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Abstract
We consider large non-Hermitian real or complex random matrices X with inde-
pendent, identically distributed centred entries. We prove that their local eigenvalue
statistics near the spectral edge, the unit circle, coincide with those of the Gini-
bre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the
non-Hermitian counterpart of the universality of the Tracy–Widom distribution at the
spectral edges of the Wigner ensemble.
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Mathematics Subject Classification 60B20 · 15B52

1 Introduction

Following Wigner’s motivation from physics, most universality results on the local
eigenvalue statistics for large random matrices concern the Hermitian case. In
particular, the celebratedWigner–Dyson statistics in the bulk spectrum [44], theTracy–
Widom statistics [56,57] at the spectral edge and the Pearcey statistics [47,58] at
the possible cusps of the eigenvalue density profile all describe eigenvalue statis-
tics of a large Hermitian random matrix. In the last decade there has been a
spectacular progress in verifying Wigner’s original vision, formalized as the Wigner–
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Dyson–Mehta conjecture, for Hermitian ensembles with increasing generality, see
e.g. [2,15,23–26,35,37,40,42,45,48,52,52] for the bulk, [5,12,13,34,38,39,46,50,53]
for the edge and more recently [17,22,33] at the cusps.

Much less is known about the spectral universality for non-Hermitian models. In
the simplest case of the Ginibre ensemble, i.e. random matrices with i.i.d. standard
Gaussian entries without any symmetry condition, explicit formulas for all correlation
functions have been computed first for the complex case [31] and later for the more
complicated real case [10,36,49] (with special cases solved earlier [20,21,43]). Beyond
the explicitly computable Ginibre case only the method of four moment matching by
Tao and Vu has been available. Their main universality result in [54] states that the
local correlation functions of the eigenvalues of a random matrix X with i.i.d. matrix
elements coincide with those of the Ginibre ensemble as long as the first four moments
of the common distribution of the entries of X (almost) match the first four moments
of the standard Gaussian. This result holds for both real and complex cases as well as
throughout the spectrum, including the edge regime.

In the current paper we prove the edge universality for any n × n random matrix X
with centred i.i.d. entries in the edge regime, in particular we remove the four moment
matching condition from [54]. More precisely, under the normalization E |xab|2 = 1

n ,
the spectrum of X converges to the unit disc with a uniform spectral density according
to the circular law [6–8,30,32,51]. The typical distance between nearest eigenvalues is
of order n−1/2. We pick a reference point z on the boundary of the limiting spectrum,
|z| = 1, and rescale correlation functions by a factor ofn−1/2 to detect the correlation of
individual eigenvalues. We show that these rescaled correlation functions converge to
those of the Ginibre ensemble as n → ∞. This result is the non-Hermitian analogue of
the Tracy–Widom edge universality in the Hermitian case. A similar result is expected
to hold in the bulk regime, i.e. for any reference point |z| < 1, but our method is
currently restricted to the edge.

Investigating spectral statistics of non-Hermitian random matrices is considerably
more challenging than Hermitian ones. We give two fundamental reasons for this: the
first one is already present in the proof of the circular law on the global scale. The
second one is specific to the most powerful existing method to prove universality of
eigenvalue fluctuations.

The first issue a general one; it is well known that non-Hermitian, especially
non-normal spectral analysis is difficult because, unlike in the Hermitian case, the
resolvent (X − z)−1 of a non-normal matrix is not effective to study eigenvalues near
z. Indeed, (X−z)−1 can be very large even if z is away from the spectrum, a fact that is
closely related to the instability of the non-Hermitian eigenvalues under perturbations.
The only useful expression to grasp non-Hermitian eigenvalues is Girko’s celebrated
formula, see (14) later, expressing linear statistics of eigenvalues of X in terms of the
log-determinant of the symmetrized matrix

Hz =
(

0 X − z
X∗ − z 0

)
. (1)

Girko’s formula is much more subtle and harder to analyse than the analogous expres-
sion for the Hermitian case involving the boundary value of the resolvent on the real
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line. In particular, it requires a good lower bound on the smallest singular value of
X − z, a notorious difficulty behind the proof of the circular law. Furthermore, any
conceivable universality proof would rely on a local version of the circular law as an a
priori control. Local laws on optimal scale assert that the eigenvalue density on a scale
n−1/2+ε is deterministic with high probability, i.e. it is a law of large number type
result and is not sufficiently refined to detect correlations of individual eigenvalues.
The proof of the local circular law requires a careful analysis of Hz that has an addi-
tional structural instability due to its block symmetry. A specific estimate, tailored
to Girko’s formula, on the trace of the resolvent of (Hz)2 was the main ingredient
behind the proof of the local circular law on optimal scale [14,16,59], see also [54]
under three moment matching condition. Very recently the optimal local circular law
was even proven for ensembles with inhomogeneous variance profiles in the bulk [3]
and at the edge [4], the latter result also gives an optimal control on the spectral radius.
An optimal local law for Hz in the edge regime previously had not been available,
even in the i.i.d. case.

The second major obstacle to prove universality of fluctuations of non-Hermitian
eigenvalues is the lack of a good analogue of theDysonBrownianmotion. The essential
ingredient behind the strongest universality results in the Hermitian case is the Dyson
Brownian motion (DBM) [19], a system of coupled stochastic differential equations
(SDE) that the eigenvalues of a natural stochastic flow of random matrices satisfy,
see [27] for a pedagogical summary. The corresponding SDE in the non-Hermitian
case involves not only eigenvalues but overlaps of eigenvectors as well, see e.g. [11,
Appendix A]. Since overlaps themselves have strong correlation whose proofs are
highly nontrivial even in the Ginibre case [11,29], the analysis of this SDE is currently
beyond reach.

Our proof of the edge universality circumvents DBMand it has two key ingredients.
The first main input is an optimal local law for the resolvent of Hz both in isotropic and
averaged sense, see (13) later, that allows for a concise and transparent comparison of
the joint distribution of several resolvents of Hz with their Gaussian counterparts by
following their evolution under the natural Ornstein-Uhlenbeck (OU). We are able to
control this flow for a long time, similarly to an earlier proof of the Tracy–Widom law
at the spectral edge of a Hermitian ensemble [41]. Note that the density of eigenvalues
of Hz develops a cusp as |z| passes through 1, the spectral radius of X . The optimal
local law for very general Hermitian ensembles in the cusp regime has recently been
proven [22], strengthening the non-optimal result in [2]. This optimality was essential
in the proof of the universality of the Pearcey statistics for both the complex Hermi-
tian [22] and real symmetric [17] matrices with a cusp in their density of states. The
matrix Hz , however, does not satisfy the key flatness condition required [22] due its
large zero blocks. A very delicate analysis of the underlying matrix Dyson equation
was necessary to overcome the flatness condition and prove the optimal local law for
Hz in [3,4].

Our second key input is a lower tail estimate on the lowest singular value of X − z
when |z| ≈ 1. A very mild regularity assumption on the distribution of the matrix
elements of X , see (4) later, guarantees that there is no singular value below n−100,
say. Cruder bounds guarantee that there cannot be more than nε singular values below
n−3/4; note that this natural scaling reflects the cusp at zero in the density of states
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of Hz . Such information on the possible singular values in the regime [n−100, n−3/4]
is sufficient for the optimal local law since it is insensitive to nε-eigenvalues, but
for universality every eigenvalue must be accounted for. We therefore need a stronger
lower tail bound on the lowest eigenvalue λ1 of (X−z)(X−z)∗. With supersymmetric
methods we recently proved [18] a precise bound of the form

P
(
λ1
(
(X − z)(X − z)∗

) ≤ x

n3/2

)
�
{
x + √

xe−n(�z)2 , X ∼ Gin(R)

x, X ∼ Gin(C),
(2)

modulo logarithmic corrections, for the Ginibre ensemble whenever |z| = 1 +
O(n−1/2). Most importantly, (2) controls λ1 on the optimal n−3/2 scale and thus
excluding singular values in the intermediate regime [n−100, n−3/4−ε] that was inac-
cessible with other methods. We extend this control to X with i.i.d. entries from the
Ginibre ensemble with Green function comparison argument using again the optimal
local law for Hz .

1.1 Notations and conventions

We introduce some notations we use throughout the paper. We write H for the upper
half-plane H := {z ∈ C|�z > 0}, and for any z ∈ C we use the notation dz :=
2−1i(dz∧dz) for the two dimensional volume form onC. For any 2n×2nmatrix Awe
use the notation 〈A〉 := (2n)−1 Tr A to denote the normalized trace of A. For positive
quantities f , g we write f � g and f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg, respectively,
for some constants c,C > 0 which depends only on the constants appearing in (3).
We denote vectors by bold-faced lower case Roman letters x, y ∈ C

k , for some
k ∈ N. Vector and matrix norms, ‖x‖ and ‖A‖, indicate the usual Euclidean norm and
the corresponding induced matrix norm. Moreover, for a vector x ∈ C

k , we use the
notation dx := dx1 . . . dxk .

We will use the concept of “with very high probability” meaning that for any fixed
D > 0 the probability of the event is bigger than 1 − n−D if n ≥ n0(D). Moreover,
we use the convention that ξ > 0 denotes an arbitrary small constant.

We use the convention that quantities without tilde refer to a general matrix with
i.i.d. entries, whilst any quantity with tilde refers to the Ginibre ensemble, e.g. we use
X , {σi }ni=1 to denote a non-Hermitian matrix with i.i.d. entries and its eigenvalues,
respectively, and X̃ , {̃σi }ni=1 to denote their Ginibre counterparts.

2 Model andmain results

We consider real or complex i.i.d. matrices X , i.e. matrices whose entries are inde-

pendent and identically distributed as xab
d= n−1/2χ for a random variable χ . We

formulate two assumptions on the random variable χ :

Assumption (A) In the real case we assume that Eχ = 0 and Eχ2 = 1, while in the
complex case we assume Eχ = Eχ2 = 0 and E |χ |2 = 1. In addition, we assume
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the existence of high moments, i.e. that there exist constants Cp > 0 for each p ∈ N,
such that

E |χ |p ≤ Cp. (3)

Assumption (B) There existα, β > 0 such that the probability density g : F → [0,∞)

of the random variable χ satisfies

g ∈ L1+α(F), ‖g‖1+α ≤ nβ, (4)

where F = R,C in the real and complex case, respectively.

Remark 1 We remark that we use Assumption (B) only to control the probability of a
very small singular value of X − z. Alternatively, one may use the statement

P(Spec(Hz) ∩ [−n−l , n−l ] = ∅) ≤ Cln
−l/2, (5)

for any l ≥ 1, uniformly in |z| ≤ 2, that follows directly from [55, Theorem 3.2]
without Assumption (B). Using (5) makes Assumption (B) superfluous in the entire
paper, albeit at the expense of a quite sophisticated proof.

We denote the eigenvalues of X by σ1, . . . , σn ∈ C, and define the k-point corre-
lation function p(n)

k of X implicitly such that

∫
Ck

F(z1, . . . , zk)p
(n)
k (z1, . . . , zk) dz1 . . . dzk

=
(
n

k

)−1

E
∑

i1,...,ik

F(σi1 , . . . , σik ), (6)

for any smooth compactly supported test function F : Ck → C, with i j ∈ {1, . . . , n}
for j ∈ {1, . . . , k} all distinct. For the important special casewhenχ follows a standard
real or complex Gaussian distribution, we denote the k-point function of the Ginibre
matrix X by p(n,Gin(F))

k for F = R,C. The circular law implies that the 1-point
function converges

lim
n→∞ p(n)

1 (z) = 1

π
1(z ∈ D) = 1

π
1(|z| ≤ 1)

to the uniform distribution on the unit disk. On the scale n−1/2 of individual eigen-
values the scaling limit of the k-point function has been explicitly computed in the
case of complex and real Ginibre matrices, X ∼ Gin(R),Gin(C), i.e. for any fixed
z1, . . . , zk, w1, . . . , wk ∈ C there exist scaling limits p(∞)

z1,...,zk = p(∞,Gin(F))
z1,...,zk for

F = R,C such that

lim
n→∞ p(n,Gin(F))

k

(
z1 + w1

n1/2
, . . . , zk + wk

n1/2

)
= p(∞,Gin(F))

z1,...,zk (w1, . . . , wk). (7)
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Remark 2 The k-point correlation function p(∞,Gin(F))
z1,...,zk of the Ginibre ensemble in

both the complex and real cases F = C,R is explicitly known; see [31] and [44] for
the complex case, and [10,20,28] for the real case, where the appearance of ∼ n1/2

real eigenvalues causes a singularity in the density. In the complex case p(∞,Gin(C))
z1,...,zk is

determinantal, i.e. for any w1, . . . , wk ∈ C it holds

p(∞,Gin(C))
z1,...,zk (w1, . . . , wk) = det

(
K (∞,Gin(C))
zi ,z j (wi , w j )

)
1≤i, j≤k

where for any complex numbers z1, z2, w1, w2 the kernel K (∞,Gin(C))
z1,z2 (w1, w2) is

defined by

(i) For z1 �= z2, K
(∞,Gin(C))
z1,z2 (w1, w2) = 0.

(ii) For z1 = z2 and |z1| > 1, K (∞,Gin(C))
z1,z2 (w1, w2) = 0.

(iii) For z1 = z2 and |z1| < 1,

K (∞,Gin(C))
z1,z2 (w1, w2) = 1

π
e−|w1|2

2 −|w2|2
2 +w1w2 .

(iv) For z1 = z2 and |z1| = 1,

K (∞,Gin(C))
z1,z2 (w1, w2) = 1

2π

[
1 + erf

(
−√

2(z1w2 + w1z2)
)]

e−|w1|2
2 −|w2|2

2 +w1w2 ,

where

erf(z) := 2√
π

∫
γz

e−t2 dt,

for any z ∈ C, with γz any contour from 0 to z.

For the corresponding much more involved formulas for p(∞,Gin(R))
k we refer the

reader to [10].

Our main result is the universality of p(∞,Gin(R,C))
z1,...,zk at the edge. In particular we

show, that the edge-scaling limit of p(n)
k agrees with the known scaling limit of the

corresponding real or complex Ginibre ensemble.

Theorem 1 (Edge universality) Let X be an i.i.d. n × n matrix, whose entries satisfy
Assumption (A) and (B). Then, for any fixed integer k ≥ 1, and complex spectral
parameters z1, . . . , zk such that

∣∣z j ∣∣2 = 1, j = 1, . . . , k, and for any compactly
supported smooth function F : Ck → C, we have the bound

∫
Ck

F(w)

[
p(n)
k

(
z + w√

n

)
− p(∞,Gin(F))

z (w)

]
dw = O(n−c), (8)

where the constant in O(·) may depend on k and the C2k+1 norm of F, and c > 0 is
a small constant depending on k.
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2.1 Proof strategy

For the proof of Theorem 1 it is essential to study the linearized 2n × 2n matrix Hz

defined in (1) with eigenvalues λz
1 ≤ · · · ≤ λz

2n and resolvent G(w) = Gz(w) :=
(Hz − w)−1. We note that the block structure of Hz induces a spectrum symmetric
around 0, i.e. λz

i = −λz
2n−i+1 for i = 1, . . . , n. The resolvent becomes approximately

deterministic as n → ∞ and its limit can be found by solving the simple scalar
equation

− 1

m̂z
= w + m̂z − |z|2

w + m̂z
, m̂z(w) ∈ H, w ∈ H, (9)

which is a special case of the matrix Dyson equation (MDE), see e.g. [1]. In the
following we may often omit the z-dependence of m̂z , Gz(w), . . ., in the notation. We
note that on the imaginary axis we have m̂(iη) = i�m̂(iη), and in the edge regime∣∣1 − |z|2∣∣ � n−1/2 we have the scaling [4, Lemma 3.3]

�m̂(iη) ∼
{∣∣1 − |z|2∣∣1/2 + η1/3, |z| ≤ 1,

η∣∣1−|z|2∣∣+η2/3
, |z| > 1

}
� n−1/4 + η1/3. (10)

For η > 0 we define

u = uz(iη) := �m̂(iη)

η + �m̂(iη)
, M = Mz(iη) :=

(
m̂(iη) −zu(iη)

−zu(iη) m̂(iη)

)
, (11)

where M should be understood as a 2n×2n whose four n×n blocks are all multiples
of the identity matrix, and we note that [4, Eq. (3.62)]

u(iη) � 1, ‖M(iη)‖ � 1, ‖M ′(iη)‖ � 1

η2/3
(12)

Throughout the proof we shall make use of the following optimal local law which
is a direct consequence of [4, Theorem 5.2] (extending [3, Theorem 5.2] to the edge
regime). Compared to [4] we require the local law simultaneously in all the spectral
parameters z, η and for η slightly below the fluctuation scale n−3/4. We defer the
proofs for both extensions to “Appendix A”.

Proposition 1 (Local law for Hz) Let X be an i.i.d. n×n matrix, whose entries satisfy
Assumption (A) and (B), and let Hz be as in (1). Then for any deterministic vectors
x, y and matrix R and any ξ > 0 the following holds true with very high probability:
Simultaneously for any z with for |1 − |z|| � n−1/2 and all η such that n−1 ≤ η ≤ n100

we have the bounds

∣∣〈x, (Gz(iη) − Mz(iη)) y〉∣∣ ≤ nξ‖x‖‖ y‖
( 1

n1/2η1/3
+ 1

nη

)
,

∣∣〈R(Gz(iη) − Mz(iη))〉∣∣ ≤ nξ‖R‖
nη

. (13)
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For the application of Proposition 1 towards the proof of Theorem 1 the special case
of R being the identity matrix, and x, y being either the standard basis vectors, or the
vectors 1± of zeros and ones defined later in (58).

The linearized matrix Hz can be related to the eigenvalues σi of X via Girko’s
Hermitization formula [32,54]

1

n

∑
i

fz0(σi ) = 1

4πn

∫
C

Δ fz0(z) log |det Hz | dz

= − 1

4πn

∫
C

Δ fz0(z)
∫ ∞

0
�Tr Gz(iη) dη dz (14)

for rescaled test functions fz0(z) := n f (
√
n(z−z0)), where f : C → C is smooth and

compactly supported. When using (14) the small η regime requires additional bounds
on the number of small eigenvalues λz

i of H
z , or equivalently small singular values of

X − z. For very small η, say η ≤ n−100, the absence of eigenvalues below η, can easily
be ensured by Assumption (B). For η just below the critical scale of n−3/4, however,
we need to prove an additional bound on the number of eigenvalues, as stated below.

Proposition 2 For any n−1 ≤ η ≤ n−3/4 and
∣∣|z|2 − 1

∣∣ � n−1/2 we have the bound

E
∣∣{i | ∣∣λz

i

∣∣ ≤ η}∣∣ �
{
n3/2η2(1 + ∣∣log(nη4/3)

∣∣), X complex

n3/4η, X real

+ O(
nξ

n5/2η3
), (15)

on the number of small eigenvalues, for any ξ > 0.

We remark that the precise asymptotics of (15) are of no importance for the proof of
Theorem 1. Instead it would be sufficient to establish that for any ε > 0 there exists
δ > 0 such that we have E

∣∣{i | ∣∣λz
i

∣∣ ≤ n−3/4−ε}∣∣ � n−δ .
The paper is organized as follows: in Sect. 3 we will prove Proposition 2 by a Green

function comparison argument, using the analogous bound for the Gaussian case, as
recently obtained in [18]. In Sect. 4 we will then present the proof of our main result,
Theorem 1, which follows from combining the local law (13), Girko’s Hermitization
identity (14), the bound on small singular values (15) and another long-time Green
function comparison argument.

3 Estimate on the lower tail of the smallest singular value of X − z

The main result of this section is an estimate of the lower tail of the density of the
smallest

∣∣λz
i

∣∣ in Proposition 2. For this purpose we introduce the following flow

dXt = −1

2
Xt dt + dBt√

n
, (16)
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with initial data X0 = X , where Bt is the real or complex matrix valued standard
Brownian motion, i.e. Bt ∈ R

n×n or Bt ∈ C
n×n , accordingly with X being real or

complex, where (bt )ab in the real case, and
√
2�[(bt )ab],

√
2�[(bt )ab] in the complex

case, are independent standard real Brownian motions for a, b ∈ [n]. The flow (16)
induces a flow dχt = −χt dt/2 + dbt on the entry distribution χ with solution

χt = e−t/2χ +
∫ t

0
e−(t−s)/2 dbs, i.e. χt

d= e−t/2χ +
√
1 − e−t g, (17)

where g∼N(0, 1) is a standard real or complex Gaussian, independent of χ , with
E g2 = 0 in the complex case. By linearity of cumulants we find

κi, j (χt ) = e−(i+ j)t/2κi, j (χ) +
{

(1 − e−t )κi, j (g), i + j = 2

0, else,
(18)

where κi, j (x) denotes the joint cumulant of i copies of x and j copies of x , in particular
κ2,0(x) = κ0,2(x) = κ1,1(x) = 1 for x = χ, g in the real case, and κ0,2(x) =
κ2,0(x) = 0 �= κ1,1(x) = 1 for x = χ, g in the complex case.

Thus (17) implies that, in distribution,

Xt
d= e−t/2X0 +

√
1 − e−t X̃ , (19)

where X̃ is a real or complex Ginibre matrix independent of X0 = X . Then, we
define the 2n × 2n matrix Ht = Hz

t as in (1) replacing X by Xt , and its resolvent
Gt (w) = Gz

t (w) := (Ht − w)−1, for any w ∈ H. We remark that we defined the
flow in (16) with initial data X and not Hz in order to preserve the shape of the self
consistent density of states of the matrix Ht along the flow. In particular, by (16) it
follows that Ht is the solution of the flow

dHt = −1

2
(Ht + Z) dt + dBt√

n
, H0 = H = Hz (20)

with

Z :=
(
0 z I
z I 0

)
, Bt :=

(
0 Bt

B∗
t 0

)
,

where I denotes the n × n identity matrix.

Proposition 3 Let Rt := 〈Gt (iη)〉 = i〈�Gt (iη)〉, then for any n−1 ≤ η ≤ n−3/4 it
holds that ∣∣E[Rt2 − Rt1]

∣∣ � (e−3t1/2 − e−3t2/2)nξ

n7/2η4
, (21)

for any arbitrary small ξ > 0 and any 0 ≤ t1 < t2 ≤ +∞, with the convention that
e−∞ = 0.
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Proof Denote Wt := Ht + Z . By (20) and Ito’s Lemma it follows that

E
dRt

dt
= E

⎡
⎣−1

2

∑
α

wα(t)∂αRt + 1

2

∑
α,β

κt (α, β)∂α∂β Rt

⎤
⎦ , (22)

where α, β ∈ [2n]2 are double indices, wα(t) are the entries of Wt and

κt (α, β, , . . . ) := κ(wα(t), wβ(t), . . . ) (23)

denotes the joint cumulant of wα,wβ, . . ., and ∂α := ∂wα . By (18) and the indepen-
dence of χ and g it follows that κt (α, β) = κ0(α, β) for all α, β and

κt (α, β1, . . . , β j )

=
{
e−t j+1

2 n− j+1
2 κl,k(χ) if α /∈ [n]2 ∪ [n + 1, 2n]2, βi ∈ {α, α′} ∀i ∈ [ j]

0 otherwise,
(24)

for j > 1, where for a double index α = (a, b), we use the notation α′ := (b, a), and
l, k with l+k = j+1 denote the number of double indices amongα, β1, . . . , β j which
correspond to the upper-right, or respectively lower-left corner of the matrix H . In
the sequel the value of κk,l(χ) is of no importance, but we note that Assumption (A)
ensures the bound

∣∣κk,l(χ)
∣∣ �

∑
j≤k+l C j < ∞ for any k, l, with C j being the

constants from Assumption (A).
We will use the cumulant expansion that holds for any smooth function f :

Ewα f (w) =
K∑

m=0

∑
β1,...,βm∈[2n]2

κ(α, β1, . . . , βm)

m! E ∂β1 . . . ∂βm f (w)

+Ω(K , f ), (25)

where the error term Ω(K , f ) goes to zero as the expansion order K goes to infinity.
In our application the error is negligible for, say, K = 100 since with each derivative
we gain an additional factor of n−1/2 and due to the independence (24) the sums of
any order have effectively only n2 terms. Applying (25) to (22) with f = ∂αRt , the
first order term is zero due to the assumption E xα = 0, and the second order term
cancels. The third order term is given by

∣∣∣∣∣∣
∑

αβ1β2

κt (α, β1, β2)E[∂α∂β1∂β2 Rt ]
∣∣∣∣∣∣ � e−3t/2 nξ

n7/2η4
. (26)

Proof of Eq. (26) It follows from the resolvent identity that ∂αG = −GΔαG, where
Δα is the matrix of all zeros except for a 1 in the α-th entry.1 Thus, neglecting minuses

1 The matrix Δα is not to be confused with the Laplacian Δ f in Girko’s formula (14).
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and irrelevant constant factors, for any fixed α, the sum (26) is given by a sum of terms
of the form

〈GtΔ
γ1GtΔ

γ2GtΔ
γ3Gt 〉, γ1, γ2, γ3 ∈ {α, α′}.

Hence, considering all possible choices of γ1, γ2, γ3 and using independence to con-
clude that κt (α, β1, β2) can only be non-zero if β1, β2 ∈ {α, α′} we arrive at

∣∣∣∣∣∣
∑

αβ1β2

κt (α, β1, β2)E[∂α∂β1∂β2 Rt ]
∣∣∣∣∣∣

� e−3t/2n−5/2
(∣∣∣∣∣
∑
abc

�EGcaGbaGbaGbc

∣∣∣∣∣+
∣∣∣∣∣
∑
abc

�EGcaGbaGbbGac

∣∣∣∣∣
+
∣∣∣∣∣
∑
abc

�EGcaGbbGaaGbc

∣∣∣∣∣
)

, (27)

where the sums are taken over (a, b) ∈ [2n]2 \ ([n]2 ∪ [n+ 1, 2n]2) and c ∈ [2n], and
we dropped the time dependence of G = Gt for notational convenience.

We estimate the three sums in (27) using that, by (10), (12), it follows

|Gab| � nξ , |Gaa | ≤ �m̂ + |(G − M)aa | � n−1/4 + η1/3 + nξ

nη
� nξ

nη
,

from Proposition 1, and Cauchy-Schwarz estimates by

∑
abc

|GcaGbaGbaGbc| ≤
∑
ab

|Gba |2
√∑

c

|Gca |2
√∑

c

|Gbc|2

=
∑
ab

|Gba |2
√

(G∗G)aa
√

(GG∗)bb

= 1

η

∑
ab

|Gba |2
√

(�G)aa
√

(�G)bb � nξ

nη2

∑
b

(GG∗)bb

= nξ

nη3

∑
b

(�G)bb � n2ξ

nη4
,

and similarly

∑
abc

|GcaGbaGbbGac| � nξ

nη2

∑
ab

|Gba | (�G)aa

≤ nξ

n1/2η5/2

∑
a

(�G)aa
√

(�G)aa � n5ξ/2

nη4
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and

∑
abc

|GcaGbbGaaGbc| � n2ξ

n2η3
∑
ab

√
(�G)aa

√
(�G)bb � n3ξ

nη4
.

This concludes the proof of (26) by choosing ξ in Proposition 1 accordingly. ��
Finally, in the cumulant expansion of (22) we are able to bound the terms of order

at least four trivially. Indeed, for the fourth order, the trivial bound is e−2t since the
n3 from the summation is compensated by the n−2 from the cumulants and the n−1

from the normalization of the trace. Morever, we can always perform at least two
Ward-estimates on the first and last G with respect to the trace index. Thus we can
estimate any fourth-order term by e−2t (nη)−2 ≤ e−3t/2n−7/2η−4, and we note that
the power-counting for higher order terms is even better than that. Whence we have
shown that E |dRt/ dt | � e−3t/2n−7/2η−4 and the proof of Proposition 3 is complete
after integrating (22) in t from t1 to t2. ��

Let X̃ be a real or complex n × n Ginibre matrix and let H̃ z be the linearized
matrix defined as in (1) replacing X by X̃ . Let λ̃i = λ̃z

i , with i ∈ {1, . . . , 2n}, be
the eigenvalues of H̃ z . We define the non negative Hermitian matrix Ỹ = Ỹ z :=
(X̃ − z)(X̃ − z)∗, then, by [18],[Eq. (13c)-(14)] it follows that for any η ≤ n−3/4 we
have

ETr
[
Ỹ + η2

]−1 = E
2n∑
i=1

1

λ̃2i + η2
�
{
n3/2(1 + ∣∣log(nη4/3)

∣∣), Gin(C),

n3/4η−1, Gin(R),
(28)

for X̃ distributed according to the complex, or respective, real Ginibre ensemble.
Combining (28) and Proposition 3 we now present the proof of Proposition 2.

Proof of Proposition 2 Let λi (t), with i ∈ {1, . . . , 2n}, be the eigenvalues of Ht for
any t ≥ 0. Note that λi (0) = λi , since H0 = Hz . By (21), choosing t1 = 0, t2 = +∞
it follows that

EHt |{i | |λi | ≤ η}| ≤ η · EHt

(
�

2n∑
i=1

1

λi − iη

)

= η2 · EH∞

(
2n∑
i=1

1

λ2i + η2

)
+ O

(
nξ

n5/2η3

)
, (29)

for any ξ > 0. Since the distribution of H∞ is the same as H̃ z it follows that

EH̃ z

(
2n∑
i=1

1

μ2
i + η2

)
= 2EX̃ Tr

[
Ỹ + η2

]−1
,

and combining (28) with (29), we immediately conclude the bound in (15). ��
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4 Edge universality for non-Hermitian randommatrices

In this section we prove our main edge universality result, as stated in Theorem 1. In
the following of this section without loss of generality we can assume that the test
function F is of the form

F(w1, . . . , wk) = f (1)(w1) · · · f (k)(wk), (30)

with f (1), . . . , f (k) : C → C being smooth and compactly supported functions.
Indeed, any smooth function F can be effectively approximated by its truncatedFourier
series (multiplied by smooth cutoff function of product form); see also [54, Remark
3]. Using the effective decay of the Fourier coefficients of F controlled by its C2k+1

norm, a standard approximation argument shows that if (8) holds for F in the product
form (30) with an error O(n−c(k)), then it also holds for a general smooth function
with an error O(n−c), where the implicit constant in O(·) depends on k and on the
C2k+1-norm of F , and the constant c > 0 depends on k.

To resolve eigenvalues on their natural scale we consider the rescaling fz0(z) :=
n f (

√
n(z− z0)) and compare the linear statistics n−1∑

i fz0(σi ) and n
−1∑

i fz0 (̃σi ),
with σi , σ̃i being the eigenvalues of X and of the comparison Ginibre ensemble X̃ ,
respectively. For convenience we may normalize both linear statistics by their deter-
ministic approximation from the local law (13) which, according to (14) is given by

1

n

∑
i

fz0(σi ) ≈ 1

π

∫
D

fz0(z) dz, (31)

where D denotes the unit disk of the complex plane.

Proposition 4 Let k ∈ N and z1, . . . , zk ∈ C be such that
∣∣z j ∣∣2 = 1 for all j ∈

[k], and let f (1), . . . , f (k) be smooth compactly supported test functions. Denote the
eigenvalues of an i.i.d. matrix X satisfying Assumptions (A)–(B) and a corresponding
real or complex Ginibre matrix X̃ by {σi }ni=1, {̃σi }ni=1. Then we have the bound

E
[ k∏
j=1

(
1

n

n∑
i=1

f ( j)
z j (σi ) − 1

π

∫
D

f ( j)
z j (z) dz

)

−
k∏
j=1

(
1

n

n∑
i=1

f ( j)
z j (̃σi ) − 1

π

∫
D

f ( j)
z j (z) dz

)]
= O(n−c(k)), (32)

for some small constant c(k) > 0, where the implicit multiplicative constant in O(·)
depends on the norms ‖Δ f ( j)‖1, j = 1, 2, . . . , k.

Proof of Theorem 1 Theorem 1 follows directly from Proposition 4 by the definition
of the k-point correlation function in (6), the exclusion-inclusion principle and the
bound ∣∣∣∣ 1π

∫
D

fz0(z) dz

∣∣∣∣ � 1.

��
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The remainder of this section is devoted to the proof of Proposition 4. We now fix
some k ∈ N and some z1, . . . , zk, f (1), . . . , f (k) as in Proposition 4. All subsequent
estimates in this section, also if not explicitly stated, hold true uniformly for any z
in an order n−1/2-neighborhood of z1, . . . , zk . In order to prove (32), we use Girko’s
formula (14) to write

1

n

n∑
i=1

f ( j)
z j (σi ) − 1

π

∫
D

f ( j)
z j (z) dz = I ( j)

1 + I ( j)
2 + I ( j)

3 + I ( j)
4 , (33)

where

I ( j)
1 := 1

4πn

∫
C

Δ f ( j)
z j (z) log

∣∣det(Hz − iT )
∣∣ dz

I ( j)
2 := − 1

2π

∫
C

Δ f ( j)
z j (z)

∫ η0

0

[〈�Gz(iη)〉 − �m̂z(iη)
]
dη dz

I ( j)
3 := − 1

2π

∫
C

Δ f ( j)
z j (z)

∫ T

η0

[〈�Gz(iη)〉 − �m̂z(iη)
]
dη dz

I ( j)
4 := + 1

2π

∫
C

Δ f ( j)
z j (z)

∫ +∞

T

(
�m̂z(iη) − 1

η + 1

)
dη dz,

with η0 := n−3/4−δ , for some small fixed δ > 0, and for some very large T > 0, say
T := n100. We define Ĩ ( j)

1 , Ĩ ( j)
2 , Ĩ ( j)

3 , Ĩ ( j)
4 analogously for the Ginibre ensemble by

replacing Hz by H̃ z and Gz by G̃z .

Proof of Proposition 4 The first step in the proof of Proposition 4 is the reduction to
a corresponding statement about the I3-part in (33), as summarized in the following
lemma.

Lemma 1 Let k ≥ 1, let I (1)
3 , . . . , I (k)

3 be the integrals defined in (33), with η0 =
n−3/4−δ , for some small fixed δ > 0, and let Ĩ (1)

3 , . . . , Ĩ (k)
3 be defined as in (33)

replacing mz with m̃z. Then,

E
[ k∏
j=1

(
1

n

n∑
i=1

f ( j)
z j (σi ) − 1

π

∫
D

f ( j)
z j (z) dz

)

−
k∏
j=1

(
1

n

n∑
i=1

f ( j)
z j (̃σi ) − 1

π

∫
D

f ( j)
z j (z) dz

)]

= E

⎡
⎣ k∏

j=1

I ( j)
3 −

k∏
j=1

Ĩ ( j)
3

⎤
⎦+ O

(
n−c2(k,δ)

)
, (34)

for some small constant c2(k, δ) > 0.
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In order to conclude the proof of Proposition 4, due to Lemma 1, it only remains to
prove that

E

⎡
⎣ k∏

j=1

I ( j)
3 −

k∏
j=1

Ĩ ( j)
3

⎤
⎦ = O

(
n−c(k)

)
, (35)

for any fixed k with some small constant c(k) > 0, where we recall the definition of
I3 and the corresponding Ĩ3 for Ginibre from (33). The proof of (35) is similar to the
Green function comparison proof in Proposition 3 but more involved due to the fact
that we compare products of resolvents and that we have an additional η-integration.
Here we define the observable

Zt :=
∏
j∈[k]

I ( j)
3 (t) :=

∏
j∈[k]

(
− 1

2π

∫
C

Δ f ( j)
z j (z)

∫ T

η0

�〈Gz
t (iη) − Mz(iη)〉 dη dz

)
,

(36)
where we recall that Gz

t (w) := (Hz
t − w)−1 with Hz

t = Ht as in (20). ��
Lemma 2 For any n−1 ≤ η0 ≤ n−3/4 and T = n100 and any small ξ > 0 it holds that

∣∣E[Zt2 − Zt1 ]
∣∣ �

(
e−3t0/2 − e−3t1/2

) nξ

n5/2η30

∏
j

‖Δ f ( j)‖1 (37)

uniformly in 0 ≤ t1 < t2 ≤ +∞ with the convention that e−∞ = 0.

Since Z0 = ∏
j I

( j)
3 and Z∞ = ∏

j Ĩ
( j)
3 , the proof of Proposition 4 follows directly

from (35), modulo the proofs of Lemmata 1–2 that will be given in the next two
subsections. ��

4.1 Proof of Lemma 1

In order to estimate the probability that there exists an eigenvalue of Hz very close to
zero, we use the following proposition that has been proven in [3, Prop. 5.7] adapting
the proof of [9, Lemma 4.12].

Proposition 5 Under Assumption (B) there exists a constant C > 0, depending only
on α, such that

P
(
min
i∈[2n]

∣∣λz
i

∣∣ ≤ u

n

)
≤ Cu

2α
1+α nβ+1, (38)

for all u > 0 and z ∈ C.

In the following lemma we prove a very high probability bound for I ( j)
1 , I ( j)

2 , I ( j)
3 ,

I ( j)
4 . The same bounds hold true for Ĩ ( j)

1 , Ĩ ( j)
2 , Ĩ ( j)

3 , Ĩ ( j)
4 as well. These bounds in the

bulk regime were already proven in [3, Proof of Theorem 2.5] the current edge regime
is analogous, so we only provide a sketch of the proof for completeness.
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Lemma 3 For any j ∈ [k] the bounds

∣∣∣I ( j)
1

∣∣∣ ≤ n1+ξ‖Δ f ( j)‖1
T 2 ,

∣∣∣I ( j)
2

∣∣∣+
∣∣∣I ( j)
3

∣∣∣ ≤ nξ‖Δ f ( j)‖1,
∣∣∣I ( j)
4

∣∣∣ ≤ n‖Δ f ( j)‖1
T

,

(39)
hold with very high probability for any ξ > 0. The bounds analogous to (39) also hold
for Ĩ ( j)

l .

Proof For notational convenience we do not carry the j-dependence of I ( j)
l and f ( j),

and the dependence of λi , H ,G, M, m̂ on z within this proof. Using that

log |det(H − iT )| = 2n log T +
∑
j∈[n]

log

(
1 + λ2j

T 2

)
,

we easily estimate |I1| as follows

|I1| =
∣∣∣∣ 1

4πn

∫
C

Δ fz j (z) log |det(H − iT )| dz
∣∣∣∣

� 1

n

∫
C

∣∣Δ fz j (z)
∣∣ Tr H2

T 2 dz � n1+ξ‖Δ f ‖1
T 2 ,

for any ξ > 0 with very high probability owing to the high moment bound (3). By (9)
it follows that

∣∣�m̂z(iη) − (η + 1)−1
∣∣ ∼ η−2 for large η, proving also the bound on

I4 in (39). The bound for I3 follows immediately from the averaged local law in (13).
For the I2 estimate we split the η-integral of �mz(iη) − �m̂z(iη) in I2 as follows

∫ η0

0
�〈Gz(iη) − Mz(iη)〉 dη

= 1

n

∑
|λi |<n−l

log

(
1 + η20

λ2i

)
+ 1

n

∑
|λi |≥n−l

log

(
1 + η20

λ2i

)
−
∫ η0

0
�m̂z(iη) dη,

(40)

where l ∈ N is a large fixed integer. Using (10) we find that the third term in (40) is
bounded by n−1−δ . Choosing l large enough, it follows, as in [3, Eq. (5.35)] using the
bound (38) that

1

n

∑
|λi |<n−l

log

(
1 + η20

λ2i

)
≤ n−1+ξ , (41)

with very high probability for any ξ > 0. Alternatively, this bound also follows
from (5) without Assumption (B), circumventing Proposition 5, see Remark 1. For the
second term in (40) we define η1 := n−3/4+ξ with some very small ξ > 0 and using
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log(1 + x) ≤ x we write

∑
|λi |≥n−l

log

(
1 + η20

λ2i

)
=

∑
n−l≤|λi |≤nδ/2η0

log

(
1 + η20

λ2i

)
+ η20

∑
|λi |≥nδ/2η0

1

λ2i

�
∣∣∣{i | |λi | < nδ/2η0}

∣∣∣ · log n + η20

∑
|λi |≥nδ/2η0

1

λ2i

� (log n)n4ξ/3 + η20n
δ+2ξ

η1

∑
|λi |≥nδ/2η0

η1

λ2i + η21

� (log n)n4ξ/3 + n1−δη1〈�Gz(iη1)〉 ≤ n2ξ + n−δ+2ξ (42)

by the averaged local law in (13), and 〈�Mz(iη1)〉 � η
1/3
1 from (10). Here from the

second to third line in (42) we used that

∣∣∣{i | |λi | ≤ nδ/2η0}
∣∣∣ ≤

∑
i

η21

λ2i + η21
= nη1〈�Gz(iη1)〉 ≤ n4ξ/3, (43)

again by the local law. By redefining ξ , this concludes the high probability bound on
I2 in (39), and thereby the proof of the lemma. ��

In the following lemma we prove an improved bound for I ( j)
2 , compared with (39),

which holds true only in expectation. The main input of the following lemma is the
stronger lower tail estimate on λi , in the regime |λi | ≥ n−l , from (15) instead of (43).

Lemma 4 Let I ( j)
2 be defined in (33), then

E
∣∣∣I ( j)
2

∣∣∣ � n−δ/3‖Δ f ( j)‖1, (44)

for any j ∈ {1, . . . , k}.
Proof We split the η-integral of �mz(iη) − �m̂z(iη) as in (40). The third term in the
r.h.s. of (40) is of order n−1−4δ/3. Then, we estimate the first term in the r.h.s. of (40)
in terms of the smallest (in absolute value) eigenvalue λn+1 as

E

⎡
⎣1

n

∑
|λi |<n−l

log

(
1 + η20

λ2i

)⎤
⎦ ≤ E

[
log

(
1 + η20

λ2n+1

)
1(λn+1 ≤ n−l)

]

� E[|log λn+1| 1(λn+1 ≤ n−l)]
=
∫ +∞

l log n
P(λn+1 ≤ e−t ) dt � nβ+1+ 2α

1+α n− 2αl
1+α ,

(45)
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where in the last inequality we use (38) with u = e−t n. Note that by (15) it follows
that

E
∣∣∣{i : |λi | ≤ nδ/2η0}

∣∣∣ � n−δ/2. (46)

Hence, by (46), using similar computations to (42), we conclude that

E

⎡
⎣1

n

∑
|λi |≥n−l

log

(
1 + η20

λ2i

)⎤
⎦ � log n

n1+δ/2 . (47)

Note that the only difference to prove (47) respect to (42) is that the first term in the
first line of the r.h.s. of (42) is estimated using (46) instead of (43). Finally, choosing
l ≥ α−1(3 + β)(1 + α) + 2, and combining (45), (47) we conclude (44). ��

Equipped with Lemmata 3–4, we now present the proof of Lemma 1.

Proof of Lemma 1 Using the definitions for I ( j)
1 , I ( j)

2 , I ( j)
3 , I ( j)

4 in (33), and similar

definitions for Ĩ ( j)
1 , Ĩ ( j)

2 , Ĩ ( j)
3 , Ĩ ( j)

4 , we conclude that

E
[ k∏
j=1

(
1

n

n∑
i=1

f ( j)
z j (σi ) − 1

π

∫
D

f ( j)
z j (z) dz

)

−
k∏
j=1

(
1

n

n∑
i=1

f ( j)
z j (̃σi ) − 1

π

∫
D

f ( j)
z j (z) dz

)]

= E

⎡
⎣ k∏

j=1

(
I ( j)
1 + I ( j)

2 + I ( j)
3 + I ( j)

4

)
−

k∏
j=1

(
Ĩ ( j)
1 + Ĩ ( j)

2 + Ĩ ( j)
3 + Ĩ ( j)

4

)⎤⎦

= E

⎡
⎣ k∏

j=1

I ( j)
3 −

k∏
j=1

Ĩ ( j)
3

⎤
⎦+

∑
j1+ j2+ j3+ j4=k

ji≥0, j3<k

E
jl∏

il=1,
l=1,2,3,4

I (i1)
1 I (i2)

2 I (i3)
3 I (i4)

4

−
∑

j1+ j2+ j3+ j4=k,
ji≥0, j3<k

E
jl∏

il=1
l=1,2,3,4

Ĩ (i1)
1 Ĩ (i2)

2 Ĩ (i3)
3 Ĩ (i4)

4 .

Then, if j2 ≥ 1, by Lemmas 3 and 4, using that T = n100 in the definition of
I ( j)
1 , . . . , I ( j)

4 in (33), it follows that

E
jl∏

il=1,
l=1,2,3,4

I (i1)
1 I (i2)

2 I (i3)
3 I (i4)

4 �
n j1+ j4n(k− j4−1)ξ ∏k

j=1 ‖Δ f ( j)‖1
nδ/3T 2 j1+ j4

≤ n−c2(k,δ),

for any j1, j3, j4 ≥ 0, and a small constant c(2k, δ) > 0 which only depends on k, δ.
If, instead, j2 = 0, then at least one among j1 and j4 is not zero, since 0 ≤ j3 ≤ k − 1

123



Edge universality for non-Hermitian randommatrices

and j1 + j2 + j3 + j4 = k. Assume j1 ≥ 1, the case j4 ≥ 1 is completely analogous,
then

E
jl∏

il=1,
l=1,2,3,4

I (i1)
1 I (i2)

2 I (i3)
3 I (i4)

4 �
n j1+ j4n(k− j4)ξ

∏k
j=1‖Δ f ( j)‖1

T 2 j1+ j4
≤ n−c2(k,δ).

Since similar bounds hold true for Ĩ (i1)
1 , Ĩ (i2)

2 , Ĩ (i3)
3 , Ĩ (i4)

4 as well, the above inequalities
conclude the proof of (34). ��

4.2 Proof of Lemma 2

We begin with a lemma generalizing the bound in (39) to derivatives of I ( j)
3 .

Lemma 5 Assume n−1 ≤ η0 ≤ n−3/4 and fix l ≥ 0, j ∈ [k] and a double index
α = (a, b) such that a �= b. Then, for any choice of γi ∈ {α, α′} and any ξ > 0 we
have the bounds

∣∣∣∂ lγ I ( j)
3 (t)

∣∣∣ � ‖Δ f ( j)‖1nξ

(
1

(nη0)min{l,2} + 1
(
a ≡ b + n (mod 2n)

))
, (48)

where ∂ lγ := ∂γ1 . . . ∂γl , with very high probability uniformly in t ≥ 0.

Proof We omit the t- and z-dependence of Gz
t , m̂

z within this proof since all bounds
hold uniformly in t ≥ 0 and

∣∣z − z j
∣∣ � n−1/2.We also omit the η-argument from these

functions, but the η-dependence of all estimates will explicitly be indicated. Note that
the l = 0 case was already proven in (39). We now separately consider the remaining
cases l = 1 and l ≥ 2. For notational simplicity we neglect the nξ multiplicative error
factors (with arbitrarily small exponents ξ > 0) applications of the local law (13)
within the proof. In particular we will repeatedly use (13) in the form

|Gba | �
{
1, a ≡ b + n (mod 2n),

ψ, a �≡ b + n (mod 2n),
Gbb = m̂ + O(ψ),

|m̂| � min{1, η1/3 + n−1/4}, (49)

where we defined the parameter

ψ := 1

nη
+ 1

n1/2η1/3
.

Case l = 1

This follows directly from

∣∣∣∣
∫ T

η0

〈GΔabG〉 dη
∣∣∣∣ =

∣∣∣∣1n
∫ T

η0

G2
ba dη

∣∣∣∣ = |G(iT )ab − G(iη0)ab|
n
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� 1

n2η0
+ 1

n
1
(
a ≡ b + n (mod 2n)

)
,

where in the last step we used ‖G(iT )‖ ≤ T−1 = n−100 and (49). Since this bound is
uniform in z we may bound the remaining integral by n‖Δ f ( j)‖1, proving (48).

Case l ≥ 2

For the case l ≥ 2 there are many assignments of γi ’s to consider, e.g.

〈GΔabGΔabG〉 = 1

n

∑
c

GcaGbaGbc, 〈GΔabGΔbaG〉 = 1

n

∑
c

GcaGbbGac,

〈GΔabGΔbaGΔabG〉 = 1

n

∑
c

GcaGbbGaaGbc,

〈GΔabGΔbaGΔbaG〉 = 1

n

∑
c

GcaGbbGabGac

but all are of the form that there are twoG-factors carrying the independent summation
index c. In the case that a ≡ b+n (mod 2n)we simply bound all remainingG-factors
by 1 using (49) and use a simple Cauchy-Schwarz inequality to obtain

∣∣∣∂ lγ I ( j)
3

∣∣∣ �
∫
C

∣∣∣Δ f ( j)
z j (z)

∣∣∣ 1
n

∫ T

η0

∑
c

(
|Gcb|2 + |Gca |2

)
dη dz. (50)

Now it follows from the Ward-identity

GG∗ = G∗G = �G
η

(51)

and the very crude bound |Gaa | � 1 from (49) and |m̂| � 1, that

∫ T

η0

∑
c

(
|Gcb|2 + |Gca |2

)
dη =

∫ T

η0

|(�G)aa | + |(�G)bb|
η

dη �
∫ T

η0

1

η
dη � log n.

By estimating the remaining z-integral in (50) by n‖Δ f ( j)‖ the claimed bound in (48)
for a = b + n (mod 2n) follows.

In the case a �≡ b + n (mod 2n) we can use (49) to gain a factor of ψ for some
Gab or Gbb − m̂ in all assignments except for the one in which all but two G-factors
are diagonal, and those Gaa,Gbb-factors are replaced by m̂. For example, we would
expand
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GcaGbbGaaGbc = m̂2GcaGbc + m̂GcaGbcO(ψ) + GcaGbcO(ψ2),

where in all but the first term we gained at least a factor of ψ . Using Cauchy-Schwarz
as before we thus have the bound

∣∣∣∂ lγ I ( j)
3

∣∣∣ �
∫
C

∣∣∣Δ f ( j)
z j (z)

∣∣∣
n

(∫ T

η0

ψ
∑
c

(
|Gcb|2 + |Gca |2

)
dη

+
∣∣∣∣
∫ T

η0

(m̂)l−1(G2)aa dη

∣∣∣∣+
∣∣∣∣
∫ T

η0

(m̂)l−1(G2)ab dη

∣∣∣∣
)
dz, (52)

where strictly speaking, the second and third terms are only present for even, or
respectively odd, l. For the first term in (52) we again proceed by applying the Ward
identity (51), and (49) to obtain the bound

∫ T

η0

ψ
∑
c

(
|Gcb|2 + |Gca |2

)
dη =

∫ T

η0

ψ
|(�G)aa | + |(�G)bb|

η
dη

�
∫ T

η0

ψ(ψ + η1/3)

η
dη � log n

(nη0)2
.

For the second and third terms in (52) we use iG2 = G ′, where prime denotes ∂η, and
integration by parts,

∣∣m̂′∣∣ � η−2/3 from (12), and (49) to obtain the bounds

∣∣∣∣
∫ T

η0

(m̂)l−1(G2)aa dη

∣∣∣∣ �
∣∣∣∣
∫ T

η0

m̂′(m̂)l−2Gaa dη

∣∣∣∣
+
∣∣∣(m̂(iη0))

l−1G(iη0)aa
∣∣∣+ ∣∣∣(m̂(iT ))l−1G(iT )aa

∣∣∣
�
∣∣∣∣
∫ T

η0

m̂′(m̂)l−1 dη

∣∣∣∣+
∫ T

η0

∣∣m̂′∣∣ψ dη + 1

n1/4(nη0)

� log n

n1/4(nη0)

and

∣∣∣∣
∫ T

η0

(m̂)l−1(G2)ab dη

∣∣∣∣ �
∣∣∣∣
∫ T

η0

m̂′(m̂)l−2Gab dη

∣∣∣∣
+
∣∣∣(m̂(iη0))

l−1G(iη0)ab
∣∣∣+ ∣∣∣(m̂(iT ))l−1G(iT )ab

∣∣∣
�
∫ T

η0

∣∣m̂′∣∣ψ dη + 1

n1/4(nη0)
� log n

n1/4(nη0)
.
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In the explicit deterministic term we performed an integration and estimated

∣∣∣∣
∫ T

η0

m̂′(m̂)l−1 dη

∣∣∣∣ � |m̂(iη0)|l + |m̂(iT )|l � n−l/4 + n−100 ≤ n−1/2.

The claim (48) for l ≥ 2 and a �≡ b + n (mod 2n) now follows from estimating the
remaining z-integral in (52) by n‖Δ f ( j)‖1. ��
Proof of Lemma 2 By (20) and Ito’s Lemma it follows that

E
dZt

dt
= E

⎡
⎣−1

2

∑
α

hα(t)∂αZt + 1

2

∑
α,β

κt (α, β)∂α∂β Zt

⎤
⎦ , (53)

wherewe recall the definition of κt in 23. In fact, the point-wise estimate fromLemma5
gives a sufficiently strong bound for most terms in the cumulant expansion, the few
remaining terms will be computed more carefully.

In the cumulant expansion (25) of (53) the second order terms cancel exactly and
we now separately estimate the third-, fourth- and higher order terms.

Order three terms

For the third order, when computing ∂α∂β1∂β2 Zt through the Leibniz rule we
have to consider all possible assignments of derivatives ∂α, ∂β1 , ∂β2 to the factors

I (1)
3 , . . . , I (k)

3 . Since the particular functions f ( j) and complex parameters z j play no
role in the argument, there is no loss in generality in considering only the assignments

(
∂α,β1,β2 I

(1)
3

)∏
j>1

I ( j)
3 ,

(
∂α,β1 I

(1)
3

)(
∂β2 I

(2)
3

)∏
j>2

I ( j)
3 ,

(
∂α I

(1)
3

)(
∂β1 I

(2)
3

)(
∂β2 I

(3)
3

)∏
j>3

I ( j)
3 (54)

for the second and third term of which we obtain a bound of

nξ−3/2e−3t/2
( ∑
a≡b+n

∏
j

‖Δ f ( j)‖1 +
∑

a �≡b+n

∏
j

‖Δ f ( j)‖1 1

(nη0)3

)

� nξ e−3t/2

n5/2η30

∏
j

‖Δ f ( j)‖1

using Lemma 5 and the cumulant scaling (24). Note that the condition a �= b in the
lemma is ensured by the fact that for a = b the cumulants κt (α, β1, . . . ) vanish.

The first term in (54) requires an additional argument. We write out all possible
index allocations and claim that ultimately we obtain the same bound, as for the other
two terms in (54), i.e.
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∣∣∣∣∣∣
∑

αβ1β2

κt (α, β1, β2)∂α∂β1∂β2 I
(1)
3

∣∣∣∣∣∣ � e−3t/2

n3/2

∫
C

∣∣∣Δ f (1)
z1

∣∣∣
n

J3 dz

� nξ e−3t/2

n5/2η30
‖Δ f (1)‖1 (55)

where

J3 :=
∣∣∣∣∣
∫ T

η0

∑
ab

(G2)abGabGab dη

∣∣∣∣∣+
∣∣∣∣∣
∫ T

η0

∑
ab

(G2)aaGbbGab dη

∣∣∣∣∣
+
∣∣∣∣∣
∫ T

η0

∑
ab

(G2)abGaaGbb dη

∣∣∣∣∣ . (56)

Proof of Eq. (55) Compared to the previous bound in Lemma 5 we now exploit the a, b
summation via the isotropic structure of the bound in the local law (59). We have the
simple bounds

|〈x,�Gx〉|
‖x‖2 � |m̂| + nξψ � nηψ2,

∣∣∣〈x,G2 y〉
∣∣∣ ≤ 1

η

√〈x,�Gx〉〈 y,�G y〉 � nξ‖x‖‖ y‖nψ2 (57)

as a consequence of the Ward identity (51) and using (13) and (10). For the first term
in (56) we can thus use (57) and (51) to obtain

∣∣∣∣∣
∫ T

η0

∑
ab

(G2)abGabGab dη

∣∣∣∣∣ � nξ

∫ T

η0

nψ2
∑
ab

|Gab|2 dη

� nξ

∫ T

η0

nψ2
∑
a

(�G)aa

η
dη

� nξ

∫ T

η0

n3ψ4 dη � nξ

nη30
.

For the second term in (56) we split Gbb = m̂ + O(ψ) and bound it by

∣∣∣∣∣
∫ T

η0

∑
ab

(G2)aaGbbGab dη

∣∣∣∣∣

� nξ

∫ T

η0

ψ
∑
ab

∣∣∣(G2)aaGab

∣∣∣ dη +
∣∣∣∣∣
∫ T

η0

m̂
∑
a

(G2)aa〈ea,G1s(a)〉 dη
∣∣∣∣∣
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� nξ

∫ T

η0

n3/2ψ2
(

ψ
∑
b

√
(�G)bb

η
+
√

〈1+,�G1+〉 + 〈1−,�G1−〉
η

)
dη

� nξ

∫ T

η0

(
n3ψ4 + n5/2ψ3

)
dη � nξ

nη30

where ea denotes the a-th standard basis vector,

1+ := (1, . . . , 1, 0, . . . , 0), 1− := (0, . . . , 0, 1, . . . , 1) (58)

are vectors of n ones and zeros, respectively, of norm ‖1±‖ = √
n and s(a) := −

for a ≤ n, and s(a) := + for a > n. Here in the second step we used a Cauchy-
Schwarz inequality for the a-summation in both integrals after estimating theG2-terms
using (57). Finally, for the third term in (56) we split both Gaa = m̂ + O(ψ) and
Gbb = m̂ + O(ψ) to estimate

∣∣∣∣∣
∫ T

η0

∑
ab

(G2)abGaaGbb dη

∣∣∣∣∣
� nξ

∫ T

η0

n3ψ4 dη +
∑
a

∫ T

η0

∣∣∣m̂〈ea,G21s(a)〉ψ
∣∣∣ dη +

∫ T

η0

∣∣∣m̂2〈1+,G21−〉
∣∣∣ dη

� nξ

nη30
+ nξ

∫ T

η0

n5/2ψ3 dη + nξ

∫ T

η0

n2ψ2

1 + η2
dη � nξ

nη30
,

using (57). In the last integral we used that |m̂| � (1+η)−1 to ensure the integrability
in the large η-regime. Inserting these estimates on (56) into (55) and estimating the
remaining integral by n‖Δ f (1)‖1 completes the proof of (55). ��

Order four terms

For the fourth-order Leibniz rule we have to consider the assignments

(
∂α,β1,β2,β3 I

(1)
3

)∏
j>1

I ( j)
3 ,

(
∂α,β1,β2 I

(1)
3

)(
∂β3 I

(2)
3

)∏
j>2

I ( j)
3 ,

(
∂α,β1 I

(1)
3

)(
∂β2,β3 I

(2)
3

)∏
j>2

I ( j)
3 ,

(
∂α,β1 I

(1)
3

)(
∂β2 I

(2)
3

)(
∂β3 I

(3)
3

)∏
j>3

I ( j)
3 ,

(
∂α,β1 I

(1)
3

)(
∂β2 I

(2)
3

)(
∂β2 I

(3)
3

)(
∂β3 I

(4)
3

)∏
j>4

I ( j)
3 ,
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for all of which we obtain a bound of

nξ e−2t

n2η20

∏
j

‖Δ f ( j)‖1,

again using Lemma 5 and (24).

Higher order terms

For terms order at least 5, there is no need to additionally gain from any of the factors
of I3 and we simply bound all those, and their derivatives, by nξ using Lemma 5. This
results in a bound of nξ−(l−4)/2e−lt/2∏

j‖Δ f ( j)‖1 for the terms of order l.
By combining the estimates on the terms of order three, four and higher order

derivatives, and integrating in t we obtain the bound (37). This completes the proof of
Lemma 2. ��

A. Extension of the local law

Proof of Proposition 1 The statement for fixed z, η follows directly from [4, Theorem
5.2], if η ≥ η0 := n−3/4+ε . For smaller η1, using ∂ηG(iη) = iG2(iη), we write

〈x, [G(iη1) − M(iη1)] y〉 = 〈x, [G(iη0) − M(iη0)] y〉
+ i

∫ η1

η0

〈x, [G2(iη) − M ′(iη)] y〉 dη (59)

and estimate the first term using the local law by n−1/4+ξ . For the second term we
bound

∣∣∣〈x,G2 y〉
∣∣∣ ≤ √〈x,G∗Gx〉〈 y,G∗G y〉 = 1

η

√〈x,�Gx〉〈 y,�G y〉,
∣∣〈x, M ′ y〉∣∣ � ‖x‖‖ y‖ 1

η2/3

from ‖M ′‖ � (�m̂)−2 and (10), and use monotonicity of η �→ η〈x,�G(iη)x〉 in the
form

�〈x,G(iη)x〉 ≤ η0

η
〈x,�G(iη0)x〉 ≺ ‖x‖2

(η
4/3
0

η
+ η

2/3
0

ηn1/2

)
� ‖x‖2 n

4ε/3

nη
.

After integration we thus obtain a bound of ‖x‖‖ y‖n4ε/3/(nη1)which proves the first
bound in (13). The second, averaged, bound in (13) follows directly from the first one
since below the scale η ≤ n−3/4 there is no additional gain from the averaging, as
compared to the isotropic bound.
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In order to conclude the local law simultaneously in all z, η we use a standard grid
argument. To do so, we choose a regular grid of z’s and η’s at a distance of, say, n−3

and use Lipschitz continuity (with Lipschitz constant n2) of (η, z) �→ Gz(iη) and a
union bound over the exceptional events at each grid point. ��
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