Snapshot-based Synchronization: A Fast
Replacement for Hand-over-Hand Locking

Eran Gilad!, Trevor Brown?, Mark Oskin®, and Yoav Etsion!

1 Technion — Israel Institute of Technology
erangi@cs.technion.ac.il, yetsion@tce.technion.ac.il
2 Institute of Science and Technology, Austria
3 University of Washington, Seattle, USA

Abstract. Concurrent accesses to shared data structures must be syn-
chronized to avoid data races. Coarse-grained synchronization, which
locks the entire data structure, is easy to implement but does not scale.
Fine-grained synchronization can scale well, but can be hard to reason
about. Hand-over-hand locking, in which operations are pipelined as they
traverse the data structure, combines fine-grained synchronization with
ease of use. However, the traditional implementation suffers from inher-
ent overheads.

This paper introduces snapshot-based synchronization (SBS), a novel
hand-over-hand locking mechanism. SBS decouples the synchronization
state from the data, significantly improving cache utilization. Further, it
relies on guarantees provided by pipelining to minimize synchronization
that requires cross-thread communication. Snapshot-based synchroniza-
tion thus scales much better than traditional hand-over-hand locking,
while maintaining the same ease of use.

1 Introduction

Hand-over-hand locking® is a fine-grained synchronization technique that pre-
vent data races among concurrent operations. Commonly applied to pointer-
based data structures, operations lock nodes as they traverse the data structure.
In order to prevent bypassing, a node’s lock is released by the owning operation
only after it acquires the next node’s lock. Generally, operations that traverse
the same path are pipelined. As the pattern guarantees a node will not be con-
currently accessed by two threads, data races are avoided.

The fine nature of hand-over-hand locking exposes more parallelism. Given
each thread locks at most two nodes at once, multiple threads can operate on
a data structure concurrently. Threads are ordered, namely one is forced to
wait for another, only when trying to access the same node. In a tree, ordering
always applies to the root, as locks are associated with nodes. However, threads
operating on different branches need not be ordered once their paths diverge.

The concept of hand-over-hand locking is appealing: fine-grained locking ex-
poses large amounts of parallelism, and ordering provides thread safety. Ordering

4 Also known as lock coupling, chain locking, latch coupling, crabbing etc.

also makes hand-over-hand locking easy to apply to sequential data structures
(that have properties discussed later), providing a quick way to parallelize ex-
isting sequential code. Indeed, the popular textbook The Art of Multiprocessor
Programming [1] uses hand-over-hand locking to demonstrate fine-grained lock-
ing. However, naive hand-over-hand locking suffers from a few inherent limita-
tions, causing it to be rarely used in the real world.

Poor cache utilization: Memory latencies are the most significant short-
coming of hand-over-hand locking. Acquiring and releasing per-node locks cause
memory state modifications. As a thread makes its way to a certain node, it
modifies the state of each node it passes. The modification is not performed on
the data that the data structure is designed to hold (keys, values and pointers)
but rather to the state of each node’s lock. Consequently, even read-only accesses
still require changes to memory for each node accessed. In the memory system,
writes to a node that are performed on one core invalidate any cached copies of
that node on other cores. Accessing nodes that are not in the cache can be two
orders of magnitude slower than accessing cached nodes. Given a large enough
number of threads operating on the same data structure, the overhead incurred
by poor cache utilization can exceed the potential benefits of parallelism.

Entrance bottleneck: Locking each node during traversal provides thread
safety, but also turns the entrance to the data structure into a bottleneck. Con-
sider operations on a tree: as every thread must go through the root, the root’s
lock effectively serializes all accesses. While parallelism increases as threads di-
verge in the tree, the serialized entrance caps potential speedup on parallel exe-
cution. The effect of the bottleneck is determined by the number of threads and
the depth of the tree, which yield a ratio between threads actively traversing the
tree and threads stalled at the entrance.

Extra locking: As each node is associated with a different lock, moving
from one node to the next requires both to be locked at the beginning of the
transition. Albeit for a short while, the extra locking delays the divergence of
threads that share an initial prefix of their paths. This initial prefix always
includes the entrance of the data structure, which should be evacuated quickly.

1.1 Snapshot-based Synchronization

Snapshot-based synchronization is designed to address the shortcomings of basic
hand-over-hand locking while maintaining the same ease of use. The fundamental
insights driving snapshot-based synchronization are: (1) the number of locations
that must be locked at any given moment is bound by the number of threads,
not the number of nodes; and (2) as long as nodes are locked in the correct order,
a thread cannot overtake (namely, race with) the thread in front of it, even if it
somehow gets a delayed view of the first thread’s traversal.

Building on those insights, snapshot-based synchronization decouples locks
from nodes and associates them with threads. Each lock is then dynamically
assigned to a single memory location, which represents the location of the node
currently accessed by the thread. At any given moment, the set of locked loca-
tions can be considered to be a snapshot of all threads’ locations. As depicted in

OO0 00§
> G GG

ra— () =)
PR (PR

(a) T3 enters. Snapshot: T at (b) T3 can’t access Nz - snap- (C) After loading T ’s new loca-
Na, To at N3 shot indicates T7 might be there tion, T3 can proceed

Fig.1: (a) Thread T3 creates a snapshot when entering tree; (b) uses it to detect
potential collision; and (c) moves on after ensuring 77 is no longer at Ns.

Figure 1, a thread that obtains such a snapshot when entering the data structure
can query it throughout the traversal; as long as a node it wishes to access is not
in the snapshot, the thread can freely access that node. If the node’s location
happens to exist in the snapshot, the current thread must wait until the thread
at that location moves on.

Snapshot-based synchronization’s main component is therefore the snapshot,
which marks the locations of all other threads when taken. As threads move on,
the snapshot quickly becomes outdated. However, observing outdated location
can merely cause unnecessary waits; necessary waits to threads traversing the
same path will never be missed. Crucially, since threads that complete an oper-
ation can reenter the data structure, a snapshot cannot be used indefinitely, and
a thread must obtain a fresh snapshot at the beginning of each operation.

To facilitate location-based synchronization, threads must report their where-
about in a place that is visible to other threads. Reporting should take place
often to reduce unnecessary stalls caused by false synchronization. However, the
use of snapshots allows location reports to be seldom read — only when a snapshot
indicates possible contention must a thread reload the locations of the others.

2 Snapshot-based Synchronization Design

In this section we describe the basic design of snapshot-based synchronization
and its core components. While the basic design overcomes most of the limita-
tions of hand-over-hand locking, some are rooted deep in the pipelining pattern.
Optimizations that address those limitations are discussed on the next section.

Hand-over-hand locking pipelines threads that traverse the same path. In
other words, a thread can access a node that was locked by the thread in front
of it only once the leading thread moved on and unlocked the node. Bypassing
within such a pipeline is impossible, so data races are avoided. Threads whose
paths diverge are no longer synchronized, consequently hand-over-hand locking
is only applicable to data structures that have no cycles (and algorithms that
introduce no such cycles by, say, revisiting a node during a rebalancing phase).
Snapshot-based synchronization is designed as a substitute for hand-over-hand

Table 1: API for hand-over-hand vs. snapshot-based synchronization

Operation Hand-over-hand Snapshot-based sync.

Lock head head—>lock() moveToHead (head)
Before accessing node node—>lock() waitForLoc(node)
After access granted prev—>unlock() moveToLoc(node)

locking, and its correctness is guaranteed only when the latter is safe. Graph
data structures that have cycles, for instance, can neither be synchronized using
hand-over-hand nor using snapshot-based synchronization.

The central component of snapshot-based synchronization is the snapshot.
As depicted in Figure 1, when a thread enters the data structure, it records
the location of all other threads. Before the thread moves to another location,
it checks if the snapshot recorded any other thread at that location. If so, it
must not access the location until it verifies the other thread has moved. This
verification is done by obtaining the latest location of the other thread (and
possibly additional ones, as discussed later). Consequently, each thread must
report its current location once it moves.

Snapshot-based synchronization manages two kinds of data: private (per
thread) and public (shared). Snapshot-based synchronization reduces cross-thread
communication by serving most reads from private data, falling back to reading
public data only when encountering possible contention. Each thread stores the
snapshot in private memory. The current location of each thread, on the other
hand, is stored publicly and is available to all other threads. However, public
data is read only when a snapshot must be created or updated.

Snapshot-based synchronization leverages modern hardware features to re-
duce overheads: loads from local caches are much faster than loads from main
memory, and stores do not stall subsequent operations. The snapshot is read
often but can be efficiently cached. Threads frequently report their locations
publicly, but due to micro-architecture features such as out-of-order execution
and store buffers, location reports do not stall subsequent instructions even if
they incur a cache miss.

2.1 Interface and algorithms

Snapshot-based synchronization’s interface is similar to hand-over-hand lock-
ing’s, and converting code using the latter to the former is straightforward.
However, the underlying operations differ significantly, and the interface naming
represents the actual semantics. Briefly, when using snapshot-based synchro-
nization, operations must start with a call to moveToHead. Before accessing a
location, waitForLoc must be called to make sure no other thread is present
at that location. Lastly, moveToLoc is used to publish the new location of the
thread, preventing others from accessing it. Table 1 compares the two interfaces.

moveToHead Since most synchronization is done using the private snapshot,
it is crucial that the snapshot is sufficiently up-to-date. In particular, a snapshot
must include the location of each thread that entered the data structure before the
current thread and has not completed its operation yet. Using a snapshot that
does not include all threads ahead might yield a race.

The pipelining pattern must be maintained by snapshot creation as well.
A snapshot is used to ensure a thread does not bypass (race with) threads in
front of it. Given all threads enter the data structure via a single entry point, a
snapshot must be created right before attempting to enter and must record all
threads ahead. However, the snapshot needs not include threads that are behind
in the pipeline — it is up to those threads behind to make sure they stay behind.

The moveToHead operation is implemented as follows:

1. Establish ordering among threads competing at the entrance

2. Once the leading thread allows, create a snapshot by gathering the locations
of all threads ahead

3. Wait for the entrance to become available

4. Move to the entrance and update current location

5. Allow following thread to create a snapshot

Two threads must not create a snapshot at the same time. Doing so will cause
both to miss each other, and since one will eventually enter ahead of the other,
the missing location will cause a race.

A significant part of entering the data structure requires serialization. Mea-
sures must therefore be taken to mitigate the bottleneck. Those measures are
detailed in Section 3. moveToHead has no equivalent operation in hand-over-
hand. Instead, in hand-over-hand the order in which threads lock the root of
the data structure determines the order in which they will lock (and access) all
other nodes, until their paths diverge.

waitForLoc Before a thread can access a location, it must make sure no other
thread will concurrently modify that location. To do so, the thread must:

1. Check if the snapshot contains any other thread at that location

2. If no thread was observed at that location, waitForLoc can safely return
3. Else, the current thread must wait until the thread ahead moves

4. Update its snapshot

The minimal update of the snapshot depends on the modifications done by
the data structure algorithms. Consider a thread 77, which executes an operation
that does not modify the layout of the data structure (e.g., updates a value in a
binary search tree), and a thread T5 which is behind T;. If T5 waits for T} before
accessing some location, only T3i’s location must be updated in 75’s snapshot.
However, if T7 deletes a node, it might prevent T, from waiting to some Tj that
Ty observed at the deleted node. In such cases, T5’s snapshot must be recreated.

SO

(a) Ty locks all Ny, preventing (b) T; locks the pointer to Na,
To from moving towards Ng allowing T to move to N3

Fig. 2: Locking nodes vs. locking pointers. The latter allows more parallelism.

moveToLoc Moving to the next location is simple: a thread just updates its
publicly visible location. This move is equivalent to locking the next node and
unlocking the previous one in hand-over-hand. The overhead, however, is notice-
ably lower: the state of involved nodes is not changed, and only one location is
locked at any given moment. Hand-over-hand’s excessive locking is due to the
lack of support for a single atomic modification of multiple memory locations in
current hardware®, which does not allow two locks to be modified at once.

2.2 Locking granularity

Hand-over-hand relies on locks, and must therefore bind a lock to every object
it wishes to protect. The most natural locking granularity is one lock per node®.
Locking a node prevents all its fields from being accessed by other threads.
Consider a tree in which node N7 points to No and Nj, depicted in Figure 2a.
Thread T3 locks N1, and is now considering whether it needs to delete Ny (which
will also involve modifying the pointer on Np). Thread T3 is heading towards
N3, but must pass through N;. While neither No nor the pointer to Ny will be
accessed by Th, per-node locking will force T5 to wait until 77 unlocks Nj.

Snapshot-based synchronization does not use lock objects, and instead (se-
mantically) locks memory locations. Consequently, locking can be done at any
desired granularity. The one we had found most useful is per pointer. Consider
the previous example; as depicted in Figure 2b, on a per-pointer synchronization
scheme, T7 would have locked the pointer to N5. T3 could have then check Np’s
key, determine it needs to go to N3, and freely move on without being stalled by
T:1. On lower parts of the tree, threads usually diverge and locking granularity
has little effect. However, contention is a major problem at the top of the tree,
and locking pointers eliminates unneeded synchronizations.

5 Hardware transactional memory does allow multiple modifications to happen effec-
tively atomically, but is not ubiquitous. We discuss software TM in Section 4.

5 A lock array can service any number of nodes using some hash function but might
cause deadlocks, and in our experiments, not faster than storing locks as node fields.

3 Optimized Implementation

The basic snapshot-based synchronization scheme eliminates hand-over-hand’s
poor cache utilization and excessive locking overheads. However, the root of the
data structure remains a bottleneck. Creating a snapshot involves reading the
current locations of all threads. Since the locations are constantly being updated
by the reporting threads, creating a snapshot incurs multiple cache misses. Given
snapshots cannot be created in parallel, taking a snapshot before entering the
data structure serializes execution for a large portion of the run. In this section,
we discuss major optimizations that improve snapshot-based synchronization’s
efficiency, and in particular mitigate the entrance bottleneck.

3.1 Copying snapshots

Creating a snapshot involves accessing data constantly updated, incurring mul-
tiple cache misses. To avoid creating a snapshot from scratch, a thread can copy
the snapshot used by the immediate leading thread. If the complete snapshot
resides on a single cache line, copying incurs a single cache miss.

Snapshots can only be copied from the thread that entered immediately be-
fore the thread that needs the snapshot. Consider threads 77, T and T3 entering
a data structure, in this order. T}’s snapshot is created first, thus does not in-
clude T5’s location. If T3 copies from 77, it might race with T5. On the other
hand, if T5 copies T5’s snapshot it might obtain a somewhat stale view of T7’s
location. However, the worst outcome would be the detection of false collisions.
Importantly, care must be taken to avoid using snapshots after re-entrance into
the data structure: if 75 completes its operation, enters the data structure again
and tries to copy 73’s snapshot before T3 gets to copy 13’s, neither will have
a valid snapshot. This is a variant of the ABA problem, which we solve using
the conventional tool — timestamps. Once a thread detects it copied an invalid
snapshot, it simply falls back to creating a new one from scratch.

3.2 Deferring snapshot creation by trailing

A thread that immediately follows a previous thread does not need a snapshot;
we call this state trailing. Due to the nature of pipelining, no thread can appear
between two consecutive threads. As illustrated in Figure 3, while T trails 77, it
can rely on T} to resolve any collision with threads in front of them, allowing T5
to merely ensure it does not bypass T7. T» can thus defer obtaining a snapshot
until trailing breaks. Trailing thus eliminates the need to create a snapshot be-
fore entering, significantly shortening the bottleneck. Further, trailing eliminates
most contention points involving more than two threads, akin to MCS locks [2].

While T5 trails T7, T5 examines the location of T3 instead of checking the
snapshot. As long as T} is still at the location T wishes to move to, 175 will
spin; once 17 moves, T5 can immediately follow. While this cross-thread commu-
nication is more expensive than checking a private snapshot, it is cheaper than
creating one. In the heavily-contended entrance, quickly evacuating the entrance

S
@ @ — @x @\M
e =

r—

Fig.3: Local gates order threads coming from the same NUMA node, creating
chains. The global gate orders the entrance of chains into the data structure.
While trailing, prev.’s position is examined directly without using a snapshot.

e
&

reduces stalls. Trailing stops as soon as T» cannot be sure 77 passed through the
memory location it tries to access, whether because 77 moved too fast to the
next location or because 77 turned another way. Once trailing stops, 75 cannot
rely on 77 and must create (or copy) a snapshot before moving on.

3.3 NUMA awareness

On NUMA systems, accessing remote memory (associated with another NUMA
node) is significantly slower than accessing local memory. Keeping as much cross-
thread communication within the same NUMA node can therefore reduce mem-
ory latencies. While snapshot-based synchronization is agnostic to the memory
management of the hosting data structure, adding NUMA-awareness to the syn-
chronization mechanism reduces its overhead.

Snapshot-based synchronization employs a technique that groups threads
of the same NUMA node, orders them internally, and lets them enter the data
structure in this exact order. The mechanism, depicted in Figure 3, resembles the
one used in cohort locks [3]: a per NUMA node gate is first used to create chains
of threads belonging to that NUMA node. The head of each chain (namely the
first thread) competes over the global gate only with other heads. Once acquired,
the head closes its following chain and announces the last thread in the chain
via the global gate. The head of the next chain (probably coming from another
NUMA node) will trail the last thread in the chain in front of it.

Threads within the same chain all run on the same NUMA node. Trailing and
snapshot copying among those threads are noticeably faster than across NUMA
nodes. The ratio between local and remote communication is determined by the
length of the chains. Interestingly, if entering the data structure becomes slow
(e.g., due to some external interference) and threads accumulate at the entrance,
longer chains will be created. This in turn will provide more local communication,
allowing threads to leave the head quicker, reducing entrance time.

3.4 Reader synchronization

Read-only operations such as lookups are usually easier to parallelize, as they
need not synchronize with other readers (synchronization with write operations

is required, of course). In a hand-over-hand algorithm, readers can thus safely
bypass each other. This freedom could be of great use when threads enter the
data structure. Unfortunately, the straightforward readers optimization breaks
other optimizations. For instance, if writer W7 trails reader Ry, and R; bypasses
R5, then Wy will race with Rs. Similarly, writers cannot copy snapshots from
readers as they might include stale locations of other readers. Our implemen-
tation includes a restricted set of reader optimizations. We do not elaborate on
them due to lack of space, and leave further reader optimizations for future work.

3.5 Putting it all together

The optimized snapshot-based synchronization overcomes inherent limitations
of hand-over-hand: Poor cache locality is minimized by decoupling synchro-
nization state from the data structure and using a snapshot to further reduce
cross-thread communication. The entrance bottleneck is mitigated by using
NUMA-aware algorithms, deferring snapshot creation and reusing snapshots.
Extra locking is avoided by allowing an atomic move from one location to an-
other and by locking pointers rather than nodes. Reader synchronization is
reduced by allowing readers to bypass each other. The following section shows
snapshot-based synchronization is indeed faster than hand-over-hand locking.

4 Evaluation

In this section we compare the actual performance of snapshot-based synchro-
nization (SBS) to alternative synchronization mechanisms, revealing both strengths
and weaknesses. The alternative mechanisms are (a) traditional hand-over-hand
(HOH) and (b) software transactional memory (STM). Like SBS, STM is a
synchronization mechanism external to the data structure, which can be used to
parallelize sequential data structures. State-of-the-art concurrent data structures
can be much faster, but synchronization is deeply integrated in the structures
and associated algorithms. We therefore do not consider them comparable.

4.1 Experimental setup

We perform a series of micro-benchmarks, running a mix of operations on binary
trees. We consider both integers (INT') and strings (STR) as key types — while
the former is more common in the literature, the latter is very common in real
programs, and sometimes exhibits a different behavior. All evaluations execute a
similar number of inserts and deletes, keeping the data structure size stable; we
also study the effect of the initial size. Lastly, read-write ratio on all benchmarks
is 50-50. We do not analyze other ratios due to space limitations; in short, our
evaluation finds snapshot-based synchronization favors write-heavy workloads.
The server used has 2 NUMA nodes and Intel Xeon E5-2630 processors run-
ning at 2.4Ghz. Hyperthreading, Turbo Boost and adjacent cache line prefetching
were disabled. Each core has 32KB L1 and 236KB L2 caches; each processor has

—&— SBS-INT —e— STM-INT —#— HOH-INT —&— SBS-INT —e— STM-INT —#— HOH-INT
—&— SBS-STR —4— STM-STR —+— HOH-STR —&— SBS-STR —4— STM-STR —#— HOH-STR

o
o

&

=
©w
o

—

o
—_
(=]

Million Ops/sec
£
Million Ops/sec
[V
[=}

S
=
2
=

(=]

2 4 6 8 10 12 14 16 2 4 6 8
Number of threads Number of threads

o

Fig.4: Scalability using 2 NUMA Fig.5: Scalability using 1 NUMA node

nodes (init: 106) (init: 10°)
I SBS-INT Bl STM-INT B HOH-INT I SBS-INT Bl STM-INT B HOH-INT
mem SBS-STR BN STM-STR EEE HOH-STR mem SBS-STR BEE STM-STR BEE HOH-STR
o 60 o 40
% 5.0 &
= =
£40 &30
< 30 < 90
£ 20 2
= = 1.0
= 10 S
0.0 0.0
100000 1000000 10000000 100000000 0 25 50 75
Initial tree size Read ops percent

Fig. 6: Effect of initial size (16 threads) Fig.7: Effect of read-write ratio (16
threads, 10° init size)

a 20MB L3 cache; and the system has 62GB of RAM. Code was written in C++
and compiled with GCC 7.2, which also provided the STM support.

4.2 Scalability

Figure 4 presents the throughput of all workloads running on a varying number
of threads, evenly distributed between the 2 NUMA nodes. Evidently, HOH does
not scale past 10 threads, and synchronization overhead overwhelms performance
as the number of threads increases. On the INT workloads, SBS is slightly slower
than STM. However, while STM’s scalability is consistent, SBS reaches its peak
at 14 threads. The STR workloads demonstrate different trends, as more work is
performed during traversal (mostly string comparisons, involving multiple mem-
ory accesses in a loop). Extending traversals reduces contention at the entrance,
allowing SBS to continue scaling past 16 threads. STM, however, suffers from
enlarged read and write sets, causing throughputs to drop.

Figure 5 presents scalability when running on a single NUMA node. The re-
sults emphasize the effect of NUMA: as cross-core communication is much faster
when running on the same NUMA node, HOH and SBS scale much better. Most

of the gain comes from entering the tree faster due to reduced cross-thread com-
munication latencies. STM, which does not require communication at that point,
sees little gain in this scenario. In summary, HOH and SBS are more NUMA
sensitive than STM. SBS performs best on most scenarios, but short traversal
times (INT) with long communication (NUMA) cap scaling at 14 threads.

4.3 Effect of data structure size

The size of the data structure affects the duration of the traversal. As indicated
by the difference between INT and STR workloads, traversal time correlates to
entrance contention, which in turn determines scalability. Figure 6 presents the
throughput of the 6 benchmarks when running on trees of different sizes - 10°,
105, 107 and 10%; all using 16 threads. Accessing more memory locations as the
tree grows causes STM throughput to decrease. SBS, however, has about the
same throughput on the smaller 3 sizes. This somewhat unexpected behavior is
clearer when examining the results in the opposite direction: SBS throughput
does not increase as the tree size becomes smaller, indicating the size is not the
dominant factor. For SBS, 16 threads is the scalability limit on 107 trees; on
smaller trees, entrance is even more contended, canceling the benefit of shorter
traversals. In summary, SBS is more appropriate for trees of size 107 and higher
when using simple INT keys. When using STR keys that increase SBS traversal
times and STM’s read sets, SBS consistently performs best.

4.4 Effect of read-write ratio

Since in our snapshot-based synchronization implementation readers enter the
data structure one-by-one, entrance bottleneck has a similar effect on scalability
regardless of reader-write ratio. Figure 7 shows that the write-only throughput of
SBS is equivalent to STM, but STM becomes faster as the percent of read oper-
ations is increased. Further optimizing readers could make SBS scale better, but
the implementation is non-trivial. Instead, snapshot-based synchronization can
be integrated with mechanisms such as RCU [4], combining multiple concurrent
writers with wait-free readers.

4.5 Entrance bottleneck analysis

Serialization at the entrance limits parallelism; we now dive deeper into this part
of execution. In our implementation, execution can be divided into 3 parts: (1)
initial ordering, (2) accessing the head, and (3) traversing the tree. The first and
last parts are mostly parallel. Accessing the head, however, can be done by a
single thread at a time. A thread can not access the head until it detected the
previous thread moved to another node. Single-threaded execution thus takes
place between the time one thread detects it can access the head to the time the
following thread detects it can move on.

Before a thread can allow the following one to access the head, it needs to
move to another node. If the thread is the first in a chain, it must first make the

Table 2: Breakdown of overhead between accessing the head and allowing the
following thread to access the head.

Operation Overhead Frequency
Evacuate global gate Cache misses on local Once per chain
read and remote write
Create a snapshot Varies Rare, due to trailing
Await node after head Varies Always
Move to node after head Sometimes cache Always
miss on local write
Arrival of updated Cache miss on read Once per chain remote
location to next thread miss, otherwise local miss

global gate available for the next chain once it accessed the head. It must then
move to the other node and report its new location. Lastly, the following thread
must read that report. The overheads of this sequence are detailed in Table 2.
In our experiments, on a 16-thread write-only SBS execution the sequence took
an average of 700 cycles. Multiplying this sequence latency by the throughput of
3M ops/s yields 2.1G cycles. The latency incurred by the traversal of the head
is the execution’s critical path, and matches our processors 2.4GHz frequency.
In summary, Scalability is limited by the rate in which threads access the head.
Our implementation minimizes accesses to remote memory, but cache misses
that involve communication with a core residing on the same NUMA node incur
significant overhead. Serialized execution time can be reduced by either elimi-
nating operations or using faster cross-core communication; x86 MONITOR and
MWALIT, once available in user mode, are certainly of interest [5].

5 Related Work

The hand-over-hand locking scheme (also known as lock coupling, latch cou-
pling, crabbing etc.) was first described by Bayer and Schkolnick [6] as a way
to construct concurrent B-trees. It has since been used to parallelize various
data structures. As the major synchronization mechanism, it was used in linked
lists [1], B-trees [7], skip lists [8], relaxed red-black trees [9] and a Treap [10]. As a
utility for a certain part of the algorithm, it was also used in priority queues [11],
B+-trees [12,13], Bt"*_trees [14, 15] and hash tables [16].

Data structures with properties allowing hand-over-hand synchronization
have been defined as Unipath [17] and Dominance Locking [10]. Those properties
allow serializability verification [18,19] and even automatic parallelization [10].

Locking individual memory locations has been supported in various forms.
Lock-box [20] provided architectural support for SMT threads to lock particu-
lar addresses without using conventional synchronization mechanisms. The Syn-
chronization State Buffer [21] extended this idea to a many-core system, while
vLock [22] offered a software solution. TL2 [23] incorporated an array of locks in
an STM library, allowing a fixed (yet large) set of locks to protect any number of

locations. ROKO [24] synchronized accesses using versioning memory locations,
and O-structures [25] added renaming to eliminate false dependencies.

6 Conclusions

Hand-over-hand locking is a widespread fine-grained synchronization technique.
The simple interface makes hand-over-hand attractive, and it has been used to
parallelize multiple data structures. Furthermore, the method is simple to reason
about, allowing verification and automatic parallelization. However, fine-grained
locking comes at a price: locking causes cache misses on every node access. As
all threads enter at the same place, the top of the data structure becomes a
bottleneck that disallows scaling past a small number of threads.
Snapshot-based synchronization is a drop-in replacement for hand-over-hand
locking, but uses a very different synchronization mechanism under the hood.
Leveraging the data structure layout, private snapshots allow threads to avoid
data races without communicating with other threads. Leveraging modern hard-
ware, communication minimally interferes with the surrounding algorithm. In
our evaluation, on large data structures snapshot-based synchronization is on
average 2.6x faster than hand-over-hand locking and 1.6x faster than STM.
While its interface is simple and easy to use, Snapshot-based synchroniza-
tion’s implementation is considerably more complex than simple per-node locks.
Albeit undesired in general, complexity brings about many optimization oppor-
tunities. We consider the implementation described in this paper a baseline: other
implementations, possibly using newer hardware features, can make snapshot-
based synchronization scale even better. In particular, reducing data structure
entrance time and relaxing reader-to-reader synchronization are of interest.

Acknowledgements This research was funded, in part, by Google and the
Israel Ministry of Science, Technology, and Space. Trevor Brown was supported
in part by the ISF (grants 2005/17 & 1749/14) and by a NSERC post-doctoral
fellowship. Eran Gilad was supported by the Hasso-Plattner Institute fellowship.

References

1. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc. (2008)

2. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. on Computer Systems 9(1) (1991)

3. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: A general technique for de-
signing numa locks. In: Symp. on Principles and Practices of Parallel Programming
(PPoPP). (2012)

4. Desnoyers, M., McKenney, P.E., Stern, A.S., Dagenais, M.R., Walpole, J.: User-
level implementations of read-copy update. IEEE Trans. on Parallel and Dis-
tributed Systems 23(2) (Feb 2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Akkan, H., Lang, M., Tonkov, L.: Hpc runtime support for fast and power efficient
locking and synchronization. In: Intl. Conf. on Cluster Computing. (2013)

Bayer, R., Schkolnick, M.: Concurrency of operations on b-trees. Acta informatica
9 (1977)

Rodeh, O.: B-trees, shadowing, and clones. ACM Trans. on Storage 3(4) (2008)
Séanchez, A., Sdnchez, C.: A theory of skiplists with applications to the verification

of concurrent datatypes. In: NASA Formal Methods Symp. (NFM). (2011)
Ohene-Kwofie, D., Otoo, E.J., Nimako, G.: Concurrent operations of o02-tree on
shared memory multicore architectures. In: Australasian DB Conf. (ADC). (2013)
Golan-Gueta, G., Bronson, N., Aiken, A., Ramalingam, G., Sagiv, M., Yahav, E.:
Automatic fine-grain locking using shape properties. In: Object-oriented Program-
ming, Systems, Languages, and Applications (OOPSLA). (2011)

Tamir, O., Morrison, A., Rinetzky, N.: A heap-based concurrent priority queue

with mutable priorities for faster parallel algorithms. In: Intl. Conf. on Principles

of Distributed Systems (OPODIS). (2016)

Srinivasan, V., Carey, M.J.: Performance of b+ tree concurrency control algo-
rithms. Very Large Databases Journal (JVLDB) 2(4) (1993)

Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value
storage. In: European Conf. on Computer Systems (EUROSYS). (2012)
Evangelidis, G., Lomet, D., Salzberg, B.: The hb”-tree: A multi-attribute index
supporting concurrency, recovery and node consolidation. Very Large Databases
Journal (JVLDB) 6(1) (1997)

Jaluta, 1., Sippu, S., Soisalon-Soininen, E.: Concurrency control and recovery for
balanced b-link trees. Very Large Databases Journal (JVLDB) 14(2) (2005)
Ellis, C.S.: Distributed data structures: A case study. IEEE Trans. on Computers
1985

(Gilad? E., Mayzels, T., Raab, E., Oskin, M., Etsion, Y.: Towards a deterministic
fine-grained task ordering using multi-versioned memory. In: Computer Architec-

ture and High Performance Computing (SBAC-PAD). (2017)

Attiya, H., Ramalingam, G., Rinetzky, N.: Sequential verification of serializability.

In: Symp. on Principles of Programming Languages (POPL). (2010)

Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Symp. on Principles and Practices of Parallel
Programming (PPoPP). (2006)

Tullsen, D.M., Lo, J.L., Eggers, S.J., Levy, HM.: Supporting fine-grained syn-
chronization on a simultaneous multithreading processor. In: Symp. on High-
Performance Computer Architecture (HPCA). (1999)

Zhu, W., Sreedhar, V.C., Hu, Z., Gao, G.R.: Synchronization state buffer: Sup-

porting efficient fine-grain synchronization on many-core architectures. In: Intl.
Symp. on Computer Architecture (ISCA). (2007)

Yan, J., Tan, G., Zhang, X., Yao, E., Sun, N.: Vlock: Lock virtualization mechanism
for exploiting fine-grained parallelism in graph traversal algorithms. In: Intl. Symp.

on Code Generation and Optimization (CGO). (2013)

Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In: Intl. Symp. on
Distributed Computing (DISC). (2006)

Segulja, C., Abdelrahman, T.: Architectural support for synchronization-free de-

terministic parallel programming. In: Symp. on High-Performance Computer Ar-
chitecture (HPCA). (2012)

Gilad, E., Mayzels, T., Raab, E., Oskin, M., Etsion, Y.: Architectural support
for unlimited memory versioning and renaming. In: Intl. Parallel & Distributed
Processing Symp. (IPDPS). (2018)

