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Abstract
Determining the phase diagram of systems consisting of smaller subsystems ‘connected’ via a
tunable coupling is a challenging task relevant for a variety of physical settings. A general question
is whether new phases, not present in the uncoupled limit, may arise. We use machine learning
and a suitable quasidistance between different points of the phase diagram to study layered spin
models, in which the spin variables constituting each of the uncoupled systems (to which we refer
as layers) are coupled to each other via an interlayer coupling. In such systems, in general,
composite order parameters involving spins of different layers may emerge as a consequence of the
interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case
study, determining their phase diagram via the application of a machine learning algorithm to the
Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases
also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the
microscopic configurations would require additional preprocessing of the data fed to the
algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with
ferromagnetic couplings, including the phase described by a composite order parameter. For the
bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the
paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional
neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no
preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The
physical meaning of our results is discussed and compared with analytical data, where available.
Yet, the method can be used without any a priori knowledge of the phases one seeks to find and
can be applied to other models and structures.

1. Introduction

Classification of observations into separate categories is certainly one of the most important applications of
machine learning [1]. Successful examples range broadly from the detection of exotic particles in
experimental high energy physics [2] through learning human actions in movies [3] to dermatologist-grade
skin cancer classification [4]. The classification task is very often performed with artificial neural networks,
capable of learning even highly complex and elusive patterns in the data, both detectable and invisible to
humans. If multilayer image data is in question, convolutional neural networks (CNNs) perform
exceptionally well, mimicking human vision by inferring from small portions of the image at a time.
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Successful applications of CNNs outside the field of physics are extremely numerous, ranging from the
detection of human faces at multiple angles or in partially visible images [5] to the ImageNet large-scale
classification challenge [6], just to mention a few.

Translational invariance and adjustable size of the filters, which detect local correlations, make CNNs the
ideal candidates for phase diagram reconstruction. The phase diagram is typically reconstructed from a
large number of Monte Carlo (MC) snapshots. At first, research efforts revolved around supervised learning
on the MC snapshots [7–14], later shifting to fully unsupervised learning on a chosen observable, such as
non-local correlators whose behavior is modified by the presence of phase transitions [15]. A number of
methods are capable of predicting phase transitions by extrapolation outside the parameter range they have
been trained on [16–21].

Our goal is to use machine learning techniques to characterize the phase diagram of coupled spin
models. We refer to them as layered spin models since it is natural to think of the coupling between
two-dimensional spin models considering them separately, say in different layers and involving different
spin variables, subsequently turning on the interlayer coupling. The simplest structure of this kind is a
bilayer. It is clear that, depending on the form and the strength of the coupling, the phases of the uncoupled
models can be altered and new phases, impossible without the interlayer coupling, may emerge. Therefore,
it becomes important to devise a general approach that can detect the presence of phases induced by the
interlayer coupling.

In this paper we introduce a CNN-based approach capable of fully unsupervised learning of phase
diagrams with the network fed exclusively with raw MC snapshots without any a priori knowledge about
relevant observables or order parameters. We note that complementary approaches to the unsupervised
learning problem have been pursued using principal component analysis and support vector machines
[22–27], deep autoencoders [28] or discriminative cooperative networks [29]. However, here we show that
the task of fully-unsupervised phase diagram reconstruction can also be performed using CNNs, allowing
one to apply to physical problems a number of techniques developed in the field of computer vision, a field
in which CNNs represents the golden standard.

Our approach is applied to the reconstruction of the phase diagram of layered spin models. Our
motivation for such an investigation is three-fold. On one side, when two or more models are coupled, new
phases may emerge as a result of the presence and of the form of the coupling. Consider, for instance, two
magnetic systems with a tunable coupling between each other and suppose that when the coupling is zero,
each system separately undergoes a conventional ferromagnetic phase transition [30]. For finite coupling,
on the other hand, the order parameter may involve, in the general case, some non-trivial combination of
spins of both systems. Let us consider a specific example, i.e. the Ashkin–Teller model, consisting of two
square-lattice Ising models with spin variables σ and τ coupled via a term of the form σσττ [31, 32]. When
the interlayer coupling between the variables σ and τ is zero, the phase diagram of the model is
characterized only by the order parameters 〈σ〉 and 〈τ 〉. On the other hand, when the interlayer coupling is
large enough with respect to the intralayer term, a new non-trivial phase with a composite order parameter
〈στ 〉 emerges, even when all couplings are ferromagnetic. Further examples of the occurrence of novel
order due to the coupling between different layers include the so-called ‘metallic superfluid’ phase [33, 34],
as well as the recently-reported BKT-paired phase in two coupled two-dimensional XY models [35]. At last,
let us consider again two square-lattice Ising models with spin variables σ and τ , now coupled via a term of
the form στ : is the phase with composite order parameter 〈στ 〉 present or not? As discussed in literature for
the bilayer configurations and reviewed below, we expect that such phase should not exist. Since the phase
diagram of the 2D Ashkin–Teller model and of some its variations can be determined analytically [32, 36],
and similarly the Ising model is a classical workhorse of statistical mechanics [30, 37], they provide an ideal
benchmark to look for composite order parameters in an unsupervised way. One could ask whether and
what new composite order parameters emerge in multilayer configurations, such as the trilayer one.
Although in the two-variable (or, in our language, bilayer) Ashkin–Teller model the composite order
parameter can be easily recognized, a more complex spin model with several layers, with both short- and
long-range interlayer couplings, could be much more challenging to be addressed with simple physical
considerations. Many, possibly competing, composite order parameters may be present and determining the
one which actually breaks the symmetry and generates a novel phase is a highly non-trivial task. From this
point a view, an unsupervised approach able to correctly reproduce the phase diagram of layered models,
regardless of the nature of underlying order parameters, is highly desirable.

Our second motivation is that layered models emerge in a wide range of physical situations. Among
them, the bilayer structure in which two two-dimensional systems are coupled has been studied in a
number of cases, ranging from graphene [38] to ultracold dipolar gases [39]. Another major example is
provided by layered superconductors, that can occur naturally or be artificially created. Among the former
class, of primary importance are compounds of transition-metal dichalcogenides layers intercalated with
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organic molecules [40] and cuprates [41]. Examples of artificial structures are alternating layers of graphite
and alkali metals [42] or samples with layers of different metals [43]. Neutral layered superfluids can be
engineered with quantum gases by using a deep optical lattice in one spatial direction with ultracold
fermions [44] or bosons [45]. It is therefore important to develop general approaches capable of dealing
with coupled interacting systems. In particular, given the importance of layered physical systems and their
ubiquitous presence in a variety of contexts, one may think for instance of layered superconductors, a
general approach to individuate their phase diagram—once that one is able to study the uncoupled
counterpart—would provide an important tool of investigation.

Finally, our last motivation is purely methodological and inherent to machine learning. Indeed, in
layered models one has a certain degree of arbitrarity in the way the MC data to be analyzed are fed to the
neural networks, e.g. one can provide the data in each layer separately, or retaining their spatial structure
such as columns and ordering them correspondingly. As an example, in the Ashkin–Teller model one can
provide numerical algorithms either with all the σi’s and then all the τ i’s, or the pairs (σi, τ i) according to
the index i labeling the position of the spins in the layers. This arbitrarity also reflects itself in the fact that
an order parameter which can be clearly identified with a choice can be non-trivial, or ‘hidden’, with
another choice. A special class of hidden order parameters are composite order parameters, i.e. parameters
defined across multiple layers of a layered system. To use again the Ashkin–Teller model as an example, the
order parameter 〈στ 〉 is immediately identified when the choice of the pairs (σi, τ i) is done, but not when
the data is provided layer by layer. Therefore a natural question is how to identify phase transitions in
coupled or layered models driven by order parameters which may be hidden by the codification of the data
to be provided to the machine learning algorithm.

2. Machine learning phase transitions in classical spin models

Let us consider a general case of a spin system whose Hamiltonian is defined by two parameters, J and K.
We aim to devise a procedure to depict the phase diagram in the K–J plane. To this extent we discretize a
portion of the K–J plane on a grid with steps ΔJ and ΔK. For each point on the grid we generate a number
of uncorrelated MC snapshots using standard algorithms [46–48]. Unless otherwise specified we shall work
on a 32 × 32 × Nl square lattice, Nl being the number of layers to be specified later, and we shall generate a
number of 600 snapshots for each point in the phase diagram. Periodic boundary conditions are used on
each layer throughout all the simulations.

The training of the CNN—see appendix A for the details of the architecture—attempts at learning to
distinguish snapshots belonging to the two different points, (J1, K1) and (J2, K2), in the phase diagram. In
order to carry out this plan, at first, we divide the data in a standard way, taking a fraction of the
snapshots—the 80%—from each of the two points in the phase diagram as training set, while keeping the
remaining 20% as validation set. Then, we train the network on the training data and quantify the
classification accuracy on the validation set. Given a successful training, one of the two neurons on the
output layer will yield a higher value for an input configuration belonging to the validation sample at the
point (J1, K1), while a higher value of the second neuron will correspond to a configuration sample at the
point (J2, K2). Accordingly, the accuracy ϕ of the training can be quantified by the ratio of correctly labeled
samples Ns over the total number of configurations Ntot in the validation set [15]

ϕ =
Ns

Ntot
. (1)

Intuitively, when the training fails, the two points present nearly identical features, thus belonging to the
same phase, and the accuracy of the training will be low, ϕ ≈ 0.5. On the other hand, if it succeeds, the two
points should belong to two different phases and the fraction ϕ of correctly labeled examples from the
validation set will be large, ϕ ≈ 1. It is worth to stress that the labels attributed from the network to any
MC configuration after the training do not correspond to the physical phases present in the system. Indeed,
the algorithm is unsupervised and these are unknown. Each snapshot is just labeled to mark whether it
originates from an MC simulation with couplings (J1, K1) or (J2, K2). In particular, regardless of the number
of phases in the system—even this information is unknown to the algorithm—there will be exactly two
labels here. Based on the discussion above, the variable ϕ, which quantifies the portion of the validation set
correctly labeled by the network, represents the accuracy of the algorithm in distinguishing the two different
points (J1, K1) and (J2, K2) of the phase diagram. Then, we can introduce the following quasidistance9

9 We use the term ‘quasidistance’ since it does not respect triangular inequality. However, this fact plays no role as far as all the
applications in the present paper are concerned.
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between the two phase diagram points (J1, K1) and (J2, K2):

d((J1, K1), (J2, K2)) = 2(ϕ− 0.5)Θ(ϕ− 0.5), (2)

where Θ(x) is the heavyside step function, preventing d from assuming negative values. Perfect
discrimination ϕ = 1 corresponds to d = 1, while perfect confusion ϕ = 0.5 corresponds to d = 0.

We feed the raw MC snapshots directly to the CNN, with spin down encoded as 0 and spin up encoded
as 1, no preprocessing applied. The network architecture is optimized for the task of classifying two phases:
after convolutional and fully connected layers the final layer consists of two softmax output neurons
outputting the labels. The convolutional filters span both layers, which is the feature enabling the network
to learn composite order parameters. Hence, both layers are simultaneously fed into the network. Further
technical details on the network architecture and training can be found in the appendix.

At last, we make use of the distances defined in equation (2) to construct a field u(J, K) defined on the
phase diagram through its finite-difference lattice gradient

∇u(J, K) ≡
(

(u(J +ΔJ, K) − u(J, K))/ΔJ
(u(J, K +ΔK) − u(J, K))/ΔK

)
≡

(
d((J +ΔJ, K), (J, K))/ΔJ

d((J, K +ΔK), (J, K))/ΔK

)
. (3)

Clearly ∇u will be constant in regions of the phase diagram belonging to the same phase, since we expect
that the difficulty of telling first neighbors apart should be uniformly quite high. On the other hand, we
expect the value of ∇u to abruptly change in the vicinity of a phase transition, suggesting that the phase
diagram should be naturally characterized by looking at the finite-difference lattice Laplacian

∇2u(J, K) ≈ 1

(ΔJ)2

n∑
i=0

(−1)i
(n

i

)
u(J + (n/2 − i)ΔJ), K )

+
1

(ΔK)2

n∑
i=0

(−1)i
(n

i

)
u(J, K + (n/2 − i)ΔK) ) ,

(4)

with the n = 2, n = 3 and n = 4 cases corresponding to a 5-point, 9-point or 13-point stencil, respectively.
The stencil includes (n − 1) nearest neighbors in the J and K directions. We stress that the summations can
be rearranged so that they involve only differences of the u field evaluated between first, second and third
neighbors, that can in turn be expressed in terms of the quasidistance d. From the discussion above, it is
clear that a sudden rise in the value of ∇2u means that the CNN can distinguish with increased precision
arbitrarily close points in the phase diagram, thus signaling a phase transition. We anticipate that including
high-order finite-differences besides the obvious 5-point stencil taking into account first-neighbors stencil
considerably increases the quality of the reconstructed phase diagram. This point will be analyzed in detail
later. Moreover, using the stencil as opposed to always just comparing two neighboring points of the phase
diagram immunizes the algorithm in the case of very dense grid. In such a case, it would be progressively
difficult to find neighboring points belonging to different phases. With our approach, we are assured that
using a large enough stencil will circumvent this problem for any grid density.

Following the previous discussion, the quasidistance d((J1, K1), (J2, K2)), which enters the definition in
equation (2), quantifies the difference between two points in the phase diagram. Then, the field u(J, K)
encodes overall information over the similarity between the distribution functions, which generated the
configurations at the point (J, K) and its neighbors. As such, the introduction of the quasidistance d
presents some analogies with the fidelity approach used to detect quantum phase transitions [49]. In the
latter, the fidelity quantifies the similarity between two different (but close in the phase diagram)
ground-state wavefunctions and its derivative abruptly changes in correspondence of a quantum phase
transition. Hence, for the classical case we are considering, the quasidistance d provides a counterpart of the
fidelity. Consequently its derivative, connected to the field u(J, K) via equation (3), provides a counterpart
of the derivative of the fidelity.

Calculation of ∇2u(J, K) for the entire phase diagram is by far the most time-consuming step of the
algorithm. Using N nearest-neighbours, i.e. [4(N − 1) + 1]-point stencil, it requires M · 4(N − 1)
calculations of the quasidistance. There,

M =
Jmax − Jmin

ΔJ
· Kmax − Kmin

ΔK
(5)

is the total number of discretized (J, K) pairs in the phase diagram. We now briefly comment more on the
physical relevance of the u field. A second-order phase transition, within the scheme we just described, is
identified through the non-analytical behavior—in the continuous limit—of ∇2u. The concept we
introduce is general: ∇u correspondes to a similarity measure between different points in the parameter
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Figure 1. An overview of the proposed method. (a) The CNN is able to assess the quasidistance which determines whether the
phase diagram points (J1, K1) and (J2, K2) belong to the same or different phase. This is done by attempting to learn to
distinguish between individual MC snapshots with orange and blue visualizing training and validation MC snapshots,
respectively, see main text. (b) Using distances between first, second and third neighbors, one can evaluate the Laplacian across
the phase diagram. (c) Large values of the Laplacian signal the presence of phase transition. Plotting the Laplacian reconstructs
the phase diagram, which is now parametrized by the dimensionless combinations βJ and βK, with β the inverse temperature.
Here we show the reconstructed phase diagram for the square-lattice Ising bilayer model with the transition between ordered (O)
and unordered (U) phases, see main text. The solid red diamond and the dashed line show the analytical limits for the βK = 0
and βK →∞ cases, derived in the main text. The hollow diamonds and the dash-dotted line show the transition point also
accounting for the finite size of the system across the whole phase diagram and are derived using a conventional approach from
the susceptibility peak in the raw MC data.

space and ∇2u, then, measures an abrupt change in this similarity. Different models might lead the CNN to
establish the similarity measure in different ways. The generality of our approach also means that it can, in
principle, recognise first-order and continuous phase transitions equally well.

In conclusion of the present section, we compare our scheme with other related approaches. As opposed
to other machine learning schemes, in the present work we do not need the evaluation of any observable
quantity to establish a distance [15], rather directly relying on the MC snapshots. Moreover, as opposed to
other approaches [15] the scheme we introduce in this paper fully takes advantage of the two-dimensional
nature of a two-parameter phase diagram, as the local information is reconstructed by taking into account
neighbors in all directions. Extensions to three- or higher-dimensional phase diagrams are straightforward
[50]. Finally, our approach requires only the evaluation of a fixed number of neighbors for each point in the
phase diagram, ensuring that the computational effort required for training scales linearly with the number
of points in the discretized phase diagram.

3. Multilayer Ising models

We now use the framework described in the previous section to characterize the phase diagram of different
coupled spin models.

Let us start from a bilayer Ising system, described by the following Hamiltonian with a quadratic
coupling term (sometimes referred to as the Yukawa coupling):

Hbilayer = −J
∑
〈ij〉

σiσj − J
∑
〈ij〉

τiτj − K
∑

i

σiτi, (6)

where σi, τ i = ±1 are Ising variables on two-dimensional square lattices, whose sites are denoted by the
indices i, j. The sums in equation (6) are over nearest-neighbor sites. When K = 0, the system reduces to
two uncoupled Ising models, having a phase transition at the Onsager critical point (βJ)c = ln(1 +

√
2)/2

[37, 51], β being the inverse temperature. This critical point is shifted by the presence of a finite interlayer
coupling K. The resulting Ising critical line separating the paramagnetic and ferromagnetic phases as a
function of K has been studied in the literature [52–54]. It is clear that the bilayer system (6) is the classical
counterpart of two coupled quantum Ising chains in a transverse field, a system that has been studied both
in relation to its spectrum, phase transitions and possibility to determine an integrable line in the space of
parameters [55–58]. The classical bilayer system and the quantum coupled chains can be also related to
each other by an exact mapping.

From our point of view, the model described by equation (6) is an excellent starting point for our
investigations, especially in order to check the existence of a composite order parameter and its relation to
the phase diagram. It is now natural to parametrize the phase diagram in term of the dimensionless
combinations βJ and βK, discretizing it for values of βJ ∈ [0, 0.5] and βK ∈ [0, 1.4], with discretization
steps ΔβJ = ΔβK = 0.01. We then apply the phase diagram reconstruction procedure described in the
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Figure 2. Reconstructed phase diagram for the square-lattice Ising trilayer model, showing a phase transition between an
unordered, high-temperature phase (U) to an ordered, low-temperature phase (O). Note that as the interlayer interaction βK is
increased, the critical temperature decreases from the analytic limit (βJ)c = ln(1 +

√
2)/2 ≈ 0.44, marked by a red solid

diamond, to the strong-interlayer-coupling limit βK →∞ where (βJ)′c = (βJ)c/3, marked by a red, dashed line. The hollow red
diamonds and the dash-dotted line are obtained from the susceptibility peak in the raw MC data using a conventional approach
and show the transition point across the whole phase diagram, while also accounting for the finite size of the system.

Figure 3. Reconstructed phase diagram for the square-lattice Ashkin–Teller model. Our approach identifies three phases, in
agreement with the theory of the Ashkin–Teller model. The red, blue yellow and green solid diamonds show
analytically-determined phase transition points at specific limits, see main text, whereas the hollow cyan diamonds show the
transition point across the whole phase diagram, also accounting for finite-size scaling, and are obtained by analyzing the
susceptibility peak in the raw MC data using a conventional approach. The insets show representative configurations of the σ, τ
spins and of the ‘composite’ spin στ , for each phase: note that the transition between phase II and phase III does not correspond
to any apparent difference in the σ and τ layers that we feed to the CNN. We stress that the στ ‘composite’ variable, marked in
red, is not fed to the CNN.

previous section to precisely determine the phase boundaries in the βK–βJ phase diagram, shown in
figure 1(c). According to analytical results for an infinite square lattice, the phase transition in the
uncoupled βK = 0 case should occur at (βJ)c ≈ 0.44; a solid diamond marks this result in figure 1(c).
Hollow red diamonds in the same phase diagram are derived using a conventional approach from the
susceptibility peak in the raw MC data, therefore marking the critical point also accounting for the finite
size (32 × 32 × 2) of the system, across the whole phase diagram. Both the machine-learning reconstruction
of the phase diagram and the hollow red diamonds show that the critical temperature gradually decreases to
the strong-coupling critical temperature (βJ)′c = (βJ)c/2. This result is marked by a red dashed line. The
width of the peak is essentially, again, due to the the finite-size of the lattice used for MC simulations,
whose snapshots we feed to the neural network. The errors of our method on the determination of
transition points are discussed in appendix B. The result is that it appears that only two phases are found,
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with order parameter 〈σ〉 = 〈τ 〉. From our treatment of data we cannot determine the behavior of the order
parameter inside the two phases, whose study would be an interesting future continuation of the present
results.

Next, we consider a trilayer system, whose Hamiltonian is a natural extension of the one of equation (6):

Htrilayer = −J
∑
〈ij〉

σiσj − J
∑
〈ij〉

τiτj − J
∑
〈ij〉

υiυj − K
∑

i

σiτi − K
∑

i

τiυi, (7)

and the new variable υi is also an Ising spin. This is the first non-trivial example, and of course
representative of properties of the multilayer Ising model with Yukawa coupling. The central natural
question is whether a composite order parameter emerges. Moreover the model of equation (7) is
interesting since it paves the way to the investigation of the N layers case, which shall be trivial with the
method presented here. Indeed the N layer case may serve to investigate how the (three-dimensional) limit
of infinite layers is retrieved, an issue in the context of layered models, see e.g. reference [59].

The investigation of the model described by equation (7) follows the same line as the one of the bilayer
case, we are able to reconstruct the phase diagram as shown in figure 2. In the βK = 0 case, again, one
recovers the critical temperature of the square-lattice Ising model, marked by a solid red diamond. Then, as
βK is increased, one recovers the strong-interlayer-coupling critical temperature that in this case is
(βJ)′′c = (βJ)c/3, marked by a red dashed line. As in the bilayer case, hollow red diamonds mark the
transition point, as derived from the susceptibility peak in the raw MC data, using a conventional approach.
The main result exhibited in figure 2 is that no composite order parameter appears even for the trilayer case.
Therefore, our technique has been able to correctly recover the phase diagram of the bilayer Ising model,
where we do not expect any additional order to appear [60, 61], while it also predicts the same picture for
the trilayer case, for which no previous expectation exist up to our knowledge. The generalization to the
N-layer case shall be straightforward, but more numerically demanding, while based on the present results
no additional phases are expected to appear. Therefore, in the following we are going to investigate a
different case where a composite order parameter appears by construction.

4. Reconstructing composite order parameters: the Ashkin–Teller model

We now turn to the square-lattice Ashkin–Teller model, described by the following Hamiltonian

HAT = −J
∑
〈ij〉

σiσj − J
∑
〈ij〉

τiτj − K
∑
〈ij〉

σiσjτiτj (8)

with σi, τ i = ±1. Compared to Hamiltonians (6) and (7) one sees that the coupling is now quartic in spins.
Since in the Ising model there are only two scaling fields relevant in renormalization group sense [30, 37],
the magnetization and the energy, one sees that in the models (6) and (8) one has basically the two natural
ways of having respectively magnetization–magnetization and energy–energy couplings, higher order
coupling terms being irrelevant. The Ashkin–Teller model is also related to the four state planar Potts
model, and several variations of it, also in three dimensions, have been investigated [62].

The Ashkin–Teller model features a rich phase diagram, and remarkably in two dimensions can be
studied analytically [32, 36]. Here we consider the case of ferromagnetic couplings, J, K � 0. It is known
that three different phases exist [32]. Besides an ordered phase, denoted by I, characterized by
〈σ〉 �= 0 �= 〈τ 〉 and a disordered phase, II, characterized by 〈σ〉 = 〈τ 〉 = 0 one also finds the peculiar phase
III in which the single spins σ and τ are disordered, whereas a composite order parameter given by their
product is ferromagnetically ordered, i.e. 〈στ 〉 �= 0.

Whereas the previous investigation of Ising-like models makes us confident that the ML procedure we
have introduced is able to correctly characterize the transition between phase I and phase II, it is not a priori
clear that phase III can be correctly identified. As shown in the small inset of figure 3, MC snapshots show
disordered spins both in phase II and in phase III, the transition being determined by the στ composite
variable, that we do not directly feed to the CNN. In order to learn the existence of the II–III phase
transition the CNN must learn to reconstruct the composite order parameter. We find that our framework
successfully performs this task, owing to the convolutional filters which are convolved in 2D spanning
across the layers and are able to learn even elusive interlayer correlations.

The reconstructed phase diagram of figure 3 shows that indeed our approach is able to correctly learn
the phase transitions in the ferromagnetic Ashkin–Teller model. Whereas the transition line corresponding
to the magnetization of σ and τ , as separated variables, corresponds to a prominent peak, whose width is
essentially determined by finite-size effects, the line corresponding to the magnetization of the composite
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Figure 4. Signal-to-noise ratio for the Ising bilayer as a function of the number of epochs (upper panel), of the number of
samples in the training set (middle panel) and of the number of convolutional filters (lower panel). The dashed lines guide the
eye toward the highest attainable signal-to-noise ratio in each dataset.

στ order parameter corresponds to a smaller peak, displaying that the characterization of this transition
line is more demanding to the CNN, but still possible.

We can compare the phase diagram we obtain with some exact results. In the K → 0 the model reduces
to a square-lattice Ising model with coupling constant J, with critical temperature
(βJ)c = ln(1 +

√
2)/2 ≈ 0.44 [37, 51], whereas in the K →∞ limit the model reduces to a square-lattice

Ising model with coupling constant 2J and critical temperature (βJ)′c = ln(1 +
√

2)/4 ≈ 0.22. Finally for
J = 0 the system again undergoes an Ising-like phase transition for the composite order parameter, at
(βK)c = ln(1 +

√
2)/2 ≈ 0.44. These three points are marked by a red, green and blue solid diamond,

respectively, in the phase diagram of figure 3, showing a very good agreement between the analytical results
and the reconstructed phase diagram, even in the latter case when the composite order parameter στ drives
the transition. These three diamonds, showing the results of analytic calculations, are complemented by
hollow cyan diamonds, marking the critical point as calculated using a conventional approach from the
susceptibility peak in the raw MC data across the whole phase diagram, thus also accounting for the finite
size of the system. Finally, the yellow solid diamond marks the bifurcation point as determined analytically
in reference [32]; we attribute the difference with respect to the bifurcation point in our reconstructed
phase diagram to finite size effects. We also mention that the critical lines separating the different phases are
retrieved with a precision up to ∼20–30%, except for vanishing βJ. Again we attribute this to finite size
effects; proceeding as extensively discussed in the literature [1] one could obtain a quantitative agreement
on the location of the critical lines. Here, our emphasis is on the possibility of retrieving the phases with
composite order parameters and to ascertain their existence, as we also did for the trilayer Ising model.

5. Scaling properties and robustness of the approach

Our results show that with the network and learning parameters that we used we were able to obtain a
phase diagram of quality high enough to visually identify different phases. In addition, in this section we
characterize our method by quantifying signal to noise ratio (SNR) and studying its behavior when essential
parameters are changed. We define the SNR as

SNR ≡ log10

( 1
N

∑
i(xi − ν)2

ν2

)
, (9)

xi being the values of the ∇2u field of equation (4), the summation extending over a region containing N
values, ν being the ‘noise’, i.e. the average value of ∇2u in a subset of the region far away from a phase
transition. We evaluate the SNR for the Ising bilayer on a strip centered on βK = 1.1, exhibiting a sharp
phase transition at βJ ≈ 0.26 as clear from figure 1. At first, we vary the number of training epochs,
observing that the SNR is rapidly increasing before reaching a maximum value at around 5 epochs of
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training. This indicates that further training brings no benefit while providing a risk of overfitting,
justifying our early-stopping approach. Secondly, we vary the number of samples in the training set,
showing a rapid increase in the SNR before reaching a plateau at about 400 samples, justifying our choice of
using a slightly larger number (600) of samples in the training set. Lastly, we vary the number of
convolutional filters in the CNN. Again, the general upwards trend shows that a larger number of
convolutional filters helps in enhancing the quality of the reconstructed phase diagrams. However, we stress
that in this latter case the SNR is quite high in the whole parameter region we consider. The lowest number
of convolutional filters we consider (3) is already enough for achieving a good reconstruction of the phase
diagram and a large SNR value. These analyses are shown in figure 4.

We have also analyzed how the reconstructed phase transition is affected by the dimension of the stencil
in equation (4). Using a 5-point, 9-point or 13-point stencil we have obtained SNR values of −1.36 dB,
0.38 dB and 3.88 dB, respectively. This confirms that the approach we are introducing takes indeed great
advantage from the two-dimensional structure of the phase diagram, and information from second- and
third-nearest neighbors is being used to sharply characterize the phase transition.

6. Conclusions

As shown for layered spin models such as the multilayer Ising and Ashkin–Teller models, our work
demonstrates that ML approaches are able to learn the order parameter driving a phase transition in layered
models, also when this parameter is not immediately apparent from the snapshots without preprocessing.
This is directly possible, introducing a suitable quasidistance between different points of the phase diagram,
thanks to the convolutional filters which are, without any a priori knowledge, capable of learning even
involved algebraic operations that uncover the order parameters from the data. A brief discussion of the
analogies of the introduced quasidistance with the fidelity approach used to detect quantum phase
transitions is presented. Our work paves the way to the use of ML approaches to investigate the properties
of systems of increasing complexity and to characterizing phases of matter described by multiple, possibly
non-local order parameters, as the convolution operation can naturally construct features from
non-neighbouring spin variables. More generally, the universal approximation theorem [63] ensures that a
neural network can, at least in principle, learn to recognize arbitrarily complex order parameters. In
particular it would be very interesting to study the multilayer Ising model with an increasing number of
layers, the three-dimensional Ashkin–Teller and the trilayer Ahkin–Teller in two dimensions, which can be
studied with the techniques introduced in the paper. Non-local couplings among the layers could be added,
which would lead to non-local, more composite, operators. These results should be compared with the
identification of hidden order done using non-ML techniques [64]. Also, the present approach may be used
for other cases in which the identification of the order parameters is not straightforward [65–67]. Even if
our approach has been devised to deal with coupled spin models and can applied to different geometrical
configurations, it is not clear a priori that it would succeed in other more complicated cases of coupled
interacting systems, such as multilayer configurations of interacting bosons and fermions or bilayer
quantum Hall systems. Of course, in order to study generically coupled models one needs to have an
efficient algorithm to simulate the uncoupled systems. Nevertheless, we think the present work provides a
methodological basis, highlighting the effect of interlayer coupling on the macroscopic properties and
phases of coupled systems.

Naturally, the approach we introduced could also be extended in the future to characterize quantum
models, or classical spin models with competition between short- and long-range interactions [68–70], or
more involved spin models such as the XY model [14, 71–79], discretising the continuous degrees of
freedom [74]. We expect that by an appropriate choice of the sizes and strides of the filter in the
convolutional layer one could characterize antiferromagnetic order parameters, non-local order parameters
and exotic order parameters, such as nematic and smectic phases. In this context, current experiments on
fermionic dipolar atoms [80, 81] promise to open a new window in the physics of competing long-range
and short-range interactions [82], clearing the path for the comprehension of modulated phases in strongly
interacting quantum systems.

The presence of spatially ordered structures is a leitmotiv for long-range and layered systems such as
ultra-thin magnetic films [83–85], iron-based superconductors and cuprates [86, 87]. The pattern structure
normally depends on several experimental conditions and it produces a particularly rich phase diagram.
Most of the common features occurring in stripe forming systems and modulated phases remain obscure
due to the challenges posed by the complicated order parameters, which occur in these cases [88–91]. The
ML technique introduced in the present paper may serve as an essential prove to finally uncover the
complexity of such phases.
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Figure A1. Visualization of the CNN used. Lower labels describe the layer operations. Upper labels describe the shapes of tensors
before and after each operation.

Our results pave the way for fully automated study of phase diagrams of more general and complicated
spin systems. An exciting open problem lying in the realm of so-called explainable artificial intelligence [92]
is whether machine learning techniques could not only learn to separate phases differing by a ‘hidden’ order
parameter, but also identify that parameter. Another natural development of the present work is to use our
fully-unsupervised technique to learn directly from experimental data [93–95]. Finally, it would be
interesting to extend the results presented in this paper according to the variational procedure discussed in
reference [96].
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Appendix A. Details on the architecture and on the training of the convolutional
neural network

The first layer is a convolutional layer with 32 filters of size 2 by 2 and unit stride in both directions. Then
the ‘max pooling’ [97] operation is applied with pool size 3 by 3, stride 2 in both directions and same
padding. The results is then fully connected to a hidden layer with 100 neurons. The binary classification is
finally done in the output softmax layer with two neurons. Both the convolutional and hidden fully
connected layers are activated by rectified linear units [98]. The network is visualized in figure A1. We train
the network by minimizing the cross-entropy using the Adam [99] adaptive optimization algorithm with 7
epochs and minibatch size 25. Such choice leads to a fast training—the amount of training is much lower
than in computer vision applications, routinely requiring hundreds or thousands of epochs—as well as
prevention of overfitting by early stopping, hence eliminating the need for other measures such as dropout
[100]. We use the following Adam algorithm parameters: learning rate 0.001 and standard choices of
β1 = 0.9 and β2 = 0.999. We use Tensorflow [101] for the implementation.

Appendix B. Finite-size scaling and the error of the proposed method

The phase transitions in the systems we consider have a certain ‘natural’ width, due to the finite size of the
lattice in the underlying MC simulations; moreover, we expect our approach to introduce an additional
width when determining the transition point. In order to verify this assumption and to investigate the
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Figure B1. FWHM of the phase transition in the Ashkin–Teller model for βK = 0.7, as a function of the inverse lattice size, for
four different lattice sizes (L = 16, 24, 32, 48). The red squares show the FWHM of the peak in magnetic susceptibility in the MC
data, whereas the blue squares show the FWHM of the Laplacian peak obtain from our ML approach; errors are estimated by
identifying the phase transition 10 times. The dashed lines guide the eye.

accuracy of our method, we analyzed the natural width associated to the phase transition in the
Ashkin–Teller model for βK = 0.7, determining it by looking at the peak of magnetic susceptibility directly
from MC simulations, and determining its width through the full width at half maximum (FWHM). We
compare it with the FWHM of the Laplacian peak we reconstruct from our machine learning approach. The
results are shown in figure B1; the FWHM of both the magnetic susceptibility (red squares, the red dashed
line guides the eyes) and machine learning Laplacian (blue squares, the blue dashed line guides the eye)
obey the same ∝1/L scaling with respect to the lattice size L. The constant offset between the two datasets
can be understood, as anticipated, as the additional error introduced of our method, due to the
discretization of the parameter space, and due to some intrinsic uncertainty associated to the machine
learning procedure.
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