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Jan Petrá�sek,3,5 Markus Geisler,2 and Ji�rı́ Friml1,8,*
1Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
2Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
3Department of Experimental Plant Biology, Faculty of Science, Charles University, Vini�cná 5, 128 43 Prague 2, Czech Republic
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SUMMARY
The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone sali-
cylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been
few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely
overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter
and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like
action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-in-
dependent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and
inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and
subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuti-
cals in plants and provide insights into themolecular mechanism underlying the cellular action of this class of
anti-inflammatory compounds.
INTRODUCTION

The active compounds from willow (Salix alba L.) barks, salicylic

acid (SA) or salicylates, have been used to treat pain and fever

since prehistoric times (Lichterman, 2004; Yin et al., 1998).

Based on the structure of SA, various derivatives have been

developed as novel non-steroidal anti-inflammatory drugs

(NSAIDs; Figures 1A and S1B), such as aspirin (acetylsalicylic

acid, ASA) and ibuprofen (IBP) (Yin et al., 1998). NSAIDs,

including SA, have been well documented as targeting the pros-

taglandin biosynthesis enzyme cyclooxygenase-2 (COX-2), thus

suppressing the inflammatory response in mammalian cells

(Duggan et al., 2011; Kurumbail et al., 1996; Lichterman, 2004;

Selinsky et al., 2001; Yin et al., 1998).

In plants themselves, SA is a stress signal, and it is perceived

by the NON-TRANSCRIPTION OF PATHOGENESIS-RELATED

GENES (NPR) receptors to regulate plant immunity (Ding et al.,

2018; Durrant and Dong, 2004; Fu et al., 2012; Wu et al.,

2012). Meanwhile, SA can also function through various SA bind-

ing proteins (Choi et al., 2015, 2016; Klessig et al., 2016), and SA
C
This is an open access article und
participates in regulating plant growth and development (Kazan

and Manners, 2009; Wang et al., 2007). This developmental role

of SA is realized via crosstalk with the transport mechanism for

the phytohormone auxin (Du et al., 2013; Pasternak et al.,

2019; Rong et al., 2016; Wang et al., 2017). SA regulates root

development through both the clathrin-mediated endocytosis

pathway (Du et al., 2013; Wang et al., 2016) and protein phos-

phatase 2A (PP2A)-mediated (de)phosphorylation of PIN-

FORMED (PIN) auxin transporters (Tan et al., 2020a), together

regulating the plasma membrane (PM) targeting and polar distri-

bution of PINs (Grones and Friml, 2015). Via this mechanism, SA

regulates PIN-mediated directional auxin fluxes and auxin trans-

port-mediated development. However, little is known about the

effects of NSAIDs in plants—whether they preserve the function

of SA or even have any activity at all.

Plant growth and development require the rigorous spatial-

temporary distribution of the phytohormone auxin, which de-

pends on both efflux and influx transporters (Adamowski and

Friml, 2015; Armengot et al., 2016; Luschnig and Vert, 2014).

Throughout the auxin research, synthetic auxin transport
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inhibitors (ATIs; Figure S1A) and auxin analogs (e.g., 1-naphtha-

leneacetic acid [NAA], 2,4-D) have played crucial roles in the

characterization of molecular components in the auxin pathway,

including its biosynthesis, transport, and signaling (Garbers

et al., 1996; Ruegger et al., 1997). Using the ATIs 1-N-naph-

thylphthalamic acid (NPA) and 2-carboxyphenyl-3-phenylpro-

pane-1,2-dione (CPD) as selection stress, the transport inhibitor

response (tir) mutants were identified (Mockaitis and Estelle,

2008; Peer, 2013; Ruegger et al., 1998). TIR1 and its close homo-

logs AUXIN SIGNALING F-BOXs (AFBs) were later established

as nuclear auxin receptors regulating the expression of down-

stream genes (Kieffer et al., 2010; Salehin et al., 2015) and

non-transcriptional root growth (Fendrych et al., 2018; Gallei

et al., 2020). Moreover, PP2AA1 (also known as ROOTS CURL

ON NPA1 [RCN1]) was identified from a forward genetic screen

for NPA hypersensitive mutant, and has been found to be an

essential regulator of PIN auxin transporters (Garbers et al.,

1996; Michniewicz et al., 2007; Tan et al., 2020a). Subclasses

of ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyre-

noyl) benzoic acid (PBA) interfere with the dynamics of the actin

cytoskeleton and thus the related endocytosis and endocytic

trafficking processes involved in PIN delivery (Dhonukshe

et al., 2008; Geldner et al., 2001; Zhu et al., 2016).

Here, we uncover the striking activity of NSAIDs in shaping

root morphology, in a manner similar to ATIs. Cell biology and

biochemical investigation have revealed that NSAIDs, via target-

ing the immunophilin-like protein TWISTED DWARF1 (TWD1,

also called FKBP42), participate in regulating actin cytoskeleton

dynamics and thus endomembrane trafficking processes. These

affect the trafficking of numerous PM-resident proteins,

including PIN auxin transporters. Our discoveries provide in-

sights into the molecular mechanism of NSAIDs in various

organisms.

RESULTS

Triple Inhibitory Effects of NSAIDs on Arabidopsis Root
Morphology
Given the fact that both SA and synthetic NSAIDs function in a

common way (i.e., targeting the COX-2 enzyme to inhibit the

prostaglandin biosynthesis and ultimately the inflammatory

response in mammalian cells) (Duggan et al., 2011; Yin et al.,

1998), we were wondering whether these synthetic NSAIDs

could retain some SA bioactivity in plants. To address this ques-

tion, we grew Arabidopsis seedlings on plates with different con-

centrations of NSAIDs and found that most of them exhibited a

pronounced effect in the 10- to 100-mM range. Notably, seed-

lings grown on NSAIDs (80 mM ASA, 40 mM IBP, 10 mMmeclofe-
Figure 1. NSAID Treatments Lead to Triple Inhibitory Response for Ara

(A) Chemical structures of representative NSAIDs, illustrated using the ChemSke

(B) Representative images showing the morphological changes of 10-day-old C

concentrations. Scale bars, 2 cm.

(C) Dose-dependent effect of NSAIDs inhibiting primary root elongation. Seven-d

(D) NSAIDs interfered with root gravitropism. Seven-day-old Col-0 seedlings gro

indicated. Each line represents the root tip angle of 1 individual seedling in polar

(E) NSAIDs suppressed lateral root formation. The emerged lateral roots of 10-day

and 44 seedlings, respectively. p values were calculated by comparing different

See also Figure S1.
namic acid [Meclo], and 40 mM flufenamic acid [Fluf], respec-

tively, given different activities) exhibited shorter and

agravitropic primary roots (Figures 1B–1D, S1C, and S1D) and

fewer or no lateral roots than those on the DMSO or 3-OH-BA

controls (Figures 1B, 1E, and S1C). These specific ‘‘triple inhibi-

tion’’ physiological effects are highly related to auxin, which is

essential for (1) primary root elongation, revealed by themonop-

teros/auxin response factor5 (mp/arf5) mutant, although higher

concentrations of auxin suppress root elongation (Fendrych

et al., 2018; Hardtke and Berleth, 1998); (2) lateral root formation,

revealed by solitary root (slr), arf7 arf19, pin1, pin3, and aux1 lax3

(Benková et al., 2003; Chen et al., 2015; Harper et al., 2000;

Swarup et al., 2008; Wang et al., 2015); and (3) root gravitropism,

revealed by auxin resistant3 (axr3), arf10 arf16, pin2, and auxin1

(aux1) (Luschnig et al., 1998; Marchant et al., 1999; Rouse et al.,

1998; Wang et al., 2005). In addition, seedlings exhibit similar tri-

ple inhibition response under chemical treatment with ATIs, such

as NPA and TIBA, as reported previously (Ruegger et al., 1997)

and also shown here for TIBA as positive controls (Figures 1B,

1D, 1E, S1C, and S1D). These observations indicate that

NSAIDs, similar to TIBA, cause strong triple inhibition physiolog-

ical effects, probably through compromising the auxin function in

planta.

NSAIDsCompromise Asymmetric Auxin Distribution and
Patterning in Root Meristem
To further test the effect of NSAIDs in the auxin pathway, we

used the DR5rev::GFP auxin reporter (Friml et al., 2003).

DR5rev::GFP seedlings were grown constantly on plates with

different compounds (40 mM ASA, 40 mM IBP, 40 mM Meclo,

40 mM Fluf, 10 mM TIBA, or DMSO as the solvent control), and

NSAIDs caused an over-proliferation of cells expressing

DR5rev::GFP, similar to TIBA (Figures 2A and S2A). The auxin

maxima are essential for the distal differentiation of root colu-

mella cells (Ding and Friml, 2010; Friml et al., 2002; Wang

et al., 2005), which develop starch-filled amyloplasts (statoliths)

as gravity sensors (Friml et al., 2002; Nakamura et al., 2019;

Swarup et al., 2005; Wang et al., 2005). Staining with Lugol’s so-

lution clearly labeled those statoliths in columella cells under

DMSO treatment, whereas TIBA or NSAID treatments led to an

expansion of the area (Figures 2B and S2B), correlated with

the DR5 pattern. With a newly developed, more sensitive auxin

responsive reporter, DR5v2::tdTomato;DR5rev::n3GFP (Liao

et al., 2015), it was clearly shown that there was an increase at

the lower side of the lateral root cap under a gravi-stimulus by

90� reorientation (Figures 2C and 2D). By contrast, NSAIDs or

TIBA could block this asymmetric DR5 re-distribution (Figures

2C and 2D), suggesting a similar action mode for both known
bidopsis Roots Morphologically

tch program.

ol-0 seedlings grown on MS media supplemented with NSAIDs at indicated

ay-old Col-0 seedlings; n = 60. DMSO is the solvent control.

wn constantly on MS medium supplemented with DMSO, TIBA, or NSAIDs, as

bar charts.

-old Col-0 seedlings treated with NSAIDs were counted; n = 39, 44, 45, 46, 44,

treatments to DMSO with an unpaired t test with Welch’s correction.
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ATIs and NSAIDs on the shootward (basipetal) auxin transport

and thus gravitropism.

Next, we used the tobacco BY-2 (Nicotiana tabacum L. cv.

Bright Yellow-2) cell system (Petrá�sek et al., 2006) to study the

effect of NSAIDs on auxin transport directly. NAA is a lipophilic

synthetic auxin analog, which shows auxin activity similar to

that of the natural indole 3-acetic acid (IAA) but does not require

the AUX1 auxin influx carrier (importer) to enter into cells. The

transport assay with [3H]-NAA in BY-2 cells showed that 40 mM

Meclo, 40 mM Fluf, 40 mM IBP, or 40 mM flurbiprofen (Flur)

enhanced the initial accumulation of [3H]-NAA with the quick for-

mation of a plateau that corresponds to the formation of equilib-

rium between the influx and efflux (Figures S2C and S2D). More-

over, treatment with NSAIDs led to kinetics of [3H]-NAA retention

that are similar to the previously described SA (Figure S2D; Tan

et al., 2020a). This suggests an inhibitory effect of NSAIDs on

auxin efflux, possibly through interfering with subcellular traf-

ficking of the efflux carriers similar to SA, or through the partici-

pation of NSAIDs in NAA metabolism in BY-2 cells (Ho�sek et al.,

2012). The application of TIBA led to a continuous increase in

[3H]-NAA accumulation (Figure S2C), which indicates that it

has a different mode of action in BY-2 cells. To test the effect

of NSAIDs on auxin transport in planta, we further measured

the rootward (basipetal) auxin transport with [3H]-IAA in etiolated

Arabidopsis hypocotyls. With [3H]-IAA and NSAIDs dissolved in

agarose droplets, there was a significant decrease in auxin

transport under NSAIDs treatment (Figure 2E). Collectively,

these results suggested that NSAIDs could specifically suppress

auxin efflux.

NSAID Treatment Inhibits Endocytosis and Endosomal
Trafficking
Auxin efflux is facilitated by two different families of exporters,

the PIN efflux carriers and a subset of ABCB (PGP) transporters

(Adamowski and Friml, 2015; Geisler et al., 2005; Luschnig and

Vert, 2014; Petrá�sek et al., 2006). There aremultilevel regulations

of auxin exporters, at both transcriptional (Chen et al., 2015;

Wang et al., 2015) and post-translational levels (Armengot

et al., 2016); the polar localization of PINs is highly dependent

on the endomembrane system, across secretion, endocytosis,

and endocytic trafficking (Adamowski and Friml, 2015; Glanc

et al., 2018). This can be revealed by the effect of brefeldin A

(BFA) or BFA agonists/antagonists on PIN/ABCB recycling,

auxin transport, and morphological response (Geldner et al.,

2003; Kania et al., 2018; Kleine-Vehn et al., 2009; Mishev et al.,
Figure 2. NSAID Treatments Interfere with Auxin Responses in Arabid

(A) The regular auxin-responsive pattern of DR5rev::GFP was disrupted by NSAID

NSAIDs with indicated concentrations were stained with propidium iodide (PI) an

n = 10–12, and scale bars, 20 mm.

(B) Constant NSAID treatments changed the pattern of statocytes. Five-day-old

and then imaged with a differential interference contrast (DIC) microscope, 403;

(C and D) NSAID treatments suppressed the re-distribution of DR5rev::n3GFP pa

seedlings grown on normal plates were transferred to DMSO/NSAID/TIBA-conta

channel, 203. (C) Representative images. Scale bars, 20 mm. (D) The upper:lower

12, 13, and 11, respectively. p values were calculated by comparing different tre

(E) NSAIDs inhibited basipetal (rootward) auxin transport in hypocotyls of Arabido

replicate for measurement; n = 3. p values were calculated by an unpaired t test

See also Figure S2.
2018), as well as genetic tools compromising the endocytosis

or the endocytic trafficking pathway, such as XVE>>AUXILIN-

LIKEs (Adamowski et al., 2018; Glanc et al., 2018), gnomR5

(Geldner et al., 2003; Kleine-Vehn et al., 2008), or ala3 (amino-

phospholipid atpase3) lines (Zhang et al., 2020). BFA is a widely

used inhibitor for ARF-guanine nucleotide exchange factors

(GEFs) that regulates trafficking throughout secretion, endocytic

trafficking, and recycling (Geldner et al., 2003; Naramoto et al.,

2014; Richter et al., 2014; Tanaka et al., 2009). Constant BFA

treatment, via abolishing the recycling, switches basal-localized

PINs to the apical side (Kleine-Vehn et al., 2009). Nonetheless,

BFA abolishes PIN2 polarity establishment in big3, in the back-

ground of which it mainly blocked secretion, suggesting both en-

docytosed and newly synthesized pathways are required for

PIN2 polarity (Glanc et al., 2018). One subset of ATIs, including

NPA and TIBA, specifically inhibit auxin export (Petrá�sek et al.,

2003; Teale and Palme, 2018). One mechanism was proposed

in which they interfere with the cytoskeleton to regulate the en-

domembrane trafficking pathway, thus modulating the subcellu-

lar localization of PIN and ABCB transporters, among many

others (Dhonukshe et al., 2008; Geldner et al., 2001; Zhu et al.,

2016; Zou et al., 2019).

Our previous studies suggested that SA may interfere with the

clathrin-mediated endocytosis pathway to compromise PIN traf-

ficking and also inhibit PP2A activity to affect PIN subcellular

localization (Du et al., 2013; Tan et al., 2020a). To test whether

NSAIDs modulate the subcellular localization of PIN proteins,

we grew PIN2::PIN2-GFP;VHA-a1 (Vacuolar H+-ATPase subunit

a1)::VHA-a1-mRFP (monomeric red fluorescent protein) seed-

lings constantly on plates supplemented with NSAIDs or TIBA

(as control). The results showed that the apical polarity of

PIN2-GFP in epidermal cells decreased following treatments

with NSAIDs (Figures 3A and 3B). As mentioned above, PIN2 cy-

cles between PM and the endomembrane pool, and BFA treat-

ments lead to the internalization of PIN2 protein in a large stack

of the endomembrane compartments, co-localized with VHA-

a1-mRFP, the so-called BFA body (Geldner et al., 2001; Nara-

simhan et al., 2020). Furthermore, NSAIDs could compromise

the BFA compartmentation of both PIN2-GFP and VHA-a1-

mRFP (Figures 3C and 3D), suggesting defects in the underlying

endocytosis or endomembrane trafficking process. These inhib-

itory effects may explain the polarity changes that occur under

long-term NSAID treatments. In line with the observation that

NSAIDs interfered with the BFA compartmentation of EEs/TGN

(early endosomes/trans-Golgi network), there were also defects
opsis Roots

treatments. Five-day-old DR5rev::GFP seedlings grown on plates containing

d imaged with confocal laser scanning microscopy (CLSM), respectively, 203;

Col-0 seedlings under indicated treatments were stained with Lugol’s solution

n = 15–20, and scale bars, 20 mm.

ttern under gravi-stimulation. Five-day-old DR5v2::ntdTomato; DR5rev::n3GFP

ining plates, and turned by 90�. Root tips were imaged with CLSM for the GFP

ratio for the DR5 signal was measured to indicate the relocation; n = 18, 12, 12,

atments to the DMSO control with an unpaired t test with Welch’s correction.

psis etiolated seedlings. Fifteen seedlings were pooled together as 1 biological

with Welch’s correction.
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in the trafficking or recycling of other PM-resident cargo pro-

teins, including ABCB19-GFP, ABCB1-GFP, and plasma mem-

brane intrinsic protein 2a (PIP2a)-GFP (Figure S3A). This sug-

gests that the effects of NSAIDs are not specific to PIN

proteins. Furthermore, BFA washout released both PIN2-GFP

and VHA-a1-mRFP from the BFA bodies also in the presence

of NSAIDs, indicating that the physiological effects of NSAIDs

are reversible (Figures S3B–S3E). Notably, the NSAID treatments

led to the aggregation of PIN2-GFP and EEs in certain endo-

membrane structures, which are larger than the EEs/TGN, but

smaller than BFA bodies (Figures 3C, S2E, and S3B–S3E). This

is similar to the effects of reported compounds acting on the

actin cytoskeleton, including actin filament-stabilizing drugs

Jasplakinolide (Jasp) and TIBA, as well as the actin filament

(AF)-depolymerizing chemical latrunculin B (LatB) (Figure S2E;

Narasimhan et al., 2020). To further test the specific effect of

NSAIDs on endocytosis, we tested whether NSAIDs could affect

the uptake of a lipophilic fluorescent dye, FM4-64.With the same

concentrations, NSAIDs could block FM4-64 uptake (Figures 4A

and 4B). These observations reveal a dual function of NSAIDs in

both endocytosis and endomembrane trafficking, and NSAIDs

impair the BFA compartmentation of PM-resident cargo proteins

possibly via perturbation of the endomembrane system.

NSAIDs Cause Aggregation of Multiple Endomembrane
Compartments via Suppressing Endosomal Mobility
Next, to test whether NSAIDs affect endosomal morphology or

distribution, we examined the subcellular localization of a set

of endomembrane makers, including ADP-ribosylation factor 1

(ARF1)-GFP, clathrin light chain 2 (CLC2)-GFP, GNOM-GFP,

GNOM-like 1 (GNL1)-YFP, and VHA-a1-GFP (Figures 4C and

S4). In line with the suppression of FM4-64 uptake and the ag-

gregation of FM4-64 labeled endosomes upon treatments with

NSAIDs or TIBA, those markers exhibited similar aggregations,

suggesting a common regulatory mechanism. Notably, it was

observed for the late endosome marker ARA7 (Arabidopsis

thaliana homologous to the mammalian ras gene 7, also known

as Arabidopsis Rab GTPase Homolog F2b [RabF2b])-YFP (Fig-

ures 4D and S4B). These observations suggest that NSAIDs

may interfere with vesicle trafficking via a common machinery

involved in the regulation of the entire endomembrane system.

The aggregation of endosome markers may be due to their

lower mobility under NSAID treatment. Further live imaging by

confocal laser-scanning microscopy (CLSM) with an early endo-

some marker, VHA-a1-GFP, revealed that NSAID treatments led

to the aggregation of endosomes, the dynamics of which slowed
Figure 3. NSAID Treatments Impair PIN2 Polarity and Trafficking

(A and B) NSAID treatments impaired the polar distribution of PIN2-GFP in ro

seedlings were treated with DMSO, 40 mM ASA, 40 mM IBP, 40 mMMeclo, 40 mM

60 min before imaging with CLSM. (A) Representative images, 633 oil objective

rescence ratio of PIN2-GFP by Fiji; n = 60, 60, 60, 60, 60, and 63 cells, respectiv

(C andD) NSAIDs inhibited the BFA body formation of both PIN2-GFP and VHA-a1

a1-mRFP seedlings were treated with DMSO, 40 mMASA, 40 mM IBP, 40 mMMec

BFA for 60min before imaging with CLSM. (C) Representative images, 633 oil obj

intracellular:PM ratio of PIN2-GFP by Fiji; n = 43, 50, 42, 50, 47, 50, and 50, resp

p values were calculated by comparing different treatments to the DMSO control

See also Figures S2 and S3.
down upon treatment with Meclo or Fluf, in comparison to the

DMSO control (Figures 5A and 5B; Video S1). Experiments

with more NSAIDs obtained similar results, further confirming

their inhibitory effects on endosomal mobility (Figure S5A; Video

S2). Interestingly, the effective concentrations for different

NSAIDs are distinct, which is in line with their different physiolog-

ical activity on root morphology. A similar aggregation was also

observed for TIBA (Figure S5A; Video S2), suggesting a potential

common mechanism.

Our observations reveal that NSAIDs interfere with themobility

of various types of endosomes without selectivity, suggesting a

common regulatory mechanism. We hypothesize that NSAIDs

may act through the cytoskeleton, microtubules (MTs) and

AFs, which are highways for vesicle trafficking (Geldner et al.,

2001; Narasimhan et al., 2020). We first tested the effect of

NSAIDs on the dynamics of actin cytoskeleton with a

35S::GFP-Fimbrin AF marker (Wang et al., 2004) by live imaging.

Following treatments with Meclo or Fluf, the mobility of the actin

cytoskeleton was largely suppressed compared with the DMSO

control (Figure 5C). Likewise, treatments with other NSAIDs or

TIBA led to a similar arrest of AF dynamics (Figure S5B). Qualita-

tively, the effect of Meclo and Fluf on AF dynamics is different

from that of those well-established drugs acting directly on

AFs, such as Jasp and LatB, which led to dysfunctional frag-

mented AFs (Figure S5C). By quantifying the skewness, all of

these compounds caused the thickening of AFs (Figure S5D).

We hypothesized that this effect of Meclo and Fluf may be due

to their inhibitory action on AF dynamics, whereas Jasp and

LatB interfere with the AF organization directly. Furthermore,

co-treatments by Jasp or LatB with Meclo or Fluf did not signif-

icantly differ from the Jasp and LatB treatments alone (Figures

S5C and S5D), suggesting that Meclo and Fluf function via

certain targets indirectly modulating AF dynamics and function.

Our results suggest that NSAIDs inhibit endomembrane traf-

ficking through hindering actin cytoskeleton dynamics.

NSAIDs Function through TWD1
These above observations suggest that the action mode of

NSAIDs is similar to that of TIBA. At low concentrations (1–

10 mM), TIBA exhibits a pronounced inhibitory effect on auxin

export similar to another well-known ATI, NPA, whereas at high

concentrations (10–50 mM), both TIBA and NPA suppress the en-

docytic trafficking process and the subsequent PM targeting of

multiple cargo proteins, including PIN auxin carriers (Dhonukshe

et al., 2008; Geldner et al., 2001; Ruegger et al., 1997; Zhu et al.,

2016; Zou et al., 2019). It has been shown that NPA and other
ot epidermal cells. Five-day-old pPIN2::PIN2-GFP; pVHA-a1::VHA-a1-mRFP

Fluf, or 20 mM TIBA for 30 min, and then were co-treated with 37.5 mM BFA for

lens; n > 10, and scale bars, 10 mm. (B) Quantification of the lateral:PM fluo-

ely.

-mRFP in root epidermal cells. Five-day-old pPIN2::PIN2-GFP; pVHA-a1::VHA-

lo, 10 mMFluf, or 20 mMTIBA for 30min, and then were co-treated with 37.5 mM

ective lens, n > 10, and scale bars, 10 mm. (D) Quantification of the fluorescence

ectively.

(B) or ‘‘DMSO+BFA’’ group (D) with an unpaired t test with Welch’s correction.
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Figure 4. NSAIDs Inhibit Endocytosis and Lead to Endosomal Aggregation

(A and B) NSAID treatments inhibited the uptake of FM4-64. Five-day-old Col-0 seedlings were treated with DMSO, 50 mMMeclo, 25 mM Fluf, or 50 mM TIBA for

15 min, and added with 2 mM FM4-64 in the same system for further staining 15 min before imaging with CLSM. (A) n = 7–13, representative photos were shown.

Scale bars, 10 mm. (B) Quantification of the fluorescence intensity ratio of the intracellular:PM signal; n = 30 cells for each. p values were calculated by comparing

different treatments to the ‘‘DMSO+BFA’’ group with an unpaired t test with Welch’s correction.

(legend continued on next page)
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ATIs regulate the actin cytoskeleton via binding to TWD1/

FKBP42, which is an immunophilin protein functioning as a

chaperone of ABCB transporters and also a regulator of actin

cytoskeleton via ACTIN7 (ACT7) (Geisler and Bailly, 2007;

Wang et al., 2013; Zhu et al., 2016). A recent study revealed

that TIBA also binds to the actin-related protein VILLIN4 (Zou

et al., 2019). These findings suggest that the actin cytoskeleton

and actin-dependent vesicle trafficking processes are additional

targets of ATIs. Given the similar physiological and cell biological

effects of NSAIDs and ATIs, we hypothesized that they may act

via the same pathway.

To test this, we examined the sensitivity of twd1-3 and act7-4

mutants (Geisler et al., 2003; Gilliland et al., 2003; Zhu et al.,

2016) to NSAIDs that exhibited no further effects to the agravi-

tropic rootgrowthof twd1-1oract7-4 (FiguresS5E–S5G).Asimilar

response was reported for the growth of twd1-1 and act7-4 on

ATIs (Zhu et al., 2016), suggesting a commonmechanism. Further

experimentswith theDR5rev::GFP reporter, tomonitor shootward

polar auxin transport during the root gravitropic response, failed to

detect any further decrease in DR5 relocation in twd1-3, which is

consistent with Meclo’s and Fluf’s interfering with polar auxin

transport via TWD1 (Figures 6A and 6B). Moreover, the inhibition

of BFA-induced aggregation of PIN2-GFP and VHA-a1-mRFP by

Meclo and Fluf was partially suppressed by the twd1-3mutation,

further confirming that impairing endosomalmobility by these two

compounds requires at least partly TWD1 function (Figure S6A).

Next, we tested the role of ACT7 in endosomal mobility with the

act7-4 SYP61::SYP61-CFP EE/TGN reporter (Zhu et al., 2016),

and results showed that there is certain constitutive aggregation

of SYP61-CFP, which is similar to, although not as strong as, the

effects of Meclo and Fluf. Additional treatments with these two

compounds did not increase the aggregation to the same degree

as that in wild-type (WT) background, suggesting an involvement

of ACT7 in the process (Figure S6B). Moreover, when growing

constantly on solid Murashige and Skoog (MS) media with IBP

or other NSAIDs, both Col-0 and 35S::MAP4-GFP (WT) seedlings

exhibited a twisted growth manner (Figures 6C, S6C, and S6D)

that is similar to the twd1-3 and act7-4 mutants (Figures 6D and

6E). Interestingly, ahighconcentration (40mM)ofFluf also inhibited

root hair formation, whichwas not observed in the twd1-3 or act7-

4mutants, however (Figures 6D, 6E S6C, and S6D). Although the

actin cytoskeleton was reported to be involved in multiple pro-

cesses during root hair formation, the underlying mechanism for

Fluf regulating root hairs requires further investigation. Given that

both twd1-3 and act7-4 mutants exhibit strong defects in root

gravitropism and root morphology, we cannot exclude the possi-

bility that additional targets may exist for Meclo and Fluf.

Neither NSAID treatments nor the twd1 mutation had an

obvious effect on MAP4-GFP signal distribution (Figures S6D

and S6E), implying that NSAIDs or TWD1 function independently
(C) NSAID treatments led to aggregation of VHA-a1-GFP-probed EEs/TGN comp

old pVHA-a1::VHA-a1-GFP seedlings were treated with DMSO, 50 mMMeclo, 25

for 15 min before imaging with CLSM, 633 oil, n > 10, and scale bars, 10 mm.

(D) NSAID treatments led to aggregation of ARA7-YFP-probed late endosomes

Q10::ARA7-YFP seedlings were treated with DMSO, 50 mMMeclo, 25 mM Fluf, or

before imaging with CLSM, 633 oil, n > 10, and scale bars, 10 mm.

See also Figures S4.
ofMTs. Further analysis with the AFmarker GFP-fABD2 revealed

that AF organization was less sensitive toMeclo/Fluf in twd1-3 or

act7-4 than in WT in AF skewness (Figures 6F and 6G). To

conclude, NSAIDs may function via a TWD1-ACT7-AF pathway,

repressing endosomal mobility. In line with the notion that

NSAIDs may target multiple proteins in distinct pathways, the

twd1-1mutant is hypersensitive to NSAIDs in terms of AF stabil-

ity in the division zone (Figure S7A), suggesting the presence of

other TWD1-independent regulatory modes.

NSAIDs Bind Directly to the FK506-Binding Protein
(FKBP) Domain (FKBD) of TWD1 and Inhibits Its
Chaperone Activity
In silico protein-ligand docking analysis revealed that most

NSAIDs have the potential to bind to the FKBD of TWD1 (Table

S1; Zhu et al., 2016). Notably, those drugs exhibiting higher phys-

iological activity, such as Fluf and Meclo, were also predicted to

be good candidates for TWD1 binding, with calculated dissocia-

tion constants (KD) of 61.5 and 159.6mM(fixeddocking; Table S1).

With pure recombinant protein for the TWD1 FKBD protein, we

performed surface plasmon resonance (SPR) experiments to

measure the binding affinities of NSAIDs to it. The results re-

vealed that both Meclo and Fluf directly bound to the TWD1

FKBD, with kinetic KD of 51.0 ± 6.1 mM and 172.5 ± 19.1 mM,

respectively (Figures 7A, 7B, S7B, S8A, and S8B), which are in

remarkable agreement with in silico calculated ones (Table S1).

Further SPR assays with NSAID compounds revealed that only

a subset of those (Meclo, Fluf, mefenamic acid, diclofenac, indo-

methacin, and difusinal) showed a detectable binding to the

TWD1 FKBD, but not others (Figure S7B). These results indicate

that the NSAID compounds exhibit differential binding affinity to-

ward the TWD1 FKBD, although they show similar bioactivity in

plants. We speculate that those compounds showing lower ac-

tivity, such as IBP, may have lower binding affinity to TWD1

and thus escape detection by SPR. However, it cannot be

excluded that other non-TWD1 targeting NSAIDs may function

via other protein targets, and this awaits further characterization.

Given the chaperone activity of TWD1 (Wang et al., 2013; Wu

et al., 2010), we further tested the thermostability of citrate syn-

thase, a common substrate of FKBP chaperones (Kamphausen

et al., 2002), with or without TWD1 under different concentra-

tions of Meclo, and found that 50 mM Meclo exhibited an inhibi-

tory effect on TWD1 chaperone (holdase) activity, shifting the

half-maximal effective concentration (EC50) of TWD1 protein

from 81.5 nM (solvent, R2 = 0.977) to 125.8 nM (R2 = 0.987).

This further supports the direct binding of Meclo to TWD1

and provides evidence that NSAIDs interfere with the activity of

TWD1 (Figures 7C and S8C). Meclo targets TWD1 to

modulate auxin transport-mediated plant morphogenesis and

gravitropism.
artments and suppression of FM4-64 uptake in root epidermal cells. Five-day-

mM Fluf, or 50 mM TIBA for 30 min, and then were co-treated with 2 mM FM4-64

and suppression of FM4-64 uptake in root epidermal cells. Five-day-old pUB-

50 mM TIBA for 30 min, and then were co-treated with 2 mM FM4-64 for 15 min
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Figure 5. NSAIDs Inhibit the Mobility of EEs and the Dynamics of the Actin Cytoskeleton

(A) Five-day-old pVHA-a1::VHA-a1-GFP seedlings were treated with DMSO, 40 mMMeclo, or 20 mM Fluf for 30 min, and then root epidermal cells were imaged

with CLSM, 633 oil objective lens. Time-lapse imaging was performed with 5 s/frame, 11 frames, and representative merged image of frame 1 (t = 0, green) and

frame 6 (t = 25 s, magenta) were shown; n > 10 and scale bars, 10 mm.

(B) Fluorescence intensity plot indicates that NSAIDs suppressed endosomal mobility with the marker pVHA-a1::VHA-a1-GFP.

(legend continued on next page)
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To verify whether ATIs and NSAIDs bind to the same surface

on the FKBD of TWD1 in planta, we tested K79 and H125

mutations in TWD1 previously shown to disrupt NPA

binding with transgenic lines pTWD1::TWD1K79I-CFP and

pTWD1::TWD1H125I-CFP. Neither K79I nor H125I mutation abol-

ished the full function of TWD1, although K79I only partially

rescued the growth defects of twd1-3 (Figure S8D). Further

physiological tests revealed that K79I and H125I mutation only

slightly decreased the plants’ sensitivity to Meclo or Fluf (Figures

S8E and S8F). Therefore, we used quantum chemical calcula-

tions to analyze the potential interactions for NSAIDs and the

TWD1 FKBD (Zhu et al., 2016). Unlike NPA, these analyzed

NSAIDs seemed not to bind the same sites as NPA (Table S2),

except with the occurrence of a drastic conformational change

in the protein that generates the action of forces and chemical

spaces far beyond the parameters studied. Another possibility

is the action of NSAIDs on an additional TWD1 interactor. Collec-

tively, both in planta assays and in silico quantum chemical cal-

culations suggest that Meclo and Fluf use a distinct site from

NPA for binding to TWD1 FKBD, which could also explain the

different action modes on the actin cytoskeleton.

DISCUSSION

NSAIDs Target TWD1 to Regulate Actin Cytoskeleton
Dynamics and Endomembrane Trafficking
Our studies reveal that NSAIDs, acting similarly to the auxin

transport inhibitors such as TIBA at both physiological and

cellular levels, interfere with auxin activity by suppressing its po-

lar transport. Moreover, NSAIDs impair the dynamics of the actin

cytoskeleton, thereby hampering endosomal mobility. Finally,

and most important, many NSAIDs bind directly and inhibit

TWD1, a promising FKBP chaperoning a subgroup of auxin-

transporting ABCB transporters (Hao et al., 2020; Wang et al.,

2013; Xu et al., 2010).

Our data collectively establish a NSAID-TWD1-actin cytoskel-

eton module, regulating endomembrane dynamics and deliv-

eries of PMproteins, including PIN andABCB auxin transporters.

In this module, NSAID binding to TWD1 would have an inhibitory

effect on the actin cytoskeleton, which is indirectly supported by

overlapping twisting phenotypes between twd1-1 or act7-4 and

NSAIDs-treated WT roots. However, given that there are no dra-

matic changes in PIN subcellular localization in the twd1mutant

(Bouchard et al., 2006) and that the twisting phenotype caused

byNSAIDs inWT is not as strong as in twd1, themolecular mech-

anism underlying NSAID action in plants seems complex. This

apparent discrepancy may be explained by a dual effect of

NSAIDs on auxin transport and vesicle trafficking, as has been

reported for two widely used ATIs, TIBA and NPA. Nonetheless,

NPA seems to more specifically inhibit PIN-mediated transport

directly, interfering with endomembrane trafficking only at

extreme high concentrations; TIBA has a complex mode, with

a stronger effect on the latter (Dhonukshe et al., 2008; Dindas
(C) NSAIDs inhibited the dynamics of actin filaments shownwith theGFP-fimbrin A

40 mMMeclo, or 20 mM Fluf for 30 min, and then imaging was conducted with CLS

representative merged photo of frame 1 (t = 0, green) and frame 6 (t = 25 s, mag

See also Figure S5 and Videos S1 and S2.
et al., 2020; Geldner et al., 2001; Zhu et al., 2016). The auxin

transport inhibitor activity of TIBA was first described in the

1940s (Keitt and Baker, 1966; Snyder, 1949). Further chemical

and physiological studies of different TIBA analogs revealed

that modification at the ortho-position of the benzoic ring is

essential for its activity (Keitt and Baker, 1966; Quint and Gray,

2006). Intriguingly, the chemical structures of ATIs and NSAIDs

share certain key features (Figures S1A and S1B); i.e., modifica-

tion at the ortho-position of the benzoic ring seems essential for

their bioactivity (Katekar and Geissler, 1977, 1980; Keitt and

Baker, 1966; Snyder, 1949). Thus, it would be of interest to study

whether some ATIs have anti-inflammatory activity. We cannot

exclude the possibility that NSAIDs may regulate the actin cyto-

skeleton through additional components such as VILLIN proteins

(Zou et al., 2019) or by acting on actin itself.

Collective evidence reveals that, despite their common phys-

iological activity as ATIs, NPA and TIBA also exhibit distinct ac-

tivities and action modes, suggesting distinct molecular targets

in plants (Dindas et al., 2020; Geldner et al., 2001; Petrá�sek

et al., 2003; Teale and Palme, 2018; Zhu et al., 2016). We spec-

ulate that these synthetic compounds target distinct proteins

with different binding affinities, and meanwhile they may be

metabolized with variable kinetics, both of which contribute to

the complex mode of action at physiological and cellular levels

in plants. Notably, unlike NPA, which partially suppressed the

twisting phenotype of twd1 (Wang et al., 2013; Wu et al.,

2010), Meclo and Fluf cause twisted roots partly resembling

twd1. Moreover, the effect of NSAIDs on AF skewness is more

likely an indirect effect of their inhibitory effects on AF dynamics.

These observations suggest other targets or other modes of ac-

tion by TWD1 that are due to interaction with non-NPA binding

sites. In addition, not all NSAIDs show strong binding to TWD1.

Whether this is due to a lower binding affinity or preference for

other targets awaits further investigation.

NSAIDs as Potential Chemical Tools in Cell Biology
Our results reveal that NSAIDs interfere with both endocytosis

and endocytic trafficking processes. NSAIDs could inhibit the

BFA-induced aggregation of endosomes, and NSAID-TWD1

binding for regulating AF dynamics may account for this effect.

NSAIDs can also block FM4-64 internalization, indicating a direct

effect on the endocytosis process at PM. This strong effect sug-

gests the potential use of NSAIDs as endocytosis inhibitors for

plant cell biology. However, given the fact that actin filaments

seem not to be involved in clathrin-mediated endocytosis (Nara-

simhan et al., 2020), this activity is unlikely through the TWD1-AF

module. Therefore, the molecular mechanism underlying this

bioactivity requires further investigation.

Although synthetic NSAIDs exhibit anti-inflammatory bioactiv-

ities similar to those of SA in human cells, little is known about

them in the plant system. PATI-2 (2-[4-chloro-3-methylbenzoyl]

benzoic acid), an inhibitor of COXs in mammals, was once iden-

tified from a large throughput screen for compounds having an
Fmarker. Five-day-old p35S::GFP-Fimbrin seedlings were treatedwith DMSO,

M, 633 oil. Time-lapse imaging was performed with 5 s/frame, 11 frames, and

enta) were shown; n = 10, and scale bars, 10 mm.
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impact on leaf vein patterns (Carland et al., 2016), which is highly

dependent on directional auxin transport. Notably, PATI-2 ex-

hibits a similar effect as those NSAIDs described in this study

on PIN trafficking. It would be of interest to test whether PATI-

2 also acts via a TWD1-mediated AF remodeling pathway. In

another recent screen for 2,4-Dinduced Ca2+ signaling, Fluf

came out as one inhibitor, possibly via interfering with the mem-

brane gradients (De Vriese et al., 2019). Given that the twd1-1

mutant is still responding to NSAIDs and that NSAIDs exhibit dif-

ferential binding affinities to TWD1 FKBD, we cannot exclude the

possibility that these compounds have additional targets.
A Potential Cross-Kingdom-Conserved Mechanism for
NSAID-FKBP Function
TWD1/FKBP42 is an immunophilin-like protein, sharing high

sequence similarity and domain structure with FKBP38 in hu-

mans (Aryal et al., 2015). Notably, FKBP38 is an essential co-

chaperone for the trafficking of HERG, a protein related to the

long QT syndrome, a cardiac disorder associated with ventricu-

lar arrhythmias (Walker et al., 2007). We speculate that NSAIDs

may also target FKBP38 to regulate HERG trafficking inmamma-

lian cells. Together with the notions that NSAIDs, including IBP,

increase the risk of out-of-hospital cardiac arrest (Mangoni et al.,

2010; Sondergaard and Gislason, 2017), it would be of great

value to investigate whether the NSAID-FKBP mechanism is

conserved and thus is involved in the side effects of NSAIDs

on the cardiovascular system.
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Figure 7. Meclo and Fluf Bind to the FKBD of TWD1 and Alter Its
Chaperone Activity

(A and B) Representative kinetic SPR analysis of Meclo (A) and Fluf (B) binding

to immobilized TWD1 FKBD protein (TWD11–180) using carboxy-methyldextran

(CMD) coupling chemistry. Responses are normalized to a control surface of

empty CMD. Kinetic constants were derived by fitting to a Langmuir 1:1 kinetic

14 Cell Reports 33, 108463, December 1, 2020

Article
ll

OPEN ACCESS
conducted the in silico binding analysis. M. Glanc and P.K. performed the ex-
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port at cellular level: new insights supported by mathematical modelling.

J. Exp. Bot. 63, 3815–3827.

Kamphausen, T., Fanghänel, J., Neumann, D., Schulz, B., and Rahfeld, J.U.

(2002). Characterization of Arabidopsis thaliana AtFKBP42 that is mem-

brane-bound and interacts with Hsp90. Plant J. 32, 263–276.

Kandasamy, M.K., McKinney, E.C., and Meagher, R.B. (2009). A single vege-

tative actin isovariant overexpressed under the control of multiple regulatory

sequences is sufficient for normal Arabidopsis development. Plant Cell 21,

701–718.

Kania, U., Nodzy�nski, T., Lu, Q., Hicks, G.R., Nerinckx,W., Mishev, K., Peurois,

F., Cherfils, J., De Rycke, R., Grones, P., et al. (2018). The inhibitor endosidin 4

targets SEC7 domain-type ARF GTPase exchange factors and interferes with

subcellular trafficking in eukaryotes. Plant Cell 30, 2553–2572.

Katekar, G.F., and Geissler, A.E. (1977). Auxin transport inhibitors: III. Chemi-

cal requirements of a class of auxin transport inhibitors. Plant Physiol. 60,

826–829.

Katekar, G.F., and Geissler, A.E. (1980). Auxin transport inhibitors: IV. Evi-

dence of a common mode of action for a proposed class of auxin transport in-

hibitors: the phytotropins. Plant Physiol. 66, 1190–1195.

Kazan, K., andManners, J.M. (2009). Linking development to defense: auxin in

plant-pathogen interactions. Trends Plant Sci. 14, 373–382.

Keitt, G.W., and Baker, R.A. (1966). Auxin activity of substituted benzoic acids

and their effect on polar auxin transport. Plant Physiol. 41, 1561–1569.

Kieffer, M., Neve, J., and Kepinski, S. (2010). Defining auxin response contexts

in plant development. Curr. Opin. Plant Biol. 13, 12–20.

Kleine-Vehn, J., Dhonukshe, P., Sauer, M., Brewer, P.B., Wi�sniewska, J., Pa-
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli DH5a Lab stock N/A

Agrobacterium tumefaciens GV3101 Lab stock N/A

Chemicals, Peptides, and Recombinant Proteins

Brefeldin A Sigma Cat# B7651

Propidium Iodide Sigma Cat# P3566

Aspirin Sigma Cat# A5376

(S)-(+)-Ibuprofen (dexibuprofen) Sigma Cat# 375160

Flurbiprofen Sigma Cat# F8514

Ketoprofen Sigma Cat# K1751

Naproxen Sigma Cat# N8280

Sulindac Sigma Cat# S8139

Diclofenac sodium salt Sigma Cat# D6899

Indomethacin Sigma Cat# I7378

Acetaminophen (Paracetamol) Sigma Cat# A7085

Isoxicam Sigma Cat# I1762

Phenylbutazone (Bute) Sigma Cat# P8386

Mefenamic acid Sigma Cat# M4267

Flufenamic acid Sigma Cat# F9005

Meclofenamic acid Sigma Cat# M4531

Ketorolac (Ketorolac tris salt) Sigma Cat# K1136

Piroxicam Sigma Cat# P5654

Tenoxicam Sigma Cat# T0909

Nimesulide Sigma Cat# N1016

Diflunisal Sigma Cat# D3281

Murashige & Skoog (MS) Basal Medium

including vitamins

Duchefa Cat# M0222.0050

Benzoic acid (BA) Sigma Cat# 242381

Salicylic Acid (SA) Sigma Cat# 247588

3-Hydroxybenzoic acid (3-OH-BA) Sigma Cat# H20008

4-Hydroxybenzoic acid (4-OH-BA) Sigma Cat# H20059

N-(1-Naphthyl)phthalamidic acid

(Naptalam, NPA)

Sigma Cat# N12507

2,3,5-Triiodobenzoic acid (TIBA) Sigma Cat# T5910

[3H]-IAA (([5-3H]-Indole-3-acetic acid) American Radiolabeled Chemicals Cat# ART 0340

[3H]-NAA ([4-3H]-1-Naphthylacetic acid) American Radiolabeled Chemicals Cat# ART 0610

GeneJET Plasmid Miniprep Kit Thermo Fisher Scientific Cat# K0503

TWD1-FKBP recombinant protein (Zhu et al., 2016) N/A

Deposited Data

ABCB1 (PGP1) TAIR AT2G36910

ABCB19 (PGP19) TAIR AT3G28860

TWD1 TAIR AT3G21640

PIN1 TAIR AT1G73590

PIN2 TAIR AT5G57090
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REAGENT or RESOURCE SOURCE IDENTIFIER

PIP2a TAIR AT3G53420

VHA-a1 TAIR AT2G28520

CLC2 TAIR AT2G40060

GNL1 TAIR AT5G39500

ARF1 TAIR AT2G47170

GNOM TAIR AT1G13980

ARA7 (RabF2b) TAIR AT4G19640

Experimental Models: Cell Lines

Nicotiana tabacum L., cv. Bright Yellow-2

(BY-2)

N/A N/A

Experimental Models: Organisms/Strains

Arabidopsis thaliana Col-0 Lab stock N/A

A. thaliana Ws-4 NASC N5390

A. thaliana twd1-1 (Ws) (Geisler et al., 2003) N/A

A. thaliana DR5v2::tdTomato;

DR5rev::n3GFP

(Liao et al., 2015) N/A

A. thaliana DR5rev::GFP (Friml et al., 2003) N/A

A. thaliana twd1-3; DR5rev::GFP This study N/A

A. thaliana twd1-3 (Col-0) (Zhu et al., 2016) N/A

A. thaliana act7-4 (Gilliland et al., 2003;

Kandasamy et al., 2009)

N/A

A. thaliana SYP61::SYP61-CFP (Robert et al., 2008) N/A

A. thaliana act7-4; SYP61::SYP61-CFP (Zhu et al., 2016) N/A

A. thaliana pPIN2::PIN2-GFP; VHA-

a1::VHA-a1-mRFP

This study N/A

A. thaliana twd1-3; pPIN2::PIN2-GFP;

VHA-a1::VHA-a1-mRFP

This study N/A

A. thaliana pVHA-a1::VHA-a1-GFP (Dettmer et al., 2006) N/A

A. thaliana pABCB1::ABCB1-GFP (Dhonukshe et al., 2008) N/A

A. thaliana pABCB19::ABCB19-GFP (Dhonukshe et al., 2008) N/A

A. thaliana 35S::GFP-PIP2a (Cutler et al., 2000) N/A

A. thaliana pUBQ10::ARA7-YFP (Geldner et al., 2009) N/A

A. thaliana pGNOM::GNOM-GFP (Geldner et al., 2003) N/A

A. thaliana HSP::ARF1-GFP (Xu and Scheres, 2005) N/A

A. thaliana pGNL1::GNL1-YFP (Richter et al., 2007) N/A

A. thaliana 35S::GFP-Fimbrin (Wang et al., 2004) N/A

A. thaliana 35S::GFP-fABD2 (Sheahan et al., 2004) N/A

A. thaliana twd1-1; 35S::GFP-fABD2 (Zhu et al., 2016) N/A

A. thaliana pCLC2::CLC2-GFP (Konopka et al., 2008) N/A

A. thaliana 35S::MAP4-GFP (Marc et al., 1998) N/A

A. thaliana twd1-1; 35S::MAP4-GFP This study N/A

A. thaliana pPIN2::PIN2-GFP (Xu and Scheres, 2005) N/A

A. thaliana pTWD1::TWD1K79I-CFP

in twd1-3

This study N/A

A. thaliana pTWD1::TWD1H125I-CFP

in twd1-3

This study N/A

A. thaliana pTWD1::TWD1K79I-CFP in Col-0 This study N/A

A. thaliana pTWD1::TWD1H125I-CFP

in Col-0

This study N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

twd1-3_LP:

GTGAAGCTGAGGTCTTGGATG

This study N/A

twd1-3_RP:

TATGGCCTGAAACAGCAAAAC

This study N/A

Recombinant DNA

Plasmid pGreenII0229-pTWD1::TWD1K79I-

CFP

This study N/A

Plasmid pGreenII0229-

pTWD1::TWD1H125I-CFP

This study N/A

Software and Algorithms

ImageJ NIH RRID: SCR_003070;

https://imagej.nih.gov/ij/

Fiji NIH https://fiji.sc/

ZEN ZEISS http://www.zeiss.com/microscopy/int/

products.html

GraphPad Prism 8.3.0 (538) GraphPad RRID: SCR_002798;

https://www.graphpad.com

Origin 2018 OriginLab https://www.originlab.com/

ACD/ChemSketch Advanced Chemistry Development, Inc.

(ACD/Labs)

https://www.acdlabs.com/resources/

freeware/chemsketch/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents such as plasmids, compounds, mutants, and transgenic lines should be

directed to and will be fulfilled by the Lead Contact, Ji�rı́ Friml (jiri.friml@ist.ac.at).

Materials Availability
Materials generated in this study, including plasmids, mutants, and transgenic lines, are available on request from the Lead Contact.

Data and Code Availability
The published article includes all analyzed data, and raw data are available upon request from the Lead Contact. This study did not

generate any code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant Materials and Growth Conditions
Arabidopsis thaliana (L.) mutants or transgenic lines used in this study were in the Columbia-0 (Col-0) ecotype background if not

specified. The marker lines pPIN2::PIN2-GFP (Xu and Scheres, 2005), pPIN1::PIN1-GFP (Benková et al., 2003), DR5v2::tdTomato;

DR5rev::n3GFP (Liao et al., 2015), DR5rev::GFP (Friml et al., 2003), pVHA-a1::VHA-a1-GFP (Dettmer et al., 2006), 35S::

GFP-PIP2a (Cutler et al., 2000), pABCB1::ABCB1-GFP (Dhonukshe et al., 2008), pABCB19::ABCB19-GFP (Dhonukshe et al.,

2008), pUBQ10::ARA7-YFP (pUBQ10::RabF2b-YFP) (Geldner et al., 2009), pGNOM::GNOM-GFP (Geldner et al., 2003),

HSP::ARF1-GFP (Xu and Scheres, 2005), pGNL1::GNL1-YFP (Richter et al., 2007), 35S::GFP-Fimbrin (Wang et al., 2004),

35S::GFP-fABD2 (Sheahan et al., 2004), twd1-1;35S::GFP-fABD2 (Zhu et al., 2016), act7-4;35S::GFP-fABD2 (Zhu et al., 2016), pSY-

P61::SYP61-CFP (Robert et al., 2008), act7-4; pSYP61::SYP61-CFP (Zhu et al., 2016), pCLC2::CLC2-GFP (Konopka et al., 2008),

35S::MAP4-GFP (Marc et al., 1998), pVHA-a1::VHA-a1-mRFP (von der Fecht-Bartenbach et al., 2007), and pPIN2::PIN2-

GFP;pVHA-a1::VHA-a1-mRFP (Naramoto et al., 2014) were reported previously. The mutant twd1-1 in Wassilewskija (Ws) back-

groundwas also reported previously (Geisler et al., 2003), andWs-4was used as control. twd1-3;DR5rev::GFPwasmade by crossing

twd1-3 and DR5rev::GFP. twd1-1;35S::MAP4-GFP was made by crossing twd1-1 and 35S::MAP4-GFP. All plant lines used in this

study are listed in Key Resources Table.

For physiological experiments with Arabidopsis seedlings, surface-sterilized seeds were sown on solid Murashige and Skoog (MS)

medium [0.53MSmedium supplemented with 1% (w/v) sucrose, 0.8% (w/v) phytoagar, MES buffer, pH 5.9], kept at 4�C for 2 days’
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stratification, and then moved to a growth chamber at 21�C with a 16-h-light/8-h-dark cycle. For microscopic analysis, four-day-old

seedlings of different reporter lines were treated with NSAIDs in liquid MS medium. Light sources are GreenPower LED production

modules [in deep red (660 nm)/far red (720 nm)/blue (455 nm) combination, Philips], generating a photon density of about 140 mmol/

m2/s (±20%).

METHOD DETAILS

Pharmacological Treatments
For long-term growth experiments, Arabidopsis seeds were sown on vertical plates with AM medium plus indicated chemicals,

including Benzoic Acid (Sigma, 242381-100G), SA (Sigma, 247588-100G), Aspirin (Sigma, A5376-100G), Ibuprofen (Sigma,

375160-5G), Indometacin (I7378-10G), Sulindac (Sigma, S8139-5G), Naproxen (Sigma, N8280-5G), Ketoprofen (Sigma, K1751-

5G), Ketorolac tris salt (Sigma, K1136-1G), Flurbiprofen (Sigma, F8514-1G), Flufenamic Acid (Sigma, F9005-10G), Mefenamic Acicd

(Sigma, M4267-50G), Meclofenamic Acid (Sigma, M4531-1G), Isoxicam (Sigma, I1762-1G), Piroxicam (Sigma, P5654-1G), Tenoxi-

cam (Sigma, T0909-250MG), Nimesulide (Sigma, N1016-1G), Diflunisal (Sigma, D3281-5G), Acetaminophen (Sigma, A7085-100G),

NPA (Sigma, N12507-250MG), TIBA (Sigma, T5910-5G), and Diclofenac sodium salt (Sigma, D6899-10G). After 2-d stratification,

plants were transferred to a growth chamber as mentioned in the ‘‘Plant material and growth conditions’’ session, for 7 days or

10 days. For short-term treatment, 4-day-old seedlings were incubated in liquid AM medium with indicated chemicals for indicated

time course. Details are described below for each treatment or staining series. All chemicals used in this study are listed in Key Re-

sources Table.

Auxin transport assays in Arabidopsis hypocotyls and tobacco BY-2 cells
The rootward (basipetal) transport of [3H]-IAA with intact Arabidopsis hypocotyls was performed as reported previously (Lewis and

Muday, 2009; Tan et al., 2020b), with a fewmodifications. 6-day-old etiolated Col-0 seedlings were transferred to newMSplates with

different NSAIDs (1 h pretreatment, with DMSO as the solvent control). 15 seedlings were pooled as one biological replicate, with 4

replicates for each genotype. Agarose droplets with [3H]-IAA (PerkinElmer) were prepared in MS medium with 1.25% (w/v) agarose,

indicated NSAIDs, and 125 mM [3H]-IAA (1.45 mL in 10 mL this solution), 10 mL/droplet on a Petri-dish. Then [3H]-IAA droplets were

placed at the shootward end of decapitated seedlings. After 6 hours’ incubation in the darkness, the lower part of the hypocotyls were

cut, collected into a 2-mL Eppendorf tube (with two iron beads inside), and then frozen in liquid nitrogen. The samples were ground

completely and then homogenized in 1 mL scintillation liquid (PerkinElmer). Eventually the radioactivity of 3H was measured with a

scintillation counter (Hidex 300XL), with each sample counted for 300 s, 3 times. Three scintillation solution controls were used for

subtraction in data analysis.

[3H]-NAA transport assays in BY-2 cells were performed as described previously (Petrá�sek et al., 2006). Cells were pretreated with

indicated chemicals for 20 s before the measurement.

Imaging by confocal laser scanning microscopy (CLSM)
Fluorescence imaging was performed using a Zeiss LSM800 confocal laser scanningmicroscope with a GaAsP detector (Zeiss, Ger-

many). The manufacturer’s default settings (smart mode) were used for GFP (excitation, 488 nm; emission, 495-545 nm)-, RFP (exci-

tation, 561 nm; emission, 580-650nm)-, YFP (excitation, 514 nm; emission, 524-580nm), tdTomato (excitation 561 nm; emission, 571-

630 nm), and Venus (excitation, 514 nm; emission, 524-580 nm)-tagged proteins. To image FM4-64-stained cells, a laser line of

543 nm was used for excitation, and an emission light with a wavelength of 600-700 nm was collected. For PI staining, excitation,

561 nm; emission, 580-680 nm. All images were taken in 8 bit depth, 2 3 line averaging. For time-lapse imaging, 8 bit depth, 2 3

line averaging.

For BFA washout experiments, four-day-old Arabidopsis seedlings were incubated in liquid medium and treated with 37.5 mMBFA

for 60 min and quickly washed three times with the normal medium. The treated seedlings were then transferred to normal liquid me-

dium containing 0.1% (v/v) DMSO or indicated concentrations of NSAIDs and recovered for 120 min before imaging with confocal

microscopy.

FM4-64 uptake assays and PI staining
To study the effects of NSAIDs on endocytosis, one lipophilic fluorescent dye FM4-64 [N-(3-Triethylammoniumpropyl)-4-(6-(4-(Dieth-

ylamino) Phenyl) Hexatrienyl) Pyridinium Dibromide, Life Technology, T-13320] was used to examine this. Four-day-old Arabidopsis

seedlings were incubated in liquid medium with NSAIDs for 30 min, and then added FM4-64 at the final concentration of 2 mM for

incubation 15 min before imaging with CLSM (Zeiss LSM800).

PI (Propidium iodide, 1 mg/mL stock solution, Thermo Fisher Scientific, P3566) staining was performed for roots as reported pre-

viously (Tan et al., 2020b). In detail, four-day-old Arabidopsis seedlings were incubated in liquid MS medium with NSAIDs, TIBA, or

DMSO (solvent control) for 30 min, and then stained with PI (diluted in H2O) at the final concentration of 10 mg/L for 1 min before

imaging with CLSM (Zeiss LSM800).
Cell Reports 33, 108463, December 1, 2020 e4



Article
ll

OPEN ACCESS
Startolith starch staining with Lugol’s solution
Five-day-old Arabidopsis Col-0 seedlings were stained with Lugol’s solution (Sigma) 2 min, and then washed with liquid MSmedium

for 2 min, as previously reported (Tan et al., 2020b). Whole seedlings were mounted on a slide with a clearing solution (30 mL H2O,

10 mL glycerol, 80 g chloral hydrate, with 100mL in total), and then covered with a coverslip. Eventually, root tips were imaged with a

differential interference contrast (DIC) microscopy (Olympus BX53).

Image analysis and morphological analysis
For primary root length measurement, plates with Arabidopsis seedlings were imaged with a scanner (Epson Perfection V800 Photo)

or a camera (Sony A600 with a macro lens), and then the primary root length or root tip angles were analyzed with ImageJ (Schindelin

et al., 2012). Lateral root numbers were counted directly.

In silico substrate docking analysis and quantum chemical modeling for NSAIDs and TWD1
In silico substrate docking and quantum chemical modeling were performed as reported previously (Zhu et al., 2016). In short, for in

silico substrate docking, one thousand poses for each PRODRG-generated (Sch€uttelkopf and van Aalten, 2004) NSAID structure files

were docked onto TWD1 FKBD structures (PDB accession codes 2F4E and 2IF4) using the PyMOL-embedded AutoDock Vina tool-

set (Trott and Olson, 2010). Search space was first defined as the whole rigid FKBP structure with high exhaustiveness and further

refined to the TWD1 FKBD NPA site in flexible side-chain mode (P37PKKVDS-Q54II-R75AWTK-S81QH-A122LVH-L149LYEV). The cal-

culations resulted in 8 to 20 clusters with close conformations. For quantum chemical modeling, NSAIDs andNPAwere analyzedwith

the same methods as reported before (Zhu et al., 2016), for the geometry, electronic structure and electronic binding energies to the

proposed NPA binding sites.

Surface plasmon resonance (SPR) analysis
Recombinant TWD1 FKBD (aa 1-339) protein was published before, and SPR analysis was performed as reported previously (Zhu

et al., 2016). In detail, the TWD1 FKBD protein was prepared in 10 mM sodium acetate pH 5 and immobilised to approximately

20 uRIU on a derivatized carboxymethyl dextran (CMD) sensor chip (CMD500m, XanTec Bioanalytics GmbH, D€usseldorf, Germany)

by covalent thiole-coupling of accessible cysteine residues according to manufacturer’s instructions. Stock solutions and serial di-

lutions of NSAIDs were prepared in ethanol and diluted in running buffer (10mM HEPES, 50mM NaCl, 10mM MgCl2, 10mM KCl,

0.05% (v/v) Tween-20, pH 7.6) for analysis. The SPR system was equilibrated with running buffer supplemented 1% (v/v) ethanol.

All experiments were conducted at 25�C and included blank injections (running buffer + 1% ethanol) for double referencing. At least

two independent dilutions of NSAIDs for each of the indicated concentrations were injected in duplicates, first over the TWD1 FKBD

coupled surface and subsequently over a L-cysteine blocked reference surface. Acquired data was processed with Scrubber3 and

Tracedrawer software as described previously for determination of kinetic parameters (Zhu et al., 2016).

TWD1 chaperone activity assay
Citrate synthase was used as a substrate for TWD 1 chaperone activity. TWD1 was assayed chaperone activity according to a pre-

vious publication (Kamphausen et al., 2002) with a fewmodifications. The aggregation of 375 nMCitrate synthase, in the presence of

variable concentrations of the TWD1 FKBD chaperone (Zhu et al., 2016) and 50 uMMeclofenamic acid or 0.1% DMSO solvent con-

trol, was assayed at 55�C by measuring time dependent changes in light scattering/optical density at 320 nm in a multi-well format

using UV-transparent 96-well plates (Product information) and a Cytation 5 plate reader (BioTek Instruments). The assay buffer con-

sisted of 50 mM HEPES, and 100 mM NaCl pH 7.6. Control measurements for the aggregation of TWD1 were carried out in the

absence of citrate synthase. Blank measurements were carried out using assay buffer with and without Meclofenamic acid as appli-

cable and used to reference acquired data. Aggregation rates were calculated by linear regression of the linear portion of the aggre-

gation curves.

Accession numbers
Published sequence data from this article can be found in the Arabidopsis Genome Initiative or enBank/EMBL databases. Here are

the accession numbers: ABCB1 (PGP1, AT2G36910), ABCB19 (PGP19, AT3G28860), TWD1 (AT3G21640), PIN1 (AT1G73590), PIN2

(AT5G57090), PIP2a (AT3G53420), VHA-a1 (AT2G28520), CLC2 (AT2G40060), GNL1 (AT5G39500), ARF1 (AT2G47170), GNOM

(AT1G13980), and ARA7 (RabF2b, AT4G19640).

QUANTIFICATION AND STATISTICAL ANALYSIS

Most experiments have been repeated at least three times independently, with similar results obtained. Formeasurements of primary

root length and root tip angles, photos or scans were analyzed with the ImageJ program (https://imagej.nih.gov/ij/download.html).

Fluorescence intensity for CLSM images was quantified by Fiji (https://fiji.sc/) (Schindelin et al., 2012). Data visualization and statis-

tics weremostly performedwith Graphpad Prism8. For bending curvatures of roots tips, polar graphswere generated byOrigin 2018.

n and p values are indicated in figures or legends.
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