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Abstract. Responsiveness —the requirement that every request to a
system be eventually handled— is one of the fundamental liveness prop-
erties of a reactive system. Average response time is a quantitative mea-
sure for the responsiveness requirement used commonly in performance
evaluation. We show how average response time can be computed on
state-transition graphs, on Markov chains, and on game graphs. In all
three cases, we give polynomial-time algorithms.

1. Introduction

Graphs and their generalizations provide the mathematical framework for mod-
eling the behavior of reactive systems. The vertices of the graph represent states
of the system, the edges represent transitions, and paths of the graph repre-
sent traces of the system. The two classical extensions of the graph model for
reactive systems are with (i) probabilities and (ii) interaction with an adver-
sary. In the presence of stochasticity in the system, from every vertex there is a
probability distribution of transitions to the next vertex, and this gives rise to
a Markov chain. In the presence of an adversary, the vertices of the graph are
partitioned into vertices that are controlled by the proponent and vertices that
are controlled by the opponent, and the choice of outgoing transition from a
vertex is decided, respectively, by the proponent or the opponent. This gives rise
to two player games on graphs. While graphs represent closed systems, games
on graphs represent systems that interact with an adversarial environment, and
Markov chains represent probabilistic systems. Thus, graphs, games on graphs,
and Markov chains are fundamental models for the behavior of reactive systems.

One of the fundamental liveness properties in system analysis is the respon-
siveness property, which requires that every request of a system component is
eventually granted. The responsiveness property is a qualitative property that
classifies every trace of the system as correct or incorrect. In contrast to qual-
itative properties, the performance evaluation of systems requires quantitative
measures on traces. A quantitative property assigns a real number to every trace,
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in contrast to the Boolean values (“correct” vs. “incorrect”) assigned by qualita-
tive properties. A basic quantitative property is the mean-payoff property, where
every transition of the system is assigned a cost. The mean payoff of a trace is the
limit (inferior) of the sequence of average costs cn (i.e., the “long-run average”),
where for every n > 0, the average cost cn is computed over the finite prefix
of length n of the trace. Building upon the mean-payoff property, we consider
a quantitative version of the responsiveness property, the average response time
(ART), defined as follows: for every request, the response time for the request is
the number of steps to the next grant, and the ART of a trace is the long-run
average of all response times of the trace. If there are only finitely many request-
grant pairs, than the ART of the trace is a finite average. If there is a request
without a subsequent grant, or if an infinite sequence of response times has no
upper bound, then the ART is infinite. In this way, the ART property differs
from the mean-payoff property, because the mean payoff of a trace is always
bounded by the maximum cost of a transition.

The ART of a trace is a natural quantitative measure of the responsiveness,
and thus a basic system property for performance evaluation [15]. For graphs, we
are interested in the minimal and maximal ART over all traces (i.e., all infinite
paths of the graph). For Markov chains, we are interested in the expected value
of the ART. For games on graphs, we are interested in the optimal strategy of
a system to make the ART as small or as large as possible, no matter how the
environment behaves. The ART that is achieved by an optimal strategy of a
proponent who tries to make the ART as small as possible (the “minimizer”)
against an optimal strategy of an opponent who tries to make the ART as large
as possible (the “maximizer”) is called the ART value of the game.
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Fig. 1. Three models of a reactive system: the graph G, the Markov chain M, and the
game graph G. Transitions in the Markov chain M are labeled with probabilities; we
omit the probability 1 on the unique outgoing transitions from the vertexes p0, p1, p2,
and p4. In the game graph G, circled positions belong to the minimizing proponent,
whereas the squared position p3 belongs to the maximizing opponent.



Example 1. Figure 1 presents the three models G, M, and G with transitions
labeled by the following actions: requests r, grants g, and other instructions
#. The graph G has two simple cycles: C1 = p0p1p2p3 and C2 = p0p1p2p3p4.
The cycles C1, C2 yield respectively the sequences of actions r##g and r##rg.
Thus, the ART of C1 is 3 and the ART of C2 is 4+1

2 . Any infinite path can be
partitioned into cycles C1 and C2, and hence the minimal ART of G is 5

2 and
the maximal ART of G is 3.

The Markov chain M results from the graph G and hence we observe that
both cycles C1 and C2 occur with equal probability 1

2 . Therefore, the expected
ART ofM is ( 12 ·

5
2 ) + ( 12 · 3) =

11
4 .

Finally, the game arena G results from G by assigning p3 to the player that
attempts to maximize the ART. Thus, the ART value of G is 3, as the maximizer
can always pick the move from p3 to p0. Interestingly, to maximize the ART,
the opponent does not postpone the grant by moving from p3 to p4, but rather
issues immediately a grant, which prevents the emission of a promptly satisfied
request at (p3, p4). Such a promptly satisfied request would decrease the ART
and thus the maximizing opponent is better off by issuing the grant quickly.

In summary, the minimal and maximal ART are easily and naturally defined
numerical values of a labeled graph, the expected ART is the corresponding value
of a labeled Markov chain, and the ART value is the corresponding quantity for a
labeled 2-player game graph. In this paper, we present algorithms for computing
these four values.

Automata provide a natural framework for specifying qualitative proper-
ties. Their extension, weighted automata, provide a framework for expressing
quantitative properties [2, 9]. While weighted finite automata with mean-payoff
measure [2] cannot express the ART property [6], extensions of weighted finite
automata with nesting have been proposed in [5–8] as a quantitative specification
framework that can express the ART property. These works focus on solving the
quantitative emptiness and universality questions for entire classes of weighted
finite automata [5–7], as well as on the evaluation of such automata classes with
respect to probability distributions over words [8]. However, the solution and
complexity of computing the specific ART property for graphs (minimal and
maximal ART), games on graphs (ART value), and Markov chains (expected
ART) has not been studied before.

In this work we consider the specific problem of computing the ART prop-
erty for graphs, game graphs, and Markov chains. Our main result is that for
all three models the ART property can be computed in polynomial time. The
precise computational complexities differ for the various models (see Theorem 3,
Theorem 4, and Theorem 5). If we compare our results to previous results for the
class of nested weighted finite automata that can express the ART property, we
see the following: (a) while solving automaton emptiness is similar in flavor to
computing ART on graphs, for general nested weighted automata the resulting
complexities are PSPACE and higher, whereas we present polynomial-time al-
gorithms; (b) for Markov chains our results are easily derived from results of [8];



and (c) to the best of our knowledge, the problem of computing ART for games
on graphs has not been studied before.

2. Preliminaries

We present notions and notations used throughout the paper. We begin with
models of reactive systems: graphs, games and Markov chains (Section 2.1).
Then, we present basic objectives studied with these models (Section 2.2), which
lead to computational questions (Section 2.3). Finally, we recall previous results
on computational questions for mean-payoff objectives (Section 2.4).

2.1 Models

Game arena. A game arena G is a tuple (V, V1, V2, E) where (V,E) is a finite
graph, (V1, V2) is a partition of V into positions of Player 1 and Player 2, respec-
tively. To present results in a uniform way, we consider graphs as arenas with all
positions belonging to one player, i.e., we identify (V, V, ∅, E) (resp., (V, V, ∅, E))
with (V,E). We assume (for technical convenience) that for every position v ∈ V
there is at least one outgoing edge.
Game plays. A game on an arena G is played as follows: a token is placed
at a starting position, and whenever the token is at a Player-1 position, then
Player 1 chooses an outgoing edge to move the token, and when the token is at
a Player-2 position, then Player 2 does likewise. As a consequence we obtain an
infinite sequence of positions, which is called a play, and strategies are recipes
to extend finite prefix of plays (i.e., the recipes to describe how to move tokens).
We formally define them below.
Strategies and plays. Given a game arena G, a function σ1 : V ∗ · V1 7→ V
(resp., σ2 : V ∗ · V2 7→ V ) is a strategy for Player 1 (resp., Player 2) on G iff
σj(v0v1 . . . vk) = v implies (vk, v) ∈ E. In other words, given a finite sequence
of positions that ends at a Player-1 position (representing the history of inter-
actions), a strategy for Player 1 chooses the next position respecting the edge
relationship (to move the token). We denote the set of all strategies for Player 1
(resp., Player 2) on G by S1[G] (resp., S2[G]). A strategy σi has finite mem-
ory if there exist a finite set M, m0 ∈ M, and functions f : M× V → M
and g : M× Vi → V such that for all v = v0v1 . . . vk with vi ∈ V , we have
σi(v) = g(f(. . . (f(f(m0, v0), v1) . . . , vk−1), vk). The memory of σi is said to be
|M|, while if |M| = 1, then σi is called memoryless. Informally, a memoryless
strategy does not depend on the history, but only on the current position. A
pair of strategies σ1, σ2 on G, along with a starting position v, defines a play
π(σ1, σ2, v), which is a word over V . The play π(σ1, σ2, v) = v0v1 . . . is de-
fined inductively as follows: (a) v0 = v; (b) vi+1 = σ1(v0 . . . vi) if vi ∈ V1; and
(c) vi+1 = σ2(v0 . . . vi) if vi ∈ V2. We define Π(G) as the set of all plays on G.
Since every position has at least one outgoing edge, every play is indeed infinite.
Labeled Markov chains. A (labeled) Markov chain is a tuple 〈Σ,S, s0, E〉,
where Σ is the alphabet of letters, S is a finite set of states, s0 is an initial state,



E : S × Σ × S 7→ [0, 1] is the edge probability function, which for every s ∈ S
satisfies that

∑
a∈Σ,s′∈S E(s, a, s′) = 1.

Distributions given by Markov chains. Consider a Markov chain M. For
every finite word u, the probability of u, denoted PM(u), w.r.t. the Markov chain
M is the sum of probabilities of paths labeled by u, where the probability of a
path is the product of probabilities of its edges. For basic open sets u·Σω = {uw :
w ∈ Σω}, we have PM(u ·Σω) = PM(u), and then the probability measure over
infinite words defined by M is the unique extension of the above measure (by
Carathéodory’s extension theorem [11]). We will denote the unique probability
measure defined byM as PM.

2.2 Objectives

We consider two types of objectives: quantitative and Boolean. In the following
definitions, we consider a game arena G = (V, V1, V2, E).
Quantitative objectives. A quantitative objective in general is a Borel mea-
surable function f : Π(G) 7→ R ∪ {−∞,∞}. Player 1 (called also Minimizer)
plays in a way to construct a play π of a possibly small value f(π), whereas
Player 2 (called also Maximizer) attempts to maximize f(π). The minimal value
of the game which Player 1 can ensure (called the lower value) is defined as
val(f, v) = infσ1∈S1[G] supσ2∈S2[G] f(π(σ1, σ2, v)). Player 2 on the other hand
can ensure that the value of the game is at least the upper value, denoted as
val(f, v) = supσ2∈S2[G] infσ1∈S1[G] f(π(σ1, σ2, v)). By Borel determinacy [14], the
upper and lower values coincide with respect to f , hence we call their value, the
value of the game, and denote it by val(f, v).
Optimal strategies. Consider a quantitative objective f . A strategy σ for
Player 1 (resp., Player 2) is called optimal for a position v if and only if we have
supσ2∈S2[G] f(π(σ, σ2, v)) = val(f, v) (resp., infσ1∈S1[G] f(π(σ1, σ, v)) = val(f, v)).
Mean-payoff objectives. The mean payoff objective is defined by a labeling
wt : E 7→ Z of edges E on G with integers. Given a labeling wt and a play
π = v0v1 . . . on G we define LimAvgInfwt(π) = lim infk→∞

1
k

∑k
i=1 wt(vi−1, vi).

We skip the superscript wt, if it is clear from the context.
Average response time objectives. We define the average response time
(ART) objective based on an action labeling act : E → {r, g,#} that assigns
actions to moves. Given a play π on G, we define rti[π] as the number of positions
between the i-th edge labeled with a request and the first following edge labeled
with a grant; if there are no grants past the i-th request, we put rti[π] =∞. For
a play π with infinite number of requests and grants, we define the quantitative
objective ART(π) = lim infk→∞

1
k

∑k
i=1 rti[π]. Finally, we put restrictions on

the game arena, discussed below, to avoid plays with finitely many requests.
The G-R condition. Observe that the value of a play with infinitely many
requests and finitely many grants is infinite, i.e., if Player 1 cannot enforce in-
finitely many grants, he looses. For plays with finitely many requests, there are
several ways to define the value of the play: the average over finitely many re-
quests, or Player 1 (resp., Player 2) wins unconditionally. As we are interested in



plays with infinitely many requests, we assume the grant-request condition (G-
R) on games arenas stating that: every grant is followed by a request in the next
step. Then, a sequence with infinitely many grants has infinitely many requests,
and if there are finitely many requests, then the last request is never granted
and the ART is infinite.

The G-R condition eliminates corner cases, and allows us to focus on the
core of the problem. Still, our construction can be adapted to work without this
condition (Remark 1).
Quantitative objectives as random variables. The quantitative objectives
are measurable functions mapping paths to reals, and thus can be interpreted as
random variables w.r.t. the probabilistic space we consider. Given a Markov chain
M and a value function f , we consider the following fundamental quantities:

1. Expected value: Ef (M) is the expected value of the random variable de-
fined by the quantitative objective f w.r.t. the probability measure defined
by the Markov chainM.

2. (Cumulative) distribution: DM,f (λ) = PM({π : f(π) ≤ λ}) is the cumu-
lative distribution function of the random variable defined by f w.r.t. the
probability measure defined by the Markov chainM.

Boolean objectives. A Boolean objective is a function Φ : Π(G) 7→ {0, 1}. We
consider two types of Boolean objectives: Büchi and threshold. Büchi objectives
ΦB are defined by a subset F of the positions of the arena. Then, ΦB(π) =
1 iff some position from F occurs infinitely often in π. Threshold objectives
are defined by imposing a threshold on a quantitative objective, i.e., given a
quantitative objective f and a threshold θ, we consider the set of winning plays
to be {π ∈ Π(G) : f(π) ≤ θ}, all plays π whose value does not exceed θ. We
define the threshold variants of the quantitative objectives LimAvgInf,ART as
LimAvgInf≤λ = {π | LimAvgInf(π) ≤ λ}, and ART≤λ = {π | ART(π) ≤ λ}.
Winning strategies. A strategy σ1 (resp., σ2) is winning for Player 1 (resp.,
Player 2) from a position v iff for all strategies σ2 for Player 2 (resp., all strategies
σ1 for Player 1), the play π defined by σ1, σ2 given v satisfies Φ(π) = 1 (resp.,
Φ(π) = 0).

2.3 Computational questions

We present questions, which we study in this paper.
Computational questions for games. Given a Boolean objective Φ (resp.,
quantitative objective f), a game arena G and a starting position s0, we consider
the following basic computational questions:
– The game question asks to determine the player that has the winning strat-

egy for Φ starting from position s0.
– The value question asks to compute val(f, s0).

Computational questions for Markov chains. Given a quantitative objec-
tive f and a Markov chain M, we consider the following basic computational
questions:



– The expected question asks to compute Ef (M).
– The distribution question asks, given a threshold λ, to compute DM,f (λ).

2.4 Previous results

We present existing results on the computational questions for two-player games
and Markov chains with mean-payoff objectives. The computational questions
for ART objectives have not been studied before; we study ART objectives in
the following sections.

Mean-payoff games admit pseudo-polynomial algorithms for solving games
and computing the value of the game [1, 16]. The complexity is given w.r.t. the
set of positions V , the set of moves E and the maximal absolute value W of the
labeling wt.

Theorem 1 ([10, 16, 1]). The following assertions hold:
– The game question for mean-payoff games can be solved in O(|V | · |E| ·W )

time. The winner has a memoryless winning strategy.
– The value of a mean-payoff game can be computed in O(|V |2 · |E| ·W · log(W ·
V )) time. Both players admit optimal memoryless strategies.

For Markov chains with mean-payoff objectives, basic computational ques-
tions can be solved in polynomial time. These questions are solved by reductions
to linear programming (LP), and hence the exact complexity depends on the
exact complexity of LP. To avoid the discussion on the wide-range of methods
to solve LP, we only give the size of the LP instance produced by the reductions.

Theorem 2 ([12]). For M = (Σ,S, s0, E), the expected question and the dis-
tribution question can be computed in polynomial time, by reduction to linear
programming with |S| variables and |S|+ |E|+ 1 constraints.

3. Games and Graphs with ART Objectives

In this section we study one- and two-player games with the average response
time (ART) objective. We establish polynomial-time algorithms to determine the
winner in these games as well as polynomial time algorithms for computing the
value of the game. We begin with examples showing that both players require
memory to play optimally. Then, we establish polynomial-time complexity of
two-player games with ART objectives (Section 3.2). Finally, we discuss one-
player games with ART objectives (Section 3.3), which inherit a polynomial-time
algorithm from the two-player case. We, however, establish better bounds both
on the complexity and the memory required to play optimally.

3.1 Memory requirement for ART objectives

We begin with an example showing that Player 1 needs memory to win even in
a one-player game with an ART objective.
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Fig. 2. Examples of games arenas: G1 where Player 1 requires finite memory to play
optimally, and G2 where Player 2 requires finite memory as well. Circle positions are
owned by Player 1 and square ones are owned by Player 2.

Example 2. Consider a game arena G1 depicted in Figure 2. Player 1 has two
memoryless strategies. In the first, he stays forever in pt, which results in the
infinite average response time. In the second, in pt he always moves to ps. Observe
that this case the average response time is k + 1.

Consider a finite-memory strategy, in which, each time Player 1 moves from
pk to pt, he loops n times in position pt, and then moves to ps. This strategy
gives a play, which repeats infinitely a cycle of length k+n+1, with n+1 requests
and response times k+n+1 for the request issued in (ps, p1), and n, n−1, . . . , 1

for requests issued in the loop (pt, pt). The ART in this case is k+n+1+0.5·n·(n+1)
n+1 ,

which attains the minimum when n + 1 is approximately
√
2k. In such a case,

the ART is approximately
√
2k + 0.5, which is smaller than k + 1.

Based on Example 2, we can show that Player 2 also requires memory to win
against Player 1.

Example 3. Consider a game arena G2 from Figure 2, which extends G1 from
Example 2. Recall that Player 1 to play optimally has to loop

√
2k + 1 times

at position pt in G1. Therefore, if Player 1 loops less than
√
2k times at pt in

G2, then Player 2 maximizes the average response time by going immediately for
a grant, i.e., moving from s1 to ps. However, if Player 1 loops more than

√
2k

times at pt, then Player 2 is better off by delaying a grant even trough issuing
a request, i.e., moving from s1 to s2 and then to ps. To play such a strategy,
Player 2 requires approximately

√
2k memory.

3.2 Two-player games with ART objectives

We present the main result of this section.

Theorem 3. The following assertions hold:



(1) Let λ = p
q with p, q ∈ Z. The two-player game question with the ART≤λ

objective can be solved in O(|V |7 · |E| ·min(|q|, |V |3)) time. The winner has
a winning strategy with memory bounded by 2|V |2.

(2) The value of two-player games with quantitative ART objectives can be com-
puted in O(|V |10 · |E| · log(|V |)) time. Both players admit optimal strategies
with memory bounded by 2|V |2.

In the remaining part of this section, we prove Theorem 3.
Key ideas. We prove Theorem 3 by reduction to mean-payoff games. We high-
light some key ideas of the proof.
1. First, note that for mean-payoff games memoryless strategies are sufficient

(see Theorem 1), and, in contrast, memory is required for both players for
ART objectives (see Example 2 and Example 3). We present a reduction of
games with ART objectives to mean-payoff games that involves a polynomial
blow-up, and a blow-up is unavoidable due to the memory requirement.

2. As illustrated in Example 3, both players use memory to track the number
of pending requests, i.e., the number of requests since the last grant. In the
reduction, we encode the number of pending requests in the game arena GN
(Definition 1). We show that it suffices to count up to 2|V |2 pending requests
(Lemma 4), which yields 2|V |2 upper bound on the required memory to play
optimally.

3. The general algorithms for mean-payoff games are pseudo-polynomial. In
our reduction, the weights in the game arena GN correspond to the number
of pending requests, and hence they are bounded by 2|V |2. Thus for our
reduction the weights are polynomial, and the existing algorithms for mean-
payoff games [16, 1] work in polynomial time when applied to our reduction.

Simple case: thresholds λ > |V |. We proceed with the proof of Theorem 3.
First, we observe that games with ART≤λ objectives can be solved easily if
the threshold λ is greater than the number of the positions |V |. In such a case
Player 1 plays Büchi game to reach grant infinitely often. If Player 1 can win
in the Büchi game, he has a memoryless strategy that ensures that ART does
not exceed |V |. Otherwise, if he fails, Player 2 can force ART to be infinite with
a memoryless strategy. Büchi games can be solved in O(|V |2) time [3, 4], and
hence:

Lemma 1. Let G = (V, V1, V2, E) be a game arena, act be an action labeling,
λ ∈ Q. If λ > |V |, then the game with the objective ART≤λ can be solved in
O(|V |2) time and the winner has a memoryless winning strategy.

In the following we consider thresholds λ bounded by |V |.
Consider a play π. We define the number of pending requests at position i,

denoted by pri[π], as the number of edges labeled with a request since the last
edge labeled with a grant. Observe that, if j is a position of a grant and there
are k requests up to position i, then

∑k
i=1 rti[π] =

∑j
i=1 pri[π]. Using this ob-

servation, we reduce games with the average response time objective to games
with the mean-payoff of pending requests. We encode the number of pending re-
quests in the game. To ensure that the game arena is finite, we compute pending



requests up to some bound N . The average of (bounded to N) pending requests
underapproximates the average response time (Lemma 2). Later on, we show
that for N big enough, both values coincide.

Definition 1 (Arenas GN). Consider a game arena G = (V, V1, V2, E), an
action labeling act : E → {r, g,#}, and N > 0 . We define a game arena GN
and a weight labeling wtλ such that GN = (V N , V N1 , V N2 , EN ) and

(VN,VN
1 ,V

N
2 ): V N = V × {0, . . . , N}, V N1 = V1 × {0, . . . , N}, and V N2 =

V2 × {0, . . . , N},
(EN): for all v1, v2 ∈ V , x, y ∈ {0, . . . , N} we have (〈v1, x〉, 〈v2, y〉) ∈ EN iff

(v1, v2) ∈ E and either
• act(v1, v2) = r and y = min(x+ 1, N), or
• act(v1, v2) = g and y = 0, or
• act(v1, v2) = # and x = y.

(wtλ): for all (〈v1, x〉, 〈v2, y〉) ∈ EN , we define
• wtλ(〈v1, x〉, 〈v2, y〉) = x if act(v1, v2) = r, and
• wtλ(〈v1, x〉, 〈v2, y〉) = x+ λ if act(v1, v2) ∈ {g,#}.

Key ideas. Observe that for every play π on an arena G there exists a unique
corresponding play π′ in the arena GN and vice versa. Indeed, given a play
π = v0v1v2 on G, we transform it into the play π′ on GN by annotating positions
of π′ with the number of pending requests bounded to N , i.e., the play π′ =
(v0, 0)(v1,min(pr1[π], N))(v2,min(pr2[π], N)) . . .. To transform a play π′ on GN
to the corresponding play on G we project out the second component in each
position of π′. Finally, we observe that if a play π′ is eventually contained in
V × {0, . . . , N − 1}, then it records actual numbers of pending requests, not
restricted by N , and hence ART(π) ≤ λ if and only if LimAvgInfwtλ(π′) ≤ λ.

Lemma 2. Let G be a game arena and act be an action labeling. For every play
π on G and the corresponding play π′ on GN , we have
1. ART(π) ≤ λ implies LimAvgInfwtλ(π′) ≤ λ, and
2. if π′ eventually stays in V × {0, . . . , N − 1}, then ART(π) ≤ λ if and only

if LimAvgInfwtλ(π′) ≤ λ.

Proof. Consider k > 0 and ε ≥ 0. Let gk be the position of the first grant
following the k-th request. We show that (*) 1

k

∑k
i=1 rti[π] ≤ λ + ε implies

1
gk

∑gk
i=1 wtλ(π

′)[i] ≤ λ+ ε.
Assume that 1

k

∑k
i=1 rti[π] ≤ λ + ε, then by simple transformation we get

(
∑k
i=1 rti[π])+(gk−k)·(λ+ε) ≤ gk(λ+ε). Now observe that at the position corre-

sponding to a grant the sum of response times is equal to the sum of pending re-
quests over all positions, i.e.,

∑k
i=1 rti[π] =

∑gk
i=1 pri[π]. Recall that wtλ(π′)[i] =

min(N, pri[π])+λ if act(vi−1, vi) 6= r, and wtλ(π′)[i] = min(N, pri[π]) otherwise.
Therefore,

k∑
i=1

rti[π] + (gk − k)(λ+ ε) ≥
gk∑
i=1

wtλ(π′)[i] + (gk − k)ε ≥
gk∑
i=1

wtλ(π′)[i]



Finally, 1
gk

∑gk
i=1 wtλ(π

′)[i] ≤ λ+ ε.
If ART(π) ≤ λ, then there exists a sequence p[1], p[2], . . . such that for every

n > 0 we have 1
p[n]

∑p[n]
i=1 rti[π] ≤ λ+ 1

n . Observe that due to (*) for all n > 0 we
have 1

gp[n]

∑gp[n]

i=1 wtλ(π′)[i] ≤ λ+ 1
n , and hence LimAvgInfwt

λ (π′) ≤ λ.
Now, assume that (**) past position K, the play π′ is contained in V ×

{0, . . . , N − 1}. We first assume that K = 1. Consider k and ε ≥ 0 such that
1
gk

∑gk
i=1 wtλ(π

′)[i] ≤ λ + ε. Then,
∑gk
i=1 wtλ(π

′)[i] − gk(λ + ε) ≤ 0. Again,∑k
i=1 rti[π] =

∑gk
i=1 pri[π]. However, condition (**) implies that for i ≥ K = 1 we

have wtλ(π′)[i] = pri[π]+λ if act(vi−1, vi) 6= r, and wtλ(π′)[i] = pri[π] otherwise.
Therefore,

∑gk
i=1 wtλ(π

′)[i] =
∑k
i=1 rti[π] + (gk − k)λ. Finally, 1

k

∑k
i=1 rti[π] ≤

λ+ gk
k ε.

Now, if LimAvgInfwt
λ (π′) ≤ λ, then there exists a sequence p[1], p[2], . . .

such that for all n > 0 we have 1
gp[n]

∑gp[n]

i=1 wtλ(π′)[i] ≤ λ + 1
n . It follows that

for all n > 0 we have 1
p[n]

∑p[n]
i=1 rti[π] ≤ λ+

gp[n]

p[n]
1
n . We claim that gk

k is bounded
by a constant independent of n, and hence ART(π) ≤ λ. To show that gp[n]

p[n] is
bounded by a constant, considermr,mg,m# denoting the number of respectively
requests, grants and null instructions up to position gp[n]. Observe that gp[n] =
mr+mg+m# and mr = p[n]. Condition (G-R), i.e., every grant is immediately
followed by a request, implies that mg ≤ mr. Again, by condition (G-R) all
moves labeled with # follow some pending request and hence the weight of
such moves is at least λ+ 1. Therefore, to have 1

gp[n]

∑gp[n]

i=1 wtλ(π′)[i] ≤ λ+ 0.5

(for n > 2), the following inequality must hold m# < (4λ + 2) · p[n]. Thus,
gp[n]

p[n] ≤
m#+2p[n]

p[n] ≤ 4(λ+ 1), i.e., gkk is bounded.
Finally, note that even if K > 0, a finite prefix does not affect the limit of

1
p[n]

∑p[n]
i=1 rti[π]. ut

Lemma 2 implies that winning with the ART≤λ objective on G implies win-
ning with the objective LimAvgInf≤λ on GN for every N . Next, we prove a
cutoff result saying that for N ≥ 2|V |2, winning on GN with the objective
LimAvgInf≤λ is equivalent to winning with the ART≤λ objective on G.
Key ideas. To prove the cutoff result, we consider a winning strategy for Player 1
on GN with the objective LimAvgInf≤λ. Without loss of generality, we can
assume that this strategy is memoryless [10]. We show that every for N > 2|G|2,
every memoryless winning strategy on GN that wins for LimAvgInf≤λ must
ensure that each play eventually stays in V × {0, . . . , N − 1}. Therefore, such a
strategy is also winning for ART≤λ on G (Lemma 2).

Lemma 3. Let G = (V, V1, V2, E) be a game arena, act be an action labeling, λ ∈
Q and let N ≥ 2|V |λ. If Player 1 wins on GN with the objective LimAvgInf≤λ,
then he has a memoryless winning strategy that ensures that each play eventually
stays in V × {0, . . . , N − 1}.

Proof. If Player 1 wins on GN with the objective LimAvgInf≤λ, then he has
a memoryless winning strategy σ1 [10]. Assume towards contradiction that for



some play π consistent with σ1 some position from G×{N} is reachable infinitely
often. Consider a graph GN [σ1] obtained from arena GN by fixing edges of Player
1 according to strategy σ. The nodes of GN [σ1] are all positions of GN . We observe
that GN [σ1] has a cycle C that contains a position from G×{N} and its length
is bounded by the number of nodes of GN [σ1], i.e., |C| ≤ |V | ·N .

If cycle C does not contain grants, then C is contained in G×{N}, and hence
the average weight in C is at least N > λ. Thus, σ1 is not winning. Therefore,
C contains grants and hence it visits nodes from G × {0}. Thus, it contains at
least one node from each set G × {i} for i = 0, 1, . . . , N . This gives us that C
contains N transitions with weights 0, 1, . . . , N . The remaining transitions have
the weight at least 0. It follows that the average weight of the cycle C is at least

1

|C|
(
N · (N + 1)

2
) =

N + 1

2|V |
≥ 2|V |λ+ 1

2|V |
> λ

Thus, σ1 is not winning. A contradiction. ut

We are ready to prove Theorem 3.

Proof (of Theorem 3). Let G = (V, V1, V2, E). If λ > |V |, then by Lemma 1, we
can decide in O(|V |2) time whether Player 1 has a winning strategy, and if he
does he has a memoryless winning strategy.

Assume that λ ≤ |V | and let N = 2|V |2. Lemmas 2 and 3 imply the following
condition (**):

(***) Player 1 wins on G with the objective ART≤λ if and only if Player 1
wins on GN with the objective LimAvgInf≤λ.

For the implication from left to right, consider a winning strategy σ on G with
the objective ART≤λ. Player 1 can use the strategy σ to play on GN with the
objective LimAvgInf≤λ. Indeed, consider a play π on G consistent with σ such
that ART(π) ≤ λ. Then, Lemma 2 states that for the corresponding play π′ on
GN we have LimAvgInfwtλ(π′) ≤ λ. Now, to show the implication from right to
left we consider a winning strategy σ on GN . By Lemma 3, we can assume that
σ is memoryless and each play eventually stays in V ×{0, . . . , N − 1}. Let σ′ be
a projection of σ on the first component V , i.e., σ′ is a strategy on G. Observe
that (2) of Lemma 2 implies that each play consistent with σ′ is winning for
ART≤λ and hence σ′ is a winning strategy on G with the objective ART≤λ.
Since σ is memoryless, the memory of σ′ is N = 2|V |2.

Condition (***) implies that, if any player can win with the ART≤λ objec-
tive, then the memory necessary to win is bounded by 2|V |2. In particular, for
the minimal threshold λ0, for which Player 1 has a winning strategy, he has a
winning strategy with memory bounded by 2|V |2. This strategy is the optimal
strategy for the quantitative ART objective on G, and hence Player 1 admits
optimal strategies with memory bounded by 2|V |2. Similarly, for any n > 0

and the objective ART≤λ0− 1
n , Player 2 has a winning strategy with memory

bounded by 2|V |2. There are finitely many such strategies and some strategy



σo occurs infinitely often. This strategy σo is optimal for Player 2 and it has
memory bounded by 2|V |2.

We now discuss the value of the minimal threshold, for which Player 1 has
a winning strategy, which is the value of the game. Consider a strategy σ for
Player 1 with memory bounded by 2|V |2. We construct a graph G for Player 2
resulting from fixing in G all choices of Player 1 according to σ and storing
its memory. Such a graph has 2|V |3 vertexes and no cycles without a grant,
as otherwise Player 2 wins for every λ > 0. Now, the ART in that graph can
be computed as follows. We examine all simple cycles in G that begin with a
move labeled with a grant, compute the maximal ART over all such cycles, and
denote it by T . Observe that the maximal ART over all paths in G equals T .
Indeed, we can construct a path of the ART equal T , and conversely any (finite)
path can be split into simple cycles that begin with a move labeled with a grant.
Therefore, ART over finite prefixes of any infinite paths does not exceed T . Now,
observe that simple cycles in G have length bounded by 2|V |3 and hence T is
a rational number of the form p

q , where q ≤ 2|V |3. Now, the value of the ART
game on G is the minimum over values of ART on graphs resulting from fixing
a strategy σ with memory 2|V |2 for Player 1. Therefore, the value of ART game
on G is a rational number of the form p

q , where q ≤ 2|V |3 and p < 2|V |4.
The game on GN with the objective LimAvgInf≤λ can be solved in time

O(nmM), where n (resp., m) is the number of positions (resp., moves) of GN
and M is the bound on the absolute values of weights in GN [1]. Recall that
n = |V |N , m = |E|N . Theorem 1 assumes integer weights, and hence for λ = p

q ,
we need to multiply all weights by q. However, if q > 2|V 3|, the above discussion
implies that we can approximate λ by the greatest fraction p

2|V |3 and hence
M = N ·min(q, 2|V 3|). Thus, the game can be solved in O((|V |N) · (|E|N) ·N ·
min(q, 2|V 3|)) = O(|V |7 · |E| ·min(q, |V 3|)). Finally, using the binary search on
the possible values of λ and ART≤λ objective we can find the value of the ART
game on G in O(|V |10|E| log(|V |)). ut

3.3 Graphs with ART objectives

In the previous section, we established a polynomial-time algorithm for two-
player games with ART objectives. However, if we restrict games to a single
player case, we can improve the polynomial bounds.
1. First, the blow-up in the reduction to mean-payoff games is only quadratic

in the one-player case.
2. Second, one-player mean-payoff games can be solved in O(|V ||E|) time,

which is better than pseudo-polynomial bound O(|V ||E|W ) for two-player
mean-payoff games.

3. Third, in one-player case, we establish linear bounds on memory necessary to
play optimally (resp., win) with ART objectives (resp., ART≤λ objectives),
which is better than the quadratic bound in the two-player case.

Theorem 4. The following assertions hold:



(1) The one-player game question for games (V, V, ∅, E) (resp., (V, ∅, V, E)) with
ART≤λ objective can be solved in O(|V |3|E|) time. Player 1 (resp., Player 2)
has a winning strategy with memory bounded by 2|V | (resp., |V |).

(2) The value of one-player games (graphs) with quantitative ART objective can
be computed in O(|V |3|E| log(|V |)) time. Player 1 (resp., Player 2) admits
optimal strategies with memory bounded by 2|V | (resp., |V |).

The main improvement is the cutoff result for the one-player case (Lemma 4),
which is a counterpart of Lemma 3. We prove this result by a pumping argument.
Having Lemma 4, we establish the complexity of one-player games with the
ART≤λ objective.

Lemma 4. Let G = (V,E) an a one-player game arena, act be an action la-
beling, λ ∈ Q and let N > |V | + λ. If there exists a play π on GN satisfying
the objective LimAvgInf≤λ, then there exists a memoryless play satisfying the
objective LimAvgInf≤λ that stays in V × {0, . . . , N − 1}.

Proof. Let π be a play such that LimAvgInf(π) ≤ λ. Observe that when the
number of pending requests exceeds λ, then the weight of every move until the
following grant exceeds λ. Therefore, shortening the blocks of π in which the
number of pending requests exceeds λ decreases all the partial averages. More
precisely, let i be a position at which the number of pending requests exceeds λ
and j > i be the position of the following grant. Assume that j−i > |V |. Then, we
can project π[i, j] onto its first component (positions of G), remove all the cycles,
and lift the resulting path to the path of GN starting in π[i]. We call this final
path ρ and we observe that |ρ| ≤ |V | and π′ = π[1, i − i]ρπ[j + 1,∞] is a play
on GN such that all the partial averages are bounded by the partial averages
of π. Finally, the number of pending grants between i and i + |ρ| is bounded
by λ + |V |. We list all the positions i, where the number of pending requests
exceeds λ, and we iteratively apply the above procedure to all these positions.
In the result we obtain a play πF that satisfies the objective LimAvgInf≤λ and
the number of pending requests is always bounded by |V | + λ, i.e., πF stays in
V × {0, . . . , N − 1}. ut

We are ready to prove Theorem 4.

Proof (of Theorem 4). (1): Let G = (V,E) as all positions belong to one player.
If λ > |V |, then by Lemma 1, we can decide in O(|V |2) the game question, and
if the player has a winning strategy, then he has a memoryless winning strategy.

Assume that λ ≤ |V | and let N = 2|V |. First, we consider the case of
all positions belonging to Player 1. Lemmas 2 and 4 imply that, in one-player
games, winning on G with the objective ART≤λ is equivalent to winning on
GN with the objective LimAvgInf≤λ. Moreover, the winning strategy for G
can be obtained from the winning strategy on GN by projecting out the second
component. Since LimAvgInf≤λ admits memoryless winning strategies, to win
on G with the objective ART≤λ it suffices to consider strategies with memory
bounded byN = 2|V |. To decide whether Player 1 wins we prune GN to positions



reachable from the given initial position, which takes O(|V |N + |E|N) time, and
we compute the minimal mean cycle [13] in time O(|V |N · |E|N) = O(|V |3|E|).

Now, consider the case of all positions belonging to Player 2. If there exists a
cycle in G that does not contain grants, then Player 2 can win against ART≤λ

objective for any λ. We can check the existence of such a cycle in O(|V | + |E|)
and Player 2 has a memoryless winning strategy in that case. Otherwise, if every
cycle contains at least one grant, the number of pending requests is bounded by
|V |, and hence Player 2 requires |V | memory. Thus, for N = |V | + 1, all plays
are contained in V × {0, . . . , N − 1} and Lemma 2 implies that Player 2 wins
against ART≤λ objective if and only if she wins on GN against the objective
LimAvgInf≤λ. Now, we prune GN to positions reachable from a given initial
position, which takes O(|V |N + |E|N) time, and we compute the maximal mean
cycle [13] in time O(|V |N · |E|N) = O(|V |3|E|). This maximal cycle has the
average grater than λ if and only if Player 2 wins on GN against LimAvgInf≤λ.
The latter is equivalent to Player 2 winning on G against ART≤λ objective.
(2): We present the argument for Player 1, as the reasoning for Player 2 is
virtually the same. For every λ > 0, if Player 1 has a winning strategy with
ART≤λ, then he has a winning strategy with memory 2|V |. There are finitely
many such strategies and one of them achieves the value of the game. A one-
player strategy amounts to a single play, which is a lasso of length bounded by
2|V |2. Therefore, the minimal threshold λ0 such that Player 1 has a winning
strategy with ART≤λ0 belongs to a finite set of rationals {pq | p, q ∈ N, q ≤
2|V |2, p ≤ 2|V |3}. Therefore, using the binary search and the decision procedure
from (1), we can find the minimal λ0, which is the value of the ART game in
O(|V |3|E| log(|V |)). Finally, observe that the strategy for Player 1 for ART≤λ0

is the optimal strategy for him. Thus, Player 1 admits optimal strategies with
memory bounded by 2|V |. ut

3.4 Discussion

We discuss the applicability and significance of the results on ART objective.

Remark 1 (Discussion on the G-R condition). We have introduced the G-R con-
dition for technical simplicity. We can, however, eliminate it. Observe that the
G-R condition has been used only in Lemma 2, which relates plays with ART
objectives on G = (V, V1, V2, E) and plays with mean-payoff objectives on GN .

First, without the G-R condition, there can be plays, in which eventually
there are no pending requests. Assume that such plays are winning for Player 1.
Then, we proceed as follows:
– We show that (*) if Player 2 has a winning, strategy she has a winning

strategy such that length of blocks (of positions) with no pending requests
are bounded by |V |.

– We redefine GN such that after |G| steps with no pending requests Player 1
wins. The size of such modified arena is |V | ·N + |V |2.



– We prove the analogue of Lemma 2 for the modified GN . Observe that the
current proof of Lemma 2 works even if we only assume that blocks (of
positions) with no pending requests are bounded by |G|.
The above construction also works if Player 2 wins on plays, in which even-

tually there are no pending requests.

Remark 2 (Discussion on complexity). In this work, our goal is to establish the
first polynomial-time algorithms computing the ART property for game graphs
and graphs. The complexities of the polynomial upper bounds we establish are
quite high (Õ(|V |10 · |E|) for game graphs, Õ(|V |3 · |E|) for graphs), and likely
to be non-optimal. Our algorithms for games are based on reductions to mean-
payoff games, where memoryless strategies are sufficient. We show that quadratic
size memory is sufficient for ART objectives. Hence a reduction to mean-payoff
games, which encodes memory in the state space, gives rise to a game with |V |3
vertices, |V |2 · |E| edges, and W = |V |2, and then applying the best-known
algorithms for mean-payoff games already gives a high polynomial complexity.
Obtaining algorithms with better theoretical bounds as well as practical ap-
proaches are interesting directions for future work.

4. Markov Chains

In this section, we discuss Markov chains with ART objectives. We establish
polynomial-time algorithms for both the expected value and the distribution
questions.

Polynomial-time algorithms for Markov chains with objectives given by
nested weighted automata (which can express the ART property) has been
established in [8]. Hence, below we present the key ideas to obtain a simple
algorithm for ART properties. We omit formal and detailed proofs, which are
consequences of the results established in [8].
Key ideas. We present the key ideas for both cases.
1. The expected question. Consider a labeled Markov chainM = 〈Σ,S, s0, E〉,

where Σ = {r, g,#}. To compute the expected value EART(M), we first
compute the labeling of transitions wt ofM such that for all s1, s2 ∈ S, we
put wt((s1, g, s2)) = wt((s1,#, s2)) = ⊥, i.e., no weight, and wt((s1, r, s2))
is the expected number of steps to reach a grant. This labelling can be
computed in polynomial time in |M|, by reduction to linear programming
with |S| variables and |S| + |E| + 1 constraints [12]. Then, we compute
the expected value of the mean-payoff objective LimAvgInfwt on M, i.e.,
ELimAvgInf(M). The value ELimAvgInf(M) can be computed in polynomial
time. Again, it is computed by reduction to linear programming with |S|
variables and |S|+ |E|+1 constraints [12]. Finally, we return ELimAvgInf(M)
as EART(M). The key aspect of the correctness proof is that the values
ELimAvgInf(M) and EART(M) are equal, which follows from [8, Lemma 26].

2. The distribution question. To compute the distribution question, we first dis-
cuss the case of Markov chains M consisting of a single recurrent set, i.e.,



almost all paths visit all states infinitely often. In such a case, the Boolean
objective ART≤λ is a tail event [11] and its probability is either 0 or 1,
i.e., for every λ almost all plays satisfy ART≤λ or almost all plays violate
it. Therefore, almost all plays have the same value, which is EART(M). In
the general case, we can find in M subsets R1, . . . , Rk, which are recur-
rent sets, i.e., among paths that enter Ri, almost all paths visit all states
of Ri infinitely often. We compute all recurrent sets R1, . . . , Rk of M in
O(|S| + |E|) time. Then, we compute (in polynomial time) the probabil-
ities p1, . . . , pk of reaching each of these sets from s0, and expected values
EART(R1), . . . ,EART(Rk), where EART(Ri) is the expected average response
time of the Markov chain (Σ,Ri, s

i
0, E ∩Ri×Ri) with some si0 ∈ Ri. Proba-

bilities p1, . . . , pk can be computed using linear programming as well. Finally,
DM,ART(λ), the probability of the set of plays below threshold λ, is the sum
of probabilities of reaching the recurrent sets with expected values below λ,
i.e., DM,ART(λ) =

∑
{pi | EART(Ri) ≤ λ}. The correctness proof follows

from [8, Lemma 27].

Theorem 5. Consider a Markov chainM = 〈Σ,S, s0, E〉 and λ ∈ Q.
– The expected value EART(M) for the ART objective can be computed in

polynomial time, by a reduction that takes O(|S| + |E|) time and produces
two instances of linear programming each with |S| variables and |S|+ |E|+1
constraints.

– The cumulative distribution DM,ART(λ) for the ART objective can be com-
puted in polynomial time, by a reduction that takes O(|S| + |E|) time and
produces three instances of linear programming each with |S| variables and
|S|+ |E|+ 1 constraints.

5. Conclusions

Average response time (ART) is a fundamental quantitative property of reac-
tive systems. We presented the first algorithms that are designed specifically for
computing ART values on graphs, game graphs, and Markov chains. All our al-
gorithms are polynomial time. There are several interesting directions for future
work. First, while our main objective was to establish polynomial-time upper
bounds, algorithms of better complexity may be possible (Remark 2). Second,
the problems of computing ART values for more general graph models such as
Markov decision processes (i.e., graphs with both probabilistic and nonproba-
bilistic vertices) and stochastic games (i.e., graphs with probabilistic vertices,
Player-1 vertices, and Player-2 vertices) are still open. Finally, the value compu-
tation problems remain open for interesting generalizations of the ART property
such as the more general ART property which counts the number of tick events
between request and grant events, rather than counting the number of all tran-
sitions between requests and subsequent grants. While these generalizations of
the ART property and of the underlying graph models appear modest, the al-
gorithms presented in this paper cannot be generalized directly to these cases.
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