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Abstract

This thesis concerns itself with the interactions of evolutionary and ecological forces

and the consequences on genetic diversity and the ultimate survival of populations. It is

important to understand what signals processes leave on the genome and what we can

infer from such data, which is usually abundant but noisy. Furthermore, understanding

how and when populations adapt or go extinct is important for practical purposes, such

as the genetic management of populations, as well as for theoretical questions, since local

adaptation can be the first step toward speciation.

In Chapter 2, we introduce the method of maximum entropy to approximate the

demographic changes of a population in a simple setting, namely the logistic growth model

with immigration. We show that this method is not only a powerful tool in physics but can

be gainfully applied in an ecological framework. We investigate how well it approximates

the real behavior of the system, and find that is does so, even in unexpected situations.

Finally, we illustrate how it can model changing environments.

In Chapter 3, we analyze the co-evolution of allele frequencies and population sizes

in an infinite island model. We give conditions under which polygenic adaptation to

a rare habitat is possible. The model we use is based on the diffusion approximation,

considers eco-evolutionary feedback mechanisms (hard selection), and treats both drift

and environmental fluctuations explicitly. We also look at limiting scenarios, for which

we derive analytical expressions.

In Chapter 4, we present a coalescent based simulation tool to obtain patterns of

diversity in a spatially explicit subdivided population, in which the demographic history

of each subpopulation can be specified. We compare the results to existing predictions, and

explore the relative importance of time and space under a variety of spatial arrangements

and demographic histories, such as expansion and extinction.

In the last chapter, we give a brief outlook to further research.
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1

1 Introduction

,,One small step for mankind,

one giant leap for me.”

When we look around us in nature, we are immediately struck by the immense di-

versity we can observe: the various shapes, patterns, behaviors, and skills species have

developed in order to function better in a given environment. In general, this process

of adaptation happens on evolutionary timescales: taking millions of years to result in

what we see today. Evolution is shaped by many forces; however, only selection leads to

adaptation. The process of natural selection acts on the genetic variation present in the

population and ensures increased reproductive success of individuals carrying beneficial

alleles. Selection itself cannot create new variation, but the vast number of possible com-

binations of already existing genes makes it a powerful force that increases the frequency

of the best options. Variation is created by other forces, such as mutation, migration, or

in sexually reproducing populations, recombination. However, these forces interact with

selection in complex ways: i) mutations are usually deleterious, but occasionally adap-

tive variation arises, ii) immigrants are likely to be maladapted in a new environment,

but simultaneously, they can introduce new variation and alleviate inbreeding depression,

iii) recombination breaks down associations between positively selected loci but it can

also bring together selected alleles from different lineages. All these neutral and adap-

tive processes have a simple mechanism, yet they create extraordinary complexity. That
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being said, the reverse problem, inference of the evolutionary processes from patterns of

diversity, is also of great interest. Indeed, since the development of advanced genotyping

methods, many inference frameworks were developed to connect empirical data to theory.

The overarching theme of this thesis is to understand how the interplay of neutral

processes (e.g. population dynamics, population subdivision) and adaptive processes (se-

lection) leads to patterns of genetic diversity and how it shapes evolutionary outcomes

(e.g. local adaptation, extinction, speciation). Such questions have been central to popu-

lation genetics for a long time, for example, what evolutionary processes (e.g. balancing

selection, mutation) maintain genetic variation in natural populations, how much vari-

ation can be maintained (Fisher, 1930; Lande, 1975; Turelli, 1984; Barton & Keightley,

2002), or what fraction is neutral and what fraction is adaptive. Neutral processes affect

the whole genome, while adaptive processes affect only targeted regions (loci affecting

fitness), however, considering highly polygenic traits where the contributing loci are scat-

tered over a larger part of the genome, this distinction between adaptive and neutral

variation blurs.

Of course, the ultimate goal of population genetics is to understand how diversity is

shaped by all the different ecological and evolutionary forces (i.e., demography, population

structure, selection) together, and what can we infer from patterns of genetic variation

about the processes that created them. In the following chapters of this thesis, we will

always focus only on a subset of processes to build and understand complex models

starting from simple building blocks, such as the logistic growth model, the island model,

and directional selection.

1.1 Population dynamics

A key simplification one can make is to consider variation that has no effect on fitness.

This means that although demographic processes affect variation, it is not a feedback loop

and variation does not influence the demographic changes. Therefore, in the absence of

selection, it makes sense to first consider a purely ecological process. Population dynamics

describes the number of individuals in a population through time. The study of population

dynamics dates back to the end of the eighteenth century, to the work of Malthus (1878).

The idea of ,,struggle for existence” led to both the concept of natural selection and the



1.1. POPULATION DYNAMICS 3

competition between species for resources - a fundamental topic for early ecologists (Gause

et al., 1934). Although evolution and ecology took separate paths and developed into

separate disciplines, they are inherently entangled and one can only be fully understood

in light of the other. To describe population dynamics, various models with density

regulation have been introduced (Henle et al., 2004). While the field of evolution is built

from first principles, ecological processes can be unique for a given species in a given

environment.

The simplest model of population dynamics is the logistic growth model (Verhulst

(1838) in the continuous case, May (1976) in the discrete case), which ensures exponential

growth for small populations and density regulation around carrying capacity. Although

the study of population dynamics is focused both on single populations with age struc-

ture (Lotka, 1924; Leslie, 1966; Lande & Orzack, 1988; Tuljapurkar, 1990; Caswell, 2001;

Lande et al., 2017), and on multiple populations with various competitions (Hassell &

Comins, 1976), interactions between species (Bairey et al., 2016; Louthan et al., 2015),

and community dynamics (Shoemaker et al., 2020), most work considering more than one

population is set in a deterministic framework.

I will briefly mention stochastic models of population dynamics, as stochasticity is

one of the main underlying feature of all the projects presented in this thesis. There

are two types of stochasticity one can distinguish in this framework: demographic and

environmental (Turelli, 1977; Lande et al., 2003). Demographic stochasticity refers to the

random events affecting individual mortality and reproduction and is independent among

the individuals, thus its effect averages out in large populations and has a pronounced

effect in small populations close to extinction threshold. Environmental stochasticity, on

the other hand, refers to temporal fluctuation in the environment and affects all individuals

equally. Understanding how such random processes influence whether populations survive

or go extinct is crucial. Lande (1988) argued that the main interests of conservationists

is the maintenance of genetic variation, and avoiding inbreeding depression, however,

neglecting demography (population growth and age structure) is a mistake as it may

have more immediate effect on the survival of the species than its genetic composition

(Frankham et al., 2017).

Many studies consider extinction dynamics of a single population, for example utiliz-

ing branching processes including the effects of demographic stochasticity but neglecting
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environmental stochasticity (Wilson & MacArthur, 1967; Karlin & Taylor, 1981; N̊asell,

2001; Ovaskainen & Meerson, 2010), and Markov models for incorporating both demo-

graphic and environmental stochasticity with occasional catastrophes (Mangel & Tier,

1993). Stationary distributions of populations and mean times until extinction can also

be found under various assumptions (Lande et al., 2003).

Another, different model to deal with multiple subpopulation is the colonization/extinction

dynamics. It is based on metapopulation models (Levins, 1969; Hanski et al., 1997) in

which each patch in the metapopulation has a probability of going extinct and becom-

ing immediately recolonized. The population persist as a balance of this dynamics. One

shortcoming of this model is that it neglects all local dynamics. Such models were explored

in variable environments for example by Tuljapurkar (1989, 2013).

The diffusion approximation can also be used to describe population dynamics, and

while it has been widely used in population genetics (Fisher, 1922; Kimura, 1955), it

remains far less prominent in ecology (e.g., Lande (1993); Mangel & Tier (1993); Turelli

(1977)). It works well under certain assumptions, such as continuous space and time, the

absence of age structure, and sufficiently small increments.

In Chapter 2, we will use the simplest (but not trivial) model of population dynamics:

the logistic growth with immigration (using the diffusion approximation) with the sole

purpose of introducing the principle of maximum entropy to describe the time evolution of

population sizes. The method of maximum entropy originates in thermodynamics (Jaynes,

1957) and it was already used in several different fields, including population genetics

(Barton & de Vladar, 2009; Bod’ová et al., 2016), but not yet in ecology. Although the

method comes from physics, and the quantities appearing in it are associated to very

specific physical meaning, we find that in an ecological context, the same quantities carry

relevant biological meaning. With this approximation, one can gain insight to the behavior

of a complex system without having to deal with the full problem; that is: this method

reduces a high-dimensional problem to an easily tractable one. It approximates the time

evolution of certain observable quantities (such as population size, or its variance) through

time, which otherwise can only be done if one solves the Fokker-Plank Equation which

is usually not feasible. We will explain the details of the method, apply it to this very

simple toy model, and show how well it approximates the real process.

Natural populations may experience shifts in the environmental parameters, due to
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the cyclic repetition of the seasons, and to random catastrophic events, which may result

is scarce resources or increased competition. Understanding how populations react to

such changes is an important question (especially now as humanity faces climate change),

however, treating it in a mathematically rigorous manner together with other sources of

stochasticity is not straightforward.

Population size varying in time resulting in occasional extinctions, in fact, has a pro-

found effect on genetic diversity. Such an effect was discussed by Mayr (1942), called the

founder effect: it describes the reduction in genetic variance when a new population gets

established by only a few individuals (founders) from a larger population. This effect is

similar to what a population experiences after going through a bottleneck. Understand-

ing such events is an important scope of conservation biology: it is crucial in order to

identify minimal viable population sizes and plays an important role in agriculture (e.g.

pest control).

1.2 Population structure

However, real populations change not only in time, but also in space. Usually they do not

form a single well-mixed entity, rather they are distributed across space, where individuals

are more likely to mate with individual in close proximity. This sort of division is called

population structure, which either means that individuals are in a patchy environment,

in which the local populations are panmictic and the demes are connected with limited

migration, or they are in a continuous range, where the individuals are capable of only a

restricted amount of dispersal. This results in a positive correlation between genetic and

geographic distances (Wright, 1943), and the partitioning of neutral diversity according

to the spatial structure (Charlesworth et al., 2003). When it originally emerged, this

idea immediately launched the development of theoretical models for fitting demographic

models and inferring gene flow from observed diversity. Although, the role of space and,

in particular, spatial autocorrelation in allele frequencies has been recognized early on

(Wright, 1943; Malécot, 1948), disproportionately more theoretical and methodological

developments focused on understanding the effect of temporal changes in population size

and gene flow between spatially non-explicit populations (e.g. island models) (e.g. Hey &

Nielsen, 2007; Excoffier et al., 2013).
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The most standard measure used for population structure inference is Wright’s fixation

index : FST (Wright, 1949), as it allows one to estimate Nm under the assumptions of

an infinite island model. Later several similar summary statistics appeared that are

equivalent to FST (Nei, 1972; Weir & Cockerham, 1984). In particular, the statistics in

terms of diversity between and within populations received increased attention because

they can be easily calculated from empirical datasets. The modern population genetics

approach is to express FST in terms of coalescence times (Slatkin 1991, 1993). The

coalescent model was first proposed to study the Wright-Fisher model in a computationally

tractable way (Kingman, 1978). It underlies most modern population genetics (Wakeley,

2009), and it provides the most efficient way to simulate genetic diversity under various

evolutionary scenarios (Kelleher et al., 2016).

Another approach to understand the patterns of genetic diversity created in a sub-

divided population is to look at isolation by distance patterns. Individuals are more

genetically related to other individuals that live nearby, as they are more likely to share

a recent common ancestor than individuals further apart. The decay in relatedness, in

pairwise FST , for example, gives a good estimate of the neighborhood size (Wright, 1946;

Rousset, 1997; Shirk & Cushman, 2014), which is a function of the number of breeding

individuals in the local neighborhood, the parent-offspring distance, and the population

density. However, Meirmans (2012) urged the development of additional statistical ap-

proaches that are based on a spatially explicit null-model instead of the non-spatial ones,

as they may introduce biases and misleading conclusions (Battey et al., 2020).

The relatively young field of landscape genetics also aims at understanding how spatial

structure shapes genetic diversity (Manel et al., 2003), mostly by correlating measures of

diversity to environmental variables. However, much of the landscape genetic literature

uses spatial statistical and statistic principles and has no link to population genetic models

(e.g. Guillot et al., 2005; Smouse et al., 2008; Forester et al., 2016).

In Chapter 4, we will introduce our simulation tool based on the software msprime

which accounts for spatial and temporal differences between populations on a two-dimensional

grid. We will compare the simulation results of diversity to existing theoretical predictions

and assess how adding spatial or temporal changes alters the expectation of models relying

on much stricter assumptions. Furthermore, we will use a dataset based on the climate

model LPX-Bern (Ruosch et al., 2016), which describes the demographic history of silver
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fir populations across Europe since the end of the last ice age. Trees, in general, have

large effective population sizes. The coalescent theory, when no demographic changes and

explicit spatial structure are assumed, would therefore suggest long coalescence times so

that short period of 22000 years could not result in strong genetic differentiation. How-

ever, Hewitt (2000) showed overwhelming evidence of genetic changes as a result of the

deglaciation and the resulting species range shifts. The main aim of this chapter is to

develop a simulation that can provide a spatially explicit null-model for further studies,

that more accurately describes the demographic events both in space and time.

1.3 Selection

So far we only considered neutral variation, but to understand how adaptation—even in

the case of a single population—occurs, one must consider adaptive variance and selection

acting on it. Many traits under selection are polygenic, i.e. affected by many sites of the

genome, which makes studies of adaptation complicated as one needs to account for the

statistical associations (linkage disequilibrium) building up between the loci. Even in the

absence of selection, if the population is subdivided, one needs to account for such associ-

ations due to allele frequency differences at multiple loci. That being said, when popula-

tions are distributed across larger regions, they experience different local conditions, thus

different selective pressures, creating various genotype-environment interactions. In the

absence of other forces, divergent selection causes each population to evolve traits that

are beneficial under their own local conditions, regardless of the consequences in other

environments. This process can be hindered by migration, environmental fluctuations,

or the lack of genetic variation, just to mention a few. Adaptation to heterogeneous en-

vironments was studied extensively, for example fixation probabilities of new mutations

in a metapopulation (Nagylaki, 1980; Whitlock & Gomulkiewicz, 2005), probability of

invasion of a new beneficial allele (Holt & Gomulkiewicz, 1997; Gomulkiewicz et al., 1999;

Kawecki, 2000), and general conditions under which local adaptation can occur (Blan-

quart et al., 2012). Local adaptation can be observed in nature (e.g. Antonovics et al.,

1971; Leinonen et al., 2011; Mateo et al., 2018) and studying it can also lead to interesting

further conclusions, for example, about the rate of adaptive evolution (Gomi & Takeda,

1996), the strength of selection needed to overcome the effects of gene flow (Lenormand,
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2002; Edelaar & Bolnick, 2012), the maintenance of genetic variation (Felsenstein, 1976),

or speciation (Turelli et al., 2001; Gavrilets, 2003; Barton, 2010).

Most of the local adaptation literature deals with soft selection, i.e. when the popu-

lation size is unaffected by the mean fitness of the population (Kawecki & Ebert, 2004).

However, in case of strong environmental gradients or large differences between selective

forces in different patches of the environment, populations may experience high genetic

load that is comparable to the growth rate. When the loss of individuals due to high

genetic load becomes of the same magnitude as the intrinsic growth, one needs to account

for feedback mechanisms between the size of the population and its genetic composition.

Such a feedback mechanism was described already by Fisher (1930, Ch. 2), which later led

to the idea of hard selection (Wallace, 1975; Débarre & Gandon, 2011). A simple version

of such a feedback loop is when deleterious mutations accumulate in the population: they

increase the amount of selective deaths thus decreasing the population size. In a small

population selection is less efficient, increasing the effect of drift and gene flow, which

results in the population shrinking further (Haldane 1956).

Although evolution was for a long time considered too slow to affect ecological pro-

cesses, several studies of rapid evolution proved this hypothesis wrong (Thompson, 1998;

Grant & Grant, 2006; Kokko & López-Sepulcre, 2007). By now an entire field of eco-

evolutionary dynamics (Schoener, 2011; Hendry, 2016) explores the joint effects of popu-

lation dynamics and evolution. Such interactions play an important role in evolutionary

rescue following a sudden environmental shift (Gomulkiewicz & Holt, 1995; Gonzalez et al.,

2013), and in the survival of marginal populations (Kawecki, 2008), the colonization of

peripheral habitats (Barton & Etheridge, 2018; Sachdeva, 2019), and in the emergence of

sharp geographic range margins in continuous environments (Polechová & Barton, 2015;

Polechová, 2018).

Although the interplay between genetics and demography can greatly influence the sur-

vival or extinction of a population, previous studies omitted key aspects of this dynamics.

For example, the conditions, under which local adaptation in a spatially heterogeneous

metapopulation is possible were explored by Blanquart et al. (2012), however, only in

case of soft selection. In a quantitative genetics framework, Ronce & Kirkpatrick (2001)

explicitly consider the coupling between fitness and population size in a metapopulation

with multiple ecologically distinct habitats, but neglect all sources of stochasticity. A
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different approach, used for instance by Hanski & Mononen (2011), assumes that the

patches in a metapopulation go deterministically extinct based on the mean fitness of the

population, however, they immediately get recolonized with a fixed rate. That being said,

these models do not explicitly include the coupling between the stochastic dynamics of

genotype frequencies and population sizes that are likely to influence extinction thresholds

in marginal habitats.

In Chapter 3—which forms the main body of this thesis—we specify under what

conditions local adaptation can be maintained in a rare environment and when maladapted

sink populations emerge. Understanding evolution under such circumstances is crucial

if one is to understand the long term survival of marginal populations, or the first steps

leading toward speciation. We will use the diffusion approximation in an eco-evolutionary

framework to describe the joint evolution of allele frequencies and population size in a

heterogeneous environment. We will incorporate both demographic stochasticity and

drift. The full solution requires numerical techniques, however in many interesting limits

explicit analytical solutions exist.

The main aim of this thesis is to connect evolutionary processes to the patterns they

result in: to gain a better understanding for how evolution and ecology shape the patterns

of diversity or the evolutionary outcomes, such as extinctions or adaptation, and what

we can infer from the vast amount of data available today. In two chapters, we develop

accurate mathematical approximations for given problems to obtain analytical results and

identify scaling parameters. These are both important aspects as they provide a deeper

insight to complex problems. Of course, not all the problems are solved, and in Chapter

5 we will briefly discuss possible directions for future research.
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2 Population dynamics in a changing

environment

This work is a joint work with Katka Bodova and Nick Barton. Parts of this chapter will

be part of a methodology paper planed for submission in the early fall.

2.1 Introduction

Finding exact solutions of complicated dynamical systems is, in general, nearly impossible.

Even finding solutions numerically can be an equally challenging problem. The high

dimensionality, the interplay of various forces with different effects and magnitudes, the

nonlinear dependencies, and the role of stochasticity all contribute to the difficulties.

Here we introduce a powerful method to deal with such situations. Instead of solving

the complete model with all its complexity, we solve a low-dimensional set of ordinary

differential equations in a way that the dynamics of interest will remain accurate.

Our goal in this chapter is to capture the dynamics of mean population size and other

such macroscopic quantities in a changing environment. Such estimates are very well

needed to aid conservation efforts, especially in our current time, facing climate change,

habitat destructions, fragmentations, and species extinctions.

The method of maximum entropy (ME) has a long history by now. It was set in

motion by two papers in thermodynamics by Jaynes (1957). He introduced the principle

of maximum entropy using information theory to construct a probability distribution on

the basis of partial knowledge, that leads to a statistical inference method. This is the

estimate that expresses maximum ignorance, i.e. it makes the least claim to be informed
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beyond the information that we have.

Originally, information theory and statistical physics had not much in common, even

though the same value of −
∑
pi log(pi)appeared. This is in itself, of course, not enough

to establish any further connections but Jaynes found a way to introduce thermodynamic

entropy and the information entropy as the exact same concepts. This became possible

only after Shannon (1948) showed a deeper meaning of information entropy, independent

of thermodynamics, namely that it expresses uncertainty in a very natural way. The idea

that there is a distribution that maximizes entropy subject to constraints justifies using

this distribution for a method of inference. Freeing the theory of maximum entropy from

its dependence on actual physical hypotheses allowed statistical mechanics to be now seen

in a more general light.

The method of maximum entropy (ME) is a method of inference and has a form of

a variational problem, where the entropy of the microscopic distribution is maximized,

while enforcing macroscopic constraints (e.g. on the average energy, train mean, or average

population size). This method was used to study bird flocking (Bialek et al., 2012),

neuronal firing (Schneidman et al., 2006), or protein variability (Mora et al., 2010). This

method assumes stationarity, which is not satisfied in many systems. Jaynes (1980)

introduced another way of using the same principle: he applied the ME to trajectories

instead of data points and used constraints on the dynamical features. This method is

called the Maximum Caliber method (MC) and was reviewed by Dixit et al. (2018), and

Ghosh et al. (2020) gave examples of biological system where MC was successfully used.

The previous methods, ME and MC, are methods of inference: they can only be used

when data is available. However, one may use a similar idea when instead of data, the

dynamics of the system (the Fokker–Planck Equation) is known. Solving this equation

is difficult in general, even numerically. The method presented here, so called Dynamic

Maximum Entropy (DME), will allow us to, instead of solving a complicated stochastic

differential equation, to solve a set of ordinary differential equations, which as a much

simpler task. The method combines the classic ME approach with the FPE assuming

quasi-stationarity. This DME was introduced for polygenic systems to describe evolu-

tionary processes already in 1997 (Prügel-Bennett & Shapiro, 1997), but only gained

attention later (Barton & de Vladar, 2009; de Vladar & Barton, 2011; Bod’ová et al.,

2016). It was shown that although this approximation should work well when the forces
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are changing slowly, even with abrupt changes, the method still gives accurate estimates

of the macroscopic dynamics.

In many cases, the macroscopic dynamics of a system can be measured, whereas the

underlining microscopic behavior remains hidden. DME offers a general framework in

which we can understand how these observable values (e.g. functions of the moments)

evolve without exact knowledge about the distributions of the microscopic variables them-

selves.

We use an information entropy measure (Boltzmann, 1872; Shannon, 1948), that en-

sures an exact solution at equilibrium, and follow the dynamics of the observables that

are governed by the ecological forces. At each time point, DME generates a distribution

of microscopic variables that would be stationary, given the estimated parameters (in

our case the growth rate, density regulation, and migration rate). These parameters we

refer to as the effective forces, that maximize entropy subject to the information we have.

This naturally introduces a coupling between the measurable quantities and the ecological

forces shaping the dynamics, i.e the system can be described either by the observables or

by the effective forces, as in physics.

First, we introduce briefly the well known logistic equation with immigration, and

the general DME framework. Then we apply this to population size evolution, show its

accuracy, and point out interesting features of the method.

2.2 The method

The principle of maximum entropy states that the probability distribution that best rep-

resents the current state of the system compared to a baseline distribution, only assuming

knowledge about certain observed values coming from this distribution and nothing more,

is the one that maximizes relative entropy. The method offers freedom in choosing this

baseline distribution, but in the absence of any prior information this can be chosen as

uniform. Maximum entropy can be interpreted as maximum ignorance, i. e. this distribu-

tion is the one that makes the least claim of being informed beyond the stated observables:

this is the maximum likelihood estimate (MLE) of the distribution, given the observables.

Mathematically, this becomes an optimization problem in which we need to find the dis-
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tribution that maximizes information entropy subject to constraints on this information.

This can be done using the method of Lagrange multipliers.

The definition of entropy was introduced by Shannon (1948), originally for discrete

spaces, as part of his theory of communication. The entropy of a random variable measures

an average level of information, surprise, or uncertainty that is inherent to that random

variable. However, our problem lies in a continuous space, therefore following the method

introduced by Jaynes (1957), we use a slightly different entropy measure, the Kullback-

Leibler divergence, or also known as relative entropy.

SH(Ψ) = −
∫

[0,∞]L
Ψ(n) log

(
Ψ(n)

Φ(n)

)
dn (2.1)

This measure assumes a reference distribution Φ, that we in our case have a freedom to

choose as convenient. Jaynes called this distribution an invariant measure. The relative

entropy can be interpreted as the amount of information that is lost when the distribution

Ψ is used to approximate Φ: how much information is added to the reference distribution

due to specific choice of Ψ.

Now we can state the maximum entropy principle formally. We need to maximize the

following functional in Ψ:

max
Ψ

SH(Ψ) = max
Ψ

(
−
∫ ∞

0

Ψ(n) log

(
Ψ(n)

Φ(n)

)
dn

)
,

with m+ 1 constraints:∫ ∞
0

Ψ(n)Ak(n)dn = 〈Ak(n)〉obs, k ∈ {1, . . . ,m},
∫ ∞

0

Ψ(n)dn = 1. (2.2)

This constrained problem can be translated into an unconstrained maximization of the

Lagrange function, with multipliers λ and α:

L(Ψ, λ, α) = SH(Ψ)−λ
(∫ ∞

0

Ψ(n)dn− 1

)
−

n∑
k=1

(∫ ∞
0

Ψ(n)Ak(n)dn− 〈Ak〉obs
)
. (2.3)

Let us take the variational derivative of L:

δL(Ψ, λ, α)

δΨ
=

d

dε
L(Ψ + εξ(n))

∣∣∣∣
ε=0

=

=

∫ ∞
0

ξ(n)

[
−1− log

(
Ψ(n)

Φ(n)

)
− λ−

m∑
k=1

αkA(n)

]
dn.
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To have this integral equal zero, the term in the bracket must equal zero. Solving for

Ψ(n):

Ψ(n) =
1

Φ(n)
exp{−1− λ−

m∑
k=1

αkAk}, (2.4)

where the normalization constant is exp{−1−λ} and the Lagrange multipliers are chosen

such that the observables are accurately matched. We will show, that the distribution

Ψ(n) is the same as the stationary solution of the FPE written for the original diffusion

problem, if the stationary distribution can be written in a form of a potential function,

i.e. the system is in detailed balance. The ecological forces are the Lagrange multipliers

(growth rate, density regulation, and migration) and the observables A are associated

with the underlying processes.

2.3 Logistic growth in a continent-island model

In natural populations several factors impose bounds on exponential population growth,

such as predation, or scarce resources—all these effects become more severe with higher

population densities. The logistic growth model describes this process: the total growth

of the population decreases linearly with increasing population size. When the popula-

tion size is low, in the absence of competition for resources, the population grows with

its intrinsic growth rate, r. When the population reaches the point where each individ-

ual replaces itself in each generation, we say the population is at carrying capacity, K.

This is the maximal value of population size, at which the population can sustain itself.

Above this value competition for resources increases, and the population shrinks in size.

Migration can be introduced, as the additional source of population growth. A constant

influx of individuals can prevent the extinction of the population, which is unavoidable

when each individual has, in expectation, only one offspring.

2.3.1 DME applied to the logistic growth model

We apply the DME method for the logistic growth model with demographic stochasticity.

The following SDE describes the population size changes:

dn = [n(r − λn) +m] dt+
√
γndξ, (2.5)
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where r is the intrinsic growth rate, λ is the density regulation, m is the number of

incoming immigrants, and γ describes the variance in population size. For the sake of

simplicity, we fix γ = 1 for the rest of the chapter, this corresponds to the assumption

that individuals have Poisson(1) offspring, therefore the total variance of the system is n.

The corresponding Forward Kolmogorov Equation, or Fokker–Planck Equation, de-

scribing the time evolution of the probability distribution Ψ(n, t) is

∂tΨ = −∂n [(n(r − λn) +m)Ψ] +
1

2
∂2
nn(nΨ). (2.6)

Stationary distribution. The stationary solution of Equation 2.6 can be found in the

form of a potential function. Note that it indeed has the same form as the distribution

that we observed earlier to maximize entropy (Equation 2.4):

Ψ(n) =
1

Z

1

n
exp

{
2(rn− λn2

2
+m log(n))

}
=

1

Z
Φ(n)e2αA(n),

where Φ(n) = 1
n

is the baseline distribution (the stationary solution without any forces

acting on the system), A = (n,−n2

2
, log(n)) is a set of observables, and α = (r, λ,m) is

a set of the ecological forces governing the system. The potential function α ·A consists

of the effects of growth, density regulation, and migration. Here we point out, that it

is a crucial assumption that the forces act through only the observable quantities, and

all changes occur exclusively due to changes in the forces α. The expectations of the

observables may have biologically meaningful interpretations, and can, in principle, be

measured. In our case, 〈n〉 corresponds to the average population size, 〈n2〉 to the second

moment of population size, and the third term, 〈log(n)〉 is the logarithm of population

size. The normalizing constant Z, which is the function of the effective forces α, plays an

important role, as a generating function for quantities of interest:

∂ log(Z)

∂(2αj)
= 〈Aj(n)〉, ∂〈Aj(n)〉

∂(2αi)
= Cov(Ai(n), Aj(n) = Ci,j. (2.7)

The covariance matrix, denoted by C, plays an important role in the dynamical approxi-

mation.

Dynamics. Given a set of forces α, the system evolves to a stationary state that is

distributed according to Φ(n)
Z

exp{2α · A(n)}. This is the distribution that maximizes

entropy with constraints on the observables, where 2α serves as the Lagrange-multiplier.
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We are interested in how the system changes when a set of initial forces α0 suddenly

changes to a new set of values α1. The observables will evolve towards the new stationary

state, which creates a path between α0 and α1 in the space of effective forces. We will

later see that although the transition in the observable quantities is rather slow and

monotonic, the changes in the effective forces can be abrupt and non-monotonic. We

can derive ordinary differential equations for the changes in the mean of the observables,

however, the system will not be closed. Following (Barton & de Vladar, 2009), we derive

the mean and mean-square changes in an infinitesimal time δt:

〈δn〉 = n
∂(α · A)

∂n
, 〈δn2〉 = n.

Under the diffusion approximation, the rate of change in the mean of the observables

〈Ai(n)〉 is the following:

∂〈Ai(n)〉
∂t

=
∂Ai
∂n
〈δn〉+

1

2

∂2Ai
∂n2
〈δn2〉 =

∑
j

Bi,jαj +
1

2
Vi. (2.8)

This equation is exact, when B and V are evaluated at the real distribution of population

sizes. Applying Equation 2.8 to A = (n,−n2

2
, log(n)) and α = (r, λ,m), we obtain the

following set of ODEs:

〈n〉′ = r〈n〉 − λ〈n2〉+m,

〈n2〉′ = (2m+ 1)〈n〉+ 2r〈n2〉 − 2λ〈n3〉,

〈log(n)〉′ = r − λ〈n〉+

(
m− 1

2

)〈
1

n

〉
,

that can be written using the matrix notation:

〈A〉′ =


1
2
〈n〉 〈n2〉 1

2

〈n2〉 2〈n3〉 〈n〉
1
2

〈n〉 1
2

〈
1
n

〉
α +


0

〈n〉

−1
2

〈
1
n

〉
 = Bα + V. (2.9)

Quasi-stationarity. We introduce here the main assumption of the DME method,

namely, the quasi-stationarity assumption. At each time point, we approximate the ele-

ments of B and V from Equation 2.8 by the values, that they would have if they were

evaluated at the corresponding stationary distribution that generates the actual observ-

ables. This means, that for every time point, there are effective forces α∗, such that

Bα∗α∗+ V∗ = 0 (Bα∗ is where the moments in matrix B are evaluated at the stationary
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distribution with parameters α∗). Substituting V = −Bα∗α∗ into (2.9) and using that

B ≈ Bα∗ , we obtain
∂〈Ai(n)〉

∂t
≈
∑
j

B∗i,j(αj − α∗j ). (2.10)

The moments of n appearing in matrix Bα∗ can be expressed analytically under the

condition that the migration rate is not too low (m > 1
2
). Let us call the kth moment of the

stationary distribution G(k), this can be expressed analytically in terms of hypergeometric

functions:

G(k) = 〈nk〉 =
1

2
λ

1
2

(−1−k−2m)

(√
λΓ

(
k

2
+m

)
1F1

(
k

2
+m,

1

2
,
r2

λ

)
+

+ 2rΓ

(
k + 1

2
+m

)
1F1

(
k + 1

2
+m;

3

2
;
r2

λ

))
,

if Re (k + 2m/γ) > 0. Using the function G, all the moments of interest can be expressed

such as:

G(0) = Z,
G(1)

G(0)
= E(n),

G(2)

G(0)
= E(n2). (2.11)

Furthermore, we can express E(log(n)) analytically by taking the jth derivative of G(k)

with respect to m:

H(k, j) = E(nk log(n)j) =
1

2j
∂(j)Gk

∂mj
. (2.12)

Changing variables in Equation 2.10 yields the dynamics of α∗:

dα∗

dt
=

[
d〈A〉α∗

dα∗

]−1
d〈A〉α∗

dt
. (2.13)

The matrix Cα∗ = d〈A〉α∗
dα∗ is the covariance matrix of the observables, and can be ex-

pressed in terms of the previously defined functions G and H evaluated at the stationary

distribution with parameters α∗:

Cα∗ =


G(2)
G(0)
− G(1)2

G(0)2
1
2

(
G(1)G(2)
G(0)2

− G(3)
G(0)

)
H(1,1)
H(0,0)

− G(1)H(0,1)
G(0)H(0,0)

1
2

(
G(1)G(2)
G(0)2

− G(3)
G(0)

)
1
4

(
G(4)
G(0)
− G(2)2

G(0)2

)
1
2

(
G(2)H(0,1)
G(0)H(0,0)

− H(2,1)
H(0,0)

)
H(1,1)
H(0,0)

− G(1)H(0,1)
G(0)H(0,0)

1
2

(
G(2)H(0,1)
G(0)H(0,0)

− H(2,1)
H(0,0)

)
H(0,2)
H(0,0)

− H(0,1)2

H(0,0)2
.

 (2.14)

Now we change variables in Equation 2.10 and using the formula 2.7, we obtain the

dynamics of α∗ as a set of ODEs:

dα∗

dt
=

[
d〈A〉α∗

dα∗

]−1
d〈A〉α∗

dt
= C−1

α∗Bα∗(α−α∗). (2.15)
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2.4 A numerical example

To explore the DME method and illustrate the properties of the solutions, let us first

introduce an arbitrary example. Let the initial set of forces be α0 = {0.05, 0.005, 1}, and

after a sudden change (at time 0) their new values become α1 = {0.1, 0.002, 3}. The force

λ is responsible for the density regulation of the population, yet its role might be more

clear in terms of carrying capacity. We can interpret it as the ratio of the growth rate and

the carrying capacity, thus our values translate into the initial carrying capacity being

around 10, and the final one around 50. Of course, there is incoming migration, therefore

the expected population sizes will be higher than these values.

We will show stochastic simulations of the population size changes, the corresponding

dynamics of the effective forces predicted by the DME method, compare the time evolution

of distributions resulting from various methods, and we will point out some interesting

features of the system.

We will use the same parameters throughout the section, so we can better understand

how the dynamics of population size translate into the dynamics of the effective forces

and vice versa. We keep in this section the color scheme of the plots consistent, so one

can easily find the matching values across the figures.

2.4.1 Stochastic simulation of the population size

To evaluate how well the DME method works, we need to compare it to the real solution

of the system. Of course, if finding the real solution were without any trouble, we would

not indulge in introducing such a complicated method as this. There are several ways to

obtain approximating solutions, each introducing its own type of error. We will compare

three methods.

We will be using the transition matrix (TM), that describes the process with the most

biological feasibility, yet it is different from our process in two ways: it is a discrete

process as it considers actual individuals dying or being born, and the variance of the

process differs from the variance term in our original equation (see Equation 2.5).

The second method we will compare the DME to is the Euler–Maruyama method (EM),

which is a stochastic simulation of Equation 2.5. How close we get to the real solution
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Figure 2.1: Euler-Maruyama simulation of individual trajectories of the process, starting from val-

ues randomly drawn from the stationary distribution with parameters α0,1 = {0.05, 0.005, 1}, α0,2 =

{0.15, 0.005, 5}, and α0,3 = {0.08, 0.001, 2}. The system is initially at the stationary state and after a

sudden change in the forces to α1 = {0.1, 0.002, 3}, it starts evolving to a new stationary state. a) The

initial distributions corresponding to the α0s. b) Time evolution of the process corresponding to the dif-

ferent initial states (colorful thin lines: individual trajectories starting from the same initial distribution,

thick line: mean of the trajectories, dashed black line: new mean defined by the new equilibrium), and

the vector field defined by the original equation.

with this simulation solely depends on the number of replicates we take: the magnitude

of stochastic fluctuations decreases with the square root of their number.

The last method is solving numerically the Fokker–Planck Equation (FPE). This intro-

duces errors coming from the numerics itself, furthermore we need to use an additional

boundary condition.

Transition matrix (TM). Let us introduce the following Markov-chain, a continuous

time birth-death process on the discrete space of non-negative integers. The birth rate is

(1/2 + r), the death rate is (1/2 +λn), and the rate of immigration is m. We assume that

each time point only one event happens, therefore the population size changes with the

following rates:

{−1, 0,+1} →
{(

1

2
+ λn

)
n,−n(1 + r + λn)−m,

(
1

2
+ r

)
n+m

}
,

where n is the current size of the population. Using the transition rates we just defined,

the transition matrix T can be constructed so P (t+ ∆t) = T .P (t). The stationary state

can be found as the left eigenvector corresponding to the biggest eigenvalue, which is 1.

The mean and mean square of this process is
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E(∆n) = m+ n(r − λn), E(∆n2) = m+ n(1 + r + λn).

The stationary solution (Ψ̃) of the diffusion that this process converges to can be found

as the solution of the following equation:

0 = −(m+ n(r − λn))Ψ̃ +
1

2
∂
[
(m+ (1 + r + λn))Ψ̃

]
. (2.16)

Comparing this to Equation 2.6 we notice that their variance terms do not match. How-

ever, assuming that r + λn,m � 1 the previously defined birth-death process is a good

approximation for the original diffusion, see Figure 2.2. The transition matrix gives the

exact solution in the discrete case, however, the diffusion limit is continuous, therefore a

discrepancy arises between the stationary state of the birth-death process and its diffusion

limit, which disappears as n→∞.
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Figure 2.2: Comparison of stationary distributions resulting from the original diffusion (black line), the

discrete death-birth process (blue dots), and a diffusion with the variance term matching that of the

birth-death process (blue line). There is a small discrepancy between the birth-death process and its

diffusion limit, due to one process being discrete whereas the other is continuous. The difference between

the original diffusion equation and the birth-death process is larger, however, the distributions converge

as r → 0. We keep K = r
λ = 20, and m = 0.4 fixed and decrease the growth rate. a) r = 0.1, λ = 0.005,

b) r = 0.05, λ = 0.0025, c) r = 0.025, λ = 0.00125.

Euler–Maruyama method (EM). One way to find a numerical solution for a stochas-

tic differential equation is to generate trajectories according to the equation itself. Let X

be a stochastic process such that

dXt = a(Xt)dt+ b(Xt)dWt, (2.17)

with initial condition X0 = x0. Let 0 < τ0 < τ . . . τn = T , and ∆t = T
N

. The Euler–

Maruyama approximation of the true solution X is a Markov chain Y , that can be recur-
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sively defined such that:

Yn+1 = Yn + a(Yn)∆t+ b(Yt)∆Wn, (2.18)

and Y0 = x0, and ∆Wn = Wτn+1−τn .

Trajectories from different initial conditions. We use the Euler-Maruyama method

to generate trajectories for Equation 2.5, starting from three arbitrary initial conditions:

α0,1 = {0.05, 0.005, 1}, α0,2 = {0.15, 0.005, 5}, and α0,3 = {0.08, 0.001, 2}, for their dis-

tributions and trajectories see Figure 2.1. Substituting these values into the stationary

distribution we find the initial expectations of population sizes to be 17.76, 48.96, and

96.37. At time 0, after a sudden change in the forces, the system starts to evolve toward

the new stationary state and stabilize around the new equilibrium solution.
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Figure 2.3: Correspondence between the Euler-Maruyama approximation of the ODE, the transition

matrix predictions, the numerical solution of the Fokker–Planck Equation, and the distributions predicted

by the DME method. The system starts from the equilibrium state with α0 = {0.05, 0.005, 1}. At time

0 the forces suddenly change to α1 = {0.1, 0.002, 3}, and now the system starts to evolve toward the

new equilibrium. In general, the system will not precisely follow the distribution that maximizes entropy,

however, the distribution of microscopic variables stays close to the maximum entropy distribution, if

the change in the macroscopic variables is small enough. a) Distribution of population sizes at different

time points using different approximations. The DME method does not suggest this strong agreement,

it only assures that the observables are correctly matched, but their distributions do not necessarily

coincide with the DME distributions. b) Time evolution of the observables. Simulations are compared

to the changes predicted by DME. (Averages are calculated using 50000 replicates, however, only a few

of these trajectories are plotted.) We plotted n on a logarithmic scale with the sole purpose of showing

all observables on a single plot.

Let us compare the DME method (here only for one initial condition) to the discrete

predictions of the transition matrix method, the numerical solution of the FPE, and
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the EM simulations, see Figure 2.3. We find that the histograms of the samples at

t = 1, 5, 10, 40 are in a good agreement with the DME distributions. Furthermore, the

changes occurring in the observables also show a good match between all the solutions. It

is important to clarify, that the DME solution is constructed such that only the observables

match: the close agreement between the histograms and the distributions themselves is

not a requirement.

2.4.2 DME dynamics of the effective forces

Now let us turn our attention to the corresponding dynamics of the effective forces. We

saw that the changes in the observables are monotonic so the question naturally arises

whether we can say the same about the effective forces as well. The short answer is no,

but let us see this in more detail.

We apply the DME method to the logistic growth model that results in a three dimen-

sional dynamics in the space of effective forces. We assumed quasi-stationarity, i. e. at

each time point we approximate the real distribution of n with one that is of the stationary

form, and its parameters are those effective forces which maximize entropy and produce

the correct observables. In Figure 2.4 we show various cross-sections of the 3-dimensional

vector field defined by the ODEs (2.15) that governs the forces, and the paths that belong

to the same initial and final values as we used earlier. We find that paths that the effective

forces follow are complicated, due to their non-linear dependencies, and that they act on

different scales. Such behavior was observed for the evolutionary forces on quantitative

traits as well (Bod’ová et al., 2016).

2.4.3 Irreversibility

We saw that the paths the effective forces take between two points are non-trivial. Here

we show yet another interesting feature, namely that the path between α0 and α1 is not

the same as the path between α1 and α0, see Figure 2.5. The density of the dots shows the

speed of the dynamics, as they are equally spaced in time. In the beginning the density

is low, meaning that the system changes faster, which slows down getting closer to the

final value. This is the consequence of equation 2.15, the force pulling the values close

the optimum becomes weaker.
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Figure 2.4: DME applied to the logistic growth model leads to a 3D dynamics in the space of effec-

tive forces {r∗, λ∗,m∗}. At each time point we approximate the distribution of n with the stationary

distribution with effective forces predicted by Equation 2.15. The initial conditions shown here are cor-

responding to the ones used in the previous figures (cf. Figure 2.3): α0,1 = {0.05, 0.005, 1} (black),

α0,2 = {0.15, 0.005, 5} (blue), and α0,3 = {0.08, 0.001, 2} (green). Since the dynamics are three dimen-

sional, we show cross-sections of the vector field defined by the ODE system. At each direction we show

the section at the final value, r = 0.1, λ = 0.002, and m = 3. The effective forces exhibit non-linear and

non-monotonic behavior, yet their combined effect, the behavior of the observables, is monotonic.
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Figure 2.5: Cross-sections of the 3 dimensional space of effective forces and the paths between the points

α0 = {0.05, 0.005, 1} (blue circle) and α1 = {0.1, 0.002, 3} (red circle) and reversed. The curves do not

intersect themselves in the 3 dimensional space, only in the projection. The black dots are values equally

spaced in time. The convergence to the new value is faster in the beginning, as the force pulling it close

to the new equilibrium is stronger when they are further apart, see equation 2.15.

2.4.4 Error and accuracy of DME

To investigate in what parameter ranges we can use the method safely, and how the error

depends on the parameters, we explored the following parameter space:

r ∈ {0.01, 0.05, 0.1, 0.2}, λ ∈ {0.0005, 0.001, 0.005, 0.01, 0.05}, m ∈ {1, 3, 5, 8}.

We found that the numerical calculations in the DME approach blow up for very small

values of λ. This happens because in Equation 2.15, we are required to invert a matrix,
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Figure 2.6: Solution of the DME method in comparison to that of the FPE. a) E(n) b) −E(n2/2), c)

E(log(n))

and with these parameters the matrix entries largely differ in magnitudes. This leads to

inaccuracies in the resulting matrix, and eventually in the whole dynamics.

As we discussed earlier, the different methods we use to compare the DME introduce

different types of errors. In case of the transition matrix approach, the variance depends

on all evolutionary parameters instead of only n, as in Equation 2.5. The birth and death

rates appearing in the transition matrix could be modified such that the process has the

correct variance, nevertheless it would lose the biological meaning, therefore we omit to

do so. This process is also a discrete one, therefore we cannot expect it to fully match

the continuous version. However, as the growth rate (r) of the process approaches 0, the

diffusion fits better.

One can use the Euler–Maruyama simulations: use the discretized stochastic differ-

ential equations to obtain sample trajectories and average them in order to obtain the

dynamics of the moments. This approach is probably the simplest, however, it requires

one to simulate a huge numbers of trajectories to decrease the stochastic scatter, which

may be limited by computational power. There are variance reduction techniques which

one could utilize to obtain closer estimates with fewer simulations.

The last, and our preferred, method is solving the FPE and calculate the observables

from the resulting distributions. This approach also suffers from numerical inaccuracies,

and obtaining this solution is not always possible in the aforementioned parameter ranges.

We observed no correlation between the magnitude of errors and the magnitude of

changes, or the number of changing parameters, however, the discrepancy between the

DME and the FPE remains very small, below 2% of the resulting change in the moments.
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2.5 Periodically changing environments

Natural environments are constantly changing, both in space and time, nowadays even

more, due to constantly increasing human activity. The strategies populations follow in

order to cope with such changes can depend on several factors, such as the population

internal ability to adapt, i.e. the amount of genetic variation present in the population,

the speed of the environmental change, or its magnitude. Populations may end up mi-

grating to a more suitable environment, or they may adapt to the newly arisen conditions.

These sort of changes can facilitate evolution: spatial differentiation in the environment

is required for adaptation that later may lead to speciation.
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Figure 2.7: Periodic changes in the environment, namely the carrying capacity shifts between 20 and

50. For consistency with the previous examples, the system starts from equilibrium with parame-

ters {0.05, 0.005, 1}, then a periodic shift between {0.1, 0.0005, 3} and {0.1, 0.0002, 3} is introduced. In

green/yellow the equilibrium distribution of population size is shown as it changes in time. The black

dashed line is the expectation of these distributions, the black solid line show the solution of the DME,

whereas the white is the solution of the Fokker–Planck Equation. a) abrupt change b) smooth slow

change c) smooth fast change

Temporal changes in the environment can be abrupt, causing populations to become

maladapted and eventually even extinct, unless it can get out of this declining phase by

a process called evolutionary rescue. However, less rapid environmental shifts can be ob-

served yearly: the periodic changes of seasons can drastically change the carrying capacity

of the environment, change the migration patterns, or the growth rate of populations.

Describing such eco-evolutionary changes can involve complicated dynamical systems,

in which finding solutions, even only numerically, is difficult. In this section, we stay

with the process of logistic growth, not considering any evolutionary force, nevertheless
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we wish to point out the possibilities that the DME method offers in order to use it for

more biologically challenging situations, such as in Chapter 3.

Here we investigate how well the method captures the real dynamics in a situation,

where the forces shaping the environment change periodically between two sets of param-

eters. We compared three scenarios: abrupt change in the forces, and smooth changes

considering fast or slow shifts, see Figure 2.7. We start the system from equilibrium, from

the same point as earlier, {0.05, 0.005, 1}. Then we introduce a periodic shift of optima

between {0.1, 0.0005, 3} and {0.1, 0.0002, 3}. This change corresponds to a shift between

carrying capacities 20 and 50.

We have seen already that the DME method produces rather small errors for large and

abrupt changes, therefore in case of smooth shifts we expect the same. As on Figure 2.7

one can see, the difference between the DME solutions and the real solution is negligible

in all cases. More interestingly, we see that the system lags behind the optimum of the

environment, and that the amount of this lag depends on the speed of change.

2.6 Discussion

We introduced the method of Dynamic Maximum Entropy for an ecological process,

namely, to the logistic growth model with immigration. The method originally appeared

in thermodynamics (Jaynes, 1957), and it was later applied in many other fields, also

in evolutionary biology (de Vladar & Barton, 2011), to predict changes in trait means.

This is a powerful method to obtain given moments of a complicated, high-dimensional

dynamical system, which is difficult to solve efficiently in other ways. We found that the

solution provided by this method remains very close to the real solutions for a wide range

of parameters, however, we did not find any consistent dependency of the error on these

parameters. In case of low migrations, when extinctions become possible, the method

breaks down, which problem (for low mutation rates) was addressed in (Bod’ová et al.,

2016) in a mathematically rigorous manner.

There is an interesting analogy to point briefly out here, namely with the original

form of the maximum entropy method and the Boltzmann distribution. It describes the

probability that a system will be in a certain state as a function of that state’s energy (εi)

and the temperature (T) of the system: exp{− εi
kT
}, where k is the Boltzmann constant.
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The behavior of this distribution can easily be seen in the opposite limits of temperature:

when T →∞, all states are equally likely to be at (uniform distribution), and when T →

∞, the state with the least energy (ground state) is the most likely. This corresponds to

the idea of the particles moving the fastest when the temperature is high creating a low of

randomness, whereas at cool temperatures they tend to be more still. When one compares

this distribution to the stationary distribution obtained for a quantitative trait by Bod’ová

et al. (2016), one can notice the similarity: the temperature acts inversely proportional to

the population size. The high temperature scenario corresponds to small population size—

exactly when randomness (the genetic drift) is strong, and the low temperature scenario

corresponds to large population size, when the allele frequencies are more deterministic.

In our case, N is not a fixed quantity, so the question arises, what is the analogy to

temperature in this ecological model. In the original equation (Equation 2.5), the constant

γ appeared, which for sake of simplicity, we considered to equal 1. When the individuals

have Poisson(1) offspring, then indeed γ = 1. However, if it differs from this distribution,

then γ becomes meaningful: it is the strength of demographic fluctuations—this is the

corresponding term of temperature.

This leads to a long standing and important question of ecology: how can one model

changes in the environment such that demographic stochasticity (sampling variation in

births and deaths) and environmental stochasticity (effect of environmental fluctuations

on growth rate) are both simultaneously considered. Branching process are used to model

demographic stochasticity but assume constant environment, (although the mathematical

framework of time inhomogeneous branching processes exists) (e.g. Uecker et al., 2014),

stochastic differential equations are used to model environmental stochasticity (mostly)

assuming close to extinctions threshold scenarios (Mangel & Tier, 1993; Engen et al., 1998;

Lande et al., 2003) . Understanding how demographic and environmental stochasticity

together influences the viability of endangered species is a key challenge in conservation

biology (Sæther & Engen, 2019).

As a future direction, the method presented here could be used for such an analysis:

demographic stochasticity can be represented with the appropriate scaling of the noise

term of the SDE, and the the environmental changes and randomness, as we have seen it

for the periodic change, can be enforced by changes on the effective forces.

The ultimate advantage of the DME method lies in its ability to reduce a compli-
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cated system to only a few variables, yet containing the information we are interested

in. However, deriving the method is not easy, even when the moments of the stationary

distribution can be expressed analytically. As we pointed out, the method in its form pre-

sented here can not incorporate small migration rates, which is usually the regime where

interesting behavior arises, such as extinctions. Of course, there is a way to tackle this

problem—but it adds another layer of complication to an already complicated method.

Computational power increases, and finding numerical solutions of equations, or even

simulating the full dynamics of the systems becomes easier. This raises the question of

what is the use of such a model? It may not be a practical one, however, it can give a

fundamental understanding of the interplay of the evolutionary and ecological forces.
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3 Polygenic local adaptation in

metapopulations: a stochastic

eco-evolutionary model

This work is a joint work with Himani Sachdeva and Nick Barton. The chapter is presented

as the paper submitted to Evolution.

Author contributions: E.S. and N.H.B. designed the study; E.S., H.S. and N.H.B. did

the mathematical analysis; H.S. did the simulations; E.S., H.S. and N.H.B. wrote the

manuscript.

3.1 Introduction

Adaptation to local environmental fluctuations can be quite rapid (Thompson, 1998;

Grant & Grant, 2006; Kokko & López-Sepulcre, 2007; Kinnison & Hendry, 2001), such

that the time scale of evolutionary change is comparable to ecological timescales, giving

rise to feedback between demography and evolution. Reciprocal interactions between

population size and adaptation were described by Fisher (1930), which later led to the

notion of hard selection, whereby high genetic load and ensuing ‘selective deaths’ can drive

populations to extinction (Haldane, 1956). This is an extreme example of a more general

feedback loop: an increase in genetic load due to deleterious variants reduces population

size; smaller populations are affected more strongly by drift and gene flow, which increase

the fixation of locally deleterious alleles, which further decreases size.
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Eco-evolutionary feedbacks of this sort are crucial during evolutionary rescue following

a sudden environmental shift (Gomulkiewicz & Holt, 1995; Gonzalez et al., 2013), and also

play a key role in the survival of marginal populations (Kawecki, 2008), the colonization

of peripheral habitats (Barton & Etheridge, 2018; Sachdeva, 2019), and the emergence of

sharp geographic range margins in the absence of environmental discontinuities (Polechová

& Barton, 2015; Polechová, 2018).

Eco-evolutionary feedbacks are especially important in fragmented, heterogeneous

habitats, where stochastic extinction and recolonization of patches may necessitate re-

current bouts of rapid adaptation, especially if selective pressures vary. This kind of

metapopulation structure may arise, for instance, if multiple hosts are available within

the same region (Carroll & Boyd, 1992; Dobler & Farrell, 1999); this can favor host-specific

adaptations, leading to adaptive divergence between sub-populations that specialize on

different hosts. The potential for local adaptation and the stability of sub-populations

then depends on the interaction between selection (which is mediated by the genetic ar-

chitecture of selected traits), dispersal (which protects populations from inbreeding load

and stochastic extinction, but may also introduce maladapted phenotypes, thus generat-

ing hybridization load) and demography (which is affected by mean genetic fitness, and

in turn influences the efficacy of selection).

Previous theoretical work on the persistence of subdivided populations neglects key

aspects of this interplay. For instance, Blanquart et al. (2012) analyze conditions for local

adaptation in a spatially heterogeneous metapopulation under soft selection, thus neglect-

ing feedback between fitness and demography. Ronce & Kirkpatrick (2001) explicitly con-

sider the coupling between fitness and population size in a metapopulation with multiple

ecologically distinct habitats, but neglect all sources of stochasticity. Another modeling

approach, exemplified by Hanski & Mononen (2011), assumes instant recolonization of

patches (at a fixed rate) and subsequent deterministic extinction based on population

fitness. However, such approaches do not explicitly consider the coupled stochastic dy-

namics of genotype frequencies and population sizes that are likely to influence extinction

thresholds in marginal habitats. Conversely, work on the effects of demographic and envi-

ronmental fluctuations typically does not consider evolutionary dynamics due to genetic

change (e.g. Lande, 1993).

A second challenge is to incorporate realistic assumptions about the genetic architec-
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ture of selected traits into eco-evolutionary models. At present, most metapopulation

models assume one of two extreme architectures (Govaert et al., 2019; Lion, 2018), either

mutations that occur one by one (adaptive dynamics models), or a very large number of

infinitesimal effect loci (quantitative genetics). Unlike adaptive dynamics, quantitative

genetic models can describe response from standing genetic variation, which often under-

lies rapid adaptation. However, with a few exceptions (Hanski & Mononen, 2011; Rouhani

& Barton, 1993; Ronce & Kirkpatrick, 2001), most such models consider migration into a

single population (e.g., Barton & Etheridge (2018); Chevin et al. (2017); Tufto (2001)).

Here, we investigate the joint evolution of population size and allele frequencies in an

idealized metapopulation, consisting of infinitely many demes that exchange genes with

a common migrant pool. We assume that each island belongs to one of several habitats

that are characterized by distinct selection pressures, and ask: when can demographically

stable, locally adapted populations be maintained within demes despite gene flow? As we

argue below, gene flow limits local adaptation not only by opposing selection at individual

loci, but also via constraints arising from migration load (Lenormand, 2002). Mean fitness

is reduced by at least m (the rate of migration between demes) per locally adapted locus.

With hard selection, this constrains the number of locally adapted alleles that can be

maintained without population collapse.

An important focus of our study is to clarify the conditions under which demes be-

longing to a ‘rare’ or marginal habitat evolve or maintain local adaptation, or instead are

reduced to maladapted sink populations. Understanding evolution in marginal habitats

has important implications for range limits and the long-term survival of metapopula-

tions, and because local adaptation in marginal habitats may be the first step towards

speciation.

A second focus is to understand how local adaptation is influenced by eco-evolutionary

feedbacks between demography, dispersal and selection, for polygenic traits influenced by

many (but not necessarily very many) loci. A central challenge for analyzing polygenic

evolution in subdivided populations is to account for statistical associations, i.e., linkage

disequilibria (LD) between loci. The theoretical framework developed here neglects such

associations by assuming linkage equilibrium (LE) within demes as well as within the

migrant pool. This allows us to approximate the evolutionary dynamics of multi-locus

genotypes solely by allele frequencies. Assuming LE does not imply that loci evolve
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independently of each other; as demonstrated below, under hard selection, evolutionary

dynamics of different loci become coupled due to their aggregate effects on population

size (via average fitness), which in turn influences individual loci via genetic drift.

Our analysis is based on a diffusion approximation for the joint stochastic evolution of

allele frequencies and population size. While the diffusion approximation has been widely

used in population genetics (Fisher, 1922; Kimura, 1955), it remains less prominent in

ecology, and has only been used to model stochastic population dynamics, without incor-

porating genetics (e.g., Lande (1993); Mangel & Tier (1993)). Demographic stochasticity

(i.e., stochastic fluctuations in size) has a pronounced effect when populations are small

and close to the threshold of extinction. Moreover, selection is less effective in small popu-

lations, causing maladaptive alleles to fix due to genetic drift, thus further reducing fitness

and size, rendering the population even more vulnerable to stochastic fluctuations. This

makes it necessary to account for demographic stochasticity and genetic drift together.

Our framework incorporates both types of stochasticity, following a method presented

earlier for asymmetric continent-island migration (Banglawala, 2010). The full model

requires a numerical solution, but explicit analytical predictions are possible in various

biologically interesting limits. In order to assess the importance of LE and other assump-

tions underlying the diffusion framework, we compare our analytical predictions against

individual-based simulations with a finite number of demes.

3.2 Model and Methods

Consider a metapopulation with infinitely many islands (demes) that exchange genes

via a common pool. Individuals are haploid and express an additive trait that is influenced

by L unlinked loci. Each locus can be in one of two alternative allelic states, denoted by

x = 0, 1. The trait value z associated with an individual is the sum of effects of the alleles

it carries: z =
L∑
j=1

γjxj, where γj is the difference between effect sizes of alternative alleles

at the jth locus. The additive trait is under environment-dependent directional selection:

the fitness Wi(z) of an individual with trait value z on island i, is eβiz+θi , where βi is the

strength of selection and θi a constant that determines the maximum possible fitness on

the ith island.

The life cycle of individuals consists of dispersal, followed by selection and mating. As
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our primary focus is on how gene flow influences the maintenance of polymorphisms and

local adaptation, we neglect other sources of variation. However, the framework can be

easily extended to incorporate mutation. In each generation, a common migrant pool is

formed by drawing a fraction m from each island; migrants from this pool are then evenly

redistributed across islands. The assumption of infinitely many islands is convenient, since

it allows us to treat genotype frequencies in the migrant pool as deterministic (rather than

following a distribution). In simulations, we model a large but finite number of islands.

We assume a model of hard selection, where population size is influenced by genetically

determined mean fitness plus density-dependent regulation, which occurs locally within

each island. The size n∗i on island i, after selection and regulation, is a Poisson random

variable with mean niW ie
r0,i(1−ni/Ki). Here, r0,i is the baseline rate of growth, Ki the

carrying capacity, ni the population size prior to selection, and W i the mean genetic

component of fitness on island i. The n∗i offspring are formed by randomly sampling 2n∗i

parents (with replacement) from the ni individuals in proportion to individual fitness,

and then creating offspring via free recombination of each pair of parental genotypes.

For simplicity, r0,i and Ki are taken to be the same across all islands: r0,i = r0 and

Ki = K. However, this can be easily generalized to island-specific growth rates and

carrying capacities.

We assume that any island belongs to one of g local environments or habitats, indexed

by α = 1, 2, . . . g, such that the environment-dependent selection strength β can take on

one of g possible values. We use ρ1, ρ2, . . . ρg to denote the fraction of islands that belong

to the different habitats (
∑

i ρi = 1).

When selection is strong relative to migration and drift, and the number of loci not very

large (see below), populations can adapt to their local habitat, resulting in LD between

alleles favored in a habitat. To describe such a population exactly, we would need to track

the frequencies of all genotypes, which becomes cumbersome with large numbers of loci.

However, when selection per locus is weak relative to recombination, LD within a deme

(generated by immigration of individuals from differently adapted habitats) is rapidly

dissipated and can be neglected. Assuming LE allows us to only consider the coupled

dynamics of population size and L alleles, rather than 2L genotypes.

For weak growth, selection and migration (i.e., r0, βγ,m� 1), we can use a continuous

time approximation for allele frequency and population size dynamics. The size ni and
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the allele frequency pi,j at the jth locus on the ith island satisfy the following coupled

equations:
∂ni
∂t

=
[
r0(1− ni

K
) + rg,i

]
ni +m(n− ni) + λn(t) (3.1a)

∂pi,j
∂t

= pi,j(1− pi,j)
∂rg,i
∂pi,j

+m
n

ni
[
npj
n
− pi,j] + λp(t) (3.1b)

Here rg,i = βi〈z〉i + θi is the genetic component of the growth rate (i.e., the log fitness)

averaged over all genotypes on island i; it depends on allele frequencies via the trait mean

〈z〉i =
∑

j γjpi,j on island i. Note that the dynamics of any one deme are coupled to

the dynamics of all other demes via the mean number of immigrant individuals mn and

the mean number of immigrant alleles mnpj (at locus j) per unit time (where n is the

population size and npj the number of allele copies per deme, averaged across all demes

in the metapopulation).

Equation (3.1a) describes how population size evolves over time on an island in a

given habitat. The first term within the square brackets describes logistic growth, and

the second the coupling between size and allele frequencies (via mean fitness): growth

rates are reduced relative to the maximum r0 due to environment-dependent selection on

the additive trait. The second term describes the effects of migration, which makes a net

positive contribution when the size of the focal deme is less than the average n across the

metapopulation. The third term λn(t) is an uncorrelated random process with E[λn] =

0 and E[λn(t)λn(t′)] = n(t)δ(t − t′), where E[...] denotes an average over independent

realizations of the process. This ‘noise’ term describes fluctuations of population size due

to the stochasticity inherent in reproduction and death. In the present model, where the

number of offspring is Poisson-distributed, the variance of population sizes is n(t).

Equation (3.1b) describes allele frequency dynamics at locus j: the first term corre-

sponds to the change due to selection on the locally favored allele, while the second term

describes the effect of migration, which tends to pull allele frequencies closer to the average

amongst migrants (given by npj/n). Note that islands with larger populations contribute

more to the average allele frequency in the migrant pool. Moreover, locally favored alleles

are less prone to swamping in larger populations, since the migration term in Equation

(3.1b) is proportional to n/ni (a second source of coupling between allele frequency and

population size). This results in a positive feedback: better adapted islands are more

populous, send out more migrants and are less affected by incoming, maladapted indi-

viduals, and thus maintain local adaptation more easily (Haldane, 1956). Fluctuations
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about the expected allele frequency are described by λp(t), which satisfies E[λp] = 0 and

E[λp(t)λp(t
′)] = [(p(t)q(t))/n(t)]δ(t− t′), as in the haploid Wright-Fisher model.

We restrict our attention to scenarios with just two alternative habitats (g = 2), with

relative frequencies ρ1 = 1−ρ and ρ2 = ρ, where ρ < 1/2. Thus, ρ denotes the frequency of

the rare habitat (denoted by the index 2 hereafter). We assume that directional selection

pushes traits towards the two extremes of the phenotypic range in the two habitats: thus,

a genotype with all ‘1’ alleles or all ‘0’ alleles has maximum fitness in the first or second

habitat respectively. For simplicity, the maximum possible genetic fitness is assumed to

be the same in both habitats. Then the population-averaged log fitness rg in the two

habitats is −
L∑
j=1

s1,jq1,j and −
L∑
j=1

s2,jp2,j, where p indicates the frequency of the ‘1’ allele

at any locus, and s1,j (or s2,j) the strength of selection against the locally deleterious allele

at locus j in habitat 1 (or 2).

These simplifying assumptions allow us to consider a reduced set of parameters (see

Key Notation) and focus on key qualitative behaviors. However, equation (3.1) is quite

general and applies to more complicated scenarios involving multiple local habitats with

heterogeneous patch qualities (e.g., unequal maximum growth rates and carrying capaci-

ties).

Equations (3.1a) and (3.1b) can be re-expressed in terms of dimensionless parameters,

constructed by rescaling population size by the carrying capacity K, and all evolutionary

rates by the baseline growth rate r0. This results in the following re-scaled parameters

(denoted by uppercase letters): T = r0t, M = m/r0, S = s/r0, N = n/K, and the

new parameter ζ = r0K, which represents the number of births per unit time at carrying

capacity, and hence governs the magnitude of demographic fluctuations.

Diffusion approximation for the joint distribution of allele frequencies and

population size.

We can construct an equation for the time evolution of the joint probability distribution

Ψ(N, p1, . . . , pL, t) of allele frequencies p1, . . . , pL and (re-scaled) population size N on any

island in the metapopulation using the diffusion approximation. This involves approxi-

mating the evolution of the distribution by a diffusion that depends only on the mean

and variance of the change in N and p per unit time. For ease of notation, the vector

(N, p1, . . . pL) is denoted by x. We drop the index specifying the island, since the diffusion
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equation has the same form on all islands; the dependence on the local habitat arises only

through the population-averaged log fitness Rg, which differs between habitats. Then we

have:

∂

∂t
Ψ(x, t) = − ∂

∂N
[AN(x)Ψ(x, t)] +

1

2ζ

∂2

∂N2
[BN(x)Ψ(x, t)]

−
L∑
j=1

∂

∂pj

[
Apj(x)Ψ(x, t)

]
+

1

2ζ

L∑
j=1

∂2

∂p2
j

[
Bpj(x)Ψ(x, t)

]
AN(x) = [1−N +Rg]N +M(N −N)

Apj(x) = pi,j(1− pi,j)
∂Rg

∂pj
+M

N

N

[
Npj

N
− pi,j

]
BN(x) = N

Bpj(x) =
pj(1− pj)

N

(3.2)

Here AN and Apj specify the expected rate of change of the population size and allele

frequencies (see also Equation (3.1)), and BN and Bpj the variance of the change per unit

time (both expressed in terms of re-scaled parameters S,M, . . .). Equation (3.2) involves

no mixed derivatives with respect to N and pj as the covariance of fluctuations of p and

N is zero (to first order in 1/N , s, etc.). The equations also involve the average log fitness

Rg given by −
L∑
j=1

S1,jqj and −
L∑
j=1

S2,jpj in the first and second habitats respectively.

Equation (3.2) describes the stochastic evolution of the joint distribution of population

size and allele frequencies and in principle, can be numerically integrated to obtain the

expected value, variances and co-variances of N and {pj} through time. However, here we

focus on the equilibrium distribution, conditioned on the average number of individuals

N and allele copies Npj per deme (averaged across demes):

Ψ(N, {pj}|N, {Npj}) =
1

Z
N2ζMN−1e−ζ[(1−M)−N ]2

·
L∏
j=1

(
p

2ζMNpj−1

j (1− pj)2ζM(N−Npj)−1e−2ζNSj(1−pj)
)

(3.3)

where Z is a normalization constant. Equation (3.3) specifies the stationary distribution

in the first habitat; the distribution in the second (rare) habitat has the same form, except
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with the last term replaced by e−2ζNSjpj . Note that an explicit solution (Equation (3.3))

is possible only because the expected change Ai(x) for each variable in Equation (3.2)

can be expressed as Bi(x) times the gradient of a (suitably-defined) potential U(x), i.e.,

Ai(x) = Bi(x)[∂U(x)/∂xi].

Numerical solution for the equilibrium. The state of each deme is determined by

the average number of individuals mN and copies of each allele mNpj (for the jth locus)

that immigrate per unit time. Given these, we can find the expected numbers and allele

frequencies {Ei[N ],Ei[Npj]} within habitat i, by integrating over the stationary distribu-

tion (Equation (3.3)). Here, the expectations E[ ] can be thought of as averages for a

given island, obtained by either averaging over replicate metapopulations (or simulations)

or by averaging over measurements at uncorrelated time points at equilibrium within a

single simulation. The crucial point is that at equilibrium, the average across all demes in

the metapopulation at any instant (denoted by ) must be equal to the weighted sum of

the expected values across habitats (Rouhani & Barton, 1993; Barton & Rouhani, 1993).

Thus: ∑
i

ρiEi[N ] = N,
∑
i

ρiEi[Npj] = Npj (3.4)

Equilibria are located by starting at an arbitrary
{
N,Npj

}
, calculating {Ei[N ],Ei[Npj]}

using Equation (3.3), then computing the new
{
N,Npj

}
using Equation (3.4), and iter-

ating until a fixed point. With this procedure, either a polymorphism is found, or one

or other allele is fixed. In principle, this procedure simultaneously yields the equilibrium

population size and allele frequencies at all the L loci (which may have different effect

sizes and hence attain different frequencies). However, iterating over an L+1 dimensional

space is computationally intensive. We thus restrict our attention to the case where effect

sizes are equal at all loci (in a given habitat), such that S1,j = S1 and S2,j = S2 for all j.

Then, we need to find only the fixed point
{
N,Np

}
.

The procedure outlined above is exact, given the diffusion approximation which, how-

ever, relies on three basic assumptions. First, we assume all processes to be sufficiently

slow (r0,m, s � 1) that a continuous time approximation (Equation (3.1)) is valid. Sec-

ond, we assume infinitely many demes, such that population size and allele frequency

averaged across all demes exhibit negligible fluctuations, even though within any one

deme, they follow a distribution (Equation (3.3)). This allows us to treat the migrant
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Table 3.1: Key Notation

g number of distinct habitats in the metapopulation

ρα fraction of islands in habitat α; we focus on two habitats (g = 2),

frequencies 1− ρ and ρ.

r0,i baseline growth rate on island i; r0,i = r0 for all i.

Ki carrying capacity of island i; Ki = K for all i.

L number of loci influencing the trait

si,j selection coefficient associated with locus j on island i

m fraction of individuals that migrate from each island

ni population size on island i

pi,j frequency (of the ‘1’ allele) at locus j on island i; qi,j = 1− pi,j
rg,i genetic component of growth rate (i.e., log fitness) averaged over

all genotypes on island i; rg,i is given by −
∑L

j=1 si,jqi,j and

−
∑L

j=1 si,jpi,j for islands belonging to first and second habitats

respectively

n, npj average population size per deme and average number of ‘1’ al-

leles per deme at locus j, averaged across all demes contributing

to the migrant pool

Ei(n), Ei(npj) expected population size and expected number of ‘1’ alleles at

locus j for a deme in habitat i, obtained by integrating over

the equilibrium joint distribution for population size and allele

frequencies

Scaled parameters

N = n/K population size scaled by carrying capacity

S = s/r0, M = m/r0 selection coefficient, migration rate scaled by intrinsic growth

rate

ζ = r0K average number of births per unit time at carrying capacity;

scales inversely with demographic fluctuations.
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pool as deterministic, and completely characterized by N and Npj. Finally, and most

critically, we assume that allele frequency evolution at individual loci is unaffected by

other loci (except via their joint effects on population size). More specifically, Equation

(3.1) (which forms the basis of Equations (3.2) and (3.3)) neglects LD within any deme

as well as LD across the whole metapopulation (by neglecting LD within the migrant

pool). This final assumption is justified when selection per locus is much weaker than the

rate of recombination between loci. We investigate the sensitivity of our results to each

of these assumptions using two types of discrete-generation individual-based simulations

(SI, section C).

Since the full model involves several parameters, and calculating the joint distribution

requires a numerical solution for N and Np, it is useful to consider various limits which

allow for simpler approximations. We first consider population dynamics in the absence

of selection (S1 = S2 = 0), and examine how demographic stochasticity and migration

affect metapopulation survival. We then introduce selection, assuming it is weak relative

to the baseline growth rate, i.e., Lsi � r0 or LSi � 1 (and also neglect demographic

stochasticity). In this ‘soft selection’ limit, population dynamics are largely unaffected by

local adaptation, and populations are close to carrying capacity in both well-adapted and

maladapted demes. We show when individual loci can adapt locally, despite gene flow

and drift, and derive explicit expressions for the critical migration rate below which local

adaptation is possible, by assuming that loci are close to fixation for one or other allele.

We then consider scenarios where selection across all loci is strong enough to affect

population dynamics, i.e., LS1, LS2 ∼ 1 (for equal-effect loci) resulting in ‘hard selection’,

wherein maladaptation leads to extinction. We examine the hard selection model using the

numerical solution for the equilibrium distribution of (N, p1, . . . pL), as well as a simpler

‘semi-deterministic’ approximation which is valid where the population size can be treated

as depending deterministically on the expected allele frequencies. In the main paper,

we focus on the case where selection per favorable allele is the same in both habitats

(S1 = S2 = S). The more general scenario with S1 6= S2 is considered briefly in SI,

section B.



42
CHAPTER 3. POLYGENIC LOCAL ADAPTATION IN METAPOPULATIONS: A

STOCHASTIC ECO-EVOLUTIONARY MODEL

M=0.01

M=0.001

M=0.0001

0.5 1.
N

-0.5

0.

0.5
[N]-N

ζ=5

(a)

ζ=3

ζ=5

ζ=10

M=0.01

0.0 0.5 1.0 1.5 2.0
N0.0

0.5

1.0

1.5

2.0
ψ(N)

(b)

10−6

10−4

10−2

1

0 2 4 6 8 10

cr
tic

al
m
ig
ra
tio

n
ra
te
M

cr
it

ζ = r0K

(c)

Figure 3.1: Population size distribution, expected population size and critical migration thresholds in the

absence of selection. (A) E(N) −N versus N for ζ = r0K = 5, where E(N) is the expected population

size in a deme, given the average N in the metapopulation. The equilibrium solution E(N) = N can be

found graphically as the point at which the curve intersects the horizontal zero axis. Stable equilibria are

those for which E(N)−N has a negative slope at E(N)−N = 0. The metapopulation survives (N > 0)

only above a critical migration rate Mc = mc/r0 ∼ 0.00085 (for ζ = 5). (B) Probability density ψ[N ]

of the scaled population size N = n/K for various ζ and M = 0.01, as obtained from Equation (3.5).

(C) The migration threshold Mc (below which the entire metapopulation goes extinct) vs. ζ. Points

show exact results and the solid line depicts the large ζ approximation; Mc declines exponentially with

increasing ζ.

3.3 Results

Effect of demographic stochasticity and migration in the absence

of selection.

Consider a scenario with no selection, such that population sizes are independent of al-

lele frequencies, and only affected by demographic fluctuations and migration. Although

individual demes fluctuate, N across the entire metapopulation can be treated as de-

terministic. Demes are coupled through this single variable N , which determines the

expected number of immigrants per deme. From Equation (3.3), it follows that in the

absence of selection, the distribution of population size (on any island), conditioned on

N is:

ψ[N |N ] =
1

Z0

N2ζMN−1e−ζ[N−(1−M)]2 where Z0 =

∫ ∞
0

e−ζ[(N−(1−M))]2N2ζMN−1 dN

(3.5)

The expected population size, E(N) can be obtained by integrating, and then equating

E(N) = N (Figure 3.1(a)). This yields one or more equilibria for N , which can be
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substituted into (3.5) to obtain the full ψ[N ] (as shown in Figure 3.1(b)).

There is always an equilibrium at extinction (E(N) = N = 0). Above a critical

migration rate Mc, there may also be an equilibrium with N > 0 (Figure 3.1(a)). Figure

3.1(c) shows that as ζ = r0K increases, the critical rate of migration required to prevent

global extinction, decreases exponentially: Mc ≈ e−ζ/(2
√
πζ). This expression for Mc

follows from the fact that it is the migration rate at which the equilibrium N = 0 becomes

unstable (SI, section A).

Above this critical migration threshold, the distribution is bimodal if the number of

immigrants is small, i.e., for 2ζMN = mn < 1, which corresponds to M . 1
2ζ

(
1 + 1

2ζ

)
(SI, section A). In this case, some populations cluster in a Gaussian distribution around

N = 1 −M (i.e., n = K(1 −m/r0)), with variance 1/2ζ = 1/(2r0K), whilst others are

near extinction (Figure 3.1(b)). The parameter ζ thus governs the extent of demographic

stochasticity: both the variance of the stationary distribution around carrying capacity

and the risk of stochastic extinction fall with increasing ζ. In most of the paper, we will

consider growth rates and carrying capacities that are sufficiently high (i.e., ζ = r0K �

1) that well-adapted populations exhibit essentially deterministic dynamics and are not

prone to stochastic extinction.

3.3.1 Soft selection

We now introduce selection, but assume that the evolutionary change it effects is slow

compared to population growth (i.e.,
∑

j Sj � 1) and that demographic stochasticity

can be neglected (ζ = r0K � 1). Then the model reduces to the classical infinite island

model (Wright, 1932) with fixed size n = K on each island and soft selection within demes.

Unlike in the general model with hard selection, allele frequencies at different loci evolve

independently under soft selection (assuming LE), since genetic drift at any locus just

depends on (a fixed) population size, and not on adaptation at other loci. Thus, we need

only consider the allele frequency distribution ψ[p] at one locus. This distribution was

first derived by Wright (1932), and also emerges from the joint distribution in Equation

(3.3) by integrating over N (SI, section A).

The expected allele frequency E (p |p) in a deme, given the mean p in the migrant pool,

is obtained by integrating over ψ[p]. Allele frequencies in different demes are coupled via
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Figure 3.2: Local adaptation under soft selection. (A) The difference between the weighted average of

the expected allele frequency across habitats and the mean in the migrant pool, (p∗ − p) vs. p. The

equilibrium solution p∗ − p = 0 is where the curve intersects the horizontal axis; equilibria are stable if

p∗ − p has a negative derivative at this point. A polymorphic equilibrium 0 < p < 1, exists only above

a critical selection strength Ksc = 3.66 (orange). When selection is weaker than Ksc, the allele favored

in the commoner habitat fixes (i.e., the stable equilibrium corresponds to p = 1), and local adaptation

is swamped by gene flow. The frequency of the rare habitat is ρ = 0.3, the average number of migrants

per generation is Km = 8; selection is symmetric: s1 = s2 = s. (B) Expected allele frequencies in the

two habitats (dashed), and the overall mean across the whole metapopulation (solid), vs. Ks for s > sc.

(C) The critical selection strength Ksc above which a polymorphic equilibrium with 0 < p < 1 can be

maintained vs. the average number of migrants exchanged between demes Km for various fractions ρ

of demes belonging to the rare habitat. Points are obtained by numerically solving for stable equilibria;

lines show the approximation Ksc = 1
2 log

(
1−ρ
ρ

)
+Km(1− 2ρ).

the mean allele frequency, p, among migrants: within any deme, migration pulls the

expected allele frequency towards p, whereas selection drives E1[p] towards 1 (or E2[p]

towards 0). Since all demes have equal sizes, they contribute equally to the migrant pool.

Defining p∗ = ρE1 (p |p , s) + (1− ρ)E2 (p |p ,−s), the difference, p∗− p must be zero when

the metapopulation is at equilibrium. The stability of equilibria can be evaluated using

the derivative ∂p∗/∂p; stable equilibria correspond to ∂p∗/∂p < 1.

Figure 3.2(a) shows p∗− p versus p for different values of s1 = s2 = s. Note that there

are always equilibria corresponding to p = 1 or p = 0 (i.e., when the whole metapopulation

is fixed for one or other allele). A polymorphic equilibrium (with 0 < p < 1) can be

maintained when selection is sufficiently strong (Figure 3.2(a)), such that alleles favored in

the rare habitat can invade. As selection becomes stronger, the different habitats approach

fixation for different alleles (Figure 3.2(b)). The critical selection strength sc, above which

a polymorphic equilibrium becomes possible, increases with migration (Figure 3.2(c)).

It is useful to first consider a purely deterministic analysis: this suggests that poly-



3.3. RESULTS 45

morphism can be maintained only above a critical selection strength sc = m(1 − 2ρ),

where ρ denotes the frequency of the rare habitat (SI, section A). However, in general, we

expect the deterministic analysis to break down close to the threshold sc: allele frequency

distributions must necessarily become bimodal as s → sc, since Kmp → 0. Thus the

deterministic prediction only provides a lower bound on the true sc, as drift will further

inflate the selection threshold.

In the opposite limit of low migration (Km→ 0), loci will be close to fixation for one

or other allele. The rates of fixation towards and away from an allele with advantage s,

which is at frequency p in the migrant pool, are in the ratio ∼ (p/q)e2Ks, such that the

expected frequency of the favored allele in the deme is pe2Ks/(pe2Ks + q) (SI, section A).

Thus, in the symmetric case, s1 = s2 = s, the metapopulation reaches an equilibrium at:

p∗ = (1− ρ)
pe2Ks

pe2Ks + q
+ ρ

p

p+ qe2Ks
(3.6)

A polymorphic equilibrium at p = (1−ρ)e2Ks−ρ
e2Ks−1

becomes possible if Ks > Ksc where

Ksc = 1
2

log
(

1−ρ
ρ

)
(in the Km → 0 limit). We find that sc increases linearly with m,

and approximate this by the corresponding deterministic prediction for linear increase:

Ksc ≈ 1
2

log
(

1−ρ
ρ

)
+ Km(1 − 2ρ) (solid lines in Figure 3.2(c)). This is reasonably close

to the exact results (points).

Thus, both habitats are simultaneously adapted only if s > sc. For s < sc, alleles

that confer a selective advantage in the common habitat tend to fix across the entire

metapopulation (stable equilibrium at p = 1 in Figure 3.2(a)). Interestingly, this bias

towards alleles favored in the common habitat persists even in the limit of very low

migration, for which we would have expected allele frequency dynamics of different demes

to decouple and be dominated by drift.

3.3.2 Hard selection

We now consider scenarios where mean fitness has a substantial effect on population

size, such that maladapted populations go extinct with high probability. This is the case

when net selection against maladapted phenotypes is comparable to the baseline growth

rate, i.e., Ls & r0 or LS & 1 (assuming L equal-effect loci). Note that this does not imply

that selection at individual loci is strong. In fact, typical effect sizes may be small enough
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(i.e., ζS = Ks ≤ 1), that drift can significantly degrade adaptation at individual loci.

However, the number of loci L affecting fitness is large, so that selection, in aggregate, is

strong (i.e., L > 1/S). If local adaptation is to be possible even in large populations, then

selection must be at least as strong as migration, i.e., S > M(1− 2ρ). Further, we focus

on parameters for which stochastic extinction of well-adapted populations is extremely

improbable (ζ large).

In the following, we use the joint distribution for population size and allele frequencies

(Equation 3.3) to identify the conditions under which locally adapted, stable populations

are maintained in both habitats. We first analyze one example in detail, and then explore

parameter space by investigating how the critical migration (or selection) strength re-

quired for local adaptation depends on demographic stochasticity, the number of selected

loci, and the frequencies of the two habitats.

Figure 3.3 shows how polygenic adaptation collapses within the rare habitat as migra-

tion increases above a critical value, in a scenario with weak coupling between population

size and mean fitness, i.e., LS < 1 (Figures 3.3(a) and 3.3(b)) and in a strong coupling,

i.e., LS > 1 scenario (Figures 3.3(c) and 3.3(d)). In both cases, alternative alleles are

close to fixation in the two habitats for low migration. As M increases, the frequency of

the locally favored allele (Figures 3.3(a) and 3.3(c)) and the expected population size N

(Figures 3.3(b) and 3.3(d)) decline in both habitats as a result of migration load. At a

critical migration rate, the rarer allele is lost, the population in the rare habitat crashes,

and the overall N falls to a minimum. As M increases further, the population in the

rare habitat starts increasing, signifying that the rare habitat is now a maladapted de-

mographic sink. The emergence of source-sink dynamics at high M causes numbers in

the common habitat to show a slight decline with M . This is outweighed by the faster

increase in numbers in the rare habitat, resulting in a slight increase in N , the average

population size across the whole metapopulation, at large M . Note that there is another

migration threshold below which the whole metapopulation collapses because coloniza-

tion is too rare; however, this is not visible here, since this threshold is negligibly small

(∼ e−ζ/(2
√
πζ)) for large ζ (Figure 3.1(c)).

Figures 3.3(b) and 3.3(d) also depict how the distribution ψ[N ] of the (scaled) popula-

tion size in the rare habitat changes across the threshold Mc (insets). When net selection

against maladapted phenotypes is weak relative to the baseline growth rate r0, popula-
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Figure 3.3: Loss of local adaptation at a critical migration rate under hard selection. Expected allele

frequencies of the ‘1’ allele (left panels) and expected population sizes (right panels) versus scaled mi-

gration rate M = m/r0, for (A)-(B) weak coupling (S = 0.05, LS = 0.5) and (C)-(D) strong coupling

(S = 0.2, LS = 2) between population size and mean fitness. The number of selected loci is L = 10 and

selection is symmetric, with S1 = S2 = S = s/r0 at each locus; the rare habitat comprises 30% of demes

(ρ = 0.3) and demographic fluctuations are negligible (ζ = r0K = 40). The plots show the expected

allele frequencies and sizes in the rare and common habitat (blue, red) as well as the mean p and N

across the whole metapopulation (black). For both weak coupling (i.e., LS < 1 in A,B) and strong (i.e.,

LS > 1 in C,D), there is a critical migration threshold Mc above which the allele favored in the rare

habitat is lost from the metapopulation. The insets in (B) and (D) depict the probability distribution

ψ[N ] of population sizes in the rare habitat (integrated over intervals of width ∆N = 0.02) for M < Mc

(solid line), M ∼ Mc (dashed line), and M > Mc (dotted line). For weak coupling, ψ[N ] peaks at some

non-zero N , irrespective of M . For strong coupling, ψ[N ] peaks close to N ∼ 1 for M < Mc; becomes

bimodal, i.e., has peaks at N = 0 (corresponding to extinction) and N ∼ 1 (corresponding to a well-

adapted population) at M ∼ Mc; peaks at N = 0 for M > Mc. All plots are obtained by numerically

determining fixed points (Equations (3.3) and (3.4)) using the joint distribution Ψ[N, p].
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tions grow even when completely maladapted. In this weak coupling (LS < 1) regime,

population sizes are approximately normally distributed about a non-zero expected value

E[N ] irrespective of local adaptation, i.e., for both M < Mc and M > Mc (inset, Figure

3.3(b)). Further, E[N ] ∼ 1 − LSE[p], where E[p] is the expected allele frequency of the

locally maladaptive allele in the habitat.

By contrast, for strong coupling (i.e., LS > 1), the distribution of sizes is approxi-

mately normal only when the population is locally adapted, i.e., for M < Mc. Close to

the threshold for loss of adaptation (M ∼ Mc), the distribution ψ[N ] becomes bimodal,

with one peak at N ≈ 1 and the other at N = 0, implying that a finite fraction of demes

in the rare habitat is nearly extinct, while remaining demes support well-adapted popu-

lations. For M > Mc, the distribution is peaked at N = 0 (i.e., most demes are extinct)

and decays exponentially with N . The threshold for loss of local adaptation is sharper

for larger LS— a finding that we clarify below.

Semi-deterministic approximation. The fact that population sizes are approximately

normally distributed about E(N) for LS ≤ 1, suggests that in this ‘weak coupling’ regime,

a simpler approximation, in which population size is assumed to depend deterministi-

cally on the expected log fitness E[Rg], may suffice. This semi-deterministic approxima-

tion (details in SI, section A) assumes that fluctuations in average log fitness Rg about

the expected value E[Rg] are negligible. Since the magnitude of fluctuations, given by

∆Rg ∼ S[LV ar(p)]1/2, must fall with number of loci L (for fixed LS), we expect the

semi-deterministic approximation to become more accurate when L is large, and selec-

tive effects correspondingly small. The approximation further assumes that ζ is so large

that demographic fluctuations (in well-adapted populations) are negligible, but ζS small

enough that drift has an appreciable effect at individual loci. As shown below, the semi-

deterministic approximation accurately predicts the threshold for loss of local adaptation

if LS ≤ 1 (such that the distribution of N is unimodal about the expected population

size), L� 1 (fluctuations in mean population fitness are negligible), and ζ � 1 (negligible

demographic fluctuations).

In these regimes (i.e., when the semi-deterministic approximation is accurate), the

outcome is governed by three parameters. For a given rare habitat frequency ρ, and

assuming symmetric selection S1 = S2 = S, the three parameters are: ζS = Ks, which
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Figure 3.4: Local adaptation in the rare habitat, for weak migration. (A) Expected frequency of the

locally favored allele and (B) expected population size in the rare habitat vs. selective effect per locus

S = s/r0 (for symmetric selection across the two habitats S1 = S2 = S) for M = 0.0001 and ζ = 50. In

each plot, the selective effect S and the number of loci L are changed simultaneously such that maximum

possible genetic load LS is constant. Different colors correspond to different frequencies ρ of the rare

habitat. Solid vs dashed lines correspond to different LS. Local adaptation in the rare habitat is lost

(fig A) and populations go extinct (fig B) when selective architectures are highly polygenic with weak

selective effect per locus (high L, low S). (C) Expected frequency of the locally favored allele in the

rare habitat versus ζS = Ks for different S, for ζM = Km = 0.01. The parameter ζS is varied by

varying ζ (for a given S); ζM is held constant by varying M . The dashed line shows the corresponding

prediction for allele frequencies under soft selection. For a fixed ζS, populations approach the soft

selection prediction as S decreases and ζ increases. All solid-line plots are obtained by determining fixed

points numerically (Equations (3.3) and (3.4)) using the joint distribution Ψ[N, p]; dashed line in (c) is

obtained by determining exact fixed points under soft selection (SI, section A).
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governs the strength of drift relative to selection in a population at carrying capacity,

ζM = Km, which determines the average number of migrants exchanged between demes

at carrying capacity, and LS, which determines the extent to which population sizes are

reduced below carrying capacity due to maladaptation. Below we clarify the roles of

these parameters in the low migration limit ζM � 1, which is most conducive to local

adaptation.

Low migration limit. When migration is rare, loci are close to fixation for one or

other allele (within a deme). As with soft selection, this implies that the fixation rates

of alternative alleles (at a given locus) on island i are in the ratio ≈ (Np/N)e2ζSiNi : 1−

(Np/N), where ζ = r0K, and Si is the (rescaled) selective advantage of the locally favored

allele at that locus on island i. Further, Np/N is the frequency (within the migrant pool)

of alleles favored on island i. A comparison of this heuristic (for fixation rates) under

hard selection with the analogous approximation under soft selection (Equation (3.6))

highlights two important features of allele frequency evolution under hard selection.

First, the rate of fixation and hence the frequency of the favored allele at any locus

depends on the degree of maladaptation at all other loci via the population size Ni. In

particular, locally deleterious alleles at very many loci, at even modest frequencies, can

have substantial effects (in aggregate) on mean fitness, thus reducing size. This further

accentuates drift at individual loci, causing locally deleterious alleles to increase or even

fix, further reducing population size, thus generating a positive feedback between loss of

fitness and decline in numbers.

Second, any island contributes to the allele frequency Np/N in the migrant pool in

proportion to its size, which depends on the fitness of the island. Since locally adaptive

alleles are at slightly lower frequency in the rare as opposed to the common habitat

(even when both are locally adapted), the average population size is also somewhat lower

in the rare habitat. Thus, an island belonging to the rare habitat contributes less to

the allele frequency in the migrant pool than an island within the common habitat by

a factor proportional to the ratio of population sizes of the two islands. This causes

allele frequency in the migrant pool to shift further towards the optimal frequency in the

common habitat, which increases migration load and reduces numbers in the rare habitat.

This in turn reduces the contribution of the rarer habitat to the migrant pool further below
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ρ, generating a second positive feedback loop. Crucially, both kinds of feedback depend on

the strength of coupling between population size and mean fitness, and are thus stronger

for larger LS = L(s/r0). Here, we focus on how these feedback affects influence local

adaptation when selection is symmetric across habitats (S1 = S2 = S) and then briefly

discuss asymmetric selection in SI, section B.

First, consider how local adaptation depends on the the selective effect per locus

S = s/r0 or alternatively, the number of selected loci L, for a fixed LS under very weak

migration (ζM = 0.005 in Figures 3.4(a), 3.4(b)). These plots thus reveal how local

adaptation is influenced by the genetic architecture of (i.e., the number and selective

effects of loci contributing to) genetic load, for a given (maximum possible) total load LS

in the population. Figure 3.4(a) shows that local adaptation in the rare habitat is possible

only above a critical Sc per locus. For S < Sc, drift overpowers selection at individual

loci, causing alleles favored in the common habitat to fix across the entire metapopulation

despite very low genetic exchange, as with soft selection (Figure 3.2(c)). As a result, only

very small maladapted populations are maintained in the rare habitat for S < Sc (Figure

3.4(b)). Alternatively, given a certain (maximum) load LS, local adaptation is possible

only if the selected trait is determined by a modest number of loci (i.e., for L < Lc, where

Lc = L(S/Sc)), and fails for highly polygenic traits.

Further, local adaptation requires stronger selection per locus when the total cost of

maladaptation, LS, is higher (solid vs. dashed lines in Figures 3.4(a) and 3.4(b)). In other

words, the critical selection threshold Sc increases as the number of loci under divergent

selection increases. In fact, for sufficiently large L, local adaptation is not possible for any

S (see also Figure 3.5(b)). As we argue below, higher S increases the efficacy of selection

at individual loci (via ζS), but also results in stronger coupling between allele frequencies

and population size (via LS) which has the potential to degrade local adaptation due to

the two kinds of feedback described above.

From these arguments, it follows that as one considers models of hard selection with

lower and lower LS (corresponding to weaker and weaker coupling between population size

and genetic fitness) while keeping ζS and ζM fixed, the behaviour of the metapopulation

should converge to the predictions under soft selection with Ks = ζS and Km = ζM .

This is indeed what we see (Figure 3.4(c)): the frequency of the locally favored allele

increases towards the soft selection prediction on approaching lower S and consequently
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Figure 3.5: Exact model vs. semi-deterministic approximation in the weak migration limit. (A) The

critical threshold ζcS for local adaptation in the rare habitat versus LS for different values of L (depicted

by different symbols), for ζM = 0.1 and ρ = 0.2. For given L, we vary LS by changing S, and then

compute the critical ζc for each S. The migration rate M is always varied along with ζ such that

ζM is constant at 0.1. The symbols and solid lines represent predictions of the full model (obtained

using Equations (3.3) and (3.4)), while the dashed line represents predictions of the semi-deterministic

approximation which treats population size as being determined by the expected allele frequencies. There

is good quantitative agreement between the full model and the semi-deterministic approximation for

LS . 1, but not for larger LS. (B) Expected frequency of the locally favored allele in the rare habitat

vs. S for L = 20 (red) and L = 50 (blue) for ρ = 0.2, ζ = 50, M = 0.0001. Local adaptation in the rare

habitat is not possible for any S for L = 50.

LS, as long as ζS is held constant (by simultaneously increasing ζ). Note however that

weaker selection S by itself (for fixed ζ and L) would make local adaptation more difficult,

as the increase in genetic drift (relative to selection) at low ζS damages local adaptation—

an effect not compensated by the more modest increase in numbers.

Finally, note that Sc is lower for larger ρ (orange vs. blue plots in Figure 3.4(a)), i.e.,

if the rare habitat encompasses a larger fraction of demes. In this case, the rare habitat is

subject to a lower migration load (since allele frequencies in the migrant pool tend to be

more intermediate), resulting in a weaker reduction in population size as well as weaker

swamping at individual loci.

We now ask: for a given ζM , (when) does local adaptation in the rare habitat depend

only on the two composite parameters ζS (which determines the strength of drift relative

to selection per locus at carrying capacity) and LS (which governs how population sizes

change due to fixation of deleterious alleles)? Recall that these parameters completely
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determine the state of the metapopulation in the semi-deterministic (LS ≤ 1) regime, in

which sizes depend deterministically on the expected mean fitness. To investigate this, we

determine the threshold ζc (such that local adaptation occurs for ζ > ζc), as a function

of S, for various L, for fixed ζM . Here, ζM is held constant by reducing the rescaled

migration rate M = m/r0 as ζ = r0K increases, such that the average number of migrants

(between demes at carrying capacity) remains unchanged.

Figure 3.5(a) shows that the semi-deterministic prediction for ζcS (dashed line) is

extremely accurate for LS . 1: in this regime, the threshold ζcS for local adaptation in

the rare habitat is independent of the number of selected loci, for a given LS. Moreover,

this threshold only increases sub-linearly with LS for LS . 1. By contrast, for LS &

1, the semi-deterministic approximation fails: the critical ζcS threshold increases much

faster (nearly linearly) with LS, than predicted by the semi-deterministic approximation.

However, even in this regime, the threshold for adaptation ζcS depends weakly on the

number of loci, and is essentially governed by LS.

Increasingly stringent thresholds for local adaptation at large LS imply that when

the number of loci underlying local adaptation is sufficiently high, simultaneous local

adaptation across the two habitats is not possible for any selection strength (even for

moderate ζ and very small M). For instance, with L = 50 loci, local adaptation cannot

be maintained in the rare habitat, even for ζS as large as 10, for ζ = 50 and M = 10−4

(blue line in Figure 3.5(b)). Further, for LS & 1, the whole metapopulation may converge

towards the alternative fixed point p = 1 (i.e., fix the allele favored in the rare habitat),

if the initial allele frequency is close to p = 1 and migration sufficiently high (results not

shown).

Loss of local adaptation in the rare habitat: critical migration rates. We now

consider cases where selection is strong relative to drift (so that both habitats are lo-

cally adapted under low genetic exchange), and ask: how high can migration be while

still allowing local adaptation in the rare habitat and polymorphism at the level of the

metapopulation? Figure 3.6(a) shows Mc, the critical migration rate above which poly-

morphism collapses, as a function of S for the case with S1 = S2 = S for two different L.

The points represent results of the full model (based on the joint distribution of N and

p), while dashed lines represent the predictions of the semi-deterministic approximation.
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Figure 3.6: Critical migration rates for loss of local adaptation in the rare habitat. (A) Critical migration

rate Mc = mc/r0 versus selection S = s/r0 per locus for L = 10 (triangles) and L = 20 (circles),

assuming S1 = S2 = S, ζ = 50 and ρ = 0.2. (B) Mc versus S for different values of ζ for L = 20. Symbols

depict Mc obtained via fixed point estimation from the joint distribution of population size and allele

frequencies; dashed lines represent the predictions of the semi-deterministic approximation. Mc falls with

S for large S, which is not captured by the semi-deterministic approximation. For any S, Mc increases

with increasing ζ (in (B)), and appears to be approaching the semi-deterministic prediction.

Note that for both values of L, the critical migration rate increases with S when S is

small, but then starts declining as selection increases beyond a certain threshold (which

corresponds approximately to LS ∼ 1). Thus, the range of migration rates allowing local

adaptation in the rare habitat is widest (i.e., Mc largest), for intermediate selection. As

in Figure 3.5(a), the semi-deterministic approximation is accurate for small S, but fails

to (even qualitatively) predict large S behaviour.

The semi-deterministic approximation (dashed lines) predicts that Mc should saturate

to a constant, independent of S, for large S. Such saturation is also predicted by a

deterministic analysis (which should be accurate as ζ →∞, when drift is negligible). This

is most easily demonstrated in the ρ → 0 limit, when allele frequencies in the common

habitat are unaffected by immigration, such that N2 = N = 1 and N2p2 = Np = 1. Then

one can show (using Equation (3.1)) that the rare habitat sustains local adaptation only

below a critical migration rate, Mc ∼ 1/(4L) (for L � 1 and large S). Such a selection-

independent threshold Mc emerges (at large S) simply due to the constraint that under

hard selection, a population is viable only while its total migration load is less than its

intrinsic growth rate. Since genetic load per locus is at least m (and typically greater

than m under hard selection), this sets a limit on the number of polymorphic loci that
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can be maintained without extinguishing the population.

For moderately large ζ, the actual Mc (points in Figure 3.6(a)) is several times less

than this deterministic threshold, and declines with increasing S. As before, this is

due to stronger coupling between population size and mean fitness (at large LS), which

accentuates both drift and swamping in the rare habitat. However, even for large LS, the

critical migration rate is expected to approach the deterministic prediction with increasing

ζ (where higher ζ corresponds to weaker stochastic fluctuations in both population size

and allele frequencies). This general expectation is supported by Figure 3.6(b), which

shows Mc versus S for different ζ. Note, however, that Mc converges very slowly towards

the deterministic threshold with increasing ζ: for instance, in Figure 3.6(b), even for

ζ as high as 200 (i.e., 200 births per generation in a well-adapted population), Mc is

approximately half the corresponding deterministic threshold for LS ≥ 2.

3.3.3 Individual-based simulations.

Our analysis is based on the diffusion framework, which involves three approximations

(see also Model and Methods). First, we approximate discrete generation dynamics by the

continuous time evolution of population size and allele frequencies. Second, we assume

infinitely many demes such that the migrant pool is deterministic. Third, we neglect

LD within any deme as well as across the whole metapopulation. The validity of each

assumption is tested by comparing with individual-based simulations (SI, section C).

These comparisons reveal that the most drastic approximation is due to neglecting

LD amongst migrants, which can be substantial when demes are close to fixation for

alternative alleles at multiple loci. Then, immigrant genotypes entering a deme are ei-

ther perfectly adapted (if they originate from the same habitat) or severely unfit (if they

originate from the alternative habitat). Consequently, an immigrant allele experiences a

first-generation disadvantage proportional to the aggregate effect of all alleles it is associ-

ated with; this selective disadvantage is halved in each subsequent generation (Robertson,

1961). Thus the effective immigration rate of an allele is lower than the raw migration rate

m— an effect not captured by equation (3.1) or (3.2). As a result, the migration threshold

for loss of local adaptation, as observed in simulations, is significantly higher than the

Mc predicted by the diffusion approximation. This discrepancy between simulations and
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the diffusion approximation becomes weaker on approaching smaller growth rates r0 and

larger carrying capacities K, while holding the scaled parameters ζ, S,M constant: this

corresponds to making selection weaker (relative to recombination), resulting in weaker

LD.

In SI, section C, we show how the effects of LD can be partially accounted for by

assuming that immigrants are drawn from two distinct pools corresponding to the two

habitats (rather than a single well-mixed pool), and then considering the effective number

of immigrant individuals and alleles from each pool to be weighted by their first-generation

selective disadvantage in the recipient deme. However, a complete analysis along these

lines (c.f. Barton & Bengtsson, 1986) is not attempted here.

3.4 Discussion

Metapopulation models have attracted much interest as idealized settings for understand-

ing how population structure affects neutral diversity (Wright, 1932; Slatkin, 1977; Whit-

lock & Barton, 1997). Another line of research concerns rapid adaptation and extinction

in fragmented habitats, leading to eco-evolutionary models of metapopulations (Hanski

& Gilpin, 1991). Patches may have heterogeneous carrying capacities and/or different

micro-environments. Metapopulation models thus also help us understand local adapta-

tion, survival and extinction in marginal or novel habitats (i.e., “evolutionary rescue”).

Yet, they have only recently been investigated in this context.

An important limitation of existing metapopulation models is that very few incorpo-

rate realistic assumptions about genetics within an eco-evolutionary framework, or ex-

plicitly consider the coupled stochastic dynamics of population size and allele frequencies.

Various models do include some form of stochasticity: stochastic colonization-extinction

dynamics (Hanski & Mononen, 2011), genetic drift in structured populations (Whitlock

& Barton, 1997), or demographic fluctuations in the absence of selection (Mangel & Tier,

1993; Lande et al., 2003; Black & McKane, 2012). However, none consider different sources

of stochasticity together within a common framework.

Our modeling framework is based on a diffusion approximation for the joint evolution

of population sizes and allele frequencies (Banglawala, 2010; Barton & Etheridge, 2018),

which we extend here to a metapopulation with multiple ecological niches. It assumes
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a polygenic architecture for local adaptation, and accounts for both genetic drift and

demographic stochasticity. It predicts the full stationary distribution of population sizes

and allele frequencies in different habitats, thus yielding the conditions under which local

adaptation is maintained simultaneously across habitats under divergent selection. The

approximations underlying our theoretical framework (including that the migrant pool is

in LE) can be formally justified as r0 → 0. Thus, they may not be accurate in typical

populations, where growth rates may be high. Similarly, fluctuations in population size

are assumed to be only due to demographic stochasticity, and so may be greatly under-

estimated. Nevertheless, our modeling approach captures key processes involved in local

adaptation, and the approximations presented here apply over a broader range. We aim

at understanding the fundamental processes, rather than precise prediction.

We identify two qualitatively distinct reasons why local adaptation fails within a rare

habitat. First, if selection on locally favored alleles is weak relative to drift, then alleles

favored in the common habitat tend to fix across the metapopulation, even when migration

is extremely rare (Figure 3.4). This drift-dominated regime is also predicted under soft

selection, where we obtain an explicit expression for the critical selection threshold below

which polymorphism is lost: this threshold depends on the relative proportions of the

two habitats, and increases as the rare habitat becomes more marginal (i.e., ρ decreases;

Figure 3.2(c)). Interestingly, the critical selection threshold remains non-zero, implying

that the bias towards alleles favored in the common habitat persists (at low S = s/r0),

even as M → 0. In practice, we expect the time scale over which swamping of the rare

habitat (and loss of polymorphism) occurs to increase as M → 0. Thus, under weak

migration and selection, local adaptation in the rare habitat may be metastable and loss

of polymorphism extremely slow: this is consistent with behaviour observed in individual-

based simulations (results not shown).

Second, migration (beyond a critical rate) may swamp local adaptation even when

selection per locus is strong relative to drift: this kind of migration threshold emerges quite

generally even in single locus models under soft selection when loci are subject to gene flow

from a differently adapted population (Haldane, 1956). In the present model (with hard

selection on multiple loci), the total migration load sets a more severe constraint: it must

be sufficiently low that the population can still grow. Since migration load scales with

the number of loci under divergent selection, moderate maladaptation at very many loci
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is sufficient to cause the population to crash. Declining population size further reduces

the efficacy of selection at individual loci via increased drift, but also results in stronger

swamping, causing a positive feedback that extinguishes populations in the rare habitat.

This feedback sets an upper limit on the migration rate or alternatively (given M) on

the number of loci that can be divergently selected across the two habitats, while still

allowing local adaptation in both. In the deterministic limit (i.e., as ζ = Kr0 → ∞, such

that both genetic drift and demographic stochasticity can be neglected), this migration

threshold becomes independent of selection for large S = s/r0, and depends solely on the

number of loci and the habitat frequencies (Figure 3.6). However, for moderate ζS = Ks,

the critical migration threshold decreases with increasing S = s/r0 for LS & 1.

A key result is that hard selection renders local adaptation in the rare habitat more

difficult. The extent to which selection is hard is governed by LS = L(s/r0). We identify

two qualitatively distinct regimes demarcated by LS ∼ 1. For LS < 1 (and ζ = Kr0 � 1),

the effects of hard selection can be encapsulated by assuming that population size is

reduced in proportion to the expected genetic load; the strength of drift and swamping at

individual loci is then governed by this reduced size. In the LS < 1 regime, an increase in

selection allows populations to better withstand maladaptive gene flow and drift (Figure

3.4). By contrast, for LS > 1, our semi-deterministic approximation that treats size

as determined by expected allele frequencies fails: in this regime, the population size

distribution is bimodal (Figure 3.3), such that there is a small probability of extinction,

even when expected frequencies of locally adaptive alleles are high. This results in a

somewhat paradoxical situation: the conditions for stable local adaptation become more

restrictive as selection per locus increases in the LS > 1 regime (Figure 3.6), because

maladaptation then affects population size more strongly. Our results show that hard

selection and random drift can substantially increase the damage that gene flow may

cause - as, for example, when farmed fish escape into wild populations (Glover et al.,

2017).

In our model, polygenic adaptation that depends on many loci, L, is difficult because

both migration load and the coupling between population size and allele frequencies in-

creases with L (for fixed S). This is because we assume an extreme form of environmental

heterogeneity, in which any allele has opposite effects on fitness in the two habitats. In an

alternative model with stabilizing selection (towards habitat-specific optima) on a quan-
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titative trait, the deviation of the trait mean from the optimum and the trait variance

within any deme are expected to be independent of genetic architecture in the infinites-

imal L → ∞ limit– provided optima lie near the center of the phenotypic range. Then,

migration load would be independent of L, and can be calculated even in the infinitesimal

limit (Barton & Etheridge, 2018). This relaxes the constraint that migration load places

on the number of polymorphisms that can be maintained under hard selection.

We focus here on the case where locally adapted populations are demographically

stable. However, the joint distribution derived in Equation 3.3 can be used to explore

alternative regimes. For instance, we might consider a metapopulation with many very

small demes and frequent extinction (i.e., ζ = r0K ∼ 1). The whole metapopulation

can still adapt (if migration is sufficiently high), even when selection within each deme

is weaker than local drift. Indeed, Wright (1932) argued that such a ‘shifting balance’

allows efficient search across alternative adaptive peaks (see Rouhani & Barton, 1993;

Coyne et al., 1997). However, it would not be possible for populations to adapt to local

variations in environment between demes in this regime.

The framework presented here is quite general, and can be applied to metapopulations

with multiple niches, or differences in patch quality. While we have focused on local

adaptation, the framework can be applied to other questions in metapopulation biology.

For example, we find that in the neutral case, FST depends only on the number of incoming

migrants, ζMN = mn, regardless of the size of the focal deme (Equation 3.3). The model

can also extend to include dominance, and so could be used to understand heterosis and

inbreeding depression within a metapopulation, and their interaction with population

dynamics.

Our main analysis neglects linkage disequilibrium, which arises when allele frequencies

differ between habitats at multiple loci. Associations between locally adaptive alleles

allow simultaneous local adaptation over a wider range of parameters than predicted by

the diffusion (Figures S2C, S2D, SI), because sets of introgressing alleles from differently

adapted populations are eliminated together, thus reducing the effective rate of gene flow

(Barton & Bengtsson, 1986). In SI, section C, we outline a heuristic which could capture

this effect. It may also be possible to estimate the extent of local adaptation, and the

extent to which it reduces effective gene flow, by observing how divergence and LD vary

along the genome (cf. Aeschbacher et al., 2017).
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Local adaptation in a metapopulation may lead to parapatric speciation, despite gene

flow: as populations diverge, selection against introgressing alleles increases, reducing

effective migration, and allowing further divergence. A key issue here is whether a het-

erogeneous environment will lead to distinct clusters, separated by strong barriers to gene

flow, which eventually become good biological species. This may depend on the distri-

bution of available habitats. If these are broadly continuous, and select along multiple

environmental dimensions, then there may be substantial local adaptation without clus-

ters being apparent. However, with distinct environments, local adaptation may lead to

strong isolation, as multiple divergent loci become coupled together (Barton & De Cara,

2009; Barton, 2010). The framework developed here may be used to investigate how the

distribution of selective challenges influences whether populations evolve as generalists,

adapting to a range of local environments, or split into distinct and well-isolated species.
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4 Spatially explicit coalescent

simulations with demographic

histories

This work is a joint work with Barbora Trubenová and Katalin Csilléry. The chapter is

based on our manuscript which is planed for submission in the early fall.

Author contributions: E.S. B.T. and K.C. designed the study, E.S. did the simulations,

E.S. B.T. and K.C. worked on the analysis, E.S. B.T. and K.C. wrote the manuscript.

4.1 Introduction

The distribution and dynamics of genetic diversity within species are shaped by a myriad

of evolutionary and ecological processes acting across different spatial and temporal scales

(Ellegren & Galtier, 2016). Although the role of space and, in particular, spatial auto-

correlation in allele frequencies has been recognized from the dawn of population genetics

(Wright, 1943; Malécot, 1948; Felsenstein, 1976), disproportionately more theoretical and

methodological developments focused on understanding the effect of temporal changes

in population size and gene flow between spatially non explicit populations (e.g. Hey &

Nielsen, 2007). Statistical methods have been developed to detect past population size

changes either by testing different hypotheses such as exponential growth and bottleneck

(e.g. Excoffier et al., 2013) or using Bayesian methods to detect arbitrary population size

changes from whole genome sequencing data (e.g. Drummond et al., 2005). In contrast,

the much younger field of landscape genetics, set the ambitious aim of integrating pop-
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ulation genetics and spatial statistics. In their foundation paper, Manel et al. (2003)

argued that landscape genetics can overcome the limitation of population genetic meth-

ods that rely on the assumption of non-spatial and discrete populations. The field was

more influenced by the metapopulation models than population genetics. Hanski & Gilpin

(1991) provided a mathematical framework for describing the distribution and movement

of species in space. However, much of the landscape genetic literature uses spatial sta-

tistical and statistic principles and has no link to population genetic models (e.g. Guillot

et al., 2005; Smouse et al., 2008; Forester et al., 2016), or in fact, relies on non-spatial

population genetic null models, such as the Wright-Fisher or island models (Meirmans,

2012).

The Wright-Fisher model has been the most widely used null model in population

genetics, proposed for studying the effect of genetic drift. Under this model, the level

of genetic diversity is proportional to the population size (Hartl et al., 1997). The infi-

nite island model adds a next step of complexity by relaxing the assumption of random

mating. It considers infinitely many Wright-Fisher populations (or islands) that receive

migrants at rate m chosen at random from the other subpopulations (Wright, 1931). A

spatially explicit version of the island model is the stepping-stone model (Kimura, 1953).

The two dimensional version assumes that populations are situated on a rectangular (or

other) lattice and an exchange of migrants with the four neighboring demes. However,

real populations are not arranged at regular distances, but in continuous space. This

most realistic view is captured by Wright’s isolation by distance model (Wright, 1943)

(also referred to as Wright-Malécot model (Malécot, 1948)). In this model individuals

mate with neighboring individuals within radius that is dependent on the dispersal rate

(σ) and the population density (d). Several equivalences have been shown across these

models assuming infinite or finite populations and in the absence or presence of mutations

(Felsenstein, 1976; Malécot, 1975; Slatkin, 1985).

In spatially subdivided populations the genetic variance is also partitioned. From

studying this variation one can infer demographic structure and gene flow. One of the

first—and ever since most popular—statistical measure to describe genetic differentiation

is the fixation index, FST . Originally it was defined as the correlation between genotypes

chosen randomly from the same subpopulation relative to the entire population (Wright,



4.1. INTRODUCTION 63

1949). The popularity of FST originates from the simple formula given by Wright:

FST =
1

1 + 4Nm
, (4.1)

where Nm is the number of migrants per deme. This connection is only true when the

assumptions of the island model hold, however it became a general tool to infer gene flow

and estimate population differentiation.

Another way of thinking about the effect of spatial structure on genetic differentiation

is to use idea of isolation by distance (IBD) presented by Wright (1943). He defined the

genetic neighborhood (the number of inbreeding individuals in the local neighborhood) as

NS = 4πσ2D, where σ is the mean squared parent-offspring dispersal distance along one

axis in a two-dimensional habitat and D is the ideal population density. It was shown by

Rousset (1997) that the rate of decay in genetic relatedness (e.g. in pairwise FST ) can be

used to infer the neighborhood size, NS. One way is to fit IBD models and use the approx-

imately linear relationship between the logarithm of spatial distance and genetic distance

between individuals (Shirk & Cushman, 2014). Meirmans (2012) showed however, that

isolation by distance can lead to false positives when detecting hierarchical population

structure and loci under selection. Battey et al. (2020) used spatially continuous individ-

ual based simulations to draw the attention to the fact that ignoring space can severely

bias common population genetic summary statistics, especially, when the neighborhood

size is small. Finally, in this context, Joseph et al. (2016) proposed a spatially explicit

simulator connected with an Approximate Bayesian Computation algorithm to estimate

the neighborhood size from genomic data.

Population genetics, a century old field of evolutionary biology by now, has always

used rigorous mathematical tools to describe how evolutionary processes shape genetic

diversity and to provide proper frameworks for inference methods. Genetic data became

widely available and mathematical tools that can connect theory to empirical data are

valuable. Such a method is the coalescent theory, which is the basis of much of the

modern population genetics as it can also be used for the analysis of DNA sequence

data. Furthermore, it can be simulated simulated efficiently. Kingman (1982a,b) showed

that the coalescent process is the ancestral limiting process for many discrete population

genetics models, including the Wright-Fisher or Moran models. The coalescent describes

the history of n samples in a well-mixed population by identifying (n−1) coalescent events
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and the time at which they happened: this process results in a bifurcating tree. The

relationship between the coalescent process and the diversity follows the idea presented

by Kimura (1969), namely that under the infinite sites model, where all mutations are

unique and neutral, the expected number of segregating sites in a sample is proportional

to the expected branch length of the tree of that sample (Hey, 1991).

The standard model of coalescent assumes that the samples are exchangeable, which

means that the samples are identically distributed but not independent. Relaxing this

assumption leads to the notion of structured coalescent. This model corresponds to

Wright’s island model. Formally, this limit exists when N → ∞ and Nm is finite. It

is a continuous-time Markov process, where the lineages either coalesce or migrate with

small probabilities, and the time is scaled by N .

Biological models dealing with spatial structure existed long before the structured co-

alescent process was mathematically formalized (Takahata, 1988; Notohara, 1990). Previ-

ous theoretical work includes that Wright (1950) discovered the fundamental importance

of Nm determining the extent of population differentiation, Malécot (1951); Maruyama

(1977) calculated probabilities of identity by descent in a subdivided population, and

Slatkin (1987) and Strobeck (1987) worked out the expected numbers of pairwise differ-

ences between sequences. After the formal introduction of the structured coalescent, it was

quickly extended with various features such as selfing or background selection (Nordborg,

1997).

Now that we introduced the coalescent process, we can turn our attention back to

the fixation index, FST . It can be expressed in many different forms Nei (1972); Weir

& Cockerham (1984), however, the modern population genetics approach is to use the

definition involving coalescence times (Slatkin, 1991):

FST =
TT − TW

TT
, (4.2)

where TT is the average total coalescence time and TW is the average within coalescence

time across the subpopulations. This is the form that we will mainly use in this chapter,

alongside of mean coalescence times and a pairwise genetic measure (more details can be

found in the Methods section), to describe diversity, and explore whether we can explain

patterns of genetic diversity better by taking into account known population structure.
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Although it appears necessary to account for space in future studies, spatial popu-

lation genetic models are the least mathematically tractable and theoretical predictions

are valid only under limited conditions (Slatkin, 1985; Barton et al., 2002; Bradburd &

Ralph, 2019). This is particularly true for the continuous space model, which is also

hardly tractable in a forward time simulation setting (Battey et al., 2020). The stepping

stone model can provide a more pragmatic solution. Indeed, it can approximate well the

decrease of genetic correlation with distance in continuous space, which is essentially the

same phenomenon as isolation by distance (Malécot, 1955; Kimura & Weiss, 1964).

Two basic approaches exist to simulate the coalescent process: continuous time ap-

proximation and a generation-by-generation approach. The first approach was developed

by Hudson (1983) and is implemented in the software ms (Hudson, 2002). Events occur

at a rate that depends only on the state of the extant ancestors, and the time to coales-

cent events can be simulated without explicitly considering the generations. The second

approach was proposed by Hudson et al. (1987) and first implemented in the software Sim-

coal (Excoffier et al., 2000; Laval & Excoffier, 2004) This methods is more flexible, because

demographic events can be defined at a generation level, nevertheless, only one coalescent

event is allowed per deme per generation. If a coalescent event happens, two lineages

of the deme are chosen at random to coalesce. More recently, an efficient algorithm has

been proposed to produce genealogies by (Kelleher et al., 2016), and implemented in the

software msprime. Events occur at rates that depend on the state of ancestral lineages

existing at a given time point: with these rates the waiting times until the next even

occur are generated. This feature makes the algorithm much faster compared to other

simulations that are considering each generation separately.

The first spatially explicit coalescent simulator under the stepping stone model was

IBDSim (Leblois et al., 2004). However, it has not been used extensively and had a

limited ability to define spatial and temporal heterogeneity with only three time steps

allowed. The most used spatially explicit coalescent simulator is SPLATCHE, which was

initially designed to study the impact of spatial and ecological information on molecular

diversity (Ray et al., 2010; Currat et al., 2019). It consists in a forward demographic

simulation of population demography and migration, followed by a backward coalescent

simulation step. In the coalescent step, the ancestry of a sample of gene lineages taken

from one or several populations is simulated until the most recent common ancestor of
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these lineages. Then, genetic diversity of the sample is generated by adding mutations

over the simulated coalescent tree. SPLATCHE can handle spatial and environmental

complexity through the use of population carrying capacities (e.g. linked to available

environmental parameters), migration rates (i.e. directional gene flow) and frictions (i.e.

dispersal constraints in different environments) based on user-specified raster maps that

can change over time.

In this work, we develop a spatially explicit coalescent simulation tool, gridCoal, us-

ing functions from msprime (Kelleher et al., 2016), in which demographic histories can

be defined using a two-dimensional stepping stone model. gridCoal is faster than previ-

ous simulation tools because it uses the algorithm of msprime, and because it bypasses

the simulation of genetic data. Simulating genetic data while considering a full spatio-

temporal demography can be extremely time consuming (Battey et al., 2020; Ray et al.,

2010; Currat et al., 2019), and may prohibit users from considering the effects of space.

gridCoal uses a coalescence time approximations of spatial diversity and divergence, and

thereby, could allow for a more widespread use of spatially explicit null models in popu-

lation genetic inference.

We test gridCoal for various scenarios of spatial and temporal changes in population

size. First, we consider variation in space, but constant population sizes in time, and

compare these results with theoretical expectations of the island and stepping stone mod-

els. We also compare isolation by distance patterns under these scenarios using a measure

of genetic distance derived from FST . Although FST may be used as a measure of gene

flow only under the infinite island model and neutral alleles, or when Nm > 1 (Slatkin,

1985; Whitlock & McCauley, 1999). Nevertheless, genetic distance measures derived from

FST (pairwise FST ) have been extensively used in empirical studies (e.g. Kitada et al.,

2020). Second, we investigate the pattern of gene diversity and genetic distances when the

population sizes vary in space and time, and notably, under conditions when spatial and

temporal autocorrelation are decoupled. Duforet-Frebourg & Slatkin (2016) developed

theory for isolation by distance and time, so we compare our results to their findings.
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4.2 Methods

4.2.1 Simulation tool: gridCoal

We developed a spatially explicit coalescent simulation tool, gridCoal, based on msprime

(Kelleher et al., 2016). Populations are distributed across an arbitrary, finite, two di-

mensional rectangular grid. Each grid cell represents a single panmictic population of

defined size. The demographic history is specified by providing multiple corresponding

grids defining the deme sizes at equally spaced time points in the past. The time step can

be chosen arbitrary.

The spatial structure is further defined by a forward migration matrix, and can be

asymmetric (between neighboring cells) and heterogeneous. This migration matrix defines

the fraction of individuals that migrate from one cell to another. Here we use and analyze

a 2D stepping stone model, where each cell is connected to its four direct neighbors with

which it shares an edge. The forward migration rate is constant across time and homoge-

neous across the grid. The backward migration matrix, that is required for the coalescent

simulations by msprime, contains elements that specify the fraction of individuals in a

given cell that have parent in another deme. This value is calculated for each timestep

based on the population sizes and the forward migration matrix. For detailed description

of the simulator inputs and methods, see Appendix B.1.

4.2.2 Simulated scenarios

Several sets of simulations were carried out throughout this study, initially to validate the

results against theoretical predictions (which exist only under very specific assumptions),

and investigate its limitations, and after that to study how the results change if certain

assumptions, like the heterogeneity of the populations in space and time, are relaxed.

Static populations

The first set of simulations assumed individual demes with fixed population sizes over

time. The simulations were run in a factorial design on a square grid of size 30 × 30,

with average population size of N , with migration rate m between neighboring cells (see

Table 4.1). We run 1000 simulations on each combination of the following parameters



68
CHAPTER 4. SPATIALLY EXPLICIT COALESCENT SIMULATIONS WITH

DEMOGRAPHIC HISTORIES

described in this section. Different maps (spatial grids) were simulated, with increasing

spatial variance between the individual deme sizes:

• homogeneous map with equal-sized demes of size N,

• low spatial variance map with deme sizes drawn from Poisson distribution with

mean N,

• high spatial variance map with deme sizes drawn from uniform distribution with

range from 0 to 2N,

• clustered map, with randomly generated clusters where neighboring deme sizes were

correlated and an average deme size across the whole map was N (see Figure 4.1).

In all scenarios, individual deme sizes were fixed over time, with 5 identical lines describing

demographic history and the time step being 8 million generations (200000000 years, 25

years per generation).

Variable Symbol Values

Map type homogeneous, poisson, uniform, clusters

Average cell population size N 10, 50, 100,250, 500

migration rate m 0, 10−8, 10−5, 10−3,10−2,10−1, 100

Table 4.1: Summary of parameter values used in the simulations of static populations

Effect of time until ancestral state and grid sizes. To address how the summary

statistics are affected by the size of the grids, whether we observe any edge effects, or to

assess how long we need to run the simulations to obtain useful information we carried

out some further tests.

First, we used the earlier defined homogeneous map with population size 100 on a

30 × 30 grid with time steps of 2 · 102, 2 · 104, 2 · 106, 2 · 108 years. (Generation time is

assumed to be 25 years.) We used the same migration rates as before: m = 0, 10−8, 10−5,

10−3,10−2,10−1, 100. Second, we tested homogeneous maps on a 10 × 10 and a 50 × 50

grids, taking 10 or 50 samples, respectively. This was done for three values of migration

rates, m = 10−5, 10−3, and 10−1 and was running up to 8 million generations.
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Figure 4.1: Simulated grids with no temporal changes. They express different amounts of spatial variation:

(A) no variation (Homogeneous), (B) low (Poisson) and (C) high (Uniform) variation, and spatially

correlated (Clustered). In white the sampled row: 30 grid cells, is marked.

Populations with simple demographic history

The second set of simulations was carried out on populations with variable demographic

history. To allow comparison across different demographic histories, all scenarios assume

exactly the same population structure with high spatial variance (individual deme sizes

drawn from a uniform distribution Ufinal = U(0, 2N) in the final (most recent) time-point.

• Linear expansion was simulated for different maps by supplying T data points de-

scribing a population with linearly increasing overall size. Individual demes change

linearly between their original sizes drawn from a uniform distribution UstartLinE =

U(0, N) and their final sizes Ufinal. Note that while the whole population was ex-

panding, some demes became smaller.

• Exponential expansion was simulated for different landscapes by supplying T data

points describing a population with exponentially increasing overall size. Individ-
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ual demes change exponentially between their original sizes drawn from a uniform

distribution UstartExpE = U(0, N) and their final sizes Ufinal. Note that while the

whole population was expanding, some demes became smaller.

• Population decline was simulated by supplying T data points describing linearly

decreasing population. Individual demes change linearly between their original sizes

drawn from a uniform distribution UstartDec = U(2N, 3N) and their final sizes Ufinal.

Note that while overall population was declining, some demes became larger.

• Bottleneck was simulated by supplying T data points for a population linearly de-

clining from UstartBot = U(0, 2N) to UmidBot = U(0, 0.4N) then expanding to Ufinal.

Note that while the mean deme size changed from N to 0.2N to N again, individual

demes may have experienced different demographic histories.

• Stable population was simulated by supplying T data points for a stable population

(no change in overall population size), but with individual demes changing between

their original sizes UstartStable = U(0, 2N) to Ufinal.

All the above described scenarios were simulated with 1000 replicates for N = 100,

T = 30, with time steps of 2000 generations (50000 years, 25 years per generation), unless

stated otherwise, and migration rates of m ∈ (10−5, 10−4, 10−3,10−2, 10−1). See Figure

4.2 for illustration of various demographic histories.

Variable Symbol Values

Map type lin. and exp. increases, decline, bottleneck

Average cell population size N 100

Migration rate m 10−5, 10−4, 10−3,10−2, 10−1

Time of known demographic history T 30

Table 4.2: Summary of parameter values used in the simulations of simple demographic histories

Furthermore, we run a set of simulations where instead of the uniform map we used a

spatially autocorrelated one (clustered). We run similar demographic histories: no change

in time, bottleneck, decline, or expansion (see Figure B.3 in Appendix). We used the same

parameters of m,T as before. The time between two steps when the population sizes are

defined. is 50000 years.
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Figure 4.2: Simulated simple demographic histories (A-E) and their final spatial state (F). The different

colors represent individual grid cells (200 displayed out of the 900). All histories converge to the exact

same final map, which is sampled from a uniform distribution.

Biologically realistic populations

The third set of simulations was carried out on more complex populations, including

different colonization scenarios, see Figure 4.3 and Table 4.3. We used a 30× 30 grid over

the course of 30 steps distributed 50000 years apart.

• Front colonization (side colonization): to simulate a population invading a new

territory we simulated a population entering the grid from one side, populating one

row of cells in each time-step.

• Seed colonization (growing cluster): to simulate populations that colonized a

new territory from a small number of immigrants, we populated the grid with a

small number of ’seed’ populations that grow in time, as well as spread from the

seeds to neighboring cells.

• Migrating and expanding colony (migration cluster): To simulate a popula-

tion that moves across a space, colonizing its surroundings, we simulated a kernel
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population of 20x10 cells entering and moving across the grid. In each step, ex-

pansion and migration occurred, so each sub-population size was also increased by

populations in neighboring cells multiplied by factor of 0.2. This resulted in a kernel

populations slowly colonizing larger part of the grid.
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Figure 4.3: (A) colonization from a side where the whole map becomes occupied in the end. The final

map (current time) has low variance, sampled from a Poisson distribution. (B) the colonization starts

from seeds and converges to a clustered map. (C) migrating and expanding cluster. The four columns

correspond to four time points: 30, 20, 10 steps ago, and the final (current) map.

Variable Symbol Values

demographic history side colonization, expanding clusters

Migration rate m 10−5, 10−4, 10−3,10−2, 10−1

Table 4.3: Summary of parameter values used in the simulations of biologically inspired scenarios.
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Demographies inspired by silver fir populations

The last set of simulations involved demographic histories that were inspired by the LPX-

Bern model predictions for silver fir distributions across Europe (Ruosch et al., 2016).

The LPX-Bern is a dynamic global vegetation model that simulates species distributions

under various climate estimates of past 21000 years. We used this silver fir dataset to

create some further input files for our tests, as it adds a realistic touch: we found difficult

to create artificial datasets that are neither too regular nor too random.

The size of the spatial grid (1272 grid cells, 24×53 grid) and the number of time steps

(220) were kept identical to the LPX-Bern model. We defined four demography types

that are detailed below, also see Figure 4.4. As population size we used the best-estimate

of Ne (the original dataset defined the distribution of species in foliar protective cover

(FPC), that we turned into Ne based on various assumptions, these details can be found

in Appendix Section B.2.) at particular time points to stay close to the model predictions

and simplified the events in between these time points (see Table 4.4). Furthermore, to

explore the effect of Ne, we scaled the population sizes of one scenario (A-Shape) by 10,

100 and 1000.

To investigate whether the demographic changes on a short timescale can have an

influence on current diversity patterns despite the enormous effective population sizes,

we used very short time steps: 100 and a 1000 years, equivalently, 4 and 40 generations

(assuming 25 years as generation time). This first option of 220 timesteps of 100 years

corresponds to 22000 years, which marks the beginning of the deglaciation of Europe after

last ice age.

1. Expansion: we simulated mostly expanding populations. As the initial value at

22 kyr BP we used the best-estimate Ne when the overall population size was the

smallest (17kyr BP), and, as the final point (0 kyr BP), we used the best-estimate

Ne at 0kyr BP. Populations of all grid cells changed linearly between these two set

points. Note that while the overall population size linearly increased, the initial

population sizes in some grid cells (approximately 20% of all grid cells and 32% of

grid cells with non-zero Ne) were larger than those predicted for today, so in those

cases, the population size was slowly decreasing.

2. Decline: we simulated shrinking populations. As the initial value at 22 kyr BP we
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Figure 4.4: The following histories are defined on a 24 × 53 grid over 220 steps. The colors represent

individual grid cells (not all of them shown here). The mean of the population sizes across the grid follows

the described pattern over time ((A) A-Shape, (B) Bottleneck, (C) Expansion, (D) Decline), however,

the individual cells can follow different courses. The data was created to preserve some level of spatial

autocorrelation.

used the best-estimate Ne when the overall population size was the smallest (17 kyr

BP) multiplied by 7, and, as the final point (0 kyr BP) we used the best-estimate

Ne at 0 kyr BP. Populations of all grid cells changed linearly between these two set

points. Note that while the overall population size linearly decreased, the population

sizes in some grid cells (about 62% of grid cells with non-zero Ne) were smaller at the

beginning than today, so in these cases, the population size was linearly increasing.

3. Bottleneck: we simulated a bottleneck similar to that observed in LPX-Bern data.

The 220 time steps were divided into three parts:

(a) constant population size with best-estimate Ne at 14.2 kyr BP, from 22 kyr to



4.2. METHODS 75

14.2 kyr BP;

(b) linear decrease until 12 kyr BP, to best-estimate Ne at that time;

(c) linear increase until presence, to best-estimate Ne at 0 kyr BP.

4. A-shape: we simulated populations expanding starting with the best-estimate Ne

at 14.2 kyr BP (smallest overall population size) to the best-estimate Ne at 12 kyr

BP multiplied by 2. Then, the populations declined linearly until present time

best-estimate Ne (0 kyr BP).

Scenario Population size expressed as best-estimateNe at [kyr BP]

Time of events 22 kyr BP 14.2 kyr BP 12 kyr BP 0 kyr BP

Expansion Ne[17] Ne[0]

Decline 7*Ne[17] Ne[0]

Bottleneck Ne[14.2] Ne[14.2] Ne[12] Ne[0]

A-shape Ne[17] 2*Ne[14.2] Ne[0]

Table 4.4: Events of the four simplified demographic histories based on the LPX-Bern model.

4.2.3 Summary statistics

While population allele frequencies can be simulated, in cases with large effective popula-

tion sizes, long demographic history, and large spatial extent it is more feasible to simulate

only the genealogies of two lineages per population to obtain coalescent approximations

of population diversity and divergence (Slatkin, 1991).

For several parameter sets, simulation time was not sufficient for all lineages to coalesce

in all simulations. Therefore, at the end of the simulation, all populations are pulled into

a single panmictic, spatially non-explicit population of size 1, effectively stopping the

simulations. The resulting coalescence times from the simulations can be corrected by the

weighted size of the ancestral population and the mean of the simulation. Further details

can be found in the next subsections.
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Mean coalescence time

Calculating the mean within and between-coalescence times for the individual grid cells

and for the pairs of grid cells sounds like a triviality, however, it raises some questions—

both biological and mathematical ones. Depending on the migration rates and the time

up until we run our simulations, or better yet as far back in time as we have data, some

lineages may not coalesce. The question arises: what happened before. As we may have

no further information about the history of the populations from before the data ends,

we can assume either that they all come from an ancestral population and within that

there is no spatial structure and the lineages follow the standard coalescent process, or

that the population structure changes no more and the lineages will coalesce depending

on the population sizes and the connectivity of the grid cells.

We assume in the simulations that all the lineages that did not coalesce in the time

interval from the present back to a given time will be moved into a single ancestral pop-

ulation. This is a reasonable assumptions when one considers separations of timescales:

the scattering and collecting phase of the coalescent process in a structured population

(Wakeley, 1998, 1999). This means that the genealogy can be separated into two parts: a

short scattering phase (more recent events) and a long collecting phase (ancestral events).

The more recent events happen in the deme: lineages either coalesce or move away. In

the second phase, the lineages diffuse over the whole grid before they coalesce, thus the

population will behave as a single ancestral population and follow a standard coalescent

process. The expected coalescence time for a pair of randomly chosen individuals is the

sum of the expected times of these two phases: coalescence in the first phase is pro-

portional to the neighborhood size (2ρL2, where ρ is the density) and the time spent in

the second phase is proportional to L2/σ2 (time until lineages diffuse across the range).

(Charlesworth et al., 2003, Equation 9.).

In some cases, we know that the coalescence time distribution is exponential, when

migration is very low or very high and the population sizes are constant over time - in

these cases one can calculate the mean from the median, but in most cases this approach

will not work. In case of exponential distributions the following holds:

E(T ) = med(T )/ ln 2. (4.3)
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We propose to calculate a corrected mean coalescent time in the following way. Let T ∗

be the time point when all lineages are pulled into an ancestral population, let P be the

fraction of simulations that coalesced before T ∗, and Q the fraction that did not. The

mean coalescence time of the lineages that coalesced is t0 < T ∗, and the mean of the rest

is T ∗ + 2Na, where 2Na is the effective size of the ancestral population, without further

knowledge, assumed equal to the total population size of the grid at time 0.

E(Tcoal) = P · t0 +Q(T ∗ +Na) (4.4)

When the simulation is long enough, most lineages coalesce therefore there is no difference

between the mean and the corrected mean. When dt, the time between two time points

at which the population is updated, is too short, the corrected mean is dominated solely

by the size of the ancestral population. On Figure B.2 in the Appendix the difference

between the mean of the simulated data and the corrected mean is shown for four values

of dt.

Global FST and pairwise F∗

To assess how differently populations evolve in face of gene flow, we calculate the fixation

index, also known as F-statistics. We will use this statistical measure to obtain isolation

by distance patterns and observe how it changes under different demographic histories.

FST was first introduced by Wright (1943) to express expected heterozygosities at various

levels of the population structure. It can be interpreted as a measure of the amount

of differentiation among subpopulations relative to the limiting amount under complete

fixation. FST is a widely used measure in population genetics, both in theoretical and

empirical studies. It can be expressed in terms of many biologically important quantities,

such as gene frequencies, identity by descent probabilities, or coalescence times, we will

use this latter one as we said earlier. A large amount of equivalent formulas of statistics

estimating FST can be found in the literature, partially due to the different simplifying

assumptions introduced in different models (e.g. Nei, 1972; Slatkin, 1993; Hudson, 2002).

The original formula can written in terms of coalescent times, namely:

FST =
TT − TW

TT
, (4.5)
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where TT is the average total coalescence time and TW is the average within coalescence

time across the subpopulations. We refer to this as the global FST that is meant to

measure the strength of population structure. Using this formula allows us to consider

only the mean coalescence times instead of the full distribution.

Furthermore, we are interested in calculating pairwise measures as well, in order to

investigate genetic differentiation between subpopulations. If we were to have only two

subpopulations, then Equation 4.6 would transform into

F ∗i,j =
Tij − Tii+Tjj

2

Tij +
Tii+Tjj

2

=
TB − TW
TB + TW

, (4.6)

where Tij denotes average coalescence time of two genes drawn from demes i and j, TB

is the mean coalescence time for two lineages sampled from different demes, and TW is

for lineages sampled from the same place. This formula is correct if (and only if) two

subpopulations are involved, nevertheless, as Slatkin (1993) suggests, this may not be a

correct way to assess the strength of population structure in general, but it may be a

good measure to estimate genetic distances between subpopulations.

We will use two approximations of FST in the island model and the 2D stepping stone

model in order to verify the results of the simulations and draw further conclusions about

more complicated scenarios. These approximating formulas have relatively simple forms

since they rely on strict assumptions. We will investigate how different the simulated FST

values are from the theoretical predictions when certain assumptions are relaxed.

For neutral alleles in the infinite island model we will use the following well-known

formula:

FST =
1

4Nm+ 1
. (4.7)

In Kimura’s two dimensional stepping stone model, it is possible to derive FST as a

function of migration rate and population density in a homogeneous environment (Cox

et al., 2002):

FST =
L2logL
2πνσ2

L2logL
2πνσ2 + 2NL2

(4.8)
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where σ = 1/2 is the standard deviation of parent-offspring distance along an axis, ν = 4m

(ν is the total rate of migration to all possible demes: in our case it is the 4 neighbors,

each with rate m) and L is the grid size.

4.3 Results

4.3.1 Static populations

Comparing theoretical predictions and simulation results

Several tests were carried out to assess how well the simulations match various analytical

predictions. First, we compared simulation results with predictions given for the stan-

dard coalescent process in panmictic populations, then with predictions given by the 2D

stepping stone, and infinite island models in structured populations.

Standard coalescent process Theory predicts that mean coalescence time between

samples taken from a single panmictic population of size N is equal to 2N . On a grid,

this predictions can be tested by either defining no migration, leading to each deme

representing an isolated panmictic population, or by choosing a large migration rate,

leading to a single panmictic population across the whole grid. In the first case, the

average coalescence time of two lineages taken from the i-th deme is expected to be 2Ni.

In the second case (large migration), the average coalescence time between two genes

taken from any demes should be 2Ntotal = 2L2N , that is twice the total population size

of the whole L × L grid. In both cases, the coalescence times follow and exponential

distribution with the aforementioned means.

Figure 4.5 shows the average coalescence time between two lineages taken from the

same deme, for all scenarios described in Section 4.2.2, with no migration. As predicted

by the theory, average coalescence time depends solely on the population size of each

individual deme. In comparison, Figure 4.6 shows the average coalescence time between

two lineages taken from the same deme, for the same scenarios, with high migration rate

(m = 1). In this case, the whole grid represents a single, (almost) panmictic population.

The figure shows that the coalescence time is independent of the individual deme size,

rather, it is determined by the total population size of the whole grid, as expected. We
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Figure 4.5: Within cell coalescence time (on y-axis) depends solely on the population size of each indi-

vidual sampled cell (x-axis), if no migration occurs. The mean was estimated from the observed median

using the formula M = λ log(2) under the assumptions that coalescence time distribution is exponential.

Different underlying maps are shown here: (A) no variation (Homogeneous), (B) low (Poisson) and (C)

high (Uniform) variation, and spatially correlated (Clustered). Different colors represent simulations with

different average population sizes ranging from 10 to 500.

observe a slight discrepancy between the simulation results and the theoretical prediction

for the mean coalescence time (2L2N). Even though the migration rate used here is high,

the spatial structure does not fully vanish: the probability of lineages located physically

closer to each other coalescing first is higher than that of lineages further apart. Figure

B.4 shows that lineages taken from different demes coalesce, on average, at the predicted

time (2L2N). If the population structure would fully disappear, we would see no difference

between the within and between coalescence times.

To calculate the means we used the fact that the mean coalescence time distributions

are exponential in these special cases, so we used the median formula. Note, that since

we run the simulations long enough, the mean of the data would give (almost) the same

results, for the number of lineages that did not coalesce please refer to Table B.1.

Structured populations Predictions for two theoretical models, the 2D stepping stone

(Equation (4.8)) and the infinite island models (Equation (4.7)) were compared with the
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Figure 4.6: Within cell coalescence time (ETW ) against the individual population sizes. ETW depends

on the mean population size across all cells if the migration rate is high (m = 1) for the four types of

spatial structure. The mean was estimated from the observed median using formula M = λ log(2) under

the assumptions that coalescence time distribution is exponential. In this case, the demes form one single

population across the whole grid together, hence the theoretical prediction for the mean coalescence time

is 2L2Ne (shown in dashed with green dots), twice the total size of the grid. Different colors represent

simulations with different average population sizes. The green dots mark the exact function values of the

theoretical expectation for the five simulated N = 10, 50, 100, 250, 500.

results of the simulations of all scenarios described in table 4.2.2. We calculated global

FST values for all parameter combinations using Wright’s formula (Equation 4.6)

Figure 4.7 shows that the predictions of the 2D stepping stone model fit well with

the simulation results of the homogeneous environment. On the other hand, FST in

simulations of an environment with large variance and no correlation between deme sizes

across the grid (uniform map) is best predicted by the infinite island model. See Figure

B.5 for other scenarios.

Effect of spatial variation, migration rate, and deme size

Below we investigate the effects of spatial variance, the average deme sizes, and migra-

tion rate on the expected coalescence times, global FST values and isolation by distance

patterns on genetic distance F ∗.
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Figure 4.7: Global FST values against migration rates, as predicted by the theory (Equation (4.7) and

(4.8)) and calculated from simulations. The green dots represent simulations with high spatial variance

between population sizes and the blue ones correspond to no spatial variance. The darker dots belong to

larger population sizes (N = 500) and lighter ones to smaller population sizes (N = 10).

Dependence of mean coalescence time on m and N As expected, the average

coalescence time is influenced both by the deme size and the migration rate. Simulation

time (total time of defined demographic history) was limited to 40000000 generations,

and not all pairs of lineages coalesced within this time. (The total population size was

900 · N , and was taking values in {10, 50, 100, 250, 500}.) Therefore, to illustrate the

effect of migration rate in a least biased way, Figure 4.8 shows median coalescence time

for various scenarios described in table 4.2.2. Figure 4.8 reveals that different scenarios

provide most contrasting results for intermediate migration rate values. For very large

or very small migration rates, coalescence times for lineages taken from the same deme

are well estimated by standard coalescence, as described above. However, at intermediate

migration rates, migration between the demes enhances differences between the demes.

Isolation by distance patterns To analyze the effect of geographic distance on genetic

distance between the subpopulations, we calculated pairwise genetic distance coefficient

F ∗ for pairs of samples taken from a row of demes. The effect of mean deme size, variance

in deme size, and migration rate is shown in Figure 4.9. The figure reveals that larger

mean deme size (panel (A)), as well as larger migration rate (panel(B)), lead to lower

values of F ∗, meaning weaker differentiation between the populations.

The amount of spatial variance of a given map also contributes to the genetic differen-
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Figure 4.8: Median coalescence time for lineages taken from the same (A) or from different (B) demes as

a function of migration rate m. Different colors represent different average deme size, while different line

types correspond to different spatial variance (map type). The difference in median coalescence times

created by the different spatial arrangements (maps) is neglectable compared to the differences due to

different mean population sizes.

tiations between populations (panel (C)). One can consider the no or low variance maps

as a baseline value: these result in similar values to each other in case of each distance

class.

The uniform map (high spatial variance) has a higher mean F ∗ across all the distance

classes: the compared demes in any distance class are just as likely to have similar or

different size, which pulls the averages up.

The clustered map (with spatial autocorrelation), however, in case of small distance

classes results in a lower mean, as the pairs of populations located close to each other tend

to have similar sizes, thus being less differentiated. On the other hand, these distance

classes consist of pairs of small populations and pairs of big populations. Their contribu-

tion to F ∗ thus has a large variance: pairs of big populations have low F ∗, and the pairs

of small populations have high F ∗ values, as we have seen on panel (A) of Figure 4.9. In

case of populations further apart, most of the comparisons will be made between a large

and a small population, resulting in increased genetic differentiation.

4.3.2 Populations with variable demographic history

After exploring the effect of spatial heterogeneity on diversity, i.e. the mean within

coalescence time, we proceed with adding temporal variation to the simulated scenarios.

In real biological situations, spanning long periods of time, we expect natural populations
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Figure 4.9: Pairwise genetic distance F ∗ as function of distance between the sampled demes. (A) Effect

of population size: bigger populations differentiate less as they are less affected by genetic drift. (B)

Effect of migration rate: more migration results in more admixture, making populations more similar

to each other thus decreasing F ∗. (C) Effects of maps exhibiting different amounts of spatial variance:

the homogeneous and the Poisson maps (no and low variance) can be considered as a baseline value.

Compared to this, spatial autocorrelation (clustered map) results in lower mean and bigger variance in

case of small distance classes, and higher mean and smaller variance in case of large distance classes. In

the case of small distance classes, the pairs close to each other tend to have similar sizes. As panel (A)

suggests, the genetic difference, the F ∗ values produced by a pair of large populations on the one hand

and a pair of small populations on the other hand can be substantial, hence the high variance. In the case

of large distance classes, most of the comparisons will be made between a large and a small population,

also resulting in an increased genetic differentiation. The uniform map has a higher mean across all the

distance classes for the same reason: two demes in any distance class are just as likely to have similar or

different size.

to go through various phases, including expansions, decreases, bottlenecks, colonizations,

or extinctions. Their combined effects influence the diversity we observe in the current

populations. However, disentangling these effects, finding their separate signatures on

diversity, and assessing their relative importance is a complex problem.

In this section we investigate the effects of temporal variability on population diversity

and isolation by distance patterns. Furthermore, by correlating the diversity pattern with
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historical population sizes, we assess the effects of past and recent demographic history on

observed diversity. The simulation inputs are described in Section 4.2.2 in more details.

Simple demographic histories on uniform maps

The first set of simulations was meant to shed light on whether we can distinguish be-

tween different simple demographic histories, such as increase, decrease, or a bottleneck,

assuming that they have the same current population distribution on a grid, as shown in

Figure 4.2. Of course, FST is known to be robust under population size changes, whereas

other genetic measures, like Tajima’s D (Tajima, 1989; Ross-Ibarra et al., 2008), or the

PSMC model (Li & Durbin, 2011) can pick up signals of demographic events. However, to

use these inference methods we would need to simulate whole genomes, which is currently

not possible with gridCoal. Nevertheless, we calculate the global FST values and after we

compare the diversity (mean coalescence time) to the historical population sizes.

First, we calculate the global FST values of the five types of simulations for different

migration rates. A relatively long time frame was used: the number of generations until

the ancestral state is reached is 240000. This made sure that most lineages coalesced,

thus we did not need to use the correction formula. Figure 4.10 shows that in comparison

to a baseline value (”No change in mean”), the declining populations produce smaller

FST values, and the populations going through linear increase, bottleneck, or exponential

increase produce larger ones. Their order is the same for all migration rates: this reflects

the rate of increase in the population sizes, that is, the higher the rate of increase, the

higher FST it produces. Note, that the bottleneck increases to the same map as the linear

increase but over half of the time, after its minimal size was reached. That being said,

the migration rate has a more profound influence on the FST values and the differences

between them produced by the different demographic histories are not significant, partially

due to the large time-scales (many coalescent events happening in the last timestep),

and due to the correlation between space and time. Thus, differentiating between these

histories merely based on the global FST is impossible.

To find out which time point in the past has the largest influence on the current

diversity, we correlated the historical population sizes to the obtained diversity (mean

within coalescence time for each currently occupied cell), see Figure 4.12. (The obtained

diversities for all scenarios can be see on Figure B.7 in the Appendix.) In case of high
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Figure 4.10: Global FST as a function of migration rate for different demographic histories. For each

migration rate, the declining population gives the smallest value, whereas the exponential the biggest

one. The population with no change in mean can be considered as the baseline value. The order of the

three populations producing the highest FST values reflect on the rate of increase in population size. The

migration rate has a more significant effect on the FST than the demography types.

migration (panel (A) in Figure 4.12) we do not observe strong correlations as there is

no spatial structure on the grid and because high migration has a strong homogenizing

effect among the cells. This produces slightly negative correlations because it enhances

the effect of the neighboring demes. On a uniform map, on average, small demes are

surrounded by big demes and big demes by small ones, thus the negative correlation. The

only stronger pattern is produced by the bottleneck: its minimal population size at half

time of the simulation shows the strongest correlation, however, it is still very small. For

low migration rates (panel (B)) the correlations behave differently. The maps are the

same, however, each cell is less connected to its neighbors thus being less influenced by

what happens at the other parts of the map: the coalescence time depends more on the

individual cell. The highest correlation is reached at the current time for all scenarios,

and the convergence to this value reflects the rate of increase in the population size.

The declining population shows a very similar pattern to that of the increase. This

is the side effect of not every individual grid cells following the same behavior, only

on average. Many declining demes vanish completely by the current time, making it

impossible to sample, therefore their effects are only indirect on the coalescence times. In

fact, what is called decrease is not a very good representation of this sort of demographic

history. However, in this chapter we will not try to find more suitable ways of describing
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population declines and we will include decline in its current form into our analysis.
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Figure 4.11: Correlations between historical population sizes and observed diversity (mean within coales-

cence times) through time. Timestep refers to the time points at which the population sizes got redefined.

The time between two timesteps is what we denoted with dt: the actual years or generation time between

two updates (here dt=2000 generations). Comparison of five demographic histories (described in Section

4.2.2). They all converge to the same current uniform map. (A) high migration scenario: m = 10−1, (B)

low migration scenario: m = 10−5. For high migration rates the correlations are slightly negative and the

different demographic histories make little difference due to the homogenizing effect of migration. The

correlations are negative because at high migration rates the neighborhood size becomes more important:

in case of a uniform map, small demes are more likely to be surrounded by big ones and vice versa (see

Figure 4.1), leading to a negative tendency in the correlations. In case of low migration rates, the current

population sizes are the best predictors of diversity as the grid cells are not spatially correlated and the

coalescence times are more dependent on the individual cells themselves.

Simple demographic histories on clustered maps

To obtain stronger correlations between the diversity and the population sizes we created

datasets where the populations are distributed in clusters and go through similar demo-

graphic events that we had before, namely a bottleneck, expansion, or decline, see Figure

B.3 in the Appendix.

The correlation between the observed diversity (shown in Figure B.8) and the popu-

lation sizes are shown in Figure 4.11 for high (A) and low (B) migration rates.

In this cases much higher values of correlations can be observed due to the strong

spatial autocorrelation of the maps. However, there is a correlation between space and

time as well: at most time steps, the spatial arrangement, the number of occupied cells

are not changing. Only the population sizes change, however, their relative size compared

to each other remains the same, thus the flat correlation. The only non-flat correlation
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Figure 4.12: Correlations between historical population sizes and observed diversity (mean within co-

alescence times). Spatially autocorrelated (clustered) maps go through various demographic histories,

similar to Figure 4.11. (A) high migration scenario: m = 10−1, (B) low migration scenario: m = 10−5.

We observe higher correlations than in case of the uniform maps, however, there are no changes in the

correlations over time due to the correlation between space and time. (The grids at different time points

have similar spatial arrangements and they only differ by a scaling factor.) The only change occurs in

case of the bottleneck and the early steps of the growing cluster. At these time points different cells are

occupied than in the rest of the time (cf. Figure 4.3). Changes in migration rates only shifts the corre-

lations up or down: weak migration enhances the effect of the individual cells as they are less connected

to their neighbors.

is produced at the beginning phase of the growing cluster and at the middle phase of

the bottleneck. These are exactly the time points, where the actual spatial arrangement

is different compared to the rest of the time (cf. Figure 4.3 in the Appendix). We find

that in case of a bottleneck, the lowest correlation is produced when the population size is

minimal, which is the opposite compared to what we have observed in case of a bottleneck

with a uniform map. (cf. Figure 4.11 (A)).

Biologically inspired demographic histories

In order to break the temporal and spatial correlations we created datasets in which

the populations are changing their sizes and locations over time. These examples are

inspired by real biological situations, such as a colonization dynamics, where the front

edge of the population constantly pushes into new territories, or when populations are

colonizing their empty neighboring cells, expanding to all available directions, merging

and forming new clusters, or when a single cluster moves along an environmental gradient,

and expands along the way, for our examples see Figure 4.3. We created demographic

histories corresponding to the reversed events: declining and receding clusters, however
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Figure 4.13: Correlations between historical population sizes and observed diversity (mean within coales-

cence times). (A) Comparison of different time resolutions in case colonization happens from seeds. We

reach the same final map in 5 timesteps (blue) or 30 step (green). Two results for two migration rates

are shown here, a smaller one 10−5 (dark) and a bigger one 10−1 (light). (B) Comparison of different

migration rates in case colonization happens from the side. The biggest correlation is observed when

the migration rate is intermediate. (C) Comparison of expanding and migrating cluster to a receding

one. The spatial and temporal correlation is broken: the correlation between the population sizes and

the diversity increases as the cluster moves into its current location. In case of the receding one we only

sampled the current population, which is small. The correlation is the strongest when the population is

only present at the sampled locations.

these exhibit the same flat correlation patterns as we observed before.

The first panel (A) in Figure 4.13 shows the effect of having 5 or 30 timesteps spanning

the same total time up until we run the simulations. We find that the finer resolution

reaches the maximum faster, whereas the coarser resolution takes longer time. This can

be explained by the fact that the first steps of the finer resolution is to colonize the cells

that are occupied in the end, whereas after it only increases in size leaving the correlation

unchanged. The diversity patterns generated by the 30 steps demography can be seen in

Figure B.9, they reflect the current population sizes.

The second panel (B) in Figure show the correlation between the diversity (Figure

4.14) and the population sizes in case of the population colonizing the grid from the side.
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Figure 4.14: Observed diversity (corrected mean within coalescence time) in case of colonization from

the side. (A) Low migration rate 10−5, (B) medium migration rate 10−3, and (C) high migration rate

10−1. Note the different scales. We see the strongest effect at the intermediate migration rate.

The high (m = 10−1)and low (m = 10−5) migration rates do not result in any spatial

pattern in the diversity, however, in case of an intermediate value (10−3) we find that the

last colonized region has a much lower coalescence time than the rest of the grid. This

is responsible for the highest correlation around timestep 20, when the right side of the

map is yet to be occupied.

Lastly, panel (C) on the same figure shows the correlations for moving and expanding,

shrinking, and receding clusters. The moving and growing cluster produces increasing

correlation over time, as the cluster slowly moves into its currently occupied location. In

case of a shrinking cluster, we could only sample the grid cells on the left side, so the

correlation is bigger at the time points where the occupied grid cells are the same as the

sampled ones, meaning the last few timesteps.

Histories based on the LPX-Bern dataset

The last set of simulations we discuss in this chapter is the one created based on the

LPX-Bern dataset, see Figure 4.4. We used a much shorter time scale (220 steps, each 4

generations long) so we can ask questions about silver fir populations that expanded their

range across Europe since the last ice age ended. Effective population sizes of trees can

be immense, corresponding to extremely long coalescence times. (Estimating the actual

number of trees is challenging but to have a rough idea of the magnitude in question: a

study by Crowther et al. (2015) suggested that there are more than 3 trillion of trees in

the world. Note, that this estimate considers all the different species across all the world,



4.3. RESULTS 91

and it is the census size, rather than the effective population size.) However, since the

last ice age, due to swift shifts in temperature, the populations of silver firs went through

various phases of bottlenecks, extinctions, and colonizations. To assess, whether despite

the short time period of 22000 years we can identify some signals of the demographic

history, we run further simulations as described in Section 4.2.2. This dataset is less

artificial than the previous ones, as some patches are more correlated with each other, yet

different parts of the maps may go through different events:.
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Figure 4.15: Observed diversity (corrected mean) for four types of demographic histories motivated by

the LPX-Bern dataset. (A) A-Shape, (B) Bottleneck, (C) Expansion, and (D) Decline. For panels (A-C)

the same cells are sampled, for panel (D) we had much fewer cells that are populated at the current time.

We found that in 25% of the simulations lineages did not coalesce. We used the correction formula to

account for this. The ancestral population sizes were defined as the total population size on the grid at

time 0. In case of (A) and (C), the ancestral population size is 9.6 · 104, in case of (B) it is 2.89 · 105

and for (D) it is 3.8 · 105. Note that these values are higher than the number of generation up until the

simulation was run, which is only 880.

In Figure 4.16, we can see that this dataset indeed breaks the strong spatial and

temporal correlations and we can actually observe patterns changing through time. We

find that in the simulations a quarter of the lineages did not coalesce, therefore we used

the correction term. In panel (A) we compare the different demography types and find

that the recent population sizes are the most informative in all cases. This should not

be directly compared to the previous results, since the effective population sizes and

the time scales are vastly different in this case. Panel (B) may shed some light on this

issue: we compare the correlations for four scalings of population sizes. We find that the

population size affects not only the height of the correlation curve but its shape too. In
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case of bigger population sizes, the older time points are more descriptive of the current

diversity, whereas when the population sizes are rather small then recent event influence

it more.
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Figure 4.16: Correlations between historical population sizes and observed diversity (mean within coa-

lescence times). (A) Population histories were generated based on the LPX-Bern dataset and run for a

much shorter time (as it meant to simulate the effect of demographic changes since the last glaciation).

This data breaks spatial and temporal correlations we have seen earlier, producing more clear patterns

in the correlations. However, the declining population still is a problem as many of them disappear and

thus cannot be sampled. B) Different scaling of population sizes in the LPX-Bern motivated A-Shape de-

mographic history. The same input file was used but at each multiplied with a scaling factor of 1, 10, 100,

and 1000. For bigger population sizes the older events are more important and for smaller population

sizes the more recent ones.

4.3.3 Addressing limitations

Effect of grid size and edges

Most of our simulations were carried out on a square grid of L×L, meaning that the demes

residing at the edges were experiencing different conditions than those in the middle.

To investigate the effect of grid size on the IBD patterns, we simulated different grid

sizes of L ∈ 10, 30, 50 under the same conditions, with deme sizes drawn from uniform

distribution, fixed in time.

Figure 4.17 A shows IBD patterns for different grid sizes. In all cases we see increase

of genetic differentiation with increasing geographic distance. However, in order to dis-

entangle the effect of the grid edges from the grid size itself, we calculated pairwise F ∗

for a set of 30 or 10 demes in the middle of the larger grids (4.17 (C-D). This shows that



4.3. RESULTS 93

rather than grid size, proximity of the edges increases the genetic distance between the

demes.
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Figure 4.17: (A) Pairwise F ∗ on different sized grids: 10 × 10, 30 × 30, 50 × 50. (B) Global FST values

together with the theoretical predictions for the different sized grids. (C-D) The genetic distance for the

largest distance classes shows an elevation. To confirm that it is indeed an edge effect, we calculated this

pairwise measure for the same amount of samples taken from the middle of a larger grid and found that

it did not appear there.

Figure 4.17 B shows that the size of the grid determines the suitability of the model

predictions for the simulated scenario. In all cases, the 2D stepping stone model is a

better approximation of the simulated scenarios than infinite island model, and larger

grids fit better to prediction of both models than small grids.

Temporal resolution, time step size and limited historical information

Our results suggest that temporal resolution (number of supplied time points over the

same period of time) plays a minor role for mean coalescence time estimates as well as

genetic distance patterns, whether it is between pairs of lineages taken from the same,

or from different demes (see Figure B.6). We find that in case of a linear increase a

coarser resolution results in a somewhat higher differentiation between cells. This happens
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because the increase in population size at a time is bigger than in case of a finer resolution,

hence the already existing differences become more pronounced.

On the other hand, limited knowledge of demographic history, with respect to the

total simulated time, imposes a major limitation on the simulated scenarios. When this

time is too short compared to the effective population sizes (either small number of time

points, or short time step), lineages do not coalesce within this time and the coalescence

time is determined mainly by the non-spatial (standard) coalescent process in a panmictic

ancestral population (see (4.4). Figure 4.18 shows that insufficient simulation time (short

time between time points) results in wrong estimates. We compared the theoretical pre-

dictions of effective population sizes with the mean coalescence times. The means used

here were calculated directly from the simulations. Ne is estimated as half of the mean

coalescence time. According to Cox et al. (2002), the effective population sizes in a a 2D

stepping stone model and in an island model are:

Ne =
L2 log(L)

4πσ2ν
, Ne = Ns

(
1 +

(s− 1)2

4Nνs2

)
, (4.9)

where ν = 4m (the total migration rate for each grid cell), and s is the number of

demes in the island model. In Figure 4.18 one can see that to obtain good estimates of FST

values one can run the simulations much shorter than to obtain correct Ne values. This is

the result of FST being calculated as a ratio, therefore the problematic part simply cancels

out. One could use formula 4.4 to correct for the large amount of simulations that did

not finish in case of short time steps, however, it does retain any additional information

for us about whether we see any effect of the spatial structure, even if it persisted only

for a short time. The formula would simply predict that the effective population size is

the census size at time 0, which we know if assuming that the population spent a much

larger time in a state of being a single panmictic population.

4.4 Discussion

4.4.1 gridCoal

Here we presented an efficient coalescent simulator for a two dimensional stepping stone

model. Individual based, forward time simulation models exist that allow for performing
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Figure 4.18: A) Global FST values calculated for a 30 × 30 grid, in case of different times at which the

lineages are pulled into a non-spatial ancestral population. B) Effective population size (Ne) as predicted

for the 2D stepping stone and island models, and from the simulations, as half of the mean coalescence

time. Note, that we used the mean of the simulations, regardless how many lineages did not coalesce

before the ancestral state started. Correcting for this would only increase Ne to the census size for the

two shorter values of dt, thus would be still uninformative. This shows that FST -s can be estimated

relatively well, even for short dt values, while getting better estimates for the effective population size

requires longer runs.

spatially explicit simulations (such as Easypop, Nemo, CDpop, SLIM). Even though it

is possible to simulate the spatial dependence between individuals in a forward time

simulation framework, such an approach is not practically feasible for two main reasons.

First, due to computational reasons. Incorporating realistic demographic and spatial

processes is inevitably limited by the computational burden of tracking a large number of

individuals in every generation. This is particularly true for large populations and long

dispersal distances (Battey et al., 2020; Ray et al., 2010). Second, forward simulators are

useful, when sufficient background knowledge is available about the biological system, such

as population census size, mating system, life history, and population allele frequencies.

gridCoal may be particularly useful for simulating spatially explicit null models when

it is sufficient to simulate summary statistics that can be derived from coalescent times, i.e.

gene diversity (within deme coalescence time or Tw), the strength of population structure

(FST ) and genetic similarity between pairs of demes (F ∗). The efficiency of gridCoal stems

from the optimized continuous time approximation of the coalescent process in msprime,

as well as from the fact that only coalescence times and no genetic data are simulated.

gridCoal may be used for similar questions as SPLATCHE3 (Currat et al., 2019). The

following options are available in SPLATCHE3, but not implemented yet in gridCoal: (i)
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simulation of long-distance dispersal events could be implemented by directly modifying

the migration matrix, (ii) simulation of heterogeneous migration rates in space and time,

and (iii) simulation of population extinction and colonization of new patches. One main

shortcoming of gridCoal is that coalescence times are closely related to gene diversity

and FST only when the mutation rate is low, and migration is possible to neighboring

demes only (Slatkin, 1985). The assumption about the mutation rate can be a problem

for practical applications using microsatellites. The assumption about the migration to

neighboring cells may also be a limitation for some organisms, such as migrating animals

or wind-dispersed plants. In these cases, it is preferable to simulate genetic data and

calculate the necessary summary statistics from these (see for example the Appendix of

Battey et al. (2020)).

From the point of view of a gridCoal end user the choice of several parameters has to

be carefully to considered. First, the choice of dt (time between two time points when

the population size is specified) is one of the most important practical consideration.

Too short dt mean that lineages would not have time to coalesce in the spatially explicit

phase of the simulations, and too long dt would imply an unnecessarily long running

time. We suggest users to perform test simulations to choose dt if it is necessary for

the research question that all lineages coalesce during the spatially explicit phase. In

contrast, if the question concerns a particular organism with a given generation time and

at a particular time period, the choice of dt should be adjusted accordingly. For example,

for the LPX-Bern motivated scenarios (Figure 4.4), we used a dt=100, 220 time steps,

and 25 years of generation time, which takes the ancestral population back to the Last

Glacial Maximum (LGM, 21 kya). Under these conditions, roughly 25% of the lineages

did not coalesce before the LGM, which is potentially partly reliable for the similarities

between the diversity maps (Figure 4.15). Second, two lineages per deme were sufficient

to estimate the summary statistics based on coalescence times, however, for simulating

genetic data, it is desired to simulate as many lineages as sampled individuals. We did not

test gridCoal using more than two lineages or for simulating genetic data. Third, grid size

is an important practical limitation for spatially explicit simulations. Many theoretical

studies use a torus to avoid edge effects. 50 × 50 grid appears sufficient to approximate

well a continuous space process (Battey et al., 2020).
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4.4.2 The role of spatial and temporal autocorrelation in genetic

data

Climatic oscillations of the Quaternary have substantially changed the distribution and

demographic history of most species (de Lafontaine et al., 2018). During warm glacial

interstadials, and, in particular, since the LGM, most temperate species colonized the

northern hemisphere via successive foundation events. Thus, spatially explicit null mod-

els would be required for landscape genetic studies of most species. However, inference

of the full demographic history of a species in space and time solely from genetic data is

extremely challenging (e.g. Beichman et al., 2018). Due to the infinitely many possible

scenarios, even simulation-based likelihood-free approaches, such as spatially explicit co-

alescent simulations (Ray et al., 2010) coupled with Approximate Bayesian Computation

become computationally challenging and may lead to inaccurate inferences (Beaumont,

2011). One of the current motivations to study and develop methods to make inferences

across both space and time is the widespread development of ancient DNA techniques, so

samples are available both across space and time.

We found that scenarios involving spatial structure, including those with high spatial

variance (Figure 4.7), provided a relatively good fit to infinite island model prediction.

FST showed the strongest deviation from the island model in the case the homogeneous

map, and the tightest match in the case of the uniform map (Figure 4.7). This is because

high spatial variance in the local effective population size breaks the spatial correlation

between demes, so the within deme coalescence times are spatially uncorrelated. However,

this scenario is unlikely to be realistic, and this result does not mean that the infinite is-

land model is a good approximation for actual biological samples (Meirmans, 2012; Wang

& Whitlock, 2003). In contrast, the stepping stone model accounts for the correlation

between neighboring demes, thus FST from the homogeneous map provided the closest

fit, and FST from the uniform map the worst fit to the theoretical predictions (Fig 4.7).

Most biologically realistic scenarios are situated in between these two theoretical models,

with a non uniform degree of correlation between the neighboring subpopulations. Meir-

mans (2012) pointed out that many of the commonly performed analyses assume spatial

independence of the data, or are based on a null model that is inherently non-spatial.

An exception is the study of Duforet-Frebourg & Blum (2014). The authors developed
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a testing procedure to evaluate if population density or locally limited migration rate

generated nonstationary of isolation by distance patterns, and use simulated data under

the stepping stone model to generate a null distribution for their test statistics.

4.4.3 Spatial null models for detecting loci under selection?

Understanding the genetic architecture of ecologically important traits and detecting loci

under selection has become a major objective of evolutionary biology with the wide-spread

appearance of population-level genomic data (Vitti et al., 2013). The ability to detect se-

lection at individual loci is heavily dependent on the assumptions of a neutral model, such

as the population size and its historical fluctuations, mating system, and also the number

and genetic architecture of the loci involved (François et al., 2016; Hoban et al., 2016).

The non-spatial, infinite island model has almost exclusively been used as a biological null

model, notably, to detect isolation by distance (Wright, 1943) and to detect loci under

selection (Lewontin & Krakauer, 1973; Beaumont & Balding, 2004). Indeed, a wide-range

of FST -based tests of selection have been developed during the past two decades. The

main motivation for developing new methods has been accounting for the confounding

signal of demography, thus trying to develop more biologically meaningful null models

than the island model used by Beaumont & Nichols (1996). Authors either suggested

a more complex demographic model (e.g. Foll & Gaggiotti, 2008; Excoffier et al., 2009),

or, proposed estimating population structure from all loci to generate a null expectation

(e.g. Frichot et al., 2013; Duforet-Frebourg et al., 2014). However, assuming a specific,

and incorrect, model of demographic history can result in extremely high false positive

rates for detecting loci under selection (Lotterhos & Whitlock, 2015). We encourage the

more widespread use of spatially continuous and stepping stone models for simulating

more biologically appropriate null models that incorporate the effects of spatial and tem-

poral autocorrelation in allele frequencies when detecting the signature of selection from

genomic data (Battey et al., 2020). Exploring the precise connection between continuous

space forward-time demographies and stepping stone backward-time models also remains

a task for the future (Kelleher et al., 2014).
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5 Future directions

This thesis describes three projects exploring how evolutionary and ecological processes

shape patterns of diversity and evolutionary outcomes. The three projects attack this

central theme by focusing on different questions and tackling them with different math-

ematical tools. Each project raises new questions and suggests directions for future re-

search. We formulate such directions for the project described in Chapter 4 in Section

5.1 and the projects from Chapters 2 and 3 in Section 5.2.

5.1 Population structure

Understanding the role of explicit spatial structure and demographic changes in time is

important for modelling real biological organisms (Battey et al., 2020). They are (mostly)

distributed across wider ranges of habitats instead of forming a single panmictic popula-

tion, and experience environmental changes resulting in population declines, expansions,

extinctions, and recolonizations. Such effects are known to have a profound effect on

diversity, yet most models used for statistical inference of demography rely on non-spatial

null-models such as the island model (e.g. Leffler et al., 2012; Sousa & Hey, 2013; Rousseau

et al., 2017).

In Chapter 4, we presented a coalescent-based simulation tool that can incorporate

realistic spatial structure and temporal changes in demography. Most of my work here

explores how demographic processes and different spatial arrangements affect current

levels of diversity. The long-term goal of this project, however, is to provide a more
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realistic null-model that can be used for inference methods and to detect loci under

selection. This goal is ambitious and the work presented here is not complete, yet it adds

a step towards a more realistic combined treatment of space and time.

One major shortcoming of the simulation presented in this thesis is the way it treats

colonization. The grid cell that is to be colonized needs to neighbor an occupied cell,

which is an unrealistic restriction if one considers species that can disperse far distances.

Currently, an empty cell gets colonized from the neighboring cells, moving lineages pro-

portionately to theirs sizes. However, one may wish to use a model where colonization

happens from a single cell, which at this time is not possible within the used software. We

also did not use any other form of migration than to the immediate neighbors, however,

different types of migrations schemes can lead to different patterns in diversity (Ibrahim

et al., 1996).

Slatkin (1977) suggested an extinction-colonization model that considers n demes con-

nected by migration. The demes go extinct or get colonized with a given rate. He sug-

gested two different models of colonization, the migrant-pool model, where the founders

arrive from different demes, and the propagule-pool model, where they originate from the

same deme. Pannell & Charlesworth (2000) pointed out that the total and within coa-

lescence time in the propagule-pool model can be significantly reduced compared to the

simple island model. This effect is less severe for the migrant-pool model. They also found

that the rate demes go extinct with has a different effect on FST depending on the type

of colonization model. Which colonization model to use may depend on the physical sizes

of the grid or the given species, nevertheless, adding different colonization schemes to our

simulation too would be important. Extinction-colonization is known to reduce diversity,

within coalescence times, and total coalescence times. However, skewed offspring num-

bers can lead to similar conclusions in the absence of such demographic history (Eldon &

Wakeley, 2009). How can we distinguish between scenarios with similar effects? Skewed

offspring numbers can be observed in many viruses, fungi, and plant species. Modelling

such organisms may require the usage of a multiple-merger coalescence process instead of

the standard coalescence model we used here (Sackman et al., 2019).

The fixation index, FST , is robust to many demographic effects (Beaumont, 2005),

and this is consistent with our observations. This can be explained by the separation-

of-timescales approximation used in structured coalescence models (Wakeley, 1999). The
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genealogy is separated into a short scattering phase (more recent history) and a long col-

lecting phase (ancestral state, which behaves as a single population). There are relatively

few mutations in the scattering phase, therefore FST depends on the collecting-phase allele

frequencies. This suggests that simulating genetic data in addition to coalescence times

may provide statistics that are more sensitive to demographic changes than FST .

5.2 Local adaptation

Metapopulation models have long been used to understand how population subdivision

affects neutral diversity (Wright, 1931; Whitlock & Barton, 1997; Charlesworth et al.,

2003) and to study extinction-colonization dynamics of a fragmented habitat (Hanski &

Mononen, 2011). Assuming heterogeneous environments, such models can also be used

to understand the process of evolutionary rescue (Uecker et al., 2014). These models

usually incorporate dependencies between population sizes and the mean fitness (Barton

& Rouhani, 1993; Hanski & Mononen, 2011), however, a more realistic treatment of these

variables is called for. Another important feature of these models is stochasticity: while

most of these models incorporate some stochasticity: drift (Whitlock & Barton, 1997) or

population fluctuation (Lande et al., 2003) they do not consider them together.

To remedy this shortcoming, we used a model based on the diffusion approximation

(Rouhani & Barton, 1993; Banglawala, 2010; Barton & Etheridge, 2018) to describe the

joint stochastic behavior of demography and genetics in a heterogeneous environment.

The model accounts for drift and population size fluctuations, and assumes polygenic

architecture for local adaptation. Finding the joint stationary distribution allowed us to

identify the conditions under which local adaptation under divergent selection in a rare

habitat is possible. The specific details and results of this work can be found in Chapter

3. Without going into details, we will mention a few results and insights we gained that

lead to new research questions and possible extensions of the model.

The most important conclusion is that hard selection makes local adaptation in the

rare habitat more difficult than soft selection. This effect becomes more pronounced the

more loci are involved: the number of selective deaths depends on the total effect of

selection (LS). Due to hard selection, the population size is reduced by the mean genetic

load, therefore the amount of drift in the population will be defined by this reduced
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population size, making the individual loci more prone to swamping. We found that when

selection is weak (LS < 1), an increase in the strength of selection helps the population to

better withstanding maladapted gene flow, while in case of stronger selection (LS > 1),

extinctions are possible even when the frequencies of locally adapted alleles have high

expectation: even a little maladaptation can result in high load causing the population

to collapse.

As the number of loci increases, the coupling between population size and allele fre-

quency increases, making adaptation less likely. This happens due to the extreme form of

the environmental heterogeneity: each allele is either advantageous or disadvantageous.

To mediate this effect, instead of using directional selection, one could introduce the model

with stabilizing selection acting on a quantitative trait. In this case, the migration load

would not depend on the number of loci, allowing adaptation to occur for a wider range

of parameters.

Our model assumes linkage equilibrium (requiring weak selection compared to recom-

bination) that enables us to trace only allele frequencies and neglect associations arising

due to allele frequencies being different at different loci across the habitats. However,

in the case of strong selection (compared to migration and drift), linkage disequilibrium

can build up in the population requiring a more realistic treatment of such associations.

We also have seen in individual based simulations that adaptation is possible for a wider

range of parameters than suggested by the analysis based on the diffusion approximation.

Incorporating linkage disequilibrium offers another possible future extension of our model.

We observed in our simulations that the time until equilibrium is reached can be long,

therefore understanding how the dynamics evolve through time could provide interesting

further insights. For example, how much time does it take until local adaptation is built

or completely destroyed? Knowledge of the joint probability distribution of population

sizes and allele frequencies at a given time would also allow us to explore how populations

react to shifts in the environment: both random or deterministic. Of course, if one can

solve the Fokker–Planck Equation of the problem, all these questions can be immediately

answered, however, this is in general not possible. A logical extension could therefore

be to apply the Dynamic Maximum Entropy method (presented in Chapter 2) to this

eco-evolutionary problem and explore the temporal changes both in population size and

allele frequency distributions.
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Mateo, L., Rech, G. E., & González, J. (2018). Genome-wide patterns of local adaptation

in western european drosophila melanogaster natural populations. Scientific Reports ,

8 (1), 1–14.

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature,

261 (5560), 459–467.

Mayr, E. (1942). Systematics and the origin of species–Columbia Univ. Press, New York .

Meirmans, P. G. (2012). The trouble with isolation by distance. Molecular Ecology ,

21 (12), 2839–2846.

Mora, T., Walczak, A. M., Bialek, W., & Callan, C. G. (2010). Maximum entropy models

for antibody diversity. Proceedings of the National Academy of Sciences , 107 (12),

5405–5410.

Nagylaki, T. (1980). The strong-migration limit in geographically structured populations.

Journal of Mathematical Biology , 9 (2), 101–114.

N̊asell, I. (2001). Extinction and quasi-stationarity in the Verhulst logistic model. Journal

of Theoretical Biology , 211 (1), 11–27.

Nei, M. (1972). Genetic distance between populations. The American Naturalist ,

106 (949), 283–292.

Nordborg, M. (1997). Structured coalescent processes on different time scales. Genetics ,

146 (4), 1501–1514.



BIBLIOGRAPHY 115

Notohara, M. (1990). The coalescent and the genealogical process in geographically struc-

tured population. Journal of Mathematical Biology , 29 (1), 59–75.

Ovaskainen, O., & Meerson, B. (2010). Stochastic models of population extinction. Trends

in Ecology & Evolution, 25 (11), 643–652.

Pannell, J. R., & Charlesworth, B. (2000). Effects of metapopulation processes on mea-

sures of genetic diversity. Philosophical Transactions of the Royal Society of London.

Series B: Biological Sciences , 355 (1404), 1851–1864.
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A

Polygenic local adaptation in

metapopulations: a stochastic

eco-evolutionary mode

A.1 Miscellaneous analytical results

Population size distribution with no selection. In the absence of selection, the

joint distribution Ψ(N, {pj}) in equation 3 (main text) can be written as the product of

independent distributions for N and each of the pj. At each locus, we simply have Wright’s

distribution for ψ[p] (Wright, 1932) under the infinite island model. The population size

distribution ψ[N ] is given by Equation 5 (main text). Integrating over ψ[N ] yields the

expected population size E(N) in any deme, given the mean N across the metapopulation.

The equilibrium can be found by equating E(N) with N ; there is always a solution

E(N) = N = 0, which corresponds to global extinction. Above a critical migration rate

Mc, this solution becomes unstable, and a second solution, corresponding to a non-zero

population size emerges. The threshold Mc is that migration rate for which the solution

N = 0 just becomes unstable, i.e., where ∂E(N)/∂N |N=0 = 1. This yields the following

equation for Mc: e
(1−Mc)2ζ

√
πζ(1−Erf [−(1−Mc)

√
ζ])Mc = 1. For large ζ, the threshold

Mc must be correspondingly small, such that we need only retain first order terms in Mc,

and can further approximate Erf [−(1 −Mc)
√
ζ] ≈ 1. This yields Mc ≈ e−ζ/(2

√
πζ) for

large ζ. Only for M > Mc is the expected population size non-zero.

The shape of the distribution ψ[N ] is governed by the parameter 2ζMN , which is the
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average number of immigrants per generation per deme. For 2ζMN < 1, the distribution

is bimodal: a fraction of demes support large populations with N ∼ 1 −M , while the

remaining fraction is close to extinction. Conversely, for 2ζMN > 1, the distribution is

unimodal: all demes support large populations, i.e., are close to carrying capacity.

We obtain an explicit expression for the migration threshold M∗ for which 2ζM∗N(M∗)

equals 1. Substituting the condition 2ζM∗N(M∗) = 1 into the expression for E(N |N) and

then equating with N gives us an explicit expression for N(M∗). For large ζ, this is

simply N ≈ 1 −M∗. Substituting this into 2ζM∗N(M∗) = 1, yields M∗ ≈ 1
2ζ

(
1 + 1

2ζ

)
.

Thus, below this second threshold, i.e., for Mc < M < M∗, the stationary distribution of

population sizes is bimodal, and there is a turnover of occupied vs. extinct demes due to

frequent extinction and recolonization events, even at equilibrium.

Allele frequency distribution and local adaptation under soft selection. In the

limit ζ → ∞, S,M → 0 (with ζS = Ks and ζM = Km held constant), we recover

the soft selection model, in which each deme is at carrying capacity (N = n/K = 1),

irrespective of adaptation. Allele frequencies now evolve independently of each other

(assuming LE). In a deme where the favored allele has selective advantage s, the allele

frequency distribution is:

ψ[p] =
1

Z1

p2Kmp−1q2Kmq−1 exp(2Ksp), (A.1)

Z1 = Γ (2Kmp) Γ (2Kmq) 1F̃1 (2mKp; 2mK; 2Ks)

E (p |p , s) = 2mKp
1F̃1 (2mKp+ 1; 2mK + 1; 2Ks)

1F̃1 (2mKp; 2mK; 2Ks)

This distribution (Wright, 1932), can also be obtained by integrating the joint distribution

in Equation 3 (main text) over N , and evaluating this integral as ζ → ∞, S,M → 0

for fixed ζS = Ks and ζM = Km. Note that the above distribution is expressed in

terms of unscaled parameters s, m (since scaling by r0 is not meaningful under soft

selection). One can now calculate the equilibrium frequency by equating the average

allele frequency in the migrant pool p with the expected allele frequency (average over

habitats) p∗ = ρE1 (p |p , s) + (1 − ρ)E2 (p |p ,−s), and solving numerically for the fixed

point.

However, we can obtain approximate analytical solution in various limits. First, con-

sider the deterministic limit (Ks � 1 and Km � 1), in which allele frequencies are
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tightly clustered about the expected value. Then the equilibrium can be found directly

from Equation 1B (main text) by setting λp = 0, ni = n = K and np = Kp. We can also

obtain a prediction for sc, the critical selection required for a polymorphic equilibrium

in the deterministic limit, by noting that just above the threshold sc (i.e, when a poly-

morphic equilibrium first appears), the difference between allele frequencies in the two

habitats must be very small, and the allele frequency in the common habitat close to 1.

Thus retaining only lowest order terms in 1− p1 and p1 − p2 in Equation 1B (main text)

and solving for p1, p2 gives sc ≈ m(1 − 2ρ). Note that this prediction just provides a

lower bound on sc, as we do not expect the deterministic analysis (which ignores variance

of allele frequencies) to be accurate close to the threshold. Just above the threshold sc,

we have q → 0, such that the distribution of allele frequencies is necessarily bimodal,

making it necessary to account for drift. In general, we expect drift to further degrade

local adaptation in the rare habitat, thus pushing the selection threshold sc above the

deterministic prediction.

The opposite limit is that of weak migration Km → 0, in which any locus (within a

deme) are nearly fixed for one or other allele. The rates of fixation towards and away from

an allele with advantage s, which is at frequency p in the migrant pool, are in the ratio
1/2∫
0

ψ[p]dp/
1∫

1/2

ψ[p]dp (for a deme in the rare habitat). Since most of the weight of the

distribution ψ[p] is concentrated near p = 0 and p = 1 (for Km� 1), we can approximate

the integrand in the numerator (or in the denominator) by Taylor expanding ψ[p] near

p = 0 (or p = 1). It then follows that the rates of fixation towards and away from the

favored allele are in the ratio ∼ (p/q)e2Ks. The expected frequency of the locally favored

allele is simply the (normalized) probability of fixation of this allele (Equation 7 in the

main text).

Semi-deterministic approximation for LS . 1. Under weak coupling (LS . 1),

population sizes are approximately normally distributed about the expected value E(N),

irrespective of local adaptation (inset, Figure 3A, main text). This allows us to ap-

proximate the stationary distribution using a simpler ‘semi-deterministic’ approximation:

we treat population size as being determined by the expected frequencies (i.e, neglect

fluctuations in N), and assume that allele frequencies are distributed according to this

deterministic population size.
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In practice, we replace the population-averaged log fitness rg by its expected value E[rg]

in Equation 1A (main text), neglect the stochastic term λn, and solve for the equilibrium

size as a function of E[rg]. Further assuming that migration does not significantly affect

population size, so that terms proportional to m in Equation 1A (main text) are also

negligible, the scaled population sizes in the two habitats are Ndet
1 ∼ Max[1−LS1E1[q], 0]

and Ndet
2 ∼ Max[1 − LS2E2[p], 0]: population sizes are depressed relative to carrying

capacity in proportion to the genetic load. To obtain E1[p] and E2[p], we assume that

allele frequencies are distributed as in a model with fixed and deterministic population

sizes Ndet
1 and Ndet

2 . Then:

Ei
(
p
∣∣Np ,Ndet

i , Si
)

= 2ζMNp
1F̃1

(
2ζMNp+ 1, 2ζMN + 1, 2ζSiN

det
i

)
1F̃1

(
2ζMNp, 2ζMN, 2ζSiNdet

i

)
Ndet

1 = Max[1− LS1E1[q], 0] and Ndet
2 = Max[1− LS2E2[p], 0]

(A.2)

As before, the equilibrium Np and consequently the expected allele frequencies can be

determined iteratively from: Np = (1− ρ)E1[p]Ndet
1 + ρE2[p]Ndet

2 .

A.2 Asymmetric selection across habitats

In the main text, we considered scenarios where alternative alleles are favored in the

different habitats, but selection per locally favored allele is the same in each habitat

(S1 = S2). Here, we briefly consider the more general scenario where alternative alleles at

a given locus may be selected more or less strongly in one of the two habitats (S1 6= S2).

For simplicity, we still focus on the case where selective effects are equal across loci within

a given habitat (i.e, S1,j = S1 and S2,j = S2 for all j).

Figure A.1 depicts (S1, S2) combinations that allow simultaneous local adaptation (i.e.,

a polymorphic equilibrium) across the two habitats. For a given selection strength per

locus, S1, in the common habitat, we determine two selection thresholds, S2,a and S2,b,

such that polymorphism is only possible for S2 (i.e., selection strengths per locus in the

rare habitat) lying between these thresholds. For S2 < S2,a, alleles favored in the common

habitat fix, while for S2 > S2,b, alleles favored in the rare habitat tend to fix. Note that

the threshold S2,b exists, i.e., strong selection in favor of alleles in the rare habitat can

drive fixation of such alleles across the entire metapopulation, only if selection per locus

in the common habitat is sufficiently weak.
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Figure A.1: Local adaptation in scenarios with asymmetric selection across habitats. Critical selection

thresholds ζS2,a (solid lines) and ζS2,b (dashed lines) in the rare habitat versus selection per locus, ζS1,

in the common habitat for (A) low migration (ζM = 0.1) and (B) intermediate migration (ζM = 1.0).

Alleles favored in the common habitat fix across the entire metapopulation for S2 < S2,a (below solid

line); alleles favored in the rare habitat fix across the entire metapopulation for S2 > S2,b (above dashed

line); a polymorphic equilibrium corresponding to local adaptation across the two habitats is possible

for S2,a < S2 < S2,b, i.e., for parameter combinations lying between the solid and dashed lines. The

different colors correspond to different degrees of coupling between population size and mean fitness: soft

selection, i.e., no coupling (black), hard selection with L = 10 (blue) and L = 20 (red) loci; larger L

corresponds to stronger coupling (for fixed ζS1). The region in parameter space allowing for simultaneous

local adaptation shrinks with increasing L; at sufficiently high migration, there is no (S1, S2) combination

for which polymorphism is possible with L = 20 loci in (B). Selection thresholds under hard selection are

obtained by determining fixed points numerically (Equations 3,4 in main text) using the joint distribution

Ψ[N, p]; selection thresholds under soft selection are obtained via fixed point determination using the allele

frequency distribution ψ[p] (Equation (A.1)).

Figure A.1 shows the two selection thresholds for soft selection (black), and hard

selection involving 10 (blue) or 20 (red) divergently selected loci. As before, soft selection

is most conducive to simultaneous local adaptation. Under hard selection, the parameter

combinations allowing for polymorphism become more restrictive with increasing L: this

is consistent with the fact that larger L corresponds to stronger coupling between mean

fitness and population size, which increases extinction probabilities in one or other habitat.

This effect is exacerbated at higher migration rates (see Figure A.1(b)): in this case,

there is no (S1, S2) combination for which polymorphism is possible with L = 20 loci (for

ζ = 50).
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A.3 Individual-based simulations

The theoretical predictions detailed above are based on the diffusion framework, which

involves three approximations, namely, continuous time, an infinite number of demes and

linkage equilibrium (see also Model and Methods). We test the validity of each assumption

by comparing analytical predictions with two types of individual-based simulations.

In simulations of the first kind, we simulate a single focal deme belonging to the rare

habitat by drawing the number of immigrants per generation from a Poisson distribution

with mean mN , and assigning the ‘1’ allele at (any) locus j in each migrant genome

independently with probability Npj/N . Here, Npj and N are the means across the

whole metapopulation, and are obtained numerically from the diffusion approximation

(as described above). These simulations thus respect the infinite island assumption, since

migrants are drawn from an effectively infinite pool, characterized by deterministic N

and Np, which are unaffected by stochastic fluctuations within the focal deme. Moreover,

choosing the state of each locus in each migrant genotype independently ensures LE

within the migrant pool. This set of simulations thus allows us to test the consequences

of discrete time and LD within demes. For a given set of scaled parameters (ζ, S1, S2,M),

we expect the results of these simulations to approach the predictions of the diffusion

approximation as r0 is reduced while holding the scaled parameters constant.

In simulations of the second kind, we simulate the full metapopulation consisting of

nD demes, of which (1 − ρ)nD and ρnD belong to the first and second habitat respec-

tively. These simulations relax the assumption that the migrant pool is infinite and in

LE. We test the importance of the infinite deme assumption by varying nD. We also

test the effects of LD within the migrant pool, by comparing simulations with the same

scaled parameters but different r0. LD in the migrant pool (which reflects LD across the

whole metapopulation, when demes belonging to different local habitats are simultane-

ously adapted at many loci) is expected to be insignificant when s = r0S is weak relative

to recombination. Thus, as in the first set of simulations, we expect the behavior of

individual-based simulations to converge to the diffusion approximation (which assumes

LE) as r0 is reduced (for a given combination of scaled parameters). However, the rate of

convergence as r0 → 0 can be quite different for the two set of simulations, for instance,

if our analytical results are more sensitive to some assumptions than to others.
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Since individual-based simulations of large numbers of demes (e.g., in simulations of

the second kind) with large carrying capacities (ζ � 1) and polygenic architectures are

computationally intensive, we focus on one set of parameters and explore how the critical

migration threshold for loss of local adaptation is affected by deviations from these three

assumptions for this set.

Continuous time approximation. To test the validity of the continuous time approx-

imation, we simulate a single focal deme in the rare habitat subject to immigration from a

migrant pool whose state is assumed to follow the predictions of the diffusion framework

(simulations of the first kind). Figure A.2(a) and A.2(b) show the average allele frequency

(averaged across all loci) and the average population size (averaged over 100 replicates)

from individual-based simulations for various r0. The unscaled parameters s and m are

decreased and the carrying capacity K increased as we reduce r0, such that the scaled

parameters ζ = r0K, S = s/r0 and M = m/r0 remain constant. Figure A.2(a) and A.2(b)

show that even for r0 ∼ 0.5, individual-based simulations only deviate moderately from

the diffusion prediction (solid line), with the agreement between the two improving for

lower r0.

The slightly higher frequencies of locally adaptive alleles in simulations (than pre-

dicted theoretically) at larger r0 may reflect the importance of O(s2) terms (which the

continuous time approximation neglects) but also that the focal deme is not strictly in

LE, as individuals with more recent immigrant ancestry will typically carry deleterious

alleles at multiple loci (even when deleterious allele frequency is low). This kind of LD

can often be adequately accounted for by assuming that immigrant alleles are introduced

at an effective migration rate that is lower than the actual migration rate, due to their

association with low-fitness genetic backgrounds (Barton & Bengtsson, 1986; Banglawala,

2010).

Finite number of demes. We also carry out individual-based simulations of metapop-

ulations with a finite number nD of demes (simulations of the second kind). Figures A.2(c),

A.2(d)) show simulations with 100 versus 500 demes (circles versus triangles) of which

20% belong to the rare habitat, along with theoretical predictions for an infinite number

of demes. For any given set of parameters, the average frequency of locally favorable alle-



128
APPENDIX A. POLYGENIC LOCAL ADAPTATION IN METAPOPULATIONS: A

STOCHASTIC ECO-EVOLUTIONARY MODE

0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003 0.004

ζ=50 L=20 S1=S2=0.05 ρ=0.2

av
er
ag
e
al
le
le
fr
eq
ue
nc
y
in

ra
re

ha
bi
ta
t

scaled migration rateM=m/r0

r0=0.5
r0=0.25
r0=0.125
r0=0.0625

(a)

0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003 0.004

av
er
ag
e
po

pu
la
tio

n
si
ze

in
ra
re

ha
bi
ta
t

scaled migration rate M

(b)

0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003 0.004 0.005

ζ=50 L=20 S1=S2=0.05 ρ=0.2

av
er
ag
e
al
le
le
fr
eq
ue
nc
y
in

ra
re

ha
bi
ta
t

migration rateM=m/r0

r0=0.1 nD=100
r0=0.1 nD=500
r0=0.05 nD=100
r0=0.05 nD=500

(c)

0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003 0.004 0.005

av
er
ag
e
po

pu
la
tio

n
si
ze

in
ra
re

ha
bi
ta
t

migration rateM = m/r0

(d)

Figure A.2: Comparison of individual-based simulations with predictions of the diffusion approximation

(Equations 3 and 4 in the main text). (A)-(B) Average allele frequency and population size in the rare

habitat versus scaled migration rate M = m/r0 from individual-based simulations of a focal deme which

receives a Poisson-distributed number of immigrants (on average mN) in each generation. Migrants are

sampled from an infinite pool in LE; allele frequencies in this pool are equal to Np/N (at each locus).

The quantities N and Np are calculated using the diffusion approximation for the infinite island model

(Equations 3,4 in the main text). Results of individual-based simulations are shown by circles, the different

colors corresponding to different values of r0. All other unscaled parameters are varied as we vary r0

such that the scaled parameters remain constant at ζ = 50, S1 = S2 = 0.05. Solid line shows predictions

of the diffusion approximation. (C)-(D) Average allele frequency and population size in the rare habitat

versus scaled migration rate M = m/r0 from individual-based simulations of a metapopulation with nD

demes, where circles and triangles represent results for nD = 100 and nD = 500. For each nD and M , we

simulate two sets of unscaled parameters, one with r0 = 0.1 (red) and the other with r0 = 0.05 (blue),

both corresponding to the same scaled parameters: ζ = 50 and S1 = S2 = 0.05. The solid black line

shows predictions of the diffusion approximation (assuming LE and infinitely many islands). The dashed

lines show the predictions of a more elaborate approximation that partially relaxes the LE assumption by

accounting for the first generation selective disadvantage of immigrant alleles originating from different

habitats due to association with other negatively selected alleles (see text). Red and blue dashed lines

correspond to r0 = 0.1 and r0 = 0.05 respectively. The frequency of the rare habitat is ρ = 0.2 and the

number of selected loci is L = 20 in all simulations.
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les in the rare habitat (and consequently population size) is slightly higher for nD = 500,

compared to nD = 100. Moreover, the migration threshold Mc itself is also somewhat

higher for larger nD. However, these effects are modest in magnitude.

Linkage equilibrium. For a given nD, we further compare populations with different

values of the baseline growth rate: r0 = 0.05, K = 1000 vs. r0 = 0.1, K = 500, (red

vs. blue symbols), both of which are described by the same scaled parameters (ζ = 50,

S1 = s1/r0 = s2/r0 = S2 = 0.05) and should thus exhibit the same (scaled) migration

threshold Mc for loss of local adaptation (provided that the assumptions underlying the

diffusion approximation are valid). However, as seen in figure A.2(c), Mc differs signifi-

cantly between the two set of simulations and is also much higher than the prediction of

the diffusion approximation (solid black line).

As discussed above, our theoretical framework ignores LD within demes as well as LD

within the migrant pool. Neglecting LD within demes (i.e., neglecting the fact that allele

frequencies among residents of a deme may be different from average allele frequencies

within the migrant pool at multiple loci) appears to make only a modest difference to

the results (Figures A.2(a) and A.2(b)). However, LD within the migrant pool has a

far stronger effect: neglecting such LD significantly underestimates the parameter ranges

over which local adaptation can be simultaneously maintained across habitats (Figures

A.2(c), A.2(d)).

LD within the migrant pool essentially implies that immigrant genotypes entering a

particular deme may either be perfectly adapted (if they originate from other demes be-

longing to the same habitat) or severely unfit (if they emerge from demes belonging to

the other habitat). Consequently, an immigrant allele experiences an immediate (first-

generation) selective disadvantage which depends on the fitness of its genetic background

in the recipient deme; this selective disadvantage is halved in each subsequent generation

(Robertson, 1961). Thus, the effective migration rate of alleles differs from m and more-

over, depends on both the habitat from which the allele originates and the habitat into

which it migrates.

As a first approximation, we assume that immigrants entering any deme are drawn

from two distinct pools (corresponding to the two habitats) with relative contributions 1−

ρ and ρ. The ‘effective’ number of migrants from the ith pool to a deme within the common
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(or rare) habitat is assumed to be mNie
−r0SL[1−Nipi/Ni] (or mNie

−r0SL[Nipi/Ni]) respectively.

Similarly, the average number of immigrant alleles (at a given locus) from the ith pool to a

deme within the common (or rare) habitat is assumed to be mNipie
−r0S(L−1)[1−Nipi/Ni] and

mNipie
−r0S(L−1)[Nipi/Ni]. Thus, in this formulation, the effective number of immigrants

from each habitat is weighted by the first-generation fitness of immigrants (from that

habitat) in the recipient deme. Similarly, the effective number of immigrant alleles at a

particular locus is weighted by the marginal fitness of this allele, which depends on the

frequencies of immigrant alleles at the other L−1 loci as well as their selective effects in the

recipient deme. Note also that as we consider smaller and smaller unscaled parameters

r0, s, . . . (red vs blue symbols), while holding scaled parameters ζ, S, . . . constant, the

weights e−r0SL[1−Nipi/Ni], e−r0SL[Nipi/Ni] approach 1, so that this approximation converges

to the theory in the main paper (which assumes LE).

Assuming that immigrants come from two distinct pools (corresponding to the two

distinct habitats) results in a slightly more complicated theoretical approximation. Fixed

points can be obtained numerically as before, but now by equating the expected values in

each habitat to the corresponding average in the migrant pool derived from that habitat

(i.e., by solving for E(N1) = N1, E(N2) = N2, E(N1p1) = N1p1, E(N2p2) = N2p2).

The results of this approximation are depicted by dashed lines in Figures A.2(c) and

A.2(d). Note that the critical migration rates obtained via this approximation (dashed

lines) are significantly higher than those predicted by ignoring LD altogether (solid lines),

but still somewhat lower than Mc found in individual-based simulations (points). A

more accurate approximation can be obtained by accounting for the fact that immigrant

alleles originating from differently adapted demes experience a selective disadvantage that

persists over multiple generations (and not just the first generation, as assumed above).

We defer details to future work.
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B

gridCoal

B.1 Simulation inputs

In order to run the simulations, it is necessary to define the following input files and

parameters.

Demographic history The demographic history of the collection of subpopulations

distributed on a grid is represented by a matrix of size T ×n, T being the number of time

points one wishes to define the population sizes at, and n being the number of grid cells.

The matrix contains the population sizes of the grid cells at given time points. Each row

is the flattened two dimensional grid, indexed from 0 to n − 1, defining the sizes of the

subpopulations. The first line shall be the oldest time point. In msprime, a population is

not allowed to be of size 0. In our case, however, we do not want to exclude the possibility

that populations can go extinct and get recolonized, even repeatedly, therefore we define

0 populations to have a technically 0 size, 10−10.

List of sampled cells. A list of cells from which the samples are taken is required.

1. These cells must not be empty at the final time point (presence), but could be empty

in the past. For efficiency, two samples are taken from each sampled deme. It is more

efficient to run more replicates with fewer samples than fewer replicates with more samples.

In the coalescent process, the waiting time until the next coalescence event happens is

1Mind the indexing of the sampled cells, this also starts from 0.



132 APPENDIX B. GRIDCOAL

present

past

...

past

present

...x
xx

X-samples
x

x xx

Ancestral 
population

Figure B.1: Input data preparation.

exponentially distributed with mean proportional to the number of lineages. Thus, in the

beginning several coalescence events happen in quick succession, yet the mean coalescence

time of the deme will be largely dominated by the times that the last remaining few

samples took to coalesce.

Migration matrix A two-dimensional migration matrix capturing backward migration

is needed for running the simulation itself, however, as an input file we only need the

forward migration matrix, M 2. We assume that M remains constant in time because it

depends on the dispersal ability of the species. The element (Mi,j) defines the fraction

of the lineages in population i that migrates to population j. However, the backward

migration matrix BM changes through time, as it depends on the actual population sizes

of the neighboring cells. BMi,j(t) defines the fraction of lineages in population i at time

t that has parents in population j, thus can be calculated as

BMi,j =
Mj,iNj(t− 1)

Ni(t)
. (B.1)

The fact that the population size changes and migration matrices are not updated at

every generation, but at arbitrary time steps, represents a significant gain in computing

time in comparison to other tools such as SPLATCHE (Ray et al., 2010).

2The diagonal elements of M must be zero, required by msprime.



B.1. SIMULATION INPUTS 133

Adjacency matrix This matrix has the same format as the migration matrix and it

defines which cells are connected to which other ones by migration. It is needed so that the

migration matrix can be defined as a 0 matrix and we still have this spatial information.

Time periods and generation times Time is measured in generations in msprime,

therefore we need to specify the generation time of the population at hand. We define

the generation time as the time at which the species comes to a reproductive age. This

factor sets a scale for the results. Note, that dt and generation time are both given in

actual years. The value dt expresses how coarse our data is in time.

Ancestral populations At the time point, beyond which the demography is unknown,

all lineages are merged into spatially non-explicit ancestral populations where they fol-

low the standard coalescent process. We assume either a single, or multiple panmictic

ancestral populations with specified sizes and a very low rate of migration between them

(10−8). Furthermore, it is necessary to specify which of the cells originate in which an-

cestral population.

Basic parameters One can define the recombination and mutation rates, however, we

chose these values always to be 0.

Other In order to avoid errors later in the simulations, we implemented a few checks

in the beginning about the sizes of the matrices, the occupancy of sampled cells, and so

on. For this, the number of rows in the grid also needs to be specified. To allow easier

parallel runs, one can set a scaling parameter that scales the ancestral population sizes

accordingly, and each run has its own serial number.

Demographic events

All demographic changes, including population size and migration rate changes, need

to be defined as a demographic events at a given time point, going backwards in time,

and collected to a list, which is used by msprime for the coalescent simulation. This is

automatically done by gridCoal provided the file containing the demographic history.
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At each generation, we calculate the backward migration matrix as described earlier -

if it differs from the migration matrix of the previous generation, we update it.

Similarly, we update the population sizes, with one additional constraint. If a deme

has individuals at a given time point t but was empty in the previous time step t − 1,

we need to define the source of those individuals. We do it such that we define a mass

migration event: from this cell to its neighboring 4 cells, proportional to their sizes in the

previous generation. Thinking forward in time, this corresponds to the idea of an empty

cell being colonized by its neighbors, proportional to their sizes.

B.2 Additional information, plots and tables
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Figure B.2: Mean of the simulations against the corrected mean (Equation 4.4) for different step length

and various migration rates. Note the differing axes: they are on a logarithmic scale and have very

different ranges (especially for smaller dt values). In case of small time steps (A-B), most simulations do

not coalesce, therefore in Equation 4.4 the second term dominates, while for large time steps (C-D) it is

the first term.
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Best-estimate Ne. The demographic history of silver fir in the past 22,000 years was

obtained from the LPX-Bern dynamic global vegetation model with a resolution of 1◦ by

1◦ Lat/Lon (Ruosch et al., 2016; Sitch et al., 2003). The model predictions cover the time

period from the Last Glacial Maximum (LGM) to today. The output of LPX-Bern is the

foliar projective cover (FPC), which is the fraction of a grid cell that is covered by the

species. The model was forced with climate anomalies and included competition between

common tree species and plant functional types. In the following we shall refer to one

grid cell as one population. We estimated the population census size from FPC assuming

that a mature tree occupies 40m2. Census size was used to estimate Ne using the hybrid

approach of Waples et al. (2011) implemented in the software AgeNe. This approach

takes into account life-history characteristics of the species estimated from a population

matrix. We calculated an average population matrix from 32 available at least 20 years

long studies from related Abies species (A. concolor, A. magnifica, and A. sachalinensis)

in the COMPADRE data base (Salguero-Gómez et al., 2015). The generation time was 42

years and net reproductive rate 1.16 in the average population matrix. AgeNe estimated

0.038 as a scaling factor to obtain Ne from census size. We assumed that this scaling

factor was constant in space and time. In the following, we shall refer to these Ne values

of the populations as best-estimate Ne.
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Figure B.3: Clustered maps going through various demographic histories. The columns are 30, 23, 15, 7

steps back in time and the current one on the right. The rows are: fixed cluster, bottleneck, expansion,

decline.
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Figure B.4: Within (A), between (B), and average mean coalescence times (C), when migration rate

is high (m = 1). Different colors represent different underlying maps: no variance, low variance, high

variance, and clustered. Note that the mean coalescence time fits the prediction well, whereas the within

coalescence time is slightly below the expectation. This is due to the fact that although the migration

rate is very high, considering only lineages in the same cell retains the spatial structure.
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Homogeneous map

N and m 10−8[%] 10−5[%] 10−4[%] 10−3[%] 10−2[%] 10−1[%] 100[%]

10 0. 0.02 0. 0. 0. 0. 0.

50 0.0033 0.12 0. 0. 0. 0. 0.

100 0. 0.193 0. 0. 0. 0. 0.

250 0.00667 0.4233 0. 0. 0. 0. 0.

500 0.013 0.9967 0. 0. 0. 0. 0.

Poisson map

N and m 10−8[%] 10−5[%] 10−4[%] 10−3[%] 10−2[%] 10−1[%] 100[%]

10 0. 0.0167 0. 0. 0. 0. 0.

50 0. 0.09 0. 0. 0. 0. 0.

100 0. 0.2 0. 0. 0. 0. 0.

250 0. 0.4867 0. 0. 0. 0. 0.

500 0.0033 0.9867 0. 0. 0. 0. 0.

Uniform map

N and m 10−8[%] 10−5[%] 10−4[%] 10−3[%] 10−2[%] 10−1[%] 100[%]

10 0. 0.01072 0. 0. 0. 0. 0.

50 0. 0.1 0. 0. 0. 0. 0.

100 0.003572 0.178571 0. 0. 0. 0. 0.

250 0.00333 0.37 0.006667 0. 0. 0. 0.

500 0.01667 0.88 0.07667 0. 0. 0. 0.

Clustered map

N and m 10−8[%] 10−5[%] 10−4[%] 10−3[%] 10−2[%] 10−1[%] 100[%]

10 0. 0.00741 0. 0. 0. 0. 0.

50 0. 0.03704 0. 0. 0. 0. 0.

100 0.0037037 0.0703704 0. 0. 0. 0. 0.

250 0.00371 0.1778 0. 0. 0. 0. 0.

500 0.01852 0.3778 0. 0. 0. 0. 0.

Table B.1: Percentage of simulations for which the within coalescence time is higher than the time at

we pull all lineages together into a single non-spatial ancestral population. It is the average of 1000

independent runs and over all the sampled cells. At each simulation we used the same row to sample,

which results in 30, 28, or 27 cells, depending on the number empty cells. The time at which the lineages

are pulled into a single population of size 1 is 109 years, or 40000000 generations.
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Figure B.5: Global FST values against migration rates, as predicted by the theory (Equation (4.7) and

(4.8)) and calculated from simulations.
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Figure B.6: Linear increase for two different time resolution: demographic changes were defined at 5, 25

steps apart, spanning over the same total time. The means are calculated directly from the simulations,

as we have run it long enough.
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Figure B.7: Observed diversity, i.e. corrected mean within coalescence time for the grid. The columns

correspond to migration rates 10−5, 10−3 and 10−1 and the rows to the different demography types.
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between neighboring cells, whereas for the other cases one can observe more differentiation across the

panels.
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Figure B.9: Corrected mean within coalescence time for (A) Migrating and growing cluster, (B) Shrinking

cluster, and (C) receding cluster. The pattern produced is very similar to the current distribution of the

species.


