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Abstract 12 

Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an 13 

unknown mechanism. Here we present cryo-EM structures of ovine complex I in five different 14 

conditions, including turnover, at resolutions up to 2.3-2.5 Å. Resolved water molecules 15 

allowed us to experimentally define the proton translocation pathways. Quinone binds at three 16 

positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit 17 

ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction 18 

to proton translocation during “open” to “closed” state transitions of the enzyme. In the induced 19 

deactive state, the “open” conformation is arrested by the ND6 subunit. We propose a detailed 20 

molecular coupling mechanism of complex I, which is an unexpected combination of 21 

conformational changes and electrostatic interactions.   22 
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Complex I is the largest of the respiratory complexes and in mammals is composed of 23 

45 subunits with a total mass of about 1 MDa (Figure 1a). It catalyzes the transfer of two 24 

electrons from NADH to ubiquinone, coupled to the translocation of four protons across the 25 

bacterial or inner mitochondrial membrane, generating proton-motive force (pmf). It can also 26 

work in reverse, using pmf to reduce NAD+ (1, 2). Fourteen core subunits conserved in all 27 

species are necessary for the reaction. About 30 eukaryotic supernumerary subunits contribute 28 

to the regulation and stability, but are nevertheless crucial for the catalytic activity of the 29 

mammalian complex I (1, 3). Initial crystal structures of bacterial enzyme (4, 5) were followed 30 

by cryo-EM structures of mammalian mitochondrial complexes (6–9).  31 

The catalytic mechanism of complex I, in particular the coupling between 32 

NADH:ubiquinone oxidoreduction and proton pumping over a distance of more than 200 Å, 33 

remains elusive. In the peripheral arm (PA) of the enzyme, electrons from NADH are accepted 34 

by FMN and passed along a chain of iron-sulfur clusters to cluster N2 and to ubiquinone, which 35 

binds in a narrow tunnel at the interface of the PA with the membrane domain (MD) (Figure 36 

1a). MD comprises four separate proton pumps connected by a string of conserved charged 37 

residues along the middle of the entire MD length, forming the central hydrophilic axis. The 38 

closest to the quinone cavity is the E channel composed of ND1, ND6 and ND4L subunits, 39 

followed by three homologous antiporter-like subunits ND2, ND4 and ND5 (Figure 1a). 40 

Antiporters are composed of two symmetry-related half-channels of five trans-membrane 41 

helices (TMH) each, with N-terminal half thought to be open to the matrix and C-terminal half 42 

to the intermembrane space (IMS). Half-channels contain conserved key residues, lysine or 43 

glutamate, sitting on broken TMH7/TMH12 and are connected into a full channel by a central 44 

lysine from broken TMH8. The N-terminal key TMH7 lysine forms a pair with the conserved 45 

TMH5 glutamate, thought to modulate the pKa of lysine (1, 4, 5).  46 

The crucial energy-releasing step in the reaction is likely quinone reduction or its 47 

release out of the cavity because there is no drop in the mid-point redox potential of electron 48 

carriers until the electron reaches the final cluster N2 and quinol is released into bilayer (10, 49 

11). Molecular dynamics (MD) simulations suggested that diffusion of quinol out of the cavity 50 

is accompanied by the rearrangement of the quinone cavity loops (12). Quinol was also 51 

predicted to bind at two broad sites, one in the deep part of the cavity next to N2 (Qd, or MD 52 

sites #1-2) and one in the shallow part (Qs, or MD sites #4-5) close to the exit from the tunnel 53 

(13, 14).  54 

We proposed that the negative charge within the quinone cavity initiates 55 

conformational changes in the E-channel, propagating further into the antiporters via the 56 
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central hydrophilic axis, facilitated by flexible broken TM helices (1, 4). These movements 57 

would influence interactions between the key lysine/glutamate residues within and between 58 

antiporters, leading to pKa changes and proton translocation (5). In the alternative electrostatic 59 

spring proposal, coupling in the membrane domain is coordinated by a wave of electrostatic 60 

interactions (15). The most detailed mechanism includes quinol-induced changes of charge 61 

state of conserved residues, leading to forward and backward electrostatic waves, breaking and 62 

formation of water wires in the antiporters and proton pumping (16, 17). However, all 63 

proposals so far lack experimental grounding and thus specifics of any conformational changes.  64 

Complex I either isolated or within supercomplexes have so far been observed in two 65 

states, the closed and the open conformation which differ in the PA-MD angle (6, 7, 9) (Figure 66 

1b). The opening coincides with unfolding of several loops, which can be divided into the 67 

quinone cavity forming loops and the interface forming loops (Figure 1c). The former include 68 

the 49 kDa β1-β2 loop (yellow) and the PSST loop (grey) that form the deep part of the quinone 69 

binding pocket and the ND1 TMH5-6 loop (green) that forms the shallow part of the pocket. 70 

The interface-forming loops consist of the ND3 TMH2-3 loop (orange) and the TMH3-4 loop 71 

of ND6 (blue). Closed-to-open transition is also associated with a notable rotation of the C-72 

terminal half of ND6 TMH3 (blue) and the appearance of the π-bulge in the middle of the helix 73 

(8, 9). 74 

It has been argued that the open conformations of mouse and bovine complex I 75 

correspond to the deactive state, which is a catalytically inert state of complex I that occurs at 76 

elevated temperatures (30-37ºC) in the absence of substrates and can be reversed by slow 77 

turnover (8, 18, 19). However, open and closed conformations complex I were observed within 78 

active preparations of ovine respiratory supercomplexes (9, 20), which suggest that the open 79 

conformation per se is not a deactive state but a bona fide catalytic intermediate of complex I.  80 

To investigate the catalytic mechanism of complex I in detail, we compared high 81 

resolution cryo-EM structures of ovine complex I in five different conditions: native (no 82 

additions), NADH (enzyme reduced in the presence of NADH), rotenone (enzyme inhibited 83 

by rotenone in the presence of NADH), deactive (enzyme converted into deactive state) and 84 

turnover (enzyme flash-frozen while actively catalyzing NADH:decyl-ubiquinone 85 

oxidoreduction).  86 

 87 

Comparison of open and closed conformations of complex I 88 

An active and stable complex I preparation in a mild LMNG detergent enabled us to 89 

achieve resolutions of up to 2.3 Å for PA, 2.5 Å for MD and 2.6 Å overall, the highest for any 90 
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complex I study so far (Figure 1b, Figures S1-5). We built an almost complete model of 91 

complex I (96.9% residues modelled), with better defined geometry in previously ambiguous 92 

regions and including experimentally defined water molecules. We also resolved other high-93 

resolution features, including post-translational modifications (Figures S6-7, Supplementary 94 

Text).  95 

Our datasets contained a mixture of open and closed conformations of complex I arising 96 

from the combined side- and frontward tilting of the PA by up to 7º as described previously (6, 97 

7, 9) (Figure S9d). The relative ratios between open and closed conformations were roughly 98 

the same in most datasets with the exception of the deactive, which completely lacked a closed 99 

conformation, and rotenone-inhibited, which had a smaller proportion of the closed state 100 

(Figure 1b).  101 

 In each dataset, several open classes could be classified. The most open classes (largest 102 

PA-MD angle) of the native, deactive and rotenone datasets showed partial disordering of the 103 

ND6 TMH4, 49 kDa N-terminus, anchor helix of ND5 and B14.7, which could represent a 104 

partially disassembled or deactivated enzyme. In other open classes these regions were ordered 105 

and did not differ from each other, particularly at the catalytically significant sites. The 106 

different degrees of openness in open classes thus likely reflect the loose PA-MD interface 107 

rather than functionally different states of complex I. We therefore treat open complex I as a 108 

single, albeit heterogeneous, state.  109 

 Opening of complex I coincided with disordering of several PA-MD interface forming 110 

loops (Figure 1c, S6c-e). In all of the datasets we observed disordering of the central part of 111 

the ND3 loop, the ND6 loop and the amphipathic helix (residues 259-272) of the 112 

supernumerary 39 kDa subunit. In the entire ND1 subunit, dramatic tilts of most helices 113 

resulted in up to 5 Å displacements at the matrix side, which propagate the conformational 114 

change all the way to the E-channel and also lead to the observed tilting of the PA (Figure 115 

S9d,e). Strikingly, as the ND1 TMH4 bends near Tyr142 upon such transition, this tyrosine 116 

swings out by almost 180º, freeing the space for the conserved Glu192 to move within 117 

hydrogen bonding distance of the conserved Glu143 (Figure 2a). Changes in the density 118 

appearance indicate that at least one of the glutamates becomes protonated in the open state, as 119 

the estimated pKa increases by ~2 units for both (ProPKa software (21)). The formation of the 120 

p-bulge in ND6 TMH3, resulting in a remarkable 120º rotation of half of the helix, 121 

accompanies this closed to open transition (Figure 2b).  122 

 123 
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Quinone binding loops 124 

In contrast to the interface forming loops, the conformations of the quinone site loops 125 

(49 kDa, PSST and ND1), depended not only on the openness, but also on the ligands bound 126 

and the redox state of the whole complex.  127 

The 49 kDa loop was ordered in the retracted (out of quinone cavity) conformation in 128 

closed classes and disordered in the open classes of the native, turnover and deactive datasets. 129 

When rotenone was bound in the Qd site in open complex I, this loop was ordered in the 130 

retracted conformation, suggesting that binding of a ligand in the Qd site can order the loop. 131 

Notably, in open classes of NADH-reduced enzyme (but not closed classes), the 49 kDa loop 132 

was ordered in the novel extended (into the quinone cavity) conformation, shortening the cavity 133 

considerably (Figure 2d). Since the extended conformation was not observed in the rotenone 134 

and turnover datasets, which also contained NADH, the quinone-like ligand probably must be 135 

fully ejected from the cavity before the loop can extend. 136 

ND1 loop was similarly ordered in the “down” conformation in the closed classes and 137 

disordered in the open classes. Only in NADH open classes (but not closed), however, ND1 138 

loop rearranged into an “up” position, which displaced the ND3 loop as well as the other two 139 

ND1 matrix side loops (Figure 2e). Disordering of ND1 loop breaks several salt bridges, among 140 

which are highly conserved ND1_Glu214-PSST_Arg81 and ND1_Glu202-PSST_Arg77. 141 

Mutagenesis showed inhibitory effects of PSST_Arg77 and PSST_Arg81 mutations and MD 142 

simulations suggested that quinone can only diffuse within the cavity when the ND1 loop is 143 

disordered (22). In the “up” conformation, ND1_Glu214 formed an alternative salt bridge with 144 

ND1_Arg62, while ND1_Glu202 was exposed into the cavity (Figure 2e). ND1 loop did not 145 

switch into the “up" conformation in rotenone and turnover datasets, which also contained 146 

NADH, suggesting that binding of the ligand in the quinone cavity reverses the NADH-induced 147 

changes and could be an important step during the catalytic cycle. 148 

The PSST loop itself also changed the conformation in most datasets. In the closed 149 

classes, it adopted the “raised” conformation, in which residues 48-51 bulge out into the 150 

quinone cavity, while in the open classes they form part of the b-sheet. Furthermore, residues 151 

75-80 flip in the open classes, resulting in a 180º rotation of PSST_Arg77 (Figure 2c). Only in 152 

the rotenone dataset, however, the PSST loop always adopted the raised conformation and 153 

PSST_Arg77 contributed to rotenone binding.  154 

 155 

Rotenone binds in three sites, including a unique site in the antiporter subunit. 156 
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Rotenone is one of the strongest specific inhibitors (IC50 ~ 1nM) of mammalian 157 

complex I (23). Because rotenone is much bulkier than typical Q-like inhibitors (such as 158 

piericidin A), it was hypothesized that it cannot penetrate into the Q cavity and might instead 159 

block it by binding outside (24). However, in the rotenone dataset, we observed rotenone 160 

density in the Qd site in all 3D classes, coordinated by the key 49kDa_Tyr108 and 161 

49kDa_His59, mimicking DQ and piericidin A binding in T. thermophilus (ROT1, Figure 3a-162 

c) (4). Additionally, in the open classes, a second rotenone molecule was found in the Qs site 163 

close to ND1_Arg25 (MD site #4 (13, 14)) (ROT2, Figure 3a,d). Finally, in the open2 and 164 

open3 classes (84% of all particles), a third rotenone density was unexpectedly observed in the 165 

ND4 subunit, far away from the quinone cavity (ROT3, Figure 3a,e). This binding site is 166 

created by tilting out of the TMH6 and is deep between TMH5-7, directly contacting the key 167 

ND4_Lys206 in the proton channel (Figure 3f). The ND4 binding site could correspond to the 168 

lower affinity (80 nM) binding site reported for the deactive conformation (23), which would 169 

also be consistent with changes that we observe in the deactive conformation, exposing this 170 

pocket (Figure 3f). Binding in the ND4 site could also explain why rotenone has been observed 171 

to inhibit Na/H+ antiporter activity of deactive complex I (25). ND4-bound rotenone, curiously, 172 

did not influence the conformations of the proton pumping residues, despite being bound by 173 

ND4_Lys206. It would be interesting to see if other inhibitors bind in this region, particularly 174 

biguanides which bind more strongly to the deactive enzyme (19). Inhibitors specific for 175 

antiporters could be a useful tool for studies on proton pumping. 176 

As noted above, in the open enzyme binding of two rotenone molecules in the quinone 177 

cavity ordered the 49 kDa and PSST loops (Figure 3b) but not ND1 or ND3 loops, which 178 

suggests that ligand binding to the open complex I directly affects the conformations of the 179 

PSST and 49 kDa loops, while the ordering of the ND3 and ND1 loops can only happen upon 180 

reduction or closing of the complex. Overall, rotenone appears to be unique among complex I 181 

inhibitors by having multiple binding sites, which may explain its high affinity for the enzyme.  182 

 183 

Deactivation leads to tilting of the ND6 TMH4 helix, arresting the complex  184 

To better understand the structural rearrangements leading to complex I deactivation, 185 

we prepared deactive ovine complex I by incubation without substrates at an increased 186 

temperature (Figure S9a-c) (26) and collected a cryo-EM dataset. The deactive sample did not 187 

contain any closed conformation but we could classify four open classes, which were overall 188 

more open than the native open classes. They also had a large portion of the B14.7 subunit 189 
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disordered and classes 3 and 4 also showed some disorder around the horizontal helix HL and 190 

its TM anchor, the N-terminus of the 49 kDa subunit and the TMH5 of ND4 (Figure 3a,f).  191 

The most striking feature of all deactive classes, however, was the almost complete 192 

relocation (by tilting) of the ND6 TMH4 helix, accompanied by the insertion of the TMH3-4 193 

loop between the PA and MD, as well as unfolding of the 112-118 ND6 b-sheet (Figure 3g). 194 

TMH3-4 loop gets disordered in the open state and TMH3 acquires a p-bulge, which is likely 195 

the “waiting” state of the catalytic cycle when quinone cavity loops get partially and transiently 196 

disordered. During prolonged absence of turnover, unfolding proceeds to encompass wider 197 

regions of the complex further away from the quinone cavity and results in TMH4 tilt and a 198 

stable insertion of ND6 loop between the two arms, preventing transition into closed 199 

conformation and thus deactivating the enzyme. Reversal of this process is consequently slow 200 

and requires multiple turnovers. The stable decoupling of matrix and membrane arms of 201 

complex I and perhaps also the rearrangements within the ND4 subunit are consistent with the 202 

observation that deactive bovine complex I is a Na/H+ antiporter (25). 203 

A very distinct deactive state structure is a definite proof that open state of complex I 204 

is a part of catalytic cycle and not a deactive form as proposed earlier (8, 18). Open enzyme is 205 

thus a quinone-binding, i.e. “waiting”, intermediate. The high kinetic barrier of active-to-206 

deactive transition in mammals is thus explained by the large-scale reorganization of ND6. 207 

This is consistent with previous mouse and bovine “deactive” conformations which showed 208 

weak ND6 TMH4 density, indicating that they were partly, but not fully deactivated (or the 209 

fully deactive state class was not separated in 3D classification) (8, 18). They are also consistent 210 

with Y. lipolytica structures in which ND6 TMH4 is much less likely to shift due to its close 211 

association with ND5 TMH16 and NUJM (homologue of B14.7) subunit (27). Hence, Y. 212 

lipolytica complex I quasi-deactive state is actually a waiting open state, in which the ND3 213 

loop is disordered and so is susceptible to alkylation, but the enzyme reverts into the processive 214 

state without lag. 215 

 216 

Under turnover quinone binds both in the deep and shallow sites 217 

We collected a dataset of complex I incubated with NADH and decylubiquinone and 218 

flash-frozen before the substrates were exhausted. Under such active turnover conditions, one 219 

may expect to identify quinone binding modes and any conformational changes associated with 220 

the catalytic cycle, provided that relevant conformations can be separated by classification and 221 

that the enzyme explores the entire conformational space in the absence of membrane and pmf. 222 
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Such an approach with Y. lipolytica enzyme suggested an absence of large conformational 223 

changes, although medium resolution (4.5 Å) prevented further mechanistic insights (28).  224 

Both open and closed classes of our turnover dataset contained a clear density for bound 225 

NADH, showing that this is the most populated state of the NADH-binding site during 226 

turnover, even though Fe-S clusters and FMN are likely to be mostly reduced since quinol 227 

release is a limiting step (11, 29).  228 

Closed complex I contained two bound decylubiquinones. Quinone in the deep binding 229 

pocket (Qd) was bound between 49kDa_His59 and 49kDa_Tyr108, exactly where rotenone 230 

binds (Figure 4a). We also observed a strong density near the entry to the quinone cavity, 231 

overlapping with the second rotenone site and the MD site #4, which we modelled as another 232 

molecule of decylubiquinone (Figure 4a,c). Notably, residues 49kDa_Asp160 and 233 

49kDa_His59, which coordinate quinone in the Qd site had a continuous density between them, 234 

indicating the existence of a salt bridge, probably as a result of proton donation to quinone 235 

(Figure 4d). This density was not present in any of the other conditions (Figure 4e, S10h) and 236 

49kDa_Asp160 density was weak as is usual for unbound carboxylates in cryo-EM (30). 237 

Therefore, it is likely that 49kDa_His59 first donates a proton to reduce quinone and then 238 

accepts a proton from 49kDa_Asp160, so that negative charge resides on 49kDa_Asp160 and 239 

the salt bridge is formed. This is the first experimental demonstration that 240 

49kDa_His59/Asp160 pair act as a proton donor for the quinone. It also indicates that the 241 

species bound in the Qd site in the turnover dataset is quinol rather than quinone. 242 

In the open turnover classes, a quinone density was present only in the shallow pocket 243 

(Qs) but it was located further outwards compared to the closed class and was overlapping with 244 

the MD site #5 (Figure 4b,c). The mobile loops of the quinone binding cavity were disordered 245 

to approximately the same extent as in the native open classes and we did not see any density 246 

in the deep binding pocket. This suggests that enzyme opening affects quinone binding and 247 

dynamics in the cavity and likely facilitates quinol ejection or quinone uptake by the complex. 248 

Presence of two molecules of quinone in the closed class is probably an artefact of using 249 

decylubiquinone with its short carbon tail. If native ubiquinone-10 were bound in Qd, its 250 

isoprenoid tail would clearly prevent quinone binding in Qs in the tight quinone cavity of the 251 

closed enzyme (Figure 4f). Opening of complex I widens the negatively charged quinone 252 

binding cavity, in a large part due to PSST re-arrangements (Figure 4f), which will facilitate 253 

quinone movements in and out of cavity before and after reduction. In the NADH open 254 

conformation, the cavity becomes much shorter, mostly due to 49 kDa loop insertion, which 255 

will facilitate quinol ejection.  256 
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 257 

The role of water molecules in quinone protonation and proton pumping 258 

Abundant water molecules that we observed in the PA cryoEM density were mostly 259 

consistent across the different conditions; hence they are likely to represent tightly bound 260 

stationary molecules (Figure S10c). Several of them are close to the iron-sulfur clusters, but 261 

none lie directly between them, thus they are not likely to participate in electron tunneling as 262 

proposed before from simulations (31). Uniquely from other FeS clusters, N2 contains two 263 

water molecules at hydrogen bonding distance, which may help to elevate its redox potential 264 

(Figure S10d).  265 

High resolution of the turnover data allowed us to analyze the mechanistically 266 

important water distribution in the MD. At 2.5 Å resolution in cryo-EM, most water molecules 267 

are resolved, as confirmed by our analyses – we observed significantly more waters (1293) in 268 

the open class MD at 2.5 Å than predicted by Dowser software (742). The MD was less 269 

hydrated than the PA, with a clear pattern of hydrated matrix / IMS surfaces and abundantly 270 

hydrated central axis with relatively dry regions in between (Figure 5a). About 90 waters were 271 

identified on the central axis, within 6 Å from key residues, while only about 60 waters were 272 

predicted by Dowser, indicating that we likely have a complete experimental picture of water 273 

distribution in the MD core. Especially hydrated were the cavities around key TMH7 and 274 

TMH12 lysines/glutamate, containing about 10 waters each. A similar overall pattern was 275 

obtained for the turnover closed state MD, although fewer waters were identified (Figure S10b) 276 

due to lower resolution (2.9 Å).  277 

All the key protonatable residues along the entire hydrophilic axis from the ND5 tip to 278 

the Q cavity are clearly interconnected via many water molecules, with the exception of a long 279 

break in the E channel between ND4L_Glu34 and ND3_Asp66 in the open state (green arrow 280 

in Figure 5a). This is caused by the ND6 TMH3 p-bulge with bulky hydrophobic residues such 281 

as Phe68 and Met64 blocking the path. Strikingly, when TMH3 rotates and the p-bulge 282 

disappears in the closed state, these residues are rotated away and are replaced by the conserved 283 

glycines 62-63, creating a water-filled cavity between ND3_Asp66 and ND4L_Glu34. This 284 

creates a water chain extending from ND1 all the way to ND2 only in the closed state (Figure 285 

5b,c). TMH3 of ND6 is the most conserved TM helix in the MD, and even conservative 286 

mutations in the p-bulge area are highly detrimental to activity (5), indicating that breaking and 287 

reforming of the water wire is probably essential for the mechanism. Furthermore, three critical 288 

glutamates of the E channel, ND1_Glu143, ND4L_Glu34 and ND4L_Glu70 become charged 289 
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in the closed enzyme as suggested by their density appearance and pattern of hydrogen bond 290 

interactions (Figure S9i). ND4L_Glu34 also rotates away from ND4L_Glu70 as they become 291 

charged and surrounded by waters.  292 

Beyond the E-channel we did not observe any conformational changes in any dataset, 293 

including turnover, neither in the broken antiporter helices nor in the traverse HL helix or 294 

connecting b-hairpins. HL helix thus probably serves mainly a structural role and is not 295 

involved in the coupling mechanism as advocated previously (4, 5, 16, 17). Analysis of the 296 

proton transfer pathways connecting Grotthuss-competent residues (Lys, Glu, Asp, His, Tyr, 297 

Thr, Ser) and experimentally identified waters within hydrogen bonding distances (with bond 298 

slack up to ~4 Å) suggested that E-channel and ND2 and ND4 antiporters lack any connections 299 

to the IMS (Figure 5a, with dashed pathways). These parts of the structure are particularly dry 300 

and hydrophobic. The matrix-facing part of ND4 is less dry and can allow connection to matrix 301 

via conserved ND4_His220 upon conformational changes in broken TMH7, where 302 

ND4_His220 sits. This histidine is not conserved in ND2, which lacks any clear connections 303 

to the matrix. Notably, the distal antiporter ND5 is radically different – the key TMH12 Lys392 304 

is clearly connected to the IMS via the conserved ND5_Asp393 and many waters around.  305 

Connection to the matrix side via the conserved ND5_His248 also exists. The side chain of this 306 

histidine is roughly in the same position as ND4_His220, but it sits on TMH8, replacing 307 

LysTMH8 in ND5. Thus, both ND4_His220 and ND5_His248 sit on broken helices, allowing 308 

for their flexibility as needed to control the connectivity to the matrix, in tandem with key 309 

LysTMH8 in ND4 and the additional conserved essential Lys336 in ND5. The breaks of about 310 

6 Å prevent links of ND4_His220 to the matrix and ND5_His248 to the IMS (Figure 5a, red 311 

color dashes), consistent with out-of-sync operation of ND4 and ND5 (below) and probably 312 

preventing back-leak of protons.  313 

The observed high connectivity along the central axis, the lack of links to the IMS side 314 

in antiporters other than ND5 and the absence of any conformational changes in antiporters 315 

even under turnover lead us to propose that all four protons may be pumped out to IMS via 316 

ND5. This is a radical departure from the traditional view that protons are ejected one by one 317 

by each antiporter individually, as originally proposed by us (4, 5). However, the clear 318 

experimental facts above argue that this new ND5-only model should be considered as a more 319 

likely option. All four protons could hop over to ND5 via the abundant central axis links using 320 

conserved connecting histidines (cyan in Figure 5d) as a temporary storage. The ND5 subunit, 321 

despite being distal, is clearly the most conserved of antiporters and has unique features 322 
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supporting this proposal (Supplementary Text). The input of protons from the matrix clearly 323 

happens in ND5 and possibly also ND4, with ND2 / E-channel inputs less likely. In all 324 

scenarios, protons taken up from the matrix are probably quickly re-distributed along the fully 325 

inter-connected central axis (Figure 5a).   326 

 327 

Proton pumping mechanism 328 

Absence of conformational changes in antiporter-like subunits under turnover suggests 329 

that proton pumping in them is mainly electrostatically driven. This is supported by a clear 330 

pattern of changes in charge distribution of key residues between open and closed states 331 

revealed by the analysis of cryo-EM densities for hydrogen bonds and carboxylate side-chains 332 

(Figure S9f-i, Table S7).  There is an asymmetric distribution of charges between the 333 

antiporters, with ND4 being out of sync with ND2 and ND5 (Figure 5d). This may help to 334 

prevent excessive electrostatic imbalance in the MD if all antiporters were to transfer charges 335 

in sync. Asymmetry is probably achieved by the replacement of the key TMH12 lysine with 336 

glutamate (E378) in ND4. The switch in the orientation/openness of the proton channels is 337 

likely associated with the global change in the structure, i.e. between open and closed states. 338 

Since the open state is energetically more favorable, it is likely that in this relaxed state most 339 

channels are open to the matrix side, so that protein can re-protonate the central axis from the 340 

matrix. 341 

We propose the following proton pumping mechanism. Our results indicate that 342 

quinone can bind and enter the cavity only in the open state of the complex. The proton 343 

pumping cycle is initiated by quinone binding, accompanied by the transition to the closed state 344 

with the ND1 and 49 kDa loops reordering into the “down” and “retracted” conformations, 345 

allowing quinone movement into the deep site, where it gets reduced. These changes lead to 346 

ND6 TMH3 rotation (Supplementary Movie 1), which in turn creates a water wire (isolated 347 

from bulk solvent) linking the Q cavity to ND4L_Glu34/Glu70 (Figure 5c). These residues 348 

donate two protons for re-protonation of the quinol-coordinating residues 349 

49kDa_Asp160/His59/Tyr108, which creates a strong negative charge in ND4L. This charge 350 

is compensated by the nearby ND2_GluTMH5 taking up the proton from its partner LysTMH7. 351 

Absence of positive charge on LysTMH7 removes electrostatic barrier and allows the 352 

connecting LysTMH8 to lose a proton to LysTMH12. This positive charge is compensated by 353 

the nearby ND4_GluTMH5, donating proton to ND4_LysTMH7. The connecting 354 

ND4_LysTMH8 is protonated from the matrix, but the positive charge on LysTMH7 prevents 355 

the movement of its proton further on to GluTMH12. This glutamate loses proton to the IMS 356 
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due to electrostatic interactions with charged LysTMH7 and LysTMH8, and its negative charge 357 

is compensated by ND5_GluTMH5 taking up the proton from ND5_LysTMH7, similarly to 358 

the situation at ND4L/ND2 interface. As in ND2, this leads to protonation of ND5_LysTMH12 359 

by Lys336 (or His248), completing a transition from open to closed state.  360 

Subsequent diffusion of quinol towards the shallow site causes disordering of the 49 361 

kDa, ND1 and ND3 loops as well as re-formation of the p-bulge and the opening of the 362 

complex. As enzyme gets reduced, the 49 kDa loop gets extended and the ND1 loop flips 363 

upwards, helping to eject the quinol (Supplementary Movie 2). Upon complex I opening 364 

ND4L_Glu34/E70 will be re-protonated, via ND2 and the central axis, as the water wire to the 365 

Q site will be now broken. At this stage one proton is likely to be ejected from the E channel 366 

into IMS. Arrival of protons to ND4L_Glu34/Glu70 will cause the nearby ND2_GluTMH5 to 367 

donate a proton to LysTMH7. As the connecting LysTMH8 is protonated from the matrix, this 368 

additional positive charge will help to drive the LysTMH12 proton into IMS. As positive 369 

charge on ND2_LysTMH12 is lost, its neighbor ND4_GluTMH5 acquires the proton back 370 

from LysTMH7. Loss of charge on LysTMH7 allows the connecting LysTMH8 to lose its 371 

proton to GluTMH12, and due to electrostatic interactions the nearby ND5_GluTMH5 will 372 

lose its proton to LysTMH7. As in ND2, the connecting ND5 residue is protonated from the 373 

matrix and the double positive charge on it and LysTMH7 will drive LysMTH12 proton out, 374 

re-setting the system to the open state. Thus, simple electrostatic interactions are sufficient to 375 

drive proton translocation in a consistent manner across each antiporter, a feature which is 376 

allowed by out-of-sync operation of ND4. 377 

In our scenario the N-terminal Glu-Lys pairs serve mainly as polar/charge switches, 378 

controlling proton translocation between TMH8 and TMH12 residues. A similar proposal was 379 

put forward before on the basis of MD simulations, with a key role for opening/closing of Glu-380 

Lys pairs (17). We do not observe such opening/closing on a predicted scale, but rather a 381 

change in charge state. Proton transfer within these pairs, as suggested by our observations 382 

(Figure S9f-i) is probably a more robust way to achieve consistent switching of channels. 383 

Furthermore, instead of forward and reverse electrostatic waves (16), proton translocation in 384 

our mechanism proceeds via two forward electrostatic waves driven by protonation and de-385 

protonation of ND4L glutamates, in turn driven by quinone oxidoreduction via defined 386 

conformational changes in ND1/E-channel. Our mechanism is applicable both to traditional 387 

one-per-antiporter or new ND5-only modes of pumping, as the only difference in the case of 388 
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the ND5-only model would be a re-distribution of protons towards the ND5 subunit (instead 389 

of directly into IMS) via the central axis.      390 

 391 

Concluding remarks 392 

On the basis of the above model of proton pumping and the various, many of them 393 

novel, conformations of complex I observed here, we propose a first detailed model of the 394 

entire catalytic cycle (Supplementary Text and Figure S11). Our mechanism explains the 395 

directionality and tight coupling of the reaction, as (1) NADH-induced changes in the quinone 396 

cavity can only happen in the open conformation of the complex, (2) reduction of quinone 397 

happens only in the closed state and (3) proton pumping is induced during the transitions 398 

between the two states. The mechanism is easily reversible: high pmf would promote the 399 

reverse reaction by driving charge transitions in antiporters in reverse to those in Figure 5d. 400 

Translocation of protons into the matrix would lead to transfer of protons from the 401 

49kDa_Tyr108/His59/Asp160 triad to ND4L glutamates, creating a negative charge on the 402 

triad. It would promote quinol binding and oxidation, as well as lower the N2 redox potential, 403 

enabling reverse electron transfer from N2 to FMN and NAD+. 404 

The key novel features of our mechanism are: firstly, the delivery of negative charge 405 

from the redox reaction site towards antiporters via defined concerted conformational changes 406 

propagating from the Q site towards the E channel; secondly, the description of how this 407 

negative charge drives the proton pumping in the antiporters via electrostatic wave 408 

propagation; and, thirdly, the optional, but probable, alternative pathway of proton ejection into 409 

IMS only via the ND5 subunit. Although we cannot exclude that additional intricacies might 410 

be revealed by studies of complex I in energized liposomes or using a time-resolved cryo-EM 411 

approach, the mixed conformational-electrostatic model proposed is strongly supported by our 412 

data, is fully consistent with available mutagenesis data and is sufficient to explain the 413 

previously enigmatic mechanism. 414 

415 
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Materials and Methods 416 

Purification of complex I 417 

Purification procedures were done at 4°C as described before (20). Briefly, 418 

mitochondria were purified from fresh ovine heart tissue as described before and stored as 419 

pellets at -80 degrees. The sheep hearts were cooled on ice within an hour of slaughter, while 420 

transport and mitochondrial isolation took additional ~10 hours. On the day of complex I 421 

purification, a 10 g aliquot of mitochondrial pellet was thawed and inner mitochondrial 422 

membranes were isolated by rupturing mitochondria by homogenization in 100 mL Milli-Q 423 

water, addition of KCl to 150 mM and centrifugation at 50000 g for 45 min. Afterwards, 424 

membranes were resuspended in 100 mL of buffer M (20 mM HEPES, pH 7.4, 40 mM NaCl, 425 

1 mM EDTA, 10% v/v glycerol, 2 mM DTT and 0.002% PMSF), centrifuged again and 426 

resuspended in 50 mL of buffer M. To solubilize the membrane proteins, 10% lauryl maltose 427 

neopentyl glycol (LMNG) was added dropwise to 1% final concentration to the membrane 428 

suspension and stirred for 45 minutes. Upon centrifugation (50000g, 45 min) the supernatant 429 

was filtered with a 0.22 µm filter and loaded onto a 45 mL Q-sepharose HP anion exchange 430 

column equilibrated in buffer Q-A (20 mM HEPES pH7.4, 40 mM NaCl, 2 mM EDTA, 10% 431 

v/v glycerol, 1 mM DTT, 0.05% LMNG). The column was washed with 75mL Q-A buffer, 432 

50mL of 10% Q-B buffer (Q-A with 1 M NaCl), 125 mL of 20% Q-B buffer and finally 433 

complex I was eluted by a 200 mL linear gradient with 20-27% Q-B buffer. Complex I-434 

containing fractions were pooled, concentrated to ~15 mg/mL using a Millipore 100-kDa cut-435 

off filter and stored, with 30% glycerol added, under liquid nitrogen. A 250 µL sample was 436 

thawed on ice when cryoEM grids were prepared, loaded onto a Superose 6 10/300 gel filtration 437 

column equilibrated in buffer GF (20 mM HEPES, pH 7.4, 50 mM NaCl, 1 mM EDTA, 0.002% 438 

LMNG) to remove excess detergent and remaining protein contaminants. The purest and the 439 

most concentrated fractions of complex I eluted at ~11.5 mL and were concentrated to 3.5 440 

mg/mL and used immediately for cryo-EM grid preparation. Deactive complex I was prepared 441 

by incubating a concentrated aliquot of complex I after anion exchange at 32ºC for 30 min. To 442 

prevent delipidation and proteolysis, 0.5 mg/mL of 1:4 mixture of cardiolipin and 443 

dioleoylphosphatidylcholine and 0.0075% PMSF were added to the sample. Afterwards, the 444 

sample was cooled on ice and injected to the gel filtration column as described above.  445 

 446 

 447 

 448 
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Electron cryo-microscopy 449 

CHAPS was added (final concentration 0.2%) to the protein sample before grid 450 

preparation to improve ice quality and particle distribution. The native and the deactive 451 

complex I samples were frozen without further substrate additions. For the NADH dataset 5 452 

mM NADH was added to the protein 20 min before the grid preparation and the samples were 453 

incubated on ice. For the rotenone dataset, NADH (5 mM) was added to complex I sample, 454 

incubated for 1 min on ice and followed by the addition of 300 µM rotenone (dissolved in 455 

DMSO, final DMSO concentration in the sample ~1%) and 20 min incubation on ice. For the 456 

turnover dataset, a mixture of substrates and CHAPS was prepared at 2x working concentration 457 

(2 mM DQ, 2 mM NADH and 0.4% CHAPS) and mixed in 1:1 ratio with 6 mg/mL complex I 458 

immediately before applying to the grid, blotting and freezing. With this simple procedure, 459 

complex I was active for 20 s before being frozen and less than 10% of substrates would have 460 

been consumed in this time. Final concentration of complex I used for grid preparation was 3 461 

mg/mL for all samples. 462 

2.7 µL protein sample was applied to a freshly glow-discharged (0.7 mbar and 30 mA 463 

for 2 min in the ELMO Glow Discharge unit, Agar Scientific, Stansted, UK) Quantifoil 0.6/1 464 

copper grid and blotted using the Whatman filter paper No1 for 6-8 s using a blotting force of 465 

25 at 4°C and 100% humidity in an FEI Vitrobot Mark IV. Grids were flash-frozen in liquid 466 

ethane and stored in liquid nitrogen until data-collection.  467 

Native, NADH, rotenone and turnover grids were imaged using a 300 kV Titan Krios 468 

electron microscope equipped with a Falcon III camera operating in an integrating mode at 469 

Cryo-Electron Microscopy and Tomography Core Facility in CEITEC, Brno. Turnover, 470 

NADH and rotenone datasets were imaged at a nominal magnification of 130000x with a 471 

physical pixel size of 1.061 Å. Total electron exposure of 89 e/Å2 was fractionated into 40 472 

frames of 21 ms each. Native dataset was imaged at a nominal magnification of 165000x with 473 

a physical pixel size 0.83 Å. Total electron exposure of 98 e/Å2 was fractionated into 40 frames 474 

of 25 ms each. Images were collected from 3x3 patches of holes using image shift – resulting 475 

beam tilt error was small and refined during processing and this mode of acquisition allowed 476 

for a high speed of collection. Deactive complex I was imaged in using a 300 kV Titan Krios 477 

electron microscope equipped with a K3 camera operating in a super-resolution mode at the 478 

Institute of Science and Technology Austria. Grids were imaged at a nominal magnification of 479 

81000x and physical pixel size of 1.055 Å. Total electron exposure of 78.5 e/Å2 was 480 

fractionated into 50 frames of 88 ms each. The deactive dataset was collected using SerialEM 481 
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with an active beam tilt compensation, hence beam tilt error was not refined separately for each 482 

of the nine holes imaged using the image shift method (32). 483 

 484 

Image processing 485 

We started with 2284 movies for the native dataset, 1443 movies for NADH dataset, 486 

4239 movies for the turnover dataset, 2323 movies for the rotenone dataset and 2065 movies 487 

for the deactive dataset. The micrographs were included in the further processing steps if the 488 

Thon rings extended to 4 Å (turnover dataset) or 5 Å (all other datasets) according to the 489 

CTFFIND maximum resolution estimate. Processing was done in RELION 3.0 and 3.1 (33) 490 

unless otherwise stated. Movie frames were aligned using MotionCor2 (34) and initial CTF 491 

parameters were estimated from averaged images using CTFFIND 4.1.13 (35). Autopicking 492 

with 2D class averages as references was done in RELION and resulted in 295630 particles for 493 

the native dataset, 364499 particles for NADH dataset, 938197 particles for the turnover 494 

dataset, 354690 particles for the rotenone dataset and 740026 particles for the deactive dataset.  495 

For the sake of consistency, processing steps were done as similarly as possible for all 496 

the datasets. Particles were extracted at 3x the physical pixel size and processed using one 497 

round of 2D classification and one round of 3D classification (Figures S1-5). Good classes 498 

were then extracted at full pixel size and autorefined into a single “consensus” structure. CTF 499 

parameters and per-particle trajectories were then refined in an iterative manner (one round of 500 

CTF refinement followed by Bayesian polishing and another CTF refinement).  This led to a 501 

consensus refined complex I structure of all particles, reaching nominally high resolutions (up 502 

to 2.5Å in turnover dataset) but with blurring around the edges and some weaker subunits (42 503 

kDa and B14.7) suggesting a large degree of conformational heterogeneity and presence of 504 

partially disassembled particles. Particles were therefore 3D classified without searches to 505 

remove damaged particles and then focus-reverse-classified to sort out the heterogeneity as 506 

done earlier (9). Briefly, all the intact particles were focus-refined using a peripheral arm mask 507 

and then classified without searches using a loose membrane mask to finely classify states with 508 

slightly different angles between the two arms. This procedure resulted in a single closed class 509 

and 3-4 open classes from each dataset, based on which atomic models were built, analyzed 510 

and compared. In most datasets, finer sub-classification of classes with different masks, in 511 

particular around the quinone binding cavity, was tried but did not result in finding additional 512 

conformational states of complex I. Further classifications of consensus refinements of MD or 513 

PA of all particles also did not result in finding additional conformational classes. Although 514 
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some datasets have shown preferential orientation of particles, this did not influence the quality 515 

of final maps due to the presence of sufficient amounts of particles in other orientations. 516 

In the native dataset, the first round of 3D classification was done with k = 6 classes 517 

and regularization parameter T = 6, which resulted in 148307 good particles. Upon duplicates 518 

removal, consensus refinement and two rounds of CTF refinement and Bayesian polishing, 519 

128964 particles were refined around the matrix arm and subjected to final classification 520 

without searches around the membrane arm with k = 6 and T = 20. This resulted in four good 521 

classes with 91979 particles in total and two partially broken classes. The good classes were 522 

refined and post-processed separately to give final maps for model building.  523 

In the NADH dataset, the first round of 3D classification was done with k = 6 and T=4, 524 

which resulted in 276169 good particles. After duplicates removal, consensus refinement, two 525 

rounds of CTF parameter refinement and Bayesian polishing, another 3D classification with k 526 

= 6 and T=8 without searches was performed to remove damaged particles. Remaining 182053 527 

particles were refined around the PA and subjected to classification around the membrane arm 528 

with k = 6 and T = 8. This resulted in 4 good classes with a total of 140630 particles and two 529 

classes with bad density and partially disassembled complex. Particles from the four good 530 

classes were refined, post-processed and the maps were used for model building.  531 

In the deactive dataset, the first round of 3D classification was done with k = 6 and T 532 

= 4 and resulted in 458556 good particles. After a consensus refinement, another 3D 533 

classification step without searches and with k = 6 and T = 10 was performed to remove further 534 

damaged particles. This resulted in 272990 particles, which were refined around the PA and 535 

classified around the membrane arm using 3D classification without searches and k = 4 and T 536 

= 10. This resulted in four classes that differed from each other by the degree of openness. 537 

They were subjected to two rounds of CTF parameter refinement, Bayesian polishing, 538 

refinement and post-processing to obtain the final density maps used for model building.  539 

In the rotenone dataset, the first round of 3D classification was done with k = 6 and T 540 

= 4 and resulted in 175658 good particles after duplicate removal. After two rounds of CTF 541 

parameter refinement, Bayesian polishing and auto-refinement, another 3D classification 542 

without searches and with k = 6 and T = 8 was performed to remove broken particles, which 543 

resulted in 142565 good particles, which were focus-refined around the membrane domain. 544 

Because of the low abundance of the closed class in this dataset, the closed class was separated 545 

by 3D classification around the membrane arm with k = 6 and T = 10. The rest of the particles 546 

were 3D classified separately with k = 6 and T = 6 to better separate different open classes. 547 

The resulting particles were refined, post-processed and used for model building.  548 



 18 

In the turnover dataset, the initial 3D classification was done with k = 6 and T = 4 and 549 

resulted in 518117 good particles after duplicated removal. After two rounds of CTF parameter 550 

refinement, Bayesian polishing and auto-refinement, another 3D classification without 551 

searches and k = 6 and T = 8 was performed to remove damaged particles, resulting in 344541 552 

good particles retained.  These were then 3D classified around the membrane arm without 553 

searches and with k = 6 and T = 8. Four of the resulting classes contained good particles with 554 

a total of 257669 particles, which were refined and post-processed for model building. The 555 

density within the quinone cavity of the closed class appeared broken, hence this class was 556 

further classified without searches and with k = 3 and T = 50. This resulted in one major class 557 

with about 55% particles that had better defined density in the quinone cavity and elsewhere 558 

and another minor class with about 30% of particles that had worse density overall but 559 

otherwise no significant differences to the major class. Only the major closed class was used 560 

for model building. For Closed MD model, all the particles of the turnover closed class were 561 

focus-refined around the MD, however.  562 

 563 

Model building and refinement 564 

The models presented in this paper are based on the initial 3.9 Å structure of ovine 565 

complex I determined previously (PDB 5LNK) (6). Membrane domain and peripheral arm 566 

were built on the basis of 2.5 Å and 2.3 Å focus-refinements of all the open particles from the 567 

turnover dataset which allowed us to improve the geometry, fit and completeness of the models 568 

significantly (Supplementary Text). We were also able to model additional lipid molecules, as 569 

well as several known post-translational modifications, including N-terminal acylations of 570 

subunits B18, B14.5b and B14.7, N-formyl methionines in ND6, ND5 and ND4L, symmetric 571 

dimethylation of 49 kDa Arg85 and phosphorylation of 42 kDa Ser36 (36) (Figure S7). For 572 

accurate modelling of water molecules, particularly to avoid false positives, we filtered the 573 

maps by local resolution and resampled them at 0.5 Å per pixel in Relion. After this procedure, 574 

water molecules displayed strong signal (> 2 s), had nearly spherical densities, were not 575 

clashing with other atoms and participated in hydrogen bonds, which are all strongly indicative 576 

of real water molecules. This allowed automatic placement of water molecules in COOT, 577 

which were then all checked and corrected manually, to leave only waters with clear density 578 

and fulfilling geometry criteria. Using this procedure, we could reliably place water molecules 579 

not only into 2.3-2.8 Å structures but also into the closed MD focus refined map (overall 580 

resolution 2.9 Å, higher in the core). The two highest resolution open PA and open MD models 581 
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were then rigid-body fit into all the classes, corrected in Coot (37) and refined using PHENIX 582 

software (38). We used two rounds of a single cycle of group ADP refinement followed by 583 

three cycles of global minimization in real space (with secondary structure, Ramachandran and 584 

c-beta restrains enabled) to optimize B-factors so that electron radiation-damaged carboxylate 585 

side-chains acquire high B-factors and do not lead to main-chain distortions as described 586 

previously (9). To maintain consistency, we performed this procedure first with rotamer fit 587 

option enabled, checked and corrected the model in Coot and then finally repeated the 588 

procedure without rotamer fit.  589 

 590 

Structure analysis and preparation of figures 591 

Geometry and density fit of the models was analyzed using MolProbity and EMRinger (39, 592 

40). pKa was estimated using PROPKA 3.1 software (21). Visualization and analysis of the 593 

models and corresponding density maps was done in PyMOL 2.2.3 and UCSF Chimera. The 594 

highest resolution maps from PA and MD focused refinements were approaching Nyquist 595 

resolution and were resampled at 0.5 Å pixel size in RELION for depiction purposes, which 596 

resulted in a smoother density (Figures S6-7).  597 

 598 

Activity measurements 599 

Complex I NADH:DQ oxidoreduction activity was measured at 30°C spectrophotometrically 600 

by following the NADH (e = 6.1 mM-1 cm-1) oxidation at 340 nm using a Shimadzu UV-2600 601 

UV-VIS spectrophotometer. Reaction buffer was optimized for the ovine CxI purified in 602 

LMNG before (20 mM HEPES, pH 7.4, 50 mM NaCl, 1 mM EDTA, 0.2% CHAPS, 0.05% 603 

LMNG, 0.25 mg/mL DOPC:CL lipids, 3.5 mg/mL bovine serum albumin, 200 µM NADH and 604 

200 µM DQ)  (20). Complex I was incubated in the above buffer with stirring for 5 min before 605 

the measurement was started by NADH addition. Labelling with NEM was performed by 606 

incubating a sample of 1 mg/mL of purified complex I with 1 mM NEM on ice for 5 min, after 607 

which NEM was neutralized by the addition of 1 mM DTT. Submitochondrial particles were 608 

prepared by resuspending 1 g of mitochondrial pellet in 8 mL of 10 mM HEPES, pH 7.0 and 609 

250 mM sucrose, frozen at -80 degrees and thawed again. Mitochondria were then pelleted in 610 

a bench-top centrifuge, washed with 4 mL of the same buffer and resuspended in a total of 4 611 

mL of the above buffer with 10 mM MgSO4 added. Mitochondria were then sonicated on ice 612 

(10 15 s bursts at 30 W), centrifuged (27100 g, 20 min) to remove remaining mitochondria and 613 

the submitochondrial particles were finally collected by ultracentrifugation (82000 g, 30 min) 614 
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and resuspended in 2 mL of the sucrose buffer. NADH:DQ oxidoreduction activity of SMPs 615 

was measured in the same buffer as for isolated complex I but without lipids and detergents 616 

and with additional 10 µM CCCP.  617 

618 
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Main Figure Legends 832 

Figure 1. Complex I catalyzes redox-coupled proton pumping. a. Core subunits necessary 833 

for the reaction of complex I are labelled with corresponding colors and mammalian 834 

supernumerary subunits are shown in grey. NADH and quinone binding sites are indicated. 835 

Membrane arm contains four separate proton pumping channels, three in the antiporter-like 836 

subunits ND2, ND4, ND5 and one in the E-channel composed of subunits ND1, ND6 and 837 

ND4L. b. Ovine complex I exists in open and closed conformations, the ratios of which differ 838 

between different conditions investigated. Resolution achieved for each state overall and for 839 

PA- or MD-focused refinements is shown. c. Conformational dynamics of the quinone binding 840 

site loops. Loops at the interface between the peripheral and membrane arms, ND3 (orange) 841 

and ND6 (blue) adopt different states shown schematically. Quinone binding cavity loops 842 

include the 49 kDa loop (yellow), PSST loop (grey) and ND1 loop (green), which also undergo 843 

radical changes. Residue numbers indicate start-end of loops. The eight iron-sulfur clusters that 844 

transfer electrons from NADH to quinone are shown as orange-yellow spheres. 845 

 846 

Figure 2. Opening and reduction of the complex induce long-range conformational 847 

changes. a. Reogranization of the ND1 subunit upon opening with a detailed view of the 848 

rearrangements of the conserved glutamates which are part of the E-channel. On the left, open 849 

state is gray and closed state is colored by subunit, while on the right, open state is cyan and 850 

closed is green. b. TMH3 of ND6 rotates by almost 180º in the open state (cyan), acquires a p-851 

bulge near Tyr60 and the TMH3-4 loop gets disordered. c. PSST loops and Arg77 undergo 852 

large conformational changes between open (cyan) and closed (green) states. d. 49 kDa loop 853 

is ordered in the closed state (green), gets disordered upon opening (cyan) and reorders in the 854 

extended position the reduced open state (pink). e. ND1 loop which is in the “down” 855 

conformation in the closed state (green), gets disordered upon opening and switched to the 856 

“up” conformation in the reduced open state (pink). In the “up” position, ND1 clashes with the 857 

ND3 (orange) and 49 kDa (yellow) loops, which are also reordered. Reorganization of the ND1 858 

loop results in breaking of two salt bridges with PSST_Arg77 and Arg81 (grey).  859 

 860 

Figure 3. Deactivation and rotenone inhibition elicit alternative conformations of 861 

complex I. a. The most open classes of rotenone-inhibited and deactive complex I exhibit 862 

disorder in the ND5 horizontal and anchor helix as well as in the B14.7 subunit (colored). 863 

TMH4 of ND6, which undergoes rearrangements in deactive state is labelled in pink. The three 864 
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rotenone binding sites are indicated as well; ROT2 binds to open classes only and ROT3 binds 865 

to open2 and open3 classes. b. PSST and 49 kDa loops do not change between open (cyan) and 866 

closed (green) rotenone states. Native open conformation is shown in grey. c. The deep 867 

rotenone binding site: rotenone is within hydrogen binding distance to 49kDa_His59 and 868 

Tyr108 and mimics the conformation of bound quinone during reduction from the N2 cluster. 869 

Rotenone density is shown at the contour of 2 s (c, e) or 3 s (d). d. The shallow rotenone 870 

binding site: rotenone is stabilized by polar interactions with conserved arginines and stacking 871 

interactions with ND1_Phe224. e. ND4 rotenone binding site: rotenone is stabilized by 872 

positively charged residues, including proton-pumping Lys206, Arg142 and by stacking 873 

interactions with Trp216. f. To open the ND4 subunit binding site, the outer TMH6 needs to 874 

undergo a slight tilting and rearrangement observed in rotenone open2 and open3 classes 875 

(cyan), but also in the most open class of the deactive dataset (orange). Native structure is 876 

overlaid in green. g. In deactive complex I ND6 TMH4 gets tilted (density in blue) towards the 877 

matrix-membrane arm interface and the TMH3-4 loop inserts between the two arms, stabilizing 878 

them in the open conformation.  879 

 880 

Figure 4. Quinone density is observed at different binding sites in open and closed 881 

complex I during turnover. a. In closed complex I, one quinone molecule is bound in the 882 

deep pocket between 49kDa_Tyr108 and His59 and another in the shallow pocket close to 883 

ND1_Arg25. Density is shown at the s contour of 1.3 (a), 2 (b), 1.8 (d) and 2 (e). b. In open 884 

complex I, a single quinone is bound at the entry to the quinone binding cavity close to 885 

ND1_Phe224. c. Comparison of binding positions of quinone and rotenone in different classes. 886 

d. Detailed view on the binding of quinone next to the N2 cluster and the density showing the 887 

salt bridge between 49kDa_His59 and Asp160. e. 49kDa_Asp160 displays weak density and 888 

no connection to His59 in all of the classes apart from closed turnover class; rotenone open2 889 

structure shown here. f. Cross sections through the quinone binding cavity in closed, open and 890 

NADH-open states colored by electrostatic potential reveal that opening and reduction result 891 

in large changes of the quinone binding cavity shape. In closed state UQ10 is modelled (gray), 892 

based on decyl-ubiquinone binding and illustrating tight fit of the native substrate. 893 

 894 

Figure 5. Quinone protonation and proton pumping requires coordinated water 895 

molecules. a. Central hydrophilic axis connects the three antiporters in the open state of 896 

complex I. Both N- and C-terminal Lys/Glu are abundantly hydrated. Water wires towards IMS 897 
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and matrix side are visible only in ND5. E-channel has a dry region between ND3_Asp66 and 898 

ND4L_Glu34 and no connection to IMS or matrix side. It is connected to the quinone binding 899 

cavity only in the closed state (green arrow), allowing for protons from ND4L_Glu34 and 900 

Glu70 to be delivered to Q-site (red arrow). b. Top view of the E-channel in open state of 901 

complex I shows that the E-channel dry region is caused by the ND6 p-bulge formation and 902 

ND4L_Glu34 rotation. c. Continuous water wire in the E-channel of the closed state of 903 

complex I. d. Proposed proton pumping mechanism. Charge distribution of the proton pumping 904 

residues differs between the open and the closed states. Colored circles correspond to 905 

glutamate/aspartate (red), lysine (blue) or histidine (cyan) and are shown in the same 906 

orientation as in Figure 1c. Full circles represent charged residues and empty circles are neutral 907 

(state of histidines is not clear). Arrows show proton movements to achieve the charge 908 

distribution as depicted in each state. 909 

 910 

Online media files 911 

 912 

Supplementary movie 1. Opening and closing of complex I result in large scale reorganization 913 

of ND1 and ND6 subunits.  914 

 915 

Supplementary movie 2. Quinone diffusion out of the cavity is aided by conformational 916 

changes of the 49 kDa, ND1 and PSST loops during opening and reduction of the complex.  917 
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Supplementary Text 
High-resolution features of complex I 

We modelled more and better-defined lipid molecules than previously, including 
cardiolipins and several lipid molecules bound above the quinone entry site, indicating 
the local distortion of the membrane plane around the quinone entry site. This puts the 
quinone entry site roughly between the two lipid leaflets and was proposed earlier to 
facilitate quinone flipping and diffusion (Figure S8a-d) (28). Cardiolipin, known to be 
essential for respiratory enzymes activity, is found in 8 locations (Figure S8a), some of 
them consistent with locations in other species (8, 18) along with 5 new ones. 
Supernumerary subunit B14.7 is almost fully separated from the MD by a lipid cushion, 
hence this subunit could have been acquired solely for the interaction with complex III in 
the respiratory supercomplexes. 

Furthermore, we observed density for several post-translational modifications, 
including N-terminal acylation of three of the supernumerary subunits, N-formyl 
methionine of three core subunits, symmetric dimethylation of the conserved Arg85 of 49 
kDa as well as phosphorylation of the Ser36 of 42 kDa subunit (Figure S7a,c). It was 
suggested that the phosphorylated Ser36 would clash with nucleotide binding by 42 kDa 
subunit, a nucleoside kinase homologue, as described in the mouse complex I (8). 
However, in the density present in the binding pocket, we could model a molecule of 
AMP, which is smaller than ADP modelled in the mouse complex (Figure S7a).  

Finally, we observed a highly coordinated (four backbone oxygens, a glutamine and 
one water molecule) cation bound about 7 Å away from FeS clusters N4 and N5. We 
tentatively assigned the cation as K+, based on its density (much stronger than water) and 
distances (~ 2.7 Å) to coordinating oxygen atoms (Figure S7f) (42). Presence of the 
cation in the vicinity of N5, which unusually does not show EPR signal, could be 
necessary to fine-tune its potential or that of the nearby N4 cluster. The cation probably 
also stabilizes a very tight turn of the 75 kDa loop between the N4 and N5 clusters. 

 
NADH binding 

In all datasets containing NADH (NADH, turnover and rotenone) a clear NADH 
density was resolved in the same position near FMN as in T. thermophilus (Figure S10e) 
(43). It was reported based on the NuoEF subcomplex crystal structures from Aquifex 
aeolicus that the peptide bond 51kDa_Glu99-Gly100 flips away from FMN when the 
subcomplex is reduced by NADH, as a mechanism to prevent ROS production (44). 
However, C=O bond is always facing away from FMN in ovine enzyme in all the 
datasets of sufficient resolution, whether the enzyme is reduced or oxidized (Figure 
S10f,g). This casts doubts over the proposed mechanism (44) and the difference could be 
because of substitution of serine for glycine at position 100 in ovine complex I or the 
effect of working with a subcomplex in A. aeolicus.  

Open classes from NADH dataset on the whole appeared slightly more closed than 
in the native dataset, possibly due to a more pronounced disordering around the Q site 
seen in native dataset (49 kDa and ND1 loops are disordered). Furthermore, while the N-
terminal part of the ND3 loop is ordered in all datasets (residues 27-37), the C-terminal 
part of ND3 loop (residues 43-48) is disordered in NADH dataset, but ordered in most 
others. 
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Rotenone binding 
Structurally, inhibition of complex I is not well described and the traditional three 

classes of complex I inhibitors, A (competitive), B (non-competitive), and C (amilorides, 
biguanides, capsaicin), were predicted to have distinct binding sites (45). In the Y. 
lipolytica complex I structure, a class A inhibitor DQA density was reported in the 
vicinity of the 49kDa_His59 homologue (26). Rotenone, one of the strongest known 
inhibitors of mammalian complex I and an atypical class B inhibitor, was predicted to 
bind next to the ND1 loops by photoaffinity labelling studies (46). Our structural data 
confirm that rotenone can bind at both locations, corresponding to the Qd and Qs sites. 
This begins to explain the fact that rotenone was reported to have different Ki values for 
the active (1 nM) and deactive (80 nM) complex I and that tight binding of rotenone to 
the active form partially prevents and reverses enzyme deactivation (23, 27). We cannot 
unambiguously assign the Ki values to each of the three binding sites. The deactive 
binding site (80 nM) could be the Qs site or the ND4 site and the other one would 
represent a hitherto unknown binding site with different binding constants.  

Rotenone binding did not change the diameter of the quinone cavity entry or induce 
massive rearrangements of the quinone cavity as proposed earlier (24). Bulky rotenone 
can thus fit, perhaps with local re-arrangements, through the narrow quinone cavity entry 
site. This casts doubt on the existence of an alternative access pathway to the N2 cluster 
proposed earlier, as none of the bulky synthetic quinone derivatives, apart from the 
largest one, investigated in those studies were significantly larger than rotenone and 
should therefore be able to fit through the quinone cavity opening (47). 

 
Deactive state 

The observation of a clearly distinct deactive state structure clarifies why the ovine 
preparation, which exists mostly in the open conformation had high activity and showed 
no lag in reaching it, indicating that it was in the active state (Figure S9a-c) (20). Open 
complex I is thermodynamically more stable hence the preparations of complex I which 
take longer to isolate, involve elevated temperature or employ specific detergents contain 
more open complex I (6, 8, 18). In the absence of substrates, the open waiting state can 
revert into the fully deactive form by ND6 TMH4 tilting and ND6 loop insertion into the 
PA-MD interface. When NADH or quinone is present, ND6 reorganization is prevented 
by reordering of ND1 and 49 kDa loops, which interfere with inserted ND6 loop.  

Opening of complex I during deactivation was confirmed using the NEM assay, 
which is the standard biochemical assay for the deactive complex I and depends on 
testing the liability of the ND3_Cys39 to alkylation (48). However, while ND3 
accessibility is a good proxy for opening of complex I as it assays the disorder of the 
ND3 loop, this assay cannot assess the conformational states of the other loops and we 
use it here strictly to assay the “openness” of complex I. On the other hand, the other 
known signature A/D feature, the delay in reaching maximal activity upon NADH 
addition to pre-equilibrated lipid-protein-quinone mixture is indeed a clear indicator of 
the A/D state of the enzyme. While the deactivated enzyme has consistently shown a 
significant lag, our standard preparations did not show any delay (Figure S9c), 
confirming that in all our datasets (apart from the deactive) the protein represents the 
active enzyme.  
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According to the NEM assay the ND3 loop was disordered in virtually all the 
deactive particles and in ~80% of the native particles, consistent with the structural data 
(Figure S9a). Interestingly, activating isolated complex I with 5 µM NADH (and 200 µM 
DQ) did not result in a higher proportion of ND3 loop being ordered, also consistent with 
our structural data from the turnover sample. Since during the preparation of the turnover 
sample the reaction was allowed to proceed for 20 s before freezing the sample, if 
activation or catalytic activity were involved in “closing” of the complex, significant 
difference from the native/NADH closed proportion would be observed. This again 
confirms that openness of complex I is not correlated with the deactive state, but is an 
intrinsic property of the sample, with open/closed ratio reflecting the thermodynamically 
more favorable open state co-existing with the less favorable, but accessible, closed state.  

Interestingly, when activating submitochondrial particles, we achieved 40% closed 
complex I upon activation. This indicates that the lipid membrane is probably necessary 
for a sustained closing of complex I, e.g. via effects on ordering of the 39 kDa 
amphipathic helix or through lateral tension of the lipid bilayer on the ND1 subunit. If the 
proton pumping into the IMS happens mostly in the closed step as predicted by our 
mechanism, closed state may be more populated after the establishment of a high proton 
motive force. 

 
Quinone cavity 

In NADH and native datasets, we observed density bound near the quinone binding 
cavity entry, which appeared stronger in the open than in the closed classes (Figure S8e). 
There is a weaker density bound in a similar position in the native complex I (Figure 
S8e). We cannot unambiguously assign these densities as they could come from lipid, 
detergent or native quinone (in the case of native complex) or quinol (in the case of 
NADH dataset). Density in a similar position has also been reported in Y. lipolytica and 
has been hypothesized to correspond to a negatively charged lipid headgroup (29) and 
more recently to a native quinone (28). Based on the appearance, connectedness and 
strength of these densities, we modelled quinol into the NADH-open complex I but not in 
the other classes. 

None of the classes contained a quinone bound in the position #2 as observed in Y. 
lipolytica, or in position #3, as predicted by MD, presumably because these states are 
much more shortly lived than the others or are species-specific (14, 29). 

Our results do not support the quinone shuttling mechanism (11, 24). UQ10 bound in 
the Qd site would clearly occlude with its long tail the entire cavity along with the 
shallow binding site (Figure 4f), preventing binding of second UQ10 (4, 13). 

The closed cavity is very tight, clearly excluding the possibility of quinone 
protonation by the bulk solvent. In the open complex I the quinone cavity becomes 
possibly accessible to bulk solvent near the ND3 loop (although that may still be closed 
by a disordered loop) and also through an extra cavity passing by ND1_Arg134. Since 
the ND4L to Q cavity water wire is disrupted in the open state, and quinone can be 
reduced only in the closed state, this will not de-couple protonation of key ND4L 
glutamates from quinone reactions. The ND1 loop appears to be a critical coupling 
element as NADH induces large conformational changes in the ND1 loop, but only when 
complex I is in the open state. This is consistent with maintaining the correct 
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stoichiometry of the reaction and with the various decoupling mutations (V208L, E214K 
and Y215H) observed in the ND1 loop (4). 

 
Charge distribution in the membrane domain 

Analysis of the putative charges of key residues based on cryo-EM density of open 
and closed turnover states (Table S7) suggests an asymmetric distribution of charges 
between the antiporters, with ND4 being out of sync with ND2 and ND5 (Figure 5d). In 
the open state in ND4, the N-terminal GluTMH5-LysTMH7 pair is neutral, while in ND2 
and ND5 this pair is charged. In the closed state the situation is completely reversed. 
Consistently, LysTMH12 in ND2 and ND5 appear to be non-protonated in the open state 
while ND4 GluTMH12 is protonated, and the situation is reversed in the closed state. The 
state of connecting LysTMH8 is not clear from the density but it is likely that they are 
protonated from the matrix in the open state. Therefore, it is likely that they donate their 
protons to LysTMH12 in the closed state. The exception to this is the out-of-phase ND4, 
as ND4_LysTMH8 would have to be protonated in the closed state, accordingly with the 
state of other key residues. It is likely that the exchange of LysTMH12 for glutamate in 
ND4 is the primary driver for such an out-of-phase operation. The charge is not clear for 
all of the key residues from the density itself, however, the distribution in Figure 5d is the 
most consistent with the available observations while also ensuring that the overall 
charge within each subunit and the overall nature of interactions is conserved. 

 
ND5-only proton pumping 

Due to the extreme difference in the IMS-side hydration between ND5 and other 
antiporters revealed in this work, it is feasible that all four pumped protons are ejected via 
ND5, transported there along the central axis (ND5-only model). Low IMS-side 
hydration in ND2 and ND4, in contrast to high hydration in ND5, have also been noted in 
earlier MD studies, but the proposal was that some temporary connections to IMS must 
still be formed in ND2/4 (49, 50). On the other hand, similar considerations led to ND5-
only-type model, but in the context of large conformational changes within antiporters 
(51). 

In support of ND5-only model, apart from the key half-channel residues, each 
antiporter contains additional conserved histidines between the connecting and terminal 
key residue – His186 in ND2, His293 and His319 in ND4, and His328, His332 and 
Lys336 in ND5. LysTMH8 is replaced in ND5, uniquely, by conserved His248. These 
increasing amounts of histidines may serve as temporary storage of protons before they 
can be ejected from ND5 or transferred towards ND5. That way the accumulating 
positive change in the C-terminal half-channels (+2 in ND2 due to LysTMH12 and 
His186, +3 in ND4) might in principle provide the necessary driving force to eject four 
protons from ND5 in one go. However, such accumulation might cause significant 
electrostatic imbalance in the MD, so the other possibility would be for ND5 to eject 
protons one by one in quick succession as they arrive, with histidines serving as a back-
up in the case of a bottleneck.  

Additional arguments for the ND5-only model come from sequence conservation 
among a wide range of species from prokaryotes to eukaryotes. ND5 subunit, despite 
being distal, is by far the most conserved of antiporter-like subunits, while ND2 is the 
least conserved (Figure S8 in (5)). This would be expected if ND5 had a different, 
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controlling role as compared to ND4/ND2. Furthermore, ND5 shows very high 
conservation all the way from the matrix surface to the IMS surface, while ND4 and ND2 
are mostly conserved around the central axis (Figure S6a in (5)). Also, in contrast to ND2 
and ND4, TMH11 is highly conserved only in ND5, containing two histidines and a 
lysine in a ladder linking LysTMH12 with HisTMH8. 

 From a rich compendium of site-specific mutations studied so far (Table S6 in (5), 
checked against recent publications), most of mutations, which allow normal assembly of 
the enzyme but critically affect activity and proton pumping, are in the key GluTMH5, 
LysTMH7, LysTMH8 and Lys/GluTMH12 residues. Such mutations would be expected 
to disrupt both one-proton-per-antiporter and ND5-only modes of proton pumping (as all 
of these residues are on the central axis) and so do not allow to differentiate between the 
two. Both models can also explain why mutations in antiporters can affect oxidoreductase 
activity, as in the case of one-proton-per-antiporter model tight conformational coupling 
may arrest the conformational changes in ND1, while in the ND5-only model a disrupted 
central axis may prevent re-protonation of both key ND4L residues and quinone. Thus, 
again, mutations to key antiporter residues do not differentiate the two models. Mutations 
of the histidines between LysTMH8 and Lys/GluTMH12 only modestly affect activity 
and proton pumping (5). This would also be consistent with both modes, as these residues 
likely serve as temporary storage connecting key residues in both cases. Surprisingly, 
conserved ND4_His220 and ND5_His248, which are likely to play a role in controlling 
proton access from the matrix, have not been mutated yet. 

Mutations supporting the ND5-only model affect residues unique to ND5. Mutations 
of the conserved Lys336, connecting HisTMH8 and LysTMH12 only in ND5, severely 
affect both activity and proton pumping (52). The conserved Asp393 links LysTMH12 to 
IMS, and its mutation to alanine results in 50% drop in proton pumping efficiency (53). 
This is a remarkable result since ND5_Asp393 is close to the protein surface and is not 
present in ND2/4. One result apparently in contradiction with the ND5-only model comes 
from Y. lipolytica mutant which lacks the distal pumping module (ND4/5) and yet 
apparently pumps two protons per cycle (54). However, a possible interpretation is that 
since the proteinaceous isolation between ND4/ND2 has been lost in the mutant, ND2 
LysTMH12 is exposed close to the lipid surface similarly to the wild-type ND5 
LysTMH12, and so the remaining two proton pumps can use this site as an alternative 
proton efflux pathway into the IMS. In bacteria, the deletion of the ND5 homologue 
completely prevents the assembly of the complex (53, 55), with one contradictory report 
(56). When we removed ND4/5 homologues from the intact E. coli enzyme 
biochemically, the oxidoreductase activity was completely lost (57). This would be 
consistent with the ND5-only model, suggesting that the disrupted ND4/ND2 interface 
might be either “leaky” to the IMS or not, depending on the species.  

Another piece of evidence supporting the unique role of ND5 comes from studies on 
complex I-related NDH complex. In cyanobacteria this complex exists in several versions 
with a common core from PA till ND2 subunit homologue (58). NDH-1L version has a 
standard ND5 subunit and is likely involved in proton pumping. NDH-1MS complex 
specializes in carbon concentration and has a modified ND5 subunit, with the charged 
residues in LysTMH12-HisTMH8 proton pathway replaced by hydrophobic residues 
forming a path for CO2 translocation across the membrane (59). This suggests that unlike 
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other antiporter-like subunits, ND5 can be adapted to translocate either protons or CO2 
and still be driven by the rest of the complex.  

Further targeted mutagenesis studies would be needed to fully distinguish between 
the ND5-only and one antiporter-one proton models. Since the two pathways overlap in 
the central axis area, mutations will probably need to involve several key residues at a 
time and experiments should include careful proton pumping measurements. 

 
Entire catalytic cycle   

Since the electron transfer rates are fast and the overall reaction is limited by 
quinone binding/quinol release (30), we assume that in most steps the enzyme will be 
kept reduced. The enzyme cycles between the open and the closed conformations, with 
most steps in the open state, consistent with its prevalence in the data (Figure S11). The 
catalytic cycle of complex I begins with quinone binding into the cavity of the open 
enzyme (state 1, represented in our study by open native classes). Quinone binding will 
promote the transition into the closed conformation in which the ND1 and 49 kDa loops 
reorder into the “down” and “retracted” conformations, PSST loop is raised, and quinone 
moves into the deep site, where it will get reduced (state 2, closed turnover class). This 
can only happen when the complex is in the closed conformation and the 49 kDa loop is 
retracted. Quinone reduction and protonation leads to the accumulation of negative 
charges on the proton donors, 49kDa_Tyr108/Asp160/His59. The overall result of these 
redox reactions is a conformational (ND6 TMH3 rotation, water wire formation) and 
electrostatic (de-protonation of key ND4L glutamates) signal towards the E-channel 
(Supplementary Movie 1). Electrostatics then drive proton translocation in antiporters as 
in Figure 5d. Subsequent diffusion of quinol out of the deep site towards the shallow site 
causes disordering of the 49 kDa, ND1 and ND3 loops as well as re-formation of the �-
bulge in the ND6 subunit and the opening of the entire complex (state 3, open turnover 
classes). At this stage, complex I gets fully reduced again, the 49 kDa loop gets extended 
and the ND1 loop flips upwards, helping to eject the quinol (State 4, open NADH 
classes). How extensively these loops re-arrange to promote quinone movements is 
visualized in the Supplementary Movie 2. The re-protonation of the key central axis 
residues from the matrix side can possibly be happening at States 3, 4 or 1, but we 
depicted it at State 4 as it is probably the most long-lived state (enzyme waiting for 
quinone availability). Complex I is thus reset into the “open waiting state” in which it can 
bind quinone again and restart the catalytic cycle (state 1, native open state). If there is no 
quinone or NADH present, this state will slowly convert into the deactive state in which 
the ND6 TMH4 tilts and loop insertion between the PA and MD arrests the open 
conformation (state 5, deactive open classes).  

 
Comparison with previously proposed mechanisms 

Overall, the fact that, under turnover conditions, we do not see conformational 
changes in the antiporters but see instead a change in the charge distribution in key 
residues would argue in support of a electrostatic wave type of the mechanism rather than 
conformational coupling with LysTMH7 taking on protons directly from the matrix side 
(4). However, the mechanism which we propose on the basis of our findings is radically 
different from the earlier models of electrostatic waves (15) because the electric “pulse” 
in our model originates from proton transfer from the E channel towards quinone. In the 
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Verkhovskaya model, the driving force was proposed to come directly from negative 
charge on quinone. Additionally, in our mechanism, the conformational coupling via 
ND6 TMH3 rotation clearly plays a key role in the E-channel re-arrangements leading to 
this proton transfer, so our new model is of mixed type – conformational coupling in the 
E-channel and electrostatic in the antiporters. We do not fully exclude yet a role for 
conformational coupling in the antiporters, as it is possible that the full conformational 
change can be achieved only in the lipid bilayer or in the presence of the proton motive 
force. Furthermore, conformational changes within antiporters could be temporary and 
high-energy and correspond to a transition state accessible only when the ND6 p-bulge is 
being formed (51). One common feature with the Verkhovskaya model is that, based on 
the consideration of electrostatics, it also proposed out-of-sync operation of ND4. 

A more detailed model developed on the basis of MD simulations from the Kaila 
group (16, 17, 60) involves “forward” and “backward” electrostatic waves but no out-of-
sync operation of ND4. It was proposed that quinol formation leads to the protonation of 
undefined charged residues in the ND1/E-channel area, which then opens the Glu-Lys ion 
pair in ND2, starting a “forward” wave. Opening of the Glu-Lys pairs in each antiporter-
like subunit triggers proton transfer to LysTMH12 by destabilizing LysTMH8. The 
proton transfer is controlled by the hydration state of the channels, which in turn is 
regulated by the charge state of key residues and involves some conformational changes 
in the broken helices (17). A ‘backwave’ signal from ND5 towards ND1 is then 
proposed, in which proton uptake from the matrix and closing of the Glu-Lys pair 
releases to IMS the proton loaded in the neighboring subunit. The main similarity to our 
mechanism is the key role for electrostatics and the proposal that Glu-Lys pairs control 
proton transfer between LysTMH8 and LysTMH12. However, we suggest that instead of 
opening/closing of pairs the control is exerted through proton exchange between Glu and 
Lys. This is supported by our observations on the changes in the charge distribution 
under turnover (Figure S9f-i) and the absence of even local conformational changes in 
antiporters, in contrast to the very large displacements predicted for Glu-Lys pairs from 
MD (60). Proton transfer within these pairs is probably also a more robust way to achieve 
consistent switching of channels. Furthermore, instead of the forward and the reverse 
electrostatic waves, in our mechanism proton translocation proceeds via two forward 
electrostatic waves driven first by the protonation and then by the de-protonation of 
ND4L glutamates. One of the key novel features in our mechanism is that quinone 
oxidoreduction drives this protonation via defined conformational changes in ND1/E-
channel, including large displacements of Q cavity loops, ND1 helices tilt, ND6 TMH3 
rotation and formation of the water wire to ND4L. In that way quinone “charge action” is 
delivered directly to the first antiporter ND2, starting the electrostatic wave propagation.  
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Fig. S1. Processing of the turnover cryo-EM dataset.  
Processing pipeline and FSC plots of the turnover dataset. Local resolution maps and 
angular distribution plots of the closed and open2 classes are shown, as well as local 
resolution maps of the focus-refined PA and MD.  
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Fig. S2. Processing of the native cryo-EM dataset.  
Processing pipeline and FSC plots of the native dataset. Local resolution maps and 
angular distribution plots of the closed and open2 classes are shown, as well as local 
resolution maps of the focus-refined PA and MD. 
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Fig. S3. Processing of the NADH cryo-EM dataset.  
Processing pipeline and FSC plots of the NADH dataset. Local resolution maps and 
angular distribution plots of the closed and open2 classes are shown, as well as local 
resolution maps of the focus-refined PA and MD.  
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Fig. S4. Processing of the deactive cryo-EM dataset.   
Processing pipeline and FSC plots of the deactive dataset. Local resolution maps and 
angular distribution plots of the open2 and open4 classes are shown, as well as local 
resolution maps of the focus-refined PA and MD.  
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Fig. S5. Processing of the rotenone cryo-EM dataset.  
Processing pipeline and FSC plots of the rotenone dataset. Local resolution maps and 
angular distribution plots of the closed and open2 classes are shown, as well as local 
resolution maps of the focus-refined PA and MD.  
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Fig. S6. Cryo-EM density examples of polypeptides.  
a. Density in various regions of the MD focus-refined map from the turnover dataset 
shown at 4 " contour level. b. Density in various regions of the PA focus-refined map 
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from the turnover dataset shown at 4 s contour level. c. Densities for the ND1 loop in the 
“down” conformation (Turnover closed class, left-hand side) and the “up” conformation 
(NADH open2 class, right-hand side) shown at 2 s contour level. d. Density for the 49 
kDa loop in the retracted (Turnover closed class, left-hand side) and in the extended 
conformation (NADH open2 class, right-hand side) shown at 2 s contour level. e. 
Density for the ND3 loop in the fully ordered (turnover closed class, top), partially 
disordered (open2 turnover class, middle) and disordered conformation (NADH open2 
class, bottom) shown at 2 s contour level.  
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Fig. S7. Cryo-EM density examples for ligands.  
a. Densities for bound nucleotides at contour levels 3 " for NADH, 4 " for 
NADPH, and 2 " for AMP. b. Densities for Zn2+ at 5 " contour level and iron-sulfur 
cluster N6b at 3 " contour level. c. Densities for various post-translational modifications 
at contour levels of 3 " for B14.5a and 49 kDa, 2 " for ND4L and 1.8 " for B18. d. 
Densities for lipids at 2 " contour levels. e. Densities for quinones at 1.3 " contour levels. 
f. Density for the putative K+ ion binding next to N5 and N4 clusters at 3 " contour level.  
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Fig. S8. Interactions with quinone and lipids.  
a. Lipids modelled into the complex I structures shown as sticks: 
phosphatidylethanolamine (blue), cardiolipin (red) and phosphatidycholine (green). The 
approximate boundaries of the lipid bilayer based on the lipid headgroup positions are 
shaded in cyan. b. Surface electrostatic potential of complex I reveals many lipid binding 
sites, negatively charged quinone entry site and membrane curvature around quinone 
entry point. c. Hydrophobicity plot of complex I with white regions showing hydrophobic 
and red regions showing hydrophilic residues reveals the transmembrane region. 
Tryphophan and tyrosine residues, which often denote membrane edge are shown in 
green. d. Open2-turnover structure filtered to 8 Å reveals curvature of the detergent belt 
around the quinone entry site (indicated). e. Comparison of the densities (all shown at 
contour level of 1.5 ") near the entry into the quinone cavity in closed native complex 
(green) vs. open native complex (magenta) and closed NADH complex (green) vs. open 
NADH complex (blue). NADH open state has the strongest density, which was modelled 
as quinone. 
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Fig. S9. Deactive complex I is inhibited by NEM and shows a lag in reaching 
maximal activity (a-c); comparison of closed and open states of complex I (d-i).  
a. Complex I within SMPs is ~20% closed, which increases to ~40% closed upon 
activation with 5 µM NADH and 200 µM DQ (ASMP), while deactivation of SMPs 
(DSMP) decreases it to ~0%. b. Activation of purified complex I (ACxI) does not change 
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closed/open ratio. 30 min incubation with 5 mM NADH as in the NADH dataset does not 
inhibit complex I (CxI+NADH). c. Deactive complex I shows a lag in reaching maximum 
activity. Reaction was started by the addition of NADH to complex I preincubated in 
lipid and DQ containing buffer. d. Overall comparison of closed (cyan) and open (grey) 
complex I reveals tilting of the entire PA and large changes in ND1 subunit. e. E-channel 
in open and closed MD differs radically in tilting and displacements of several helices 
and different side chain conformations. f-i. Detailed analysis of cryo-EM density reveals 
breaking of several hydrogen bonds and salt bridges (circled) and changes in glutamate 
carboxyl densities between open and closed MD. This indicates charge differences 
between these residues. Contour levels shown are as follows: f) open 1.8 s, closed 1.9 
s, g) open 2.2 s, closed 2.4 s, h) open 2.2 s, closed 1.9 s, i) open 2.0 s, closed 1.9 s. 
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Fig. S10. Water molecules delineate proton pathways in complex I.  
a. Central hydrophilic axis with water molecule densities in open MD structure. b. 
Central hydrophilic axis with water molecule densities in closed MD structure. c. 
Peripheral arm, with water molecules within 10 Å of FeS clusters shown as red sphere 
with corresponding density, with other identified waters in the background. Two water 
molecules within hydrogen bonding distance to N2 and two molecules between N3 and 
N4 clusters (i.e. not in a direct N3-N1b-N4 path) are indicated with arrows. d. Examples 
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of water densities at hydrogen-bonding distance from the N2 cluster. e. NADH density in 
the 51 kDa subunit. NADH binds by forming p-stacking interactions between the 
nicotinamide ring and the FMN as well as between the adenine and Phe73 and Phe206. f-
g. The conformation of the backbone between residues 98 and 101 remains unchanged in 
all the models and backbone carboxyl of Gly99 (indicated) faces away from the FMN in 
all cases. Turnover PA focus-refined map (f) and deactive PA focus-refined map (g) are 
shown for comparison. h. 49kDa_Asp160 displays weak density and no connection to 
His59 in all of the classes apart from closed turnover class. NADH closed class is shown 
for comparison. i. Example of water density around ND4_Glu378 in closed MD 
structure. j. Examples of water densities near ND4_E378 in the open MD structure. All 
the densities are shown at the contour level of 2 s. 
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Fig. S11. Proposed full catalytic cycle.  
Schematic representation of the main catalytic steps in complex I shows how reduction of 
quinone and its diffusion in and out of the cavity are coupled to loop movements (ND6 in 
blue, 49 kDa in yellow, ND1 in green), opening of the complex (open conformations are 
in blue and closed in green) and pumping of protons. In step 1, quinone binding elicits 
closing of the complex, which results in ordering of the loops and binding of quinone into 
the Qd site where it gets reduced (step 2). Reduction results in proton pumping through 
the electrostatic wave in the antiporters (horizontal arrows), opening of the complex and 
initiation of the release of quinol (step 3). Quinol release and uptake of protons are 
completed by NADH reduction (step 4), which reorders the 49 kDa and ND1 loops in 
extended conformations. If there is quinone available, the pathway restarts, otherwise 
complex I in the absence of substrates slowly reverts into the deactive state (step 5).  
 

 

quinol 
loss

closing

quinone 
binding

reduction

opening 

NADH

s

d

NADH

3 quinol 
movement

QH2

Suppl. Fig. 9

deactive5

d

s

NADH

4 reduced

deactivation

reactivation+NADH 
+Q

-NADH 
-Q

H+

d

NADH

2e-

2 quinone reduction Q

4 or 1 (?) H+ H+H+ H+

? ? ?

Q
s

NADH

1
quinone binding

Q

H+ H+ H+

ND1 loop

49kDa loop

ND6 loop
!-bulge



 
 

23 
 

Table S1 
Model and data collection statistics for native complex I dataset 
 

 Native CxI – 
closed 

(EMD-11256) 
(PDB 6ZKO) 

Native CxI – 
open1 

(EMD-11257) 
(PDB 6ZKP) 

Native CxI – 
open2 

(EMD-11258) 
(PDB 6ZKQ) 

Native CxI – 
open3 

(EMD-11259) 
(PDB 6ZKR) 

PA-focused 
refinement 

MD-focused 
refinement 

Data collection and 
processing 

      

Microscope Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios 
Camera Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear 
Magnification    165000x 165000x 165000x 165000x 165000x 165000x 
Voltage (kV) 300 300 300 300 300 300 
Electron exposure (e–
/Å2) 

98 98 98 98 98 98 

Automation software EPU EPU EPU EPU EPU EPU 
Number of frames 40 40 40 40 40 40 
Defocus range (μm) ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 
Pixel size (Å) 0.83 0.83 0.83 0.83 0.83 0.83 
Symmetry imposed C1 C1 C1 C1 C1 C1 
Number of micrographs 2284 2284 2284 2284 2284 2284 
Initial particle images 128952 128952 128952 128952 128952 128952 
Final particle images 10024 32982 22086 20316 75384 75384 
Map resolution (Å) at 
0.143 FSC threshold 

 
3.8 

 
3.2 

 
3.3 

 
3.5 

 
2.8 

 
3.2 

       
Refinement       
Initial model used (PDB 
code) 

5LNK 5LNK 5LNK 5LNK   

Refinement package Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

  

Model resolution (Å) at 
0.5 FSC threshold 

3.9 3.2 3.4 3.5   

Local resolution range 
(Å) 

3.2-6.4 3.0-5.4 3.0-5.4 3.0-5.4   

Cross-correlation 
    Mask 
    Volume 

 
0.794 
0.771 

 
0.880 
0.851 

 
0.868 
0..841 

 
0.831 
0.801 

  

Map sharpening B 
factor (Å2) 

-72 -56 -61 -67   

Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Ligands 

 
67877 
66140 
1737 

 
67353 
65544 
1809 

 
67353 
65544 
1809 

 
67353 
65544 
1809 

 
- 

 
- 

B factors (Å2) 
    Protein 
    Ligand 

 
77 

102 

 
49 
75 

 
57 
83 

 
65 
90 

 
- 

 
- 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.0064 
1.22 

 
0.01 
1.30 

 
0.0095 
1.29 

 
0.0083 
1.28 

 
- 

 
- 

 Validation 
    MolProbity score 
    EMRinger score 
    Clashscore 
    Poor rotamers (%) 
    C-beta deviations 
    CaBLAM outliers (%) 

 
1.61 
2.36 
5.39 
0.08 

0 
1.99 

 
1.48 
4.50 
4.49 
0.13 

0 
1.70 

 
1.52 
4.05 
4.40 
0.06 

0 
1.69 

 
1.58 
3.30 
5.09 
0.08 

0 
1.97 

 
- 

 
- 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
95.40 
4.58 
0.02 

 
96.18 
3.81 
0.01 

 
95.72 
4.27 
0.01 

 
95.50 
4.50 
0.00 

 
- 

 
- 
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Table S2 
Model and data collection statistics for NADH complex I dataset 
 

 CxI-NADH – 
closed 

(EMD-11248) 
(PDB 6ZKG) 

CxI-NADH – 
open1 

(EMD-11249) 
(PDB 6ZKH) 

CxI-NADH – 
open2 

(EMD-11250) 
(PDB 6ZKI) 

CxI-NADH – 
open3 

(EMD-11251) 
(PDB 6ZKJ) 

PA-focused 
refinement 

MD-focused 
refinement 

Data collection and 
processing 

      

Microscope Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios 
Camera Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear 
Magnification    130000x 130000x 130000x 130000x 130000x 130000x 
Voltage (kV) 300 300 300 300 300 300 
Electron exposure (e–
/Å2) 

89 89 89 89 89 89 

Automation software EPU EPU EPU EPU EPU EPU 
Number of frames 40 40 40 40 40 40 
Defocus range (μm) ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 
Pixel size (Å) 1.061 1.061 1.061 1.061 1.061 1.061 
Symmetry imposed C1 C1 C1 C1 C1 C1 
Number of micrographs 1443 1443 1443 1443 1443 1443 
Initial particle images 182053 182053 182053 182053 182053 182053 
Final particle images 14451 28253 64314 33612 182053 126179 
Map resolution (Å) at 
0.143 FSC threshold 

3.4 3.0 2.8 3.0 2.5 2.8 

       
Refinement       
Initial model used (PDB 
code) 

5LNK 5LNK 5LNK 5LNK   

Refinement package Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

  

Model resolution (Å) at 
0.5 FSC threshold 

3.5 3.2 3.0 3.2   

Local resolution range 
(Å) 

3.0-5.4 2.4-4.8 2.4-4.8 2.4-4.8   

Cross-correlation 
    Mask 
    Volume 

 
0.812 
0.794 

 
0.843 
0.824 

 
0.870 
0.852 

 
0.844 
0.827 

  

Map sharpening B 
factor (Å2) 

-61 -50 -43 -43   

Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Ligands 

 
67921 
66140 
1781 

 
67479 
65603 
1876 

 
67479 
65603 
1876 

 
67479 
65603 
1876 

 
- 

 
- 

B factors (Å2) 
    Protein 
    Ligand 

 
68 
96 

 
47 
72 

 
50 
76 

 
50 
76 

 
- 

 
- 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.0074 
1.25 

 
0.0080 
1.26 

 
0.0089 
1.28 

 
0.0074 
1.24 

 
- 

 
- 

 Validation 
    MolProbity score 
    EMRinger score 
    Clashscore 
    Poor rotamers (%) 
    C-beta deviations 
    CaBLAM outliers (%) 

 
1.62 
3.31 
5.56 
0.06 

0 
1.87 

 
1.55 
3.97 
5.16 
0.04 

0 
1.72 

 
1.53 
4.58 
5.10 
0.06 

0 
1.74 

 
1.54 
4.05 
5.33 
0.07 

0 
1.69 

 
- 

 
- 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
95.44 
4.54 
0.02 

 
95.95 
4.01 
0.04 

 
96.22 
3.72 
0.06 

 
96.27 
3.69 
0.04 

 
- 

 
- 
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Table S3 
Model and data collection statistics for deactive complex I dataset 
 

 Deactive CxI – 
open1 

(EMD-11260) 
(PDB 6ZKS) 

Deactive CxI – 
open2 

(EMD-11261) 
(PDB 6ZKT) 

Deactive CxI – 
open3 

(EMD-11262) 
(PDB 6ZKU) 

Deactive CxI – 
open4 

(EMD-11263) 
(PDB 6ZKV) 

PA-focused 
refinement 

MD-focused 
refinement 

Data collection and 
processing 

      

Microscope Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios 
Camera K3 K3 K3 K3 K3 K3 
Magnification    81000x 81000x 81000x 81000x 81000x 81000x 
Voltage (kV) 300 300 300 300 300 300 
Electron exposure (e–
/Å2) 

79 79 79 79 79 79 

Automation software SerialEM SerialEM SerialEM SerialEM SerialEM SerialEM 
Number of frames 50 50 50 50 50 50 
Defocus range (μm) ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 
Pixel size (Å) 1.055 1.055 1.055 1.055 1.055 1.055 
Symmetry imposed C1 C1 C1 C1 C1 C1 
Number of micrographs 2065 2065 2065 2065 2065 2065 
Initial particle images 272990 272990 272990 272990 272990 272990 
Final particle images 69703 76479 65539 61269 272990 272990 
Map resolution (Å) at 
0.143 FSC threshold 

3.1 2.8 3.0 2.9 2.5 2.8 

       
Refinement       
Initial model used (PDB 
code) 

5LNK 5LNK 5LNK 5LNK   

Refinement package Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

  

Model resolution (Å) at 
0.5 FSC threshold 

3.2 3.0 3.1 3.2   

Local resolution range 
(Å) 

2.8-4.4 2.8-4.4 2.8-4.4 2.8-4.4   

Cross-correlation 
    Mask 
    Volume 

 
0.783 
0.759 

 
0.805 
0.780 

 
0.816 
0.790 

 
0.801 
0.778 

  

Map sharpening B 
factor (Å2) 

-87 -84 -73 -81   

Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Ligands 

 
66294 
64905 
1389 

 
66294 
64905 
1389 

 
65505 
64116 
1389 

 
65224 
63835 
1389 

 
- 

 
- 

B factors (Å2) 
    Protein 
    Ligand 

 
61 
81 

 
60 
80 

 
56 
78 

 
66 
89 

 
- 

 
- 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.0074 
1.26 

 
0.0079 
1.27 

 
0.0089 
1.30 

 
0.0074 
1.24 

 
- 

 
- 

 Validation 
    MolProbity score 
    EMRinger score 
    Clashscore 
    Poor rotamers (%) 
    C-beta deviations 
    CaBLAM outliers (%) 

 
1.54 
3.67 
5.12 
0.10 

0 
1.82 

 
1.52 
4.03 
4.84 
0.07 

0 
1.94 

 
1.54 
3.82 
4.96 
0.06 

0 
1.73 

 
1.49 
3.53 
4.88 
0.06 

0 
1.72 

 
- 

 
- 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
96.13 
3.87 
0.00 

 
96.06 
3.93 
0.01 

 
95.90 
4.09 
0.01 

 
96.39 
3.61 
0.00 

 
- 

 
- 
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Table S4 
Model and data collection statistics for rotenone complex I dataset 
 

 CxI-rotenone – 
closed 

(EMD-11252) 
(PDB 6ZKK) 

CxI-rotenone – 
open1 

(EMD-11253) 
(PDB 6ZKL) 

CxI-rotenone – 
open2 

(EMD-11254) 
(PDB 6ZKM) 

CxI-rotenone – 
open3 

(EMD-11255) 
(PDB 6ZKN) 

PA-focused 
refinement 

MD-focused 
refinement 

Data collection and 
processing 

      

Microscope Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios 
Camera Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear Falcon 3 linear 
Magnification    130000x 130000x 130000x 130000x 130000x 130000x 
Voltage (kV) 300 300 300 300 300 300 
Electron exposure (e–
/Å2) 

89 89 89 89 89 89 

Automation software EPU EPU EPU EPU EPU EPU 
Number of frames 40 40 40 40 40 40 
Defocus range (μm) ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 
Pixel size (Å) 1.061 1.061 1.061 1.061 1.061 1.061 
Symmetry imposed C1 C1 C1 C1 C1 C1 
Number of micrographs 2323 2323 2323 2323 2323 2323 
Initial particle images 142565 142565 142565 142565 142565 142565 
Final particle images 7162 21296 61945 55837 142565 129794 
Map resolution (Å) at 
0.143 FSC threshold 

3.7 3.1 2.8 2.9 2.4 2.8 

       
Refinement       
Initial model used (PDB 
code) 

5LNK 5LNK 5LNK 5LNK   

Refinement package Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

  

Model resolution (Å) at 
0.5 FSC threshold 

3.9 3.3 3.0 3.1   

Local resolution range 
(Å) 

3.2-6.4 2.4-4.8 2.4-4.8 2.4-4.8   

Cross-correlation 
    Mask 
    Volume 

 
0.754 
0.727 

 
0.738 
0.723 

 
0.820 
0.799 

 
0.807 
0.792 

  

Map sharpening B 
factor (Å2) 

-100 -44 -71 -48   

Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Ligands 

 
67650 
66140 
1810 

 
67492 
65581 
1911 

 
65955 
64385 
1570 

 
65318 
63748 
1570 

 
- 

 
- 

B factors (Å2) 
    Protein 
    Ligand 

 
75 

102 

 
65 
91 

 
59 
80 

 
65 
86 

 
- 

 
- 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.0070 
1.26 

 
0.0067 
1.24 

 
0.0080 
1.27 

 
0.0088 
1.29 

 
- 

 
- 

 Validation 
    MolProbity score 
    EMRinger score 
    Clashscore 
    Poor rotamers (%) 
    C-beta deviations 
    CaBLAM outliers (%) 

 
1.68 
2.24 
5.87 
0.10 

0 
2.14 

 
1.56 
3.16 
5.53 
0.07 

0 
.2.04 

 
1.48 
4.06 
4.87 
0.10 

0 
1.75 

 
1.53 
3.74 
4.94 
0.12 

0 
1.69 

 
- 

 
- 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
94.84 
5.15 
0.01 

 
96.12 
3.88 
0.00 

 
96.50 
3.50 
0.00 

 
96.00 
4.00 
0.00 

 
- 

 
- 
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Table S5 
Model and data collection statistics for turnover complex I dataset 
 

 Turnover 
CxI – 
closed 
(EMD-
11244) 
(PDB 
6ZKC) 

Turnover 
CxI – open1 

(EMD-
11245) 

(PDB 6ZKD) 

Turnover 
CxI – open2 

(EMD-
11246) 

(PDB 6ZKE) 

Turnover 
CxI – open3 

(EMD-
11247) 

(PDB 6ZKF) 

PA-focused 
refinement 

(EMD-
11241) 

(PDB 6ZK9) 

Open MD-
focused 

refinement 
(EMD-
11242) 

(PDB 6ZKA) 

Closed MD-
focused 

refinement 
(EMD-
11243) 

(PDB 6ZKB) 

Data collection and 
processing 

       

Microscope Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios Titan Krios 
Camera Falcon 3 

linear 
Falcon 3 

linear 
Falcon 3 

linear 
Falcon 3 

linear 
Falcon 3 

linear 
Falcon 3 

linear 
Falcon 3 

linear 
Magnification    130000x 130000x 130000x 130000x 130000x 130000x 130000x 
Voltage (kV) 300 300 300 300 300 300 300 
Electron exposure (e–
/Å2) 

89 89 89 89 89 89 89 

Automation software EPU EPU EPU EPU EPU EPU EPU 
Number of frames 40 40 40 40 40 40 40 
Defocus range (μm) ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 ~ -1 to -2 
Pixel size (Å) 1.061 1.061 1.061 1.061 1.061 1.061 1.061 
Symmetry imposed C1 C1 C1 C1 C1 C1 C1 
Number of 
micrographs 

4239 4239 4239 4239 4239 4239 4239 

Initial particle images 344541 344541 344541 344541 344541 344541 344541 
Final particle images 15769 81780 98436 48396 315484 315484 29057 
Map resolution (Å) at 
0.143 FSC threshold 

3.1 2.7 2.6 2.8 2.3 2.5 2.9 

        
Refinement        
Initial model used 
(PDB code) 

5LNK 5LNK 5LNK 5LNK 5LNK 5LNK 5LNK 

Refinement package Phenix, 
real space 

Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

Phenix, real 
space 

Model resolution (Å) at 
0.5 FSC threshold 

3.3 2.9 2.8 3.0 2.3 2.4 3.0 

Local resolution range 
(Å) 

2.6-4.8 2.4-4.8 2.4-4.8 2.4-4.8 2.2-3.0 2.4-3.2 2.6-4.8 

Cross-correlation 
    Mask 
    Volume 

 
0.825 
0.816 

 
0.869 
0.859 

 
0.877 
0.866 

 
0.860 
0.844 

 
0.922 
0.913 

 
0.906 
0.889 

 
0.859 
0.853 

Map sharpening B 
factor (Å2) 

-50 -41 -39 -48 -38 -50 -50 

Model composition 
    Non-hydrogen 
atoms 
    Protein residues 
    Ligands 
    Waters 

 
67967 
66140 
1827 

 
67450 
65574 
1876 

 
67450 
65574 
1876 

 
67440 
65564 
1876 

 
29587 
27640 
475 
1472 

 
40814 
38066 
1455 
1293 

 
39938 
38132 
1360 
446 

B factors (Å2) 
    Protein 
    Ligand 
    Waters 

 
75 
102 

 
64 
88 

 
60 
86 

 
57 
82 

 
66 
83 
55 

 
53 
79 
42 

 
102 
124 
81 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.0077 
1.26 

 
0.0082 
1.26 

 
0.0083 
1.26 

 
0.0081 
1.26 

 
0.0085 
1.27 

 
0.0086 
1.27 

 
0.0079 
1.25 

 Validation 
    MolProbity score 
    EMRinger score 
    Clashscore 
    Poor rotamers (%) 
    C-beta deviations 
    CaBLAM outliers 
(%) 

 
1.59 
3.88 
5.46 
0.10 

0 
1.79 

 
1.50 
4.54 
5.28 
0.06 

0 
1.71 

 
1.48 
4.65 
4.97 
0.07 

0 
1.74 

 
1.50 
4.28 
5.11 
0.06 

0 
1.66 

 
1.47 
6.57 
5.11 
0.07 

0 
1.77 

 
1.32 
6.09 
4.41 
0.07 

0 
1.21 

 
1.48 
4.96 
4.92 
0.06 

0 
1.59 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
95.80 
4.19 
0.01 

 
96.60 
3.40 
0.00 

 
96.59 
3.40 
0.01 

 
96.55 
3.44 
0.01 

 
96.79 
3.18 
0.03 

 
97.49 
2.51 

0 

 
96.55 
3.43 
0.02 
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Table S6 
Model overview* and comparison with the previous ovine complex I model (5LNK)  
*Closed-turnover, unless otherwise stated 
 

 Subunit 
name 

Chain Range built / 
(out of total) 

residues 

Un-
modelled 
residues 

% 
atomic 
model 
NEW 

% atomic 
model in 

5LNK 

Cofactors Notes 

 
 
 
 
 
C 
O 
R 
E 

51 kDa 1 9-438 / 445 1-8, 439-
445 

95.6 97.1 FMN 
N3(4Fe) 
NADH 

 

24 kDa 2 5-217 / 217 1-4 98.2 98.6 N1a (2Fe)  
75 kDa 3 6-693 / 704 1-5, 694-

704 
97.7 97.7 N1b(2Fe) 

N4 (4Fe) 
N5 (4Fe) 

 

49 kDa 4 1-430 / 430 0 100 90.0 DQ, also 
rotenone 

several conformations; 
dimethylated Arg85 

30 kDa 5 7-214 / 228 1-6, 215-
228 

91.2 91.2   

PSST 6 24-179 / 179 1-23 87.2 86.6 N2 (4Fe) several conformations 
TYKY 9 1-176 / 176 0 100 100 N6a (4Fe) 

N6b (4Fe) 
 

ND3 A 1-115 / 115 0 100 100  15-50 re-modelled 
ND1 H 1-318 / 318 0 100 100 DQ, also 

rotenone 
several conformations, 

parts re-modelled 
ND6 J 1-175 / 175 0 100 73.7   
ND4L K 1-98 / 98 0 100 87.8  N-formyl Met 
ND2 N 1-347 / 347 0 100 100   
ND4 M 1-459 / 459 0 100 100 rotenone N-formyl Met 
ND5 L 1-606 / 606 0 100 84.0  N-formyl Met 

 
 
 
 
 
 
 
 
 
 
S 
U 
P 
E 
R 
N 
U 
M 
E 
R 
A 
R 
Y 

10 kDa a 32-75 / 75 1-31 58.7 54.7   
13 kDa b 1-95 / 96 96 99.0 99.0 Zn2+  
18 kDa c 8-133 / 133 1-7 94.7 92.5   
39 kDa d 1-340 / 345 341-345 98.6 87.0 NADPH previously missing C-

terminus and two internal 
loops 

B8 e 13-98 / 98 1-12 87.8 85.7   
B13 f 3-115 / 115 1-2 98.3 97.4   
B14 g 14-127 / 127 1-13 89.8 89.8   

B14.5a h 1-112 / 112 0 100 84.8  N-acetyl Ala 
B17.2 i 1-145 / 145 0 100 99.3   

SDAP-α j 5-84 / 88 1-4, 85-88 90.9 96.6 Phospho-
pantetheine 

 

42 kDa k 1-320 / 320 0 100 70.9   
15 kDa l 1-105 / 105 0 100 90.5   

B9 m 4-83 / 83 1-3 96.4 96.4   
B12 n 11-89 / 97 1-10, 90-97 81.4 73.2   

B14.5b o 1-120 / 120 0 100 100   
B15 p 1-128 / 128 0 100 62.5   

B16.6 q 5-143 / 143 1-4 97.2 97.9   
B17 r 1-38, 66-126 / 

127 
37-65, 127 76.4 66.1   

B18 s 1-122 / 136 123-136 89.7 78.7  N- myristoyl Gly 
B22 t 1-177 / 178 178 99.4 93.3   

AGGG u 5-69 / 72 1-4, 70-72 90.3 91.7   
ASHI v 4-158 / 158 1-3 98.1 27.2   
ESSS w 6-123 / 125 1-5, 124-

125 
94.4 68.8   

KFYI x 1-49 / 49 0 100 98.0   
MNLL y 8-57 / 57 1-7 87.7 93.0   
MWFE z 1-70 / 70 0 100 98.6   
B14.7 V 1-140 / 140 0 100 0  previously polyAla; N-

acetyl Ala 
SGDH W 5-143 / 143 1-4 97.2 97.2   

SDAP-β X 2-88 / 88 1 98.9 100 Phospho-
pantetheine 

 

PGIV Y 1-171 / 171 0 100 100   
PDSW Z 3-173 / 175 1-2, 174-

175 
97.7 97.7   

 TOTAL  8256 / 8516 260 96.9 % 88.3%   
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Table S7 
Charge distribution in membrane arm of closed and open complex I during turnover 
 
 ND5 (chain L) ND4 (chain M) ND2 (chain N) ND4L  

(chain K) 
ND3 
(chain A) 

ND1  
(chain H) 

 K392 K336 H248 K223 D179 E145 E378 K237 K206 E123 K263 K135 K105 E34 E70 E34 D66 E143 E192 

Open 
state 

   + 
 
HB to 
bb O of 
W144 
 

0? - 
 
SB to 
SC of  
R176 

0 
 
side-
chain 
dens-
ity 

 0 0 0 
 
Fewer 
waters 

 + 
 
More 
waters 

- 0 0 0 0 0 

Closed 
state 

   0 
 
Fewer 
waters 

- 
 
SB to 
SC of 
R176 

0   + 
 
HB to 
bb O 
of 
F122 

- 
 
HB to 
SC of 
S157 

+ 
 
Stronger 
side-
chain 
density 

 0 0 - - 
 
 

0 - 0 

 
Densities of the key residues, as well as their hydrogen bonds, salt bridges and the number of coordinated waters were 
compared between the two states. 
 
Lys: + protonated, 0 neutral 
Glu: 0 neutral, - deprotonated 
SB – salt bridge density, HB – hydrogen bond density. 
SC – side chain, bb – backbone. 
Empty cell – no clear information. 
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Movie S1 
Opening and closing of complex I result in large scale reorganization of ND1 and ND6 
subunits.  
 

Movie S2 
Quinone diffusion out of the cavity is aided by conformational changes of the 49 kDa, 
ND1 and PSST loops during opening and reduction of the complex.  
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