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Abstract

We consider the Fröhlich polaron model in the strong coupling limit. It is well-
known that to leading order the ground state energy is given by the (classical)
Pekar energy. In this work, we establish the subleading correction, describing
quantum fluctuation about the classical limit. Our proof applies to a model of a
confined polaron, where both the electron and the polarization field are restricted
to a set of finite volume, with linear size determined by the natural length scale of
the Pekar problem. © 2020 the Authors. Communications on Pure and Applied
Mathematics is published by the Courant Institute of Mathematical Sciences and
Wiley Periodicals, Inc.
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1 Introduction
The polaron model was introduced by Fröhlich [10] as a model of an electron

interacting with the quantized optical modes of a polar crystal. It represents a
simple and well-studied model of nonrelativistic quantum field theory, and we refer
to [1, 8, 11, 23, 29] for properties, results, and further references.

In the strong coupling limit � ! 1, the model allows for an exact solution,
in the sense that the ground state energy asymptotically equals the one given by
the Pekar approximation [27], which amounts to a classical approximation to the
quantum field theory. This was first shown by Donsker and Varadhan [5] using a
path integral formulation of the problem. (See also [24, 25] for recent work on the
construction of the Pekar process [29].) Later the result was improved by Lieb and
Thomas [20, 21], who provided a quantitative bound on the difference.

We are interested here in the subleading correction to the classical (Pekar) ap-
proximation. It was predicted in the physics literature (see [2, 3, 15, 30] and refer-
ences there) that this correction results from quantum fluctuations about the clas-
sical limit, and is O.��2/ smaller than the main term. It can be calculated by
evaluating the ground state energy of a system of (infinitely many) harmonic os-
cillators with frequencies determined by the Hessian of the Pekar functional. This
result is verified rigorously in this paper, by giving upper and lower bounds on the
ground state energy of the Fröhlich polaron model that establish this subleading
correction. Our analysis applies to a model of a confined polaron, where both the
electron and the polarization field are restricted to a finite volume (with linear size
of the natural length scale set by the Pekar problem).

The confinement breaks translation invariance, which removes zero modes oth-
erwise present in the Hessian of the Pekar functional, and avoids having to localize
the electron on the Pekar scale, which simplifies the problem. The singular ultravi-
olet behavior is unaffected by the confinement, however, and represents one of the
main technical challenges. A key ingredient in our analysis is a multiple use of the
commutator method of Lieb and Yamazaki [22], combined with Nelson’s Gross
transformation [14, 26].

2 Model and Main Results
2.1 The Model

For � � R
3 open, let �� denote the Dirichlet Laplacian, and let vx be the

function vx. �/ D .���/�1=2.x; � /. The model we consider is defined by the
Hamiltonian

(2.1) H WD ��� � a.vx/ � a�.vx/CN
in L2.�/
 F , where F is the bosonic Fock space over L2.�/. The creation and
annihilation operators satisfy the commutation relation

�a.f /; a�.g/� D ��2hf jgi for f; g 2 L2.�/
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with a parameter � > 0. The field energy is given by the number operator N DP
j a

�.'j /a.'j / for some orthonormal basis f'j g inL2.�/with spectrum �.N/ D
��2f0; 1; 2; : : :g. We are interested in the ground state energy of H as � !1.

We note that the expression (2.1) is somewhat formal, since vx 62 L2.�/ and
hence a�.vx/ is not densely defined. The operatorH can be defined with the aid of
its corresponding quadratic form, however. It is in fact well-known that H defines
a self-adjoint operator on a suitable domain; see [13] or Section 6 below.

Remark 2.1. By rescaling all lengths by �,H is unitarily equivalent to the operator
��2�H with �H D ���=� �

p
�
�za.zvx/ � za�.zvx/

�C �N
where zvx. �/ D .���=�/�1=2.x; �/, �N D P

j za�.'j /za.'j /, and the za and za�
operators satisfy �za.f /; za�.g/� D hf jgi (and are thus independent of �). Large
� hence corresponds to the strong coupling limit of a polaron confined to a region
of linear size ��1. We find it more convenient to work in the variables defined in
(2.1), however.

Remark 2.2. Typically the polaron model is considered without confinement, i.e.,
for � D R

3, in which case the electron-phonon coupling function is taken to be
.��R3/�1=2.x; y/ D .2�/�3

R
R3
eik�.x�y/jkj�1dk D .2�2/�1jx � yj�2. For

the proof of our main theorem the compactness of .���/�1 will be important;
hence we need to consider bounded sets � here.

2.2 Pekar Functional(s)
We introduce the classical energy functional corresponding to (2.1) as

E. ; '/ D
Z
�

jr .x/j2 dx C
Z
�

'.x/2 dx(2.2)

� 2
�
���

'.x/.���/�1=2.x; y/j .y/j2 dx dy

where  2 H 1
0 .�/, k k2 D 1, and ' 2 L2

R
.�/, the real-valued functions in

L2.�/. Formally, it can be obtained from (2.1) by replacing the field operators
a.f / and a�.f / by

R
'.x/f .x/dx, and taking an expectation value with the elec-

tron wave function  . The Pekar energy is

(2.3) eP D min
 ;'

E. ; '/:

For � D R
3 it was shown in [5, 20, 21] that inf specH ! eP as � ! 1. The

result can be shown to hold also for general �. Our goal here is to compute the
subleading correction in this asymptotics.

We will work under the following:

ASSUMPTION 2.3. The functional E in (2.2) has a unique minimizer  P; 'P (up to
a trivial constant phase factor for  P).
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Our proof works under the more general assumption that the set of minimizers
of E is discrete (up to the phase degeneracy). The case where minimizers form a
continuous manifold requires additional ideas, however.

Since E.j j; '/ � E. ; '/ we assume from now on that  P is nonnegative.
For given  , the choice of the minimizing ' is clearly unique, and vice versa.
In particular, our Assumption 2.3 concerns uniqueness of the minimizer of the
corresponding Pekar functional

EP. / D min
'

E. ; '/

D
Z
�

jr .x/j2 dx �
�
���

j .x/j2.���/�1.x; y/j .y/j2 dx dy:

Recall that, for � D R
3, uniqueness of minimizers of EP (up to translations and

phase factor) is known [18] (see also [31]). We expect Assumption 2.3 to hold if
� is convex, for instance. The proof in [18] can be adapted to show uniqueness in
case � is a ball [6].

ASSUMPTION 2.4. There exists a � > 0 such that

(2.4) EP. / � EP. P/C �

Z
�

jr. �  P/j2 8 2 H 1
0 .�/;  � 0; k k2 D 1:

The bound (2.4) follows from an a priori weaker spectral assumption on the
absence of nontrivial zero modes of the Hessian of EP at its minimizer  P by a
simple compactness argument. For completeness, we spell out the details of this
argument in Appendix A. The analogue of this spectral assumption in the case
� D R

3 is known (up to zero modes resulting from the translation invariance)
[17, 32]. Using the method in [17], one can prove Assumption 2.4 in case � is a
ball [6].

If one minimizes E. ; '/ over  for given ', one obtains the functional

(2.5) FP.'/ D min
 

E. ; '/ D k'k22 C inf spec.��� C V'.x//

where V' D �2.���/�1=2'. Let H P denote its Hessian at the unique minimizer
'P, i.e.,

(2.6) lim
"!0

1

"2
.FP.'P C "'/ � eP/ D h'jH Pj'i 8' 2 L2

R
.�/:

An explicit computation gives

(2.7) H P D 1 � 4.���/�1=2 P QP

��� C V'P � �P 
P.���/�1=2

where  P acts as a multiplication operator, �P D inf spec.��� C V'P/ D eP �
k'Pk22, and QP is the projection orthogonal to  P, i.e., orthogonal to the kernel of
��� C V'P � �P. It is not difficult to see that Assumption 2.4 implies that H P is
nondegenerate, i.e., strictly positive (compare with Proposition 3.4 in Section 3.2
below).
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Finally, we need a regularity assumption on the domain �.

ASSUMPTION 2.5. The domain � is bounded and has a C 3;� boundary for some
0 < � < 1.

For a proper definition of the meaning of C 3;� boundary, see Appendix B. As-
sumption 2.5 allows us to estimate derivatives of the integral kernel of certain func-
tions of the Dirichlet Laplacian (see Appendix C). The required estimates certainly
hold under less restrictive assumptions on�, and we expect our main result to hold
also in case � is a cube, for instance. We shall not try to investigate the minimal
regularity assumptions, however, and shall henceforth work with Assumption 2.5.

2.3 Main Result
Recall the definition (2.3) for the Pekar energy eP, as well as (2.7) for the Hes-

sian H P of FP in (2.5) at the unique minimizer 'P. Our main result is as follows.

THEOREM 2.6. Under Assumptions 2.3–2.5 one has, as � !1,

(2.8) inf specH D eP � 1

2�2
Tr
�
1 �

p
H P

�C o.��2/:

More precisely, the bounds

�C��1=7.ln�/5=14 � �2 inf specH � �2eP C 1

2
Tr
�
1 �

p
H P

�
� C��2=11

(2.9)

hold for some constant C > 0 and � large enough.

The trace in (2.8) and (2.9) is over L2.�/. We shall see below that 1�
p
H P is

actually trace class. Note also thatH P < 1; hence the coefficient of ��2 in (2.8) is
strictly negative.

In the case � D R
3, the correctness of the leading term eP was shown in [5,20,

21]. The proof in [20, 21] gives an error bound of the order ��1=5. In the confined
case considered here, we improve this error bound toO.��2/ and actually compute
the next order correction. We conjecture that the formula (2.8) also holds true in
case � D R

3, as predicted in the physics literature [2,3,15,30]. Our upper bound,
in fact, can easily be generalized to this case. While our methods are not strong
enough to prove the corresponding lower bound, parts of our proof are applicable
also to the � D R

3 case and yield an improved error bound compared to the one
given in [20, 21].

The ��2 correction to the ground state energy in (2.8) can be interpreted as
arising from quantum fluctuations around the classical limit described by the Pekar
functional. The trace originates from the ground state energy of a Hamiltonian
describing a system of (infinitely) many harmonic oscillators.

The remainder of the paper is devoted to the proof of Theorem 2.6. We start
with a brief outline to guide the reader.
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2.4 Outline of the Proof
In Section 3 we study the Pekar functional (2.5). We shall compute its Hessian

at the unique minimizer 'P and use it to estimate the functional in a small neigh-
borhood of its minimizer. We shall also derive a useful quadratic lower bound that
is valid globally, i.e., not just close to the minimizer.

In Section 4 we shall derive an upper bound on the ground state energy ofH that
has the desired asymptotic form as � !1. We shall construct an appropriate trial
state and utilize the estimate of the Pekar functional close to its minimizer from the
previous section.

Sections 5 and 6 contain auxiliary results that are essential for the lower bound,
in particular to allow for an ultraviolet regularization of the problem. In Section 5
the commutator method of Lieb and Yamazaki [22] is applied three times in order
to estimate the effect of an ultraviolet cutoff in the coupling function vx in terms of
the number operatorN and the electron kinetic energy���. The relevant operator
that needs to be bounded isN1=2.���/3=2, which cannot be controlled in terms of
H
2, however. The necessary bound does hold after a unitary Gross transformation,

which shall be explained in Section 6. This will be sufficient for our purpose.
In Section 7 we shall give a lower bound on the ground state energy ofH of the

desired asymptotic form. We shall use the results of Sections 5 and 6 to implement
an ultraviolet cutoff, which effectively reduces the problem to finitely many modes.
We shall then use an IMS localization in Fock space and the bounds in Section 3
to conclude the desired lower bound.

In Appendix A we shall give an equivalent formulation of Assumption 2.4 in
terms of spectral properties of the Hessian of EP. In the appendices we shall derive
bounds on derivatives of the integral kernel of certain functions of the Dirichlet
Laplacian �� that we need in our proof. These bounds are derived in Appendix C
utilizing a theorem in Appendix B on bounds on solutions of Poisson’s equation.

Throughout the proof, we shall use the symbol a . b if a � Cb for some
constant C > 0.

3 The Pekar Functional
3.1 Hessian of the Pekar Functional

We consider the Pekar functional (2.5) and write it as

FP.'/ D e.'/C k'k22
with

e.'/ D inf specH' and H' D ��� C V'.x/:

Recall that for ' 2 L2
R
.R3/ we set V' D �2.���/�1=2'. In this section we

work under Assumption 2.3, which states that FP.'/ has a unique minimizer 'P.
We have e.'/C k'k22 � e.'P/C k'Pk22, and our goal in this section is to obtain
upper and lower bounds on the difference.
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Recall that  P denotes the unique nonnegative minimizer of EP, which is the
ground state of H'P . We have

(3.1) 'P D .���/�1=2j Pj2:
For later use, we record that  P is a bounded function.

LEMMA 3.1.  P 2 L1.�/
PROOF. The Euler-Lagrange equation for the Pekar minimizer  P reads

��� P � 2�.���/�1j Pj2� P D � P

for some � 2 R, which we rewrite as

 P D .���/�1
��
�C 2..���/�1j Pj2/� P�:

From (C.2) we deduce that .���/�1.x; y/ � .��R3/�1.x; y/ D .4�jx�yj/�1.
By Sobolev’s inequality j Pj2 2 L3.�/, and hence .���/�1j Pj2 2 L1.�/ by
Hölder’s inequality. Thus, f D .�C 2..���/�1j Pj2// P 2 L2.�/, and once
again by Hölder’s inequality,  P D .���/�1f 2 L1.�/, as claimed. �

Let P D j Pih Pj and Q D 1 � P . We introduce the following nonnegative
operators

(3.2) K D 4.���/�1=2 P Q

H'P � e.'P/
 P.���/�1=2

and
L D 4.���/�1=2 P.���/�1 P.���/�1=2;

where  P acts as a multiplication operator. We shall see that K D 1 �H P, where
H P denotes the Hessian of FP.'/ at ' D 'P, introduced in (2.6) above.

It is easy to see that L is trace class, since .���/�1=2 .���/�1=2 is Hilbert-
Schmidt for any multiplication operator  2 L2.�/. In fact, since .���/�1=2 �p
2.���Ce1/�1=2 (with e1 D inf spec.���/ > 0) and .���Ce1/�1=2.x; y/ �

.��R3C e1/�1=2.x; y/ for any x; y 2 R3 by (C.2), the Cauchy-Schwarz inequal-
ity implies that

Tr�.���/�1=2 .���/�1=2�2

� 1

.2�/3

Z
R3

�
2

k2 C e1

�2
dk

Z
�

j .x/j2 dx:
(3.3)

To show that also K is trace class, we shall first prove the following lemma, which
implies, in particular, that V' is operator-bounded relative to ��� if ' 2 L2.�/.
LEMMA 3.2. With V'.x/ D �2.���/�1=2'.x/, we have

V'.���/�1

2 . h'j.���/�1j'i:
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PROOF. Note that the right side is simply the square of the L2-norm of V' . By
arguing as in (3.3), one readily checks that the desired bound even holds with the
Hilbert–Schmidt norm on the left side. �

A straightforward modification of the proof shows that V' is actually infinites-
imally operator-bounded relative to ��, i.e., lim�!1 kV'.��� C �/�1k D 0.
This readily implies that

.���/1=2 Q

H'P � e.'P/
.���/1=2

is bounded; hence the trace class property of K follows from the one of L.
Our main result in this section is the following.

PROPOSITION 3.3. Assume that ' 2 L2
R
.�/ is such that

(3.4) k.���/�1=2.' � 'P/k2 � "

for " > 0 small enough. Then

(3.5)
��FP.'/ � FP.'P/ � h' � 'Pj1 �Kj' � 'Pi�� . "h' � 'PjLj' � 'Pi:

This result implies, in particular, that 0 � K � 1. It identifies HP D 1 �K as
the Hessian of FP.'/ D e.'/Ck'k22 at the minimizer 'P. Our assumption on the
strict positivity of the Hessian thus translates, in view of the compactness of K, to
the statement kKk < 1.

PROOF. By choosing " > 0 small enough and arguing as in the proof of Lemma
3.2, we can ensure that the family of operators ��� C V'.x/ has a unique eigen-
value close to e.'P/, and this eigenvalue is e.'/. The rest of the spectrum of H'
is uniformly bounded away from e.'P/. Hence we can write

(3.6) e.'/ D Tr
Z
C

´

´ �H'
d´

2�i

for a fixed (i.e., '-independent) contour C that encircles e.'P/.
We claim that the operator ��.´ � H'P/�1 is uniformly bounded for ´ 2 C .

This follows from the fact that the multiplication operator V'P is infinitesimally
operator-bounded relative to ���, as already argued after the proof of Lemma 3.2
above. Consequently,

(3.7) sup
´2C



V'�'P.´ �H'P/�1


 < 1
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for small ", by Lemma 3.2 and our assumption (3.4). We can thus use the resolvent
identity in the form

1

´ �H'
D
�
1 � Q

´ �H'P
V'�'P

��1 Q

´ �H'P

C
�
1 � Q

´ �H'P
V'�'P

��1 P

´ � e.'P/

�
1 � V'�'P

1

´ �H'P

��1
:

The first term on the right side is analytic in ´ for all ´ inside the contour C , and
hence gives 0 after integration when inserted in (3.6). The second term is rank 1,
and Fubini’s theorem implies that we can interchange the trace and the integral
after inserting this term in (3.6). We thus obtain

(3.8)
e.'/ D

Z
C

´

´ � e.'P/

�
 P
�����1 � V'�'P

1

´ �H'P

��1
�
�
1 � Q

´ �H'P
V'�'P

��1���� P
�
d´

2�i
:

For simplicity, let us introduce the notation

A D V'�'P
1

´ �H'P
; B D Q

´ �H'P
V'�'P :

Because of (3.7) these operators are smaller than 1 in norm, uniformly in ´ 2 C .
We shall use the identity

1

1 � A
1

1 � B D 1C AC A.AC B/C B

1 � B(3.9)

C A3

1 � A C A2

1 � AB C A

1 � A
B2

1 � B :
We insert the various terms into (3.8) and do the contour integration. The term 1

then yields e.'P/. The term A yields

 PjV'�'P j P� D 2

Z
�

'P.x/.'P.x/ � '.x//dx
using (3.1). A standard calculation shows that the term A.AC B/ leads to�

 P
����V'�'P

Q

e.'P/ �H'P
V'�'P

���� P
�
D �h' � 'PjKj' � 'Pi:

Furthermore, since Qj Pi D 0, the term B.1 � B/�1 yields 0. We conclude that

(3.10)
FP.'/ � FP.'P/ � h' � 'Pj1 �Kj' � 'Pi

D
Z
C

´

´ � e.'P/

�
 P
���� A3
1 � A C A

�
A

1 � A C 1

1 � A
B

1 � B
�
B

���� P
�
d´

2�i
:
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To bound the first term on the right side of (3.10), note that

(3.11)
�
 P
���� A3
1 � A

���� P
�
D 1

´ � e.'P/

�
 P
����V'�'P

1

´ �H'P

A

1 � AV'�'P

���� P
�
:

We claim that

(3.12) sup
´2C





.���/1=2 1

´ �H'P

A

1 � A.���/
1=2





 . ";
which implies that (3.11) is bounded, in absolute value, as

(3.13) j(3.11)j . " 
 P��V'�'P.���/�1V'�'P

�� P� D " h' � 'PjLj' � 'Pi;
as desired. To prove (3.12) we use the fact thatk.���/1=2.´�H'P/�1.���/1=2k
is uniformly bounded in order to reduce the problem to showing

k.���/�1=2A.1 � A/�1.���/1=2k . ":
Since S�1A.1�A/�1S D S�1AS.1�S�1AS/�1 with S D .���/1=2, it suffices
to show that k.���/�1=2A.���/1=2k . ", which follows from

.���/�1=2V'.���/�1=2

 � 

V'.���/�1


and Lemma 3.2.

For the last term in (3.10), we simply bound����� P
����A� A

1 � A C 1

1 � A
B

1 � B
�
B

���� P
�����(3.14)

�




 A

1 � A C 1

1 � A
B

1 � B




h PjAA�j Pi1=2h PjB�Bj Pi1=2:

The same bounds as above easily lead to the conclusion that also this term is
bounded by the right side of (3.13). This concludes the proof of Proposition
3.3. �

3.2 A Uniform Quadratic Lower Bound
Inequality (3.5) gives a bound on FP for ' near the minimizer 'P. We shall also

need the following rougher global bound.

PROPOSITION 3.4. There is a constant �0 > 0 such that for all ' 2 L2
R
.�/,

(3.15) FP.'/ � eP C 

' � 'Pj1 � .1C �0.���/1=2/�1j' � 'Pi:

We start with the following lemma.

LEMMA 3.5. For  2 H 1
0 .�/ with k k2 D 1,
j j2 � j Pj2��.���/�1=2��j j2 � j Pj2� � 8

�2

Z
�

��r�j j � j Pj���2:
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PROOF. Given that f .x/ D j .x/j C j P.x/j and g.x/ D j .x/j � j P.x/j,
the Schwarz inequality and the symmetry and positivity of the integral kernel of
.���/�1=2 imply that
j j2 � j Pj2��.���/�1=2��j j2 � j Pj2�

D
Z
�

Z
�

f .x/g.x/.���/�1=2.x; y/f .y/g.y/dx dy

�
Z
�

Z
�

f .x/2.���/�1=2.x; y/g.y/2 dx dy:

For fixed x, we can use the Hardy inequality and the fact that .���/�1=2.x; y/ �
.��R3/�1=2.x; y/ D .2�2/�1jx � yj�2 from (C.2) to obtain the boundZ

�

.���/�1=2.x; y/g.y/2 dy � 2

�2

Z
�

jrgj2:

Since
R
� f

2 � 4, the result follows. �

PROOF OF PROPOSITION 3.4. From our assumption (2.4) on the Hessian of the
Pekar functional EP and Lemma 3.5, it follows that

EP. / � EP.j j/
� EP. P/C �0


j j2 � j Pj2��.���/�1=2��j j2 � j Pj2�
for �0 D ��2=8. In particular,

E. ; '/ D EP. /C 

' � .���/�1=2j j2

22
� eP C �0


j j2 � j Pj2��.���/�1=2��j j2 � j Pj2�
C 

' � .���/�1=2j j2

22:

Minimizing with respect to and using (3.1) leads to the desired lower bound. �

4 Proof of Theorem 2.6: Upper Bound
In this section we construct a trial state to derive an upper bound on the polaron

ground state energy. Our trial state � will depend only on finitely many phonon
variables. More precisely, for � a finite rank projection on L2

R
.�/, we can write

the Fock space F.L2.�// as a tensor product F.�L2.�//
 F..1��/L2.�//,
and our trial state corresponds to the vacuum vector in the second factor F..1 �
�/L2.�//. The first factor F.�L2.�// can naturally be identified with L2.RN /
corresponding to N simple harmonic oscillators, where N D dim ran�.

We find it convenient to identify a point .�1; : : : ; �N / 2 RN with a function
' 2 ran� via the identification

(4.1) ' D �' D
NX
nD1

�n'n
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for some orthonormal basis f'ng of ran�. With this identification, we can think
of a wave function � 2 L2.�/
L2.RN / as a function �.x; '/ with x 2 �; ' 2
ran�.

The function we choose is as follows:

�.x; '/ D e��
2h'�'Pj.1��K�/1=2j'�'Pi

� ��"�1k.���/�1=2.' � 'P/k2
�
 '.x/

(4.2)

where
� " > 0 is a small parameter that will be chosen to go to 0 as � !1.
� 0 � � � 1 is a smooth cutoff function with �.t/ D 1 for t � 1=2 and
�.t/ D 0 for t � 1.

� � is a finite rank projection on L2
R
.�/ with range containing 'P.

�  ' is the unique nonnegative, normalized ground state of H' D ��� C
V' .

� K D 1 �H P, explicitly given in (3.2).
On states of the type described above (corresponding to the vacuum for all

modes outside the range of �), the Hamiltonian (2.1) simply acts as H' C N,
with

N D
NX
nD1

�
� 1

4�4
@2�n C �2n �

1

2�2

�
:

Using the eigenvalue equation H' ' D e.'/ ' , the energy of our trial state � is
thus given as

(4.3) h�jHj�i D h�je.'/CNj�i:
Since � is supported on the set fk.���/�1=2.' � 'P/k2 � "g, we can use Propo-
sition 3.3 for an upper bound on e.'/. This leads to

h�jHj�i � ePh�j�i
C 

�
��N � k'k22 C h' � 'Pj1 �K C "CLj' � 'Pi����(4.4)

for a suitable constant C > 0.
Utilizing the fact that the Gaussian factor in � satisfies�

� 1

4�4

NX
nD1

@2�n C h' � 'Pj1 �Kj' � 'Pi
�

� e��2h'�'Pj.1��K�/1=2j'�'Pi

D 1

2�2
Tr.1 ��K�/1=2 e��2h'�'Pj.1��K�/1=2j'�'Pi;

we can integrate by parts and rewrite the right side of (4.4) as�
eP � 1

2�2
Tr�1 � .1 ��K�/1=2�

�
h�j�i C AC B
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with
A D "C



�
��
' � 'PjLj' � 'P�����

and

B D 1

4�4

NX
nD1

Z
�

dx

Z
RN

NY
mD1

d�m e
�2�2h'�'Pj.1��K�/1=2j'�'Pi

� ��@�n���"�1k.���/�1=2.' � 'P/k2
�
 '.x/

���2:
We claim that L is bounded by .���/�1. This follows immediately from

the boundedness of  P shown in Lemma 3.1. Alternatively, one can use that
 .���/�1 is a bounded operator for  2 L3.�/ by Sobolev’s inequality.
Hence we can use the rough bound

A . "3h�j�i:
Moreover, by a simple Cauchy-Schwarz inequality, B � 2.B1 C B2/ with

B1 D 1

4�4

Z
RN

NY
mD1

d�m e
�2�2h'�'Pj.1��K�/1=2j'�'Pi

� ��"�1k.���/�1=2.' � 'P/k2
�2 NX
nD1



@�n '

22
and

B2 D 1

4�4

Z
RN

NY
mD1

d�m e
�2�2h'�'Pj.1��K�/1=2j'�'Pi

�
NX
nD1

��@�n��"�1k.���/�1=2.' � 'P/k2
���2:

To bound B1, we use standard first-order perturbation theory for eigenvectors to
compute

@�n �' D � Q'

H' � e.'/V'n '
where Q' D 1 � j 'ih ' j. In particular,

NX
nD1



@�n '

22
D 4Tr�.���/�1=2 '

�
Q'

H' � e.'/
�2
 '.���/�1=2�

(4.5)

where we again interpret  ' as a multiplication operator on the right side. It is not
difficult to see that

.���/1=2 Q'

H' � e.'/.���/
1=2
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is uniformly bounded on the support of � (compare with the proof of Proposi-
tion 3.3). Using this fact and (3.3), we see that (4.5) is uniformly bounded, inde-
pendently of N . Hence B1 . ��4h�j�i.

For B2, we have

B2 .
1

�4"2

Z
RN

NY
mD1

d�m e
�2�2h'�'Pj.1��K�/1=2j'�'Pi

D 1

�4"2

�
�
p
2=�

��N det.1 ��K�/�1=4

where we have used the fact that 'P is in the range of �. We have to compare this
with the norm of �, which is bounded from below by

h�j�i �
Z
RN nS"

NY
mD1

d�m e
��2h'�'Pj.1��K�/1=2j'�'Pi

D �
�
p
2=�

��N det.1 ��K�/�1=4

�
Z
S"

NY
mD1

d�m e
�2�2h'�'Pj.1��K�/1=2j'�'Pi

where
S" D

�E� 2 RN W k.���/�1=2.' � 'P/k2 � "=2
	
:

Since kKk < 1 by assumption, .���/�1 � �.1 ��K�/1=2 for some constant
� > 0 independent of N . Hence we can bound the characteristic function of S"
from above by

exp
�
� 1

4�
�2"2

�
� exp.�2



' � 'Pj.1 ��K�/1=2j' � 'P�/:

Therefore,

h�j�i � �
�
p
2=�

��N det.1 ��K�/�1=4�1 � 2N=2e� 1
4�
�2"2

�
:

In particular, as long as �" � const
p
N with a sufficiently large constant, we have

h�j�� & ��p2=���N det.1 ��K�/�1=4;
and hence

B2 . �
�4"�2h�j�i:

In summary, we have shown that

h�jHj�i
h�j�i � eP � 1

2�2
Tr�1 � .1 ��K�/1=2�C const."3 C ��4"�2/

as long as �" � const
p
N and " is small enough. We shall choose � to be the

projection onto the span of g1; : : : ; gN�1; 'P, where we denote by fgj gj an or-
thonormal basis of eigenfunctions of K, ordered in a way that the corresponding
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eigenvalues kj D hgj jKgj i form a decreasing sequence.1 Then

Tr�1 � .1 ��K�/1=2� �
N�1X
jD1

.1 � .1 � kj /1=2/

and hence

Tr�1 � .1 ��K�/1=2� � Tr�1 � .1 �K/1=2� �
1X
jDN

.1 � .1 � kj /1=2/:

Since K . �.���/�1=2 P.���/�1=2�2 and  P is bounded by Lemma 3.1, we
have kj � const e�2j , where ej denotes the (ordered) eigenvalues of ���. Since
� is assumed to be a smooth and bounded domain, we have the Weyl asymptotics
ej � j 2=3 for j � 1 (see, e.g., [28, sec. XIII.15]), which implies that

1X
jDN

�
1 � .1 � kj /1=2

�
. N�1=3:

In order to minimize the error term, we shall choose " � ��8=11 and N �
�2"2 � �6=11, which leads to the bound

(4.6)
h�jHj�i
h�j�i � eP � 1

2�2
Tr�1 � .1 �K/1=2�C const��24=11

for large enough �. This concludes the proof of the upper bound in Theorem 2.6.
�

5 Multiple Lieb-Yamazaki Bound
In [22] Lieb and Yamazaki used the fact that the interaction between the particle

and the field can be written as a commutator, together with a Cauchy-Schwarz
inequality, to get a uniform lower bound on the ground state energy of H (for
� D R

3) for large �. Their method shows that the introduction of an ultraviolet
cutoff � in the interaction affects the ground state energy at most by O.��1=2/.
We shall apply their method three times, which will allow us to conclude that the
effect of the cutoff is at most O.��5=2/ (up to logarithmic corrections). It will be
essential to use the Gross transformation explained in the next section, however,
since we need relative operator boundedness of the kinetic energy with respect to
the full Hamiltonian, which only holds for the transformed kinetic energy, as we
shall see.

Before stating the main result of this section, we shall prove the following use-
ful lemma. Its proof proceeds similarly to the one of lemma 10 in [9]. For its

1 In case 'P is in the span of fgj g
N�1
jD1

, we take � to be the projection onto the span of fgj g
N
jD1

instead.
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statement, we introduce the Coulomb norm,

(5.1) kf kC D
 
1

4�

Z
R6

f .x/f .y/

jx � yj dx dy

!1=2
:

By the Hardy-Littlewood-Sobolev inequality (see, e.g., [19, theorem 4.3]), this
norm is dominated by the L6=5.R3/-norm.

Let us introduce the notation p D �irx D .p1; p2; p3/ for the momentum
operator. We shall also use p2 for the Dirichlet Laplacian ��� on �.

LEMMA 5.1. Consider a function hx. �/ such that k.x/ D supy2R3 jhxCy.y/j has
finite Coulomb norm. Then

(5.2) a�.hx/a.hx/ � kkk2C p2N
holds on L2.�/
 F .

Note that the bound holds trivially with the right side replaced by khxk22N. The
point of Lemma 5.1 is that functions that are more singular (in the x � y variable)
can be handled, at the expense of the kinetic energy term p2.

PROOF. For convenience of notation, let � be a one-phonon vector; the general
case works in the same way. We need to bound

(5.3)
Z
�

����Z
�

�.x; y/hx.y/dy

����2dx � Z
�

����Z
�

j�.x; y/jk.x � y/dy
����2dx:

With �.p; q/ denoting the Fourier transform of j�.x; y/j (regarded as a function
on R3 �R3), we haveZ

�

����Z
�

j�.x; y/jk.x � y/dy
����2 dx

D
Z
R3

����Z
R3
�.p � q; q/yk.q/dq

����2 dp
�
Z
R3

�Z
R3
j�.p � q; q/j2.p � q/2 dq

��Z
R3
jyk.q/j2jp � qj�2 dq

�
dp

� sup
p

�Z
R3
jyk.q/j2jp � qj�2 dq

�Z
R3

Z
R3
j�.p; q/j2p2 dq dp:

The last factor is smaller than kpN
p
p2�k2 (by the diamagnetic inequality). By

writing the integral in x-space, one easily checks that

(5.4) sup
p

Z
R3
jyk.q/j2jp � qj�2 dq � kkk2CI

hence our claim (5.2) is proven. �
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The main result of this section is the following:

LEMMA 5.2. Assume that wx. �/ is such that

A1 WD max
j;k;l

sup
x2�

kpjpkpl jpj�6wxk2 <1;(5.5)

A2 WD max
j;k

sup
x2�

kpjpkjpj�4wxk2 <1;(5.6)

and

A3 WD max
j;k

kujkkC <1;(5.7)

where ujk.x/ D supy2R3 jpjpkjpj�4wxCy.y/j. Then

a.wx/C a�.wx/ � 12A1
�jpj4 C 3p2

�
N C 1=.2�2/

��
C 6

�
��1A2 C A3

��jpj4 C p2N C 1

2

�
holds on L2.�/
 F .

PROOF. For any wx , we have

(5.8)
X
j

�
pj ; a

�
pj jpj�2wx

�� D �a.wx/:

Applying this three times, we also get

(5.9)
X
j;k;l

�
pj ; �pk; �pl ; a.pjpkpl jpj�6wx/��

� D �a.wx/:

In particular, we conclude that

a.wx/C a�.wx/

D
X
j;k;l

�
pj ; �pk; �pl ; a

�.pjpkpl jpj�6wx/ � a.pjpkpl jpj�6wx/��
�
:(5.10)

We introduce the notation Bjkl D a�.pjpkpl jpj�6wx/ � a.pjpkpl jpj�6wx/,
and we rewrite the triple commutator as

(5.11)

X
j;k;l

�pj ; �pk; �pl ; Bjkl ��� D
X
j;k;l

�
pjpk�pl ; Bjkl �C

�
B
�

jkl
; pl

�
pjpk

�
� 2

X
j;k;l

�
pjpkBjklpl C plB

�

jkl
pjpk

�
using the invariance of Bjkl under exchange of indices.

The Cauchy-Schwarz inequality implies that

(5.12) � pjpkBjklpl � plB�jklpjpk � �p2j p2k C ��1plB
�

jkl
Bjklpl
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for any � > 0. Moreover,

(5.13) B
�

jkl
Bjkl � .4N C 2��2/kpjpkpl jpj�6wxk22 � A21.4N C 2��2/:

In particular, by choosing � D 2A1 and summing over j; k; l , we obtain the bound

� 2
X
j;k;l

�
pjpkBjklpl C plB

�

jkl
pjpk

�
� 12A1

�jpj4 C 3p2.N C 1=.2�2//
�
:

(5.14)

We also have

(5.15) Cjk D
X
l

�pl ; Bjkl � D a�.pjpkjpj�4wx/C a.pjpkjpj�4wx/

and

(5.16) pjpkCjk C Cjkpjpk � �p2j p2k C ��1C 2jk

for any � > 0. Furthermore, we can bound

(5.17) C 2jk � 4a�
�
pjpkjpj�4wx

�
a
�
pjpkjpj�4wx

�C 2

�2
kpjpkjpj�4wxk22:

By Lemma 5.1, the first term on the right side is bounded by 4kujkk2C p2N, and
hence C 2

jk
� 4A23p2N C 2A22�

�2. The choice � D 6.A3 C ��1A2/ then leads to
the bound

(5.18)
X
j;k

.pjpkCjk C Cjkpjpk/ � 6
�
A3 C ��1A2

��jpj4 C p2N C 1

2

�
:

In combination with (5.10), (5.11), and (5.14), this concludes the proof of the
lemma. �

In the following, we shall apply this bound to the large momentum part of the
interaction in order to quantify the effect of an ultraviolet cutoff on the ground state
energy. Because the Coulomb norm in (5.7) estimates the off-diagonal decay, we
cannot use a sharp cutoff, however, and need to work with a smooth one instead.
In fact, we shall apply Lemma 5.2 with

(5.19) wx.y/ D ´.���/.x; y/ for ´.t/ D t�1=2
�
1 � e�t=�2�2

for some � > 0. The function ´ is nonnegative and behaves like t3=2��4 for
t � �2. Moreover, ´.t/ � t�1=2 falls off like t�1=2e�t=�

2

for t � �2.
We shall show in Appendix C that the various norms appearing in (5.5)–(5.7)

can be bounded, up to a multiplicative constant, by the equivalent expressions for
� D R

3, which can easily be estimated using Fourier transforms. We have

(5.20) kpjpkjpj�4wxk22 D
X
n

e�5n
�
1 � e�en=�2�4j@j @k'n.x/j2
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where en and 'n denote the eigenvalues and eigenfunctions of ���. In particular,
from (C.10) we deduce that

sup
x2�

max
j;k

kpjpkjpj�4wxk2 .
�Z

R3
jkj�6�1 � e�k2=�2�4

dk

�1=2
D const��3=2:

(5.21)

In the same way, we obtain the bound

(5.22) sup
x2�

max
j;k;l

kpjpkpl jpj�6wxk2 . ��5=2:

Moreover, in Section C.3 we shall show that

(5.23) max
j;k

kujkkC . �
�5=2:

We collect these results in the following corollary.

COROLLARY 5.3. For � > 0 let wx. � / be the function defined in (5.19). Then

(5.24) a.wx/C a�.wx/ . .p
2 CN C 1/2.��5=2 C ��1��3=2/

for � & 1.

6 Gross Transformation
In this section we shall investigate the effect of a unitary Gross transformation

[14,26] on the Hamiltonian (2.1). Let ffxgx2� � L2.�/ be a family of functions,
parametrized by x 2 �, such that rxfx 2 L2.�/ for all x 2 �. We consider a
unitary transformation in L2.�/
 F of the form

(6.1) U D ea.�
2fx/�a

�.�2fx/:

(This operator acts by “multiplication” with respect to the x-variable.) For g 2
L2.�/ we have

(6.2) Ua.g/U � D a.g/C hgjfxi and Ua�.g/U � D a�.g/C hfxjgi
and hence

(6.3) UNU � D N C a�.fx/C a.fx/C kfxk22:
Moreover, for p D �irx ,

(6.4) UpU � D p C �2.a�.pfx/C a.pfx/C Rehfxjpfxi/:
We shall choose fx real-valued, hence the last term vanishes. Then

Up2U � D p2 C �4.a�.pfx/C a.pfx//
2 C 2�2p � a.pfx/

C 2�2a�.pfx/ � p C �2a.p2fx/C �2a�.p2fx/:
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For the Hamiltonian (2.1), we thus have

(6.5)

UHU � D p2 C �4.a�.pfx/C a.pfx//
2 C 2�2p � a.pfx/

C 2�2a�.pfx/ � p CN C a.�2p2fx C fx � vx/
C a�.�2p2fx C fx � vx/C kfxk22 � 2Rehvxjfxi:

We shall choose fx such that �2p2fx C fx � vx D gx , i.e.,

(6.6) f � .y/ D
���2�� C 1

��1
.g � .y/C v � .y// 8y 2 �

for some gx 2 L2.�/ with supx2� kgxk2 < 1. The choice gx � 0 would be
possible, but it will be more convenient to choose

(6.7) gx.y/ D �.���/.x; y/ for �.t/ D �t�1=2�.K2 � t /
for some K > 0, where

(6.8) �.t/ D

8�<�:
0 for t < 0;
1=2 for t D 0;

1 for t > 0.

Then

(6.9) kgxk22 D �2.���/.x; x/
and, since �.t/2 � t�1e1�t=K

2

, the fact that the heat kernel of �� is dominated
by the one of �R3 implies as in (C.2) that

(6.10) sup
x
kgxk22 �

1

.2�/3

Z
R3

e1�k
2=K2

k2
dk D e

4�3=2
K:

For the corresponding fx , we have

(6.11) fx.y/ D �.���/.x; y/ for �.t/ D �t�1=2 �.t �K
2/

�2t C 1
:

Using the fact that

(6.12) �.t/2 � ��4t�3�.t �K2/ � ��4
�

2

t CK2

�3
;

one obtains in a similar way as above

sup
x
kfxk22 D sup

x
�2.���/.x; x/

� 1

�4.2�/3

Z
R3

�
2

k2 CK2

�3
dk D 1

4�
��4K�3:

(6.13)

Moreover,

(6.14) sup
x
jhvxjfxij � 1

�2.2�/3

Z
R3

�
2

k2 CK2

�2
dk D 1

2�
��2K�1



564 R. L. FRANK AND R. SEIRINGER

and, using (6.12) and (C.10),

(6.15) sup
x
kpfxk22 .

1

�4

Z
R3
k2
�

2

k2 CK2

�3
dk D 6�2��4K�1:

With the above choice of the function fx (depending on � and the parameterK)
we denote U by UK;� from now on. With the aid of the previous estimates, we can
now prove the following proposition. Its proof follows along similar lines as the
corresponding argument for � D R

3 in [13].

PROPOSITION 6.1. For any " > 0 there are K > 0 and C > 0 such that for all
� & 1 and any � 2 L2.�/
 F in the domain of p2 CN

.1C "/k.p2 CN/�k C Ck�k � kUK;�HU �K;��k
� .1 � "/k.p2 CN/�k � Ck�k:

(6.16)

We remark that due to the singular nature of vx in the interaction term, it is
essential to apply the unitary transformation UK;�. In its absence, the bound (6.16)
fails to hold. In other words, the domain of H does not coincide with the domain
of p2 CN, but the one of UK;�HU

�
K;� does for a suitable choice of K.

PROOF. From (6.5) we see that the terms to estimate are the following:

�4k�a�.pfx/C a.pfx/
�2
�k . �4 sup

x
kpfxk22k.N C ��2/�k(6.17)

. K�1k.N C ��2/�k
where we used (6.15),

�a.gx/C a�.gx/

�
�


 . sup

x
kgxk2k

�p
N C ��2

�
�k(6.18)

. �k.N C ��2/�k C ��1Kk�k
for any � > 0, using (6.10),

�2ka�.pfx/ � p�k � �2 sup
x
kpfxk2k

p
N C ��2

q
p2�k(6.19)

. K�1=2k.p2 CN C ��2/�k
and finally, the term

(6.20) �2p � a.pfx/ D �2a.pfx/ � p C a.�2p2fx/:

The first term on the right side of (6.20) can be estimated as in (6.19) above. For
the second term, we write

(6.21) �2.p2fx/.y/ D h.1/x .y/C h.2/x .y/

where

(6.22) h.1/x .y/ D gx.y/ � fx.y/C
�
.���/�1=2 � .K2 ���/�1=2

�
.x; y/
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and

(6.23) h.2/x .y/ D .K2 ���/�1=2.x; y/:
TheL2-norms of gx and fx have already been bounded above, in (6.10) and (6.13),
respectively. To bound the third function in h.1/x , we use

0 � t�1=2 � .K2 C t /�1=2 � Kt�1=2.K2 C t /�1=2;

and find that the square of its L2-norm is bounded by

1

.2�/3

Z
R3

K2

k2
�
k2 CK2

� dk D 1

4�
K:

By using the Schwarz inequality we conclude that

(6.24)


a�h.1/x �

�


 . �kN�k C ��1K.1C .K�/�4/k�k

for any � > 0.
The last term to bound is a.h.2/x /�. Since jh.2/x .y/j � .K2 ��R3/�1=2.x; y/,

Lemma 5.1 implies that

(6.25)


a�h.2/x �

�


 � .2�/�3=2�Z

R3
.K2 C q2/�1jqj�2 dq

�1=2

pNpp2�

:
The prefactor on the right side is equal to a constant times K�1=2. Moreover,
we can bound kpN

p
p2�k � 1

2
k.p2 C N/�k. In combination with (6.13) and

(6.14), we hence arrive at the desired result, with K � "�2 and C � "�3. �

From Proposition 6.1 we draw two important conclusions. First, the ground
state energy of H is uniformly bounded in � for large �. Second, in any state of
bounded energy, in the sense that kH�k � const, both

U �K;�p2UK;��

 and



U �K;�NUK;��


are uniformly bounded (for suitable K independent of �). In particular, we con-
clude that in order to compute the ground state energy, it suffices to consider wave
functions � having this property.

We have, by a similar computation as in (6.4),

(6.26) U
�
K;�p

2UK;� D .p � AK;�/2 with AK;� D �2.a�.pfx/C a.pfx//

and

(6.27) U
�
K;�NUK;� D N � a.fx/ � a�.fx/C kfxk22:

Since kfxk2 is uniformly bounded, as shown in (6.13) above, it easily follows that
uniform boundedness of kU �K;�NUK;��k is equivalent to the one of kN�k.
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7 Proof of Theorem 2.6: Lower Bound
7.1 Ultraviolet Cutoff

The first step in the lower bound is to introduce an ultraviolet cutoff in the in-
teraction. Corollary 5.3 together with Proposition 6.1 will allow us to quantify its
effect on the ground state energy.

PROPOSITION 7.1. For � > 0, let

(7.1) H
� D ��� � a

�
v�x
� � a��v�x �CN

where

(7.2) v�x .y/ D
�.�2 C��/

.���/1=2
.x; y/:

Then

(7.3)
inf specH � inf specH�

& ���5=2.ln�/5=4 � ��1��3=2.ln�/3=4 � ��2��1.ln�/1=2
for � & 1 and � & 1.

In order for the error introduced in (7.3) to be negligible compared to ��2, it is
sufficient to choose � � �� with � > 4=5.

PROOF.
Step 1. Recall that vx.y/ D .���/�1=2.x; y/. We pick some 0 < �0 < �

and decompose vx as vx.y/ D u�
0

x .y/C wx.y/ where wx is defined as in (5.19)
above, but with � replaced by �0, i.e.,

(7.4) wx.y/ D ´.���/.x; y/ for ´.t/ D t�1=2.1 � e�t=�02

/2:

Corollary 5.3 states that

(7.5) a.wx/C a�.wx/ . .p
2 CN C 1/2.�0�5=2 C ��1�0�3=2/

for � & 1. We now apply the unitary Gross transformation (6.1), with fx given in
(6.11), and K chosen such that Proposition 6.1 holds for some fixed 0 < " < 1,
say " D 1=2. We have

U
�
K;�a.wx/UK;� D a.wx/C hwxjfxi;(7.6)

and

sup
x2�

jhwxjfxij . ��2�0�1;(7.7)

which can easily be seen by noting that hwxjfxi D .´�/.���/.x; x/ (with ´
and � defined in (7.4) and (6.11), respectively) and using that

j´.t/�.t/j . ��2.t C�2/�2;
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proceeding as in (C.2) to bound the expression in terms of the one for � D R
3.

Proposition 6.1 thus implies that

(7.8) a.wx/C a�.wx/ . .HC C/2.�0�5=2 C ��1�0�3=2 C ��2�0�1/

for a suitable constant C > 0 (independent of � for � & 1).
For computing the ground state energy, it is clearly sufficient to consider wave

functions in the spectral subspace of H corresponding to jHj � C for a suitable
constant C . We thus conclude that

(7.9) inf specH � inf spec �H�0 � const.�0�5=2 C ��1�0�3=2 C ��2�0�1/

where zH�0

is obtained from H by replacing vx with u�
0

x D vx � wx , i.e.,

(7.10) u�
0

x .y/ D .���/�1=2
�
1 � .1 � e��=�02

/2
�
.x; y/:

Step 2. We shall now further truncate u�
0

x and replace it by

(7.11) zv�x .y/ D
�.�2 C��/

.���/1=2
�
1 � .1 � e��=�02

/2
�
.x; y/:

With the aid of (C.3), one checks that

(7.12) sup
x2�



u�0

x � zv�x


2
2
. �e�.�=�

0/2 ;

and hence, using the fact that
p
N is uniformly bounded for states with bounded

energy, the error for introducing this additional cutoff is at most of the order
�1=2e�.�=�

0/2=2.
Step 3. Finally, we want to further simplify zv�x and replace it by v�x in (7.2).

We claim that the ground state energy can only decrease under this replacement.
This is the content of the following lemma.

LEMMA 7.2. Let f'j gNjD1 be a set of orthonormal functions in L2.�/, and let

(7.13) ux.y/ D
NX
jD1

�j'j .x/'j .y/ for �j � 0, 1 � j � N .

Then

(7.14) e.�1; : : : ; �N / D inf spec
���� � a.ux/ � a�.ux/CN�

is decreasing in each �j .

PROOF. We shall use a Perron-Frobenius-type argument. Let � 2 L2.�/ 

F be given by f 0.x/;  1.x; y1/;  2.x; y1; y2/; : : : g. We extend f'j gNjD1 to an
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orthonormal basis f'j gj2N of L2.�/, and define ani1;:::;in.x/ by the expansion
 n.x; y1; : : : ; yn/ D

P
i1;:::;in

ani1;:::;in.x/'i1.y1/ � � �'in.yn/. Then

h�j ��� CNj�i

D
X
n�0

X
i1;:::;in

�Z
�

jrxani1;:::;in.x/j2dx C n

Z
�

jani1;:::;in.x/j2 dx
�

and

h�ja.ux/C a�.ux/j�i

D 2

NX
jD1

�j
X
n�0

p
nC 1

X
i1;:::;in

<
Z
�

ani1;:::;in.x/a
nC1
i1;:::;in;j

.x/'j .x/dx:

By multiplying the functions ani1;:::;in with an appropriate phase factor, we can
make sure that

(7.15)
Z
�

ani1;:::;in.x/a
nC1
i1;:::;in;j

.x/'j .x/dx � 0

for all n � 0, 1 � j � N , and all i1; : : : ; in, and this can clearly only decrease the
energy. When computing the ground state energy, it suffices to consider �’s with
such property, in which case the energy is clearly monotone decreasing in all the
�j . �

As a consequence, the ground state energy with interaction zv�x is bounded below
by the one with interaction v�x . In particular, we have thus shown that

(7.16)
inf specH � inf specH� � const

�
�0�5=2 C ��1�0�3=2

C ��2�0�1 C�1=2e�.�=�
0/2=2

�
and this holds for all � & 1 and �0 & 1. The choice �0 D �.6 ln�/�1=2 yields
(7.3). �

7.2 Final Lower Bound
The starting point of the proof of the lower bound is Proposition 7.1, which

quantifies the error in replacing H by H� in (7.1) for computing the ground state
energy. We are thus left with giving a lower bound on inf specH�.

We choose, for simplicity,� in such a way that�2 is not an eigenvalue of���.
Let � denote the projection

(7.17) � D �.�2 C��/ and N D dim ran�:

For later purposes we note that one has the Weyl asymptotics

(7.18) N � .2�/�3j�j�3 as �!1
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(see, e.g., [28, sec. XIII.15]). If en and 'n, respectively, denote the eigenvalues and
(real-valued) eigenfunctions of ���, then

(7.19) v�x .y/ D
NX
nD1

1p
en
'n.x/'n.y/

has finite rank. The Fock space F.L2.�// naturally factors into a tensor product
F.�L2.�//
F..1��/L2.�//, andH� is of the formA
1C1
N>, where
A acts on L2.�/ 
 F.�L2.�// and N> D P

n>N a
�.'n/a.'n/ is the number

operator on F..1 ��/L2.�//. In particular, inf specH� D inf specA.
As in Section 4 (where a different basis was used, however), we identify the

spaces F.�L2.�// and L2.RN / via the representation

(7.20) ' D �' D
NX
nD1

�n'n;

thus identifying a function ' 2 ran� with a point .�1; : : : ; �N / 2 RN . In this
representation, we have

(7.21) A D ��� C V'.x/C
NX
nD1

�
� 1

4�4
@2�n C �2n �

1

2�2

�
on L2.�/ 
 L2.RN /. For a lower bound, we can replace ��� C V'.x/ by the
infimum of its spectrum, for any fixed ' 2 ran�. In particular, we have

(7.22) inf specH� � inf specK

where K is the operator on L2.RN /

(7.23) K D � 1

4�4

NX
nD1

@2�n �
N

2�2
C FP.'/

with FP defined in (2.5). Here FP.'/ is a function of .�1; : : : ; �N / via the identi-
fication (7.20).

We now introduce an IMS-type localization. Let � W RC ! �0; 1� be a smooth
function with �.t/ D 1 for t � 1=2, �.t/ D 0 for t � 1. Let " > 0, and let j1 and
j2 denote the multiplication operators in L2.RN /

j1 D �."�1k.���/�1=2.' � 'P/k2/;(7.24)

j2 D
q
1 � �."�1k.���/�1=2.' � 'P/k2/2:

Then clearly j 21 C j 22 D 1 and

(7.25) K D j1Kj1 C j2Kj2 � E
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where E is the IMS localization error

(7.26) E D 1

4�4

NX
nD1

�j@�nj1j2 C j@�nj2j2
�
:

It is easy to see that that E . ��4"�2, independently of N . In particular, the
localization error is negligible if "� ��1.

On the support of j1, we can use the bound (3.5) on FP. This gives

j1Kj1 � j 21 inf spec
�
eP � 1

4�4

NX
nD1

@2�n �
N

2�2

C h' � 'Pj1 �K � "CLj' � 'Pi
�(7.27)

for C a positive constant. Now 'P will not necessarily be in the range of �.
However, since 1�K � "CL is positive for " small enough, we can replace 'P by
its closest point (in the norm defined via 1 � K � "CL) in the range of � for a
lower bound. That is,

(7.28) h' � 'Pj1 �K � "CLj' � 'Pi � h' � yj�.1 �K � "CL/�j' � yi
where y D .�.1 � K � "CL/�/�1�.1 � K � "CL/'P. The shift by y can
be removed by a unitary transformation, without affecting the ground state energy.
Hence

j1Kj1 � j 21 inf spec

 
eP � 1

4�4

NX
nD1

@2�n �
N

2�2
C h'j�.1 �K � "CL/�j'i

!

D j 21

�
eP � 1

2�2
Tr.1 �

p
1 ��.K C "CL/�/

�
:

This is of the correct form if N !1 and "! 0 as � !1.
On the support of j2, we use the bound (3.15) instead. We have, for any � � 0,

j2Kj2 � j 22 inf spec
�
eP � 1

4�4

XN

nD1
@2�n �

N

2�2
C �

4
"2

C 

' � 'P��1 � �1C �0.���/1=2

��1 � �.���/�1��' � 'P��
where we have used the fact that k.���/�1=2.' � 'P/k2 � "=2 on the support
of j2. We choose � independent of � (and hence also independent of � and ") and
small enough such that the operator in the last line is positive. Proceeding as in the
case of j1 above, we obtain

(7.29)
j2Kj2 � j 22

�
eP C �

4
"2

� 1

2�2
Tr�

h
1 �

q
1 � �1C �0.���/1=2

��1 � �.���/�1i�:
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From the Weyl asymptotics (7.18) one checks that the trace diverges like N 2=3 �
�2 for large �. Hence if we choose ���1 � const " with a sufficiently small
constant, the term in parenthesis in (7.29) is actually larger than eP. Since we will
choose � � �� with � > 4=5, this is compatible with the condition "� 1 as long
as � < 1.

We thus conclude that if ���1 � const " and " is small enough, we have the
bound

(7.30) inf specK � eP � 1

2�2
Tr
�
1 �

p
1 ��.K C "CL/�

� � const��4"�2:

For a lower bound, we can further drop the �’s in the second term on the right
side, and replace them by 1. Note that kK C "CLk � � < 1 for small enough ",
and the function f .t/ D 1 �p1 � t is Lipschitz-continuous and convex on �0; ��.
We utilize the following simple lemma.

LEMMA 7.3. For � > 0, let f W �0; ��! R be a Lipschitz-continuous and convex
function with f .0/ D 0, and let A;B be nonnegative trace class operators with
AC B � �. Then

(7.31) Tr f .AC B/ � Trf .A/C Cf TrB

where Cf denotes the Lipschitz constant of f .

PROOF. With fgj g a basis of eigenvectors of AC B , we have

Trf .AC B/ D
X
j

f .hgj jAC Bjgj i/

�
X
j

f .hgj jAjgj i/C Cf
X
j

hgj jBjgj i:

The convexity of f implies that f .hgj jAjgj i/ � hgj jf .A/jgj i, which yields the
desired result. �

Lemma 7.3 readily implies that

(7.32) Tr
�
1 �

p
1 �K � "CL� � Tr

�
1 �

p
1 �K�C const " TrL:

We thus have

(7.33) inf specK � eP � 1

2�2
Tr
�
1 �

p
1 �K� � const

�
��4"�2 C ��2"

�
:

In combination with (7.3) and (7.22), this is our final lower bound.
In order to minimize the error terms in (7.3) and (7.33), we shall choose " �

��1=7.ln�/5=14 and � � �6=7.ln�/5=14. This yields

(7.34) inf specH � eP � 1

2�2
Tr
�
1 �

p
1 �K� � const��15=7.ln�/5=14

for � & 1, and thus completes the proof of the lower bound in Theorem 2.6. �
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Appendix A Equivalent Formulation of Assumption 2.4
In this appendix we shall explain how Assumption 2.4 can be verified via a

spectral analysis of the Hessian of EP at its minimizer  P � 0, which is assumed
to be unique. We partly follow ideas in [7, sec. 2].

The Euler-Lagrange equation for the minimizer is

(A.1) ��� P � 2�.���/�1j Pj2� P D � P:

The relevant Hessian ZP is defined via

h jZPj i D lim
"!0

1

"2

�
EP
�

 P C " 

k P C " k2

�
� eP

�
for real-valued  2 H 1

0 .�/, and equals

ZP D ��� � 2.���/�1j Pj2 � 4X � �

� 4
�
���

j P.x/j2.���/�1.x; y/j P.y/j2 dx dy j Pih Pj

C 4
�j Pih�.���/�1j Pj2� Pj C h.c.

�
where X is the operator with integral kernel

X.x; y/ D  P.x/.���/�1.x; y/ P.y/:

There is also another Hessian defined for purely imaginary perturbations of P, but
it is trivially given by the linear operator defined by the equation (A.1) and plays
no role here.

Note that ZP P D 0. We now show that if  P spans the kernel of ZP, then
Assumption 2.4 holds.

LEMMA A.1. If kerZP D spanf Pg, then there exists a � > 0 such that for all
0 �  2 H 1

0 .�/ with k k2 D 1 we have

(A.2) EP. / � EP. P/C �k �  Pk2
H1.�/

:

PROOF.
Step 1. We first show that there are c > 0 and � > 0 such that (A.2) holds for

all 0 �  2 H 1
0 .�/ with k k2 D 1 and k � PkH1.�/ � c. We set � D  � P

and expand

EP. P C �/ D EP. P/C 2�

Z
�

 P.x/�.x/dx

C
Z
�

jr�.x/j2 dx � 2
�
���

 P.x/2.���/�1.x; y/�.y/2 dx dy

� 4h�jX j�i CO
�k�k3

H1

�
:
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The assumption k k2 D 1 implies that

(A.3) 2

Z
�

 P.x/�.x/dx D �k�k22;

and therefore, using this identity multiple times,

(A.4) EP. P C �/ D EP. P/C h�jZPj�i CO
�k�k3

H1

�
:

The operatorZP has discrete spectrum, and hence our assumption on the simplicity
of the kernel implies that for some � > 0

h�jZPj�i � �k� � h Pj�i Pk22
D �

�
k�k22 �

�Z
�

 P�

�2�
D �k�k22

�
1 � 4�1k�k22

�
:

On the other hand, it is easy to see that for some C > 0

(A.5) ZP � �.1=2/�� � C:
Taking a mean of the previous two inequalities we obtain for any 0 � � � 1,

(A.6) h�jZPj�i � .�=2/kr�k22 C ..1 � �/� � C�/k�k22 � 4�1�.1 � �/k�k42:
In particular, for � D �=.C C � C 1=2/ we have

(A.7) h�jZPj�i � �

2C C 2� C 1
k�k2

H1.�/
� 4�1� 2C C 1

2C C 2� C 1
k�k42:

Inserting this into the above inequality, we obtain

(A.8) EP. P C �/ � EP. P/C �

2C C 2� C 1
k�k2

H1.�/
CO

�k�k3
H1.�/

�
;

which clearly implies the assertion in Step 1.
Step 2. We now prove the full statement of the lemma. We argue by contradic-

tion. If there were no such �, we could find a sequence 0 �  n 2 H 1
0 .�/ with

k nk2 D 1 such that

(A.9) EP. n/ < EP. P/C n�1k n �  Pk2
H1.�/

:

Using (C.2), Hardy-Littlewood-Sobolev, Hölder, and Sobolev we bound�
���

 .x/2.���/�1.x; y/ .y/2 dx dy

� 1

4�

�
���

 .x/2 .y/2

jx � yj dx dy

. k 2k26=5 � k k6k k32 . kr k2k k32:
This implies EP. / � .1=2/kr k22 � Ck k62 for all  2 H 1

0 .�/. Combining
this inequality with the upper bound (A.9) on EP. n/ we easily infer that . n/ is
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bounded in H 1
0 .�/ and hence that k n �  PkH1.�/ is bounded. Thus, (A.9) im-

plies that . n/ is a minimizing sequence for EP. Therefore, by a simple compact-
ness argument, after passing to a subsequence,  n converges inH 1 to a minimizer.
Since  n � 0, our assumed uniqueness of the minimizer implies that  n !  P.
Thus, for all sufficiently large n, k n �  PkH1.�/ � c, where c is the constant
from Step 1. Therefore the inequality from Step 1 is applicable, but this bound
contradicts (A.9) for large n. This completes the proof. �

Appendix B Bounds on Solutions of Poisson’s Equation

We consider solutions u of the equation ��u D f in an open set� � Rd with
boundary conditions u D 0 on @�. We are interested in bounds on derivatives
of u in terms of derivatives of f , uniformly on small balls, possibly intersecting
the boundary of�. While we use these bounds only for d D 3, it requires no extra
effort to prove them in arbitrary dimension d � 2.

B.1 Statement of the Inequality
Let k 2 N and � 2 .0; 1/. We say that an open set� � Rd is a C k;� set if there

are constants r0 > 0 and M < 1 such that for any x 2 @� there is a function
� W fy0 2 Rd�1 W jy0j < r0g ! R satisfying �.0/ D 0, r�.0/ D 0, and

(B.1)
kX

jD0

r
j�1
0 sup

jy0j<r0

j@j�.y0/j C rk�1C�0 sup
jy0j;j´0j<r0

j@k�.y0/ � @k�.´0/j
jy0 � ´0j� �M

such that, after a translation and a rotation (which maps x to 0 and the exterior unit
normal at x to .0; : : : ; 0;�1/, and is denoted by Tx),

(B.2) Tx.� \ Br0.x// D�
.y0; yd / 2 Rd�1 �R W jy0j < r0; yd > �.y0/

	 \ Br0.0/:
Here and below we use the notation j@kf .x/j D .

P
j� jDk j@�f .x/j2/1=2 and

similarly j@kf .x/ � @kf .y/j D .
P

j� jDk j@�f .x/ � @�f .y/j2/1=2, with @� D
@
�1
1 � � � @�d

d
for � 2 Nd0 , and j�j DPd

jD1 �j . The above definition of a C k;� set is
standard (see, e.g., [12, sec. 6.2]), except possibly for the choice of the r0 depen-
dence in (B.1). Our choice ensures scale invariance in the sense that if � is scaled
by a factor �, r0 gets multiplied by � while M stays the same.

THEOREM B.1. Let k 2 N, 0 < � < 1, R0 > 0, and � � R
d be an open C k;�

set. Then we have, for all a 2 � and all R � R0, if k D 1

1X
jD0

Rj sup
BR.a/\�

j@juj CR1C� sup
x;y2BR.a/\�

j@u.x/ � @u.y/j
jx � yj�

. sup
B2R.a/\�

juj CR2 sup
B2R.a/\�

jf j
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and if k � 2
kX

jD0

Rj sup
BR.a/\�

j@juj CRkC� sup
x;y2BR.a/\�

j@ku.x/ � @ku.y/j
jx � yj�

. sup
B2R.a/\�

juj C
k�2X
jD0

RjC2 sup
B2R.a/\�

j@jf j

CRkC� sup
x;y2B2R.a/\�

j@k�2f .x/ � @k�2f .y/j
jx � yj� :

The constants in these bounds depend only on d , k, �, M , and R0=r0.

Dropping the Hölder seminorm on the left side and estimating it on the right
side in terms of one higher derivative, we obtain:

COROLLARY B.2. Let k 2 N, 0 < � < 1, R0 > 0, and � � Rd be an open C k;�

set. Then we have for all a 2 � and all R � R0,

(B.3)
kX

jD0

Rj sup
BR.a/\�

j@juj . sup
B2R.a/\�

juj C
k�1X
jD0

RjC2 sup
B2R.a/\�

j@jf j:

The constants in these bounds depend only on d , k, �, M , and R0=r0.

B.2 Local Estimates
The more difficult assertion in Theorem B.1 is for balls such thatB2R.a/\@� ¤

¿. The strategy in this case will be to flatten the boundary, but this results in a
second-order elliptic equation with variable coefficients. In this subsection we state
and prove bounds on solutions of such equations for domains with a flat boundary
portion.

Let� � RdC WD R
d�1�.0;1/ be an open set with an open boundary portion T

on @RdC. We emphasize explicitly that the case T D ¿ is allowed. For x; y 2 �
we write, following [12, sec. 4.4],

xdx WD dist.x; @� n T /; xdx;y WD minf xdx; xdyg;
and introduce the norms

juj.�/
k;�[T

WD
kX

jD0

sup
x2�

xd jC�x j@ju.x/j

and

(B.4)

juj.�/
k;�;�[T

WD
kX

jD0

sup
x2�

xd jC�x j@ju.x/j

C sup
x;y2�

xdkC�C�x;y

j@ku.x/ � @ku.y/j
jx � yj� :
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One readily checks that these norms satisfy jfgj.�1C�2/
k;�;�[T

. jf j.�1/
k;�;�[T

jgj.�2/
k;�;�[T

as well as j@f j.�/
k;�;�[T

. jf j.��1/
kC1;�;�[T

and jf j.�/
k;�;�[T

. jf j.�/
kC1;�;�[T

with

implicit constants depending only on d , k, �, and � .
The following two lemmas are the main technical ingredients in the proof of

Theorem B.1.

LEMMA B.3. Let 0 < � < 1 and � � R
d
C be an open set with a boundary

portion T on @RdC. Let

(B.5) Lu D f Cr � g in � and u D 0 on T;

where

(B.6) L D �
dX

r;sD1

@rar;s@s:

Then

(B.7) juj.0/
1;�;�[T

. juj.0/0;�[T C jf j.2/0;�[T C jgj.1/
0;�;�[T

;

with the implicit constant depending only on d , �, �, and �, where

(B.8)
dX

r;sD1

jar;sj.0/0;�;�[T � �

and � > 0 is a uniform lower bound on the lowest eigenvalue of the symmetric
matrix defined by ar;s .

For us the bound with g D 0 suffices, but g appears naturally in the proof.

PROOF. A similar, but less precise bound appears in [12, cor. 8.36]. Since its
proof is sketched only very briefly, we provide some more details. The starting
point is [12, (4.46)], which proves the lemma in the case L D �� and � D
BR.x0/\RdC with x0 2 RdC. By the same argument as in the proof of [12, theorem
4.12] (which is not given, but which is similar to the proof of [12, theorem 4.8]),
this bound leads to Lemma B.3 for L D ��, but for general �. Using a simple
change of variables as in the proof of [12, lemma 6.1], we obtain the lemma for
L D �r � Ar with a constant matrix A again for a general �. Finally, using the
perturbation argument as in the proof of [12, lemma 6.4] (which again is not given,
but which is similar to the proof of [12, theorem 6.2]), we obtain the lemma. �

LEMMA B.4. Let k � 2, 0 < � < 1, and � � RdC be an open set with a boundary
portion T on @RdC. Let

(B.9) Lu D f in � and u D 0 on T;
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where

(B.10) L D �
dX

r;sD1

ar;s@r@s C
dX
rD1

br@r :

Then

(B.11) juj.0/
k;�;�[T

. juj.0/0;�[T C jf j.2/
k�2;�;�[T

with the implicit constant depending only on d , k, �, �, and �, where

(B.12)
dX

r;sD1

jar;sj.0/k�2;�;�[T C
dX
rD1

jbr j.1/k�2;�;�[T � �

and � > 0 is a uniform lower bound on the lowest eigenvalue of the symmetric
matrix defined by ar;s .

PROOF. Lemma B.4 with k D 2 coincides with [12, lemma 6.4]. Estimates
similar to, but less precise than our statement for k � 3, are stated as [12, problem
6.2], but without any details.

We shall show that for any integer k � 2 and any � � 0,

(B.13) juj.�/
k;�;�[T

. juj.�/0;�[T C jf j.�C2/
k�2;�;�[T

where the implicit constant depends only on d , k, �, � , �, and �. We will prove
this by induction on k.

First, let k D 2. For � D 0 the claimed inequality is [12, lemma 6.4] (whose
proof is not given, but which is similar to the proof of [12, theorem 6.2]). The proof
for � > 0 follows by the same argument.

Now let k � 3 and � � 0. We assume the inequality has already been shown
for all smaller values of k and for all values of � . For 1 � j � d � 1 the function
v D @ju satisfies

(B.14) Lv D zf in � and v D 0 on T;

where

(B.15) zf D @jf C
dX

r;sD1

.@jar;s/@r@su �
dX
rD1

.@j br/@ru:
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Therefore, by the induction assumption (B.13) with � replaced by � C 1,

jvj.�C1/
k�1;�;�[T

. jvj.�C1/0;�[T C j zf j.�C3/
k�3;�;�[T

� j@juj.�C1/0;�[T C j@jf j.�C3/k�3;�;�[T
C
X
r;s

j.@jar;s/@r@suj.�C3/k�3;�;�[T

C
X
r

j.@j br/@ruj.�C3/k�3;�;�[T

. j@juj.�C1/0;�[T C j@jf j.�C3/k�3;�;�[T
C
X
r;s

j@jar;sj.1/k�3;�;�[T j@r@suj
.�C2/
k�3;�;�[T

C
X
r

j@j br j.2/k�3;�;�[T j@ruj
.�C1/
k�3;�;�[T

. juj.�/1;�[T C jf j.�C2/
k�2;�;�[T

C
X
r;s

jar;sj.0/k�2;�;�[T juj
.�/

k�1;�;�[T

C
X
r

jbr j.1/k�2;�;�[T juj
.�/

k�2;�;�[T

. jf j.�C2/
k�2;�;�[T

C juj.�/
k�1;�;�[T

;

where we have used the properties of the norms discussed after equation (B.4).
Bounding the last term on the right side using the induction assumption with � , we
finally obtain

(B.16) j@juj.�C1/k�1;�;�[T
. juj.�/0;�[T C jf j.�C2/

k�2;�;�[T
if j D 1; : : : ; d � 1:

On the other hand, we have

@2du D
1

add

�
�

X
.r;s/¤.d;d/

ars@r@suC
X
r

br@ru � f
�

and therefore��@2du��.�C2/k�2;�;�[T

� ��a�1dd ��.0/k�2;�;�[T � X
.r;s/¤.d;d/

jarsj.0/k�2;�;�[T j@r@suj
.�C2/
k�2;�;�[T

C
X
r

jbr j.1/k�2;�;�[T j@ruj
.�C1/
k�2;�;�[T

C jf j.�C2/
k�2;�;�[T

�
:

Our assumptions imply that ja�1
dd
j.0/
k�2;�;�[T

is bounded in terms of � and �.

Moreover, j@ruj.�C1/k�2;�;�[T
is bounded above for any 1 � r � d by juj.�/

k�1;�;�[T
,
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which by the induction hypothesis (B.13) is bounded by juj.�/0;�[T Cjf j.�C2/k�3;�;�[T
.

We thus conclude that��@2du��.�C2/k�2;�;�[T

.
X

.r;s/¤.d;d/

j@r@suj.�C2/k�2;�;�[T
C
X
r

j@ruj.�C1/k�2;�;�[T
C jf j.�C2/

k�2;�;�[T

.

d�1X
jD1

j@juj.�C1/k�1;�;�[T
C jf j.�C2/

k�2;�;�[T
:

Combining this with (B.16) we obtain the claimed estimate on juj.�/
k;�;�[T

. This
completes the proof of Lemma B.4. �

B.3 Proof of Theorem B.1
We first assume that dist.a; @�/ � 2R. In this case B2R.a/ � �, and we can

apply Lemmas B.3 and B.4 with L D ��, T D ¿, and B2R.a/ playing the role
of �. Since

juj.�/
k;�;�

�
kX

jD0

sup
x2B2R.a/

.2R/jC� j@ju.x/j

C sup
x;y2B2R.a/

.2R/kC�C�
j@ku.x/ � @ku.y/j

jx � yj�
(and similarly with u replaced by f ) and

juj.�/
k;�;�

�
kX

jD0

sup
x2BR.a/

RjC� j@ju.x/j

C sup
x;y2BR.a/

RkC�C�
j@ku.x/ � @ku.y/j

jx � yj� ;

we immediately obtain the bound in this case. (Of course, in order to prove the
bounds, much simpler versions of Lemmas B.3 and B.4 would suffice.)

Now assume that dist.a; @�/ < 2R. We set

(B.17) r1 D
(
.2M/�1=�r0 if k D 1;

.2M/�1r0 if k � 2:
Without loss of generality we assumeM � 1

2
; hence r1 � r0. We will first assume

that R � r1=4, which implies that if p 2 @� is chosen with jp�aj D dist.a; @�/;
then

(B.18) B2R.a/ \� � Br1.p/ \�:
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(Indeed, if jy � aj < 2R, then jy � pj � jy � aj C ja� pj < 2RC dist.a; @�/ �
4R � r1.) Therefore, we can work in the boundary coordinates from the definition
of a C k;� domain centered at the point p. After a translation and a rotation we may
assume that p D 0 and that there is a function � W fy0 2 Rd�1 W jy0j < r0g ! R

with �.0/ D 0, r�.0/ D 0, and

(B.19) �\Br0.0/ D f.y0; yd / 2 Rd�1�R W jy0j < r0; yd > �.y0/g\Br0.0/:
We introduce the change of variables � W � \ Br0.0/! R

d
C,

(B.20) �m.y/ D ym if 1 � m � d � 1; �d .y/ D yd � �.y0/:
The following lemma shows that decreasing r0 to r1 ensures that � is bi-Lip-

schitz.

LEMMA B.5. For x; y 2 � \ Br1.0/, we have

(B.21)
1

2
jx � yj � j�.x/ ��.y/j � 3

2
jx � yj:

PROOF. For x; y 2 � \ Br0.0/ we have by the triangle inequality

(B.22)
��j�.x/ ��.y/j � jx � yj�� � j�.x0/ � �.y0/j:

In order to further bound this, we write, using r�.0/ D 0,

(B.23) �.x0/ � �.y0/ D
Z 1

0

.x0 � y0/ � .r�.y0 C t .x0 � y0// � r�.0//dt:

When k D 1, we obtain���.x0/ � �.y0/�� �Mr��0

Z 1

0

jx0 � y0jjy0 C t .x0 � y0/j� dt(B.24)

�Mr��0 maxfjx0j; jy0jg� jx0 � y0j:
For jx0j; jy0j � r1 D .2M/�1=�r0, this is � jx0 � y0j=2. The argument for k � 2

is similar. �

Let z� D �.B2R.a/ \ �/. This is an open set in RdC with a boundary portion
T D �.B2R.a/ \ @�/ on @RdC. For a function g on B2R.a/ \ � we define a
function zg on z� by

(B.25) zg.x/ D g.��1.x//:

We claim that

(B.26)

jzgj.�/
k;�;z�[T

.

kX
jD0

RjC� sup
B2R.a/\�

j@jgj

CRkC�C� sup
x;y2B2R.a/\�

j@kg.x/ � @kg.y/j
jx � yj�



STRONGLY COUPLED POLARON 581

with an implicit constant depending only on d , k, �, andM . Indeed, by Lemma B.5,
for x 2 B2R.a/ \�,

(B.27) dist.�.x/; @z�nT / � 3

2
dist.x; @.B2R.a/\�/n .B2R.a/\ @�// � 3R:

Moreover, for j � d � 1, we have @j zg D @jg C @dg@j� and @d zg D @dg. Since
j@j�j � M , we see that j@zgj . j@gj. When computing a second derivative, also a
term like @dg@j @k� appears. Bounding j@j @k�j � Mr�10 and R . r0, we obtain
j@2zgj . j@2gjCR�1j@gj. The arguments for higher derivatives and for the Hölder
term are similar.

After these preliminaries we now return to our differential equation. We have
��u D f in � \ B2R.a/ and u D 0 on @� \ B2R.a/. Therefore the functions

(B.28) zu.x/ D u.��1.x//; zf .x/ D f .��1.x//

satisfy

(B.29) Lzu D zf in z� and zu D 0 on T

with the operator

(B.30) L D �
dX

r;sD1

@rar;s@s;

where

(B.31) ar;s D

8���<���:
�r;s if r; s � d � 1:
1C .r�/2 if r D s D d;

�@r� if r < d D s;

�@s� if s < d D r:

A straightforward computation shows that the smallest eigenvalue of the matrix
defined by ar;s is given by 1 C 1

2
..r�/2 �

p
.r�/4 C 4.r�/2/. The function

t 7! 1 C 1
2
.t � p

t2 C 4t/ is positive for t � 0 and strictly decreasing to 0 as
t !1. Therefore, since jr�j �M by our definition of C k;� smoothness, we see
that the lowest eigenvalue is uniformly bounded below by some � > 0 depending
only on M .

Moreover, using the definition of a C k;� -set and the fact thatR . r0, we deduce
from (B.26) that

(B.32)
X
r;s

jar;sj.0/
k�1;�;z�[T

� �

with � depending only on d , k, �, and M . Similarly, for

(B.33) br D �
dX
sD1

@sasr D
(
0 if r � d � 1;
�� if r D d;
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and k � 2, we have

(B.34)
X
r

jbr j.1/
k�2;�;z�[T

� �:

From Lemmas B.3 and B.4 we conclude that

(B.35) kzuk.0/
k;�;z�[T

. kzuk.0/
0;z�[T

C
8<:k

zf k.2/
0;z�[T

if k D 1;

k zf k.2/
k�2;�;z�[T

if k � 2:
According to (B.26), the right side of (B.35) can be further bounded by a constant
(depending only on d , k, �, and M ) times

sup
B2R.a/\�

juj C

8�������<�������:

R2 sup
B2R.a/\�

jf j if k D 1;

Pk�2
jD0R

jC2 sup
B2R.a/\�

j@jf j

CRkC� sup
x;y2B2R.a/\�

j@k�2f .x/�@k�2f .y/j

jx�yj�
if k � 2:

We claim that the left side of (B.35) is bounded from below by a constant (depend-
ing only on d , k, �, and M ) times

kX
jD0

Rj sup
BR.a/\�

j@juj CRkC� sup
x;y2BR.a/\�

j@ku.x/ � @ku.y/j
jx � yj� :

The proof of the latter fact is similar to that of (B.26). Namely, for x 2 BR.a/\�,
one has

dist.�.x/; @z� n T / � 1

2
dist.x; @.B2R.a/ \�/ n .B2R.a/ \ @�// � 1

2
R:

Moreover, factors of derivatives of � , which appear when computing derivatives
of u in terms of derivatives of zu, are handled as in the proof of (B.26). This com-
pletes the proof of the theorem in case R0 � r1=4 with r1 defined in (B.17).

The case of largerR0 is readily reduced to the previous case by covering the ball
BR.a/ with finitely many smaller balls of size r1=4. As long as R0=r0 is bounded,
this only modifies the constants in the bounds. �

Appendix C Bounds on the Kernel of Functions
of the Dirichlet Laplacian

In this appendix we will use the bounds in Appendix B, specifically Corol-
lary B.2, to obtain estimates on derivatives of the integral kernel of various func-
tions of the Dirichlet Laplacian �� for � � Rd . We work in arbitrary dimension
d � 1.
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C.1 Simple Bounds
We recall [4, eq. (1.9.1)] that for any x; y 2 �, one has

(C.1) 0 � et��.x; y/ � et�Rd .x; y/ D .4�t/�d=2e�.x�y/
2=.4t/:

Therefore, by Bernstein’s theorem we infer that for any completely monotone func-
tion f on �0;1/, we have

(C.2) 0 � f .���/.x; y/ � f .��R3/.x; y/ D
Z
Rd
f .k2/eik�.x�y/

dk

.2�/d
:

This bound is used in the main text multiple times, for instance with f given by
f .t/ D t�1e�t=K

2

and f .t/ D .t CK2/�3.
To motivate the following, we shall first derive a more general but slightly worse

bound on the diagonal x D y, assuming only that f is nonincreasing. Assuming
that � is bounded (or more generally that the spectrum of ��� is discrete), we
shall denote the eigenvalues of��� (in increasing order and repeated according to
their multiplicities) by en, and the corresponding eigenfunctions by 'n. According
to (C.1) we have for any K > 0X

en�K2

j'n.x/j2 � etK2

et��.x; x/ � etK2

.4�t/�d=2:

Optimizing in t yields

X
en�K2

j'n.x/j2 �
� e

2�d

�d=2
Kd D

�
2e

d

�d=2
�.1C d=2/

Z
fjkj�Kg

dk

.2�/d
:

Any nonincreasing function f with limt!1 f .t/ D 0 can be written as a super-
position of characteristic functions as f .t/ D � R10 �ft�sgf

0.s/ds, and hence

(C.3)

X
n

f .en/j'n.x/j2 D f .���/.x; x/

�
�
2e

d

�d=2
�.1C d=2/

Z
Rd
f .k2/

dk

.2�/d

for nonincreasing functions.

C.2 Bounds on the Diagonal
We now use the same method to derive bounds on

P
n f .en/j@�'n.x/j2. To do

so we shall use Corollary B.2 to prove the following.

LEMMA C.1. Assume that � � R
d is a bounded, open C k;� set for some k � 1

and 0 < � < 1, and let R0 > 0. For any bounded function g W RC ! R of
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compact support, any � 2 Nd0 with j�j � k, and any R 2 .0; R0/,

(C.4)

R2j� j
X
n

g.en/
2j@�'n.x/j2

.

j� jX
jD0

sup
x02BR.x/\�

X
n

g.en/
2.R2en/

2j j'n.x0/j2

for all x 2 �.

PROOF. We proceed by induction in j�j. For j�j D 0, (C.4) obviously holds.
Assume now j�j � 1. Pick a  2 L2.�/, and let u D g.���/ . From Corol-
lary B.2, we obtain for any x 2 �
(C.5) Rj� jj@�u.x/j . sup

BR.x/\�

ju.x0/jC
X

�W j�j<j� j

Rj�jC2 sup
BR.x/\�

j@���u.x0/j:

Now

(C.6)

ju.x0/j D jg.���/ .x0/j D
���X
n

g.en/h'nj i'n.x0/
���

�
�X
n

g.en/
2j'n.x0/j2

�1=2k k2
and similarly

(C.7) j@���u.x0/j �
�X
n

g.en/
2e2nj@�'n.x0/j2

�1=2k k2:
By combining (C.5)–(C.7) and using the induction hypotheses for � with j�j < j�j,
we obtain the bound

R2j� jj@�g.���/ .x/j2

. k k22
j� jX
jD0

sup
B2R.x/\�

X
n

g.en/
2.R2en/

2j j'n.x0/j2

valid for all  2 L2.�/. Since

(C.8) sup
 

k k�22 j@�g.���/ .x/j2 D
X
n

g.en/
2j@�'n.x/j2

the result follows. �

We apply (C.4) with g the characteristic function of fe � K2g for some K > 0,
R D K�1, and R0 D e

�1=2
1 . This yields

(C.9)
X
en�K2

j@�'n.x/j2 . K2j� j sup
B
K�1 .x/\�

X
en�K2

j'n.x0/j2 . K2j� jCd



STRONGLY COUPLED POLARON 585

where we have used (C.3) in the last step. More generally, we obtain for any
nonincreasing function f with limt!1 td=2Cj� jf .t/ D 0 that

(C.10)

X
n

f .en/j@�'n.x/j2 D �
Z 1

0

X
en�E

j@�'n.x/j2f 0.E/dE

. �
Z 1

0

Ed=2Cj� jf 0.E/dE

D const
Z 1

0

Ed=2Cj� j�1f .E/dE

D const
Z
Rd
k2j� jf .k2/

dk

.2�/d
:

The validity of (C.9) is shown in [16, theorem 17.5.3] if � has C1 boundary.
Following the proof there (which is based on regularity theory inL2-based Sobolev
spaces), one sees that a certain finite number of derivatives is actually sufficient,
but the result is not as precise as ours, which only requires C j� j;� regularity of the
boundary.

C.3 Off-Diagonal Bounds
In this section we shall derive a bound on the derivatives of the kernel of certain

functions of the Dirichlet Laplacian, valid even away from the diagonal. These
bounds are much less general than the ones in the previous two subsections, how-
ever. For simplicity we only consider the particular class of functions needed in
the main text, but the method obviously extends to other functions as well.

For � > 0 and ` > 0, let

´`.t/ D t�`
�
1 � e�t=�2�2

:

LEMMA C.2. Assume that � � R
d is a bounded, open C k;� set for some k � 1

and 0 < � < 1. For any � 2 Nd0 with j�j � k and j�j < 2 C d=2, and any
` 2 .j�j; 2C d=2/ and � > 0, we have

(C.11)

j@�x´`.���/.x; y/j .8�<�:
jx � yj2`�d�j� j for ` < d=2;
ln.1C .�jx � yj/�1/jx � yj�j� j for ` D d=2;

�d�2`jx � yj�j� j for ` > d=2;

for �jx � yj � 1, and

(C.12) j@�x´`.���/.x; y/j . ��4jx � yj2`�4�d�j� j

for �jx � yj � 1.
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PROOF. We use again Corollary B.2 above. A simple induction argument as in
the proof of Lemma C.1 shows that

(C.13) Rj� jj@�x´`.���/.x; y/j .
j� jX
iD0

R2i sup
x02BR.x/

��´`�i .���/.x0; y/��
for any R > 0 (smaller than some arbitrary, fixed value). To estimate the right side
of (C.13), we write for j > 0

j́ .t/ D t�j .1 � e�t=�2

/2

D 1

�.j /

Z 1

0

e��t
�
�j�1 � 2�� ���2�j�1C C �� � 2��2�j�1C

�
d�

where the term �� � ��2�j�1C is understood as being 0 for � < ��2 even when
j < 1, and likewise for �� � 2��2�j�1C . In particular, from (C.1), we thus have

(C.14) j j́ .���/.x; y/j � �d�2jfj .�jx � yj/
with

(C.15) fj .t/ D
1

�.j /.4�/d=2

Z 1

0

e�t
2=.4�/

���j�1 � 2�� � 1�j�1C C �� � 2�j�1C

����d=2 d�:
We note that

(C.16)
���j�1 � 2�� � 1�j�1C C �� � 2�j�1C

�� . �j�3
for � � 3. Using this, one readily checks that as long as 0 < j < 2C d=2,

(C.17)

fj .t/ . t
2j�4�d for t � 1;

fj .t/ .

8�<�:
1 for j > d=2;
ln.2=t/ for j D d=2;

t2j�d for j < d=2;
for t � 1:

We plug these bounds into (C.14) and choose R D jx � yj=2 in (C.13). (Note that
R � R0, as required for (C.13), where R0 D diameter of �.) For all x0 2 BR.x/,
we then have jx0�yj � jx�yj=2, and hence (C.13), (C.14), and (C.17) imply the
desired bounds (C.11) and (C.12) for this choice of R. �

Recall the definition ujk.x/ D supy2R3 jpjpkjpj�4wxCy.y/j with

(C.18) wx.y/ D ´1=2.���/.x; y/:
Applying the bounds (C.11) and (C.12), with ` D 5=2, d D 3, and j�j D 2, we
readily obtain

(C.19) ujk.x/ . minf��2jxj�2; ��4jxj�4g:



STRONGLY COUPLED POLARON 587

The function minfjxj�2; jxj�4g is inL6=5.R3/ and hence has finite Coulomb norm.
By the Hardy-Littlewood-Sobolev inequality and scaling, it thus follows immedi-
ately that kujkkC . �

�5=2, as claimed in (5.22).

Acknowledgments. Partial support through National Science Foundation Grant
DMS-1363432 (R.L.F.) and the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement
No 694227; R.S.), is acknowledged.

Bibliography
[1] Alexandrov, A. S.; Devreese, J. T. Advances in polaron physics. Springer, Berlin-Heidelberg,

2010.
[2] Allcock, G. R. On the polaron rest energy and effective mass. Adv. Phys. 5 (1956), no. 20,

412–451.
[3] Allcock, G. R. Strong-coupling theory of the polaron. Polarons and Excitons, 45–70. Plenum

Press, 1963.
[4] Davies, E. B. Heat kernels and spectral theory. Cambridge Tracts in Mathematics, 92. Cam-

bridge University Press, Cambridge, 1990.
[5] Donsker, M. D.; Varadhan, S. R. S. Asymptotics for the polaron. Comm. Pure Appl. Math. 36

(1983), no. 4, 505–528. doi:10.1002/cpa.3160360408
[6] Feliciangeli, D.; Seiringer, R. Uniqueness and non-degeneracy of minimizers of the Pekar func-

tional on a ball. SIAM J. Math. Anal. 52 (2020), 605–622. doi:10.1137/19M126284X
[7] Frank, R. L.; Lieb, E. H.; Seiringer, R. Symmetry of bipolaron bound states for small Coulomb

repulsion. Comm. Math. Phys. 319 (2013), no. 2, 557–573. doi:10.1007/s00220-012-1604-y
[8] Frank, R. L.; Lieb, E. H.; Seiringer, R.; Thomas, L. E. Ground state properties of multi-polaron

systems. XVIIth International Congress on Mathematical Physics, 477–485. World Scientific,
Hackensack, N.J., 2014.

[9] Frank, R. L.; Schlein, B. Dynamics of a strongly coupled polaron. Lett. Math. Phys. 104 (2014),
no. 8, 911–929. doi:10.1007/s11005-014-0700-7

[10] Fröhlich, H. Theory of electrical breakdown in ionic crystals. Proc. R. Soc. Lond. A 160 (1937),
no. 901, 230–241. doi:10.1098/rspa.1937.0106

[11] Gerlach, B.; Löwen, H. Analytical properties of polaron systems or: Do polaronic phase transi-
tions exist or not? Rev. Mod. Phys. 63 (1991), no. 1, 63–90. doi:10.1103/RevModPhys.63.63

[12] Gilbarg, D.; Trudinger, N. S. Elliptic partial differential equations of second order. Classics in
Mathematics. Springer, Berlin, 2001.

[13] Griesemer, M.; Wünsch, A. Self-adjointness and domain of the Fröhlich Hamiltonian. J. Math.
Phys. 57 (2016), no. 2, 021902, 15 pp. doi:10.1063/1.4941561

[14] Gross, E. P. Particle-like solutions in field theory. Ann. Physics 19 (1962), 219–233.
doi:10.1016/0003-4916(62)90216-6

[15] Gross, E. P. Strong coupling polaron theory and translational invariance. Ann. Physics 99
(1976), no. 1, 1–29. doi:10.1016/0003-4916(76)90082-8

[16] Hörmander, L. The analysis of linear partial differential operators. III. Pseudo-differential op-
erators. Classics in Mathematics. Springer, Berlin, 2007. doi:10.1007/978-3-540-49938-1

[17] Lenzmann, E. Uniqueness of ground states for pseudorelativistic Hartree equations. Anal.
PDE 2 (2009), no. 1, 1–27. doi:10.2140/apde.2009.2.1

[18] Lieb, E. H. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equa-
tion. Studies in Appl. Math. 57 (1976/77), no. 2, 93–105. doi:10.1002/sapm197757293

[19] Lieb, E. H.; Loss, M. Analysis. Second edition. Graduate Studies in Mathematics, 14. American
Mathematical Society, Providence, R.I., 2001. doi:10.1090/gsm/014

http://dx.doi.org/doi:10.1002/cpa.3160360408
http://dx.doi.org/doi:10.1137/19M126284X
http://dx.doi.org/doi:10.1007/s00220-012-1604-y
http://dx.doi.org/doi:10.1007/s11005-014-0700-7
http://dx.doi.org/doi:10.1098/rspa.1937.0106
http://dx.doi.org/doi:10.1103/RevModPhys.63.63
http://dx.doi.org/doi:10.1063/1.4941561
http://dx.doi.org/doi:10.1016/0003-4916(62)90216-6
http://dx.doi.org/doi:10.1016/0003-4916(76)90082-8
http://dx.doi.org/doi:10.1007/978-3-540-49938-1
http://dx.doi.org/doi:10.2140/apde.2009.2.1
http://dx.doi.org/doi:10.1002/sapm197757293
http://dx.doi.org/doi:10.1090/gsm/014


588 R. L. FRANK AND R. SEIRINGER

[20] Lieb, E. H.; Thomas, L. E. Exact ground state energy of the strong-coupling polaron. Comm.
Math. Phys. 183 (1997), no. 3, 511–519. doi:10.1007/s002200050040 Erratum-ibid. [21].

[21] Lieb, E. H.; Thomas, L. E. Erratum: “Exact ground state energy of the strong-coupling polaron”.
Comm. Math. Phys. 188 (1997), no. 2, 499–500. doi:10.1007/s002200050175

[22] Lieb, E. H.; Yamazaki, K. Ground-state energy and effective mass of the polaron. Phys. Rev.
111 (1958), no. 3, 728–733. doi:10.1103/PhysRev.111.728

[23] Møller, J. S. The polaron revisited. Rev. Math. Phys. 18 (2006), no. 5, 485–517.
doi:10.1142/S0129055X0600267X

[24] Mukherjee, C.; Varadhan, S. R. S. Identification of the Polaron measure in strong coupling and
the Pekar variational formula. Preprint, 2018. arXiv:1812.06927 [math.PR]

[25] Mukherjee, C.; Varadhan, S. R. S. Strong coupling limit of the Polaron measure and the Pekar
process. Preprint, 2018. arXiv:1806.06865 [math.PR]

[26] Nelson, E. Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5
(1964), 1190–1197. doi:10.1063/1.1704225

[27] Pekar, S. I. Untersuchung über die Elektronentheorie der Kristalle. Akademie, Berlin, 1954.
[28] Reed, M.; Simon, B. Methods of modern mathematical physics. IV. Analysis of operators. Aca-

demic Press, New York–London, 1978.
[29] Spohn, H. Effective mass of the polaron: a functional integral approach. Ann. Physics 175

(1987), no. 2, 278–318. doi:10.1016/0003-4916(87)90211-9
[30] Tjablikow, S. W. Adiabatische Form der Störungstheorie im Problem der Wechselwirkung eines

Teilchens mit einem gequantelten Feld. Abhandlungen aus der Sowjetischen Physik, Folge IV,
54–68. Verlag Kultur und Fortschritt, Berlin, 1954.

[31] Tod, P.; Moroz, I. M. An analytical approach to the Schrödinger-Newton equations. Nonlinear-
ity 12 (1999), no. 2, 201–216. doi:10.1088/0951-7715/12/2/002

[32] Wei, J.; Winter, M. Strongly interacting bumps for the Schrödinger-Newton equations. J. Math.
Phys. 50 (2009), no. 1, 012905, 22 pp. doi:10.1063/1.3060169

RUPERT L. FRANK
Mathematisches Institut
Ludwig-Maximilians Universität

München
Theresienstr. 39
80333 München
GERMANY

and
Department of Mathematics
California Institute of Technology
Pasadena, CA 91125
USA
E-mail: r.frank@lmu.de,

rlfrank@caltech.edu

ROBERT SEIRINGER
IST Austria (Institute of Science

and Technology Austria)
Am Campus 1
3400 Klosterneuburg
AUSTRIA
E-mail: robert.seiringer@

ist.ac.at

Received February 2019.

http://dx.doi.org/doi:10.1007/s002200050040
http://dx.doi.org/doi:10.1007/s002200050175
http://dx.doi.org/doi:10.1103/PhysRev.111.728
http://dx.doi.org/doi:10.1142/S0129055X0600267X
http://arxiv.org/abs/1812.06927
http://arxiv.org/abs/1806.06865
http://dx.doi.org/doi:10.1063/1.1704225
http://dx.doi.org/doi:10.1016/0003-4916(87)90211-9
http://dx.doi.org/doi:10.1088/0951-7715/12/2/002
http://dx.doi.org/doi:10.1063/1.3060169
mailto:r.frank@lmu.de, rlfrank@caltech.edu
mailto:robert.seiringer@\ist.ac.at

	1. Introduction
	2. Model and Main Results
	3. The Pekar Functional
	4. Proof of Theorem 2.6: Upper Bound
	5. Multiple Lieb-Yamazaki Bound
	6. Gross Transformation
	7. Proof of Theorem 2.6: Lower Bound
	Appendix A. Equivalent Formulation of Assumption 2.4
	Appendix B. Bounds on Solutions of Poisson's Equation
	Appendix C. Bounds on the Kernel of Functions of the Dirichlet Laplacian
	Bibliography

