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Microscopic Derivation of the Fröhlich
Hamiltonian for the Bose Polaron in the
Mean-Field Limit

Krzysztof Myśliwy and Robert Seiringer

Abstract. We consider the quantum mechanical many-body problem of a
single impurity particle immersed in a weakly interacting Bose gas. The
impurity interacts with the bosons via a two-body potential. We study
the Hamiltonian of this system in the mean-field limit and rigorously
show that, at low energies, the problem is well described by the Fröhlich
polaron model.

1. Introduction and Main Results

1.1. The Polaron

The behavior of impurity particles interacting with a large background consti-
tutes an important class of problems within condensed matter physics [1,2].
Among these, one of the most prominent is the polaron problem, where one
considers a quantum particle of mass M linearly coupled to a scalar boson field.
For a translation invariant system, this corresponds to the formal Hamiltonian

H =
P 2

2M
+

∑

k

eka†
kak +

∑

k

(
gkakeikR + g∗

ka†
ke−ikR

)
, (1.1)

where R denotes the position of the impurity particle, and k labels the mo-
mentum modes of the field. Moreover, P = −i∇R is the particle’s momentum
operator in the canonical representation, and a†

k, ak are the usual field mode
creation and annihilation operators. They satisfy the canonical commutation
relations [ak, a†

k′ ] = δk,k′ , [ak, ak′ ] = 0. The gk are coefficients quantifying the
coupling of the particle to the field, with ∗ denoting the complex conjugate,
and ek is the free field dispersion relation. The natural domain of this Hamil-
tonian lies in the Hilbert space H ⊗F(K), where H is the Hilbert space of the
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particle and K is the Hilbert space of a single field mode, with F(K) denoting
the symmetric Fock space over K. K and H are appropriate L2 spaces, whose
exact specification depends on the underlying physical situation; our choice
thereof is discussed below.

The Hamiltonian (1.1) is commonly referred to as the Fröhlich Hamil-
tonian, as it was introduced by Fröhlich [3] in order to describe electronic
motion in polar crystals. The polaron in this context refers to the picture of an
electron dressed with the emerging optical phonons dragged along as it moves.
Later, this concept was extended to include other phenomena related to mobile
impurities coupled to excitations of the background, giving rise to interesting
effects in many materials [2,4,5] which are still the subject of ongoing research
[6,7].

In this work, we are interested in a rigorous justification of the use of
Hamiltonians of the type (1.1) as an effective description of a full quantum
mechanical many-body problem. In the case of the original Fröhlich model
this task seems too ambitious due to a complicated microscopic structure of
the background (see, however, Lewin and Rougerie [8], where the classical
approximation to the original polaron problem, the Pekar functional, is rigor-
ously derived from a specific model of an electron moving through a quantum
crystal). The applicability of the polaron picture is not limited to electrons in
crystal lattices, however. In fact, recent progress in experiments with ultracold
atoms opened the possibility of studying impurity atoms immersed in an en-
vironment consisting of many bosonic atoms at low temperatures, displaying
Bose–Einstein condensation. As discussed below, at sufficiently low energies
the excitations of the bosonic bath correspond to quantized acoustic phonons,
and hence the Bose polaron corresponds to the impurity atom dressed with
these phonons. We refer to Grusdt and Demler [9] for a review of recent the-
oretical progress concerning the application of Fröhlich Hamiltonians to these
systems. As the mathematical description of cold Bose systems, and in particu-
lar the structure of their excitation spectra at low energies, have recently been
studied rigorously in numerous works [10–15], we find it natural to provide a
rigorous microscopic derivation of (1.1) based on these results.

1.2. The N + 1 Bose Gas

We consider a system of N bosons of mass 1/2 and one additional particle (of
an unspecified type of statistics) of mass M , all confined to move on the unit
torus in d dimensions, Td.

Assumption 1. (Assumptions on the potentials) We assume that

1. the bosons interact among themselves via a two-body potential v : Td →
R which is bounded, Borel measurable, even and of positive type, i.e., all
its Fourier coefficients vp are nonnegative,

2. the additional impurity particle interacts with the bosons via a real-
valued two-body potential w : Td → R, which is bounded, Borel measur-
able and even.
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Note that no assumption is made on the Fourier coefficients wp of w.
Nevertheless w being even implies wp = w−p ∈ R. Without loss of generality,
we may in addition assume that v and w are nonnegative, since they can be
shifted by a constant otherwise.

The positions of the bosons are labeled by {xi}N
i=1, xi ∈ T

d and the
position of the impurity by R ∈ T

d. The Hamiltonian of this system reads

−�R

2M
−

N∑

i=1

�xi
+ λ

∑

1≤i<j≤N

v(η(xi − xj)) + μ

N∑

i=1

w(ν(xi − R)) (1.2)

where we introduced some coupling (λ, μ) and scaling (η, ν) parameters to be
chosen. It acts on L2(Td) ⊗ HN with HN being the Hilbert space of square-
integrable symmetric functions on T

dN . Here, �y denotes the d-dimensional
Laplacian in the coordinate y acting on functions on the unit torus. The cou-
pling parameters λ and μ determine the strength of the potentials v and w
(for the functional forms of v and w being fixed), whereas η and ν determine
the respective ranges (relative to the system size). They can be adjusted to
consider various scaling regimes. The usual thermodynamic limit corresponds
to the choice η ∼ ν ∼ N1/d and λ ∼ μ ∼ N2/d. In contrast, we consider
here the mean-field limit, where the interactions are weak and extend over
the entire system. In particular, we choose λ = (N − 1)−1, μ = N−1/2, and
η = ν = 1. For systems without impurity, this was the scaling for which the
first rigorous results on the excitation spectrum were obtained Seiringer [10],
Lewin et al. [12], Grech and Seiringer [15] and Nam and Seiringer [16], and our
analysis is based on them. The choice μ = N−1/2 for the impurity–boson cou-
pling turns out to be a natural in the analysis, compatible with the methods
from Seiringer [10] and Lewin et al. [12] we use, as explained below (see, in
particular, Remark 1.1). Therefore, from now on we consider the Hamiltonian

HN :=
−�R

2M
−

N∑

i=1

�xi
+

1
N − 1

∑

1≤i<j≤N

v(xi−xj)+
1√
N

N∑

i=1

w(xi−R) (1.3)

on L2(Td) ⊗ HN , with v and w nonnegative 1-periodic functions satisfying
Assumption 1.

1.2.1. Motivation of the Fröhlich Hamiltonian. With vp and wp denoting the
Fourier coefficients of v and w, respectively, the second-quantized version of
HN in (1.3) reads

−�R

2M
+ EH(N) +

∑

p�=0

p2a†
pap +

1
2(N − 1)

∑

p,q,k∈(2πZ)d

p�=0

a†
p+ka†

q−paqak

+
1√
N

∑

p,k∈(2πZ)d

p�=0

wpe−ipRa†
p+kak. (1.4)
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We defined the Hartree ground state energy

EH(N) =
N

2
v0 +

√
Nw0, (1.5)

which captures the effect of interactions between particles in the p = 0 mode.
The sums run over (2πZ)d with p = 0 excluded. Here, ap denotes the usual
annihilation operator HN → HN−1 acting as

(apΨ)(x1, x2, . . . , xN−1) =
√

N

∫

Td

Ψ(x1, . . . , xN−1, x)e−ipx dx. (1.6)

The second-quantized Hamiltonian (1.4) acts on L2(Td) ⊗ F , with F the
bosonic Fock space F over L2(Td), i.e., F :=

⊕∞
i=0 Hi (with H0 = C). Ac-

tually, it preserves L2(Td) ⊗ HN . For the system without impurity, it was
predicted by Bogoliubov [17] that for sufficiently low energies, the excitation
spectrum of HN should be composed of elementary excitations, which are
physically interpreted as quantized (acoustic) free phonons. This serves as the
basis for the microscopic explanation of the onset of superfluid behavior in
low-temperature bosonic systems. From the formal perspective, it provides a
specific example of the emergence of an effective quantum field theoretical de-
scription of a many-body system. The low-energy effective theory is predicted
to be that of the Hamiltonian

H
B =

∑

p�=0

epb
†
pbp . (1.7)

Here, b†
p = αpa

†
p + βpa−p where αp, βp are appropriate constants chosen such

that [bp, b
†
q] = δp,q. Explicitly, αp = (1 − γp)−1/2 with γp = 1 + p2−ep

vp
and

βp = γpαp. These algebraic relations are realized via a suitable unitary (Bo-
goliubov) transformation. From (1.7) we deduce that, for low energies, the
excitation spectrum is expected to be composed of free bosonic quasi-particles
with dispersion relation ep. In the mean-field scaling λ = (N −1)−1 considered
here, one can prove [10] that ep =

√
p4 + 2vpp2. Additionally, it can be shown

that in this scaling the ground state energy equals 1
2Nv0 +EB + o(1) with the

constant EB equal to

EB = −1
2

∑

p�=0

(
p2 + vp −

√
p4 + 2p2vp

)
. (1.8)

The method employed by Bogoliubov leading to H
B consists of the fol-

lowing steps:
1. the operators a0, a

†
0 are replaced by the number

√
N ,

2. all the terms of higher order than quadratic in creation and annihilation
operators that remain in the Hamiltonian are dropped.

This procedure is physically motivated by the expectation that for sufficiently
small energies there is Bose–Einstein condensation in the system, that is, the
p = 0 mode is occupied by an overwhelming fraction of particles. Whereas this
has not been proven for a generic bosonic system with general interactions, the
validity of the Bogoliubov approximation has been rigorously verified (in the
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case w ≡ 0) for a variety of assumptions on v [10,12,14,15,18]. The first such
result [10] refers precisely to our conditions on v and, as already mentioned,
the mean-field scaling λ = (N − 1)−1, which corresponds to a very weak and
long-ranged potential.

If one applies the Bogoliubov approximation to the Hamiltonian (1.4)
with impurity, one expects that the system is, for small energies, effectively
described by the Fröhlich Hamiltonian

H
F :=

−�R

2M
+

∑

p�=0

(p2+vp)a†
pap+

1
2

∑

p�=0

vp(a†
pa

†
−p+apa−p)+

∑

p�=0

wpe−ipR(a†
p+a−p).

(1.9)
By expressing the ap’s in terms of the operators bp, b

†
−p, we see that it equals

H
F =

−�R

2M
+

∑

p�=0

epb
†
pbp +

∑

p�=0

|p|wp√
ep

e−ipR(b†
p + b−p) + EB (1.10)

which belongs to the class of Hamiltonians defined in (1.1). The Hamiltonian
H

F acts on L2(Td) ⊗ F+, where F+ is the Fock space over the complement of
the normalized constant function in L2(Td), describing solely the p �= 0 modes
of the field. In order to obtain (1.10) via a Bogoliubov approximation, we
supplemented this procedure by additionally dropping, in the impurity–boson
interaction, all the terms that are of higher order than linear in the creation
and annihilation operators (after first replacing the a0 and its adjoint by

√
N),

whereas we kept the quadratic terms in the boson–boson interaction. One of
elements of our analysis below is the justification of this additional step while
checking that the other steps, known to be rigorously justifiable in the mean-
field case in the absence of an impurity, are still applicable. It is important,
however, to realize that in some instances, especially when the impurity–boson
interaction is strong, additional terms not present in the Fröhlich Hamiltonian
(1.10) cannot be neglected [19–21].

1.3. Main Results

The interpretation of our main results, as stated below, is that the Fröhlich
Hamiltonian (1.10) may indeed be seen as an effective low-energy, large N
theory for the original model described by HN in (1.3). Our analysis consists
of a rigorous justification of the extended Bogoliubov approximation, based
on suitable operator inequalities. It leads to two main theorems, the first of
which concerns the excitation spectrum of HN .

1.3.1. Theorem 1: Convergence of Eigenvalues. Let us denote by ei(A) the i-
th eigenvalue resp. the i-th min–max value of an operator A, starting at i = 0.
Our first Theorem states that as long as one considers the energy levels of
HN lying in a not too large window above the ground state, their values are
provided by the corresponding eigenvalues of the Fröhlich Hamiltonian if N is
sufficiently large. In particular, we provide explicit bounds on the size of that
window as compared with N .
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Theorem 1. Let HN and H
F be defined by Eqs. (1.3) and (1.10), respectively,

and let EH(N) := N
2 v0 +

√
Nw0. Assume that v and w satisfy Assumption 1.

Then for all eigenvalues ei(HN ) such that ei(HN ) − e0(HN ) ≤ ξ for some
ξ ≥ 1 we have

|ei(HN ) − EH(N) − ei(HF)| ≤ Cv,wξ

(
ξ

N

)1/2

(1.11)

for some constant Cv,w > 0 independent of the parameters ξ and N .

Remark 1.1. In the special case of the ground state energy, we have

inf specHN =
1
2
Nv0 +

√
Nw0 + inf specHF + O(N−1/2). (1.12)

The interaction with the impurity thus gives rise to a N1/2 contribution to
the ground state energy and, more importantly, leads to an O(1) contribution
to the excitation spectrum via the last term in (1.9). This can be understood
as follows. In the impurity-free case, the effect of the emergence of phonons
is reflected as a O(1) correction to the ground state and low-lying excitation
energies, in the mean-field limit considered here. There are only finitely many
(even for large N) phonons that emerge in the system. The Fröhlich model
describes the impurity creating and annihilating excitations of the background.
The number of the latter being O(1), we expect that this phonon–impurity
interaction should as well give rise to an O(1) correction. The Bogoliubov
approximation suggests that this interaction should scale as μN1/2; hence, we
see that μ ∼ 1/

√
N is consistent with these considerations.

Remark 1.2. The error bounds are of the form ξ(ξ/N)1/2. Therefore, as long
as the total excitation energy satisfies ξ � N , the error made by using the
Fröhlich Hamiltonian instead of the original one when computing the energy
levels is small compared to the total excitation energy. The size of this energy
window is presumably optimal. In fact, if the condition ξ � N is not fulfilled
one cannot expect the onset of BEC anymore, which is an essential assumption
in the Bogoliubov approximation. It is noteworthy that precisely the same
error scaling was obtained in [10] for the pure bosonic system. The effects of
the inclusion of the impurity thus manifest themselves only in the value of the
constant Cv,w.

Remark 1.3. By a direct inspection of the proof, one sees that the result can
easily be generalized to the case of multiple impurities (as long as their number
is fixed, i.e., independent of N). This holds irrespectively of the statistics
of the impurities, i.e., they could be fermions, bosons, or distinguishable (in
particular, different) particles.

Remark 1.4. Extending the results to the case of more realistic, short-ranged
potentials remains a challenge. In fact, the w ≡ 0 cases with either λ = N2/d,
η = N1/d (equivalent to the thermodynamic limit) or λ = N2, η = N in
d = 3 (the Gross–Pitaevskii limit) were rigorously analyzed only very recently.
The results for the thermodynamic limit concern the ground state energy only



Microscopic Derivation of the Fröhlich Hamiltonian

[11,22–24], whereas in the Gross–Pitaevskii scaling regime the emergence of
the Bogoliubov spectrum for low energies was shown as well [18].

Remark 1.5. If a contact interaction is used to model both boson–boson and
boson–impurity interaction, one encounters the Bogoliubov–Fröhlich Hamil-
tonian [9,25]

H
B-F =

P 2

2M
+

∑

p

εpb
†
pbp+

√
n0gIB

∑

p

(
(ζp)2

2 + (ζp)2

)1/4

(b†
p+b−p)e−ipR, (1.13)

where n0 is the condensate density and ζ = (2gBBn0)−1/2 is the healing
length; the parameters gIB and gBB are the coupling constants describing
the impurity–boson and boson–boson interactions, respectively. Additionally,
εp =

√
c2p2(1 + (ζp)2) with c = 1/ζ =

√
2gBBn0 denoting the speed of sound

in the bosonic bath. This Hamiltonian displays an evident ultraviolet diver-
gence, recently analyzed in [25]. By naively replacing vp and wp in (1.10) with
the respective coupling constants gBB and gIB, one arrives at H

B-F with unit
condensate density. We conjecture that (1.13), resp. some renormalized version
of it, arises in place of HF in scaling regimes corresponding to more realistic
interactions of shorter range than the mean-field limit considered here.

Remark 1.6. Our proof makes use of methods from Seiringer [10] and Lewin et
al. [12]. In particular, in the case w ≡ 0, we reproduce the results of Seiringer
[10], but by utilizing techniques from Lewin et al. [12] we are able to substan-
tially simplify the proof.

1.3.2. Theorem 2: Convergence of Eigenvectors. In order to compare the two
operators HN and H

F, which act on different Hilbert spaces, we utilize an
operator introduced by Lewin et al. [12], which maps HN to (a subspace of)
F+. We give here a quick review of their construction, as it is important to
formulate our second result.

1.3.3. The LNSS Transform. If {vi}i≥0 is an orthonormal basis of some Hilbert
space H, then the N -fold symmetric tensor product of H is spanned by N -fold
tensor products

vi1 ⊗s · · · ⊗s viN := N
∑

σ∈SN

vσ(i1) ⊗ · · · ⊗ vσ(iN )

for all choices of indices ij ∈ N ∪ {0} with N a normalization constant. Let
us fix an element v0 in the basis of H. If one defines H0

l to be the span of⊗l
s v0 ⊗s vil+1 ⊗s · · · viN for all choices of the N − l indices ij �= 0, it is clear

that

HN =
N⊕

l=0

H0
l .

For convenience, we further define H+
m by the relation H0

N−m = {⊗N−m
s v0}⊗s

H+
m. Explicitly,

H+
m =

⊗m

s
H+, H+ := {v0}⊥.
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For every element Ψ ∈ HN , define the linear operator

U : HN → F≤N
+ , Ψ �→ φ0 ⊕ · · · φN

where the φi ∈ H+
i , i ∈ {0, . . . , N}, are uniquely determined by the above

considerations. The space F≤N
+ is naturally seen to be a proper subset of the

Fock space over the orthogonal complement of v0 ∈ H. Moreover, U is unitary.
Performing this construction for H = L2(Td) with, for instance, the plane
wave basis and with v0 ≡ 1 we arrive at a unitary transformation U : HN →
F≤N

+ ⊂ F+ with F+ being the Fock space over the orthogonal complement
of the unit function on T

d. This space has a clear physical interpretation of
being the space of excitations from the condensate, and the fully condensed
state plays the role of the vacuum. It is due to the algebraic properties of U ,
however, that it becomes helpful in the analysis, as it can be seen to rigorously
realize the Bogoliubov substitution of a0, a

†
0 by

√
N . More precisely, with Q

denoting the projection onto the orthogonal complement of the unit function
in L2(Td), one can check that (the annihilation operator is here understood to
be the standard operator in the purely bosonic Fock space)

U(Ψ) =
N⊕

j=0

Q⊗sj

(
aN−j
0√

(N − j)!
Ψ

)
(1.14)

for all Ψ ∈ HN and consequently that for k, l �= 0

U†a†
ka0U = a†

k

√
N − N+ (1.15)

U†a†
kala

†
0a0U = a†

kal(N − N+) (1.16)

U†a†
ka†

l a0a0U = a†
ka†

l

√
(N − N+)(N − N+ − 1). (1.17)

The last two identities follow from the first, in fact. We trivially extend this
transformation to an operator L2(Td) ⊗ HN → L2(Td) ⊗ F≤N

+ by tensor-
multiplying it by the unit operator on the impurity Hilbert space. This ex-
tended U is again unitary and satisfies (1.15) with a0 defined by (1.6). One
should keep in mind that U depends on N . Equipped with the extended op-
erator U , we now state our second main result concerning the eigenvectors.

Theorem 2. Let Pi denote the orthogonal projection onto the eigenspace of HF

corresponding to energy ei(HF). Under Assumption 1, the following statements
hold true.

1. The spectra of both HN and H
F are discrete.

2. For all i such that there exists an eigenstate Ψi of HN corresponding to
energy ei(HN ) with ei(HN ) − e0(HN ) < ξ where ξ > 0 is fixed, we have

lim
N→∞

(Ψi, U
†
PiUΨi)L2(Td)⊗F+ = 1. (1.18)

Remark 2.1. In contrast to the case without impurity, the eigenstates of HF

are not explicit. In particular, they display non-trivial correlations among the
phonons and are not quasi-free.
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Remark 2.2. We have not tried to find the rate of growth of the size of the
energy window in N so as provide the corresponding error for replacing eigen-
vectors. This rate is probably much worse than the one from Theorem 1.

Remark 2.3. Theorems 1 and 2 together imply, as N → ∞, the norm resolvent
convergence of HN − EH(N) towards H

F, that is, for any z ∈ C\R,

lim
N→∞

||(UN (HN − EH(N))U†
N − z)−1 − (HF − z)−1|| = 0 (1.19)

in operator norm. Here, UN has to be understood as a partial isometry, i.e.,
U†

N is extended by 0 to all of L2(Td) ⊗ F+.

Remark 2.4. Another interesting problem concerns the dynamics of the impu-
rity and the use of the Fröhlich Hamiltonian as its generator. This question has
been recently studied from a physics perspective [20,26]. From a mathematical
point of view, there exist results concerning the dynamics of a tracer particle
immersed in a Bose gas [27,28], which concern a different scaling limit than
the one considered here and do not utilize the Fröhlich description. The con-
vergence (1.19) can also be reformulated as convergence of the corresponding
group of time evolutions and hence can be used to determine also the dynam-
ics of small excitations of the condensate. In the absence of an impurity, more
general results are known where the condensate itself is excited and evolves
according to the time-dependent Hartree equation (see, e.g., [29,30]).

The remainder of this paper contains the proofs of Theorems 1 and 2.
Throughout the text, the symbol C denotes a positive constant whose value
may change at different appearances. Moreover, unless stated otherwise, all
states on the relevant Hilbert spaces are normalized. Finally, all operators
that are defined as acting on functions of the Bose gas coordinates or the field
modes only are actually everywhere understood as their tensor products with
the unit operator on L2(Td), the latter being the Hilbert space of the impurity
particle.

2. Auxiliary Considerations

In this section, we introduce four preparatory Lemmas that will be needed in
the proofs of Theorems 1 and 2. For their statement, we need to introduce
some notation. We shall often denote the terms on the right side of (1.3), from
left to right, by P 2/2M,T, V and W . Let P denote the projection onto the
normalized constant wave function in L2(Td), and Q = 1 − P. We define the
excitation number operator

N+ =
N∑

i=1

Qi (2.1)

as an operator on HN . The subindex in Qi means here that we project onto
the orthogonal complement of the normalized constant wave function in the
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i-th variable. The second quantized form of the excitation number operator in
the plane wave basis equals

N+ =
∑

p�=0

a†
pap. (2.2)

The first Lemma explores the consequences of the mean-field structure of HN .
In particular, the ground state energy of HN is, to leading order in N , equal
to EH(N), and the excitation number operator is uniformly bounded in N for
states of fixed excitation energy.

Lemma 3. The ground state energy of HN , e0(HN ), satisfies the bounds

Nv0

2
+

√
Nw0 ≥ e0(HN ) ≥ Nv0

2
+

√
Nw0 − δE (2.3)

with δE =
∫

(2π2)−1w2 + (v(0) − v0) ≥ 0. Moreover, we have the operator
inequality

N+ ≤ C(HN − e0(HN )) + C. (2.4)

Remark 3.1. Below, we will make use of a direct consequence of this Lemma,
namely

(Ψ, N+Ψ) ≤ Cξ + C (2.5)

for any state Ψ such that (Ψ,HNΨ) ≤ e0(HN ) + ξ with ξ > 0.

Proof. The upper bound on the ground state energy is obtained by taking
the constant wave function in L2(Td) ⊗ HN as trial function. We write HN =
P 2

2M + 1
2T +V + (1

2T +W ); by a standard argument using the positivity of the
Fourier coefficients of v, we have

V =
1

2(N − 1)

∑

i,j∈{1,...,N}
v(xi − xj) − Nv(0)

2(N − 1)

=
1

2(N − 1)

∑

p

vp

∣∣∣∣∣

N∑

i=1

eipxi

∣∣∣∣∣

2

− Nv(0)
2(N − 1)

≥ N

2
v0 − N

2(N − 1)
(v(0) − v0) (2.6)

since
∑

p�=0 vp

∣∣∣
∑N

i=1 eipxi

∣∣∣
2

≥ 0. Next, we use Temple’s inequality, see, e.g.,
[31]. Consider a Hamiltonian H = H0 + Z with nonnegative self-adjoint oper-
ators Z and H0 with ground state energy satisfying e0(H0) = 0. Denoting by
e0, e1 the first two eigenvalues of H, we have clearly (H − e0)(H − e1) ≥ 0. We
evaluate this at the ground state of H0, Ψ0. We get

(Ψ0, (H − e0)(H − e1)Ψ0) = (Ψ0, (Z − e0)(Z − e1)Ψ0) ≥ 0

and rewrite this, since e1 > 0, as

e0 ≥ − (Ψ0, Z
2Ψ0)

e1
+

(
1 +

e0

e1

)
(Ψ0, ZΨ0). (2.7)
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Using the positivity of Z and e1 ≥ e1(H0), we finally get

e0 ≥ (Ψ0, ZΨ0) − (Ψ0Z
2Ψ0)

e1(H0)
. (2.8)

Using this for H = −�x

2 + N−1/2w(x − R) with Z = N−1/2w(x − R) and Ψ0

the normalized constant function on T
d, we have,

e0

(
−�x

2
+ N−1/2w(x − R)

)
≥ N−1/2w0 − N−1(2π2)−1

∫
w2. (2.9)

This leads to

(Ψ,HN−EH(N)Ψ) ≥ (Ψ,
T

2
Ψ)−

(
N

2(N − 1)
(v(0) − v0) + (2π2)−1

∫
w2

)
‖Ψ‖2.

(2.10)
Using that N+ ≤ (2π)−2T , we see that the desired result holds.

The second Lemma concerns the fluctuations of the condensate in the
ground state, which are seen to be strongly suppressed due to the mean field
scaling.

Lemma 4. For all N ≥ 2, we have the operator inequality

N2
+ ≤ C(HN − e0(HN ))2 + C. (2.11)

Remark 4.1. Similarly as above, the Lemma immediately implies that if Ψ
belongs to the spectral subspace of HN corresponding to energy E ≤ e0(N)+ξ
with ξ ≥ 0, then we have

(Ψ, N2
+Ψ) ≤ Cξ2 + C (2.12)

where the constants depend only on v and w but not on N . This will be of
importance below.

Proof. Because N+ ≤ 1
2π2 ( 1

2T ) and N+ commutes with T , we find it convenient
to give a bound on the operator 1

2N+T , as the latter can be directly linked to
HN . Writing

T

2
= (HN − e0(HN )) + S1 + S (2.13)

with

S1 = − 1
N − 1

N∑

j=2

v(x1 − xj) − (−�1)
2

− w(x1 − R)√
N

(2.14)

and

S = e0(HN )− 1
N − 1

∑

2≤i≤j≤N

v(xi−xj)− 1√
N

N∑

j=2

w(xj −R)−
N∑

j=2

−�j

2
− P 2

2M

(2.15)
we estimate the relevant terms. By the Cauchy–Schwarz inequality,

(Ψ, N+(HN − e0(HN ))Ψ) ≤
√

(Ψ, N2
+Ψ)

√
(Ψ, (HN − e0(HN ))2Ψ). (2.16)



K. Myśliwy, R. Seiringer Ann. Henri Poincaré

Note that (S +S1)Ψ is permutation symmetric in the Bose gas coordinates, so
that (Ψ, N+(S+S1)Ψ) = N(Ψ,Q1(S+S1)Ψ), where Q1 = 1−P1. Moreover, S
is independent of x1; hence, it commutes with Q1. Using the inequality (2.6)
(with N replaced with N − 1) as well as Temple’s inequality (2.9) and the
upper bound on e0(HN ) in (2.3), we see that

S ≤ v0 + v(0)
2

+
w0√
N

+
N − 1

N

∫
w2

2π2
=: δE′.

Since S commutes with Q1, we thus have

N(ΨQ1SΨ) ≤ δE′(Ψ, N+Ψ). (2.17)

The part of N+S1 not containing −�1/2 + N−1/2w(x1 − R) is equal to
−N(Ψ,Q1v(x1 −x2)Ψ). We introduce the short-hand v12 to denote v(x1 −x2).
We write, following [10]

(Ψ,Q1v12Ψ) = (Ψ,Q1Q2v12Ψ) + (Ψ,Q1P2v12P2Ψ) + (Ψ,Q1P2v12Q2Ψ).
(2.18)

Observe that (Ψ,Q1P2v12P2Ψ) = (Ψ,Q1P2v12P2Q1Ψ)+(Ψ,Q1P2v12P2P1Ψ),
where the last term vanishes and the remaining one is positive. For the first
term, we use (Ψ,Q1Q2v12Ψ) ≥ −‖v‖∞

√
(ΨQ1Q2Ψ). Furthermore,

(Ψ,Q1P2v12Q2Ψ) ≥ −1
2
(Ψ,Q2v12Q2Ψ) − 1

2
(Ψ,Q1P2v12P2Q1Ψ)

≥ −‖v‖∞
2

((Ψ,Q2Ψ) + (Ψ,Q1P2Q1Ψ)) ≥ −‖v‖∞(Ψ,Q1Ψ)

(2.19)

as P2 ≤ 1 and (Ψ,Q1Ψ) = (Ψ,Q2Ψ) due to the permutation symmetry. The
remaining part of S1 is bounded as

(
Ψ,Q1

(−�1

2
+

1√
N

w(x1 − R)
)

Ψ
)

≥ −‖w‖∞
2

(
1
N

+ (Ψ,Q1Ψ)
)

since w ≥ 0.
We thus have

(Ψ,Q1S1Ψ) ≤ ‖v‖∞
√

(Ψ,Q1Q2Ψ) + (‖v‖∞ + 1
2‖w‖∞)(Ψ,Q1Ψ) +

‖w‖∞
2N

.

(2.20)
With N2(Ψ,Q1Q2Ψ) ≤ (Ψ, N2

+Ψ), this altogether implies
1

2
(Ψ, N+TΨ) ≤

(
‖v‖∞ +

√
(Ψ, (HN − e0(HN )2Ψ)

) √
(Ψ, N2

+Ψ)+α(Ψ, N+Ψ)+
‖w‖∞

2
,

(2.21)
where the N -independent constant α equals α = 1

2‖w‖∞ + ‖v‖∞ + δE′. As
N+ ≤ gT , with g = (2π)2 being the energy gap of the Laplacian on the torus,
this implies

gN2
+ ≤ ‖v‖2

∞
κ

+
(HN − e0(HN ))2

λ
+

α2

ε
+ ‖w‖∞ + (κ + ε + λ)N2

+

for any ε, λ, κ > 0. By choosing ε = λ = κ = g
4 , we arrive at the desired result.
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The third and fourth Lemmas concern H
F. They will be of importance

when proving the upper bound on the difference of eigenvalues in Theorem 1.

Lemma 5. Let HF
0 = P 2

2M +
∑

p�=0(p
2 + vp)a†

pap denote the particle-conserving
part of the Fröhlich Hamiltonian (1.9). Then, there exist positive constants
C0, C1, C2 such that the inequalities

N+ ≤ C0H
F
0 ≤ C1H

F + C2 (2.22)

hold true on L2(Td) ⊗ F+.

Proof. Clearly, as vp ≥ 0, one can take C0 = g−1 = (2π)−2. The particle
non-conserving part of HF consists of the purely bosonic (v-dependent) part
V ODand a w-dependent part W̃ . The latter can be bounded by

W̃ ≥ −εHF
0 − ε−1

∑

p�=0

|wp|2
vp + p2

(2.23)

for any ε > 0. To see this, simply complete the square for a single mode
using the inequality (ηa†

p + η−1wpeipR)(ηap + η−1wpe−ipR) ≥ 0, then choose
η2 = ε(p2 + vp) and sum over the modes. It is hence enough to show that the
bosonic particle non-conserving part, given by

V OD =
1
2

∑

p�=0

vp(a†
pa

†
−p + apa−p) (2.24)

can be bounded below by −cHF
0 − c′ for 0 < c < 1 and c′ > 0. By Cauchy–

Schwarz,

vp

2
(a†

pa
†
−p + apa−p) ≥ −εa†

pap − |vp|2
4ε

a†
−pa−p − |vp|2

4ε
(2.25)

for any ε > 0. Now take ε = λ(p2 + vp) for some λ > 0 and define μ :=
supp�=0 v2

p

supp�=0 v2
p+infp�=0 p2(p2+2vp) ; then 0 < μ < 1 (recall that p ∈ (2πZ)d) and v2

p ≤
μ

1−μp2(p2 + 2vp), or
v2

p

p2 + vp
≤ μ(p2 + vp). (2.26)

Consequently,

V OD ≥ −(λ +
μ

4λ
)HF

0 −
∑

p

v2
p

λ(p2 + vp)
. (2.27)

By choosing λ =
√

μ

2 , we have λ + μ
4λ =

√
μ < 1 and the desired result follows.

Remark 5.1. Note that the above Lemma implies that H
F is bounded from

below.

The last Lemma relates N2
+ to (HF)2.

Lemma 6. On L2(Td) ⊗ F+ we have

N2
+ ≤ C(HF)2 + C. (2.28)
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Proof. We will show that N+H
F
0 ≤ C(HF)2 + C, which implies the desired

result by the previous lemma. As [N+,HF
0 ] = 0, we have

N+H
F
0 =

1
2
(N+H

F
0 + H

F
0 N+) =

1
2
(N+H

F + H
FN+)

− 1
2
(N+V OD + V ODN+ + W̃N+ + N+W̃ ), (2.29)

with W̃ and V OD defined as in the proof of Lemma 5. Using the canonical
commutation relations [ap, a

†
q] = δp,q, we compute

N+V OD =
∑

p�=0

a†
pV

ODap +
∑

p�=0

vp

2
a†

pa
†
−p. (2.30)

Since V ODN+ = (N+V OD)† we have V ODN+ =
∑

p�=0 a†
pV

ODap+
∑

p�=0
vp

2 apa−p

and finally
1
2
(N+V OD + V ODN+) =

∑

p�=0

a†
pV

ODap +
1
2
V OD. (2.31)

Using (2.27) and the fact that
∑

p�=0 a†
pH

F
0 ap = H

F
0 (N+ − 1), we have

− 1
2
(N+V OD + V ODN+) ≤ √

μHF
0 N+ +

√
μ

2
H

F
0 + C (2.32)

where μ < 1. By Lemma 5 and the Cauchy–Schwarz inequality, the last two
terms of the above are bounded by C(HF)2 + C.

For W̃ , we perform a computation analogous to (2.31), which yields
1
2
(N+W̃ + W̃N+) =

∑

p�=0

a†
pW̃ap +

1
2
W̃ . (2.33)

By completing the square similarly as in Lemma 5, we have

W̃ ≥ −λN+ − 1
λ

∑

p�=0

|wp|2 (2.34)

for any λ > 0. We obtain

− 1
2
(N+W̃ + W̃N+) ≤ λN+(N+ − 1) +

∑
p�=0 |wp|2

λ
N+ +

1
2
N+ +

∑
p�=0 |wp|2

2
(2.35)

for any λ > 0. By Lemma 5 and H
F ≤ (HF)2

2 + 1
2 , we can bound

− 1
2
(N+W̃ + W̃N+) ≤ λC0N+H

F
0 + (

1
λ

+ 1)C(HF)2 + C. (2.36)

Finally, using again the Cauchy–Schwarz inequality, we can bound

N+H
F + H

FN+ ≤ εN2
+ +

1
ε
(HF)2 (2.37)

for any ε > 0. Invoking Lemma 5 again, we obtain for any ε > 0 and λ > 0,
(

1 − √
μ − 1

2
C0(ε + 2λ)

)
N+H

F
0 ≤ ((2ε)−1 + λ−1)C(HF)2 + C. (2.38)

By choosing ε and λ small enough, we arrive at the desired result.
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3. Comparing HN and H
F

The estimates provided in the previous section concern the relation of the
number of excitations operator N+ (or its square) to the Hamiltonians HN and
H

F independently. Now, making use of the LNSS transformation U introduced
in Sect. 1.3.3, we give an important estimate relating UHNU† and H

F.

Proposition 7. There exist positive constants α, β, independent of N , such that
for every ε > 0 and every Φ in L2(Td) ⊗ F≤N

+ we have the inequality
∣∣(Φ,

(
U(HN − EH(N))U† − H

F)
Φ

)∣∣ ≤ α
(Φ, N2

+Φ)

N

(
1 +

1

ε

)
+β(Φ, N+Φ)

(
ε +

1√
N

)
.

(3.1)

The proof of the proposition is divided into two main steps. In step 1, we
take care of the higher-order terms in the creation and annihilation operators
that appear in the second quantization of HN , but are absent in H

F. Let

Hpre−F
N :=

P 2

2M
+

∑

p�=0

p2a†
pap +

1

2(N − 1)

∑

p�=0

vp(2a†
papa†

0a0 + a†
pa0a0a†

−p + apa†
0a†

0a−p)

+
1√
N

∑

p�=0

wpe−ipR(a†
pa0 + a−pa†

0). (3.2)

viewed as an operator on L2(Td) ⊗ HN .

Lemma 8. For any ε > 0, one has the operator inequalities

− Eε ≤ HN − EH(N) − Hpre−F
N ≤ Fε (3.3)

where

Eε =
N+(N+ − 1)

2(N − 1)

(
v0 +

v(0)
ε

)
+ εv0

2N − 1
N − 1

N+ (3.4)

and

Fε =
‖w‖∞√

N
N+ + εv0

2N − 1
N − 1

N+ +
(

1 +
1
ε

)
N+(N+ − 1)

2(N − 1)
v(0). (3.5)

Proof. Using the Cauchy–Schwarz inequality and positivity of v viewed as a
two-particle multiplication operator, we have

± ((P ⊗ Q + Q ⊗ P)v(Q ⊗ Q) + (Q ⊗ Q)v(P ⊗ Q + Q ⊗ P))

≤ ε(P ⊗ Q + Q ⊗ P)v(P ⊗ Q + Q ⊗ P) +
1
ε
(Q ⊗ Q)v(Q ⊗ Q). (3.6)

By translation invariance Q ⊗ PvP ⊗ P = 0. Moreover, the boundedness of v
enables us to bound

Q ⊗ QvQ ⊗ Q ≤ v(0)Q ⊗ Q. (3.7)

Therefore, we have the bounds

v ≥ P ⊗ PvP ⊗ P + P ⊗ PvQ ⊗ Q + Q ⊗ QvP ⊗ P
+ (1 − ε) (P ⊗ Q + Q ⊗ P) v (P ⊗ Q + Q ⊗ P) − ε−1v(0)Q ⊗ Q (3.8)
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and
v ≤ P ⊗ PvP ⊗ P + P ⊗ PvQ ⊗ Q + Q ⊗ QvP ⊗ P

+ (1 + ε) (P ⊗ Q + Q ⊗ P) v (P ⊗ Q + Q ⊗ P) + (1 + ε−1)v(0)Q ⊗ Q.

(3.9)
Similarly, treating w(x−R) as a one-body multiplication operator parametrized
by R, we have

0 ≤ w ≤ PwP + QwP + PwQ + ‖w‖∞Q. (3.10)

Taking into account that

(N − 1)−1
∑

p�=0

vpa
†
pa

†
0a0ap ≤ v0N+ (3.11)

one easily arrives, after computing the relevant second quantization representa-
tions of the operators appearing in the bounds (3.8) and (3.10), at the desired
result. Since this is essentially the same computation as in [10, Sect. 5], we
omit the details.

The operator inequalities in Lemma 8 quantify the effect of dropping the
higher order terms in the creation and annihilation operators appearing in
the original Hamiltonian. As a second step, we now estimate the effect of the
Bogoliubov substitution of a0, a

†
0 by

√
N ∈ R via the unitary transform U ,

which replaces the a0, a
†
0 by an operator

√
N − N+ acting on F≤N

+ .

Lemma 9. We have the following inequality for all Φ ∈ L2(Td) ⊗ F≤N
+ :

|(Φ, UHpre−F
N U† − H

F,Φ)| ≤ α′(Φ, N2
+Φ) + β′‖Φ‖2

(N − 1)
, (3.12)

where the positive constants α′, β′ do not depend on N .

Proof. By using the algebraic properties (1.15)–(1.17) of U , we see that the
expressions to estimate are the following. First, using (1.15),

∣∣∣∣∣∣

⎛

⎝Φ,

⎡

⎣N−1/2
∑

p�=0

wpe−ipRU(a†
pa0 + apa†

0)U† −
∑

p�=0

wpe−ipR(a†
p + a−p)

⎤

⎦ Φ

⎞

⎠

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

p�=0

(
Φ, wp

(
a†
pe−ipR

(
1 −

√
N − N+

N

)
+

(
1 −

√
N − N+

N

)
a−peipR

)
Φ

)∣∣∣∣∣∣

≤ ε−1 (Φ, N2
+Φ)

N2

∑

p

|wp|2 + ε(Φ, N+Φ) (3.13)

which gives an expression of the type claimed Proposition 7 for ε−1 = N2/(N−
1). In the above, we used the Cauchy–Schwarz inequality

AB + BA† ≤ εA†A + ε−1B2 (3.14)

for A = a†
pe

−ipR and B = wp(1 − √
(N − N+)/N), and used the bound

B2 = w2
pN−1(

√
N +

√
N − N+)−2N2

+ ≤ w2
pN2

+/N2.
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Similarly, from (1.17), we arrive at the second term to estimate:
∣∣∣∣∣∣

∑

p�=0

(
Φ,

(
vpa

†
pa

†
−p

(√
(N − N+)(N − N+ − 1)

N − 1
− 1

)
+ h.c.

)
Φ

)∣∣∣∣∣∣

≤ ε−1
∑

p�=0

|vp|2 (Φ, (N+ + 1)2Φ)
(N − 1)2

+
∑

p�=0

ε(Φ, a†
pa

†
−pa−papΦ)

≤ C
(Φ, (N+ + 1)2Φ)

N − 1
+

(Φ, N+(N+ − 1)Φ)
N − 1

(3.15)

for ε−1 = N − 1. We used (3.14) for A = a†
pa

†
−p and

B = vp

(√
(N − N+)(N − N+ − 1)

N − 1
− 1

)
,

whose square is bounded by v2
p(N++1

N−1 )2. Additionally,
∑

p�=0

a†
pa

†
−pa−pap ≤

∑

p�=0

a†
pN+ap = N2

+ − N+. (3.16)

Similarly,
∣∣∣
(
Φ,

[
(N − 1)−1vpU

(
a†

papa
†
0a0 + h.c.

)
U† − 2a†

pap

]
Φ

)∣∣∣

=
∣∣∣∣

(
Φ, (vpa

†
pap

(
N − N+

N − 1
− 1

)
+ h.c.)Φ

)∣∣∣∣ ≤ v0
(Φ, N+(N+ − 1)Φ)

N − 1
.

(3.17)

By combining these inequalities, we obtain the desired bound.

The main result of this section, Proposition 7, is a direct consequence of
the last two Lemmas.

4. Proof of Theorem 1

For brevity, we denote HN − EH(N) by H ′
N .

4.1. Lower Bound

Let ξ > 0 and consider i such that ei(HN ) − EH(N) ≤ ξ. Let G be the span
of the i + 1 lowest eigenvectors of H ′

N (their existence is shown in Theorem 2;
its proof relies on compactness arguments and does not exploit Theorem 1).
For any normalized Ψ ∈ G, (Ψ,H ′

NΨ) ≤ ei(H ′
N ). For Ψ ∈ G, let Φ = UΨ ∈

L2(Td) ⊗ F≤N
+ . With the choice ε =

√
ξ/N in Proposition 7 it follows, by

additionally invoking Lemma 4, that (Φ, UH ′
NU†Φ) ≥ (Φ,HFΦ) − Cξ3/2

√
N

for

some C > 0. Thus clearly ei(H ′
N )+Cξ3/2N−1/2 ≥ maxΨ∈G(Ψ, U†

H
FUΨ) and,

by the min–max principle,

ei(H ′
N ) + Cξ3/2N−1/2 ≥ ei(HF). (4.1)
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4.2. Upper Bound

For the upper bound, we use Fock space localization. It is quantified by the
following result [12,32].

Proposition 10. Let A > 0 be an operator on F with domain D(A) such that
for the projections P̄j : F → Hj we have P̄jD(A) ⊂ D(A) and P̄jAP̄i = 0
for |i − j| > σ for some constant σ > 0. Then, if f, g ∈ C∞(R,R≥0) with
f2 + g2 ≡ 1 and f(x) = 1 for |x| ≤ 1/2 as well as f = 0 for x > 1, then we
have the inequality

− Cσ3

M2

∞∑

j=0

P̄jAP̄j ≤ A − fMAfM − gMAgM ≤ Cσ3

M2

∞∑

j=0

P̄jAP̄j (4.2)

for all M ∈ N. Here, fM denotes the operator

fM :=
∞∑

j=0

f

(
j

M

)
P̄j (4.3)

and analogously for gM .

For the proof, which is based on an IMS-type argument, see [12, Appendix
B]. Proposition 10 can be used to quantify the error made by constraining the
states on Fock space to contain only up to M particles. From the Proposition,
we deduce

Lemma 11. We have

H
F − fMH

FfM − gMH
FgM ≥ − C

M2
(HF + C) (4.4)

for all M ∈ N.

Proof. We apply Proposition 10 for A = H
F−e0(HF). From Lemma 5 it follows

e0(HF) ≥ −C2/C1 and further that
∑

j P̄j(HF − e0(HF)P̄j = H
F
0 − e0(HF) ≤

C1C
−1
0 H

F+(C2C
−1
0 −e0(HF)), which leads to the right hand side of the claimed

inequality, with σ = 2. Using f2
M + g2

M = I, we have A − fMAfM − gMAgM =
H

F−fMH
FfM −gMH

FgM , which yields the left hand side of the desired result.

Lemma 12. Let Y ⊂ L2(Td) ⊗ F+ be the spectral subspace of HF correspond-
ing to an energy window [e0(HF), e0(HF) + ξ] for ξ > 0. Then, dim fNY :=
dim{fNΨ : Ψ ∈ Y } = dim Y for N large enough and ξ

N small enough.

Proof. Suppose dim fNY < dim Y , in which case there exists Φ ∈ Y with
‖Φ‖ = 1 such that fNΦ = 0. In particular, Φ = gNΦ. From Lemma 5, we thus
conclude that

e0(HF) + ξ ≥ (Φ,HFΦ) = (Φ, gNH
FgNΦ) ≥ C(Φ, gNN+gNΦ) − C ≥ CN − C,

(4.5)
which is a contradiction for large N and small ξ/N .
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Let us now take Y ⊂ L2(Td) ⊗ F+ to be the spectral subspace of H
F

corresponding to energies E ≤ ei(HF), and let 1 ≤ ξ ≤ N . The bound (4.1)
together with the upper bound of Lemma 3 implies that ei(HF) ≤ Cξ, and
hence also (Φ, (HF)kΦ) ≤ Cξk for k = 1, 2 for any Φ ∈ Y . By Lemma 11 and
Proposition 7 (with the choice ε =

√
ξ/N), we have

H
F ≥ fNUH ′

NU†fN+e0(HF)g2
N− C

N2
(HF+K)−C

fNN2
+fN√

Nξ
−C

√
ξ

N
fNN+fN .

(4.6)
By taking the expectation value in any normalized Φ ∈ Y , we obtain, by
Lemmas 5 and 6 and the simple inequalities Nk

+ ≥ fNNk
+fN for k = 1, 2, the

bound

Cξ

(
ξ

N

)1/2

+ ei(HF) ≥ (Φ, fNUH ′
NU†fNΦ) + e0(HF)(Φ, g2

NΦ). (4.7)

Since g2(x) ≤ 2x, we have g2
N ≤ 2N+

N ≤ CH
F+C
N by Lemma 5. For Y ∈ Φ,

we thus have (Φ, g2
NΦ) ≤ Cξ+C

N . Hence, 1 ≥ (Ψ, f2
NΨ) ≥ 1 − Cξ+C

N > 0 for
large N and ξ/N small enough. By Lemma 12 and the min–max principle, the
maximum over Y of the right hand side (4.7) is at least as large as ei(H ′

N ) +
O(ξ2N−1). This allows us to conclude that

Cξ

(
ξ

N

)1/2

+ ei(HF) ≥ ei(H ′
N ) (4.8)

for some C > 0, which is the desired bound.

5. Proof of Theorem 2

5.1. Existence of Eigenvectors

We shall now conclude the existence of eigenvectors of HN and H
F by showing

that these operators have compact resolvents. By the definition of compact-
ness and the spectral theorem, one easily sees that if A ≥ B > 0, then the
compactness of B−1 implies the compactness of A−1. Since the particles are
confined to the unit torus, for any ε > 0 the operators T + ε and P 2 + ε are
strictly positive and have purely discrete spectra with eigenvalues accumulat-
ing at infinity; therefore, they have a compact inverse. The same observation
applies to the operator

H0 :=
P 2

2M
+

∑

p�=0

epb
†
pbp (5.1)

since lim|p|→∞ ep = ∞ and infp ep > 0. Since HN ≥ T + P 2

2M , we conclude
that HN has compact resolvent, which, by the spectral theorem, implies that
the spectrum of HN is discrete and eigenvectors exist. On the other hand, by
completing the square, as in Lemma 5, it is easy to see that

H
F ≥ cH0 − d (5.2)
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for appropriate constants c, d > 0. The existence of eigenvectors of HF, along
with the fact that its spectrum is discrete, follows now from precisely the same
reasoning as above. This proves the first part of Theorem 2.

5.2. Convergence of Eigenvectors

Fix ξ > 0 and take any i such that ei(H ′
N ) ≤ ξ, uniformly in N . Recall that

from the proof of the lower bound in Theorem 1, we have
∑i

j=0 ej(HF) ≤
∑i

j=0(UΨj ,H
FUΨj) ≤ ∑i

j=0 ej(H ′
N ) + cN with limN cN = 0 for i fixed. The

upper bound (4.8) implies further that ej(H ′
N ) ≤ ej(HF)+ c′

N where again c′
N

goes to zero as N → ∞. Thus,

lim
N→∞

i∑

j=0

(UΨj ,H
FUΨj) =

i∑

j=0

ej(HF). (5.3)

We first show the convergence for ground states. Recall that Pi denotes the or-
thogonal projection onto the eigenspace of HF corresponding to energy ei(HF).
By writing UΨ0 = aN + bN , aN ∈ ranP0 and bN ⊥ aN , we have

(UΨ0,H
FUΨ0) ≥ ‖Ψ0‖2e0(HF) +

(
inf

Ψ∈kerP0
(Ψ,HFΨ) − e0(HF)

)
‖bN‖2. (5.4)

By using (5.3) for i = 0 as well as the fact that infΨ∈kerP0(Ψ,HFΨ) > e0(HF)
by the discreteness of the spectrum of HF, we have limN→∞ ‖bN‖ = 0, which
is the desired result for the ground states.

For higher eigenvectors, we apply a reasoning similar to the one in [33,
Sect. 5]. Let us take any k > 0 such that ek+1(HF) > ek(HF). Consider
the operator H̃ := H

F
P̃k + ek(HF)(1 − P̃k) where P̃k denotes the projection

onto the k + 1 lowest eigenvectors of the Fröhlich Hamiltonian H
F. H̃ acts

on L2(Td) ⊗ F+ and has spectrum {e0(HF), . . . , ek(HF)}. Therefore, by the
min–max principle,

k∑

i=0

(UΨi, H̃UΨi) ≥
k∑

i=0

ei(HF). (5.5)

Clearly, HF ≥ H
F
P̃k + ek+1(HF)(1 − P̃k) so that

k∑

i=0

(UΨi,H
FUΨi) ≥

k∑

i=0

ei(HF) + (ek+1(HF) − ek(HF))
k∑

i=0

‖(1 − P̃k)UΨi‖2,

(5.6)
which can be rewritten as

k∑

i=0

(UΨi, P̃kUΨi) ≥ k + 1 −
∑k

i=0

(
ei(HF) − (Ψi, U

†
H

FUΨi)
)

ek+1(HF) − ek(HF)
. (5.7)

Note that the last term converges to zero as N → ∞ by (5.3). Take now l
to be the largest integer such that el(HF) < ek(HF). The dimension of the
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eigenspace corresponding to ek(HF) therefore equals k − l. We have the simple
identity

k∑

i=l+1

(UΨi,PkUΨi) =
k∑

i=0

(UΨi, P̃kUΨi) +
l∑

i=0

(UΨi, P̃lUΨi)

−
k∑

i=0

(UΨi, P̃lUΨi) −
l∑

i=0

(UΨi, P̃kUΨi) (5.8)

(note the presence of both tilded and untilded operators). For the first two
terms, we can use (5.7) for a lower bound. Moreover, since the Ψi are or-
thonormal, we have

∑k
i=0(UΨi, P̃lUΨi) ≤ Tr P̃l = l +1. The last term in (5.8)

is trivially bounded from below by −(l + 1). We thus conclude that

k − l ≥
k∑

i=l+1

(UΨi,PkUΨi) ≥ k − l − CN − DN , (5.9)

where the quantities CN > 0,DN > 0 can be read off from (5.7) and vanish
as N → ∞, because of (5.3). Therefore,

∑k
i=l+1(UΨi,PkUΨi) → k − l, but as

each individual term in the sum is ≤ 1, we must have lim(UΨiPkUΨi) = 1 for
every eigenstate of H ′

N with energy ek(H ′
N ). This is precisely the convergence

result stated in Theorem 1, whose proof is now complete.
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