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Abstract

For automata, synchronization, the problem of bringing an automaton to a

particular state regardless of its initial state, is important. It has several appli-

cations in practice and is related to a fifty-year-old conjecture on the length of

the shortest synchronizing word. Although using shorter words increases the ef-

fectiveness in practice, finding a shortest one (which is not necessarily unique) is

NP-hard. For this reason, there exist various heuristics in the literature. How-

ever, high-quality heuristics such as SynchroP producing relatively shorter

sequences are very expensive and can take hours when the automaton has tens

of thousands of states. The SynchroP heuristic has been frequently used as a

benchmark to evaluate the performance of the new heuristics. In this work, we

first improve the runtime of SynchroP and its variants by using algorithmic

techniques. We then focus on adapting SynchroP for many-core architectures,

and overall, we obtain more than 1000× speedup on GPUs compared to naive

sequential implementation that has been frequently used as a benchmark to

evaluate new heuristics in the literature. We also propose two SynchroP vari-

ants and evaluate their performance.
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1. Introduction

Given an automaton A, a synchronizing word w is an input sequence such

that when applied to the automaton, it brings A to a particular state no mat-

ter at which state A currently is. If such a word exists for A it is called a

synchronizing automaton. Otherwise, it is not synchronizing.

There exist several applications of synchronizing words in practice. For

instance, in model- and finite-state-machine-based (FSM) testing (Broy et al.,

2005; Lee & Yannakakis, 1996), the tests usually require a particular initial state

to be started. When modeled as an automaton, the implementation, i.e. the

system under test, must be properly initialized, which can be done by applying

a synchronizing word w. Hence, w is used to prepare the system for a test. Also,

synchronizing words are employed for test-case generation that can synchronize

circuits without having a reset feature (Cho et al., 1993) They are also used as

compound reset operations when resetting a circuit is too expensive (Jourdan

et al., 2015). As another application, synchronizing words can be stored inside

a tamper-proof region of an autonomous mobile device. Such a device can be

an autonomous car or a robot in a factory; once the internal system is modeled

as an FSM, the device can reset itself even when it is remotely hacked, all the

sensors are out of order, or whatever state it is in. Natarajan (1986) puts forward

part orienters as another application; a part on the conveyor belt must be put

into a particular orientation by the placed obstacles. The initial orientation is

assumed to be unknown, and the obstacles must perform the task regardless of

the initial orientation.

It is easy to see that, if w is a synchronizing word for an automaton A,

then any word for which w is a subword is also a synchronizing word for A.

Therefore, for a synchronizing automaton, there exist many (in fact, infinitely

many) synchronizing words. However, having and using a shortest one (which is

not necessarily unique) is more effective and efficient. In all the examples above,
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using a shortest word is of interest for practical reasons, such as shorter tests, less

energy usage, or less number of obstacles for part orienters. For more examples,

theoretical results, and practical use-cases on synchronizing automata, we refer

the reader to (Volkov, 2008).

Checking if an automaton with n states and p inputs is synchronizing can

be done in polynomial O(pn2) time (Eppstein, 1990). However, finding a short-

est synchronizing word (or finding the shortest synchronizing word length) is

NP-hard (Eppstein, 1990), and coNP-hard (Olschewski & Ummels, 2010). Černý

conjectured that for a synchronizing automaton A, the length of a shortest syn-

chronizing word is not longer than (n − 1)2 (Černỳ, 1964; Černỳ et al., 1971).

Posed more than 50 years ago, the Černý conjecture is still open. The best

upper bound known for a shortest synchronizing word length is 114n3/685 +

O(n2) (Szykula, 2018).

Although a shortest synchronizing word is hard to find, there exist synchro-

nizing heuristics in the literature to compute relatively short words. For an n

state, p input automaton, the fastest heuristics Greedy and Cycle have time

complexity O(n3 + pn2). Some other heuristics are FastSynchro and Syn-

chroP/SynchroPL (Roman, 2009; Kudlacik et al., 2012); the former has time

complexity O(pn4) and the latter heuristics have time complexity O(n5 + pn2)

The actual performance of the heuristics is in concordant with their theoretical

order; see (Kudlacik et al., 2012; Roman & Szykula, 2015) for experimental

performance comparison. As expected, the heuristics SynchroP/SynchroPL

produce much shorter sequence compared to Greedy/Cycle.

SynchroP and its variants, e.g., SynchroPL, have been frequently used as

a baseline to benchmark new heuristics (e.g., see Kudlacik et al. (2012); Kowalski

& Szykula (2013); Roman & Szykula (2015)). However, only a set of small-scale

automata have been used for comparison purposes since these heuristics are

slow. There exist attempts in the literature to solve this performance prob-

lem. For instance, a much faster SynchroP variant, FastSynchro, chooses

the paths to follow in a greedier, and hence faster, manner to generate syn-

chronizing words. Nonetheless, the improvement also increases the length of
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the synchronizing words found (Roman, 2009; Kudlacik et al., 2012). In addi-

tion to these, the only parallelization attempt for synchronizing heuristics are

for Greedy and Cycle (Karahoda et al., 2016, 2020). To the best of our

knowledge, the parallelization of the slower heuristics, which produce shorter

synchronizing words, have not been investigated before.

In this work, we modify SynchroP/SynchroPL by using algorithmic tech-

niques to avoid unnecessary steps. Second, we focus on adapting SynchroP-like

heuristics for many-core architectures. We carefully analyze the details of the

structure of the heuristic, modify and parallelize the necessary steps, and pro-

pose various implementations on GPUs. Overall, we obtain more than 1000×

speedup on two different GPU architectures compared to naive sequential im-

plementation that has been frequently used to benchmark new heuristics. Third

and last, we propose two additional SynchroP variants and evaluate their per-

formance in terms of execution time and synchronizing word length.

The rest of the paper is organized as follows: In Section 2, we introduce the

notation used in the paper, explain SynchroP, SynchroPL and many-core

architectures in detail. The proposed GPU-based parallelization is described

in Section 3 and additional structural improvements on SynchroP are given

in Section 4. Section 5 will put forth the two new variants of SynchroP, and

experimental results are given in Section 6. Threats to validity are discussed in

Section 7. Finally, Section 8 concludes the paper.

2. Background and Notation

In the rest of the paper, the triple A = (S,Σ, δ) denotes a complete and

deterministic automaton where S = {0, 1, . . . , n − 1} is a finite set of n states,

Σ is a finite alphabet consisting of p input letters (or simply letters), and δ :

S×Σ→ S is a transition function. When δ is a total function, i.e. when δ(i, x)

is defined for every state i ∈ S and for every letter x ∈ Σ, A is called complete.

In this paper, we consider only complete automata.

An element of the set Σ? is called a word or a sequence (we use “word” and
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“sequence” interchangeably). For a word w ∈ Σ?, we use |w| to denote the

length of w, and ε is the empty word. We extend the transition function δ to

a set of states and to a word in the usual way. We have δ(i, ε) = i, and for a

word w ∈ Σ? and a letter x ∈ Σ, we have δ(i, xw) = δ(δ(i, x), w). For a set of

states C ⊆ S, we have δ(C,w) = {δ(i, w)|i ∈ C}.

For a set of states C ⊆ S, let C2 = {〈i, j〉 | i, j ∈ C} be the set of all

unordered pairs of elements of C. An element 〈i, j〉 ∈ C2 is called a pair.

Furthermore, it is called a singleton pair (or an s–pair) if i = j, otherwise it is

called a different pair (or a d–pair). The set of s–pairs and d–pairs in C2 are

denoted by C2
s and C2

d , respectively.

A word w is said to merge a pair 〈i, j〉 ∈ S2 if δ({i, j}, w) is singleton. A

word that merges a pair 〈i, j〉 is called a merging word for 〈i, j〉. For an s-pair

〈i, i〉, each word, including ε, is a merging word. A word w is said to synchronize

an automaton A = (S,Σ, δ) if δ(S,w) is singleton. A word that synchronizes

an automaton A is said to be a synchronizing word for A. If there exists a

synchronizing word for an automaton A then A is called synchronizing. Deciding

if an automaton is synchronizing can be done in O(pn2) time (Eppstein, 1990).

In this paper, we consider only synchronizing automata.

In the rest of the paper, δ−1(i, x) denotes the set of states which transition

to state i when x ∈ Σ is applied. Formally, δ−1(i, x) = {j ∈ S | δ(j, x) = i}.

A similar notation δ−1(〈i, j〉, x) = {〈k, `〉 | k ∈ δ−1(i, x) ∧ ` ∈ δ−1(j, x)} is also

employed for pairs.

2.1. The SynchroP Heuristic

The heuristic we focus in this work, SynchroP, has two phases: The first

phase generates a shortest merging word τ〈i,j〉 for each 〈i, j〉 ∈ S2 as in Algo-

rithm 1. This is achieved by using a Breadth-first Search (BFS) on a larger

automaton A2, called pair automaton in the literature. Formally, given an

automaton A = (S,Σ, δ), the pair automaton A2 = (S2,Σ, δ2) of A is an au-

tomaton where the states of A2 are pairs of states of A. The automaton A2 has

the same set Σ of input letters as A. The transition function δ2 of A2 is defined
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as:

for all 〈i, j〉 ∈ S2, x ∈ Σ : δ2(〈i, j〉, x) = 〈δ(i, x), δ(j, x)〉

Based on this definition of the pair automaton, it is easy to see that if for a

word w ∈ Σ? and for a state 〈i, j〉 ∈ S2 of A2, we have δ2(〈i, j〉, w) = 〈k, k〉

for some 〈k, k〉 ∈ S2, then w is a merging word for the pair 〈i, j〉. Hence, the

shortest merging sequences of pairs of states of A can be found by performing

a BFS on A2.

Algorithm 1 computes shortest merging words of pairs of states of a given

automaton A, by using a single BFS applied in a backward manner using δ−1.

During this search, for every pair 〈i, j〉 ∈ S2, a shortest path from the state 〈i, j〉

of A2 to a state 〈k, k〉 of A2, corresponding to a singleton pair, is constructed.

Algorithm 1: Computing shortest merging words for pairs (Phase 1)

input : An automaton A = (S,Σ, δ)
output: A shortest merging word τ〈i,j〉 for all 〈i, j〉 ∈ S2

11 Q = ∅ // An empty queue for BFS frontier
22 P = ∅ // The set of pairs discovered so far

3 foreach 〈i, i〉 ∈ S2
s do

4 push 〈i, i〉 onto Q
5 insert 〈i, i〉 into P
6 set τ〈i,i〉 = ε

7 while P 6= S2 do // not all pairs are discovered yet
8 〈i, j〉 = pop element from Q
9 foreach x ∈ Σ do

10 foreach 〈k, `〉 ∈ δ−1(〈i, j〉, x) do
11 if 〈k, `〉 6∈ P then
12 τ〈k,`〉 = xτ〈i,j〉
13 push 〈k, `〉 onto Q
14 P = P ∪ {〈k, `〉}

Algorithm 1 constructs a BFS forest, rooted at s–pairs 〈i, i〉 ∈ S2
s , where

these s–pair nodes are the nodes at level 0 of the BFS forest. A d–pair 〈i, j〉

appears at level k of the BFS forest if |τ〈i,j〉| = k.

The second phase of SynchroP is given in Algorithm 2. For an automaton

A = (S,Σ, δ), Algorithm 2 generates a synchronizing word Γ ∈ Σ? in a con-
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structive, step-by-step fashion. Γ is initialized to the empty sequence (line 2)

and extended by appending a sequence (line 10) in every iteration of the algo-

rithm. For Γ ∈ Σ? accumulated so far during the execution of Algorithm 2, the

set of states C = δ(S,Γ), called the current active state set, is tracked. This is

handled by initializing the current active state set C as S (line 1), since initially,

we have Γ = ε. In addition, C is updated at line 11, by using the sequence τ ′

which extends Γ in the current iteration. When the algorithm terminates we

have |C| = 1, which means |δ(S,Γ)| = 1 (since C = δ(S,Γ)), and hence Γ is a

synchronizing word for A.

Algorithm 2 exploits the fact that τ〈i,j〉 is a merging word for i and j. During

the execution of the algorithm, when we have a current active set C such that

|C| > 1, the algorithm chooses a d–pair 〈i, j〉 ∈ C2
d (lines 5 through 9), and

the merging sequence τ〈i,j〉 of the chosen d–pair 〈i, j〉 is applied to C at line 11.

Since states i, j ∈ C are merged by τ〈i,j〉, we always have |δ(C, τ〈i,j〉)| strictly

smaller than |C| for every iteration of the algorithm. This ensures a reduction

on the cardinality of the active state set |C| at every iteration. Thus, the

algorithm constructs a synchronizing word if A is synchronizing. The variants

of the algorithm differ by picking the d–pair 〈i, j〉 ∈ C2
d in a different way at

each iteration.

For a set of states C ⊆ S, let the cost φ(C) of C be defined as

φ(C) =
∑
i,j∈C

|τ〈i,j〉|

where φ(C) is an estimation on the hardness of bringing C to a singleton. It

is assumed that when the estimation φ(C) is larger, the expected length of a

random synchronizing word for C is longer. In SynchroP, 〈i, j〉 ∈ C2
d is selected

by favoring the pair with the minimum cost φ(δ(C, τ〈i,j〉)). Algorithm 2 presents

the second phase of SynchroP based on this idea.

2.2. Memory and Core Structure of GPUs

GPUs are devices that are built for a vast amount of parallelism. Hence, they

can simultaneously run many numbers of threads. In CUDA, a warp contains
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Algorithm 2: Computing a synchronizing word (Phase 2)

input : An automaton A = (S,Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2

output: A synchronizing word Γ for A
1 C = S; // C: current active state set
2 Γ = ε; // Γ: synchronizing word to be constructed, initially empty
3 while |C| > 1 do // still not a singleton
4 minCost =∞
5 foreach d–pair 〈i, j〉 ∈ C2

d do
6 thisPairCost = φ(δ(C, τ〈i,j〉))

7 if thisPairCost < minCost then
8 minCost = thisPairCost
9 τ ′ = τ〈i,j〉

10 Γ = Γ τ ′; // append τ ′ to the synchronizing word
11 C = δ(C, τ ′); // update current active state set with τ ′

several adjacent threads that can run simultaneously on a streaming multipro-

cessor (abbrv. SM). The warp size is currently determined as 32 threads. The

programmer decides some number of threads to be in a group called block, which

runs on SMs. A collection of blocks is called a grid. All threads running at any

given time are obliged to share some resources, one of which is the memory of

different hierarchies.

Block of Threads

Shared Memory

Registers

Thread Thread

Registers

Global Memory

Block of Threads

Shared Memory

Registers

Thread Thread

Registers

Figure 1: The basic organization of cores and memory of NVIDIA GPUs.

Modern GPUs possess thousands of small cores that are distributed over

multiple SMs. On each device, there exist a large global memory shared by all

the cores/SMs on the GPU. However, it is relatively slow; it takes hundreds of

cycles to retrieve data from global memory. Threads of the same block share
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faster but smaller means of memory regions called shared memory. Although it

is usually capable of storing data in the order of KBs, threads can acquire data

located in shared memory only in several cycles. Last, each thread has its own

set of registers which are the fastest and the most scarce memory units available

to a thread.

3. Speeding up SynchroP and SynchroPL on GPU

In this section, we will introduce a from-scratch implementation of the

heuristics on a GPU and several performance improvements applied to this

very first version. Section 3.1 describes the initial GPU implementation. In

Section 3.2, we propose an improved memory access scheme on top of the initial

implementation. Section 3.3 introduces a technique for better load-balancing.

Taking up from this point, Section 3.4 proposes an additional improvement,

obtained by keeping the current active state set sorted.

3.1. Naive Implementation

When each pair in the active set C is assigned to a single thread on the GPU,

parallel SynchroP works with a large amount of data that well exceeds the

order of KBs, by which the shared memory blocks are limited. Hence, almost all

the auxiliary data, e.g., path, Γ, and distance information, |τ〈i,j〉|, of all active

pairs, are stored in global memory.

If Algorithm 2 is analyzed carefully, one can observe that from line 5 up

to line 9, the cost φ(δ(C, τ〈i,j〉)) for each d–pair 〈i, j〉 ∈ C2
d is calculated and

the sequence with the minimum cost is extracted. This part takes a significant

portion of the runtime. Furthermore, for each d–pair 〈i, j〉, the cost calculation

can be run independently for all pairs and hence, is a feasible candidate for

effective and scalable parallelization. Our first implementation assigns a single

d–pair 〈i, j〉 to a single thread to compute its SynchroP cost. With this fine-

grain approach, all available cores in the GPU are assigned independent tasks

and utilized at the same time. While applying the path to the current active set,

to decide on the inclusion of any state in the next active state set, we employ a
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Figure 2: Memory access patterns during Step 1 for different GPU implementations for n = 32.
The first two subfigures ((a) and (b)) are for thread-based implementations whereas the sub-
figure (c) shows the memory access pattern for warp-based implementation.

per-thread marker array of size n to mark the indices of the next active states

found. The steps of the operations regarding a single d–pair 〈i, j〉 are given as

follows in order to be referenced for upcoming improvements:

� Step 1: for each s ∈ C, τ〈i,j〉 is applied to s and stored in a local array

C ′,

� Step 2: the value of the cost function is accumulated by traversing each

d–pair 〈i′, j′〉 ∈ C ′2d ,

� Step 3: the cost value is stored in the shared memory.

3.2. Coalesced Memory Access to Active Set

Although assigning threads to pairs is arguably intuitive, it inhibits the

overall performance: the memory locations for the active state sets accessed by

the consecutive threads are located at least n positions apart; hence, the naive
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implementation suffers from poor memory coalescing in Step 1 (Fig. 2 (a)). To

improve the memory access performance in Step 1, instead of providing each

thread a continuous block of space, we rearrange the positions of the arrays

and order them with respect to the warp and state IDs instead of thread IDs.

That is, we consider all the active state-set arrays used by a single warp as

a single memory block: a warp has 32 threads, and the first 32 locations are

used for the first state by each thread, respectively, then the next 32 locations

are used for the second state, and so on (Fig. 2 (b)). This approach yields

a coalesced pattern of memory accesses as opposed to the strided one in the

previous implementation (Fig. 2 (a)).

3.3. Better Automata Accesses and Load Balancing

In thread-based implementations, each thread processes a single d–pair at

once, hence a different sequence. These sequences can differ from each other in

many ways. In GPUs, all 32 threads in the same warp are controlled by the

same control unit; hence they are inherently synchronized. For any computa-

tion with load imbalance, the least-loaded thread(s) (31 threads in the worst

case) must wait for the most loaded one. Hence in SynchroP, the fluctuation

among the merging sequence lengths in Step 1 frequently results in many of the

threads becoming idle. Even if their lengths are the same, when the sequences

are different, the size of the next active set can be different which can also incur

an imbalance during cost computation in Step 2.

Another possible performance drawback, when different sequences are pro-

cessed in the same warp, is automata accesses. Different sequences have different

input letters in the same location. We keep the automata in input-wise order,

i.e., first, n target states of the first input are stored, then the second and the

third one, and so on, are stored consecutively in memory. Hence, when the

input letters are different for two threads in the same warp, they will access a

different block of length n. This reduces the chance of having the locations in

the same memory block.

We target these problems and propose the warp-based method in which a
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sequence is assigned to a single warp instead of a single thread. In this approach,

each thread in a warp applies the same sequence to a different state in C and keep

its final state in C ′. By making the threads work on the same sequence, a better

load balancing is obtained, and the inefficiency due to the line-synchronization

is avoided. In terms of load balancing, the warp-based approach is expected

to be more efficient when |C| � 32. However, when |C| is small, the thread-

based approaches tend to be better to balance the load. Fortunately, the first

SynchroP iteration, which is significantly more expensive than the rest of the

iterations, has C = S, i.e., |C| = n. That is, the warp-based approach is

already a better alternative for the most dominating part of the computation.

This approach also reduces the number of memory blocks accessed at once,

i.e., increases the chance of having coalesced memory accesses, since all the

threads (of the same warp) accesses the same length n block of the automata.

Furthermore, the memory access to C can be kept as coalesced as shown in

Fig. 2 (c).

3.4. Improved Memory Accesses with Sorting the Active Set

Before performing the cost computation, Step 2 requires a preprocessing:

when the corresponding sequence is applied, some active states end up in the

same state, which results in repeating occurrences of the final state. With a

single thread, one can sequentially traverse the array C ′before once and eliminate

all these multiple occurrences with an auxiliary marker array of size n. For

example, the array

C ′before = [2, 10, 2, 11, 11, 1, 10, 12]

can be easily transformed into

C ′after = [2, 10, 11, 1, 12]

after the preprocessing, which is consistent with the order of appearance in the

initial array C ′. Even with a single-thread execution, the complexity of remov-

ing multiple occurrences is Θ(|C ′before|), whereas the later cost computation
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Naive: 〈0, 0〉 〈0, 1〉 · · · 〈0, n− 1〉 〈1, 0〉 · · · 〈n− 1, n− 1〉

0 1 n− 1n− 1 n n2 − 1

Smart: 〈0, 0〉 〈1, 0〉 〈1, 1〉 〈2, 0〉 · · · 〈n− 1, n− 1〉

0 1 2 3 ((n2 + n)/2)− 1

Figure 3: A better placement of the distance/letter information used in Step 2. For a pair
〈i, j〉 with j < n − 1 in the naive approach, the next pair is 〈i, j + 1〉. When j = n − 1, the
next pair is 〈i+ 1, 0〉. This approach allocates two memory locations for each unordered pair.
The smart approach, which is proposed in Karahoda et al. (2018), removes these redundancies
with a better indexing scheme.

has complexity Θ(|C ′after|2). Hence, the preprocessing is significantly cheaper

compared to the overall Step 2 cost and is not expected to incur a significant

overhead. However, as we will explain later in this section, the unsorted order

in C ′after hurts the performance while computing the sequence cost.

While computing the cost, the threads frequently access the array storing the

lengths of the pairwise merging sequences. Each value is read and immediately

added to the cost; so the cost computation is heavily memory bound. This is

why the memory access pattern to this array, as well as its organization, has a

significant impact on the performance. A naive organization of the length array

uses pair IDs {0, 1, . . . , n2 − 1} as in Fig. 3 (top) and stores the lengths in this

order. In this scheme, the ID of a pair 〈i, j〉 where 0 ≤ i ≤ j ≤ n−1 is computed

as ` = i× n+ j. Vice versa, given `, one can easily obtain the IDs of the states

by the following equations:

i =

⌈
`

n

⌉
and j = `− i× n

However, this scheme has redundancies, since it allocates two memory locations

for each pair.

In this work we use a better indexing scheme from Karahoda et al. (2018)

that does not use redundant locations, as shown in Fig. 3 (bottom). In this

approach, pairs are considered for 0 ≤ j ≤ i ≤ n− 1. The ID of a pair 〈i, j〉 is
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computed as follows:

` =
i× (i+ 1)

2
+ j

Conversely, given a pair ID `, the state IDs are computed in this scheme by

using the following equations:

i = b
√

1 + 2`− 0.5c and j = `− i× (i+ 1)

2

This indexing scheme reduces the memory used which is indeed crucial for mem-

ory restricted devices such as GPUs. Furthermore, such a scheme will decrease

the expected number of accessed memory blocks when the states in C ′after are

sorted. For example, assume the toy C ′after array above is sorted as

C ′after = [1, 2, 10, 11, 12].

By fixing the second state at each iteration, we can concurrently process first

the pairs

[〈1, 12〉, 〈2, 12〉, 〈10, 12〉, 〈11, 12〉],

then the pairs

[〈1, 11〉, 〈2, 11〉, 〈10, 11〉]

and so on. With this approach and the smart indexing scheme, the locations are

expected to be much closer compared to the unsorted variant. In this scheme,

the pairs are distributed to the threads in a round-robin fashion. Although the

last iterations do not have enough number of pairs to feed all the threads in

the warp, when C ′ is large, the threads are assigned an almost equal number of

pairs and compute the partial cost in a load-balanced way.

4. Making SynchroP Faster

In this section, we will introduce three improvements for increasing Syn-

chroP’s performance. The first improvement (explained in Section 4.1) elimi-

nates some redundant cost computations by precomputing δ(C, τ〈i,j〉) whenever

possible. The improvement explained in Section 4.2 delays all the precompu-

tations until they are actually required. Finally in Section 4.3, we explain a
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particular improvement that accelerates SynchroP’s first iteration, which is

almost always the most expensive one. All these improvements can be easily

adapted to the parallel implementation described in Section 3.

4.1. Eliminating Redundant Cost Computations

Given an active state set C, Algorithm 2 first computes the cost φ(δ(C, τ〈i,j〉))

for each d–pair 〈i, j〉 ∈ C2
d . For all pairs in C2

d , this cost only depends on the

path τ〈i,j〉. Hence, when τ〈i′,j′〉 = τ〈i,j〉 for another active pair 〈i′, j′〉 ∈ C2
d ,

computing the same cost φ(δ(C, τ〈i′,j′〉)) = φ(δ(C, τ〈i,j〉)) is a redundant opera-

tion. To eliminate the redundant cost computations, we only consider the set

of non–empty words Σ≤k of length at most k ≥ 1, i.e.,

Σ≤k = {σ | σ ∈ Σ?, 1 ≤ |σ| ≤ k}.

In the proposed modification, each iteration of SynchroP precomputes the

cost φ(δ(C, σ)) for all σ ∈ Σ≤k. Then, when |τ〈i,j〉| ≤ k, it simply looks up the

precomputed cost φ(δ(C, τ〈i,j〉)) for any d–pair 〈i, j〉 ∈ C2
d . Let Φ(C, σ) be this

previously computed cost of φ(δ(C, σ)) for a word σ ∈ Σ≤k. The modified second

phase operates using these previously computed costs, as shown in Algorithm 3.

4.2. Lazy Computation and Memoization of Path Costs

The previous approach precomputes Φ(C, σ) for all σ ∈ Σ≤k. However in

a single iteration, the only Φ(C, σ) values Algorithm 3 requires are the ones

with σ = τ〈i,j〉 for some 〈i, j〉 ∈ C2
d . Therefore, precomputing Φ(C, σ) for only

those σ ∈ Σ≤k is a promising approach. An efficient way to do this is using

a lazy computation approach and compute Φ(C, σ) only when necessary. That

is one can compute Φ(C, σ) for σ = τ〈i,j〉 only for the first time it is actually

required, and memoize it for further use. Algorithm 4 presents this technique

implemented to improve the performance of SynchroP.
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Algorithm 3: Computing a synchronizing word (modified Phase 2 of Syn-

chroP)

input : An automaton A = (S,Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2, an
integer k ≥ 1

output: A synchronizing word Γ for A
1 C = S; // C: current active state set
2 Γ = ε; // Γ: synchronizing word, initially empty
3 while |C| > 1 do // still not a singleton

4 foreach σ ∈ Σ≤k do // precompute Φ(C, σ)
5 Φ(C, σ) = φ(δ(C, σ))

6 minCost =∞
7 foreach d–pair 〈i, j〉 ∈ C2

d do
8 if |τ〈i,j〉| ≤ k then
9 thisPairCost = Φ(C, τ〈i,j〉)

10 else
11 thisPairCost = φ(δ(C, τ〈i,j〉))

12 if thisPairCost < minCost then
13 minCost = thisPairCost
14 τ ′ = τ〈i,j〉

15 Γ = Γ τ ′; // append τ ′ to the synchronizing word
16 C = δ(C, τ ′); // update current active state set with τ ′

4.3. Accelerating the First Iteration

The last improvement which focuses on the runtime of the first iteration of

the algorithm is based on the following observation.

Lemma 4.1. Let C ⊆ S be a subset of states and 〈i, j〉, 〈i′, j′〉 ∈ C2
d be two

d–pairs such that τ〈i,j〉 = στ〈i′,j′〉 for some σ ∈ Σ?. If δ(C, σ) ⊆ C then
φ(δ(C, τ〈i,j〉)) ≤ φ(δ(C, τ〈i′,j′〉)).

Proof. We have δ(C, τ〈i,j〉) = δ(δ(C, σ), τ〈i′,j′〉) ⊆ δ(C, τ〈i′,j′〉), where the last
step is due to the fact that δ(C, σ) ⊆ C. Since δ(C, τ〈i,j〉) ⊆ δ(C, τ〈i′,j′〉), we
have φ(δ(C, τ〈i,j〉)) ≤ φ(δ(C, τ〈i′,j′〉)).

Based on Lemma 4.1, when two d–pairs 〈i, j〉, 〈i′, j′〉 exist in C2
d such that

τ〈i,j〉 = στ〈i′,j′〉 for some σ ∈ Σ?, we have φ(δ(C, τ〈i,j〉)) ≤ φ(δ(C, τ〈i′,j′〉)).

Hence, we can eliminate the redundant consideration of 〈i′, j′〉 in the same

iteration. Although it is hard to find such pairs in later iterations, for the first

iteration, δ(C, σ) ⊆ C for any σ since C = S. Furthermore, the first iteration

takes much more time compared to other iterations. Hence, in the first iteration
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Algorithm 4: Computing a synchronizing word (modified Phase 2 of Syn-

chroP) with lazy computation and memoization

input : An automaton A = (S,Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2, an
integer k ≥ 1

output: A synchronizing word Γ for A
1 C = S; // C: current active state set
2 Γ = ε; // Γ: synchronizing word, initially empty
3 while |C| > 1 do // still not a singleton

4 foreach σ ∈ Σ≤k do // init Φ(C, σ)
5 Φ(C, σ) =∞
6 minCost =∞;

7 foreach d–pair 〈i, j〉 ∈ C2
d do

8 if |τ〈i,j〉| ≤ k then
9 if Φ(C, τ〈i,j〉) =∞ then

10 Φ(C, τ〈i,j〉) = φ(δ(C, τ〈i,j〉))

11 thisPairCost = Φ(C, τ〈i,j〉)

12 else
13 thisPairCost = φ(δ(C, τ〈i,j〉))

14 if thisPairCost < minCost then
15 minCost = thisPairCost
16 τ ′ = τ〈i,j〉

17 Γ = Γ τ ′; // append τ ′ to the synchronizing word
18 C = δ(C, τ ′); // update current active state set with τ ′

of SynchroP, we only consider only those d–pairs 〈i, j〉 ∈ S2
d such that τ〈i,j〉 is

not a suffix of τ〈i′,j′〉 for any other d–pair 〈i′, j′〉 ∈ S2
d .

5. New SynchroP Variants

Here we introduce two new variants that can be adapted to any SynchroP

implementation: Cardinality and Multiplicative. These two algorithms

add new perspectives to the cost computations of the original SynchroP heuris-

tic.

5.1. Cardinality Algorithm

The original SynchroP algorithm comes with the time complexity O(n5 +

pn2). While the early sections of this paper show that it is possible to apply

optimizations and parallelization, the theoretical complexity bound still limits
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the capacity of the algorithm in big automata. The Cardinality algorithm

aims to decrease the original complexity to O(n3 + pn2) by disregarding the

highest quality concern.

For a set of states C ⊆ S, the Cardinality algorithm defines the cost φ(C)

of C as

φ(C) = |C|

and skips O(n2) calculations by the lack of need for traversing the d–pairs in C2
d

in every iteration. The intuition for choosing |C| is twofold. First, it is quite fast

to compute |C|. Second, SynchroP and SynchroPL measures the quality of

a set C of states by their respective cost functions. In both of these algorithms,

the current active state set C starts with |C| = n and the ultimate aim is to

get down to an active state set C such that |C| = 1. Therefore, using |C| as

the measure of the quality of C is quite natural as well. As we will show later

in Section 6, Cardinality is much faster than SynchroP and SynchroPL

with comparable performance in quality.

5.2. Multiplicative Algorithm

This variant suggests a small tweak to SynchroPL cost function. Syn-

chroPL successfully combines the applicability of a sequence by using its length

and the reducibility of the subset it carries the active state set to. In the original

proposal, these two factors are added. However, the magnitude of the reducibil-

ity index is far greater than the length of the sequence that often, the extra

logic SynchroPL supplies is not effectively blended in. To account for this

proposition, we propose the multiplicative version of the algorithm, which uses

the multiplication of these two indices.

Let C ⊆ S be the current active state set. For a sequence σ ∈ Σ∗, Multi-

plicative uses the cost function

φML(δ(C, σ)) = φ(δ(C, σ)) ∗ |σ| =
∑
i,j∈C

|τ〈i,j〉| ∗ |σ|.
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6. Experimental Results

The experiments were performed on a machine running on Ubuntu 16.04.2

equipped with a 192GB of memory and a dual-socket Intel Xeon E5-2620 v4

clocked at 2.10GHz. Besides, GPU experiments were run on NVIDIA GeForce

GTX 980 and TITAN. The code was written in C++ with CUDA and compiled

using gcc version 5.4.0 and nvcc version 8.0.61 with -O3 option enabled for

both.

In order to evaluate the performance of our implementations, we used three

different sets of automata. The first set of automata is randomly generated. The

results of the experiments on random automata are given in Section 6.1. There

are some known classes of slowly synchronizing automata with long shortest

synchronizing sequences. Section 6.2 gives the results of the experiments per-

formed on a set of slowly synchronizing automata. Finally in Section 6.3, we

give the result of the experiments we performed on some benchmark automata

taken from (Neider et al., 2019).

The source code of all the algorithms and the automata we used in the

experiments are publicly available1.

6.1. Experiments on Random Automata

We generated a set of automata randomly with n ∈ {1024, 2048, 4096, 8192}

states and p ∈ {2, 8, 32} inputs. For each (n, p) pair, we generated 20 different

automata and ran each algorithm on them. The values presented in this section

are the averages of these 20 executions for each configuration. GPU implemen-

tations use 256 threads per block where the number of blocks is determined by

the automaton size and the available device memory.

6.1.1. CPU Experiments

Table 1 presents the execution times of SynchroP CPU implementations

for different parameters. The standard algorithm, as used in the literature for

benchmarking purposes, is denoted as ORG. The SynchroP variants described

1http://bitbucket.org/egesarac/boostexpsyncheur/

19



in Section 4.1 and Section 4.2, which apply pre-computations for the costs and

the lazy cost computation, are denoted as PC and Lazy, respectively. In both

variants, the optimization from Section 4.3 is implemented.

p
n

1024 2048 4096 8192

ORG PC Lazy ORG PC Lazy Lazy Lazy
2 33.61 6.94 0.83 425.21 89.90 4.51 39.31 400.00
8 98.52 37.42 1.90 1407.60 161.39 21.39 216.35 3828.50
32 159.00 11.38 9.02 2368.61 1142.32 46.33 362.93 12807.72

Table 1: Execution times (in seconds) of original SynchroP on CPU with and without pre-
computation and lazy cost computation.

There is no difference on the quality of synchronizing words produced by

ORG, PC, and Lazy. In fact, they all report the same synchronizing word

length for every automaton.

For the time comparison, the original SynchroP implementation takes

much more time compared to the variants with the optimizations, as expected.

Depending on the automata size, n and p, with pre-computation 2.1×–14.5×

speedup can obtained. The lazy computation improves the runtime much more:

when n = 2048 and p = 32, the execution time is reduced from 2368.6 seconds

to 46.3 seconds. Although its performance is superior, even for medium-scale

automata, e.g., n = 8192 and p = 32, the Lazy variant of SynchroP takes more

than 3.5 hours. Fortunately, as we will show, by using GPUs, synchronization

can be performed in two minutes, even for such automata sizes.

6.1.2. GPU Experiments

We label our GPU implementations by iX as follows:

� 1T is the thread-based naive GPU implementation described in Section 3.1

which assigns a merging sequence to a single thread.

� 2T is the thread-based GPU implementation in Section 3.2 which uses a

reorganized memory in Figure 2 (b).

� 3W is the warp-based GPU implementation Section 3.3 describes which

assigns a merging sequence to a single warp and uses unordered active

state sets for cost computation.
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� 4W is the warp-based GPU implementation Section 3.4 which sorts the

active state sets before performing the cost computation.

� 5W is the warp-based GPU implementation which applies the optimiza-

tions described in Section 4.

There is no difference on the quality of synchronizing words produced by the

different GPU implementations given above. In fact, they all report the same

synchronizing word length for every automaton.

Even though no meaningful difference on the length of the synchronizing

word is expected, GPU versions and CPU versions do not necessarily produce

the same synchronizing word. In every iteration, the algorithms perform a

search for a pair 〈i, j〉 ∈ C2
d with a minimal cost. There can be multiple pairs in

C2
d giving the minimal cost. Due to the different search order followed by the

CPU and GPU versions among the pairs in C2
d , the CPU version can pick a pair

〈i, j〉 ∈ C2
d and the GPU version can pick another pair 〈i′, j′〉 ∈ C2

d , both with

the minimal cost. The lengths of τ〈i,j〉 and τ〈i′,j′〉 can be different. Moreover, the

set of active states that would be obtained by using τ〈i,j〉 and τ〈i′,j′〉 would also

be different. Therefore, the rest of the iterations of the algorithm will have to

deal with different set of active states based on this different sequence selection.

We observe exactly such an effect on the length of the synchronizing words

constructed by CPU and GPU versions. For some automata, the CPU version

finds a shorter synchronizing word, and for some automata, the GPU version

finds a shorter synchronizing word. However, as expected, the difference on the

lengths of synchronizing words is not meaningful. On average, the difference

observed is in the order of 1% – 3%.

Table 2 and Table 3 show the execution times of the proposed GPU imple-

mentations and SynchroP variants on GeForce GTX and TITAN, respectively.

As expected, the execution times on TITAN are usually shorter compared to

GTX. For n = 2048 and p = 32, SynchroP becomes 14× and 16× faster on

GTX and TITAN, compared to the best CPU implementation Lazy. Among

the heuristic variants, Cardinality is the fastest one, and Multiplicative is
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slightly slower than the original proposal. However, the performance difference

among the Cardinality and the others reduces when more optimizations are

added to the implementations. For instance, for 5W on GTX, SynchroP takes

only 3.31 seconds on average whereas Cardinality takes 2.44 seconds. On

TITAN, the gap is even smaller; SynchroP takes only 2.88 seconds on average

whereas Cardinality takes 2.48 seconds.

SynchroP
n p 1T 2T 3W 4W 5W

1024 2 8.41 4.15 2.16 0.89 0.14
8 28.40 10.42 7.04 1.27 0.26
32 46.50 15.40 11.00 2.04 0.80

2048 2 125.02 73.25 51.54 13.30 0.53
8 485.43 241.88 176.70 31.41 1.39
32 795.43 386.42 280.03 45.00 3.31

SynchroPL
n p 1T 2T 3W 4W 5W

1024 2 8.41 4.15 2.15 0.89 0.14
8 28.41 10.42 7.04 1.29 0.26
32 46.33 15.45 10.98 2.08 0.78

2048 2 124.94 73.25 51.55 13.05 0.52
8 485.34 241.90 176.65 30.98 1.38
32 795.54 386.37 279.97 43.15 3.31

Multiplicative
n p 1T 2T 3W 4W 5W

1024 2 8.54 4.26 2.24 0.99 0.22
8 29.04 10.65 7.20 1.40 0.35
32 47.88 15.84 11.38 2.23 0.86

2048 2 126.59 73.96 52.34 13.67 0.91
8 499.63 248.36 181.93 32.74 1.89
32 829.11 401.95 292.64 46.42 4.33

Cardinality
n p 1T 2T 3W 4W 5W

1024 2 7.22 1.88 0.70 0.59 0.13
8 4.19 3.09 0.73 0.49 0.24
32 3.87 3.31 1.18 0.93 0.70

2048 2 63.67 25.66 5.39 3.54 0.47
8 33.45 29.70 5.57 3.16 0.96
32 29.94 33.03 7.32 4.58 2.44

Table 2: Execution times (in seconds) of SynchroP and its variants with various optimizations
on GeForce GTX.

To further analyze the performance and scalability of the proposed GPU

implementation 5W , we used larger automata with n = 4096 and n = 8192. Ta-
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SynchroP
n p 1T 2T 3W 4W 5W

1024 2 6.25 1.69 0.75 0.56 0.12
8 22.44 2.83 1.23 0.68 0.24
32 36.28 4.08 2.08 1.25 0.70

2048 2 117.82 46.66 29.66 6.79 0.44
8 427.96 164.80 119.35 16.18 1.11
32 704.14 269.36 197.24 23.80 2.88

SynchroPL
n p 1T 2T 3W 4W 5W

1024 2 6.26 1.70 0.74 0.57 0.12
8 22.44 2.84 1.23 0.69 0.24
32 36.33 4.11 2.30 1.25 0.70

2048 2 117.78 46.66 29.74 6.78 0.44
8 428.01 164.84 119.42 15.97 1.09
32 704.28 269.14 197.64 23.47 2.87

Multiplicative
n p 1T 2T 3W 4W 5W

1024 2 6.35 1.81 0.81 0.64 0.18
8 22.82 2.97 1.30 0.76 0.29
32 37.36 4.25 2.21 1.31 0.76

2048 2 118.94 47.15 30.15 7.14 0.70
8 439.68 169.16 122.75 16.88 1.37
32 733.33 279.80 205.70 25.08 3.31

Cardinality
n p 1T 2T 3W 4W 5W

1024 2 5.97 0.69 0.51 0.43 0.12
8 3.43 0.77 0.58 0.36 0.23
32 3.38 1.27 0.98 0.78 0.68

2048 2 51.45 4.96 4.05 2.21 0.42
8 26.61 5.66 4.12 2.07 0.89
32 24.45 7.70 6.14 3.59 2.48

Table 3: Execution times (in seconds) of SynchroP and its variants with various optimizations
on TITAN.

ble 4 displays the execution times on both GTX and TITAN. The performance

on both devices for this challenging setting demonstrates that our implementa-

tion scales very well for large inputs. For p = 32, the best CPU implementation

takes 362.9 and 12807.7 seconds, respectively, for n = 4096 and n = 8192. On

GTX, the proposed 5W implementation takes 16.8 and 180.6 seconds which

yield 22× and 71× speedup compared to Lazy. On a relatively recent GPU,

TITAN, these speedup values are 25× and 108×, respectively, for n = 4096 and

n = 8192.
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SynchroP SynchroPL
n p G T G T

4096 2 2.70 2.18 2.68 2.23
8 6.95 5.41 6.79 5.38
32 16.83 14.70 16.84 14.64

8192 2 15.78 12.06 16.03 11.49
8 65.64 43.92 66.40 42.79
32 180.56 119.04 186.24 119.80

Multiplicative Cardinality
n p G T G T

4096 2 5.41 3.87 2.18 1.94
8 11.76 8.10 4.21 3.78
32 23.34 18.00 12.16 12.07

8192 2 37.55 24.35 11.08 8.75
8 103.99 65.07 21.03 17.30
32 228.92 144.35 56.69 52.45

Table 4: Execution times (in seconds) of the SynchroP variants with our proposed imple-
mentation 5W on larger automata of GTX (G) and TITAN (T).

Table 5 shows the speedup values of our GPU implementation 5W against

the naive sequential implementation ORG. The final GPU implementation 5W

outperforms the original SynchroP proposal more than 1000× on both GTX

and TITAN.

GTX
n p ORG 1T 2T 3W 4W 5W

1024 2 45.3 4.5 9.1 17.4 42.3 275.0
8 54.6 3.7 10.0 14.7 81.7 391.8
32 18.2 3.5 10.7 15.0 80.7 204.3

2048 2 107.0 3.9 6.6 9.4 36.3 916.9
8 74.8 3.3 6.6 9.1 51.0 1153.1
32 53.6 3.1 6.4 8.9 55.2 749.7

TITAN
n p ORG 1T 2T 3W 4W 5W

1024 2 45.3 6.0 22.2 50.1 67.1 313.0
8 54.6 4.6 36.7 84.3 152.6 432.3
32 18.2 4.5 40.3 79.1 131.6 235.0

2048 2 107.0 4.1 10.3 16.3 71.1 1097.0
8 74.8 3.7 9.7 13.4 98.9 1442.2
32 53.6 3.5 9.2 12.6 104.3 862.4

Table 5: Speedup values of our implementations based on the naive, original sequential Syn-
chroP implementation.
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6.1.3. Length of the Synchronizing Words

Table 6 lists the average lengths of synchronizing sequences computed by

SynchroP, SynchroPL, Multiplicative, and Cardinality heuristics. As

expected, compared to SynchroP, SynchroPL achieves to find 2.76% shorter

sequences on average. Although Multiplicative computes 4.19% longer se-

quences than that of SynchroPL on average, it yields minor improvements

especially when the number of inputs is large. Cardinality falls behind Syn-

chroPL with a margin of 6.07% considering the sequence lengths. However,

it is only a small setback due to Cardinality’s superiority in running times,

e.g., it is more than 2× faster for n = 8192 as Table 4 shows.

n p SynchroP SynchroPL Multiplicative Cardinality
1024 2 115.15 113.9 123.65 123.56

8 68.00 67.25 70.14 72.60
32 55.78 54.39 52.90 56.82

2048 2 167.25 165.20 177.15 178.73
8 98.08 97.60 101.70 104.26
32 77.85 76.65 76.41 81.74

4096 2 242.05 239.05 260.60 253.38
8 144.43 142.11 147.08 148.61
32 110.25 108.55 109.45 115.00

8192 2 350.35 344.80 385.15 365.75
8 204.65 201.91 211.85 212.19
32 161.25 159.30 157.75 163.43

Table 6: Synchronizing sequence lengths for the proposed SynchroP variants.

6.2. Experiments on Slowly Synchronizing Automata

There are some classes of automata whose shortest synchronizing sequences

are known to be long. These are known as slowly synchronizing automata. The

most famous of such classes is possibly the cerny automata which actually hits

to the upper bound conjectured by (Černỳ, 1964). In other words, a cerny

automaton with n states is known to have a shortest synchronizing sequence of

length (n− 1)2.

We also consider two classes of slowly synchronizing automata introduced

in (Ananichev et al., 2006). The class bactrian given in Section 3 of (Ananichev

et al., 2006) has a shortest synchronizing sequence of length (n− 1)(n− 2) for
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an automaton with n states, where n > 3 is an odd number. In Section 4

of (Ananichev et al., 2006), another slowly synchronizing class of automata,

dromedary, is introduced. A dromedary automaton with n states has a shortest

synchronizing sequence of length of (n− 2)2 + 1.

Another class of slowly synchronizing automata is introduced by (Don et al.,

2020, Theorem 3). The authors provide automaton structure with 5,4, and 3

input letters which we call here as classes fix5, fix4, fix3, respectively. It is

shown that the length of the shortest synchronizing sequences for fix5, fix4

and fix3 are n2 − 3n+ 2, n2 − 3n+ 3, and n2 − 3n+ 4, respectively.

Volkov (2019) introduces a transformation that can take any automaton

A with n states to produce another automaton H(A) with 2n states. If A

is synchronizing, then so is H(A). Furthermore, the length of the shortest

synchronizing sequence for H(A) is 2 times that of A. For example, if we take A

as the cerny automaton with n states, then H(A), which we call doubleCerny,

is an automaton with 2n states, and the shortest synchronizing sequence length

for H(A) is 2(n− 1)2.

We test the performance of the methods suggested in this paper for slowly

synchronizing automata as well. Note that, such automata are among the hard-

est classes of automata that the heuristic algorithms will have to deal with.

Both the number of iterations and the length of the synchronizing words used

in the iterations increase for such automata. Therefore, the running time of the

algorithms also increases accordingly. Table 7 gives the result of the experiments

using CPU. It is seen that the algorithms given in Section 4.1 and Section 4.2

do not help to improve the running time for slowly synchronizing automata.

The speedup results of obtained on slowly synchronizing automata by using

GPU algorithms are given in Table 8. Again, the final GPU implementation

5W gives the best speedup values in general. Even though there are some cases

where 5W is slower than the original naive SynchroP (especially for small

automata sizes), depending on the class of automata 5W becomes hundreds or

even thousands times faster than the original SynchroP as the size of automata

gets larger.
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Automata
Class n ORG PC Lazy
cerny 32 0.01 0.01 0.01

64 0.24 0.20 0.21
128 4.49 4.52 4.53
256 130.80 130.73 130.85
512 3980.30 3981.20 3980.81

bactrian 31 0.01 0.01 0.01
63 0.18 0.16 0.19

127 3.95 3.93 3.99
255 116.80 116.75 116.77
511 3614.04 3694.61 3704.43

dromedary 32 0.01 0.01 0.01
64 0.21 0.23 0.16

128 4.45 4.46 4.67
256 133.42 132.96 133.58
512 4050.31 4026.03 4038.46

fix5 32 0.01 0.01 0.01
64 0.24 0.19 0.17

128 4.62 4.73 4.79
256 135.41 134.52 134.80
512 4051.87 4087.65 4083.93

fix4 32 0.01 0.01 0.01
64 0.21 0.18 0.17

128 4.88 4.81 4.55
256 135.18 135.27 130.67
512 3985.33 4030.96 3991.23

fix3 32 0.01 0.01 0.01
64 0.20 0.18 0.21

128 4.54 4.55 4.51
256 130.50 130.58 130.54
512 3991.55 3980.02 3976.20

doubleCerny 32 0.01 0.01 0.01
64 0.081 0.11 0.12

128 2.04 2.06 2.08
256 59.94 59.71 59.85
512 1846.43 1925.43 1839.90

Table 7: Execution times (in seconds) of original SynchroP on CPU with and without pre-
computation and lazy cost computation.

Table 9 gives the results of the experiments for the lengths of the synchro-

nizing sequences found by the algorithms. The CPU algorithms and 1T and 2T

running on GTX and TITAN all find the same length synchronizing sequences.

This length is given by the column labeled as “CPU, 1T , 2T ” in Table 9.
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Automata GTX TITAN
Class n 1T 2T 3W 4W 5W 1T 2T 3W 4W 5W
cerny 32 0.91 1.02 4.70 4.70 0.32 0.96 1.07 5.68 5.14 0.57

64 2.40 3.02 9.30 10.42 5.71 2.59 3.22 12.93 12.66 9.53
128 3.84 6.54 9.08 9.08 35.92 6.00 8.95 12.20 12.33 46.04
256 1.35 11.35 17.37 17.25 111.34 2.49 16.19 28.28 28.20 163.46
512 0.77 13.15 18.44 18.43 228.75 0.93 18.63 29.13 29.13 388.97

bactrian 31 0.82 0.99 3.89 3.70 0.23 0.97 1.19 4.63 4.63 0.40
63 2.61 3.12 8.39 8.24 4.69 3.14 3.71 10.80 10.49 8.59

127 4.09 6.19 9.75 9.72 52.37 7.41 11.99 15.43 15.39 79.24
255 0.91 8.18 18.00 18.00 372.82 1.81 12.00 29.54 29.59 507.41
511 0.76 8.00 31.64 31.67 1819.03 0.95 11.16 52.21 52.08 2387.08

dromedary 32 0.72 0.81 3.90 3.90 0.69 0.89 0.99 5.13 4.56 1.22
64 2.24 2.72 8.61 8.47 11.12 2.91 3.24 11.96 11.75 15.58

128 3.96 6.55 8.96 8.97 38.07 6.67 10.15 14.01 14.03 57.98
256 1.38 11.66 17.74 17.75 99.89 2.56 16.57 28.62 28.70 159.91
512 0.80 13.38 18.45 18.45 204.09 0.95 18.78 29.29 30.01 335.55

fix5 32 0.84 0.94 4.81 4.39 0.47 1.01 1.16 5.94 5.61 0.81
64 2.45 3.03 9.74 9.66 8.36 3.34 3.77 13.45 13.22 14.35

128 3.96 6.75 9.40 9.40 37.15 6.68 10.57 14.73 14.67 56.92
256 1.40 11.82 18.08 18.08 100.81 2.58 16.72 29.46 29.32 162.34
512 0.78 13.42 18.81 18.81 200.38 0.95 19.00 29.32 29.58 333.99

fix4 32 0.80 0.91 4.62 4.22 0.80 0.97 1.10 5.11 5.39 1.24
64 2.16 2.69 8.73 8.55 10.81 2.95 3.33 11.79 11.65 15.01

128 4.19 7.13 9.92 9.93 46.65 7.06 11.16 15.53 15.40 69.98
256 1.39 11.80 18.05 18.04 119.52 2.58 16.69 29.39 29.19 190.66
512 0.77 13.20 18.50 18.50 229.66 0.94 18.68 29.07 28.88 382.98

fix3 32 0.86 0.97 4.95 4.73 0.99 1.06 1.17 6.12 5.78 1.44
64 2.09 2.60 8.41 8.34 10.83 2.86 3.17 11.50 11.37 17.70

128 3.89 6.62 9.23 9.23 43.76 6.57 10.37 14.46 14.42 64.98
256 1.35 11.39 17.43 17.43 115.54 2.49 16.11 28.31 28.26 184.27
512 0.77 13.23 18.53 18.53 229.83 0.94 18.71 29.12 29.14 382.49

doubleCerny 32 0.77 0.83 3.08 3.08 0.38 0.91 1.00 3.64 3.64 0.63
64 1.82 2.21 8.37 8.12 5.24 2.19 2.67 13.76 12.49 8.20

128 4.25 6.53 16.31 16.20 25.13 6.68 10.82 25.13 24.56 39.57
256 1.27 10.17 17.73 17.73 33.52 2.37 15.00 28.94 28.92 55.00
512 0.84 12.32 32.63 32.66 35.87 0.95 17.17 53.27 53.37 57.44

Table 8: Speedup values of our implementations based on the naive, original sequential SynchroP implementation.
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Automata GTX TITAN
Class n CPU, 1T , 2T 3W 4W 5W 3W 4W 5W Shortest
cerny 32 961 961 961 976 961 961 976 900

64 3969 3969 3969 4000 3969 3969 4000 3844
128 16129 16129 16129 16192 16129 16129 16192 15876
256 65025 65025 65025 65152 65025 65025 65152 64516
512 261121 261347 261347 261376 261347 261347 261376 260100

bactrian 31 870 870 870 870 870 870 870 870
63 3782 3782 3782 3782 3782 3782 3782 3782

127 15750 15750 15750 15750 15750 15750 15750 15750
255 64262 64262 64262 64262 64262 64262 64262 64262
511 259590 259590 259590 259590 259590 259590 259590 259590

dromedary 32 915 915 915 915 915 915 915 901
64 3875 3875 3875 3875 3875 3875 3875 3845

128 15939 15939 15939 15939 15939 15939 15939 15877
256 64643 64643 64643 64643 64643 64643 64643 64517
512 260355 260326 260326 260355 260197 260197 260355 260101

fix5 32 931 931 931 930 931 931 930 930
64 3907 3907 3907 3906 3907 3907 3906 3906

128 16003 16003 16003 16002 16003 16003 16002 16002
256 64771 64771 64771 64770 64771 64771 64770 64770
512 260611 260837 260837 260610 260708 260708 260610 260610

fix4 32 931 931 931 945 931 931 945 931
64 3907 3907 3907 3937 3907 3907 3937 3907

128 16003 16003 16003 16065 16003 16003 16065 16003
256 64771 64771 64771 64897 64771 64771 64897 64771
512 260611 260837 260837 260865 260708 260708 260865 260611

fix3 32 933 933 933 947 933 933 947 932
64 3909 3909 3909 3939 3909 3909 3939 3908

128 16005 16005 16005 16067 16005 16005 16067 16004
256 64773 64773 64773 64899 64773 64773 64899 64772
512 260613 260839 260839 260867 260710 260710 260867 260612

doubleCerny 32 450 450 450 464 450 450 464 450
64 1922 1922 1922 1952 1922 1922 1952 1922

128 7938 7938 7938 8000 7938 7938 8000 7938
256 32258 32258 32258 32384 32258 32258 32384 32258
512 130050 130265 130265 130304 130243 130243 130304 130050

Table 9: Synchronizing sequence lengths found by the algorithms.
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The length of the synchronizing sequence found by all of the heuristics (ORG,

PC, Lazy) are the same and, depending on the class, it is either the same

as, or very close, to the shortest synchronizing sequence of the automaton.

There are small differences in the length of the sequence obtained by different

algorithms, or by the same algorithm running on different platforms, which can

be explained by the different outcome of race conditions happening during the

executions of the algorithms. However, the lengths are in general very close to

each other. In addition, the lengths are very close to (or in some cases, equal

to) the known shortest synchronizing sequence length as given by the column

labeled as “Shortest” in Table 9.

6.3. Experiments on Benchmark Automata

Neider et al. (2019) introduces a collection of benchmark automata and finite

state machines (FSMs). We considered automata/FSMs which are not random

and which have more than 100 states. Among such automata/FSMs, we identi-

fied 22 of them, which are complete and synchronizing. For an FSM, we simply

neglected the output of the transitions, and considered it as an automaton.

Even for the largest of these automata, the length of the synchronizing se-

quence is at most 2. This means that synchronizing sequence algorithms will

iterate at most two times and the length of the merging word used in an itera-

tion is very short. The results for these experiments are given in Table 10. Even

though synchronizing sequences are very short, the final GPU implementation

5W and the CPU algorithm “Lazy” manage to reach around 60x speed up for

the largest automaton “m65” appearing at the last row of Table 10.
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n p ORG PC Lazy 1T 2T 3W 4W 5W 1T 2T 3W 4W 5W
ABP9 101 102 0.0089 0.0072 0.0037 0.0079 0.0069 0.0082 0.0076 0.0065 0.0072 0.0085 0.0086 0.0081 0.0087
m172 113 98 0.0082 0.0055 0.0040 0.0086 0.0088 0.0086 0.0087 0.0063 0.0085 0.0088 0.0090 0.0083 0.0095
m34 115 72 0.0070 0.0049 0.0031 0.0074 0.0073 0.0072 0.0067 0.0049 0.0068 0.0069 0.0075 0.0071 0.0069

ABP10 122 123 0.0119 0.0095 0.0069 0.0120 0.0125 0.0112 0.0118 0.0090 0.0122 0.0116 0.0122 0.0116 0.0129
m201 128 87 0.0084 0.0068 0.0065 0.0101 0.0095 0.0092 0.0091 0.0077 0.0099 0.0096 0.0093 0.0097 0.0096
m49 142 75 0.0113 0.0075 0.0084 0.0100 0.0097 0.0101 0.0097 0.0079 0.0111 0.0110 0.0105 0.0112 0.0102
m167 163 152 0.0182 0.0184 0.0217 0.0235 0.0191 0.0209 0.0213 0.0185 0.0207 0.0211 0.0235 0.0206 0.0208
m55 181 156 0.0290 0.0207 0.0269 0.0327 0.0219 0.0251 0.0246 0.0225 0.0277 0.0241 0.0263 0.0263 0.0256
m45 184 32 0.0133 0.0047 0.0079 0.0159 0.0098 0.0118 0.0109 0.0071 0.0112 0.0097 0.0103 0.0102 0.0099
m185 190 71 0.0175 0.0118 0.0134 0.0230 0.0147 0.0182 0.0152 0.0120 0.0180 0.0150 0.0161 0.0145 0.0149
m27 198 201 0.0458 0.0349 0.0360 0.0466 0.0358 0.0344 0.0383 0.0324 0.0421 0.0390 0.0375 0.0362 0.0343
m76 210 26 0.0162 0.0085 0.0076 0.0228 0.0110 0.0122 0.0123 0.0074 0.0174 0.0106 0.0110 0.0104 0.0102
m24 284 100 0.0775 0.0409 0.0278 0.0653 0.0484 0.0492 0.0468 0.0397 0.0648 0.0408 0.0395 0.0390 0.0409
m189 289 138 0.0681 0.0647 0.0429 0.0800 0.0622 0.0637 0.0605 0.0482 0.0793 0.0506 0.0500 0.0569 0.0518
m190 456 52 0.1436 0.0627 0.0688 0.2002 0.0793 0.0886 0.0814 0.0536 0.1802 0.0770 0.0795 0.0742 0.0633
m173 483 27 0.2039 0.0372 0.0380 0.2452 0.0624 0.0795 0.0674 0.0358 0.2148 0.0596 0.0648 0.0619 0.0488
m182 657 75 0.4211 0.1313 0.1417 0.6364 0.1984 0.2176 0.1932 0.1475 0.5399 0.1779 0.1895 0.1893 0.1572
m131 1017 181 1.8029 0.7843 0.7095 2.3351 0.7733 0.9479 0.9228 0.7142 2.0885 0.7663 0.8385 0.7522 0.7349
m181 1347 93 3.3085 0.7205 0.6863 4.2568 0.8474 1.2814 1.0893 0.7032 3.7943 0.7678 0.9432 0.8554 0.6867
m85 2221 121 14.2641 2.5167 2.3612 19.8946 2.8749 5.2810 4.2660 2.3037 16.7258 2.6687 3.5244 3.0745 2.1984
m132 2441 190 197.7770 4.8146 3.3667 26.6992 5.0072 8.1220 6.8112 4.0930 23.2344 4.7675 5.8406 5.3041 4.0666
m65 3966 33 201.8811 4.9910 3.3018 116.665 9.7811 21.7384 15.6723 3.4665 91.5066 7.7424 12.2897 9.7855 3.2314

Table 10: Results of the experiments on benchmarks taken from (Neider et al., 2019).
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7. Threats to Validity

We designed experiments and evaluated the results considering several threats

to validity. On the design side, we try to avoid any issues by applying the fol-

lowing: each randomly generated automaton is checked if it can be synchronized

via the polynomial-time algorithm described in (Eppstein, 1990). As the syn-

chronizing sequence is computed in parts at each step, we check the lengths

of subsequences and the number of active states. Finally, we also check if the

computed synchronizing sequence w is correct by computing δ(S,w).

To understand the representativeness of the performance samples, we mea-

sured the dispersion on the sampled values. For each algorithm, the number

of states and number of inputs, we computed the coefficient of variation (CV),

i.e., the ratio of the sample standard deviation to the sample mean. For the se-

quential implementations (ORG, PC, and Lazy), the average CV value is 5.4%,

where the standard deviations of these CV values for each algorithm are 5.8%,

3.2%, and 3.4%, respectively. For the GPU implementations, the average CV

values are in between 0.5% and 6.5%. Furthermore, the maximum CV values

range between 1% and 19.7% where the standard deviations are between 0.3%

and 5.9%. Hence for all algorithms and possible parameter sets, whose averages

are reported in the paper, the dispersion among the random trials is low.

In this paper, we consider the speedup values over our SynchroP imple-

mentation (ORG). This raises the question of, how well the implementation of

ORG is. In order to evaluate the time performance of ORG objectively, we com-

pared the execution times of ORG and another implementation of SynchroP

from the literature (Roman & Szykula, 2015). The results of these comparisons

are given in Table 11. The figures in the table show that the performance of

our original implementation is comparable to the state-of-the-art used in the

literature. These experiments were performed on a machine running on Ubuntu

16.04.2 equipped with a 16GB of memory and Intel Xeon E5-1650 clocked at

3.20GHz. The code was written in C++ and compiled using gcc version 5.4.0

with -O3 option enabled for both ORG and baseline.
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n
p 128 256 512 1024 2048
2 Baseline 0.10 0.70 6.68 84.97 1153.45

ORG 0.04 0.31 2.46 28.22 361.46
8 Baseline 0.13 0.96 10.61 142.69 2308.99

ORG 0.09 0.57 5.78 79.71 1361.91
32 Baseline 0.15 1.09 12.99 182.52 2963.47

ORG 0.11 0.81 8.84 129.04 2358.22

Table 11: Execution times (in seconds) of our original CPU implementation (ORG) and
another implementation (baseline) from the literature (Roman & Szykula, 2015).

8. Conclusion

The synchronization problem has several applications in practice, and al-

though finding a synchronizing word is easy, it is hard to find the shortest one.

Even a short word is hard to find, especially when the automaton is large.

There exist many synchronizing heuristics in the literature. However, high-

quality heuristics such as SynchroP producing relatively shorter sequences are

very expensive and can take hours, especially when the automaton has tens of

thousands of states. In this work, we focus on boosting high-quality but slow

synchronizing heuristics in the literature and propose a GPU implementation,

which is more than 1000× faster compared to the original proposal implemented

on CPU.

Acknowledgements

This work was supported by The Scientific and Technological Research Coun-

cil of Turkey (TUBITAK) [grant number 114E569]. This research was supported

in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgen-

stein Award). We would like to thank the authors of (Roman & Szykula, 2015)

for providing their heuristics implementations, which we used to compare our

SynchroP implementation as given in Table 11.

33



References

Ananichev, D. S., Volkov, M. V., & Zaks, Y. I. (2006). Synchronizing automata

with a letter of deficiency 2. In O. H. Ibarra, & Z. Dang (Eds.), Developments

in Language Theory (pp. 433–442). Berlin, Heidelberg: Springer Berlin Hei-

delberg.

Broy, M., Jonsson, B., Katoen, J., Leucker, M., & Pretschner, A. (Eds.) (2005).

Model-Based Testing of Reactive Systems, Advanced Lectures volume 3472 of

Lecture Notes in Computer Science. Springer.
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