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Abstract

Resources are rarely distributed uniformly within a population. Heterogeneity in the con-

centration of a drug, the quality of breeding sites, or wealth can all affect evolutionary

dynamics. In this study, we represent a collection of properties affecting the fitness at a

given location using a color. A green node is rich in resources while a red node is poorer.

More colors can represent a broader spectrum of resource qualities. For a population

evolving according to the birth-death Moran model, the first question we address is which

structures, identified by graph connectivity and graph coloring, are evolutionarily equiva-

lent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily

equivalent (where “properly colored” means that no two neighbors have the same color).

We then compare the effects of background heterogeneity on properly two-colored graphs

to those with alternative schemes in which the colors are permuted. Finally, we discuss

dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate

that random dynamic colorings often diminish the effects of background heterogeneity rel-

ative to a proper two-coloring.

Author summary

Heterogeneity in environmental conditions can have profound effects on long-term evo-

lutionary outcomes in structured populations. We consider a population evolving on a

colored graph, wherein the color of a node represents the resources at that location. Using

a combination of analytical and numerical methods, we quantify the effects of background

heterogeneity on a population’s dynamics. In addition to considering the notion of an

“optimal” coloring with respect to mutant invasion, we also study the effects of dynamic

spatial redistribution of resources as the population evolves. Although the effects of static

background heterogeneity can be quite striking, these effects are often attenuated by the

movement (or “flow”) of the underlying resources.
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Introduction

The survival of a mutant introduced into a population depends on its fitness as well as environ-

mental factors, including the population’s spatial structure. Variations in migration patterns

or dispersal can be modeled using a graph, where nodes represent individuals and edges repre-

sent neighborhoods. On such a graph, a standard measure of a mutant’s success is the proba-

bility that it takes over the population (“fixes”) [1–10]. It is known that there is a class of

structures, which includes regular graphs, in which all graphs have the same fixation probabili-

ties as those of an unstructured population, a result called the “isothermal theorem” [11]. Our

concern here is with an analogue of this result for colored graphs, where each color represents

a collection of fitness-influencing resources, in order to work toward a better understand the

effects of background fitness heterogeneity on evolutionary dynamics.

Resource heterogeneity naturally results in variations in environmental conditions. For

example, the local concentrations of nutrients (sugar) can vary across a population of E. coli
bacteria. Locations with higher sugar concentration lead to higher reproductive fitness. How-

ever, in populations with more than one type of individual, resource heterogeneity can affect

the fitness of the different types asymmetrically. Competing E. coli strains often metabolize dif-

ferent sugar types (e.g. glucose or lactose). Thus, variations in the concentration of one sugar

type predominantly affect the fitness of one E. coli strain and not the other [12, 13]. The evolu-

tion of drug resistance is another notable example. The existence of a variable drug distribu-

tion across a population (e.g. a drug “gradient”) can have a strong effect on the onset of drug

resistance in microbial evolution [14, 15]. Similar observations have been made in the contexts

of virus [16–21] and cancer [22, 23] dynamics.

Driven by the ubiquity of heterogeneity within populations, there has been growing interest

in understanding how it affects selection in simple mathematical models. Much of this work,

ranging from earlier models in population genetics [24–27] to those with more fine-grained

spatial structure [28–35], is summarized in a prequel to this study [36] (which deals with well-

mixed dispersal structures and spatially-modulated fitness). However, a general understanding

of the effects of heterogeneous resource distributions within structured populations is still

lacking. The subtlety of resource heterogeneity in evolutionary dynamics arises from the inter-

play of several different parameters: the spatial structure and migration patterns in the popula-

tion; how each genotype is affected by different concentrations of the resource; the spatial

distribution of resources themselves; and finally the fitness of each competing type in the

absence of heterogeneity. Due to this complexity, a good deal of the work in this area has been

done through numerical simulations of agent-based models with specific structures and fitness

distributions.

In this work, we consider heterogeneous resource distributions in graph-structured popula-

tions. A distribution of resources within a structured population can be represented by a col-

ored graph, wherein the color of a node represents the resources at that location [30]. Our

primary focus is on properly two-colored graphs, which have two distinct node colors together

with the property that no two nodes of the same color are neighbors. Each node holds one

individual, either a mutant (type A) or a resident (type B). For evolutionary updating on such a

graph, we consider a variant of the well-known Moran process [37], which is a birth-death pro-

cess with one replacement in each time step. A proper two-coloring of the graph in this context

implies that an offspring’s resources are always different from those of the parent (except, of

course, from the trivial case in which the colors have no meaningful effects on the types).

The first question we ask is which population structures and resource distributions result in

the same evolutionary dynamics, as measured by the fixation probability of an invading

mutant. For properly two-colored graphs in which all nodes of a given color have the same
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degree (“biregular”), we give an explicit formula for the fixation probability of a rare mutant

that is valid for any intensity of selection (Theorem 1). We use this formula to derive a simple

condition for when selection favors the mutant type relative to the resident (Theorem 2): if gA
and gB are the geometric means of the fitness values of A and B, respectively, on the two possi-

ble colors of the nodes, then selection favors A relative to B if and only if gA> gB.

We then consider the effects of resource redistribution within a fixed structure, focusing on

the notion of an “optimal” distribution of resources with respect to the evolutionary process.

On a cycle, a proper two-coloring is typically optimal in the following sense: any reshuffling of

colors away from a proper two-coloring leads to a decrease in fixation probability for advanta-

geous mutants and an increase in fixation probability for disadvantageous mutants. We find

that this behavior reversed on the star, and it lies somewhere in between on other bipartite

graphs with unequal numbers of green and red nodes.

Finally, we explore dynamic graph colorings arising from resource mobility. Resources are

redistributed occasionally through a shuffling of the node colors. We find that resource mobil-

ity attenuates the effects of background heterogeneity, at least when the level of background

heterogeneity is not too large. In some cases, when redistribution occurs at every time step, the

effects of background heterogeneity can be completely offset.

Results

We begin by modeling the spatial structure of a population with a graph, in which vertices rep-

resent locations and edges represent neighbors. The adjacency matrix of this graph, ðGijÞ
N
i;j¼1

,

satisfies Γij = 1 if i and j are neighbors and Γij = 0 otherwise. There are two types of individuals

on the graph, mutants (A) and residents (B), and each vertex is occupied by exactly one of

these two types. When the individual at vertex i reproduces, the offspring is propagated to ver-

tex j with probability Γij/Γi, where Gi≔
PN

k¼1
Gik is the out-degree of vertex i. The Moran pro-

cess [37] is obtained by choosing one individual to reproduce in each time step, with

probability proportional to fitness.

Whereas it is usually assumed that the fitness of i depends on only its type (A or B), here we

are concerned with fitness that depends on local environmental conditions in addition to an

individual’s type. To include environmental conditions, we assume that each vertex is assigned

a color. For simplicity, we focus on graphs with two possible colors, green and red. For exam-

ple, a green node might be rich in resources while a red node is poorer. More colors can be

used to model a broader spectrum of resource values. We assume the total abundance of

resources is constant and does not get degraded over time, which implies that the number of

nodes of any given color remains fixed over the course of the evolutionary process.

A vertex coloring, C, is a function that maps every vertex to a discrete set of values (color

set). A coloring map, C, is proper if no two nodes of the same color are connected to each

other, i.e. CðiÞ 6¼ CðjÞ whenever Γij = 1. A graph is called n-colorable if it can be properly col-

ored with n colors. A graph with N vertices is trivially N-colorable, but often times a graph can

be properly colored with fewer colors. The smallest number of colors for which a proper color-

ing is possible is known as the chromatic number of the graph [38]. We are interested in graphs

whose chromatic number is 2, which are also known as “2-chromatic” or “bipartite” graphs

(see Fig 1).

The effects of a color on fitness are described by a color-to-fitness map, which maps each

color to an ordered set of fitness values, one for each type. For example, in the space of two

types, A and B, and two colors, green (G) and red (R), the color-to-fitness map can be specified
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Fig 1. Examples of graphs with proper two-colorings: a, cycle; b, complete, symmetric bipartite graph; c, square lattice (von

Neumann neighborhood); d, hexagonal lattice; e, complete, asymmetric bipartite graph; and f, star (an extreme case of e). If the

fitness of A and B are aG and bG on a green site and aR and bR on a red site, respectively, then on each of these graphs we can

explicitly calculate the probability that one type replaces the other (Theorem 1).

https://doi.org/10.1371/journal.pcbi.1008402.g001
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succinctly by a payoff matrix,

G R

A

B

aG aR

bG bR

0

@

1

A : ð1Þ

In other words, on a green node, A has fitness aG and B has fitness bG. On a red node, A has

fitness aR and B has fitness bR. In evolutionary game theory, such a payoff matrix is usually

used to define payoffs for one type against another. Here, this matrix gives the payoffs for a

type against the environment.

To quantify the effects of the coloring scheme on evolutionary dynamics, we study the

mutant type’s fixation probability, ρA, which is the probability that a single, randomly-placed

A eventually takes over a background population of type B. Similarly, the probability that a sin-

gle B fixes in a background population of type A is denoted by ρB. Selection is said to favor A
relative to B if ρA> ρB [39, 40]. For all graphs of the variety depicted in Fig 1, we can calculate

fixation probabilities explicitly:

Theorem 1. Consider a graph with a proper two-coloring, with NG green nodes and NR red

nodes. If every green node has degree kG and every red node has degree kR, then the mean fixa-

tion probability of A appearing uniformly at random in a background population of B is

rA ¼

1 �
1

NG þ NR
NG

bRðaRkG þ bGkRÞ
aRðaGkR þ bRkGÞ

þ NR
bGðaGkR þ bRkGÞ
aGðaRkG þ bGkRÞ

� �

1 �
bRðaRkG þ bGkRÞ
aRðaGkR þ bRkGÞ

� �NG bGðaGkR þ bRkGÞ
aGðaRkG þ bGkRÞ

� �NR
: ð2Þ

Similarly, the mean fixation probability of B appearing uniformly at random in a back-

ground population of A is

rB ¼

1 �
1

NG þ NR
NG

aRðbRkG þ aGkRÞ
bRðbGkR þ aRkGÞ

þ NR
aGðbGkR þ aRkGÞ
bGðaRkG þ aGkRÞ

� �

1 �
aRðbRkG þ aGkRÞ
bRðbGkR þ aRkGÞ

� �NG aGðbGkR þ aRkGÞ
bGðbRkG þ aGkRÞ

� �NR
: ð3Þ

Remark 1. Under the assumptions of Theorem 1, we must have NGkG = NRkR. Thus, NG =

NR if and only if kG = kR (the graph is regular), in which case ρA is independent of the degree.

From Theorem 1, we can derive a simple condition for selection to favor A:

Theorem 2. For a graph satisfying the hypotheses of Theorem 1,

rA > 1=N > rB , rA > rB , aGaR > bGbR: ð4Þ

We give proofs of Theorems 1–2, as well as an extension to weighted, directed graphs, in

the Appendix.

Parametrizing heterogeneity

Let rA and rB represent the mean fitness values of A and B, respectively, over all locations in the

population, i.e.

rA ¼
NGaG þ NRaR
NG þ NR

; ð5aÞ

PLOS COMPUTATIONAL BIOLOGY The Moran process on 2-chromatic graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008402 November 5, 2020 5 / 18

https://doi.org/10.1371/journal.pcbi.1008402


rB ¼
NGbG þ NRbR
NG þ NR

: ð5bÞ

The difference between the fitness of A on a green node, aG, and the mean fitness of A, rA,

is denoted sG
A≔ aG � rA. Similarly, for type B on a green node, we let sG

B ≔ bG � rB. Since we

usually consider green nodes to be beneficial, it is typically the case that sG
A; s

G
B ⩾ 0. In this way,

these two parameters quantify the (beneficial) effects of green nodes on the two types. On the

other hand, red nodes are usually deleterious, which means that the quantities sR
A≔ rA � aR

and sR
B≔ rB � bR are at least zero and quantify the degree to which red nodes are harmful to

the two types. By Eq 5, we must have NGs
G
A ¼ NRs

R
A and NGs

G
B ¼ NRs

R
B . In particular, the het-

erogeneity can be parametrized by just two values, sA≔ sG
A (mutant heterogeneity) and

sB≔sG
B (resident heterogeneity). (Note, however, that these parameters are added to fitness

on green nodes and subtracted from fitness on red nodes.) By Theorem 2, the selection condi-

tion is

rA > 1=N > rB , rA > rB

, ðrA þ sAÞðNRrA � NGsAÞ > ðrB þ sBÞðNRrB � NGsBÞ:
ð6Þ

Fig 2 illustrates this selection condition when NG = NR = 50, rA = 1.5, and rB = 1.

Several natural special cases emerge from this general accounting of heterogeneity:

(i) symmetric environmental interactions: σA = σB;

(ii) asymmetric environmental interactions: σA = −σB;

(iii)mutant heterogeneity: σB = 0;

(iv) resident heterogeneity: σA = 0.

Note that each of these cases is a one-parameter model of heterogeneity. Our main focus

here is on (i), where the coloring affects the fitness of the two types symmetrically. We refer to

this case as “heterogeneous background fitness” and use σ to denote the parameter σA. For sim-

plicity, we also let rB = 1 and r≔ rA.

For example, if NG = NR = N/2, then, under heterogeneous background fitness, Eq 2 simpli-

fies to

rA ¼
rðr � 1Þ

r2 � s2ð Þ 1 �
1 � s2

r2 � s2

� �N=2
 ! :

ð7Þ

From this expression, we see that the fixation probability of a mutant is an increasing func-

tion of σ when the mutant is advantageous (r> 1), a decreasing function of σ when the mutant

is disadvantageous (r< 1), and independent of σ when the mutant is neutral (r = 1). This result

is depicted in Fig 3 on a graph with NG = NR = 5.

Resource redistribution and optimal colorings

On a colored graph, shuffling the node colors does not change the overall number of each

color present in the population. In other words, shuffling leaves the total resource value con-

stant. Having established formulas for fixation probabilities on biregular, properly two-colored

graphs, we now turn to fixation probabilities on graphs with various permutations of proper
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two-colorings. This model of permuted colorings is related to (and inspired by) the work of

[32], which explores how increasing the standard deviation of a bimodel fitness distribution

affects fixation probabilities in simple structured populations. In the model we consider,

we permute the colors at the beginning of the process and then leave them fixed for the

remainder.

On the cycle, we find that shuffling the colors away from a proper two-coloring attenuates

the effects of background heterogeneity (Fig 4a). On the star with NG = 1 and NR = N − 1,

there are just two non-isomorphic colorings, one proper and one non-proper. Moving from

the proper coloring to the non-proper coloring increases an advantageous mutant’s fixation

probability and decreases that of a disadvantageous mutant (Fig 4b), which is strictly the

Fig 2. Selection condition when aG = r + σA, aR = r − σA, bG = 1 + σB, and bR = 1 − σB. The graph is bipartite, regular, and properly two-colored with

NG = NR = 50. The difference between fixation probabilities of the two types, ρA − ρB, is shown for several values of σA and σB when r = 1.5. Warmer

colors represent greater differences between the fixation probabilities, ρA − ρB. A is neutral relative to B if and only if r2 � s2
A ¼ 1 � s2

B.

https://doi.org/10.1371/journal.pcbi.1008402.g002
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opposite of the behavior observed for the cycle. In between these two population structures is a

complete bipartite graph with 1< NG < NR < N. On such a structure, the effects of moving

away from a proper coloring are not quite as uniform: for some values of background hetero-

geneity, an advantageous mutant’s fixation probability is increased, while it is decreased for

other values of σ (Fig 4c).

Dynamic coloring and resource mobility

So far, we have considered the case in which resources (and thus environmental conditions)

are spatially distributed across the population but fixed over time. In many cases, resources

and local conditions change over time as well. For example, an area with rich soil or a good cli-

mate can deteriorate with time, leading to poorer conditions (and vice versa). Resource agents,

such as nutrients in a heterogeneous population of bacteria, can be mobile and diffuse across

an evolving population. It is therefore natural to consider the effects of heterogeneity on evolu-

tionary dynamics when the distribution of resources is itself dynamic.

Spatial and temporal heterogeneity have been observed (separately) to have quite different

effects on the fixation probability of a mutant [35]. Here, we consider a model that combines

these two kinds of heterogeneity. For simplicity, we focus on a graph-structured population

with two colors. We consider a simple model of dynamic coloring in which, at each time step,

the colors on the graph are shuffled according to a random permutation. To control the speed

of resource movements, we assume that a shuffling happens with some fixed probability, p.

With probability 1 − p, there is no movement and the color scheme remains the same as it was

in the previous time step. This model is similar to others involving “motion” [41, 42], except

here it acts on resources rather than traits.

Fig 3. Effects of background heterogeneity on a complete bipartite graph with NG = NR = 5. Background heterogeneity increases the fixation

probability of an advantageous mutant (black lines) and decreases that of a disadvantageous mutant (white lines). These effects are monotonic in

background heterogeneity, σ. By Theorem 1, this behavior is identical to that of a regular (not necessarily complete) properly two-colored graph with

equal numbers of green and red nodes.

https://doi.org/10.1371/journal.pcbi.1008402.g003
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As examples, we consider an undirected cycle, star, and another complete bipartite graph

with NG 6¼ NR for several values of the shuffling rate, p. Fig 5 shows the fixation probability as a

function of σ starting from a two-colored assignment. For p = 0, Theorem 1 gives the exact fix-

ation probability of A. As p increases, the effects of resource heterogeneity weaken, as long as

the level of background heterogeneity is not too high. However, when background heterogene-

ity is sufficiently strong and the population is asymmetric, resource mobility can actually

strengthen the effects of heterogeneity on a mutant’s fixation probability, relative to the fixed

proper two-coloring when p = 0 (Fig 5c).

Discussion

Sources of heterogeneity abound in nature, at all scales. The distribution of a drug across a

tumor can be highly heterogeneous due to non-uniformity in the vasculature as well as in the

tumor’s tissue-like structure [23]. A good breeding site may give a bird an advantage, which is

sometimes connected to its own behavior [43]. A good school district can have a profound

impact on one’s education and career progression [44], and inherited wealth may positively

affect reproductive success [45]. On the flip side, many modeling scenarios require environ-

mental heterogeneity together with frequency-dependent fitness (i.e. “games”). Provided selec-

tion is sufficiently weak, analytical results on the effects of heterogeneity on an evolving

population can be derived in that setting as well [46]. In contrast, the analytical results pre-

sented here hold for any selection strength, with the trade-off being that they require the

assumptions of frequency-independent fitness and sufficient regularity in the population

structure and coloring scheme.

While these assumptions are somewhat restrictive, they allow for a formal analysis of the

model that reveals several interesting effects of background heterogeneity. When heterogeneity

affects the two types (A and B) in the same way, it can increase an advantageous mutant’s

Fig 4. Effects of background heterogeneity for alternative colorings on two-colorable graphs. In each panel, we plot fixation probability against

background heterogeneity for all (non-isomorphic) permutations of the proper two-coloring shown at the top. The proper two-coloring in each case is

depicted in black, which is given by Eq 2. a, On the cycle, the proper two-coloring is “optimal” in the sense that it gives the maximum fixation

probability for an advantageous mutant and the minimum fixation probability for a disadvantageous mutant. b, On the star, we observe the opposite

behavior, with the proper two-coloring giving the minimum fixation probability for an advantageous mutant and the maximum for a disadvantageous

mutant. c, On a complete bipartite graph withNG 6¼ NR (shown here with NG = 3 and NR = 7), a mixture of these two results is possible. In particular,

there need not be a coloring that is “optimal” for all levels of background heterogeneity. The fixation probabilities in all panels were approximated by

building transition matrices for each process and looking at the exact distribution after 107 steps.

https://doi.org/10.1371/journal.pcbi.1008402.g004
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fixation probability and decrease that of a disadvantageous individual. As the graph becomes

more heterogeneous, here in the form of having unequal numbers of green and red nodes,

both the effects of heterogeneity and the relationship between proper and non-proper color-

ings on the graph grow more nuanced. Our focus here was on an analogue of the isothermal

theorem [11] for colored graphs, but other classes of colorings on more complicated heteroge-

neous graphs would also be relevant for understanding the evolutionary implications of back-

ground heterogeneity.

In addition to earlier work in population genetics, several steps have recently been taken to

better understand the roles of heterogeneity in evolutionary dynamics [29, 31–33, 35, 36, 47].

However, a complete picture remains elusive. Due to the complexity of analyzing models that

account for heterogeneity, such an understanding likely will not emerge for some time. Given

the rapid development of the Moran model in structured populations over the past decade-

and-a-half, we see generalizations involving both spatial and temporal resource heterogeneity

to be natural next steps, both for their mathematical intrigue and their applicability to the het-

erogeneity that is present in nearly every natural population.

Methods

Calculating fixation probabilities

Consider a colored graph of size N in which each node is occupied by a single individual of

type A (mutant) or B (resident). The fitness of a type depends on both the type itself and the

Fig 5. Fixation probability in the presence of dynamic resources on bipartite graphs. ρA is shown here as a function of resource heterogeneity, σ, for

several values of the resource redistribution rate, p, and mutant mean fitness, r. The population initially has a proper two-coloring. At each time step,

with probability p the colors are shuffled according to permutation chosen uniformly at random. With probability 1 − p, the coloring is not changed in

that time step. In a and b, high environmental fluctuations (i.e. large p) attenuate the effects of background heterogeneity relative to the initial

distribution of resources at p = 0 (corresponding to a proper two-coloring, shown in black and given by Eq 2). In c, this behavior holds for all but the

highest levels of background heterogeneity. The fixation probabilities in all panels were approximated by building transition matrices for each process

and looking at the exact distribution after 107 steps.

https://doi.org/10.1371/journal.pcbi.1008402.g005
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color of its node. We denote the fitness of A and B at location i by ai and bi, respectively. The

fitness values belong to a finite set defined by the number of colors. For example in case of two

colors, green and red, the possible fitness sets for mutants are two values, ai 2 {aG, aR}, where

aG and aR denote the fitness of A on green and red sites, respectively. Our focus is on graphs

with two colors, having NG green nodes and NR red nodes.

Directed, weighted graphs. The probability that an offspring produced at site i replaces

an individual residing at a neighboring location, j, is determined by a directed, weighted dis-

persal graph with matrix ðwijÞ
N
i;j¼1

, having no self-loops (meaning wii = 0 for i = 1, . . ., N). In a

standard extension of the Moran model to graphs, an individual at location i replaces j with

probability proportional to the product of i’s fitness and the edge weight wij [11]. The overall

structure of the population is defined by both this dispersal graph and the coloring of the

nodes.

A state of the process can be described by a vector, x 2 {0, 1}N, where xi = 1 (resp. xi = 0)

indicates that the individual at location i has type A (resp. B). The total fitness of type B in the

population is
PN

j¼1
ð1 � xjÞbj. Multiplying each location j by the edge weight wji if i has type A

(and by 0 otherwise), we see that the probability of losing a mutant in location i is proportional

to
PN

j¼1
ðð1 � xjÞbjÞðwjixiÞ, where the term (1 − xj)bj corresponds to the birth of type B and wji

xi corresponds to the death of a neighboring type A. Similarly, the probability of gaining a

mutant at location i is proportional to
PN

j¼1
ðxjajÞðwjið1 � xiÞÞ. Finally, the probability that

location i neither gains nor loses a mutant is proportional to

XN

j¼1

ðxixjaj þ ð1 � xiÞð1 � xjÞbjÞwji: ð8Þ

It follows that the probabilities of losing and gaining a mutant in state x are

P�i ðxÞ ¼
PN

j¼1
xið1 � xjÞbjwji

PN
j;k¼1
ðxjaj þ ð1 � xjÞbjÞwjk

; ð9aÞ

Pþi ðxÞ ¼
PN

j¼1
ð1 � xiÞxjajwji

PN
j;k¼1
ðxjaj þ ð1 � xjÞbjÞwjk

; ð9bÞ

respectively. Conditioned on a change in mutant frequency (meaning the process cannot

remain in the same state, provided this state is non-absorbing), the transition probabilities are

given by

Q�i ðxÞ ¼
P�i ðxÞPN

k¼1
ðP�k ðxÞ þ Pþk ðxÞÞ

¼

PN
j¼1
xið1 � xjÞbjwji

PN
j;k¼1
ðð1 � xkÞxjajwjk þ xkð1 � xjÞbjwjkÞ

;

ð10aÞ

Qþi ðxÞ ¼
Pþi ðxÞPN

k¼1
ðP�k ðxÞ þ Pþk ðxÞÞ

¼

PN
j¼1
ð1 � xiÞxjajwji

PN
j;k¼1
ðð1 � xkÞxjajwjk þ xkð1 � xjÞbjwjkÞ

:

ð10bÞ
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For z1; . . . ; zN 2 R and x 2 {0, 1}N, let ζx denote the product z
x1

1
� � � z

xN
N . Let {Xn}n⩾0 repre-

sent the state of the process, with Xn = x indicating that the state of the population at time n is

x. Due to the well-known connection between fixation probabilities and martingales [48], we

are first interested in finding z1; . . . ; zN 2 R for which fζXngn⩾0
is a martingale with respect to

{Xn}n⩾0, which means that E½ζXnþ1 j X0;X1; . . . ;Xn� ¼ ζXn for every n ⩾ 0. Since {Xn}n⩾0 is a

Markov chain and the law of Xn+1 depends on only Xn, it suffices to find z1; . . . ; zN 2 R such

that E½ζXnþ1 j Xn� ¼ ζXn . Using Eq 9, we see that

E½ζXnþ1 j Xn ¼ x� ¼
XN

i¼1

ðP�i ðxÞζ
x
z
� 1

i þ P
þ

i ðxÞζ
x
ziÞ

þ 1 �
XN

i¼1

ðP�i ðxÞ þ P
þ

i ðxÞÞ

 !

ζx:

ð11Þ

Therefore, by Eqs 9 and 10, the equation E½ζXnþ1 j Xn ¼ x� ¼ ζx is equivalent to

XN

i¼1

ðP�i ðxÞζ
x
z
� 1

i þ P
þ
i ðxÞζ

x
ziÞ þ 1 �

XN

i¼1

ðP�i ðxÞ þ P
þ

i ðxÞÞ

 !

ζx ¼ ζx

,
XN

i¼1

ðQ�i ðxÞz
� 1

i þ Q
þ

i ðxÞziÞ ¼ 1:

ð12Þ

By Eq 10, we see that Eq 12 holds for every x 2 {0, 1}N if and only if

0 ¼
XN

i;j¼1

xið1 � xjÞbjwjiðz
� 1

i � 1Þ þ
XN

i;j¼1

ð1 � xiÞxjajwjiðzi � 1Þ

¼
XN

i¼1

XN

j¼1

bjwjiðz
� 1

i � 1Þ þ
XN

j¼1

aiwijðzj � 1Þ

" #

xi

�
X

i<j

½bjwjiðz
� 1

i � 1Þ þ ajwjiðzi � 1Þ þ biwijðz
� 1

j � 1Þ þ aiwijðzj � 1Þ�xixj

ð13Þ

for every x 2 {0, 1}N. The right-hand side of Eq 13 is a multi-linear polynomial representation

of a pseudo-Boolean function (i.e. a mapping f0; 1g
N
! R) that is identically zero, so its coef-

ficients must also all be zero by uniqueness of this representation [49, 50]. Therefore, for every

i, j = 1, . . ., N, we obtain the system of equations

XN

j¼1

bjwjiðz
� 1

i � 1Þ þ
XN

j¼1

aiwijðzj � 1Þ ¼ 0;

ðlinear termsÞ

ð14aÞ

bjwjiðz
� 1

i � 1Þ þ ajwjiðzi � 1Þ þ biwijðz
� 1

j � 1Þ þ aiwijðzj � 1Þ ¼ 0:

ðquadratic termsÞ
ð14bÞ

Let ρA(x) denote the fixation probability of type A when starting in the initial configuration

x 2 {0, 1}N. If there exist z1; . . . ; zN 2 R solving Eq 14, then it is well-known that the martingale

property yields

z
x1

1
� � � z

xN
N ¼ ð1 � rAðxÞÞ þ rAðxÞz1 � � � zN ð15Þ
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[36, 48]. Solving for ρA(x) gives a fixation probability of

rAðxÞ ¼
1 � z

x1

1
� � � z

xN
N

1 � z1 � � � zN
: ð16Þ

Thus, in what follows, we can reduce the problem of calculating fixation probabilities to

finding z1; . . . ; zN 2 R that satisfy Eq 14.

In general, there need not be a solution to Eq 14. However, with a few simplifying assump-

tions, we can reduce this system of equations to something more manageable. Specifically, we

seek a solution to this system for which zi depends on only the color of i. For every node i, we

use the notation i*G (resp. i* R) to denote that i is colored green (resp. red). The first

assumption is that the graph is properly two-colored, which means that wij = 0 whenever i, j*
G or i, j* R. The second assumption is that the indegree is the same for all nodes of the same

color, as is the outdegree. Let win
G and wout

G (resp. win
R and wout

R ) denote the indegree and outde-

gree, respectively, of green (resp. red) nodes. Under these assumptions, such a solution to Eq

14a requires

bRðz
� 1

G � 1Þwin
G þ aGðzR � 1Þwout

G ¼ 0; ð17aÞ

bGðz
� 1

R � 1Þwin
R þ aRðzG � 1Þwout

R ¼ 0: ð17bÞ

It is straightforward to see that the unique solution to these equations is given by

zG ¼
bRwin

GðaRw
out
R þ bGw

in
R Þ

aRwout
R ðaGwout

G þ bRwin
GÞ

; ð18aÞ

zR ¼
bGwin

R ðaGw
out
G þ bRw

in
GÞ

aGwout
G ðaRwout

R þ bGwin
R Þ
: ð18bÞ

Now, the equation resulting from the quadratic terms of Eq 14, i.e. Eq 14b, requires

ðbRðz
� 1

G � 1Þ þ aRðzG � 1ÞÞwji þ ðbGðz
� 1

R � 1Þ þ aGðzR � 1ÞÞwij ¼ 0;

ði � G; j � RÞ
ð19aÞ

ðbGðz
� 1

R � 1Þ þ aGðzR � 1ÞÞwji þ ðbRðz
� 1

G � 1Þ þ aRðzG � 1ÞÞwij ¼ 0:

ði � R; j � GÞ
ð19bÞ

For the expressions in Eq 18 to satisfy Eq 19 as well, it must be the case that

wji=wij ¼
win

G=w
out
G ð¼ w

out
R =w

in
R Þ i � G; j � R;

win
R =w

out
R ð¼ w

out
G =w

in
GÞ i � R; j � G:

(

ð20Þ
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On a graph satisfying these properties, Eq 16 says that the fixation probability of a mutant

whose initial location is chosen uniformly at random is thus

rA ¼
1 �

1

N
NGzG þ NRzRð Þ

1 � z
NG
G z

NR
R

¼

1 �
1

N
NG

bRwin
GðaRw

out
R þ bGw

in
R Þ

aRwout
R ðaGwout

G þ bRwin
GÞ
þ NR

bGwin
R ðaGw

out
G þ bRw

in
GÞ

aGwout
G ðaRwout

R þ bGwin
R Þ

� �

1 �
bRwin

GðaRw
out
R þ bGw

in
R Þ

aRwout
R ðaGwout

G þ bRwin
GÞ

� �NG bGwin
R ðaGw

out
G þ bRw

in
GÞ

aGwout
G ðaRwout

R þ bGwin
R Þ

� �NR

¼

1 �
1

N
NG

bRðaRwin
G þ bGw

out
G Þ

aRðaGwout
G þ bRwin

GÞ
þ NR

bGðaGwout
G þ bRw

in
GÞ

aGðaRwin
G þ bGwout

G Þ

� �

1 �
bRðaRwin

G þ bGw
out
G Þ

aRðaGwout
G þ bRwin

GÞ

� �NG bGðaGwout
G þ bRw

in
GÞ

aGðaRwin
G þ bGwout

G Þ

� �NR
:

ð21Þ

Undirected, unweighted graphs. The process described in the previous section is a modi-

fication of the Moran process due to [11] that allows for general, weighted and directed graphs.

When the graph is undirected and unweighted, the Moran process described in the main text

can be recovered with an appropriate choice of ðwijÞ
N
i;j¼1

. Suppose that ðGijÞ
N
i;j¼1

is the adjacency

matrix for such a graph, i.e. Γij 2 {0, 1} and Γij = Γji for every i, j = 1, . . ., N. As before, we

assume that there are no self-loops in the graph, so Γii = 0 for i = 1, . . ., N. We let the probabil-

ity of transitioning from i to j in one step of a random walk on the graph be pij≔Gij=
PN

k¼1
Gik.

If an individual is selected for reproduction with probability proportional to fitness, and the

offspring is subsequently propagated to a random neighboring node, then the probabilities of

losing and gaining a mutant at location i in state x 2 {0, 1}N are

P�i ðxÞ ¼
PN

j¼1
xið1 � xjÞbjpji

PN
j¼1
ðxjaj þ ð1 � xjÞbjÞ

; ð22aÞ

Pþi ðxÞ ¼
PN

j¼1
ð1 � xiÞxjajpji

PN
j¼1
ðxjaj þ ð1 � xjÞbjÞ

; ð22bÞ

respectively. Note that these equations are identical to those of Eq 9 when ðwijÞ
N
i;j¼1
¼ ðpijÞ

N
i;j¼1

.

Since ðpijÞ
N
i;j¼1

is stochastic, the outdegree of every node is 1. Suppose that this graph is bipar-

tite and properly two-colored, with NG green nodes and NR red nodes (see Fig 1). Following

our assumptions in the last section, we assume here as well that all nodes of a given color have

the same indegree. Let pinG and pinR denote the indegrees of green and red nodes, respectively.

By Eq 20, we have pji ¼ pinGpij whenever i*G and j* R and pji ¼ pinR pij whenever i* R and

j*G. Since the graph is connected, these equations imply that there exist kG and kR such that

pij = Γij/kG when i* G and pij = Γij/kR when i* R. In particular, all green nodes have kG

neighbors and all red nodes have kR neighbors (i.e. the graph is “biregular”).

For this kind of graph, we can simplify the expressions of Eq 18 to get

zG ¼
bRðaRkG þ bGkRÞ
aRðaGkR þ bRkGÞ

; ð23aÞ
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zR ¼
bGðaGkR þ bRkGÞ
aGðaRkG þ bGkRÞ

: ð23bÞ

It then follows from Eq 21 that the fixation probability of a randomly-placed mutant is

rA ¼

1 �
1

N
NG

bRðaRkG þ bGkRÞ
aRðaGkR þ bRkGÞ

þ NR
bGðaGkR þ bRkGÞ
aGðaRkG þ bGkRÞ

� �

1 �
bRðaRkG þ bGkRÞ
aRðaGkR þ bRkGÞ

� �NG bGðaGkR þ bRkGÞ
aGðaRkG þ bGkRÞ

� �NR
: ð24Þ

Swapping the roles of A and B results in a formula for ρB as well, proving Theorem 1. In par-

ticular, any regular graph (meaning kG = kR, which requires NG = NR) has the same fixation

probabilities as the complete bipartite graph with NG green nodes and NR (= NG) red nodes

(Fig 1b).

Example 1 (star graph). On the star graph with one red node at the center (see Fig 1f), we

have NG = kR = N − 1 and NR = kG = 1. Plugging these quantities into Eq 24 gives the formula

rA ¼

1 �
1

N
N � 1ð Þ

bRðaR þ bGðN � 1ÞÞ

aRðaGðN � 1Þ þ bRÞ
þ
bGðaGðN � 1Þ þ bRÞ
aGðaR þ bGðN � 1ÞÞ

� �

1 �
bRðaR þ bGðN � 1ÞÞ

aRðaGðN � 1Þ þ bRÞ

� �N� 1 bGðaGðN � 1Þ þ bRÞ
aGðaR þ bGðN � 1ÞÞ

� � : ð25Þ

Finally, we conclude with the proof of Theorem 2. Suppose that ρA = 1/N, the fixation prob-

ability of A under neutral drift. By Eq 24, with zG and zR given by Eq 23, we have

NGð1 � zGÞ þ NRð1 � zRÞ ¼ 1 � z
NG
G z

NR
R : ð26Þ

Consider the function f ðx; yÞ≔NGð1 � xÞ þ NRð1 � yÞ � 1þ xNGyNR , which satisfies f(1,

1) = 0. If (zG, zR) 6¼ (1, 1) and f(zG, zR) = 0, then the function g(t) ≔ f(1 − t + tzG, 1 − t + tzR) is

differentiable and vanishes at both t = 0 and t = 1. By Rolle’s theorem, there must exist t� 2 (0,

1) for which g0(t�) = 0. Letting x�≔ 1 − t� + t�zG and y�≔ 1 − t� + t�zR be the corresponding

values of x and y, we see that

g 0ðt�Þ ¼
@f
@x

x�; y�ð Þ zG � 1ð Þ þ
@f
@y

x�; y�ð Þ zR � 1ð Þ

¼ � NGð1 � ðx�Þ
NG � 1
ðy�ÞNRÞðzG � 1Þ � NRð1 � ðx�Þ

NGðy�ÞNR � 1
ÞðzR � 1Þ:

ð27Þ

Since the numerators and denominators in Eq 23 are positive, and since we have the identi-

ties

aRðaGkR þ bRkGÞ � bRðaRkG þ bGkRÞ ¼ kRðaGaR � bGbRÞ; ð28aÞ

aGðaRkG þ bGkRÞ � bGðaGkR þ bRkGÞ ¼ kGðaGaR � bGbRÞ; ð28bÞ

it follows that 1 − zG and 1 − zR must have the same sign (positive, negative, or zero). Since

(1 − x�, 1 − y�) lies in the same quadrant as (1 − zG, 1 − zR), it cannot be true that g0(t�) = 0.

Therefore, Eq 26 is satisfied if and only if zG = zR = 1, which in turn happens if and only if

aGaR = bGbR. For bipartite, properly two-colored, biregular graphs, we see that ρA = 1/N if and

only if aGaR = bGbR. By similar reasoning, we find that ρA> 1/N> ρB when aGaR > bGbR and

ρA< 1/N< ρB when aGaR < bGbR.
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