
Physical Biology
     

PAPER • OPEN ACCESS

Differences in power law growth over time and indicators of COVID-19
pandemic progression worldwide
To cite this article: Jack Merrin 2020 Phys. Biol. 17 065005

 

View the article online for updates and enhancements.

This content was downloaded from IP address 81.223.14.210 on 05/10/2020 at 14:51

https://doi.org/10.1088/1478-3975/abb2db
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv2zUJIutAKhOy8rQypeHMnrFub6Xoxp5uRCKf5Z_bt2w1BIvkOVn4wwc2zUpLHhzzyRKpDMWA91tcu9H_rge9MwOhkhGLXbzrYObZ1beB1rZAc4ulV7DKqEi7RDx02LidCoJyHoq6ZIBx683tHXJUfDwLCXMyKugzbThm-t3AQSX7u74UnAbwZ-DrkFWjgfUUssiMjo3Ot9aLgAyG2yzxTOunRnyfz0TvzE_s37gldw73pfd73&sig=Cg0ArKJSzLdicV8jj_Uo&adurl=http://iopscience.org/books


Phys. Biol. 17 (2020) 065005 https://doi.org/10.1088/1478-3975/abb2db

OPEN ACCESS

RECEIVED

24 April 2020

REVISED

12 August 2020

ACCEPTED FOR PUBLICATION

26 August 2020

PUBLISHED

24 September 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Differences in power law growth over time and indicators of
COVID-19 pandemic progression worldwide

Jack Merrin
IST Austria, Am Campus 1, Klosterneuburg 3400, Austria

E-mail: jack.merrin@ist.ac.at

Keywords: COVID-19, power law, logistic, coronavirus, SIR model

Supplementary material for this article is available online

Abstract
Error analysis and data visualization of positive COVID-19 cases in 27 countries have been
performed up to August 8, 2020. This survey generally observes a progression from early
exponential growth transitioning to an intermediate power-law growth phase, as recently suggested
by Ziff and Ziff. The occurrence of logistic growth after the power-law phase with lockdowns or
social distancing may be described as an effect of avoidance. A visualization of the power-law
growth exponent over short time windows is qualitatively similar to the Bhatia visualization for
pandemic progression. Visualizations like these can indicate the onset of second waves and may
influence social policy.

1. Introduction

Mathematical modeling is essential to predict and
control the course of pandemics [1, 2]. Many epi-
demiological theories derive from the SIR model or
a more sophisticated version of it containing more
categories [3–5]. The basic SIR model may not be
sufficient to characterize COVID-19 for several rea-
sons. The parameters of SIR, like the basic repro-
duction number, can change over time according to
the sequence of social policies [6]. In comparison,
the parameters of flu or colds remain constant except
for potential seasonal variations because people con-
tinue to go about their business. The time course
of parameters like the basic reproduction number
may only be computable retrospectively. The SIR
equations are also entirely deterministic, while in real
systems, there is some stochastic element of variation.
Differential equations do not take into account the
integer nature of population categories over time,
especially in the initial stages. The SIR model has a dif-
ficult to compute solution [7]. SIR model dynamics
lumps susceptible people into one category, whereas
some groups are more at risk of contracting the virus
than others. Spreading the virus may also depend on
differences in demographics, employment, city size,
social networks, social dynamics, or individual behav-
iors [8]. Lastly, the SIR model does not take into
account cases resulting from travel between countries.

Other approaches do not rely on mechanistic
mathematical models at all. One can choose phe-
nomenological functions like power-laws or the logis-
tic curve that seems to fit historical data well [9].
One might infer other countries follow a similar
pattern, but with slightly different parameters. If
one does not know which best-fit phenomenolog-
ical functions to choose, one can input historical
data into a program called Eurequa, which evolves
them by genetic algorithms [10]. Other approaches
are visualizations that allow one to interpret the data
and observe trends and make comparisons of vari-
ous countries [11]. In any case, there is quite a lot
of freely available worldwide data for scientists to
analyze.

In this study, we analyze differences in the spread
of COVID-19 hotspots using error analysis. We use
the least-squares curve fitting methods to synchronize
different data sets and compare power-law growth on
log–log plots. The inspiration for this work is Ziff
and Ziff ’s hypothesis, where early growth is expo-
nential, followed by a power-law growth [12]. The
next stage is generally logistic growth and then pos-
sible second waves. The visualization and prediction
of data using these methods may provide insight into
when social policy works, expectations for the burden
on medical infrastructure, characterizing progress
towards second waves, and decision-making in the
future.
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2. Methods

2.1. Linear least squares curve fitting
In this paper, we use error analysis and curve fitting
to analyze the progression of COVID-19 [14–17]. In
weighted least squares curve fitting for linear func-
tions one finds the fit parameters, A, B, . . . , which
minimizes χ2, which depends on the location of data
points xi, the measured values yi, and the uncertain-
ties in yi given by σi.

χ2 =

n∑
i=1

[yi − A − Bxi]2

σ2
i

.

To fit a straight line model, one solves for A and

B by calculating ∂χ2

∂A = 0 and ∂χ2

∂B = 0 and solving
the resulting system of linear equations. We use the
notation,

Swuv =

N∑
i=1

wiuivi wi =
1

σ2
i

.

The uncertainties in the parameters can also be
directly computed using propagation of error.

A =
SwySwxx.− SwxSwxy

SwSwxx − S2
wx

B =
SwSwxy.− SwxSwy

SwSwxx − S2
wx

σA =

√
Swxx

SwSwxx − S2
wx

σB =

√
Sw

SwSwxx − S2
wx

.

There are different methods to visualize the pro-
gression of the number of positive cases. Typically one
uses linear plots, semilogarithmic plots, or log–log
plots. Keep in mind several things when interpreting
functions on a log–log plot. Exponential growth on
a log–log plot appears exponential, and power-law
growth on a log-log plot appears linear. If we define
two transformations then we just have to fit linear
functions. Transformation 1 is

Yi = ln yi Xi = ln xi.

For a power law function y = αxβ then

ln yi = ln α+ β ln xi → Yi = A1 + B1Xi.

We refer repeatedly toβ in this paper as the power-law
exponent for the data region of interest.

If we define transformation 2

Yi = ln yi Xi = xi.

For an exponential function y = y(0)erx then

ln yi = ln y(0) + rxi → Yi = A2 + B2Xi.

By propagation of error and the square root N rule,
the weighting is σi = 1/

√
yi in both transformations

even though there are no explicit errorbars in reports
of positive cases.

2.2. Logistic curves
The logistic function is the solution to the differential
equation, which models many different phenomena
such as population growth.

dN

dt
= rN(1 − N/K).

We write the solution in several ways that depend on
three parameters.

N(t) =
K

1 + e−r(t−τ)
=

KN(0)

N(0) + (K − N(0))e−rt
.

For short times, N increases exponentially. For long
times, N is exponentially approaching a plateau.
The logistic curve can be fitted by the Leven-
berg–Marquardt method.

2.3. Data sources and synchronization
Data was collected from Johns Hopkins [18], the Eu-
ropean Centre for Disease Prevention and Control,
and Wikipedia. The data files differed on the same
days, probably due to how the start of a day is defined
or lack of proper reporting. A small number of errors
were found in all three data sources, such as the num-
ber of cases decreasing on a successive day. Some
Wikipedia pages miss the death totals or recoveries,
but we consider only positive cases in this paper.

Wikipedia data aggregation appeared to have the
best-curated early time data, so it was the only
data used for the analysis. Different countries have
staggered outbreaks in time, and fitting power-laws
depends on the origin of time. For synchronization
between countries, an exponential fit to the first 1000
cases was performed. The initial time was an extrap-
olation of this curve to one case.

2.4. Moving window procedure and
visualizations
To visualize COVID-19 progress, we track the slope
of the number of cases on a log–log plot, which is
an exponent β. Using a 7 d or 14 d window did not
result in much difference. In this visualization, when
β nears zero, the disease is mitigated. When β is large,
this indicates a country is going into more danger.
If β drops significantly below one and then increases
again, this can define a second wave.

A visualization method developed by Bhatia is
simple to implement and surprisingly effective [11].
In this method, one plots points of the number of
cases in the last week on the logarithmic y-axis ver-
sus the total number of cases on the logarithmic
x-axis. The visualization is a parametric plot elimi-
nating time. Most of the time, the data perfectly line
up and progresses upwards and to the right as things
get worse for a country. If the plot moves downwards,
this indicates mitigation. The noise in actual measure-
ments only modulates the spacing between points but
does not impact the general shape of the visualization
much.
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Figure 1. The mainland China data fit to a logistic curve after synchronization.

Figure 2. 4 stages of COVID-19 pandemic. Red curve—fit to initial exponential phase. Blue curve—fit to power-law in the
intermediate region. Brazil, Russia, and Saudi Arabia are indicative of the power-law growth phase. China, Ireland, and Italy exit
the power-law phase to the logistic growth in a third phase. Israel, Japan, and Australia exit the logistic phase into the second wave
in the fourth phase.

3. Results

3.1. SIA model
Epidemiological mathematical models are only as
good as their assumptions. Some more sophisticated
models beyond SIR might include different com-
partments like frontline workers F in hospitals or
supermarkets who have an increased rate of infec-
tivity. Quarantined individuals Q could be isolated

from infecting others after being detected by tests.
Exposed individuals E could have a time delay before
switching to infected. Super spreaders Z could infect
at a higher rate because they do not know they are
sick and do not go into quarantine. Adding more
sophisticated compartments may seem more realis-
tic, but comes at the cost of more complicated dif-
ferential equations and more model parameters to be
determined.

3
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Table 1. Data for the overall power law exponent β for the indicated case range, the
synchronization time shift t0, and the early time exponential growth constant r1.

Country β case range β t0 (d) r1 per day

Afghanistan 102 –104 5.52 ± 0.02 −29.4 0.106 ± 0.001
Australia 102 –5 × 103 6.13 ± 0.04 −16.2 0.191 ± 0.003
Austria 102 –5 × 103 5.11 ± 0.04 −6.6 0.314 ± 0.006
Belgium 102 –104 5.88 ± 0.03 −11.4 0.249 ± 0.006
Bolivia 102 –5 × 104 5.55 ± 0.01 −32.3 0.087 ± 0.001
Brazil 103 –106 4.25 ± 0.01 −1.3 0.318 ± 0.006
Canada 102 –105 6.94 ± 0.04 −7.4 0.215 ± 0.003
China 102 –104 7.12 ± 0.05 −8.9 0.376 ± 0.009
Czechia 102 –103 5.48 ± 0.16 −6.4 0.271 ± 0.005
Egypt 5 × 102 –5 × 104 4.98 ± 0.01 −35.1 0.114 ± 0.002
France 102 –5 × 104 5.03 ± 0.01 −8.7 0.345 ± 0.008
Germany 102 –5 × 103 5.95 ± 0.05 −8.6 0.315 ± 0.007
Guatemala 102 –104 6.60 ± 0.02 −36.4 0.075 ± 0.001
Ireland 103 –104 3.43 ± 0.02 −5.5 0.295 ± 0.005
Israel 102 –5 × 103 5.81 ± 0.04 −7.6 0.252 ± 0.005
Italy 102 –5 × 104 4.97 ± 0.01 −6.2 0.399 ± 0.011
Japan 102 –104 7.40 ± 0.02 −48.2 0.082 ± 0.001
Netherlands 102 –104 5.31 ± 0.03 −9.7 0.272 ± 0.006
Oman 102 –105 4.78 ± 0.01 −29.9 0.108 ± 0.002
Peru 102 –105 5.18 ± 0.01 −18.9 0.162 ± 0.003
Portugal 102 –5 × 103 5.32 ± 0.05 −4.1 0.319 ± 0.006
Russia 102 –5 × 104 6.75 ± 0.01 −5.4 0.319 ± 0.006
Saudi Arabia 102 –5 × 104 4.60 ± 0.01 −8.6 0.224 ± 0.004
Spain 102 –104 6.54 ± 0.04 −3.3 0.385 ± 0.009
Switzerland 102 –104 5.44 ± 0.03 −7.2 0.294 ± 0.006
Turkey 102 –5 × 104 3.78 ± 0.01 −1.8 0.591 ± 0.015
United Kingdom 102 –5 × 104 6.52 ± 0.01 −8.1 0.247 ±0.005
Mean value 5.57 ± 0.98 −14 ± 13 0.25 ± 0.12
Median value 5.48 −8.6 0.252

The SIA model introduced here is probably the
most simple way of getting at the logistic equation,
similar to what was observed in China. This is only
intended to work during lockdowns or with effective
social policies. S stands for susceptible, I stands for
been infected in the past, and A stands for avoiders.
Avoiders are good with hygiene, staying away from
sick people, and wearing masks not to get infected.
Using avoiders is similar to neglecting recoveries in
the SIR model with a different population size.

S + I + A = P S + I = P − A = K.

Then
dI

dt
= μIS = μI(K − I).

One can use r = μK which gives

dI

dt
= rI

(
1 − I

K

)
.

This derivation gives a logistic curve with reduced car-
rying capacity than the entire population, but does
not suggest a way how to estimate K a priori.

In reality, there are probably different categories
of people, depending on a complicated way of
social interaction networks and behavior that can-
not easily be quantified. This model provides a logis-
tic curve, but many SIR model situations are also
a similar form. Often in SIR, the effective value
of K is of the same order of magnitude as P,
whereas in SIA, one can easily achieve K � P, which

is different. Once restrictions are eased, then the
curve would restart by not considering the previ-
ous cases anymore with new parameters in a pos-
sible second wave. Also, if there is significant travel
between countries, one would expect this model to
breakdown.

3.2. China and logistic growth of disease spread
The SIA model may describe the logistic growth
of positive cases in China. The reported cases
follow a smooth curve once the correction for
chest x-ray diagnoses is considered [13]. After the
synchronization procedure, one finds in figure 1 the
following parameter values.

K = 82 646 ± 92 people r = 0.219 ± 0.003 d−1

τ = 34.26 ± 0.08 d.

The fit seems reasonable on order 200 d. The
genetic algorithm Eureqa also found a logistic curve
for the simplest best fit function when running
overnight. Most of the increase happens during
a 15–20 d period, which may be why neglect-
ing recoveries in SIR is reasonable. China is very
strict on travel, but new cases trickle in at later
times.

3.3. Representative analysis of nine countries
The number of positive cases was investigated with
four analyses: early time exponential synchronization,
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Figure 3. β progression in the same countries. The 7 d window (red) mostly superimposes with the 14 d window (green). Low β
indicates mitigation. High β indicates dangerous power-law growth. For the last three countries, β indicates the onset of second
waves. Ireland and Italy appear to have slowly increasing β after the first wave, but not yet the full onset of a second wave.

overall power-law growth, the Bhatia visualiza-
tion, and the β visualization. Nine representative
countries are shown here in the results and all
27 in the supplementary materials (https://stacks.
iop.org/PB/17/065005/mmedia). Brazil, Russia, and
Saudi Arabia are examples of countries that are pri-
marily still in the power-law phase or just exiting it.
China, Ireland, and Italy have progressed to the logis-
tic phase. Israel, Japan, and Australia are examples
of a second wave after the logistic phase without a
saturation.

Figure 2 illustrates the early time exponential
phase and power-law growth. In no case does COVID-
19 transmit like a pure runaway exponential func-
tion to the entire population. The power-law phase
extends the longest for Brazil over many powers of 10
because they were slow to implement effective poli-
cies. The initial synchronization is not always pos-
sible in a satisfactory way due to a lack of data or
irregularities. The mean initial exponential growth
rate is about 0.25 ± 0.11 per day for 27 countries.
An overall power-law exponent was computed for the
region of cases that appears linear on the synchro-
nized log–log plot in table 1. The mean overall power-
law exponent for all 27 countries is 5.57 ± 0.98 sug-
gesting there is a similarity in the cases’ trajectories
after synchronization.

Figure 3 illustrates the β visualization for the same
nine countries. Using a 7 d (red) or 14 d (green) win-
dow does not lead to much difference. The β always
starts high then decreases. One can see the second

wave as a decrease in the power-law exponent that
later increases significantly above one. China seems to
avoid a second wave due to strict policies, but second
waves remain to be seen in several more months for
most other countries.

Figure 4 illustrates the Bhatia visualization. There
is no time parameter on the plots, but one sees the
second wave as a drop then an increase in the curve.
Most countries fall along the same initial line during
the power-law phase. If the reopening of countries is
only a delay in the progression, the curve will rise back
up and continue along the same initial line. The β

visualization is noisier than the Bhatia visualization
because it depends explicitly on time.

4. Discussion

The status of the COVID-19 pandemic is better
understood by how new cases change over time rather
than the absolute totals. The Bhatia and β visualiza-
tions are independent indicators of where countries
stand and progression into possible second waves.
The optimistic SIA model leading to saturating logis-
tic growth only appears to work while lockdowns
and strict social measures are maintained like in
China. Every time restrictions change significantly in
a region, new model parameters, and a reset of the
initial conditions are required.

In many affected countries, a pattern of expo-
nential growth, power-law growth, logistic growth,
and possible second waves emerges from this
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Figure 4. Bhatia visualization of the same nine countries. When the curve goes down it indicates mitigation. In the last three
countries, the uptick of the curve indicates a second wave.

survey. About half the hotspot countries above 10 000
cases follow a more irregular pattern that is difficult
to model. Early data irregularities in reporting and
noise make it often hard to synchronize countries,
but an intermediate power-law growth exponent of
about 5.6 appears similar between countries over that
phase. Since countries besides China have similar
policies, it seems likely that most countries who
had COVID-19 under control will potentially see
at least a reduced second wave because they act
similarly. Travel restrictions should be an important
consideration.

There are issues with choosing positive cases or
deaths to track COVID-19. Usually, only sick peo-
ple receive tests. Some people are positive but exhibit
mild or no symptoms, so never seek out a test.
Many regions may only have a limited through-
put of testing, but it does not seem to be a bottle-
neck in most countries. Positive test data requires
the same standards and protocols over time to be
reliable. Positive testing results must also be made
publicly available and not falsified to be useful.
Deaths occur delayed from the original infections,
and there are lower totals than positive cases. As
infrastructure becomes overburdened, death rates
can increase. Death rates also depend on demo-
graphics and individuals’ general quality of health.
Whether considering positive cases or death rates, sci-
entists should keep their options open in tracking
COVID-19.

It appears there is no simple social policy allow-
ing most countries to go back to complete normality.

The current pressing issues are how prevalent rein-
fection can be, the future availability of vaccines, the
development of drugs that stop death, and what to do
about future waves. Concerning vaccines, questions
arise about efficacy, their mass production, delivery,
or even if everyone will accept to use them. Modeling
suggests that the number of actual positive cases has
been significantly underestimated, but is well below
50 percent [6]. Therefore, there is still more modeling
to be done and science to do to save lives.
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