderman-Kittel-Kasuya-Yosida interaction [Ruderman and Kittel, 1954;

Zhou et al., 2010], giving rise to complex magnetic phases such as spin glasses [Hew-

son, 1997].

In this chapter we analyse the effective interaction between two diatomic molecules

mediated by a bosonic bath. Unlike electrons or ground-state atoms, the low-energy

degrees of freedom for molecules involve rotations, leading to an exchange of angular

momentum between the molecule and the bath. Recently, it has been shown that

individual molecules interacting with a bosonic bath form angulon quasiparticles –

rigid rotors dressed by a cloud of excitations carrying angular momentum [Schmidt

and Lemeshko, 2015; Schmidt and Lemeshko, 2016; Lemeshko and Schmidt, 2017;

Bighin et al., 2018b]. The results of this theory are in good agreement with a wide range

of experimental data including static and dynamic molecular properties [Lemeshko,

2017; Shepperson et al., 2017b; Cherepanov and Lemeshko, 2017; Shepperson et al.,

2017a; Cherepanov et al., 2019]. In addition to this, it was shown that due to the

non-Abelian SO(3) algebra and the discrete energy spectrum inherent to rotations,

novel phenomena such as effective magnetic monopoles [Yakaboylu et al., 2017]

and anomalous electrostatic screening [Yakaboylu and Lemeshko, 2017] can emerge.

During recent years, molecular complexes in He nanodroplets have been created (see

e.g. Refs. [Pickering et al., 2018b]), and techniques to control molecular alignment

in helium have been developed [Shepperson et al., 2017b; Shepperson et al., 2017a;

Cherepanov et al., 2019]. These and other experimental advances pave the way to

control and enhance chemical reactivity inside superfluids at the microscopic level.

This motivates us to investigate the effective phonon-mediated interactions between

two molecules immersed in a bosonic bath. To investigate the system in various
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parameter regimes, we apply different theoretical approaches based on angulon theory

and several approximations, such as a product-state ansatz, a one-phonon-excitation

variational approach and a diagonalization scheme based on single angulon basis

states.

All approaches we use in this chapter suggest the appearance of a correlated

state that we call the biangulon. It consists of two diatomic molecules that align with

respect to each other due to the effective phonon-mediated interaction. We characterize

this effective interaction within the Born-Oppenheimer approximation and show that it

depends on both the angular momentum quantum number L and the magnetic quantum

number M of each of the two molecules and that it favours states whose phonon clouds

overlap strongly with the molecules. Within the Pekar approximation [Pekar, 1946b],

we show that two diatomic molecules show a strong alignment in the strong-coupling

regime. Subsequently, employing a one-phonon ansatz, we find that the biangulon

shows two spectral instabilities in the weak-coupling regime as well as a shift of the

angulon instabilities. These features are proposed as experimental signature for the

formation of a biangulon. Finally, a diagonalization scheme based on single angulon

and bare rotor basis functions is used, to investigate a system, where the coupling

between the bath and one of the two impurities is weaker than the one of the other.

In this situation we study the transition from separated angulons to a biangulon by

calculating the wavefunction and the rotational correlations between the two molecules.

6.2 The model

We consider two rigid linear molecules (i = 1, 2), whose position is fixed in space

at (0, 0,±d/2) in the laboratory frame with coordinates {X, Y, Z}, see Fig. 6.1. The

rotational kinetic energy of the i-th molecule is given by [Lemeshko and Schmidt, 2017]

Ĥ
(i)

mol = BiĴ
2

i , (6.1)

where we denote the rotational constant and the angular momentum operator of the i-th

molecule by Bi and Ĵi, respectively. Here and in the rest of this chapter, we assume

that the two molecules have the same rotational constant B = B1 = B2.
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Figure 6.1: Schematic illustration of two rotating molecular impurities interacting with

a bosonic atom. The origin of the laboratory frame, {X, Y, Z}, is chosen in the middle

between the two molecules on the Z-axis. Anisotropic molecule-boson interactions are

defined in the molecular coordinate frames labeled by {xi, yi, zi} (i = 1, 2).

The molecules are immersed in a bath of phonons, whose kinetic energy is given by

Ĥbos =
∑︂
k

ω(k)b̂
†
kb̂k. (6.2)

By ω(k) with k = |k| we denote the phonon dispersion relation, which will be speci-

fied later, and b̂
†
k, b̂k with [b̂k, b̂

†
q] = (2π)3δ(k − q) are the usual bosonic creation and

annihilation operators of an excitation with momentum k, respectively.

We assume the coupling between the impurities and the phonons to be linear in

the phonon field. In the molecular coordinate frame with coordinates {xi, yi, zi}, see

Fig. 6.1, their interaction is therefore given by

Ĥ
(i)

int =
∑︂
k

V (k, θ̂i, ϕ̂i)b̂
†
k + H.c., (6.3)

with the effective interaction potential V (k, θ̂i, ϕ̂i). A detailed microscopic derivation of

an effective interaction of the form (6.3) for the case of an impurity immersed in a Bose-

Einstein condensate is presented in Refs. [Schmidt and Lemeshko, 2015; Lemeshko

and Schmidt, 2017]. The interaction (6.3) also serves as a reliable phenomenological
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model for molecules immersed in helium nanodroplets [Lemeshko, 2017; Shepperson

et al., 2017b; Cherepanov and Lemeshko, 2017; Shepperson et al., 2017a; Cherepanov

et al., 2019]. In this chapter we focus on intermolecular forces mediated by phonons, and

therefore neglect direct molecule-molecule interactions, such as electrostatic, induction,

and dispersion potentials [Stone, 2013a], which can, however, be added to the theory in

a straightforward manner. In case of two non-polar diatomic molecules at a moderate

distance, the only potentially relevant interaction we neglect is the screened (by the

Helium atoms) van-der-Waals interaction between the molecules.

As schematically depicted in Fig. 6.1, the two molecules are placed along the Z axis

at the points (0, 0,±d/2), so that the Hamiltonian of the full system in the laboratory

frame, {X, Y, Z}, is given by

Ĥ = BĴ
2

1 +BĴ
2

2 +
∑︂
k

ω(k)b̂
†
kb̂k (6.4)

+
∑︂
k

[︂
V (k, θ̂1, ϕ̂1)e

−ik·d
2 + V (k, θ̂2, ϕ̂2)e

ik·d
2

]︂
b̂
†
k + H.c..

To obtain this representation, we applied the translation operator T̂ (r) = exp
(︂
−ir ·

∑︁
k kb̂

†
kb̂k

)︂
to the interaction term in Eq. (6.3), see also Ref. [Yakaboylu et al., 2018].

6.3 Angulons and biangulons

If the distance between the two molecules is sufficiently large, each single impurity can

be described by a (appropriately translated) Hamiltonian of the form

Ĥ
(i)

= BĴ
2

i +
∑︂
k

ω(k)b̂
†
kb̂k +

∑︂
k

V (k, θ̂i, ϕ̂i)b̂
†
k + H.c. (6.5)

describing one rotating impurity immersed in the bosonic bath. It has been shown that

the above Hamiltonian allows for a description of the rotating impurity in terms of the

angulon quasiparticle in many different experimental settings, ranging from ultracold

gases [Midya et al., 2016b] to helium nanodroplets [Lemeshko, 2017]. The concept of

the biangulon quasiparticle we propose in this chapter is based on the analysis of the

Hamiltonian (6.4). If the two molecules come close enough together they will be subject

(as we will see below) to an effective attractive interaction mediated by the bosonic bath.

As a consequence, a correlated state, where both rotors are dressed by the bath and
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at the same time strongly interact with each other, is formed. This correlated state is

characterized by the fact that the two rotating molecules align with respect to each other

such that the phonon cloud of each molecule overlaps with the other molecule. This

behavior is very different from that of two uncorrelated (or weakly correlated) angulons

and can be found in the regimes of moderate and strong coupling.

The system of the two impurities placed at (0, 0,±d/2) is rotationally symmetric

around the z axis, and hence the biangulon quasiparticle can be characterized by the

magnetic quantum number M of the entire system. This should be compared to the

angulon, where one has a full rotational symmetry and the total angular momentum L is

also a good quantum number.

In the case of two polarons a bipolaron can form if the effective interaction between

the two impurities allows for a bound state [Salje et al., 2005]. Since our molecules

have a frozen center-of-mass motion, this definition is clearly not appropriate, and

we therefore opt for the definition above. In practice we expect the two definitions to

coincide if the effective attractive interaction between the molecules allows for a bound

state.

In the following Sections we will quantitatively study the above two-impurity system

and its properties with various theoretical approaches and in different parameter regimes.

6.4 Product-state ansatz

6.4.1 Phonon-mediated intermolecular forces

When the interaction between impurities and the environment is strong, one can assume

that the phonons adjust instantaneously to changes of the molecular orientation in space

and a Born-Oppenheimer approximation is valid. This corresponds to a product state

ansatz

|ψb⟩ = |mol⟩Û |0⟩. (6.6)

Analogous to the Pekar ansatz for polarons [Pekar, 1946b; Devreese, 2015] the unitary

Û in the above equation is chosen as

Û = exp

[︄
−
∑︂
k

(︄
⟨f̂⟩
ω(k)

b̂
†
k −

⟨f̂⟩∗

ω(k)
b̂k

)︄]︄
, (6.7)
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Figure 6.2: Dimensionless angulon-angulon interaction ∆Ẽ = ∆E/B, Eq. (6.12), calcu-

lated using the product state ansatz, Eq. (6.6), as a function of (a) the dimensionless

molecule-molecule distance d̃ = d(mB)−1/2 and (b) the dimensionless bath density

ñ = n(mB)−3/2. We have chosen ñ = 1 for the bath density in (a) and d̃ = 1 for

the distance between the molecules in (b). The black solid line, blue dashed line,

magenta dots, and red dashed dots have been computed with the molecular states

|L1M1L2M2⟩ = |0000⟩, |1000⟩, |1100⟩ and |1010⟩, respectively. The squared absolute

value of the wave functions related to the different molecular states (with colors as

introduced in the legend) are schematically shown in (c). For more information see the

text.

where

⟨f̂⟩ = ⟨mol|V (k, θ̂1, ϕ̂1)e
−ik·d

2 + V (k, θ̂2, ϕ̂2)e
ik·d

2 |mol⟩. (6.8)
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We stress that the description of the bath in terms of the coherent state Û |0⟩ in Eq. (6.6)

takes an arbitrary number of phonon excitations into account.

Since we are interested in angular momentum exchange between the molecules and

the environment, it is convenient to expand the bosonic field operators in the angular

momentum basis as

b̂
†
k =

(2π)3/2

k

∑︂
λµ

b̂
†
kλµi

λY ∗
λµ(Θk,Φk) (6.9)

see Ref. [Lemeshko and Schmidt, 2017]. Here b̂
†
kλµ creates a phonon with radial

momentum k, angular momentum λ and projection onto the z-axis µ. By Yλµ(Θk,Φk) we

denote the spherical harmonics. Additionally, Θk, Φk are the angles determined by k in

spherical coordinates and k denotes its absolute value. The inverse relation reads

b̂
†
kλµ =

k

(2π)3/2

∫︂
dϕkdθk sin(θk)b̂

†
ki

−λYλµ(Θk,Φk). (6.10)

We also write the interaction potential as

V (k, θ̂i, ϕ̂i) =
∑︂
λµ

(2π)3/2i−λUλ(k)

k
Yλµ(Θk,Φk)Y

∗
λµ(θ̂i, ϕ̂i), (6.11)

where the potential has been expanded in partial wave components Uλ(k) [Lemeshko

and Schmidt, 2017].

For specific molecular rotational states |mol⟩ = |L1M1L2M2⟩, where Li and Mi

denote the angular momentum quantum number and the magnetic quantum number

of the i-th molecule, the energies EBA = ⟨ψb|Ĥ|ψb⟩ of the Hamiltonian (6.4) can be

readily calculated. Applying the same approach to a single molecular impurity in a

state state |LiMi⟩, one obtains the energy E(i)
A of one angulon quasiparticle. In order to

measure the strength of the interaction between two angulons we define the effective

angulon-angulon interaction as

∆E = EBA − E
(1)
A − E

(2)
A . (6.12)

A similar definition for two polarons can be found in Refs. [Devreese and Alexandrov,

2009; Kashirina and Lakhno, 2010].

Here and in what follows we choose parameters that are well suited to describe two

molecular impurities immersed in a bath of superfluid 4He. More precisely, we choose

the phonon dispersion relation as ω(k) =
√︁
ϵ(k)(ϵ(k) + 2gbbn), where ϵ(k) = k2/2m,
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gbb = 4πa/m with the scattering length a and the mass m of the Helium atoms. The

function ω(k) is an approximation to the dispersion relation of sound waves in liquid

helium that is valid at low momenta. By n we denote the density of the Helium atoms.

To describe a typical atom-molecule interaction, we choose

Uλ(k) = uλ

(︃
8nk2ϵ(k)

[ω(k)(2λ+ 1)]

)︃1/2 ∫︂
drr2fλ(r)jλ(kr) (6.13)

with Gaussian form factors fλ(r) = (2π)−3/2e−r2/(2r2λ). Here jλ(kr) denotes the spherical

Bessel function. The coupling strengths and the potential radii are chosen as u0 =

u2 = 218B, uλ = 0 if λ ̸= 0, 2 and r0 = r2 = 1.5(mB)−1/2, respectively [Stone, 2013b;

Schmidt and Lemeshko, 2015]. We also choose a = 3.3(mB)−1/2, which reproduces

the speed of sound in superfluid Helium for a molecule whose rotational constant is

B = 2π × 1 GHz [Donnelly and Barenghi, 1998; Schmidt and Lemeshko, 2015]. In

Fig. 6.2 we show the dimensionless effective interaction ∆Ẽ = ∆E/B as a function of (a)

the dimensionless molecule-molecule distance d̃ = d(mB)−1/2 and (b) the dimensionless

bath density ñ = n(mB)−3/2. The squared absolute value of the wave functions related to

the different molecular states (with colors as introduced in the legend) are schematically

shown in (c). In subgraph (a) the density is ñ = 1 and in (b) the molecule-molecule

distance is fixed as d̃ = 1. When the two molecules are placed far away from each other

or when the surrounding bath is sufficiently dilute, the effective interaction is small and

the system resembles two separate angulons.

Outside this parameter regime we observe an attractive interaction between the

two rotors (∆Ẽ < 0), which results from the linear coupling in the Hamiltonian (6.4).

It is sensitive to the rotational state of the two molecules and takes its largest values

when the overlap of the phonon density of each of the two molecules with the other

molecule is maximal. Accordingly, it depends also on the magnetic quantum numbers

M1 and M2. For example, the effective interaction between molecules in the state

|L1M1L2M2⟩ = |1000⟩ (blue dashed line in Fig. 6.2) is stronger than the one between

molecules in the state |1100⟩ (magenta dots). The interaction energy of the latter state

is even weaker than the one of the state |0000⟩ (black solid line) and the state |1010⟩

shows the largest interaction energy among the ones that have been considered. See

also Fig. 6.2(c) for the shapes of the orbitals related to these molecular states. The

anisotropy of the molecular wave function of one molecule is responsible for a similar
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anisotropy of its phonon cloud. The interaction energy is large if this anisotropy causes

a strong overlap of the molecules phonon cloud with the other molecule. In general,

the states with M1 = M2 = 0 show the largest effective interaction. Such an effective

interaction clearly favors a biangulon-like behavior if the impurities are sufficiently close.

The saturation of the effective interaction for large densities ñ in Fig. 6.2 (b) is a

consequence of the fact that the phonon dispersion relation ω(k) and |⟨f̂⟩|2 are both

proportional to
√
ñ in this regime, see Eqs. (6.11), (6.13) and Eq. (6.15) in Section 6.4.2

below. The states |1, 1, 1, 1⟩ and |1, 1, 1,−1⟩ have the same interaction energy. That is,

the effective interaction is not sensitive to whether the two molecules rotate in the same

or in opposite directions. Since both molecules have the same rotational constant B,

one obtains the same result if their quantum numbers are exchanged.

6.4.2 Relative molecular orientation in the ground state

In this Section we study the ground state of two molecules immersed in the bath of

phonons within the Pekar approximation. Accordingly, we minimize the expectation of

the Hamiltonian (6.4) over the molecular part of the wave function in (6.6), similar to

Ref. [Pekar, 1946b]. This approximation is expected to be valid in the strong-coupling

regime [Donsker and Varadhan, 1983; Lieb and Thomas, 1997].

More precisely, we expand the molecular wave function in angular momentum

eigenfunctions as

|mol⟩ =
∑︂

L1,M1,L2,M2

sL1,M1,L2,M2|L1M1⟩|L2M2⟩. (6.14)

In the following, we abbreviate c = (L1,M1, L2,M2). When we insert (6.14) into (6.6)

and compute with this wave function the expectation value of Ĥ, Eq. (6.4), we obtain

the Pekar functional

EBA(s) =
∑︂
c

(︃
B[L1(L1 + 1) + L2(L2 + 1)]|sc|2 −

∑︂
k

|⟨f̂⟩|2

ω(k)

)︃
, (6.15)

as well as the biangulon energy

EBA = min∑︁
c |sc|2=1

EBA(s). (6.16)

Similarly, we find the energy EA of one impurity within the Pekar approximation and we

have

∆E = EBA − 2EA. (6.17)
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To minimize EBA(s) numerically, we introduce the cut-off L1, L2, |M1|, |M2| ≤ 4 for the

values of the angular momentum quantum number. The minimization is then carried out

with a stochastic simulated annealing procedure based on moves that can reach any

allowed value of the variational coefficients [Das and Chakrabarti, 2005].

The stochastic simulated annealing method that we applied to minimize ground

energy Eq. 6.16, is based on repeated application of the following two moves:

1. Rotation of a variational coefficient in the complex plane, i.e. sc → sc exp(iϕ) where

the quantum numbers c = (L1,M1, L2,M2) and the phase ϕ have been chosen

from a random distribution.

2. Moving part of the complex modulus of a coefficient to another coefficient, i.e. go-

ing from a configuration of two coefficients that we parametrize in the polar

representation as sc = ρ exp(iϕ), sc′ = (ρ′) exp(iϕ′) to a different configuration

sc = (ρ − δ) exp(iϕ), sc′ = (ρ′ + δ) exp(iϕ′) where again the quantum numbers c

and c′, as well as δ, are chosen randomly.

It can be easily seen that these two moves span the whole parameter space, while

automatically enforcing the normalization condition. In the spirit of simulated annealing

methods, each move is accepted or rejected by evaluating the Boltzmann factor of the

energy difference, using a monotonously decreasing effective temperature. We have

verified that this procedure is solid, yielding a good estimate of the ground state energy

at the level of maximum Li = 4 (containing 1, 764 variational coefficients), independently

of the starting configuration, in agreement with non-stochastic methods that are usually

slower and limited to much smaller cutoffs.

For a better understanding of the resulting state we also consider the alignment

cosine

⟨cos2 θ1⟩ =
∑︂
c,c′

s̃∗c′ s̃c⟨L′
1M

′
1| cos2 θ1|L1M1⟩δL′

2,L2
δM ′

2M2
, (6.18)

where s̃ denotes the minimizer of EBA. The expectation value on the left-hand side is

taken with respect to the state |ψb⟩ in Eq. (6.6), where the molecular wave function

is replaced by the wave function in Eq. (6.14) with coefficients given by s̃. From our

computations we see that the minimizer of EBA is a product state that is symmetric in
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the two impurities (for the case B = B1 = B2). This implies ⟨cos2 θ1⟩ = ⟨cos2 θ2⟩, and

hence we can use Eq. (6.18) to measure the anisotropy of the molecular orientation of

both molecules.
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Figure 6.3: Contour plot of (a) the alignment cosine ⟨cos2 θ1⟩, Eq. (6.18), and (b) the

dimensionless effective interaction ∆Ẽ = ∆EBA/B, Eq. (6.17), of one of the molecules

computed within the Pekar approximation as a function of the dimensionless molecule-

molecule distance d̃ = d(mB)−1/2 and dimensionless bath densities ñ = n(mB)−3/2.

In (c) we show schematic figures of the wave functions of the two molecules for the

parameters ñ = 1 and d̃ = 0.3 (left picture), d̃ = 3 (picture in the middle) and d̃ = 8 (right

picture). For more details see the text.

In Fig. 6.3 we show the contour plot of (a) the alignment cosine ⟨cos2 θ1⟩ and (b)

the dimensionless effective interaction ∆Ẽ = ∆E/B as a function of the dimensionless

molecule-molecule distance d̃ = d(mB)−1/2 and the dimensionless bath density ñ =
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n(mB)−3/2. In (c) we show schematic figures of the wave functions of the two molecules

for the parameters ñ = 1 and d̃ = 0.3 (left picture), d̃ = 3 (picture in the middle) and d̃ = 8

(right picture). As one would expect, the effective interaction is an increasing function of

the bath density and a decreasing function of the distance between the impurities.

For large distances the ground state is given by the impurity wave function |L1M1L2M2⟩

= |0000⟩ and the two molecules form two isolated angulon quasiparticles with no prefer-

ential orientation. In this case the alignment cosine equals 1/3, see Fig. 6.3(b). If they

come closer together, contributions with nonzero angular momentum and Mi = 0 for

i = 1, 2 become relevant, compare with (c). This is in accordance with the analysis in

Section 6.4.1, see Fig. 6.2, where we found that such states maximize the overlap of

the phonon cloud of each of the two impurities with the other impurity, and therewith

also their attractive interaction. This behavior is also captured by the alignment cosine,

which takes its largest values around d̃ = 3. In this region the two impurities form a

biangulon quasiparticle, which is characterized by the fact that their relative orientation

is strongly correlated and that their phonon densities are highly anisotropic.

If the distance is further decreased the phonon clouds are already substantially

overlapping with the molecules if the molecular wave function is almost rotationally

symmetric and an anisotropy of the molecular orientation is no longer beneficial. This

is indicated by ⟨cos2 θ1⟩ → 1/3 for small d̃. In other words, the short distance behavior

of the two impurities is a perturbation of the extreme case d̃ = 0, where the model

has full rotational symmetry. In practice one would need to numerically evaluate the

intermolecular interations from the quantum chemistry perspective, taking into account

the overlap of the molecular electronic states, in order to describe the relevant physics

in the regime of very small d̃ correctly. In addition, attractive and repulsive potentials

could lead to chemical reactions. The inclusion of these effects goes, however, beyond

the scope of the present chapter.

Finally, let us note that the Gaussian form factors and our choice of the dispersion

relation imply that the effective interaction is an exponentially decaying function of the

distance d̃. This can be seen as follows: We have already noted that the molecular wave

function is given by sc = δL1,0δM1,0δL2,0δM2,0 if d̃ is chosen sufficiently large, compare with
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Fig. 6.3(b). In this case we can write the effective interaction as

∆E = (6.19)

− 1

2π

∑︂
k

U2
0 (k)

ω(k)

[︄∑︂
λ

(2λ+ 1)jλ(kd/2)
2(1 + (−1)λ)− 1

]︄
.

With
∑︁

λ(2λ+1)jλ(x)
2 = 1 and

∑︁
λ(−1)λ(2λ+1)jλ(x)

2 = sin 2x
2x

[Abramowitz and Stegun,

1965], Eq. (6.19) simplifies to

∆E = − 1

2π

∑︂
k

U2
0 (k)

ω(k)

sin(kd)

kd
. (6.20)

Our choice of the form factor in Sec. 6.4.1 implies

U0(k) = u0

(︃
8nk2ϵ(k)

ω(k)

)︃1/2
r40e

−r20k
2/2

25/2π
. (6.21)

We insert (6.21) and ω(k) from Sec. 6.4.1 into (6.20). An application of Ref. [Reed and

Simon, 1980], Theorem IX.13 therein, shows the claim.

It should also be noted that for the Fröhlich parameters ω(k) = ω0 and U0(k) = U0

one finds the well-known behavior [Lieb and Thomas, 1997]

∆E ∝ 1

d̃
. (6.22)

6.5 One-phonon-excitation variational ansatz

The product-state-ansatz of Section 6.4 describes molecular impurities dressed by an

arbitrary number of phonons in a coherent state (cf. Eq. (6.7)). Minimization over the

impurity wave function yields the Pekar approximation, which is expected to be valid

for strong molecule-bath interactions [Donsker and Varadhan, 1983; Lieb and Thomas,

1997]. When the molecule-bath interaction is weak, however, we expect only a small

number of phonons to be excited. It is the aim of the present Section to investigate such

a situation in detail.

More precisely, we are going to use a one-phonon-excitation variational ansatz,

that is, we will allow for at most one phonon in the system. Such an ansatz has

been successfully applied in several different contexts, see Refs. [Chevy, 2006b;
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Lan and Lobo, 2014; Schmidt and Lemeshko, 2015]. For a system of two rotating

molecules immersed in a bosonic bath this variational ansatz reads

|ψ1-ph⟩ = g|L1M1⟩|L2M2⟩|0⟩+
∑︂
c

βc|j1m1⟩|j2m2⟩b̂
†
k|0⟩,

(6.23)

where c = (j1,m1, j2,m2,k), and the sum over k is actually an integral. The variational

coefficients g and βc are chosen such that the magnetic quantum number M =M1+M2

of the whole system is a good quantum number and such that |g|2 +
∑︁

c |βc|2 = 1

holds. The first term in Eq. (6.23) describes two free rotors and a bosonic bath in its

vacuum state. In the second term a phonon with momentum k is excited and introduces

correlations between the two molecules and the bath. We expect the ansatz (6.23)

to be a good approximation in situations where the helium density ñ is sufficiently

dilute and/or when the distance between the two impurities is such that we still have

moderate correlations between them. Accordingly, it describes either a weakly correlated

biangulon or two weakly interacting angulons.

When we compute the expectation value of Ĥ (6.4) in the state |ψ1-ph⟩ and minimize

the functional F (ψ1-ph) = ⟨ψ1-ph|Ĥ−EBA|ψ1-ph⟩ with respect to the variational coefficients,

we obtain the self-consistent equation

EBA = BL1(L1 + 1) +BL2(L2 + 1)− ΣBA
L1M1L2M2

(EBA) (6.24)

for the energy EBA. Here the self-energy ΣBA
L1M1L2M2

(EBA) is given by

ΣBA
L1M1L2M2

(EBA) =∑︂
kλj1

2λ+ 1

4π

U2
λ(k)

[︁
Cj10

L10,λ0

]︁2
Bj1(j1 + 1) +BL2(L2 + 1) + ω(k)− EBA

+
∑︂
kλj2

2λ+ 1

4π

U2
λ(k)

[︁
Cj20

L20,λ0

]︁2
BL1(L1 + 1) +Bj2(j2 + 1) + ω(k)− EBA

+
∑︂
kλλ′µ

CL10
L10,λ0

CL1M1
L1M1,λµ

CL20
L20,λ′0C

L2M2

L2M2,λ′µΓλ,λ′(k, d)

BL1(L1 + 1) +BL2(L2 + 1) + ω(k)− EBA

(6.25)
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and

Γλ,λ′(k, d) =

iλ−λ′

√︄
(2λ+ 1)(2λ′ + 1)

(4π)2
Uλ(k)Uλ′(k)×∫︂

dϕk

∫︂
dθk sin θk

[︁
eik·dYλ,µ(θk, ϕk)Y

∗
λ′,µ(θk, ϕk) + c.c.

]︁
.

(6.26)

By C l1m1
l2m2,l3m3

we denote the Clebsch-Gordan coefficients [Varshalovich et al., 1988b].

6.5.1 The spectral function and instabilities

As for a single molecule immersed in a bosonic bath [Lemeshko and Schmidt, 2017],

the self-consistent equation (6.24) gives us access to the biangulon spectral function

AL1L2(E) = Im[GBA
L1M1L2M2

(E + i0+)], (6.27)

where

GBA
L1M1L2M2

(E) = (6.28)
1

BL1(L1 + 1) +BL1(L1 + 1)− E − ΣBA
L1M1L2M2

(E)
,

denotes the retarded Green’s function, and therewith to the energy spectrum of the

system.

One of the most striking features of the angulon quasiparticle is the onset of an

intermediate instability regime, where resonant transfer of angular momentum between

the molecule and the bath drastically decreases the quasiparticle weight [Schmidt and

Lemeshko, 2015]. This phenomenon has been observed experimentally [Cherepanov

and Lemeshko, 2017]. In order to make our results comparable to the case of one

molecular impurity, we choose in this Section the same parameters as in Fig. 2 in

Ref. [Schmidt and Lemeshko, 2015]. In Fig. 6.4 we study the biangulon spectral

function (6.27) as a function of the dimensionless energy ẼBA and (a) the dimensionless

molecule-molecule distance d̃ as well as (b) the dimensionless bath density ñ. In (a)

we have chosen ln(ñ) = −3, while d̃ = 0.6 in (b). States are labeled according to the

first term in (6.23). The biangulon instabilities are highlighted by the red dotted circles.

The degeneracy of different M =M1 +M2 states is lifted by the interaction. To keep the



69

Figure 6.4: Spectral function Aj1j2(ẼBA), Eq. (6.27), of the biangulon as a function of

the dimensionless energy ẼBA and (a) the dimensionless molecule-molecule distance d̃

as well as (b) the dimensionless bath density ñ for different angular momentum states

L1 and L2 with M1 = 0 =M2. The states are labeled according to the first term in (6.23)

and we use the notation |L1L2⟩ = |L1,M1 = 0, L2,M2 = 0⟩. In (a) the bath density is

chosen as ln(ñ) = −3 and the distance in (b) is given by d̃ = 0.6. Biangulon instabilities

are highlighted by red dotted circles. For details see the text.

figures accessible, we, however, only consider state with M1 = 0 =M2 here. This is on

the one hand because the quasiparticle instabilities for states with M1,M2 ̸= 0 are very

similar to the ones for states with Mi = 0, and on the other hand because their energies

are very close.

In Fig. 6.4(a) we see that the biangulon instabilities are only slowly changing with the

distance d̃ between the two impurities and appear in a wide region of distances. In this

regime a description of the system in terms of the biangulon quasiparticle, or for larger

distances in terms of two separate angulons, breaks down. For larger distances this can

be explained as follows: The two impurities are weakly interacting and therefore almost
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independent. If the parameters are such that one of the two impurities experiences an

angulon instability the quasiparticle picture breaks down and a further increase of the

molecule-molecule distance does not change this situation.

We note that the instability region, as a function of the adimensional density ñ, has

approximately the same size as in the single angulon case, see Fig. 2 in Ref. [Schmidt

and Lemeshko, 2015]. We observe, however, that the instability for the biangulon

appears at lower densities. For instance, the instability of a single angulon in the

molecular state |LM⟩ = |10⟩ is located around ln(ñ) = −5, see Fig. 2 in Ref. [Schmidt

and Lemeshko, 2015], while Fig. 6.4(b) shows that the instability is shifted to the region

around ln(ñ) = −6 when another molecule in the state |LM⟩ = |00⟩ is put at a distance

d̃ = 0.6 from the first one. Furthermore, two spectral instabilities can be found in the

biangulon spectrum where there is only one in the case of the angulon: In Fig. 6.4(b)

we see a first instability of the state |L1L2⟩ = |21⟩ around ln(ñ) = −6 and a second

around ln(ñ) = −4. These two instabilities correspond to phonons excited by molecules

with different angular momentum quantum number, in this case L = 1 and L = 2. We

can distinguish the two instabilities because, compared to the situation in Fig. 2 in

Ref. [Schmidt and Lemeshko, 2015], the relevant angulon instabilties are shifted. Both

features, the shift of the spectral instabilities and the appearance of a second instability,

can be used in experiments as a measure for correlations between the two impurities,

and therewith as a signature for the formation of the biangulon quasiparticle.

We note that the spectral instability of the state |L1L2⟩ = |10⟩ appears at ln(ñ) = −5.2

if d̃ = 10 and not at ln(ñ) = −5, see Fig. 2 in Ref. [Schmidt and Lemeshko, 2015], as

one would expect for two (almost) non-interacting impurities. This shift is a consequence

of our one-phonon excitation variational ansatz, which forces the impurities to share

one phonon also if they are far apart from each other. The result is a slightly different

dressing of the two impurities by the phonon compared to the case of a single angulon

(described by a one-phonon variational ansatz) and explains the above deviation. A

careful discussion of this effect can be found in the following Section.
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Figure 6.5: Effective interaction ∆Ẽ obtained with the one-phonon-excitation variational

ansatz (6.23) for molecular states |L1M1L2M2⟩ = |1010⟩ (red solid line), |1110⟩ (black

dot line), and |1111⟩ (blue dashed line) as a function of the dimensionless molecule-

molecule distance d̃. States are labeled according to the first term in Eq. (6.23). The

bath density is chosen such that ln(ñ) = 0. For more details see the text.

6.5.2 Effective interaction

Let us also consider the effective interaction between the impurities

∆E = EBA − E
(1)
A − E

(2)
A , (6.29)

where E
(i)
A denotes the energy of the i-th impurity computed with a one-phonon-

excitation variational ansatz, see Refs. [Schmidt and Lemeshko, 2015; Lemeshko

and Schmidt, 2017]. In Fig. 6.5 we show ∆E as a function of the dimensionless distance

d̃ for the same quantum numbers as in Fig 6.2, where the Born-Oppenheimer approxi-

mation has been considered. As one can expect from our discussion there, ∆E depends

on the magnetic quantum numbers of the molecules. The qualitative behavior of the

effective interaction is the same as in the case of the Born-Oppenheimer approximation,

that is, the state |1010⟩ has the largest effective interaction, followed by |1000⟩ and |0000⟩,

and the effective interaction is the smallest in case of |1100⟩. As above, we labeled

states according to the first term in Eq. (6.23). In particular, states with M1 = 0 = M2

have larger effective interaction than states with M1,M2 ̸= 0. The intuition behind this

has been explained in detail in Section 6.4.1. In contrast to the strong coupling case,
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the effective interaction does not go to zero for large molecule-molecule distances. As

we will see below, this is due to the fact that one phonon cannot dress two impurities in

the same way as one phonon dresses a single impurity.

To investigate this in some more detail, we have a closer look at the self-energy

ΣBA
L1M1L2M2

(EBA) in Eq. (6.25) in the limit d → ∞. The first two terms in this equation

are the self-energy contributions of the two molecules, while the third term is related

to the effective interaction between them. Since this last term vanishes for d→ ∞, we

only need to consider the first two terms. To keep things simple, we also assume that

the two molecules are in the same angular momentum state, i.e., L1 = L2 = l and

M1 =M2 = m. The self-consistent equation (6.24) for the energy thus reads

˜︁EBA(Uλ) = 2Bl(l + 1) (6.30)

−
∑︂
kλl′

2λ+ 1

4π

2U2
λ(k)

[︁
C l′0

l0,λ0

]︁2
Bl′(l′ + 1) +Bl(l + 1) + ω(k)− ˜︁EBA(Uλ)

,

where ˜︁EBA(Uλ) = limd→∞EBA(Uλ). We want to compare the solution of this equation

to the energy of two separate molecules, that is, to twice the energy of one molecule

dressed by one phonon. Such a system has been considered in Ref. [Schmidt and

Lemeshko, 2015] and the self-consistent equation for the energy is given by

EA(Uλ) =Bl(l + 1) (6.31)

−
∑︂
kλl′

2λ+ 1

4π

U2
λ(k)[C

l′0
l0,λ0]

2

Bl′(l′ + 1) + ω(k)− EA(Uλ)

in this case. One easily checks that a solution of (6.30) can be written in terms of a

solution of (6.31) as ˜︁EBA(Uλ) = Bl(l + 1) + EA(
√
2Uλ). (6.32)

Here EA(
√
2Uλ) is the energy of one single molecule but with interaction potential

√
2Uλ

instead of Uλ in the relevant Hamiltonian. One also checks that the right-hand side

of Eq. (6.32) is strictly larger than 2EA(Uλ). These results can be explained with the

following simple physical picture: The phonon in the system is located with probability

1/2 close to one molecule and with probability 1/2 close to the other molecule. This

results in an effective potential, which is, compared to the case of one molecule and

one phonon, reduced by a factor of 1/
√
2 coming from the phonon wave function. The
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fact that we have a linear coupling and that there are two such interaction terms, one for

each molecule, explains the factor of
√
2 = 2/

√
2 in front of the interaction potential.

The above physical picture is also present in the wave function of the system. If we

substitute the relation between the variational coefficients

− βj1m1j2m2k/g =

e−i 1
2
k·d⟨j1m1|V̂ |L1M1⟩δj2L2δm2M2

Bj1(j1 + 1) +Bj2(j2 + 1) + ω(k)− EBA

+
ei

1
2
k·d⟨j2m2|V̂ |L2M2⟩δj1L1δm1M1

Bj1(j1 + 1) +Bj2(j2 + 1) + ω(k)− EBA
, (6.33)

which follows from the first variation of the energy, into the ansatz Eq. (6.23), we find

|ψc⟩ =
1√
2

[︂
|L1M1⟩ ⊗ |ψA

L2M2
(−d)⟩

+ |ψA
L1M1

(d)⟩ ⊗ |L2M2⟩
]︂
. (6.34)

Here |ψA
LM⟩ denotes the wave function of one single angulon and reads

|ψA
LM(d)⟩ = g√

2
|LM⟩|0⟩+ g√

2

∑︂
j1k

fL1,j1,L2(k, d)|j1m1⟩b̂
†
k|0⟩, (6.35)

with

fl1,l2,l3(k, d) =
2ei

1
2
k·d⟨l2|V̂ |l1⟩

Bl3(l3 + 1) +Bl2(l2 + 1) + ω(k)− EBA
. (6.36)

The wave function of the two impurities in Eq. (6.34) is given by an equal weight

superposition of a tensor product of one dressed and one bare molecule, that is, the

phonon is with probability 1/2 located close to the first molecule and with probability 1/2

close to the second.

From this simple example we learn that one phonon cannot dress each of the two

molecules in the same way as one phonon would dress one single molecule. Accordingly,

the effective interaction ∆E (6.29) does not go to zero as d → ∞, see Fig. 6.5. We

checked that this is still true if we consider a trial state with two phonons of the form

|ψ⟩ =g|L1M1⟩|L2M2⟩|0⟩+
∑︂

β|j1m1⟩|j2m2⟩b̂
†
k|0⟩ (6.37)

+
∑︂

γ|j′1m′
1⟩|j′2m′

2⟩b̂
†
k1
b̂
†
k2
|0⟩,

with variational coefficients g, β and γ, to compute EBA (and a trial state with one phonon

(or with two phonons) to compute EA,1 and EA,2). That is, as the above physical picture
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suggests, two phonons do not dress each of the two molecules (for d → ∞) as one

phonon dresses (or two phonons dress) a single impurity. In order to obtain an effective

potential with the property limd→∞∆E = 0 one would need to consider a sufficiently

large number of phonons to compute EBA. In case of a one-phonon or a two-phonon

variational state

∆E = EBA − lim
d→∞

EBA (6.38)

is therefore clearly a better definition for the effective interaction between the two impuri-

ties than Eq. (6.29). Based on the above analysis, we expect that a trial state with one

or two phonons yields a good approximation if the distance d between the two impurities

is not too large.

6.6 The angulon diagonalization technique
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Figure 6.6: Angle-averaged phonon density ρLM(r) (6.41) around one single molecule

sitting at r = 0 as a function of the dimensionless distance r̃ = r(mB)−1/2 to the origin.

We have chosen u0 = u1 = u2 = 218B, uλ = 0 for λ ≥ 3 and r̃0 = r̃1 = r̃2 = 1.5(mB)−1/2,

r̃λ = 0 if λ ≥ 3 as well as ñ = 1. The quantum numbers of the angulon are L = 0,M = 0

(solid black line), L = 1,M = 0 (red dashed line), L = 2,M = 0 (blue dotted line). For

more information see the text.

In the one-phonon variational ansatz in Eq. (6.23), we fix the angular momentum

quantum numbers L1,M1, L2,M2 in the first term on the right-hand side. It is important

to note, however, that the magnetic quantum number M of the whole system is its
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only good quantum number. In this section we ask the question whether the ansatz

in Eq. (6.23) is a good approximation also for small molecule-molecule distances, and

therefore choose a class of trial states, which allows for a substantial mixing of the

different basis states |L1,M1, L2,M2⟩ with fixed M1 +M2 =M in the term proportional

to the quasiparticle weight. To simplify the calculations, we assume that the interaction

of one of the impurities with the bath is weaker than that of the other impurity. This could

correspond e.g. to the case of one heavier and one lighter molecule. The system is

described by the wave function

|ψd⟩ =
∑︂

L,M,j,m

αL,M
j,m |ψA

L,M⟩|jm⟩. (6.39)

Here αL,M
j,m are variational coefficients that obey the usual normalization condition and

assure that M +m = ˜︂M holds with some fixed ˜︂M . Additionally,

|ψA
LM⟩ =

√︁
ZL|LM⟩|0⟩

+
∑︂
kλj1

βkλj1C
LM
j1m1,λµ

|j1m1⟩b̂
†
kλµ|0⟩ (6.40)

denotes the wave function of one single angulon with angular momentum quantum

numbers L,M . We obtain the coefficients in Eq. (6.40) by considering the relevant

one-impurity system, see Ref. [Schmidt and Lemeshko, 2015]. The impurity described

by the first tensor factor in Eq. (6.39) is the one with stronger molecule-bath interaction,

and therefore it is assumed to be already dressed by the phonon in the system. The

second impurity is described by a free rotor. Due to the generality of the variational

coefficients, the above ansatz allows for a substantial mixing of different free rotor states

in the part of the wave function with no phonons. Using it, we can therefore describe the

transition from two weakly coupled angulons, where the wave function is approximately

given by |ψA
L,M⟩|jm⟩ for some quantum numbers L,M, j,m, to a strongly correlated

biangulon quasiparticle, where more than one of the coefficients αL,M
j,m are unequal to

zero. The above ansatz efficiently describes phonon-induced interactions between the

two molecules as long as the weakly interacting impurity has a substantial overlap with

the phonon density located around the first molecule.

In Fig. 6.6 we show an example of such a phonon density. More precisely, we show
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the angle-averaged phonon density

ρLM(r) =

∫︂
dϕrdθr⟨ψA

L,M |b̂
†
rb̂r|ψA

L,M⟩

=
∑︂
λµ

⟨ψA
L,M |b̂

†
rλµb̂rλµ|ψA

L,M⟩ (6.41)

of one single impurity described by the angulon wave function (6.40). Here b̂
†
r creates

one phonon at position r and we used

b̂
†
r =

1

r

∑︂
λµ

b̂
†
rλµY

∗
λµ(θr, ϕr), (6.42)

see [Lemeshko and Schmidt, 2017]. The operator b̂
†
rλµ creates one phonon at distance

r from the origin with angular momentum quantum numbers λ, µ. It can be written in

terms of the operators b̂
†
kλµ as

b̂
†
rλµ =

√︃
2

π
r

∫︂
kdkjλ(kr)b̂

†
kλµ, (6.43)

where jλ(kr) denotes the spherical Bessel function [Abramowitz and Stegun, 1965].

The parameters are chosen to be u0 = u1 = u2 = 218B, uλ = 0 for λ ≥ 3 and

r̃0 = r̃1 = r̃2 = 1.5(mB)−1/2, r̃λ = 0 if λ ≥ 3. The density is given by ñ = 1 and

the quantum numbers of the angulon are chosen as L = 0,M = 0 (solid black line),

L = 1,M = 0 (red dashed line), L = 2,M = 0 (blue dotted line). As long as the distance

between the two impurities is below d̃ ≈ 6 for this choice of the parameters, the ansatz

(6.39) allows us to capture the interactions between the two impurities.

For mathematical convenience we assume from now on that the stronger interacting

impurity is sitting at the origin of the laboratory frame and that the weaker interacting

impurity is located at (0, 0, d). To diagonalize the biangulon Hamiltonian (6.4) with the

basis set (6.39), we write it as Ĥ = ĤA + Ĥ I, where

ĤA =B1Ĵ
2

1 +B2Ĵ
2

2 +
∑︂
k

ω(k)b̂
†
kb̂k

+
∑︂
kλµ

[︂
V (k, θ̂1, ϕ̂1)b̂

†
k + H.c.

]︂
(6.44)

and

Ĥ I =
∑︂
k

[︂
V (k, θ̂2, ϕ̂2)e

ik·db̂
†
k + H.c.

]︂
. (6.45)
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The Hamiltonian ĤA describes a single angulon [Schmidt and Lemeshko, 2015; Lemeshko,

2017] and a bare rotating molecule, and can therefore be considered as diagonal within

our approximation scheme. This allows us to write the matrix elements of the biangulon

Hamiltonian Ĥ with respect to the basis states in Eq. (6.39) as

HL′M ′j′m′

LMjm =
[︂
EL,M

A +Bj(j + 1)
]︂
δL′,LδM ′,Mδj′,jδm′,m

+⟨ψA
L′,M ′|⟨j′m′|Ĥ I|jm⟩|ψA

L,M⟩. (6.46)

In order to obtain the energies and eigenfunctions, we diagonalize the Hamiltonian matrix

(6.46) numerically with the angular momentum cut-off L,L′, j, j′, |M |, |M ′|, |m|, |m′| ≤ 2.

As parameters we choose uλ,1 = 2uλ,2, where the second index refers to the first and

the second impurity, u0,1 = u1,1 = u2,1 = 218B and ñ = 1. We label eigenstates by their

dominant basis vector contribution at d̃ = 10, that is, at that distance the eigenfunction

|ψA
L,M ; j,m⟩ approximately equals |ψA

L,M⟩|j,m⟩. The results of the diagonalization are

presented in Fig. 6.7. In Fig. 6.7(a) we show the energy of the ground state |ψA
0,0; 0, 0⟩

and of six excited states. States which differ only by the magnetic quantum number of the

two molecules are degenerate if the distance between them is sufficiently large because

EL,M
A = EL,−M

A . This degeneracy is lifted when the particles start to substantially interact

around d̃ ≈ 6. In this regime the eigenvalues related to |ψA
1,0; 0, 0⟩ (red solid line) and

|ψA
2,0; 0, 0⟩ (solid black line) start to split from those related to |ψA

1,±1; 0, 0⟩ (red dashed

line) and |ψA
2,±1; 0, 0⟩ (black dashed line), |ψA

2,±2; 0, 0⟩ (black dotted line), respectively. The

states |ψA
1,±1; 1,∓1⟩ remain degenerate.

In Fig. 6.7 In (b)–(e) we show the squared overlap of the eigenstate |ψA
2,0; 0, 0⟩ (b),

|ψA
1,±1; 1,∓1⟩ (c), |ψA

1,0; 1, 0⟩ (d) and |ψA
0,0; 0, 0⟩ (e) with the different basis states. We

note that all these states have M + m = 0. The grey lines show the occupation

of all other basis vectors. As can be seen from these figures, different eigenstates

of the Hamiltonian matrix (6.46) show different behavior during the transition from

two separate angulons to a biangulon if the distance between them is decreased.

The states |ψA
1,±1; 1,∓1⟩ and |ψA

1,0; 0, 0⟩ for example show a sharp transition, while this

transition is less pronounced for the state |ψA
2,0; 0, 0⟩ and it is almost not present in

case of the ground state |ψA
0,0; 0, 0⟩. This behavior is a result of the SO(3) algebra of

angular momentum ruling the interaction between the two impurities. More precisely,

the contribution of each different angular momentum basis state to a matrix element



78

of the form ⟨V (k, θ̂2, ϕ̂2)e
ik·d⟩ shows a different dependence on the molecule-molecule

distance d. How these contributions are mixed is determined by the Clebsch-Gordan

coefficients, and therefore by the SO(3) algebra. In general, we can say that the states

with M = 0 = m and L ̸= j show the most pronounced angulon to biangulon transitions.

In case of M = 0 = m the wave function is with good approximation a superposition of

two basis states. As an example we consider states of the form

|ψA
L,0; j, 0⟩ ≈ c1(d)|ψA

L,0⟩|j, 0⟩+ c2(d)|ψA
j,0⟩|L, 0⟩, (6.47)

compare with Fig. 6.7(b) and (d). This representation implies that angular momentum

is transferred from one impurity to the other during the transition from two separated

angulons to a biangulon quasiparticle. The fact that exactly these two basis states

appear in Eq. (6.47) is again a result of the SO(3) algebra of angular momentum. For

several other basis states we find a similar but less pronounced angulon-biangulon

transition. The weakest transition can be seen in states of the form |ψA
L,0;L, 0⟩.

In order to investigate the transition from two angulons to a biangulon for states that

show a pronounced transition in more detail, we consider correlation functions of the

form

FÔ =
⟨Ô1Ô2⟩ − ⟨Ô1⟩⟨Ô2⟩

⟨Ô1Ô2⟩max − ⟨Ô1⟩max⟨Ô2⟩max

, (6.48)

where ⟨·⟩ denotes the expectation w.r.t. one of the eigenfunctions of the two impurity

problem and Ôi, i = 1, 2, is an operator acting on the i-th impurity. As an example,

we consider eigenstates that can with a good approximation be written as a distance-

dependent superposition of two basis states |v⟩ and |w⟩, that is, states of the form

|ψd⟩ ≈ c1(d)|v⟩+ c2(d)|w⟩, (6.49)

compare with Eq. (6.47). The normalization in (6.48) is chosen such that |FÔ| takes

values between zero and one. More precisely, we assume that the expectation ⟨·⟩max is

taken with respect to the state

|ψmax⟩ =
1√
2
(|v⟩+ |w⟩) . (6.50)

In the cases we consider, the state |ψmax⟩ maximizes the correlation function among

normalized states of the form given by Eq. (6.49). Since the different eigenfunctions of

the Hamiltonian matrix (6.46) we consider here have different dominant basis vectors in

their expansion we also have to use different operators Ô to measure their correlations.
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The correlation functions related to four eigenstates of the Hamiltonian matrix can

be found in Fig. 6.8. We have chosen Ô = cos(θ), |ψA
1,0; 0, 0⟩ (red solid line), Ô =

cos2(θ), |ψA
2,0; 0, 0⟩ (solid black line), Ô = sin(θ)e±iφ, |ψA

1,1; 0, 0⟩ (red dashed line) and

Ô = sin2(θ)e±i2φ, |ψA
2,2; 0, 0⟩ (black dotted line). The interaction between the impurities is

attractive, and hence all correlation functions are positive. The particular patterns that

these functions show are related to the shape of our interaction potential. All correlation

functions indicate that after the onset of interactions between the two impurities around

d̃ ∼ 6, the eigenstates of the Hamiltonian matrix (6.46) we considered in Fig. 6.8 quickly

start to be substantially entangled and correlated when the distance between them is

further reduced – a clear signature that a biangulon quasiparticle forms.

A similar but less pronounced behavior can be found for several other eigenstates.

The states |ψA
L,0;L, 0⟩ show, however, almost no correlations and have |ψA

L,0⟩|L, 0⟩ as

a dominant basis vector for all distances. The weakest correlation can be found in

the ground state. The fact that its wave function is with good approximation given by

|ψA
0,0⟩|0, 0⟩ is in accordance with the analysis in the strong-coupling regime in Sec. 6.4.2,

where we found that the ground state is a product of two (the same) impurity wave

function. Here the system looked like a biangulon quasiparticle because of the substan-

tial anisotropy of the molecular orientations and because the phonon cloud related to

one molecules had a substantial overlap with the other molecule (and the other way

round). Due to the simplicity of our approach, this is clearly not captured by the analysis

in this Section. To take such effects into account, which would allow us to investigate

the transition from two separate angulons to a biangulon also for the states |ψA
L,0;L, 0⟩

in more detail, we would need to allow for more basis states in the expansion of the

molecular states. Additionally, we would need to treat also the phonon wave function

variationally. This, however, is beyond the scope of the present chapter.

In summary, by applying translation operators to the previously introduced angulon

Hamiltonian, we obtained the Hamiltonian describing two rotating molecules immersed

in a bosonic bath. This model was studied in different parameter regimes and us-

ing several theoretical approaches. In all the parameter regimes we found that the

molecules align with respect to each other as a result of the phonon mediated effective

attractive interaction (6.12) between them. To describe the resulting correlated state,

we introduced the biangulon quasiparticle. In analogy to the bipolaron quasiparticle, it
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describes two rotating molecules dressed by bosonic excitations.

In the regime where the molecular rotation is much slower than the characteristic

timescale of the phonons. The phonon cloud adjusts itself instantaneously to changes

of the molecular orientation and a Born-Oppenheimer approximation is valid. Within this

approach we showed that the effective intermolecular force mediated by the phonons is

sensitive to the rotational state of both molecules and takes its largest values when the

overlap of the phonon density with each of the two molecules is maximal. Accordingly,

the states with magnetic quantum numbers M1 = 0 =M2, which preserve the symme-

tries of the Hamiltonian, show the largest effective interaction. Accordingly, we expect

the alignment of diatomic molecules in helium droplets to be observable in experiments

similar to the single-molecule case [Shepperson et al., 2017b; Shepperson et al., 2017a;

Cherepanov et al., 2019; Pickering et al., 2018a].

In the opposite regime, where the impurity-bath coupling is relatively weak, we

investigated the system with the help of a one-phonon excitation variational ansatz,

which allowed us to access the excitation spectrum of the biangulon. In comparison

to the angulon spectrum, we observed an additional spectral instability, as well as a

shift of the angulon spectral instabilities due to the presence of the second molecule. If

one varies the density of the doped molecular impurities in the solvent from a dilute to

a moderately dense regime, we therefore expect to observe the shifts of their spectral

instabilities in their spectra as a signature for the formation of the biangulon quasiparticle.

Additionally, we pointed out that in our model one or two phonons cannot dress two

molecules that are far apart from each other as one phonon dresses one single molecule,

which leads to a subtlety in the definition of the effective phonon-mediated interaction

for large distances.

Finally, by using products of angulon and bare rotor states as basis states, We show

that, in the parameter regime where a biangulon has formed, the wavefunction is a

superposition of at least two of the above basis states. Accordingly, angular momentum

is transferred between the two molecules and the state is strongly correlated. This has

to be contrasted with the appearance of two uncorrelated or weakly correlated angulons

at larger molecule-molecule distance.
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Figure 6.7: (a) The dimensionless biangulon energy of the ground state and of six

excited states obtained by diagonalizing the biangulon Hamiltonian (6.4) with the base

vectors used in (6.39). In (b)–(e) we show the squared overlap of the eigenstate

|ψA
2,0; 0, 0⟩ (b), |ψA

1,±1; 1,∓1⟩ (c), |ψA
1,0; 1, 0⟩ (d) and |ψA

0,0; 0, 0⟩ (e) with the different basis

states. The bath density has been chosen as ñ = 1. The grey lines show the occupation

all other basis vectors. For more information see the text.
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Figure 6.8: Correlation function FÔ, Eq. (6.48), as a function of the dimensionless

molecule-molecule distance d̃. The parameters are the same as in Fig. 6.7. The

colors of the graphs refer to the same states as in Fig. 6.7(a). For the operator Ô and

for the state ⟨·⟩ we made the following choice: Ô = cos(θ), |ψA
1,0; 0, 0⟩ (red solid line),

Ô = cos2(θ), |ψA
2,0; 0, 0⟩ (solid black line), Ô = sin(θ)e±iφ, |ψA

1,1; 0, 0⟩ (red dashed line) and

Ô = sin2(θ)e±i2φ, |ψA
2,2; 0, 0⟩ (black dotted line). For more information see the text.
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7 Conclusions

This thesis introduces a toolbox of theoretical models, describing rotating molecules

immersed in a bosonic bath. The models we introduced are based on the mean-field

approximation (chapter 2), variational approaches (chapter 3), and diagonalization

approach (chapter 4).

We have applied the theory to study the angular self-localization of single molecules

immersed in the superfluid (chapter 5) as well as to two molecules, where we derived

effective phonon-mediated interactions between them (chapter 6). he content and

details of chapters 4, 5, and 6 can also be found in [Li et al., 2019; Li et al., 2017;

Li et al., 2020], respectively.

As a concept of quasiparticle, one objective of angulon theory is to develop the

theoretical machinery describing the rotating impurity properties within a broad range

of parameters. The exploratory results discussed in Chapter 4 are devised based on

the variational and analytical approaches. They provides a reasonable estimate of the

ground- and excited-state energies both for weak and strong interactions and therefore

can be applied in our further studies.

The similarities between the effective Hamiltonian of angulon and Fröhlich Hamil-

tonian suggest a possibility of observing angular localization. In the other hand, the

intrinsic property of quantum angular momentum, separated eigenvalues, distinguishes

itself from the polaron systems with only translational momentum. Unlike in the polaron

problem, the transition from a spherically symmetric to a localized ground state occurs

already at the mean-field level. Furthermore, depending on the symmetry of the inter-

actions, the state can be oriented (broken parity) or aligned (definite parity), making it

possible to observe a crossover between the two symmetries in the localized phase.

Among the experimental systems to address the localization transition, the most
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promising one is given by cold molecules trapped in superfluid helium nanodroplets [Toen-

nies and Vilesov, 2004b; Lemeshko, 2017]. There, it is possible to trap slowly rotat-

ing molecules featuring highly anisotropic interactions with helium. Moreover, an-

gulon self-localization can potentially be studied in experiments on Rydberg exci-

tations in BECs [Balewski et al., 2013], where orbital-angular-momentum-changing

collisions between the Rydberg electron and ultracold atoms have already been ob-

served [Schlagmüller et al., 2016]. Finally, studies of coupling between rotations and

vibrations have a long history in the context of finite systems, such as nonspherical

atomic nuclei [Rowe and Wood, 2010], flexible polyatomic molecules [Schmiedt et al.,

2016], and electron bubbles in superfluid helium [Tempere et al., 2003; Vadakkumbatt

et al., 2014]. Recasting these problems in terms of the angulon quasiparticle might give

further insights into the angular localization transition discussed here.

It is worth noting that here we undertook only the first step in the studies of self-

localization of quantum rotors. For Fröhlich polarons it has been demonstrated that

a sharp self-trapping transition arises as an artifact of the mean-field approximation,

since mean field favors symmetry breaking even if it is prevented by quantum fluctua-

tions [Fisher and Zwerger, 1986; Peeters and Devreese, 1982b; Gerlach and Löwen,

1991a; Mishchenko et al., 2000b; Feranchuk and Komarov, 2005].

Thus, it still remains to investigate whether such a transition actually takes place

for rotating impurities. Therefore, in order to get a deeper understanding of angular

self-localization, approaches beyond mean field need to be developed for the angulon

problem. We hope that the results presented here will stimulate future studies of angu-

lar self localization, both in the context of the angulon Hamiltonian, and for extended

angulon models including nonlinear coupling terms. Finally, studying an ensemble of in-

teracting quantum rotors in a superfluid might pave the way to studying new phenomena

related to quantum glassiness [Ye et al., 1993] and many-body localization [Nandkishore

and Huse, 2015].

As another main interest of this thesis (chapter 6), we focus on the effective interac-

tion and the resulting correlations between two diatomic molecules immersed in a bath

of bosons. Unlike electrons or ground-state atoms, the low-energy degrees of freedom

for molecules involve rotations, leading to an exchange of angular momentum between

the molecule and the bath.
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We introduce the biangulon quasiparticle describing two rotating molecules that align

with respect to each other due to the effective attractive interaction mediated by the

excitations of the bath. We show that, the molecules tend to have a strong alignment in

the ground state in the strong-coupling regime. In the weak-coupling regime, we access

the energy spectrum, and the biangulon shows shifted angulon instabilities and an

additional spectral instability. Furthermore, we show the correlations of two molecules

and the transition from two separated angulons to a biangulon as a function of the

distance between the two molecules.

The phenomenon of effective interactions between quantum particles can emerge

due to a surrounding bath has received a lot of attention since 1940s. Aside the fully

discussed bipolaron quasiparticle [Devreese, 2016], more complex polaronic structures

can form, such as electronic Wigner crystals [Quémerais and Fratini, 1998; Fratini and

Quémerais, 2002; Iadonisi et al., 2007], polaron molecules and clusters [Kusmartsev,

2001; Perroni et al., 2004; Bruderer et al., 2007]. In quantum dot devices, the effects

of electron-phonon coupling on the thermodynamic and optical properties are applied

to explain the optical absorption spectra of high-critical-temperature cuprates and their

electronic transitions (see Ref. [Fomin et al., 1998; Klimin et al., 2004] and references

therein). The attractive electron correlations mediated by phonons are found to be able

to overcome the direct Coulomb repulsion in deformable molecular quantum dots, which

are suggested as a basis for polaronic memory resistors [Alexandrov and Bratkovsky,

2003; Alexandrov and Bratkovsky, 2009]. Beyond electron-phonon coupling, other

indirect interactions play a key role in quantum systems, for instance the Ruderman-

Kittel-Kasuya-Yosida interaction [Ruderman and Kittel, 1954; Zhou et al., 2010] gives

rise to complex magnetic phases such as spin glasses [Hewson, 1997].

In chapter 6 , we have shown that two molecular impurities without direct interaction

can exchange their angular momentum by coupling with surrounding boson bath. The

effective force between two impurities changes as a function of distance between

impurities. This promising result imply that we can further study the correlation between

multiple molecular impurities. As we discussed in chapter 6, the single phonon dresses

the impurities in a superposition state. Whether a supperradiance of phonons could

happen in the molecular impurities immersing in many-body environment becomes an

interesting question to be asked.
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In addition, our results also show that the effective force aligns two molecular

impurities to maximize the wavefunction overlap, then the situation becomes more

complex when three or more impurities are considered. The phonon-mediated coupling

could therefore play a role in cluster formation. The above topics can be applied to

molecules immersed in superfluid helium droplets [Toennies and Vilesov, 2004c] or in

atomic Bose-Einstein condensates [Lemeshko and Schmidt, 2017], and can be extended

to systems where the impurity particles are Rydberg atoms [Schmidt et al., 2016;

Camargo et al., 2018] or defects in solids [Pushkarov, 1991].

As compared to atoms, molecules possess a richer internal structure that overs

many opportunities for technological and scientic advancement. The work shown here

pushes the theory of controllable molecules further by extending it to the collective

behavior in the presence of a many-body environment, where molecules turn into the

angulon quasiparticles. The theory of biangulon, which is a bound state of two angulons,

will be developed aiming at describing the interaction between two rotating impurities in

a bosonic bath, as well as the redistribution of orbital angular momentum in the context

of quantum many-particle systems. In a broader perspective, the biangulon theory will

serve as a basic understanding for treating few-, and many-particle processes involving

angular momentum exchange with an environment, such as reactivity, molecular col-

lisions, and formation of molecular clusters. Finally, the biangulon study will develop

and advance the study of the ‘newborn’ angulon quasiparticle, holding a potential for

exciting and unexpected applications in the years to come.
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[Hubač and Wilson, 2010] Ivan Hubač and Stephen Wilson, Brillouin-Wigner methods

for many-body systems, Springer, Dordrecht, Netherlands, 2010.

[Iadonisi et al., 2007] Giuseppe Iadonisi, Vladimir Mukhomorov, Giovanni Cantele, and

Domenico Ninno, “Formation of a large polaron crystal from a homogeneous, dilute

polaron gas,” Physical Review B, 76(14):144303, 2007.

[Jackson and Platzman, 1981] SA Jackson and PM Platzman, “Polaronic aspects of

two-dimensional electrons on films of liquid He,” Physical Review B, 24(1):499, 1981.

[Jin and Ye, 2012] D S Jin and J Ye, “Introduction to Ultracold Molecules: New Frontiers

in Quantum and Chemical Physics,” Chem. Rev., 112:4801, 2012.

[Jørgensen et al., 2016] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish,

J. Levinsen, R. S. Christensen, G. M. Bruun, and J. J. Arlt, “Observation of Attractive

and Repulsive Polarons in a Bose-Einstein Condensate,” arXiv:1604.07883, 2016.



96

[Jørgensen et al., 2016] Nils B Jørgensen, Lars Wacker, Kristoffer T Skalmstang,

Meera M Parish, Jesper Levinsen, Rasmus S Christensen, Georg M Bruun, and

Jan J Arlt, “Observation of attractive and repulsive polarons in a Bose-Einstein

condensate,” Physical review letters, 117(5):055302, 2016.

[Kalas and Blume, 2006] Ryan M Kalas and D Blume, “Interaction-induced localiza-

tion of an impurity in a trapped Bose-Einstein condensate,” Physical Review A,

73(4):043608, 2006.

[Kaminski and Sarma, 2002] A Kaminski and S Das Sarma, “Polaron percolation in

diluted magnetic semiconductors,” Physical Review Letters, 88(24):247202, 2002.

[Kashirina and Lakhno, 2010] Nataliya Ivanovna Kashirina and Viktor D Lakhno, “Large-

radius bipolaron and the polaron–polaron interaction,” Physics-Uspekhi, 53(5):431,

2010.

[Kazimierczuk et al., 2014] Tomasz Kazimierczuk, Dietmar Fröhlich, Stefan Scheel,
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