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1  | INTRODUC TION

Since December 2019, the outbreak of coronavirus disease 2019 
(COVID-19), caused by the novel Severe Acute Respiratory Syndrome 
(SARS) Coronavirus (CoV) 2 (SARS-CoV-2), has led within a few 
months to a major global health and economic crisis. As of October 
2020, more than 40 million confirmed cases have been reported 
worldwide, with nearly 1 million deaths, affecting 189 countries.1 
The respiratory tract is considered the main target of SARS-CoV-2 
infection and a small subset of infected individuals becomes severely 
ill and may develop acute respiratory distress syndrome (ARDS) with 

potentially fatal outcome.2 More recently, systemic features of the 
disease with the involvement of organs outside the respiratory tract, 
including the liver and gastrointestinal tract are receiving increasing 
attention, indicating that COVID-19 may be considered as a systemic 
infectious and inflammatory disease.3-7 Although closely related to 
other Corona virus (CoV) family members SARS-CoV and MERS-
CoV (Middle East Respiratory Syndrome CoV), infections with the 
new SARS-CoV-2 exhibit a different pathological pattern and the 
mechanistic link between CoVs-induced molecular pathophysio-
logical changes and clinical manifestations remains incompletely 
understood.
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Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19), caused by the Severe 
Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in a world-
wide pandemic. Disseminated lung injury with the development of acute respiratory 
distress syndrome (ARDS) is the main cause of mortality in COVID-19. Although liver 
failure does not seem to occur in the absence of pre-existing liver disease, hepatic 
involvement in COVID-19 may correlate with overall disease severity and serve as 
a prognostic factor for the development of ARDS. The spectrum of liver injury in 
COVID-19 may range from direct infection by SARS-CoV-2, indirect involvement by 
systemic inflammation, hypoxic changes, iatrogenic causes such as drugs and ventila-
tion to exacerbation of underlying liver disease. This concise review discusses the 
potential pathophysiological mechanisms for SARS-CoV-2 hepatic tropism as well as 
acute and possibly long-term liver injury in COVID-19.
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Coronaviridae family members, including SARS-CoV-2, SARS-
CoV and MERS-CoV, are enveloped viruses, characterized by a 
positive single-stranded RNA genome of about 30Kb.8-10 The 
angiotensin-converting enzyme 2 (ACE2) has been established 
as the main viral receptor for SARS-CoV and SARS-CoV-211,12 
(Figure  1). Following attachment to the host cell and viral S 
protein priming by the host transmembrane serine protease 2 
(TMPRSS2),13 SARS-CoV is internalized by endocytosis and the 
viral genome is released from the endosome.14,15 In the cyto-
sol, the viral RNA is translated into two polyproteins, pp1a and 
pp1ab, that are further processed to produce 16 non-structural 
proteins (nsp1 to nsp16),16 the building blocks of the viral repli-
case–transcriptase complex (RTC).17,18 The full viral genome is 
then replicated in RTC-containing vesicles.19,20 In parallel, a set 
of specific sub-genomic mRNA is generated14 for the production 
of SARS-CoV structural and accessory proteins, which assem-
ble to form the nucleocapsid and viral envelope at the ER–Golgi 

intermediate compartment, allowing the subsequent release of 
mature virions21 (Figure 1).

Although COVID-19 primarily affects the respiratory system, 
emerging evidence highlights the impact of this viral infection on 
other organ systems.3-5,22,23 The ubiquitous distribution of the main 
viral entry receptor ACE2 may explain how SARS-CoV-2 is able to 
cause a widespread disease characterized by systemic organ involve-
ment including the intestines,24 heart, kidneys, pancreas, liver, mus-
cular and nervous system.11,25-28 In contrast to SARS-CoV-2-induced 
lung and myocardial injury, the clinical significance of liver involve-
ment has been controversially debated from the very beginning of the 
COVID-19 pandemic.22,28-33 However, the scientific progress over the 
last months has shed more light on several key questions concerning 
COVID-19-associated liver injury. In this review, we will highlight mo-
lecular evidence pointing towards a putative hepatic tropism of SARS-
CoV-2, and further review pathophysiological mechanisms that could 
explain the hepatic phenotypes associated with COVID-19.

F I G U R E  1   SARS-CoV-2 life cycle in host cells. SARS-CoV-2 attachment to host cells in liver (eg hepatocytes) may be mediated by the 
interaction of Spike (S) protein with ACE2. S protein is cleaved by the transmembrane serine protease 2 (TMPRSS2), allowing the cellular 
entry of the virus. Once uncoated, the viral genome ((+) vgRNA) is released and translated by the ribosome into pp1a and pp1ab (not shown), 
that are further cleaved into 16 non-structural proteins (nsps). Following the viral replication/transcription complex (vRTC) assembly, nsp6 
(in red) induces autophagosome formation, where viral replication might take place (purple dashed lines). Viral replication might also occur in 
double-membrane vesicles (DMV) (black dashed lines). nsp6-mediated inhibition of autophagosome/lysosome expansion might prevent viral 
degradation (purple dashed inhibitory line). Newly synthesized viral structural and accessory proteins assemble to form the nucleocapsid and 
viral envelope at the ER–Golgi intermediate compartment (lower right). Mature virions are then released through the exploitation of the host 
vesicular system (upper right). DMV and autophagosomes might also be used by the virus for exocytosis and release of mature virions (black 
dashed lines)
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2  | THE SPEC TRUM OF LIVER 
INVOLVEMENT IN COVID -19

COVID-19 associated liver injury is defined as any liver damage oc-
curring during disease course and treatment of COVID-19 patients, 
with or without pre-existing liver disease.4,34-39 This includes a broad 
spectrum of potential pathomechanisms including direct cytotoxicity 
from active viral replication of SARS-CoV-2 in the liver,40,41 immune-
mediated liver damage due to the severe inflammatory response/
systemic inflammatory response syndrome (SIRS) in COVID-19,42 
hypoxic changes induced by respiratory failure, vascular changes 
due to coagulopathy, endothelitis or cardiac congestion from right 
heart failure, drug-induced liver injury and exacerbation of underly-
ing liver disease (Figure 2). The incidence of elevated liver transami-
nases (ALT and AST) in COVID-19 patients ranges from 2.5% to 

76.3%.35,38,43,44 In a recent meta-analysis, the pooled rate for AST 
and ALT outside the reference range was 20%-22.5% and 14.6%-
20.1% respectively.35,45 These abnormalities can be accompanied by 
slightly increased total bilirubin levels in up to 35% of cases.35,38,43,44 
While elevations of cholestatic liver enzymes [alkaline phosphatase 
(ALP) and gamma glutamyl transferase (γGT)] were initially con-
sidered rather rare,4,22,23,46 recent systemic reviews highlight el-
evations of ALP and γGT in 6.1% and 21.1% of COVID-19 patients 
respectively.35,45 Moreover, a biphasic pattern with initial transami-
nase elevations followed by cholestatic liver enzymes has been 
reported, which could reflect SIRS-induced cholestasis at the hepa-
tocellular/canalicular level or more severe bile duct injury in the later 
stage of the disease.47 Although COVID-19-associated liver injury 
has been reported to be mild, it may affect a significant proportion 
of patients, especially those with a more severe disease course. In 

F I G U R E  2   Proposed pathophysiology for liver injury upon SARS-CoV-2 infection. COVID-19-associated hepatocellular damage is mainly 
characterized by moderate steatosis, lobular and portal inflammation, apoptotic/necrotic foci and elevation of plasma ALT and AST (upper 
left panel). Preliminary observations suggest that the injury might be caused by hepatocellular infection with direct cytopathic effects of 
SARS-CoV-2, which could induce mitochondrial dysfunction and ER stress contributing to steatosis. Furthermore, SARS-CoV-2 infection 
might also activate mTOR, which eventually inhibits autophagy (as a mechanism of viral degradation) and facilitates viral escape from the 
immune system. In addition, cytokine storm, hypoxic conditions due to ARDS and drug-induced liver injury (DILI) may contribute. COVID-
19-associated cholangiocellular injury has also been observed and is mainly characterized by bile duct proliferation, occasionally bile plug 
formation and elevation of plasma γGT and ALP (lower left panel). From a hepatological perspective, COVID-19-positive patients may be 
divided into three categories: patients without pre-existing chronic liver disease, patients with early stage chronic liver disease and patients 
with advanced chronic liver disease/cirrhosis. COVID-19-associated liver injury may have a more severe outcome in patients with pre-
existing liver disease, such as non-alcoholic fatty liver disease (NAFLD) and associated metabolic comorbidity. Moreover, COVID-19 may 
induce hepatic decompensation with increased mortality in cirrhotic patients (right panel)
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the light of the central role of the liver for the production of albumin, 
acute phase reactants and coagulation factors, hepatic dysfunction 
may impact on the multisystem manifestations of COVID-19 such as 
ARDS, coagulopathy and multiorgan failure.2-7,48 Moreover, the liver 
is the primary metabolic and detoxifying organ in the human organ-
ism, and even a moderate loss of hepatic function could alter the 
safety profile and therapeutic efficacy of antiviral drugs metabolized 
in the liver. Hence, it is crucial to understand the causes of COVID-
19-associated liver injury in more detail.

So far, systematic information on underlying histopathological 
alterations is scarce. Hepatic steatosis (in part microvesicular) and 
Kupffer cell activation appear to be commonly encountered in liv-
ers of SARS-CoV-2-infected deceased, together with vascular alter-
ations including derangement of intrahepatic portal vein branches, 
usually mild lobular and portal inflammation, ductular proliferation 
and liver cell necrosis.40,46,49-51 Of note, examination of liver biopsies 
from a cohort of 48 deceased COVID-19 patients revealed extensive 
luminal thrombosis at the portal and sinusoidal level, together with 
portal fibrosis accompanied by significant pericyte activation.51

3  | POTENTIAL MOLECUL AR 
MECHANISMS FOR SARS- COV-2 TROPISM 
OF THE LIVER

The presence of SARS-CoV-2 viral RNA has recently been demon-
strated by qRT-PCR in liver among various other organs outside the 
respiratory tract,52 although the exact cellular site of replication re-
mained unspecified since nucleic acids have been isolated by whole-
tissue homogenization. However, in situ hybridization analyses 
revealed SARS-CoV-2 virions in vessel lumens and endothelial cells 
of portal veins of COVID-19 liver specimens.51 Moreover, electron 
microscopic analyses on liver samples from two deceased COVID-19 
patients with elevated liver enzymes demonstrated the presence of 
intact viral particles in the cytoplasm of hepatocytes.40

Given recent, although still limited, discoveries,40,51,52 hepatic 
tropism for SARS-CoV-2 and direct cytopathic effects should be con-
sidered as potential mechanism of COVID-19 associated liver injury, 
although a classic hepatitic picture has not been reported.40,46,49-51 
The availability of viral receptors at the host cell surface is a major 
determinant of viral tropism for a specific tissue.53 As such, SARS-
CoV-2 cell entry is mediated by the S protein of the virus, which spe-
cifically interacts with host ACE2 and TMPRSS2 (Figure 1). In order 
to understand whether SARS-CoV-2 might be able to infect liver 
cells, we explored the expression pattern of the human ACE2 and 
TMPRSS2 proteins using the Human Protein Atlas (data available at 
https://www.prote​inatl​as.org/ENSG0​00001​30234​-ACE2/tissue 
and https://www.prote​inatl​as.org/ENSG0​00001​84012​-TMPRS​S2/
tissue). Interestingly, the expression levels of the two proteins is 
highest in intestine and gall bladder, but it appears to be virtually 
absent in the liver. These data might be incomplete or lack sensitiv-
ity, since in the Human Protein Atlas ACE2 expression also seems to 
be absent in the lungs, where infection is definitely known to occur. 

In a recent study, Chai and colleagues applied single-cell RNAseq to 
healthy human liver samples and found that ACE2 expression levels 
in bile duct epithelium (cholangiocytes) is comparable to that of al-
veolar cells in the lungs, whereas hepatocellular ACE2 expression is 
low but still detectable.54 Further confirmation of significant ACE2 
and TMPRSS2 expression in liver parenchymal cells comes from 
bio-informatics analyses from the single-cell transcriptome database 
Single Cell Portal.55 Interestingly, sinusoidal endothelial cells appear 
to be ACE2-negative, in line with previous observations.56 This find-
ing may be important considering recent reports on endothelitis of 
large intrahepatic vessels caused by SARS-CoV-248,57 and high ACE2 
expression in other endothelia, including central and portal veins, 
which also can become infected by the virus.51

Of note, studies in both mice and humans revealed increased he-
patic ACE2 expression in hepatocytes upon liver fibrotic/cirrhotic 
conditions58,59 (and our own unpublished observations). This find-
ing may be of great relevance since pre-existing liver injury could 
thereby exacerbate SARS-CoV-2 hepatic tropism. Moreover, hy-
poxia, which is a typical feature in severe COVID-19 cases, has been 
shown to be a main regulator of hepatocellular ACE2 expression.58 
This might explain why extra-pulmonary SARS-CoV-2 dissemination 
is mainly observed in patients manifesting ARDS and other hypoxic 
conditions. Importantly, inflammatory conditions/diseases in the 
liver, as shown for other organs,60,61 could also upregulate ACE2 
expression. Since drug-induced liver injury (DILI) may contribute to 
liver injury in COVID-19 patients,62 it might be of interest to explore 
whether DILI or certain drugs induce hepatic ACE2 over-expression.

In vitro experiments also showed that the S protein of lineage B 
beta-coronaviruses significantly increases the affinity for its recep-
tor when it is pre-incubated with trypsin, that is when it is proteo-
lytically activated.63 Since liver epithelial cells express trypsin64 and 
a plethora of other serine-proteases which constantly remodel the 
extracellular matrix,65 ACE2 expression required for SARS-CoV-2 
target and recognition in the liver might be lower than in other tis-
sues with reduced extracellular proteolytic activity.66 In line with 
these findings, it has been recently discovered that the S protein of 
SARS-CoV-2 bears a furin-like proteolytic site never observed be-
fore in other coronaviruses of the same lineage.67 Interestingly, furin 
is predominantly expressed in organs that have been proposed as 
permissive for SARS-CoV-2 infection, such as salivary glands, kid-
ney, pancreas (data for The Human Protein Atlas, available at https://
www.prote​inatl​as.org/ENSG0​00001​40564​-FURIN/​tissue) and the 
liver.55

Finally, other factors, as for example ganglioside (GM1),68 might 
influence S protein-ACE2 interaction. Therefore, research should 
also explore more deeply the S protein-ACE2 interactome to achieve 
new molecular and therapeutic insights.

In a recent report, Ou and colleagues tested pseudovirions con-
taining the SARS-CoV-2 S protein for their ability to infect different 
cell lines. Interestingly, HuH7 cells, a hepatocyte cell line, as well as 
Calu3 cells, a human lung carcinoma cell line, were more efficiently 
transfected by viral vectors carrying the SARS-CoV-2 S protein than 
control pseudovirions.69 Moreover, these studies revealed that viral 

https://www.proteinatlas.org/ENSG00000130234-ACE2/tissue
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https://www.proteinatlas.org/ENSG00000140564-FURIN/tissue
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entry might depend on the PIKfyve-TCP2 endocytotic pathway. A 
crosscheck in the Human Protein Atlas revealed that both PIKfyve 
and TPC2 are expressed in liver and gall bladder at comparable lev-
els as in the lung (data available at https://www.prote​inatl​as.org/
ENSG0​00001​15020​-PIKFY​VE/tissue and https://www.prote​inatl​
as.org/ENSG0​00001​62341​-TPCN2/​tissue), highlighting the poten-
tial relevance of this pathway for hepatic tropism, which therefore 
expands from simple targeting and recognition to support of intra-
cellular viral replication.

In an effort to establish a new and effective functional viromics 
screening approach aimed at predicting the likelihood of zoonotic 
events of the known lineage B betacoronaviruses, Letko and col-
leagues took advantage of HuH7 cells as a permissive model for 
SARS-CoV and SARS-CoV-2 binding and recognition,63 further prov-
ing SARS-CoV-2 tropism for hepatocytes. Of note, HuH7 cells were 
described as the third most permissive cell line in this study after 
pulmonary (Calu3) and intestinal (CaCo2) cell models,63 the latter 
representing organs with histopathologically proven SARS-CoV-2 in-
fection. However, the ability of binding and internalizing viral parti-
cles does not necessarily imply that the cell type under investigation 
is also permissive for effective viral replication. In this regard, both 
Chu and colleagues and Harcourt et al demonstrated that HuH7 
cells support SARS-CoV-2 viral replication.70,71 Hepatocyte cell lines 
are now such an established permissive cell type for SARS-CoV and 
SARS-CoV-2 infection that HuH7 cells have also been recently used 
as positive control in SARS-CoV-2 immunostainings.72

Although the above-reported observations define hepatocytes 
as putative hosts for SARS-CoV-2, it is important to point out that 
all the data arise from studies in which cancer cell lines have been 
used. In order to clarify the translational potential of these obser-
vations, ACE2 protein expression in HuH7 cells should be compared 
with that of primary human hepatocytes. Furthermore, future inves-
tigations are needed to uncover the molecular changes induced in 
hepatocytes upon SARS-CoV-2 infection.

A reliable source of information comes from recent work by Yang 
and colleagues, who demonstrated SARS-CoV-2 tropism for hepato-
cytes using organoids obtained from human pluripotent stem cell 
(hPSC)-derived hepatocyte and primary adult human hepatocytes.73 
In these systems, pseudovirions expressing SARS-Cov-2 S protein 
were able to infect human hepatocytes, while SARS-CoV-2 infection 
resulted in robust viral replication.73 Gene expression analyses also 
showed that SARS-CoV-2-infected primary hepatocytes over-ex-
press pro-inflammatory cytokines, while downregulating key meta-
bolic processes, as reflected by the inhibition of CYP7A1, CYP2A6, 
CYP1A2 and CYP2D6 expression.73

Finally, Wang and colleagues applied electron microscopy imag-
ing to liver samples of two deceased COVID-19 patients, and iden-
tified viral structures in hepatocytes which distinctively resemble 
SARS-CoV-2 virions.40 This raises the possibility that the histopatho-
logical alterations seen in these patients may be caused by direct 
cytopathic effects of SARS-CoV-240although a typical hepatitis pat-
tern appears to be lacking.40,46,49-51 However, further studies with 
larger biopsy/autopsy cohorts and the combined imaging (including 

immune electron microscopy) may be necessary to confirm these 
preliminary observations of hepatocellular SARS-CoV-2 presence.

Bile duct epithelial cells (cholangiocytes) participate in bile 
production and flow as well in immune response.74 Single-cell se-
quencing of human long-term liver ductal organoid cultures showed 
preservation of ACE2 and TMPRSS2 expression.75 Following SARS-
CoV-2 infection, cholangiocytes underwent syncytia formation 
and the amount of SARS-CoV-2 genomic RNA was dramatically 
increased 24  hours post-infection. Similar results have been ob-
tained when infecting adult human cholangiocyte organoids with 
SARS-CoV-2.73 These observations indicate that human liver ductal 
organoids may be susceptible to SARS-CoV-2 infection in vitro and 
suggest that viral replication could also occur within the bile duct 
epithelium in vivo. However, despite significantly higher ACE2 ex-
pression when compared with hepatocytes, no direct evidence of 
SARS-CoV-2 cholangiocellular infection has been reported so far in 
COVID-19 patients. Since bile is primarily produced by hepatocytes 
and cholangiocytes, and given the continuous and direct contact 
between biliary fluids and the cholangiocellular apical membrane, 
identification of SARS-CoV-2 viral RNA or proteins in bile could be 
an indirect proof of SARS-CoV-2 cholangiocellular infection. At the 
moment, only one case report has shown SARS-CoV-2 RNA in bile,76 
whereas bile from two other small sample series tested negative.24,49 
These discrepancies might rely on the fact that the positive-tested 
bile sample has been obtained during surgical resolution of bile duct 
obstruction,76 whereas the negatively tested bile was obtained from 
48h post-mortem autopsies.24,49

Tight junctions allow cholangiocytes to act as a protective barrier 
for parenchymal liver cells from toxic bile components. Viral infec-
tion with SARS-CoV-2 decreased mRNA expression of cholangiocel-
lular tight junction proteins such as claudin 1 in vitro,75 implicating 
reduced barrier function of cholangiocytes. This in turn could cause 
liver injury through leakage of potentially toxic bile into the periduc-
tal space and adjacent liver parenchyma. Of note, expression of the 
bile acid transporters SLC10A2/ASBT and chloride channel ABCC7/
CFTR was significantly down-regulated by SARS-CoV-2 infection.75 
The negative regulation of these hepatobiliary transporters may im-
pair bile acid sensing/signalling by cholangiocytes and bicarbonate 
secretion, eventually contributing to biliary changes observed in 
COVID-19 infection.49 Furthermore, cholangiocytes infected with 
SARS-CoV-2 virus upregulated inflammatory pathways, depicting 
the induction of a reactive cholangiocyte phenotype.73 Future stud-
ies will have to explore whether and how SARS-CoV-2 may alter 
secretion of pro-inflammatory and pro-fibrogenic cytokines and 
contribute to the ‘reactive cholangiocyte phenotype’, which could 
propagate inflammation and fibrosis.74

Pre-existing chronic liver diseases seem to be independent risk 
factors for poor outcome in COVID-19, and cirrhosis grade has been 
defined as a predictor of mortality in SARS-CoV-2 infected patients77 
(Figure 2). Activation of hepatic stellate cells plays a paramount role 
in the progression of chronic liver disease as the main cellular source 
of fibrosis78 and is induced by pro-inflammatory and pro-fibrotic 
cues, such as Angiotensin II, generated by the catalytic action of ACE 

https://www.proteinatlas.org/ENSG00000115020-PIKFYVE/tissue
https://www.proteinatlas.org/ENSG00000115020-PIKFYVE/tissue
https://www.proteinatlas.org/ENSG00000162341-TPCN2/tissue
https://www.proteinatlas.org/ENSG00000162341-TPCN2/tissue
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as part of the pro-fibrotic branch of the renin-angiotensin system.79 
Of note, ACE2 counteracts ACE function by producing the anti-in-
flammatory and anti-fibrotic Angiotensin-(1-7) and thereby decreas-
ing the Angiotensin II/Angiotensin-(1-7) ratio.79 However, ACE2 
expression has neither been detected in quiescent, nor in fibrogenic/
activated hepatic stellate cells.58,80-83 These findings suggest that 
these cells may be a rather non-permissive host for SARS-CoV-2. 
Nevertheless, the pro-inflammatory milieu generated by direct or 
indirect COVID-19-associated hepatocellular and cholangiocellular 
injury may pave the way for activation of hepatic stellate cells and 
consequent induction of fibrosis. This possibility may be even more 
relevant in patients with underlying CLD, such as NAFLD. Although 
available data suggest that COVID-19-related liver injury is mild and 
transitory, long-term follow-up studies will be necessary to exclude 
hepatic fibrosis as a potential long-term consequence of COVID-19, 
especially in the presence of pre-existing liver diseases.

Monocyte-derived macrophages (MoM) and alveolar macro-
phages are known to express ACE2,84,85 and there is evidence of 
alveolar macrophage infection by SARS-CoV85 and SARS-CoV-2 with 
detection of viral protein by immunohistochemistry.24,86 However, a 
histopathologic assessment of ACE2 tissue distribution showed no 
staining in Kupffer cells and other hepatic immune cells,56 although 
Kupffer cell proliferation is typically observed in livers of COVID-
19 diseased.40,49 The recent COVID-19 pandemic further prompted 
more in-detail investigations on ACE2 expression and de novo sin-
gle-cell RNAseq analyses,54 as also in silico evaluations of RNAseq 
databases87,88 proved that Kupffer cells do not express ACE2. It has 
to be kept in mind, however, that all the described evidences refer to 
healthy human liver samples. Therefore, quantification of ACE2 ex-
pression in samples obtained from patients with underlying chronic 
liver disease or acute liver injury may be needed to obtain definitive 
insights into macrophage ACE2 expression patterns.

Of note, upon liver injury and/or Kupffer cell depletion, MoM 
can invade the liver and efficiently replenish the hepatic resident 
macrophage population89-91 (and reviewed in detail in92). Although in 
vitro observations proved that MoM does not support efficient rep-
lication of SARS-CoV (and most probably also SARS-CoV-2), infected 
MoM could act as carriers of the pathogen, favouring infection of 
the ACE2-expressing cells in the invaded organ.93 Furthermore, 
Kupffer cell activation and proliferation are frequently observed as 
a consequence of systemic inflammation and Kupffer cell activation 
has been reported in the liver specimen of deceased COVID-19 pa-
tients.40,49 Thus, although Kupffer cells do not express ACE2, mono-
cytic cells might play a key role in SARS-CoV-2-mediated liver injury 
by propagation of inflammatory stimuli.

4  | SARS- CoV2 AND HEPATIC STE ATOSIS

Microvesicular and macrovesicular steatosis have been observed 
in liver autopsies of COVID-19 patients who presented with SARS-
CoV-2 infection as the only risk factor for liver injury, and in some 
cases, SARS-CoV-2 hepatocellular infection has been proven.40,49 

Importantly, hepatic lipid accumulation as a result of SARS-CoV-2 
infection must be differentiated from pre-existing NAFLD, which 
has been shown to increase the risk for poor outcome in COVID-19 
patients.50 Deregulated in host lipid metabolism and mitochondrial 
activity as a result of potential direct SARS-CoV-2 cytopathic effects 
and/or immunopathology induced by cytokine storm, as well as drug 
side effects (eg corticosteroids) may be important contributors to 
the development of hepatic steatosis in COVID-19 (Figure 2).

Microvesicular steatosis is typically caused by genetic or ac-
quired mitochondrial β-oxidation defects.94 Preliminary observa-
tions suggest that SARSR-CoV-2 affects mitochondrial activity.95 
Furthermore, Wang et al also identified mitochondrial crista ab-
normalities in liver specimen of COVID-19 patients.40 Interestingly, 
impaired mitochondrial activity has also been implicated in the 
pathogenesis of NAFLD/NASH.96 Thus, SARS-CoV-2 infection might 
even worsen the metabolic state and aggravate pre-existing NAFLD 
by these mechanisms.

Endoplasmic reticulum (ER) stress is known to induce de novo 
lipogenesis in hepatocytes.97 Several studies have implicated SARS-
CoV infection in the induction of ER stress. For instance, signifi-
cant up-regulation of ER stress markers glucose-regulated protein 
78 (GRP78) and GRP94 has been observed upon SARS-CoV infec-
tion in several cell lines.98-100 The coronavirus S protein seems to 
be a major burden for the host ER and might play a key role in ER 
stress induction.98,99 Rearrangement of intracellular membranes by 
extensive depletion of lipid components from the ER during SARS-
CoV-2 infection may also contribute to ER stress.20 Moreover, the 
ER stress-related PERK-eIF2-α pathway is over-activated upon 
SARS-CoV infection in vitro.101 Finally, electron microscopy exam-
inations, which proved SARS-CoV-2 hepatocellular infection, re-
ported a pathological ER dilatation in infected hepatocytes,40 which 
most probably will cause ER stress. Collectively, these data could 
indicate that SARS-CoV-2, as other coronaviruses, induces ER stress 
upon infection, and that the ER stress-induced de novo lipogenesis 
could also contribute to the development of steatosis in COVID-19 
patients (Figure 2).

De novo lipogenesis is also induced by the mammalian target of 
rapamycin (mTOR),102 which is also the cardinal regulator of autoph-
agy.103 SARS-CoV has been previously shown to hijack the autophagy 
pathway through processes that rely on the viral non-structural pro-
tein 6 (nsp6), highly conserved in SARS-CoV-2.104-106 Furthermore, 
mTOR hyper-activation has been observed in MERS-CoV-infected 
HuH7 cells, and inhibition of mTOR signalling pathway by rapa-
mycin inhibits viral replication.107 Given the recent observations 
that SARS-CoV-2 infection restricts autophagy,108 it is tempting 
to speculate that SARS-CoV-2, SARS-CoV and MERS-CoV share a 
similar mTOR-dependent mechanism of infection. Furthermore, 
significantly increased mTOR activity has been revealed upon IL-6 
stimulation.109 Thus, SARS-CoV-2 infection could lead to a hyper-ac-
tivation of hepatic mTOR signalling, via direct infection of hepatic 
cells, or indirect, cytokine storm-related systemic IL-6-dependent 
effects, which could contribute to the steatotic phenotype in livers 
of COVID-19 patients (Figure 2).
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Although disadvantageous for the host, induction of host lipo-
genesis might be crucial for SARS-CoV-2 life cycle. Indeed, enhanced 
de novo lipogenesis could supply the virus with sufficient amounts 
of lipids to generate the vesicular systems required for viral repli-
cation and exocytosis. mTOR-mediated promotion of protein syn-
thesis110,111 and inhibition of autophagolysosome formation112,113 
may further favour viral replication while preventing viral degra-
dation and ignition of an adequate immune response. Since insu-
lin and glucose signalling positively regulate mTOR activity in the 
liver,114,115 constitutive mTOR over-activation in obese and diabetic 
patients116-118 could at least in part explain their higher risk for worse 
outcome of COVID-19 (Figure 2).

5  | SIRS-INDUCED CHOLESTA SIS AND 
BILE DUC T ALTER ATIONS IN COVID -19

Cholestatic features such as bile duct proliferation, portal inflam-
matory infiltrates, and in some cases, canalicular/ductular bile plugs 
have been reported in post-mortem evaluations on COVID-19 pa-
tients.49,119 The cytokine storm characteristic of the SARS-CoV-2-
associated viral sepsis120 may be a major contributing factor, since 
cytokines like TNF-alpha, IL-1 and IL-6 can induce hepatocellular 
cholestasis by down-regulating hepatobiliary uptake and excre-
tory systems,121,122 resembling the pathomechanisms seen in sep-
sis-induced cholestasis.121-125 Further studies will have to explore 
whether—similar to sepsis—serum bile acids as the most accurate 
indicators of cholestasis may be relevant prognostic parameters 
in COVID-19.122,126 Sustained systemic IL-6 signalling initiated by 
SARS-CoV-2 infection induces a C/EBPβ-dependent suppression 
of albumin synthesis.127 In addition to hypo-albuminaemia, choles-
tasis in SIRS as a result of repressed hepatobiliary excretory func-
tion could be viewed as part of the negative acute phase response 
in COVID-19.

In addition to hepatocellular features, bile duct changes, such 
as ductular proliferation have been observed in postmortem stud-
ies.49 Notably, IL-6 is a strong cholangiocellular mitogen factor128 
and induces a proliferative and pro-inflammatory phenotype.74,129 
Bile ducts from patients with COVID-19 could therefore be ex-
posed to a ‘triple hit’ from (i) hypoxia from respiratory failure 
(potentially aggravated by obliteration of the peribiliary arte-
rial plexus through vasculitic/thrombotic changes); (ii) systemic 
SIRS resulting in a reactive cholangiocyte phenotype or senes-
cence-associated secretory phenotype, thus actively propagating 
inflammation as well as fibrosis and (iii) potential viral infection 
of cholangiocytes themselves. Thus, the hepatobiliary system may 
become an important target for adverse long-term hepatic out-
comes of COVID-19. Secondary sclerosing cholangitis of critical 
ill patients (SSC-CIP) is a rare but clinically relevant complication 
in critically ill patients with severe trauma, burn injury, suffering 
from severe respiratory failure or requiring vasopressor therapy 
due to hemodynamic instability.130,131 Malperfusion and hypoxia, 
as well as recurrent inflammatory stimuli, are the main triggers for 

the destruction of the biliary epithelium in SSC-CIP,122 all condi-
tions present in severe COVID-19 patients.

Therefore, hepatic long-term follow-up for COVID-19 survivors 
who experienced a severe disease course, such as ARDS with ECMO 
and prolonged ICU admission might be considered. Early diagnosis 
is paramount to best manage symptoms and disease progression of 
SSC-CIP, which could be counteracted with anti-cholestatic, cholan-
gio-protective drugs such as UDCA or more recently norUDCA.132-134

6  | SARS- COV-2 AND HYPOXIC HEPATITIS

Causes for hypoxic hepatitis are multifactorial. In general, cardiac 
failure, sepsis and respiratory failure account for more than 90% of 
all cases.135-138 Additionally, right-sided heart failure was found to 
aggravate liver injury by liver congestion as a result of elevated cen-
tral venous pressure.122,135-140 In cases of long-lasting hemodynamic 
and/or respiratory failure, hypoxia results in hepatic cell death, his-
topathologically defined as centrilobular necrosis.141

COVID-19-associated ARDS remains the most common compli-
cation requiring critical care management including invasive ven-
tilation, high levels of positive end-expiratory pressure (PEEP) and 
vasoconstrictor therapy in case of hemodynamic instability.142-145 
These factors may be accompanied by right ventricular dysfunction 
caused by high pulmonary vascular resistance as a result of hypox-
aemia and hypercapnia during ARDS.146,147 Furthermore, COVID-19 
causes a hyper-coagulate state with a significant incidence of pulmo-
nary thrombotic complications aggravating acute right-sided heart 
failure and consequently liver congestion.148 However, in the major-
ity of cases, SARS-CoV-2 associated liver injury was generally mild 
and did not exceed >5 times the upper reference limit, therefore not 
fulfilling the diagnostic criteria for hypoxic hepaitis.35 These findings 
were also obtained in critically ill patients referred to the ICU, sug-
gesting that even in cases of severe respiratory failure during SARS-
CoV-2 infection, the adequate oxygen supply to the liver is ensured 
by compensatory mechanisms.35,36,39,149-154

7  | DRUG -INDUCED LIVER INJURY

At the beginning of the COVID-19 outbreak, evidence-based drug 
therapy was not available. Over the course of 8  months, multiple 
studies were performed allowing us to give scientifically valid rec-
ommendations for the treatment of SARS-CoV-2 infection. In the 
meantime, various antiviral (remdesivir, lopinavir/ritonavir), antibi-
otic (macrolids), antimalaria/antirheumatic (hydroxychloroquine), 
immunomodulating (corticosteroids, tocilizumab) and antipyretic 
(acetaminophen) drugs have been used in clinical studies or in an 
off-label fashion. For most of these drugs (eg ritonavir, remdesivir) a 
hepatotoxic potential has already been confirmed in in vitro/in vivo 
experiments and in their respective registration studies. Moreover, 
corticosteroid therapy, which is now recommended by the WHO 
in patients with severe SARS-CoV-2 infection,155 is also clearly 
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associated with steatosis or glycogenosis.156 Recently, the first case 
of DILI associated with tocilizumab use in a COVID-19 patient has 
been reported.62 Tocilizumab undergoes minimal hepatic metabo-
lism, and the most probable etiology for its hepatotoxic effect is the 
interference with the IL-6 pathway, which plays a key role in hepatic 
regeneration.157

8  | THE GUT-LIVER A XIS A S THE 
POTENTIAL ROUTE FOR SARS- COV-2 
HEPATIC INFEC TION

Since SARS-CoV-2 infection affects also the gastrointestinal (GI) 
tract,158 a significant proportion of COVID-19 patients experience 
gastrointestinal symptoms, including diarrhea (2%-35.6%), nausea 
(1%-17.3%) and vomiting (1%-6.4%).158 Notably, both SARS-CoV-2 
RNA and viable virions have been identified in stool samples of 
infected patients and post-mortem.24,159-162 Hepatic and gastro-
intestinal manifestations appear more frequently in severe forms 
of COVID-19 infections.3-5,163-165 Interestingly, a recent study by 
Jin and colleagues showed that individuals with pre-existing liver 
diseases are more susceptible to develop an intestinal phenotype 
upon SARS-CoV-2 infection.163 SARS-CoV-2 is potentially able to 
infect cells of the gastrointestinal tract, since ileal and colonic en-
terocytes co-express ACE2 and TMPRSS2, the central proteins for 
viral attachment.166-168 Recently, viral nucleocapsid protein could be 
demonstrated within enterocytes by immunohistochemistry.24 The 
Human Protein Atlas database further corroborates these observa-
tions, with intestinal cells exhibiting the highest pattern of ACE2 
expression across the whole human cell type repertoire (data avail-
able at https://www.prote​inatl​as.org/ENSG0​00001​30234​-ACE2/
tissue). Moreover, human intestinal organoids have been shown to 
be permissive to SARS-CoV and SARS-CoV-2 infection.169 Direct 
gastrointestinal infection has been reported also by biopsy-proven 
RNA and nucleocapsid protein detection in gastric, duodenal and 
rectal epithelia.160 Interestingly, gastrointestinal symptoms may ap-
pear before or even in the absence of manifestations in the respira-
tory tract.165 This suggests that the GI tract might be a primary site 
of COVID-19 infection, and therefore that oral-fecal transmission 
could be an alternative route of infection for SARS-CoV-2 (this has 
been extensively reviewed).162,170

We would like to propose the following putative way of SARS-
CoV-2 infection through the hepatobiliary system. COVID-19 in-
testinal infection might impair the intestinal epithelial and vascular 
barriers, eventually leading to hepatic translocation of the virus 
through the portal vein. Hepatic infection might therefore start in 
hepatocytes, which express the required receptor binding proteins 
and are in direct contact with the portal circulation. Subsequently, 
SARS-CoV-2 virions exiting infected hepatocytes by transcytotic 
vesicular pathways could reach the bile, which has tested positive 
in some studies,76 although this remains controversial.49 As a result, 
cholangiocytes might also get in contact with and infected by SARS-
CoV-2. Since the biliary tract provides a direct link between liver and 

gut, SARS-CoV-2 may thereby reach and infect the intestine via bile, 
causing in turn a second wave of infection.

Thus, the here proposed speculative mechanism could gen-
erate a vicious circle, which increases the chances of survival for 
the virus and might explain the worse overall outcome in patients 
manifesting hepatic and intestinal symptoms upon SARS-CoV-2 
infection. On the other hand, COVID-19 with fatal outcome seems 
to be associated with severe damage of lung tissue, whereas the 
intestines are only mildly altered, most commonly by focal isch-
aemic changes in the intestinal mucosa.24 Whether biliary tro-
pism and requirement of bile/bile acids for viral attachment and 
entry into cholangiocytes and enterocytes171,172 also play a role 
for SARS-CoV-2 remains to be determined. Given the functional 
and physiological similarities between bile ducts and ducts of the 
exocrine pancreas, and the observations concerning a potential 
pancreatic involvement in COVID-19 infection,49,173,174 the re-
search of a common mechanism allowing infection of the two 
tissues might help in uncovering further determinants of SARS-
CoV-2 tropism.

9  | CONCLUSIONS AND PERSPEC TIVES

Over the last months, several studies have highlighted the poten-
tial role of liver involvement in COVID-19 infection and pathology. 
In this review, we analysed the published experimental and clinical 
findings concerning SARS-CoV-2 and previous coronavirus pandem-
ics and proposed mechanisms concerning a putative SARS-CoV-2 
hepatic tropism and the interplay between cytopathic and systemic 
effects in hepatic COVID-19 pathophysiology.

Elevated liver enzymes reflecting hepatic injury are common 
in COVID-19 patients both with and without chronic liver dis-
eases.35,38,43,44 Interestingly, while early clinical studies identified 
significant raises exclusively in serum ALT and AST upon SARS-
CoV-2 infection, which reflect hepatocellular damage, recent inves-
tigations and metanalyses also highlighted significant increases in 
ALP and γ-GT and therefore cholangiocellular injury.35,45 However, 
it is still not clear whether elevated serum liver biochemistries are 
causative for the worse outcome, or a consequence of the severe 
disease course.

In COVID-19 patients without pre-existing hepatic conditions 
who experienced liver damage, the injury is mostly mild. However, 
given the central role of the liver in endo- and xenobiotic/drug me-
tabolism, coagulation, albumin and acute phase reactant production, 
hepatic dysfunction may impact on systemic disease pathophysiol-
ogy of COVID-19. Long-term follow-up studies are required to ex-
plore potential long-term sequels of SARS-CoV-2 infection such as 
fibrosis.

Crucial questions remain open and need to be answered by future 
research: Which specific hepatic cells are infected by SARS-CoV-2? 
Which molecular processes are dysregulated by the infection? What 
is the real contribution of direct cytopathic effects, cytokine storm, 
DILI or hypoxia in hepatic dysfunction? By which means could liver 

https://www.proteinatlas.org/ENSG00000130234-ACE2/tissue
https://www.proteinatlas.org/ENSG00000130234-ACE2/tissue
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injury promote respiratory failure and predispose to a severe course 
of COVID-19?

The establishment of international registries collecting 
clinical reports of patients with liver diseases also tested pos-
itive for COVID-19, such as the COVID-Hep175 and the SECURE-
Cirrhosis,176 together with molecular and translational research 
will surely help us shed some light on these intriguing questions 
and to set up more effective hepatoprotective programs for future 
pandemics.
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