
BRITTLE FRACTURE SIMULATION WITH

BOUNDARY ELEMENTS FOR COMPUTER GRAPHICS

by

David Hahn

June, 2017

A thesis presented to the

Graduate School

of the

Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

The thesis by

David Hahn

titled

Brittle Fracture Simulation with Boundary Elements for Computer Graphics

is approved by (all signatures omitted in online version):

Supervisor: Chris Wojtan, IST Austria

Committee member: Thomas Schrefl, Danube University Krems, Austria

Committee member: Herbert Edelsbrunner, IST Austria

Defense chair: Björn Hof, IST Austria

I hereby declare that this thesis is my own work and that it does not contain other
people’s work without this being so stated; this thesis does not contain my previous
work without this being stated, and the bibliography contains all the literature that I
used in writing the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved
by my thesis committee, and that this thesis has not been submitted for a higher degree
to any other university or institution.

I certify that any republication of materials presented in this thesis has been approved
by the relevant publishers and co-authors.

David Hahn

June, 2017

c© 2017

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

vii

Abstract

This thesis describes a brittle fracture simulation method for visual effects applications.
Building upon a symmetric Galerkin boundary element method, we first compute
stress intensity factors following the theory of linear elastic fracture mechanics. We
then use these stress intensities to simulate the motion of a propagating crack front at
a significantly higher resolution than the overall deformation of the breaking object.
Allowing for spatial variations of the material’s toughness during crack propagation
produces visually realistic, highly-detailed fracture surfaces.

Furthermore, we introduce approximations for stress intensities and crack opening
displacements, resulting in both practical speed-up and theoretically superior runtime
complexity compared to previous methods. While we choose a quasi-static approach
to fracture mechanics, ignoring dynamic deformations, we also couple our fracture
simulation framework to a standard rigid-body dynamics solver, enabling visual effects
artists to simulate both large scale motion, as well as fracturing due to collision forces
in a combined system.

As fractures inside of an object grow, their geometry must be represented both in the
coarse boundary element mesh, as well as at the desired fine output resolution. Using
a boundary element method, we avoid complicated volumetric meshing operations.
Instead we describe a simple set of surface meshing operations that allow us to pro-
gressively add cracks to the mesh of an object and still re-use all previously computed
entries of the linear boundary element system matrix. On the high resolution level,
we opt for an implicit surface representation. We then describe how to capture frac-
ture surfaces during crack propagation, as well as separate the individual fragments
resulting from the fracture process, based on this implicit representation.

We show results obtained with our method, either solving the full boundary element
system in every time step, or alternatively using our fast approximations. These results
demonstrate that both of these methods perform well in basic test cases and produce
realistic fracture surfaces. Furthermore we show that our fast approximations sub-
stantially out-perform the standard approach in more demanding scenarios. Finally,
these two methods naturally combine, using the full solution while the problem size
is manageably small and switching to the fast approximations later on. The resulting
hybrid method gives the user a direct way to choose between speed and accuracy of
the simulation.

viii

Acknowledgements

First of all, let me thank my committee members, especially my supervisor, Chris
Wojtan, for supporting me throughout my PhD. Obviously, none of this work would
have been possible without you.

Furthermore, Thank You to all the people who have contributed to this work in various
ways, in particular Martin Schanz and his group for providing and supporting the
HyENA boundary element library, as well as Eder Miguel and Morten Bojsen-Hansen
for (repeatedly) proof reading and providing valuable suggestions during the writing
of this thesis.

I would also like to thank Bernd Bickel, and all the members – past and present – of his
and Chris’ research groups at IST Austria for always providing honest and insightful
feedback throughout many joint group meetings, as well as Christopher Batty, Eitan
Grinspun, and Fang Da for many insights into boundary element methods during our
collaboration.

As only virtual objects have been harmed in the process of creating this work, I would
like to acknowledge the Stanford scanning repository for providing the “Bunny” and
“Armadillo” models, the AIM@SHAPE repository for “Pierre’s hand, watertight”, and
S. Gainsbourg for the “Column” via Archive3D.net. Sorry for breaking these models
in many different ways.

Finally, a big Thank You to my entire family for always supporting me.

This work has received funding from IST Austria and the
European Research Council (ERC) under the European Union’s
Horizon 2020 programme (grant agreement no. 638176).

https://graphics.stanford.edu/data/3Dscanrep/
http://visionair.ge.imati.cnr.it/ontologies/shapes/view.jsp?id=735-Pierre_s_hand_-_Watertight_model
https://archive3d.net/?a=download&id=e4dc928f

ix

List of Publications appearing in this thesis

Hahn, D. & Wojtan, C.
High-resolution Brittle Fracture Simulation with Boundary Elements
ACM Transactions on Graphics, 2015, 34, 151:1-151:12

Hahn, D. & Wojtan, C.
Fast Approximations for Boundary Element Based
Brittle Fracture Simulation
ACM Transactions on Graphics, 2016, 35, 104:1-104:11

Accompanying source codes and videos available online.

https://doi.org/10.1145/2766896
https://doi.org/10.1145/2897824.2925902

x

xi

Contents

1 Introduction 1
1.1 Related work . 4
1.2 Terminology . 7
1.3 Problem statement . 9

2 Background 10
2.1 Notation and vector calculus . 10
2.2 Continuum mechanics . 11
2.3 Finite and boundary element methods 14
2.3.1 Weak form and FEM . 14
2.3.2 Boundary integral equations and BEM 16
2.4 Linear elastic fracture mechanics . 21
2.5 Fracture simulation . 27

3 Design choices and overview 31

4 High-resolution fracture simulation 33
4.1 Algorithm overview . 34
4.2 Elastostatics with fractures . 35
4.3 Surface stress evaluation . 36
4.4 Crack initiation . 38
4.5 Crack propagation . 40
4.5.1 Mixed mode crack front motion . 41
4.5.2 High-resolution crack propagation . 44
4.5.3 Inhomogeneous materials . 48

5 Linear-runtime approximations 52
5.1 Stress intensity factors . 53
5.2 Crack opening displacements . 58
5.3 Scaling and speed up . 60

6 Geometry and topology handling 62
6.1 Level-set surfaces and mesh conversion 63
6.2 Implicit fracture surfaces . 66
6.3 Finding fragments . 68
6.4 Visualizing results . 71

7 Coupling to rigid body dynamics 75
7.1 Regularizing the Neumann problem . 76
7.2 Balanced tractions from collision impulses 77
7.3 Generating rigid bodies for fragments 79

xii

8 Results 82
8.1 Basic test cases . 83
8.2 Further examples . 89

9 Conclusion 98

References 101

Appendix 107
A List of fracture simulation parameters 107
B Pseudo-code listings . 109

xiii

List of Tables

1 Results without rigid-body coupling . 95
2 Results without rigid-body coupling: material parameters 96
3 Results with rigid-body coupling . 97

List of Figures

1 Eulerian and Lagrangian crack propagation 2
2 Comparison of results to a real-world image 3
3 Surface terminology . 8
4 Loading modes . 22
5 Crack-tip stress . 23
6 Crack propagation angle . 24
7 Fracture shape per loading mode . 26
8 DualBEM vs. COD-SGBEM . 28
9 Poisson effect . 37
10 Interior- and surface stress evaluation 38
11 Crack initiation . 40
12 Approximate crack propagation angle 42
13 Compressive fracture . 43
14 High-resolution crack propagation . 44
15 Displacement correlation distance . 44
16 Fracture meshing . 46
17 Valid crack propagation directions . 49
18 Controlling fracture behaviour with strength and toughness 50
19 Bending a notched bar, basic material models 51
20 Basic fracture situations . 54
21 Basic stress intensity estimates . 55
22 Basic stress intensity estimate: failure cases 56
23 Improved stress intensity estimates 1 58
24 Improved stress intensity estimates 2 60
25 Speed-up due to fast estimators . 61
26 Overview of geometry representations 63
27 Crack front intersection tests . 67
28 Removing “spindles” . 70
29 Overview of output modes . 72
30 Breaking Π due to gravity . 75
31 Regularizing the Neumann problem . 81
32 Edge-cracked cube: full BEM results 84
33 Edge-cracked cube: fast approximate results 84
34 Cube with an inclined centre crack . 85
35 Bending a notched bar, granular material model 86

xiv

36 Breaking a chain link . 87
37 Breaking Π due to collisions . 88
38 Tearing the armadillo . 89
39 Controlled splitting of the armadillo . 89
40 Smashing the bunny . 90
41 Smashing the bunny with two-way rigid-body coupling 90
42 Bunny on a column . 91
43 Breaking a window . 92
44 Further results 1 . 94
45 Further results 2 . 94

1

1 Introduction

Computer generated fractures have become a popular visual effect in movies and video
games, from thin cracks in ice or glass to violent explosions of buildings or entire
planets. Consequently, visual effect artists face an ever increasing demand for dramatic
and convincingly realistic fracture effects.

Animating these fracture effects by hand can be challenging for a number of reasons,
such as scale, surface detail, and complex fragment motion. Consequently, computer
graphics researchers have developed diverse methods for fracturing virtual objects. The
majority of these fracture methods focuses on fragmentation, i.e. breaking a (large)
object into many smaller pieces (fragments). The main challenge for fragmentation
stems from the various scales involved in the problem: when a big object shatters into
a great number of pieces, the size of these fragments may range from tiny specks of dust
to chunks that are almost as big as the original object. Purely geometric approaches use
either pre-fractured models or pre-defined fracture patterns and focus on how to apply
these fractures to produce the desired output geometry. On the other hand, simulation
methods (such as mass-spring systems, finite and boundary element methods, or mesh-
less continuum mechanics discretizations) approximate the underlying physics of the
fracture process.

Apart from computing how an objects breaks into many pieces, the fracture surfaces
themselves can be of interest for visual effects (even if the object does not yet break
apart). In many materials, fracture surfaces exhibit very distinctive small-scale details.
These surface details not only reveal information about how the object broke, but also
create a very distinctive visual impression making fractures easily distinguishable from
(for example) clean cuts. The visual appearance of fractures strongly depends on how
the material deforms just before it breaks. We primarily distinguish elastic deforma-
tion, where the object returns to its original shape once all forces are removed, from
plastic deformation, where the object remains permanently deformed in the absence of
external forces. Most materials behave elastically as long as the deformation is small
enough and plastically afterwards. The question then is whether the material fails
before or after a plastic response happens: if it breaks while only deforming elastically,
the fracture process is called brittle, otherwise the fracture is referred to as ductile.
Also note that in some materials the rate at which they undergo plastic deformation
may be quite limited, such that deforming an object slowly is more likely to produce
plastic deformation and eventually ductile fracture, while a sudden deformation may
lead to brittle fracture.

Interestingly, in materials that have a high stiffness, such as steel, glass, rock, or con-
crete, brittle fractures can grow very quickly: the crack propagation speed is roughly
on the order of one kilometre per second; see also eq. (2.31). Consequently, in order
to simulate this fast fracture process with sufficient accuracy to produce small-scale
surface details we need a very high temporal resolution for such materials. Fully elas-
todynamic simulations are able to handle global motion, as well as local deformation

2 1 Introduction

and fracture in a unified framework. However, these methods become inefficient for
very stiff materials: as the speed of sound (i.e. the travelling speed of a pressure wave)
within the material increases, the required temporal resolution restricts the maximal
time step size. Consequently, many previous methods combine elastostatic continuum
mechanical models with rigid-body methods to simulate elastic fracture mechanics
in a quasi-static sense: the rigid-body system handles the global motion of objects,
while the elastostatic model treats the deformation in a time-independent (average or
maximal) sense, and dynamic wave propagation in the material is ignored.

(a)

(b)

Figure 1: Eulerian (a)
vs. Lagrangian (b) view of

crack propagation.

One important feature of brittle fractures is that cre-
ating a (small) crack in an undamaged region typically
requires a higher load than extending an already ex-
isting crack. Phenomenologically, this behaviour is de-
scribed by two distinct material parameters: strength
for the former case and toughness for the latter. Many
computer graphics approaches neglect this distinction,
resulting in excessive fracturing sometimes called arti-
ficial shattering. Furthermore, most materials are not
homogeneous continua: material parameters (such as
stiffness, strength, or toughness) may vary at relatively
high spatial frequencies. For example small inclusions
can locally reduce the toughness. Such variations in-
fluence the fracture process and give rise to visually in-
teresting fracture surface details. Therefore, we also
require a high spatial resolution in the fracture simu-
lation; see figure 2 for some examples. Unfortunately,
simulation-based methods become inefficient if all the
detail of the fracture surfaces is present in the compu-

tational deformation model, effectively limiting the amount of visual detail that can
be captured. While adaptive re-meshing (or re-sampling in mesh-less methods) is typ-
ically used to mitigate this limitation, the resolution of fractures is still bounded by
the resolution of the deformation model. Some methods also use heuristics to add
more visual detail to fracture surfaces as a post-process, but they do not influence the
simulation in any way.

Our main goal is therefore to break free of this resolution constraint and simulate
the crack propagation process at a significantly higher resolution than the deforma-
tion. Furthermore, we introduce acceptable approximations to the deformation model
leading to a fast and efficient fracture simulation method. The standard approach in
fracture simulation for computer graphics is to use a volumetric deformation method,
most commonly the finite element method (FEM), and then cut or re-mesh one ele-
ment at a time as the crack propagates through the material. This procedure requires
small time steps and is analogous to an Eulerian reference frame as the crack advances
through space. Our approach departs from this traditional viewpoint by adopting a
Lagrangian reference frame for crack propagation, as illustrated in figure 1. This point

3

(a) (b) (c)

Figure 2: Comparison of our results (a, c) to a real-world photograph (b) courtesy of
M. C. Rygel via Wikimedia Commons (cropped).

of view allows us to utilize techniques from front tracking, improves the achievable
resolution of fracture surfaces, and still treats the underlying physics with acceptable
accuracy. Instead of using FEM, we build our method upon the symmetric Galerkin
boundary element method (SGBEM).

In the remainder of this chapter, we first present an overview of related work, introduce
some terminology, especially relating to the geometry of cracked objects, and finally
state the problem we aim to solve in this thesis more precisely. The following chapters
will then introduce the required background in detail, before describing our high-
resolution fracture simulation method, including our main contributions:

• An efficient symmetric Galerkin BEM implementation for quasi-static brittle frac-
ture simulation, where each entry in the system matrix is computed only once
(ch. 4.2).

• Fracture criteria treating crack initiation and propagation separately using the ap-
propriate material parameters (strength and toughness) in the context of linear
elastic fracture mechanics (ch. 4.4 and 4.5.1).

• An interpolation scheme that allows us to simulate crack propagation at a reso-
lution much higher than that of the BEM mesh, including a new, fast, and sim-
ple treatment of spatially varying toughness, yielding realistic fracture patterns
(ch. 4.5.2 and 4.5.3).

• Fast approximations of fracture mechanical quantities based on our boundary ele-
ment method, resulting in a linear-time crack propagation algorithm (ch. 5).

• A simple and efficient way to handle the generated high-resolution surface geometry,
detect fragments, and construct corresponding coarse triangle meshes (ch. 6).

• And a two-way coupling scheme between our fracture method and a rigid-body
system, carefully treating the resulting Neumann boundary value problem (ch. 7).

Finally we present our results and conclusions in chapters 8 and 9 respectively.

https://commons.wikimedia.org/wiki/User:Rygel,_M.C.

4 1 Introduction

1.1 Related work

Elastic deformation
There is a wide range of methods available for simulating elastic deformations, includ-
ing mass-spring networks [53,67], finite element methods (FEM) [41,54,55,76,78] and
extended FEM (X-FEM) [1, 20, 45, 48], mesh-less or particle-based methods [59] in-
cluding the material point method (MPM) [39,68,69], and boundary element methods
(BEM) [2, 16, 34, 38, 44, 65, 71, 77]. While mass-spring systems discretize deformable
objects as a collection of point-masses with forces between them (usually confined to a
small neighbourhood of each point), all other methods listed above are based on con-
tinuum mechanics. The main differences between FEM, X-FEM, MPM, and BEM can
be characterized by the distribution of degrees of freedom and the resulting approxima-
tion spaces. Degrees of freedom in FEM and X-FEM are stored on (the vertices of) a
volumetric mesh, spanning a piecewise polynomial function space (FEM), which can be
enriched by additional, specialized basis functions (X-FEM). The MPM usually stores
mass and velocity on particles, while forces are computed on a regular grid, and data
is interpolated between the grid and the particles. The degrees of freedom in a BEM,
however, are stored on a surface mesh and the boundary integral form of the governing
equations is used instead of (volumetric) partial differential equations. While this lim-
its the possibility to treat spatially varying elasticity parameters efficiently, it reduces
the required number of degrees of freedom (compared to a volumetric discretization
of the same resolution). Furthermore, only the boundary data is approximated, but
the governing equations within the domain are satisfied exactly using a fundamental
solution (also called Green’s function). In contrast, a FEM approximates the solution
in a (typically) piecewise polynomial space.

All of these continuum mechanics based methods are capable of producing equivalent
results when applied to linear elasticity, which is the application we are interested
in because brittle fractures are most challenging to simulate in very stiff materials
(i.e. even very small deformations cause the material to break). In terms of further
applications, (X-)FEM provides a flexible framework to model a wide range of materi-
als, especially soft or non-linear ones, while MPM handles materials of granular nature
very well, such as snow or sand [39, 68], where the material behaves very differently
under compression as opposed to tension. On the other hand, a BEM quickly becomes
computationally expensive if the fundamental solution cannot be evaluated in closed
form, making it less attractive for modelling non-linear or inhomogeneous materials.
Nevertheless, using a BEM and a homogeneous linear elastic material allows us to
simulate fractures in the presence of inhomogeneous strength and toughness efficiently,
because these fracture parameters do not influence the elastic behaviour of the material
directly. In fact, the resulting fracture surfaces modify the BEM mesh, introducing
new boundary conditions and additional degrees of freedom for the material to de-
form, while the material’s elastic behaviour remains unchanged. As boundary element
methods operate on surface meshes rather than volumetric ones, the required meshing
operations are much simpler and easier to implement.

1.1 Related work 5

(Brittle) fracture simulation
Purely geometric methods, such as [49, 70], are popular in computer graphics as they
are typically much faster than any simulation. Fractures are either pre-defined during
modelling, or generated by applying a pre-defined fracture pattern and then updating
the topology of the object. Some methods also combine physics-based deformation
models with geometric fracturing [30,66]. Furthermore, additional visual detail can be
generated for coarse simulation results by modifying the fracture surfaces on a smaller
scale [7]. Such methods could in principle be applied to our results as a post-process to
increase the perceived visual detail even further. For the remainder of this discussion
we focus on continuum mechanical models of fracture. These physics-based fracture
simulations typically consist of three steps: first deformations and internal forces are
computed, then some fracture criterion is evaluated, and finally the computational
model is updated to account for newly formed cracks. Evaluating a fracture criterion
means deciding whether a material fails at a certain location under a given load.
Terzopoulos and Fleischer [72] use a maximal strain threshold, while O’Brien and
colleagues [54,55] use a stress-based “separation tensor” at the nodes of a tetrahedral
FEM mesh. This method has been combined with dynamic mesh improvement [76]
and also modified by Pfaff et al. [60] to fracture triangulated thin shells.

In the context of linear elastic fracture mechanics, it is important to distinguish between
the material parameters strength and toughness. Strength describes how much load
is required to form a new fracture, whereas toughness determines whether an existing
crack will (continue to) propagate [17, 63]. A similar, but simplified, concept can be
found in [67]. For example, a strong but fragile specimen will withstand a large amount
of load as long as it contains no cracks, but once it starts to fracture, cracks will quickly
cut completely through it. On the other hand, in a weak but tough specimen small
cracks will appear at relatively low loads, but only few of them will propagate (where
the load is sufficiently high). Our examples in chapter 8.1 demonstrate the desired
behaviour; see also fig. 36. Consequently, working only with maximal stress criteria
for brittle fractures can lead to artificial shattering, as many nodes in a high-stress
region may fulfil the criterion at the same time. Pfaff et al. [60] propose a local update
procedure to mitigate this issue, while Koschier et al. [41] first find such regions and
then pick only the point of maximal stress within each region to initiate a fracture.

We believe that the proper way to deal with brittle fractures is to treat crack ini-
tiation and propagation separately. Even nominally brittle materials exhibit a very
small plastic zone around crack fronts, which is not captured by the linear elastic frac-
ture mechanics model [22]. Consequently, stress is not the proper measure for crack
propagation, as it is singular at the crack front. We use stress intensity factors (SIF)
instead, which describe the magnitude of the singular stress field in the vicinity of
crack fronts [17,33].

Implicit and explicit surfaces
The most common way to approximate a (2D) surface (embedded in a 3D space) is
a triangle mesh: each element references three nodes (vertices), whose positions are
given by three Cartesian coordinates each. As both the connectivity, as well as the

6 1 Introduction

location, of the surface are directly given, this form is referred to as an explicit surface
representation. An implicit surface instead defines the surface as the (zero) level-set of
a real-valued function in 3D space. Typically the value of this function is the (signed)
distance from the surface. If the surface bounds a volume and is orientable (i.e. it is
possible to distinguish whether any point in space is inside of, outside of, or exactly on
the surface), the common convention is to use negative distance function values inside
and positive values outside of the surface [56]. Computationally, one convenient way
to approximate an implicit surface is storing distance function samples on a regular
spatial grid and (piecewise polynomially) interpolating the function values between
these samples. The OpenVDB library [11, 52] provides tools to store and process
implicit surfaces on a sparse grid data structure, as well as convert between explicit
and implicit surface representations. For further details, the reader is referred to
chapter 6, as well as [52, 56].

While explicit surface representations are more flexible and allow for efficient storage
and processing of the geometry, testing for important properties of the surface, such
as manifoldness or orientability, requires additional computation. An implicit surface
based on a signed distance function on the other hand is guaranteed to have these
two properties [56]. Furthermore, implicit surfaces naturally handle topology changes,
which is useful when treating growing fractures. Consequently, we use a (coarse) trian-
gle mesh for our BEM computations, but rely on a signed distance function to describe
the object’s high-resolution geometry (including cracks) in our fracture simulation.

The X-FEM fracture simulation of Belytschko and colleagues [20,45] describes fractures
with implicit surfaces, which are also used to build the enrichment functions providing
new degrees of freedom to the displacement field. They use two level-set functions per
fracture: the first one is a signed distance function of the actual fracture surface. The
second function describes a “virtual” surface that intersects the first one exactly at the
crack front in order to define the extent of the fracture. While this approach yields a
very precise description of the fracture, we present a simplified approach (chapter 6)
that allows us to quickly cut an object by multiple fractures and represent the resulting
geometry in a single level-set function.

Rigid body dynamics
O’Brien and Hodgins [55] use a fully dynamic FEM to simulate brittle fractures, which
means that both the overall motion as well as the deformation is treated in the FEM
framework. However, as the material approaches rigidity, the speed of sound in the
material increases, demanding very small time steps or risking artefacts from under-
resolved pressure waves. Consequently, many methods, such as [19,51], use quasi-static
formulations of fracture mechanics to avoid this issue, while objects are treated as
rigid bodies when simulating their dynamic motion. Using a quasi-static approach, we
iterate between first solving for an elastostatic equilibrium deformation of a given object
(possibly including fractures), and then adding new fractures to the object according
to the chosen fracture criteria. This way, only the fracture process is resolved in time,
but elastodynamic effects, such as pressure waves, are ignored as we “jump” from one
elastostatic solution to the next.

7

The challenging part of coupling rigid-body dynamics to a (quasi-static) elastic frac-
ture simulation is the transition from the rigid to the deformable model. While elastic
models consider forces, rigid models typically operate with impulses to resolve colli-
sions. These impulses are independent of the (rigid body) time step size as collisions
are assumed to be resolved instantaneously in a rigid model. See [4] for a detailed
review of rigid-body dynamics. In a deformable model, collisions are resolved gradu-
ally within a finite time interval. Converting impulses to forces consequently requires
scaling by the collision duration, which cannot be determined from the rigid-body step
size. Both Glondu et al. [19] and Koschier et al. [41] use a Hertzian contact model to
estimate the collision duration, which we also employ (see [61] for further details).

Another interesting aspect of the coupling between rigid bodies and deformable mod-
els is how to apply boundary conditions to the deformable model. The main idea
is to let the rigid-body simulation handle translations and rotations, while treating
deformations separately. Once collision impulses have been converted to forces, the
problem that needs to be solved in the deformable model has only Neumann bound-
ary conditions. In this case, the elastostatic solution is only defined up to arbitrary
translation and rotation, leading to a rank deficient linear system after discretization.
This issue can be avoided by either using a more expensive elastodynamic model [41],
adding artificial Dirichlet boundary conditions [51], or carefully treating the null-space
of the linear system [78]. The method described in [78] deals with FEM discretizations
and consequently with sparse matrices and iterative solvers. In contrast, our method
is based on a boundary element method, resulting in a dense linear system, which
we solve by factorization. Zhu et al. [79] use an indirect boundary element method,
which implicitly removes the null-space by solving for a potential function first and
representing displacements as boundary integrals of this potential. Since we use a
direct BEM, our treatment of the elastostatic Neumann problem’s null-space follows
the same principle as [78]. They, however, operate on the nodes of a tetrahedral mesh,
while we work on the elements of a triangular surface mesh.

1.2 Terminology

As indicated in the introduction, one key idea of this work is to choose different reso-
lution levels to simulate different phenomena, in particular we distinguish three main
components: (a) the boundary element method, which handles deformation and quasi-
static fracture at a coarse level, (b) our Lagrangian crack propagation method, which
simulates the fracture process at a fine level, and finally (c) the rigid-body engine,
which takes care of large, global motion of objects. We allow the user to choose a
different spatial resolution in each of these components to approximate the object’s
surface. Typically, the BEM mesh is the coarsest representation (specified either di-
rectly by the target number of elements, or similarly by the average edge length in
the mesh), while the fracture simulation uses an implicit surface representation at the
finest resolution (defined by the grid spacing, or voxel size). The rigid-body engine
uses either a convex hull or a triangle mesh of intermediate resolution.

8 1 Introduction

In terms of temporal resolution, the situation is slightly different: here the rigid-body
engine is expected to take the largest time steps; we also refer to these as “rigid-body
steps”. The BEM mesh will be updated at intermediate intervals during the fracture
simulation, and we refer to these update intervals simply as time steps. Finally, the
crack propagation, of course, uses the finest temporal resolution, and we refer to each
small propagation (time) step as a “sub step”.

breakable object
(inside)

(outside)

ordinary surface

fracture surface

crack front
negative face

postitive face
“gap”

implicit fracture surface

Figure 3: Overview of sur-
face terminology.

When describing the geometry of a breaking object,
we distinguish the object’s surface in its unfractured
state (ordinary surface or outside surface) from (in-
ternal) fracture surfaces (also fractures or equivalently
cracks). Each crack, in this sense, consists of two crack
faces, which are geometrically coincident (if the object
is not deformed), but have oppositely oriented surface
normals. The crack front is the common bounding curve
of these faces. (The 2D equivalent to the crack front is
usually called crack tip.) When referring to a fracture
surface, we regularly think of just one surface with ar-
bitrary (but consistent) orientation of normal vectors,
rather than distinguish both crack faces. On occasions
when this distinction is necessary, we refer to one face
as the “positive” and the other as the “negative” side of
the crack.

Processing the high-resolution geometry of fractured ob-
jects consists of two major components. First we need
to store the fracture surfaces produced by the fracture
simulation (surface recording): as the crack front prop-
agates it cuts through an object like a wire cutting
through cheese. Afterwards we need to detect topol-
ogy changes, i.e. find out where an object breaks into
separate pieces (fragmentation). We choose an implicit

surface representation on the finest spatial resolution, allowing for an easier imple-
mentation of the fragmentation step. In order to do so reliably, however, we need to
slightly separate the two crack faces, creating a small “gap” in between them, such
that they bound a thin “fracture volume”, within which we consider the material to be
broken (see figure 3). These gaps can of course be removed from the final output once
we have identified all the fragments. Note that geometrically coincident surfaces may
produce undesirable visual artefacts when rendering the final output images, in which
case it might be preferable to keep (some of) these gaps. Finally, due to numerical
inaccuracies during the fracture simulation, two regions of the breaking object that are
almost separate fragments sometimes remain connected by very thin pieces of material
we call “spindles”. Our fragmentation method allows to remove such spindles if they
are small enough, as shown in fig. 28.

9

1.3 Problem statement

The goal of the this thesis is to develop a novel way of simulating brittle

fracture for visual effects applications. Contrary to ductile ones, brittle fractures
happen very quickly making it difficult to resolve the fracture process temporally;
they also produce finely detailed surface patterns and consequently require a high
spatial resolution as well. While geometry-based approaches for fracture animation
have become very fast recently, the apparent realism of such pre-defined fractures or
fracture patterns depends entirely on the artist. Therefore we believe it is preferable to
use physics-based simulation techniques to create visually attractive and convincingly
realistic fracture effects.

Because brittle fracture occurs most commonly in very stiff materials, we assume in-
finitesimally small deformations, which allows us to employ linearized versions of the
governing equations of elasticity and fracture mechanics. Furthermore, we do not aim
to handle rigid motion of objects in the same framework as our fracture simulation;
instead such rigid motions are treated separately by coupling our fracture method to
a specialized, third-party rigid-body-dynamics engine. In order to build a stable and
efficient fracture algorithm, we choose a quasi-static approach, ignoring dynamic ef-
fects, such as stress waves, which would impose stringent time step limits on the elastic
deformation simulation. We also believe that the visually apparent influence of these
effects is hardly perceptible (in terms of a computer graphics application), especially
when spatial toughness variations are present in the material.

As our target audience is the computer graphics community, we aim to provide the user
with a choice to trade-off accuracy of the simulation for shorter runtime. With respect
to fracture effects, high accuracy is not critical because fractures behave (somewhat)
chaotically, making it difficult to distinguish (approximate) solutions of varying accu-
racy, as long as qualitative features are equivalent. In this sense, it is more important
that the algorithm remains stable, even under large time steps, and qualitative visual
features of the generated fracture surfaces appear realistic. In order to capture these
visual features we do, however, need high (temporal and spatial) resolution during the
crack propagation simulation. At the same time, our method must be fast enough to
be useful to visual effects artists. To this end, we present approximations of fracture
mechanical quantities, improving the asymptotic scaling of our algorithm’s runtime.

In particular, all previous fracture simulation methods suffer from a fundamental lim-
itation: the resolution of the generated fracture surfaces must be the same as the
resolution of the underlying deformation model. Our primary goal is to break free of
this constraint and instead allow for crack propagation (which generates the fracture
surfaces) to be simulated at a much higher resolution than the elastostatic deformation.

10

2 Background

Having laid out the problem we wish to solve, as well as given an overview of related
work above, this chapter discusses the required background more formally. We start by
introducing some basic notation and theorems of vector calculus, ch. 2.1. We then give
a short overview of continuum mechanics and derive the governing equations of linear
elasticity in differential form, ch. 2.2, as well as their finite element discretization,
ch. 2.3.1. Furthermore, we present the boundary integral form of linear elasticity
and discretize it using the symmetric Galerkin boundary element method (SGBEM),
ch. 2.3.2. Finally, we introduce the key ideas of linear elastic fracture mechanics
(LEFM), ch. 2.4, and show how fractures are treated as new boundary conditions and
additional degrees of freedom in the BEM formulation, ch. 2.5.

2.1 Notation and vector calculus

Green’s first identity serves as a starting point for the weak form used in FEM, as well
as boundary representation formulae used in BEM. In this chapter, we briefly derive
this important theorem and introduce some common notation in the process.

For now, assume A and v are arbitrary, sufficiently smooth tensor and vector fields
in 3D space respectively, i.e. A(x) : R3 → R

3×3 and v(x) : R3 → R
3. The components

of the gradient of a vector field and similarly the components of the divergence of a
tensor field are defined as

(∇v)ij := ∂vi/∂xj and (∇ ·A)i :=
∑

j
∂Aij/∂xj respectively. (2.1)

Using the identity tensor I we can write the divergence of a vector field as ∇ · v =
tr(∇v) = I : (∇v), where the scalar product of tensors A and B is defined as

(A : B) :=
∑

i

∑

j
AijBij, (2.2)

i.e. the sum of the products of corresponding coefficients. Finally, we use

sym(A) := (A + AT)/2 and asym(A) := (A−AT)/2 (2.3)

to denote the symmetric and anti-symmetric parts of A, such that
A = sym(A) + asym(A). As a direct consequence we see that sym(A) : asym(B) = 0.

Now consider a closed connected volume (i.e. a connected 3-manifold with boundary)
Ω ⊂ R

3 (representing our deformable object) and its boundary surface Γ := ∂Ω. The
divergence theorem and the divergence product rule (eq. (1.293) and (1.289) in [27]
respectively) are

∫

Ω
∇ · v(x) dvx =

∫

Γ
v(x̃) · n(x̃) dsx̃ and (2.4)

11

∇ ·
(

ATv
)

= (∇ ·A) · v + A : (∇v), (2.5)

where n(x̃) is the outward unit surface normal at x̃ ∈ Γ. Integrating (2.5) over Ω,
applying the divergence theorem, and rearranging terms yields Green’s first identity:

∫

Ω
(∇ ·A) · v dvx =

∫

Γ
(An) · v dsx̃ −

∫

Ω
A : (∇v) dvx, (2.6)

where we use (ATv) ·n = (ATv)Tn = vTAn = (An) ·v to rewrite the surface integral
on the right-hand side.

2.2 Continuum mechanics

Now that we have established some basic notation, we can turn our attention to de-
scribing the properties of solid objects in the context of continuum mechanics. The
basic assumptions of continuum mechanics are that (a) the material is infinitely divisi-
ble, and (b) locally homogeneous, i.e. the material can be subdivided into ever smaller
regions, and at some point all subdivisions (at least in some local region) have exactly
the same properties [6]. These assumptions make sense whenever the object in question
is much larger than atomistic length scales, also see chapters 38 and 39 in [15].

As motivated in the introduction, we focus on materials that behave elastically up to
the point of failure, i.e. as long as an object is not broken, it will recover its original
shape once all forces causing deformation are removed. A constitutive model, which
might not be linear in general, describes the elastic response of a material by relating
deformations (strains) to internal forces (stresses). Because the physical behaviour
of the material is independent of rigid motion (i.e. global translation or rotation),
constitutive models must reflect these properties as well. For further details, the reader
is referred to chapter 5.4 in the textbook by Holzapfel [27].

We now use Ω ⊂ R
3 to denote the undeformed reference configuration of an object

(our computational domain) and again write Γ := ∂Ω for its surface. From now on we
always assume that Ω has some positive volume and only one connected component.
Later on, in chapters 6.3 and 7.3 we show how to find disconnected fragments created
by our fracture simulation and treat each fragment as a new individual object. In
the following derivations we work with the reference configuration (i.e. in material
space or rest space), because it will be more convenient in terms of formulating a
linear elastostatic BEM later. Consequently, we define a deformed configuration (at
time t) by mapping any point x ∈ Ω to its corresponding position X(x, t) ∈ Ωt

in the deformed object. If the deformation changes over time, we denote velocity
as Ẋ(x, t) := dX(x, t)/dt and acceleration as Ẍ(x, t) := d2X(x, t)/dt2. Finally, we
define the displacement u as the difference between the reference and the deformed
configuration: u(x, t) := X(x, t)− x.

When a distributed external force acts on some part of the surface of a deformable
object, the (nominal) traction vector q(x̃) denotes the force measured per unit surface

12 2 Background

area at the point x̃ ∈ Γ. Cauchy’s stress theorem (eq. (3.3) in [27]) states that there
exists a tensor field σ such that

σn = q (2.7)

holds on the object’s surface (where n is the outward unit surface normal). Similarly,
forces acting inside of the object (internal forces) can be characterized by arbitrarily
choosing three orthogonal, infinitesimally small surface patches located at some point
inside of the object and measuring traction with respect to each of these surfaces. If the
(arbitrary) orientation of these surfaces is described by three orthogonal unit vectors
(n1, n2, n3) and the measured traction vectors are (q1, q2, q3), then the stress tensor
can be defined as σ :=

∑

i qin
T

i , where i = 1..3. By construction, this stress tensor
satisfies Cauchy’s stress theorem also in the interior of the object. Integrating eq. (2.7)
over the surface Γ and applying the divergence theorem (2.4) yields

∫

Γ
q ds =

∫

Γ
σn ds =

∫

Ω
∇ · σ dv. (2.8)

Equation (2.8) relates total force (traction integrated over the surface) to a volume
integral of internal force density (on the right-hand side). This force accelerates
the object and consequently causes a change of linear momentum. Similarly, we
may consider distributed body forces, such as gravity, collectively denoted by g.
Cauchy’s first equation of motion expresses conservation of linear momentum in the
presence of these force terms (in global form):

∫

Ω (∇ · σ + g− ρẌ)dv = 0, where ρ is
the mass density. This equation must equally hold for all sub-volumes of Ω, which
means that we can it write in the more convenient local form (see also eq. (4.63) in [27]):

ρ(x)Ẍ(x, t) = ∇ · σ(x, t) + g(x, t). (2.9)

In order to satisfy conservation of angular momentum, σ must also be symmetric,
i.e. σ = σ

T; this is Cauchy’s second equation of motion (see also eq. (4.68) in [27]).
Note that we work in material space, so technically σ denotes the second Piola-
Kirchhoff stress, which is identical to the Cauchy stress under infinitesimal defor-
mations.

Equation (2.7) relates the stress acting on a surface of a particular orientation to the
traction this surface experiences. Sometimes it is useful to find the orientation such that
the resulting traction is maximal (or minimal) along the surface normal (for example
when determining the most likely orientation of a fracture surface). These directions
can be found by solving the eigenvalue problem σni = λini, see eq. (3.36) in [27].
As a consequence of the stress tensor’s symmetry, there are three (real) eigenvalues
λi associated with orthogonal eigenvectors ni. These eigenvalues are called principal
(normal) stresses, and their corresponding eigenvectors are called principal stress di-
rections, while the planes orthogonal to the principal stress directions are referred to as
principal planes. As the eigenvectors form an orthogonal basis, the stress tensor can be
written as σ =

∑

i λi(nini
T), eq. (3.42) in [27]. Note that this spectral representation

also implies that shear stresses vanish along the principal planes.

2.2 Continuum mechanics 13

Now that we have established some general properties of elastic deformation, we
turn our attention to the case of infinitesimally small displacements, which admits a
linearization of the constitutive model. In particular, if the material is stiff enough
relative to its strength, it will fail and exhibit brittle fracture before undergoing large
deformations. In order to derive the equations of linear elasticity, we start with a
truncated Taylor expansion of the displacement field u:

u(x + ∆x) ≈ u(x) + (∇u)(x) ∆x,

u ≈ u0 + asym(∇u) ∆x + sym(∇u) ∆x,

u ≈ u0 + ω ∆x + ε ∆x,

(2.10)

where ω := asym(∇u) is an infinitesimal rotation and ε := sym(∇u) is the linearized
strain tensor. We then ignore the rotational part and apply a general linear constitu-
tive model relating strain to stress: σ = Cε, where C is a fourth-order elasticity tensor.
One important distinction is the difference between infinitesimal rotations, such as ω

above, which satisfy ω − ω
T = 0, and true rotations R which satisfy RTR = I. Con-

sequently, the linearized constitutive model is only invariant to infinitesimal rotations
and no longer applicable to large displacements (in particular large rotations).

We further assume that the material is isotropic, i.e. the strain-stress relation has no
directional dependence. It then follows by symmetry that C has only 2 independent
components and we can write the constitutive model using the Lamé parameters λ
and µ (see also eq. (39.20) in [15]) as:

σ(u) = 2µε(u) + λ tr(ε(u))I = 2µ sym(∇u) + λ(∇ · u)I. (2.11)

In a globally homogeneous material λ and µ are constant. Similarly, we can write
the same constitutive model using Young’s modulus E and Poisson’s ratio ν in-
stead, which are related to the Lamé parameters by E = (µ(3λ+ 2µ)) / (λ+ µ) and
ν = λ/ (2(λ+ µ)).

If we now ignore time-dependent dynamic motion, i.e. Ẍ = Ẋ = 0, we finally arrive
at the governing equations for linear elastostatics:

−∇ · σ = g in Ω,

σn = qΓ on ΓN , and

u = uΓ on ΓD,

(2.12)

where we apply Neumann boundary conditions, i.e. prescribed surface tractions qΓ(x̃),
on some part of the surface ΓN , as well as Dirichlet boundary conditions, i.e. prescribed
displacements uΓ(x̃), on the other part of the surface ΓD. In order to get a well-defined
solution, every point x̃ on the surface must be either in ΓN or in ΓD. In chapter 7.1
we also treat the special case of pure Neumann boundary conditions, i.e. ΓN = Γ and
ΓD = ∅.

14 2 Background

2.3 Finite and boundary element methods

Simulating elastostatic deformations requires numerical methods capable of finding
approximate solutions to eq. (2.12). We first briefly discuss the basics of the finite
element method (FEM), because it is probably the most widely used method in related
work, and also because our surface stress evaluation in chapter 4.3 follows the same
concept, albeit only in a two-dimensional space. At the same time, we also introduce
the basic concept of interpolating fields over a (simplicial) mesh using nodal basis
functions and per-node degrees of freedom.

In the second part of this chapter, we then derive the boundary element formulation
that serves as the starting point for our fracture simulations. While we aim to give
a basic introduction to BEM here, many technical details in terms of actually imple-
menting a numerical scheme to evaluate the required surface integrals will be omitted
for the sake of brevity. Existing BEM libraries readily provide reliable implementations
of this functionality. We build our implementation upon the HyENA library [29]; for
further details, the interested reader is referred to the book by Sauter and Schwab [65],
as well as the thesis by Kielhorn [38].

2.3.1 Weak form and FEM

The following derivation of the finite element formulation of linear elastostatics summa-
rizes chapter 11 of [42]. We start by writing the governing differential equation (2.12)
in a weak (or variational) form. To this end, we dot-multiply (2.12) by some arbitrary
(square-integrable) test function v and integrate over the entire domain Ω, which yields

−
∫

Ω
(∇ · σ) (x) · v(x) dvx =

∫

Ω
g(x) · v(x) dvx. (2.13)

We omit function arguments for the sake of simplified notation, apply Green’s first
identity (2.6) to the integral on the left-hand side, and move the resulting surface
integral to the right-hand side to get

∫

Ω
σ : (∇v) dvx =

∫

Ω
g · v dvx +

∫

Γ
σn · v dsx̃. (2.14)

Finally, we expand σ using the constitutive model (2.11), substitute the known bound-
ary tractions, and rearrange terms using I : (∇v) = ∇ · v and sym(u) : asym(v) = 0
to arrive at
∫

Ω
[2µ sym(∇u) : sym(∇v) + λ(∇ · u)(∇ · v)] dvx =

∫

Ω
g · v dvx +

∫

Γ
qΓ · v dsx̃.

(2.15)

The problem now reads: find u (whose derivatives are square-integrable) such that
the weak form (2.15) is satisfied for all v (with the additional constraint that v = 0

2.3 Finite and boundary element methods 15

on ΓD in order to evaluate the surface integral on the right-hand side). The following
discussion focuses on the most common approach to solve this problem numerically:
using a tetrahedral mesh to approximate the computational domain and a piecewise-
linear displacement interpolation. In this setting, the unknown displacement field u is
defined via a finite set of shape functions ψk and corresponding unknown coefficients
uk, such that u(x) ≈ ∑

k ukψk(x). Each shape function corresponds to a node of the
mesh and satisfies the Kronecker property ψk(xl) = δkl (i.e. ψk is one at node k, zero at
all other nodes, and piecewise linear in between). As a direct consequence, the shape
functions form a partition of unity over the mesh:

∑

k ψk(x) = 1.

When using a Galerkin finite element formulation, we choose each shape function ψl

that does not correspond to a node on ΓD as a test function (for each coordinate axis
in turn): v = ejψl, where ej is the standard basis unit vector along the j-th axis. Sub-
stitution of the displacement approximation and test functions into eq. (2.15) results
in the discretized form of linear elastostatics: Kû = f , see also eq. (11.70) in [42]. Here
the discretized displacement û is a vector collecting all nodal displacements and K is
the stiffness matrix built from the integral on the left-hand side of eq. (2.15). From
this integral we can easily see that the stiffness matrix must be symmetric. Further-
more, only shape and test function pairs corresponding to the same or neighbouring
nodes result in a non-zero contribution to the stiffness matrix entry of these nodes,
which means that K is sparse. Finally, f is the load vector built from the integrals on
the right-hand side of eq. (2.15), collecting both body forces and surface tractions due
to boundary conditions. Inhomogeneous Dirichlet boundary conditions contribute an
extra term to the right-hand side by splitting the displacement vector into two parts:
û = û0 + ûD, where û0 is a solution with homogeneous Dirichlet boundary conditions
and ûD contains the actual boundary data and is zero on all non-Dirichlet nodes.

Of course, we must pay attention to correctly enumerating all degrees of freedom and
their corresponding shape and test functions while building the discrete linear FEM
system. This careful bookkeeping of indices results in the following notation often
found in engineering and computer graphics applications: we first look at each (tetra-
hedral) element individually, where the displacement field inside of the element is a
linear interpolation of the nodal values. We then get a constant matrix of basis func-
tion derivatives Be for each element e, such that the linear strain (in vector form)
becomes εe = Beûe. Here ûe collects the displacement vectors of all four nodes of the
tetrahedron into a vector with 12 entries, see also [50]. Similarly, we can compute the
(per-element) deformation gradient, following [32], as Fe = DseD

−1
me, where Dme is a

matrix whose columns are the edge vectors xe,i− xe,4, i = 1..3 of tetrahedron e in the
material space (reference) configuration (xe,i being the coordinates of the tetrahedron’s
nodes), and similarly Dse contains the edge vectors in the deformed configuration. We
then find the linearized strain (in tensor form) εe = (Fe + FT

e)/2− I. Applying the
constitutive model (2.11) to this strain and integrating over the element results in a
constant stress matrix per element. As all quantities are constant (assuming homoge-
neous material) within the element, the integration reduces to simply multiplying by
the tetrahedron’s volume Ve.

16 2 Background

When working with a linear constitutive model (2.11), it can be written as S in the
matrix form given in eq. (11.56) of [42], such that σ = Sεe = SBeûe. Consequently
we find the element stiffness matrix Ke = VeB

T

e SBe. We can then assemble the global
stiffness matrix K from all the per-element stiffness blocks Ke to obtain the same
discrete linear elastostatic system Kû = f .

2.3.2 Boundary integral equations and BEM

While the finite element formulation, introduced above, effectively describes a balance
of internal forces between every pair of neighbouring nodes in a volumetric mesh, the
basic idea of a boundary element method is to reduce the problem in such a way that
there are no degrees of freedom remaining in the interior of the computational do-
main. Consequently, the (approximate) solution must be described solely in terms of
unknown fields on the boundary (surface) of the domain; such a description is com-
monly referred to as a boundary representation formula. When moving the evaluation
point of the representation formula from the interior of the domain to the boundary
as well, and equating the result to the known boundary data, we obtain a boundary
integral equation. Finally, this integral equation is then discretized using boundary ele-
ments, leading once again to a linear system of equations, albeit with slightly different
properties than the FEM version.

To derive a boundary integral formulation of eq. (2.12), we first consider the
divergence product rule, eq. (2.5), and substitute A = AT = σ(u). Here we
use σ(u) to denote the stress caused by some (as of yet unknown) displacement
u according to the constitutive model, eq. (2.11). The product rule now reads
∇ · (σ(u)v) = (∇ · σ(u)) · v + σ(u) : (∇v). Interchanging u and v similarly results
in ∇ · (σ(v)u) = (∇ · σ(v)) · u + σ(v) : (∇u). Taking the difference of these two
equations and integrating over the domain Ω results in

∫

Ω
[∇ · (σ(u)v)−∇ · (σ(v)u)] dvx =

∫

Ω
[(∇ · σ(u)) · v− (∇ · σ(v)) · u] dvx.

(2.16)

Note that the difference of the terms containing the gradient of u and v respectively
vanishes once we expand the stress tensors using the constitutive model. When
writing this expansion in the same form as it appears in eq. (2.15), this difference
simplifies as follows:

σ(u) : (∇v)− σ(v) : (∇u)

= 2µ sym(∇u) : sym(∇v) + λ(∇ · u)(∇ · v)

− [2µ sym(∇v) : sym(∇u) + λ(∇ · v)(∇ · u)]

= 2µ sym(∇u) : sym(∇v)− 2µ sym(∇v) : sym(∇u)

+ λ(∇ · u)(∇ · v)− λ(∇ · v)(∇ · u) = 0.

2.3 Finite and boundary element methods 17

Applying the divergence theorem (2.4) to the left-hand side of (2.16) yields a gener-
alization of Green’s second identity also known as the Maxwell-Betti reciprocal theorem:

∫

Γ
[σ(u)n · v− σ(v)n · u] dsx̃ =

∫

Ω
[(∇ · σ(u)) · v− (∇ · σ(v)) · u] dvx. (2.17)

So far, v has played a similar role to the test function in the FEM derivation,
in the sense that it can be any arbitrary vector field. Now we use a particular
choice for v in order to simplify the volume integral on the right-hand side, namely
v = Ui(y − x). Here Ui is the i-th column of the elastostatic fundamental solution,
also known as elastostatic Green’s function (2.21), which has the following special
property: −∇x · σ(Ui) = δ(y− x)ei, where δ is the Dirac delta function and ei is the
i-th standard basis vector (i.e. the unit vector along the i-th Cartesian coordinate
axis). Using this property simplifies the second term on the right-hand side of
(2.17) accordingly, while we substitute −g for ∇ · σ(u) according to the governing
equation (2.12). Consequently, eq. (2.17) becomes

∫

Γ
[σ(u)n · Ui − σ(Ui)n · u] dsx̃ = −

∫

Ω
g · Ui dvx +

∫

Ω
δ(y− x)ei · u(x) dvx. (2.18)

Using the screening property of the Dirac-δ function and rearranging terms results
in the following representation formula for the i-th component of the displacement field:

ui(y) =
∫

Γ
[σ(u)n · Ui − σ(Ui)n · u] dsx̃ +

∫

Ω
g · Ui dvx. (2.19)

We now adopt the more convenient notation of [38] to denote surface tractions by
the traction operator T (◦) := σ(◦)n = 2µ sym(∇◦)n + λ(∇ · ◦)n, and consequently
q = σ(u)n = T u. Furthermore, we collect all three components of vectors by writing
a column-vector of the form (q · U1 q · U2 q · U3)

T as a product UTq. Once we move
the evaluation point to the boundary (y → ỹ), we obtain the following displacement
boundary integral equation (BIE) of linear elastostatics:

u(ỹ) =
∫

Γ
Uq dsx̃ −

∫

Γ
(T U)Tu dsx̃ +

∫

Ω
Ug dvx. (2.20)

Note that the fundamental solution U is a symmetric 3× 3 tensor field, which is why
transpositions have been omitted. Similarly, T U is a 3 × 3 tensor field, where each
column is σ(Ui)n, which is generally not symmetric. A more detailed derivation of the
fundamental solution can be found in [38]; it is usually written in the form found in [9]:

Uij(y− x) =
1 + ν

8πE(1− ν)r
((3− 4ν)δij + ∂ir ∂jr) , (2.21)

where r := ‖y− x‖ and ∂ir := ∂r/∂yi = (yi−xi)/r. Intuitively each coefficient of the
fundamental solution describes the displacement along the j-th axis at y caused by a
point force applied along the i-th direction at x, see also [16].

18 2 Background

In addition to the BIE (2.20), applying the traction operator with respect to ỹ
yields the following boundary integral equation for tractions (subscripts indicate that
tractions are evaluated with respect to either source or field point):

Tỹu(ỹ) = q(ỹ) = Tỹ

∫

Γ
Uq dsx̃ − Tỹ

∫

Γ
(Tx̃U)Tu dsx̃ + Tỹ

∫

Ω
Ug dvx. (2.22)

The fundamental solution (2.21) exhibits a singularity of the form 1/r as y → x.
Each application of the traction operator introduces an additional spatial derivative,
and consequently increases the order of the singularity, which is why eq. (2.22) is
sometimes referred to as a hypersingular boundary integral equation (HBIE).

Furthermore, the remaining volume integral on the right-hand side can be transformed
to a surface integral in certain cases. Details can be found in [22, 38]; this discussion
is, however, omitted here as we do not treat any body forces in our BEM formulation,
and we assume g = 0 from now on. In particular, we treat gravity via a rigid-body
system instead (see chapter 7). Figure 30 shows an example of a solid bar crumbling
under its own weight, demonstrating that handling gravity in this way is sufficiently
accurate for our purposes.

Similarly to the displacement representation formula, internal stresses can be evalu-
ated via the Kelvin stress kernels as follows, see also [16,38] for further details:

σij(y) =
∫

Γ
S1(y− x̃)q(x̃) dsx̃ −

∫

Γ
S2(y− x̃)u(x̃) dsx̃ (2.23)

(S1)kij :=
1

8π(1− ν)r2
[(1− 2ν)(δkj∂ir + δki∂jr − δij∂kr) + 3∂ir∂jr∂kr] ,

(S2)kij :=
E

8π(1− ν2)r3
[3∂nr((1− 2ν)δij∂kr + νδjk∂ir + νδik∂jr − 5∂ir∂jr∂kr)

+3nk(1− 2ν)∂ir∂jr + ni((1− 2ν)δjk + 3ν∂jr∂kr)

+nj((1− 2ν)δik + 3ν∂ir∂kr)− nkδij(1− 4ν)] ,
(2.24)

where r and its derivatives are defined in the same way as in eq. (2.21), and additionally
the normal derivative is ∂nr := (y− x̃) ·n/r and n is the outward surface normal at x̃.

In the boundary integral formulation, both surface displacements u and tractions q are
required to describe the elastostatic solution. As for the differential form, eq. (2.12),
boundary conditions must be given in such a way that for any point on the surface either
the displacement or the traction is known and the other unknown. In the remainder
of this chapter, we focus on the common case of mixed boundary conditions, while
treating the pure Neumann problem (where all surface tractions are given, but all
displacements are unknown) in chapter 7.1.

At this point we now move to the discrete setting: we represent the surface of the de-
formable object with a triangle mesh and define approximation spaces for both bound-

2.3 Finite and boundary element methods 19

ary displacements and tractions. Similar to the FEM formulation in the previous
chapter, we choose piecewise-linear shape functions to interpolate per-node displace-
ments as u(x̃) ≈ ∑

k ukψk(x̃). Note that in the BEM context the shape functions are
only defined on the triangular surface mesh rather than a volumetric mesh as in FEM.
Furthermore, we also need to deal with surface tractions explicitly in a BEM approach,
and we choose piecewise-constant shape functions to interpolate per-element tractions:
q(x̃) ≈ ∑

j qjϕj(x̃). We have now discretized the geometry, as well as the boundary
data. However, in order to fully discretize the problem, we also need to choose how
the governing equations are enforced, such that we arrive at a linear system that con-
tains the same number of equations as (unknown) degrees of freedom. We choose a
(symmetric) Galerkin BEM formulation, which works in a similar way to the Galerkin
FEM discussed earlier: instead of enforcing the boundary integral equations at certain
locations, we multiply them by an arbitrary test function and integrate over the whole
surface. We then choose each of the shape functions in turn as the test function, ba-
sically enforcing the integral equation in a weighted average sense. Note that in our
case, displacement shape and test functions are non-zero in the one-ring neighbour-
hood of their corresponding node, while traction shape functions are non-zero only in
their corresponding element.

When using the symmetric Galerkin boundary element method (SGBEM), see also
[71], we apply the displacement boundary integral equation (2.20) on the part of the
boundary where Dirichlet boundary conditions are given and the traction boundary
integral equation (2.22) on the part where Neumann boundary conditions are given.
Applying this discretization scheme, as well as all boundary conditions, and moving all
known degrees of freedom to the right-hand side, results in the discrete linear system

(

V −K
KT D

)(

q̂
û

)

=

(

fD

fN

)

, (2.25)

where the matrix blocks are defined according to eq. (2.26), see also eq. (3.33) and
(5.17) in [38], for a more rigorous derivation. Once again, the vectors û and q̂ collect
unknown per-node displacements and per-element tractions respectively. (From now on
we drop the “hat” from the discretized unknown vectors for convenience of notation.)
Each of the four blocks of the system matrix discretizes one of the boundary integral
operators found in eq. (2.20) and (2.22) respectively, where each pair of shape functions
contributes a 3× 3 block to the global system matrix according to:

Vik =
∫

ΓD

ϕi

∫

ΓD

Uϕk dsx̃dsỹ,

Kil =
∫

ΓD

ϕi

∫

ΓN

(Tx̃U)Tψl dsx̃dsỹ,

Djl = −
∫

ΓN

ψjTỹ

∫

ΓN

(Tx̃U)Tψl dsx̃dsỹ.

(2.26)

20 2 Background

Throughout the derivation of the boundary integral equations, as well as the discrete
BEM system, we have not denoted restrictions of functions from the domain Ω to
its boundary Γ explicitly. This restriction is usually written using the boundary trace
operator Tr, meaning the limit of a function as the evaluation point approaches the
boundary. In order to evaluate the integrals in eq. (2.26) this limiting process must
be carried out carefully, and the resulting singularities must be handled appropriately.
This process is commonly referred to as regularization and depends to some extent
on the employed discretization. Details on the regularization and quadrature methods
required to assemble the system matrix blocks in (2.25) can be found in [16, 38, 65].
We present a short overview in the following, but skip the mathematical details for
the sake of brevity, as all these methods are readily available in BEM libraries, such
as HyENA [29].

As the singularity order increases each time we apply a traction operator to the
fundamental solution (2.21), we need to handle three types of kernel singularities in
eq. (2.26), resulting in weakly singular (V), strongly singular (K) and hypersingular
integrals (D). In the presence of a weak singularity, the definite integral still exists,
but standard numerical quadrature schemes converge slowly; typically a Duffy
transform [13,37] is used to remove the singularity and hence improve the convergence
of quadrature rules. For strong singularities, the integral only exists in the sense of a
Cauchy principal value [24]: the basic idea is to exclude a small circular region around
the singularity from the integration, and then evaluate the limit as the radius of this
region approaches zero. A result of this procedure is an additional integral-free term
that depends only on the geometry of the surface at the location of the singularity; if
the surface is smooth at this point, the value of the integral-free term is 1/2, which is
how it appears in the first term of the right-hand side vectors defined in eq. (2.27).
Finally, for hypersingular kernels, the integral exists only in the finite-part sense of
Hadamard [47]. The main idea for evaluating these integrals in the Galerkin BEM
approach is to use a strategy similar to integration by parts, where one derivative
moves from the kernel to the test function, thereby reducing the singularity order.
Please refer to chapter 4 in [38] for a detailed derivation of these regularization
techniques. Considering the additional term resulting from the Cauchy principal value
integrals, we can now define the right-hand side vectors of eq. (2.25):

fDi =
∫

ΓD

ϕi

[

uΓ/2 +
∫

ΓD

(Tx̃U)TuΓ dsx̃ −
∫

ΓN

UqΓ dsx̃

]

dsỹ,

fNj =
∫

ΓN

ψj

[

qΓ/2−
∫

ΓN

(TỹU)qΓ dsx̃ + Tỹ

∫

ΓD

(Tx̃U)TuΓ dsx̃

]

dsỹ.
(2.27)

Note that in our implementation the known boundary displacement and traction fields
uΓ and qΓ are also given as piecewise-linear and piecewise-constant interpolations of
per-node and per-element data respectively.

According to the definition of the system matrix blocks (2.26) we immediately see
that both V and D are symmetric, and consequently the linear system discretizing
the mixed boundary value problem of eq. (2.12) is block-skew symmetric. Unlike the

21

discrete FEM system, however, the BEM system matrix is dense, i.e. every unknown
degree of freedom influences all the other ones. Consequently, the runtime required
to assemble this dense linear system, as well as the memory required to store it, scale
quadratically in the number of unknowns. The runtime required to solve a dense linear
system generally scales cubically, although in our implementation we have observed
that the assembly time dominates the overall runtime for the system size we typically
use.

There exist a couple of methods that can provide improved scaling properties over the
standard BEM approach by only approximately assembling the linear system (such as
the fast multipole method [37, 79], or adaptive cross approximation [44]). Typically,
these methods only result in a practical speed-up if the BEM system is sufficiently large.
Instead, we aim to keep the system size manageably small by using a coarse surface
mesh to simulate the elastostatic deformation and simulate only crack propagation at
a higher resolution (as discussed in chapter 4.5.2). Consequently, we will not consider
these fast BEM approaches in this work.

2.4 Linear elastic fracture mechanics

Now that we have established the governing equations of linear elasticity and intro-
duced numerical methods to solve for elastostatic deformations due to given surface
loads, we are ready to turn our attention to linear elastic fracture mechanics (LEFM).
In particular we aim for a description of how materials fracture under the assumption
that they behave linearly elastic until they fail. Obviously, the same assumptions used
in the derivation of linear elasticity are still in place, which means that in terms of real
materials, we ignore plasticity and large strains. Consequently, the LEFM model works
for materials that fail under small, elastic deformations and exhibit brittle fracture.

First, consider a very basic fracture experiment: we take a cylinder made of some ideal,
brittle material with a constant radius and no pre-made initial cuts or factures (or any
other imperfections of the material). We then start to pull both ends of the cylinder
apart along the cylinder’s axis. As we increase this uniaxial tension, at some point the
cylinder will break apart into two separate pieces, and we take note of the amount of
tension at the breaking point. Similarly, we could push the cylinder, rather than pull
it apart, to find out how much compression the material can withstand.

These basic experiments give rise to Rankine’s principal stress fracture hypothesis: a
material fails if either the maximal (tensile) or the minimal (compressive) principal
stress (magnitude) exceeds some critical value referred to as tensile or compressive
strength respectively. This hypothesis describes a “global” view of the fracture exper-
iment in the sense that the strength is defined as the stress magnitude at which the
entire specimen breaks. As discussed in chapter 2.2 the (normal) stress is maximal or
minimal along one of its principal directions. Consequently, we can expect the fracture
surface to be (roughly) orthogonal to that direction, i.e. the material breaks along a
principal plane (see also fig. 2.10a in [22]).

22 2 Background

Whenever we actually perform such a fracture experiment, real samples of materials
will never be as perfect as we have assumed so far. This circumstance reveals a major
problem for Rankine-type fracture criteria, namely that “brittle materials do not have a
well-defined tensile strength” (chapter 3.3 in [26]), because small imperfections always
randomly reduce the experimentally observed result. Usually averages of strength
values obtained in multiple tests are reported. Griffith [21] pointed out that this effect
leads to a discrepancy between the experimentally observed strength of materials and
predictions from molecular theory. In particular, small scratches on the surface suffice
to effectively reduce the apparent strength of some brittle materials.

I

II

III

Figure 4: Loading modes.

This observation motivates focusing on cases where
some initial cracks (or similarly small notches or
grooves) are already present in the material. We can
then turn our attention to what happens locally at the
crack front (i.e. the bounding curve of a fracture sur-
face). Consequently we consider a local coordinate sys-
tem at the crack front (n1, n2, n3), where we choose
n1 to be the fracture surface normal, n2 the crack-front
normal (in the plane of the fracture), and n3 the crack-
front tangent. Depending on how the material deforms
locally around the crack front, we then define the three

loading modes as illustrated in fig. 4, see also fig. 1.4 in [17]: (I) opening parallel to
the surface normal, (II) shearing parallel to the crack-front normal, and (III) shearing
parallel to the crack-front tangent.

We first consider pure mode-I loading: we take (for example) our cylinder and add a
(small) planar crack (or cut) orthogonal to the axis of tension. If we now repeat the
fracture experiment described earlier, the observed load at which the cylinder breaks
apart completely will be lower than before due to the presence of the crack. Adopting
a more localized point of view leads to Griffith’s failure hypothesis, which states that
the load must be (locally) maximal at the crack front and the crack extends “if the
system can pass from the unbroken to the broken condition by a process involving a
continuous decrease in potential energy” [21], see also eq. (10)–(13) there.

Based on the analysis of Westergaard [75], Irwin [33] gives a precise description of the
stress state in the vicinity of a crack tip (which is the 2D analogue of a crack front).
Imagine a straight crack contained in an otherwise infinite 2D plate (or similarly a
cross-section of a 3D block), where the crack is aligned with the x-axis, and we apply
a uniaxial tension along the y-axis (far away from the crack). According to eq. (10)
in [33] the tension observed at a distance r away from the crack tip, at an angle θ
with respect to the x-axis, is of the form:

σyy = KI cos(θ/2) [1 + sin(θ/2) sin(3θ/2)] /
√

2πr, (2.28)

introducing the mode-I stress intensity factor KI. The exact value of KI depends on
the magnitude of the applied far-field tension, as well as on the geometry of both the

2.4 Linear elastic fracture mechanics 23

object and the crack. Some example results for relatively simple situations are listed
in chapter 5.1, as well as in table 4.1 of [22]. Irwin [33] also describes how to measure
the stress intensity experimentally using strain gauges ahead of the crack tip.

-0.5

0.5

0

0 1

σyy

Figure 5: Singular stress
field at a crack tip.

Note that the tension in eq. (2.28) has a 1/
√
r sin-

gularity as r → 0. Figure 5 illustrates this stress
component: the red curve plots the tension along the
x-axis (white line), while the background colour shows
its distribution in the x-y-plane. In real materials,
infinite stresses can obviously not occur, therefore crack
tips are always slightly blunt, rather than perfectly
sharp, due to some plastic deformation in a small
region around the crack tip. Nevertheless, the influence
of this “plastic zone” (where the assumptions of linear
elasticity break down) is small if it “does not extend
away from the crack by more than a small fraction of
the crack length” [33]. Brittle fracture can then be
described phenomenologically by Griffith’s energy balance, which in a general form
reads

dWe

dA
+
dWs

dA
= 0, (2.29)

stating that during the fracture process, elastic strain energy We is converted to frac-
ture surface energy Ws, where A is the crack area (or similarly for the crack length a in
2D). Introducing the strain energy release rate G for a small (straight) crack advance
and the critical energy release rate Gc, we can write this criterion as G = Gc. According
to eq. (4.84) and eq. (4.98) in [22] respectively, G (for the pure mode-I case) and Gc are:

G := −dWe

dA
= K2

I

1− ν2

E
and Gc :=

dWs

dA
= 2γ, (2.30)

where (E, ν) are Young’s modulus and Poisson’s ratio respectively, and γ is the ma-
terial’s surface energy density, i.e. the energy required to form a new fracture surface
of infinitesimal area dA in the material. (Recall that every crack has a positive and a
negative face, hence the factor 2.) Using the relation between G and KI (2.30), we can
also write the energy balance criterion in the equivalent form K2

I = K2
c , introducing

the material’s toughness K2
c := 2γE/(1− ν2).

So far, we have considered a statically loaded crack, where Griffith’s energy bal-
ance provides a criterion for the onset on crack propagation. In order to deter-
mine the speed at which the crack is then expected to propagate, we also need
to consider the elastodynamic equivalent of KI: the dynamic stress intensity factor
Kdyn

I (v), depending on the crack propagation speed v, as well as the resulting dy-
namic energy release rate Gdyn(v). According to eq. (5.3.11) and (6.4.26) in [17],
the relation between the static and dynamic quantities can be written in terms of
universal functions of the crack speed, AI(v) and k(v), as Kdyn

I (v) = KIk(v) and

24 2 Background

Gdyn(v) = AI(v)Kdyn
I (v)2(1− ν2)/E = AI(v)k(v)2G respectively. Substitution of these

relations into Griffith’s energy balance yields the dynamic crack propagation criterion
(eq. (7.4.4) in [17]): [KIk(v)]2AI(v) = K2

c .

Applying an affine approximation to the factor on the left-hand side:
k(v)2AI(v) ≈ 1 − v/cR, eq. (7.4.5) in [17], where cR is the Rayleigh wave speed
in the material, yields an estimate of the crack propagation speed (if |KI| ≥ Kc):

v(KI) ≈ cR

(

1−K2
c /K

2
I

)

. (2.31)

Rayleigh waves are displacement waves that propagate along free surfaces, and their
speed imposes an upper bound on the crack propagation speed. According to Gross
and Selig [22], cR is typically within 85% to 95% of the shear wave speed, and we

choose the approximate value cR ≈ 0.9
√

µ/ρ for all our examples.

All the results so far describe only the case of pure mode-I loading of a straight
crack propagating in a straight line. Unfortunately, in the more general case of
mixed mode loading, it is not immediately clear in which direction a crack should
propagate, and how to derive the energy release rate in that direction. Furthermore,
due to the difference between pressure- and shear wave speeds, it is also not clear
how the dynamic SIF and energy release rate depend on the propagation speed.
However, in terms of developing a fracture model suitably fast and stable for computer
graphics applications, we ignore these issues as much as possible and opt for simple
approximations that we consider good enough for our purposes. In particular, having
already assumed a linear elastic behaviour, this linearity allows for a superposition of
the three distinct loading modes, and following eq. (4.86) in [22], we can extend the
energy release rate from eq. (2.30) to

G(KI, KII, KIII) = (K2
I +K2

II)
1− ν2

E
+K2

III

1 + ν

E
. (2.32)

n1

n2

n3

p

(v, θ)

Figure 6: Local crack-front
coordinates and propaga-

tion angle.

Note that this energy release rate still assumes that the
crack propagates straight ahead. In order to determine
the direction of crack propagation, we first need to de-
scribe how the energy release rate changes with respect
to a rotation by θ around the crack-front tangent. Given
a local coordinate system at a point p on the crack front
(n1, n2, n3), as shown in fig. 6, we can define a stress in-
tensity factor (SIF) associated with each loading mode:
(KI, KII, KIII). We can then figure out the propagation
direction θ in the (n1 × n2)-plane at p due to the given
SIFs.

While there exist various approaches to derive the
propagation angle θ, we find the kink model, given in

eq. (4.147) of [22], appropriate for our application. This model basically states that

2.4 Linear elastic fracture mechanics 25

the crack should propagate in the direction of maximal energy release rate with re-
spect to the crack-front near-field stress (i.e. the stress field in a small region around
the crack front, where the diverging stress field described by the SIFs dominates all
other contributions). The underlying assumption is that the crack already has an in-
finitesimally small “kink” in that direction. In this case the energy release rate for a
crack propagating along a direction given by θ can be calculated by replacing the SIFs
in eq. (2.32) with expressions for the local SIFs in a coordinate system rotated by θ
around the crack-front tangent.

In order to derive these local SIFs (given in eq. (2.35)) we use a generalization of Irwin’s
result (2.28) by superposition of loading modes. The near-field stress (see eq. (4.26)
in [22]) now reads

√
2πrσ̃ij = KIf

I
ij(θ) +KIIf

II
ij (θ) +KIIIf

III
ij (θ), (2.33)

where the angular dependence is given by the following functions (note that the stress
tensor must be symmetric, so fij = fji):

f I
11(θ) = cos(θ/2)(1− sin(θ/2) sin(3θ/2)),

f I
22(θ) = cos(θ/2)(1 + sin(θ/2) sin(3θ/2)),

f I
12(θ) = cos(θ/2) sin(θ/2) cos(3θ/2),

f II
11(θ) = − sin(θ/2)(2 + cos(θ/2) cos(3θ/2)),

f II
22(θ) = cos(θ/2) sin(θ/2) cos(3θ/2),

f II
12(θ) = cos(θ/2)(1− sin(θ/2) sin(3θ/2)),

f III
13 (θ) = − sin(θ/2),

f III
23 (θ) = cos(θ/2).

(2.34)

Following the derivation of Patricio and Mattheij [58], we then apply a rotation
by θ around the crack-front tangent, encoded in the rotation matrix Rθ, to the
near-field stress σ̃ of eq. (2.33), which results in σ̂ = RT

θ σ̃Rθ. Finally, we define
the rotated stress intensities Kθ := limr→0

√
2πrσ̂22, Kr := limr→0

√
2πrσ̂12, and

K3 := limr→0

√
2πrσ̂23 describing the local mode-I, II, and III loading in the rotated

coordinate system (which is aligned with the direction the crack is going to propagate
in). Note that the limits are easily evaluated because the input stress field is already
defined in terms of SIFs according to eq. (2.33). Expanding these expressions produces
the local SIFs in the form found in [22,58]:

Kθ = KIcos3(θ/2)− 3KIIcos2(θ/2) sin(θ/2),

Kr = KIcos2(θ/2) sin(θ/2) + 3KIIcos3(θ/2)− 2KII cos(θ/2),

K3 = KIII cos(θ/2).

(2.35)

These rotated SIFs do not depend on stresses tangential to the crack surface
(σ̂11, σ̂13, σ̂33), because the singular SIF field dominates for small distances r. We can

26 2 Background

II IIII

Figure 7: Expected fracture shape per loading mode.

now use these SIFs to evaluate the energy release rate G with respect to an assumed
kink-angle θ, according to eq. (2.32): G(θ) = (K2

θ + K2
r)(1 − ν2)/E + K2

3(1 + ν)/E.
(This equation also appears as (4.9) when we present our crack propagation method.)

To the best of our knowledge, there is no analytical expression for the angle θ that
maximizes this energy release rate in general. However, assuming KIII = 0 and con-
sequently K3 = 0 regardless of θ, and solving dG/dθ = 0 for θ, the directions of
maximum energy release rate for the mode-I-II loaded case are

θ∗(KI, KII) = 2 arctan
KI ∓

√

K2
I + 8K2

II

4KII

, (2.36)

if KII 6= 0, otherwise the maximum is θ∗ = 0 in the pure mode-I case. Assuming
KIII = 0 implies that a direction that maximizes the energy release rate also maximizes
(or minimizes) the local mode-I SIF Kθ, i.e. (dKθ/dθ)(θ∗) = 0, and the local mode-II
SIF Kr vanishes, i.e. Kr(θ∗) = 0, see [58]. One could of course apply numerical methods
to find the maximal energy release rate in the more general case where K3 6= 0, but
for the sake of computational efficiency we use an approximate solution for our crack
propagation method instead, see also fig. 12.

As a consequence of the above analysis, we expect a crack to propagate in such a way
that the local mode-I loading is maximal. In terms of the global shape of a fracture
due to mixed mode loading, we arrive at a similar conclusion as for the Rankine
hypothesis, which is that the fracture surface should be (locally) orthogonal to the
maximal principal stress direction. Figure 7 illustrates the expected crack propagation
behaviour for an initially flat crack for each (global) deformation mode. Equation
(2.36) together with (2.31) (using Kθ instead of KI) model this behaviour and specify
the crack propagation speed and direction respectively for a mixed mode-I-II loaded
point on the crack front. We consider general mixed mode loading in chapter 4.5.1.

27

2.5 Fracture simulation

In order to simulate brittle fracture based on the LEFM model, derived in the previous
chapter, we need to evaluate the stress intensities along the crack front, which allow
us to determine the crack front’s propagation velocity. We can then integrate the
crack front motion over time resulting in a new fracture surface. The fracture process
releases elastic strain energy and consumes energy required to form the new fracture.
Consequently, as the crack grows, it introduces additional degrees of freedom for the
object to deform, which in turn affects the stress intensities observed at the crack front.
While the Griffith criterion models the crack propagation process, we still rely on a
Rankine criterion to initiate new fractures. We choose to make these initial fractures
very small, however, and immediately switch to the Griffith criterion once the initial
crack front is known.

Contrary to our approach, many state-of-the-art fracture simulations in computer
graphics (such as [55, 57, 60, 79]) still use mostly stress-based (Rankine-type) fracture
criteria, ignoring (which means numerically smoothing) the stress singularity around
the crack front. Smoothing out the singular stress field might alleviate the divergent
part directly at the crack front, but in turn increases the (finite) stress nearby; this
erroneous stress increase typically results in excessive fracturing (artificial shattering),
as seen for example in fig. 11 of [57]. One strategy to alleviate this problem is to choose
a different fracture threshold in the vicinity of existing cracks, as done in [67].

Whichever way one chooses to simulate the fracture process, the degrees of freedom in
the elastic deformation model must be updated when adding new fractures, such as to
reflect the changing geometry and topology of the breaking object. In terms of finite
element methods, the straightforward approach is to split the mesh along existing faces
(duplicating nodes in the process) [57]. However, this basic approach cannot model
fractures that do not align with faces already present in the initial FEM mesh. A more
general approach is to cut through the elements as required and inserting new nodes
where appropriate [55, 60]. Cutting an element with an arbitrary plane might result
in badly-shaped pieces and degrade the mesh quality over time. An alternative idea is
to duplicate the elements instead (and marking which part actually represents intact
material) and inserting “virtual” nodes to keep the elements well shaped [46, 74]. All
of these methods directly represent the fractures in the mesh geometry.

Alternatively, an extended FEM [1, 20, 45] enriches the displacement approximation
space with additional basis functions to represent both the crack surfaces, as well as
the crack front, providing better resolution of the singular stress field, and at the
same time avoiding the sometimes tedious re-meshing operations required by standard
FEM. Especially in computer graphics applications, the additional crack tip functions,
modelling the divergent part of the stress field, are regularly ignored in favour of
simplicity and speed [36,48].

When using a boundary element method, fractures are in principle additional bound-
aries that are added to the mesh of the object’s surface. Recall, however, that every

28 2 Background

crack has two faces. Consequently, there exist two approaches to represent fractures
in a BEM mesh: the first option is to mesh both faces of a crack explicitly (placed
geometrically coincident, but with opposite normals), such that each face can deform
independently (DualBEM) [2, 77]. The DualBEM approach leads to a mesh connec-
tivity that is locally manifold (without boundary) everywhere, at the cost of slightly
more complicated meshing operations. In order to build a well-posed discretization,
the displacement boundary integral equation (BIE), eq. (2.20), is applied on one face
of the crack, while the traction boundary integral equation (HBIE), eq. 2.22, is ap-
plied on the opposite face, as illustrated in fig. 8. The second, simpler option to add
fractures to a BEM mesh is to represent each crack by a single surface (e.g. a triangle
sheet), which is a manifold with boundary and not connected to other surfaces in the
mesh, as introduced in [16]. In this case, the unknown data on the fracture surface
is the difference between the displacement of the positive and the negative face, re-
ferred to as the crack opening displacement (COD). The COD can be interpreted as a
jump-discontinuity in the displacement field (defined in rest space) across the fracture
surface.

DualBEM

COD-SGBEM

BIE

HBIE

crack tip element

no DOF

crack opening DOF

displacement DOF

equal displacement

Figure 8: Comparison of DualBEM and
COD-SGBEM.

While the DualBEM naturally pro-
vides more accurate results in regions
where cracks intersect other bound-
aries (as these intersections are explic-
itly resolved in the mesh), it also re-
quires special crack-tip elements to re-
solve the singular stress field, see also
[62]. On the other hand, the crack
opening displacement variant is less ac-
curate when fractures exists in a small
boundary layer (see [16] for a more de-
tailed analysis), but does not require
any special treatment of the crack tip
(or crack front in 3D), when using a

symmetric Galerkin BEM. Obviously, at the same mesh resolution, the DualBEM uses
roughly twice as many degrees of freedom to represent the unknown displacement of
fracture surfaces compared to the COD-SGBEM approach. Note that in the case of
infinitesimal displacements (where linear elasticity is valid) and therefore negligible
self-collision forces, crack surfaces are traction free (which means they are basically
a special case of homogeneous Neumann boundaries). Figure 8 illustrates the two
different BEM approaches for a single fracture.

The COD-SGBEM formulation incorporates the crack opening displacements directly
into the linear system as new unknowns, which is advantageous for our purposes,
because there is a direct relation between the COD and the SIFs we are looking
for. In the remainder of this chapter, we derive the COD-SGBEM using eq. (2.25)
as a starting point, and introduce a simple and efficient way to compute the stress
intensities. First, we conceptually assume that the unknown displacement vector u

2.5 Fracture simulation 29

can be split into three parts: the displacements of the object’s ordinary surface, the
displacements of the positive crack face u+, and the displacements of the negative
crack face u−. Splitting the matrix blocks D and K in (2.25) accordingly results in
the following SGBEM system:













V −K −K+ −K−

KT D D+ D−

K+T
D+T

D++ D−+

K−T
D−T

D+− D−−























q
u

u+

u−











=











fD

fN

f+

f−











. (2.37)

Unfortunately, this system is rank deficient because the third and fourth rows in the
matrix are linearly dependent. In order to remove this null-space from the system, we
define the crack opening displacement as ∆u := u+−u− and then subtract the fourth
row from the third in (2.37). Similarly, we refer to uc := (u+ + u−)/2 as the crack’s
average displacement, such that u± = uc ±∆u/2. Due to the symmetric Galerkin
discretization, eq. (2.26), the following relations hold: K+ = −K−, D+ = −D−, and
D++ = D−− = − D+− = −D−+. Finally, in order to simplify the notation we define
W := K+, X := D+, and Y := D++ to get the COD-SGBEM system representing
discrete elastostatics in the presence of fractures:







V −K −W
KT D X
WT XT Y













q
u

∆u





 =







fD

fN

0





 . (2.38)

Note that the third row of the right-hand side is 0 due to the traction-free crack
assumption. Formally, when assembling the matrix blocks W, X, and Y, the Neumann
surface ΓN is split into two parts as well, one covering the ordinary surface and the
other covering fracture surfaces. The integrals in (2.26) are then carried out over the
part of ΓN where the corresponding degrees of freedom reside. Note that the actual
assembly implementation is exactly the same for both surface types, so any BEM
implementation that is capable of assembling eq. (2.25) can immediately be used to
also assemble the additional matrix blocks in eq. (2.38) as well.

Finally, we must avoid numerical issues due to the stress singularity at the crack front:
we must make sure that there are no degrees of freedom located directly at the crack
front. Recall that in our BEM formulation, we use per-element tractions (which are
known as we assume traction-free cracks) and per-node displacements. Consequently,
we enforce the following condition for any point p on the crack front: u+(p) = u−(p),
or equivalently ∆u(p) = 0. While this condition is perfectly appropriate at “real”
crack fronts inside of the material, it also restricts the opening displacements where
cracks meet other surfaces, which explains the loss of accuracy in a small boundary
layer; see [16] for an evaluation of this method.

Now that we have a linear system of equations that we can solve for the crack opening
displacements (on the fracture surface), we want to evaluate the stress intensity
factors (at the crack front), which in turn reveal how the crack grows. Rather

30 2 Background

independently of the chosen simulation method, there exist various ways to compute
these SIFs; Ingraffea and Wawrzynek [31] provide a good overview. While more
accurate solutions may be obtained using the J-integral [64], the simplest way for our
application is the displacement correlation technique, eq. (25) in [31], which relates
opening displacements at a small distance behind the crack front to SIFs as follows:

Ki(p) = µ
√
π(∆ud · ni)/(c

√
2d), (2.39)

where ni is the i-th unit normal vector of the local coordinate system at p, ∆ud is
the crack opening displacement evaluated at some distance d behind the crack front,
i.e. ∆ud := ∆u(p− dn2), and the coefficient c = 1 if i = 3 and c = (1− ν) otherwise.

In summary, in this chapter we have introduced the governing equations of linear elas-
ticity, as well as the basic principles of linear elastic fracture mechanics (LEFM). We
have then outlined numerical methods to solve for elastostatic deformations in the
presence of fractures, in particular a boundary element method including the crack
opening displacements. These results combined provide a framework for simulating
quasi-static crack propagation in the context of LEFM: we solve the elastostatic de-
formation problem, use the resulting crack opening displacements to propagate the
cracks, and then update the elastostatic solution due to the newly formed fracture
surfaces, and repeat.

31

3 Design choices and overview

Having outlined the problem we want to address in this work, as well as introduced
related work and background information in the previous chapters, we now summarize
the design choices we make in building our fracture simulation method and give a brief
overview of the remainder of this thesis.

We work with a boundary element method because it avoids tedious volumetric mesh-
ing operations and allows us to concentrate all the computational effort on boundary
surfaces. As computer graphics applications traditionally use surface meshes to rep-
resent and render the final output geometry, the required surface meshing techniques
are well studied in this field. More precisely, we choose a direct BEM as it allows us
to immediately compute the surface data we are interested in – in particular crack
opening displacements – without the need for further integral evaluations. Conversely,
we do not use a fast multipole method (or similar acceleration techniques) because
we aim to work with a coarse deformation solution and keep the number of degrees
of freedom in the BEM system below the cross-over point, where these theoretically
fast methods become advantageous in practice. Consequently, we simulate the crack
propagation process at a much higher resolution than the deformation, producing de-
tailed and visually realistic fracture surfaces. We also choose to represent fractures as
triangle sheets in the BEM mesh, following the COD-SGBEM approach instead of the
DualBEM, because it further simplifies both the surface meshing operations as well as
the BEM formulation and implementation. Similarly, the number of degrees of free-
dom in the linear system is lower than in a DualBEM, while still providing sufficient
accuracy.

For our fracture simulation, we use a basic Rankine criterion to model crack initia-
tion, and a Griffith criterion to model crack propagation. We evaluate stress intensity
factors using the displacement correlation technique in order to determine both speed
and direction of crack growth. As we aim for a higher resolution of the crack propaga-
tion method, compared to the deformation simulation, we need a separate geometry
representation at each resolution. On the coarse level the BEM formulation requires
a triangulation of the object’s (ordinary) surface and similarly a sheet of triangles for
each crack. On the fine level, however, we choose an implicit surface representation,
implemented via the OpenVDB library. We store each fracture, as well as the object’s
ordinary surface, on a separate sparse grid during the fracture simulation. Afterwards,
we combine all of these grids to build a single implicit surface of the fractured ob-
ject, and use this representation to determine how the object separates into individual
fragments.

Finally, we choose a quasi-static approach to fracture simulation, which allows us to
use significantly larger time steps in our fracture simulation compared to fully dynamic
methods. In doing so, we ignore small-scale dynamics (such as stress waves), whose
influence on the visual appearance of fracture surfaces is relatively small compared
to the influence of material inhomogeneities (which we do model). Later on we also

32 3 Design choices and overview

reduce this quasi-static model by approximating the direct influence between fracture
surfaces on their opening displacements, which allows us to speed up our simulation
considerably, both in terms of theoretical complexity, as well as practical runtime.
Conversely, we treat large-scale dynamics in a rigid-body model (where each connected
object can move around freely, but not deform). For fairly simple scenes, we first
run the fracture simulation (with manually specified boundary conditions) and then
simulate rigid-body dynamics of the resulting fragments as a post-process. For more
complex scenes, we integrate our fracture method into the rigid-body system, such
that a collision can cause an object to break, and the resulting fragments are added
back into the rigid-body scene.

Our simulation method obviously requires various input parameters; we give a brief
summary of the most important ones, along with a rough categorization below, but
defer further details to the following chapters, as well as Appendix A.

These common simulation parameters are:

• The problem definition, including the geometry of the object, possibly existing frac-
tures at the start of the simulation, and boundary conditions.

• Material properties, such as density, Young’s modulus, Poisson’s ratio, strength,
and toughness.

• Resolution parameters, in particular the target edge length when meshing new frac-
ture surfaces, and the grid spacing of the implicit surface data. (Because the maxi-
mal crack propagation speed is limited by the material parameters, these resolution
targets also determine the corresponding time step and sub-step sizes.)

• Control parameters, allowing the user to influence the simulation, including limiting
the maximal number of time steps, choosing between the full BEM solution, our
fast approximate method, or a combination of both, and selecting among various
ways to produce the final output geometry.

• If we use our fracture method coupled to a rigid-body dynamics simulation, the
initial shape, position, velocity and rigid-body properties (such as friction and resti-
tution coefficients) are defined in an input rigid-body scene, while (most of) the
other parameters listed above can be specified independently for each breakable
object in the scene. In this case, the problem definition for each fracture simulation
triggered by a rigid-body collision is computed automatically.

Following these design choices, we describe our boundary element based fracture sim-
ulation method in ch. 4, before introducing approximations for improving the runtime
(and memory consumption) of this method in ch. 5. Chapter 6 then discusses how we
store the growing fracture surfaces, detect fragments, and build the final output geom-
etry (which can then be rendered via third-party tools), as well as how we construct
triangle meshes for both BEM calculations and collision detection. Finally, we present
our rigid-body coupling in ch. 7, and results produced by our method in ch. 8, before
closing with some concluding remarks in ch. 9.

33

4 High-resolution fracture simulation

In this chapter we present the core idea of our fracture method: how to simulate quasi-
static brittle fracture at a significantly higher resolution than the elastostatic defor-
mation. As introduced in ch. 1.3, previous fracture simulations in computer graphics
only produce fractures of the same resolution as the deformation model, and mostly
rely on adaptive meshing to mitigate this limitation. Consequently, the ability to use a
coarse deformation solution and still generate realistic, highly detailed fracture surfaces
constitutes a significant efficiency improvement over previous work.

We build our method on the approaches introduced in chapters 2.4 and 2.5: a symmet-
ric Galerkin boundary element method that includes unknown crack opening degrees
of freedom (COD-SGBEM), and a crack propagation criterion based on stress inten-
sity factors (SIF), following Griffith’s energy balance principle. All fracture surfaces
are represented as triangle sheets in the BEM mesh, as in [16]. Each such sheet is a
manifold with boundary and is not connected to other surfaces; please also refer to
figures 3 and 26a. Consequently, we never need to change any existing mesh elements
during the simulation and the only remaining meshing operation is to add more el-
ements as fractures grow. The high-resolution geometry of the object (including all
fractures) is stored as an implicit surface; please refer to ch. 6 for details. We consider
two input parameters that allow the user to control the resolution of these two surface
representations independently: rc (coarse) defines the target (average) edge-length in
the BEM mesh, and rf (fine) defines the grid spacing of the implicit surface, which is
also the resolution of the final output geometry.

We first give an overview of our algorithm and introduce how we solve the linear
elastostatic COD-SGBEM system before turning our attention to crack initiation. We
choose to limit crack initiation to surfaces (generally including fracture surfaces). Con-
sequently, we need to evaluate surface stresses due to both boundary displacements
and tractions. We then introduce our crack initiation criterion, which is based on the
Rankine hypothesis, but adds additional constraints to avoid any artificial shattering
problems, and also allows the user some control over the simulation. Note that we only
initiate small cracks of a fixed size due to this criterion, and switch to a Griffith-type
crack propagation criterion as soon as the initial position and orientation of a new
crack are defined. Our crack propagation method is based on the results presented in
ch. 2.4, and we add simplifying assumptions that allow us to handle a mixture of all
three loading modes. We then present a SIF interpolation scheme that enables us to
increase the resolution of our crack propagation simulation beyond the resolution of the
BEM mesh. In order to take advantage of this increased resolution, we model inhomo-
geneous materials with a spatially varying toughness field, and heuristically formulate
how the resulting toughness gradients influence the crack propagation behaviour. This
approach allows us to model various materials, control the fracture behaviour, and
produce visually detailed fracture surfaces, as shown for example in fig. 18, 19, and 35.

34 4 High-resolution fracture simulation

4.1 Algorithm overview

Our basic fracture simulation method takes as input the geometry of an object (either
a detailed surface mesh or a coarse BEM mesh) along with material parameters (most
importantly Young’s modulus and Poisson’s ratio), fracture parameters (strength and
toughness, possibly spatially varying), and boundary conditions (displacements and/or
tractions). Additionally we use a few control parameters (most notably the desired
resolution of both the BEM mesh and the output geometry), which will be described in
the following chapters as required. Appendix A provides a list of all fracture simulation
parameters.

For now, we consider a single fracture simulation, in the sense that the boundary
conditions are fixed, and we simulate until the fracture process is completed (or up
to a user-specified number of time steps). Note, however, that multiple fractures can
occur during one such simulation. In chapter 7 we then run one fracture simulation
for each object involved in a (sufficiently forceful) collision after each rigid-body step,
where the time limit is then determined by the duration of the collision.

Our fracture algorithm proceeds as follows:

(1) Load the input geometry. The user may provide either a pre-defined (coarse) BEM
mesh (possibly including initial cracks), or alternatively a detailed surface mesh
(without any fractures).

(2) Convert the input geometry to an implicit surface; see ch. 6 for details.
(3) If the BEM mesh has not been specified in step (1), we construct a (new) triangle

mesh from the implicit surface and apply quadric simplification [18] until a user-
specified number of triangles remain; see ch. 6.1 for further details. This procedure
ensures a closed orientable manifold BEM mesh. The user may also manually
specify small initial cracks, which we add after constructing the mesh of the object’s
ordinary surface.

(4) Apply boundary conditions, assemble the BEM system matrix, as well as the right-
hand side vector of eq. (2.38), and solve for the initial elastostatic deformation (see
ch. 4.2).

(5) The simulation loop:
In each BEM time step, initiate new cracks as described in ch. 4.4, then propagate
all crack fronts according to ch. 4.5 (performing a fixed number of propagation
“sub steps”), finally add the newly created fracture surfaces to the BEM mesh,
and update the elastostatic deformation. Repeat until no more fracture elements
were added to the BEM mesh (or the time limit has been reached).

(6) Post processing: compute the topology of the broken object (i.e. find fragments,
see ch. 6) and output a (detailed) triangle mesh for each fragment, which can be
used for rendering or subsequent animation. As per the user’s choice, we output
either undeformed fragments (most useful for animating their motion after the
fracture – we also use this option for our rigid-body coupling), or deformed ones
(possibly also for intermediate time steps) allowing for a “slow motion” animation
of the fracture process; see ch. 6.4 and fig. 29 for details.

35

In the remainder of this chapter, we describe each step of the main simulation loop in
detail, starting with the elastostatic deformation. We then present our surface stress
evaluation, which forms the basis of our crack initiation method. Finally, we turn
our attention to our high-resolution crack propagation method, capable of handling
general 3D loading situations, tensile and compressive fracture, as well as materials
with spatially inhomogeneous toughness fields.

4.2 Elastostatics with fractures

In the absence of fractures, the SGBEM block-matrix system, eq. (2.25), can be solved
using Schur complements following [38]: first compute the inverse of V, then solve
(KTV−1K + D)u = fN −V−1fD for u, and finally compute q = V−1(fD + Ku).

We use a similar strategy to solve eq. (2.38) including fracture surfaces. However, the
matrix blocks V, K, and D still describe the interaction between pairs of (unknown)
degrees of freedom located on the object’s ordinary surface. These DOFs, as well
as their pairwise interaction, will never change as we add new fracture surfaces.
Consequently, we combine their corresponding matrix blocks into a larger block A
and compute its inverse at the beginning of the simulation. The inverse of this
block-skew-symmetric matrix is also block-skew-symmetric, see eq. (2.8.18) in [5], so
we need to compute and store only one of its off-diagonal blocks.

A−1 :=

(

V −K
KT D

)−1

=





(V + KD−1KT)
−1

(V + KD−1KT)
−1

KD−1

−(D + KTV−1K)
−1

KTV−1 (D + KTV−1K)
−1



 .

(4.1)

Nevertheless, introducing new fractures will change the overall deformation of the
object, requiring us to solve (2.38) repeatedly during the fracture simulation. In order
to simplify the notation, we also combine the other matrix blocks accordingly: −W
and X into B, as well as WT and XT into C. Finally, we combine the unknown
surface tractions q and displacements u into a vector of unknown surface data s, and
similarly, we combine the right-hand side vectors fD and fN into f . The COD-SGBEM
system (2.38) now reads

(

A B
C Y

)(

s
∆u

)

=

(

f
0

)

. (4.2)

Using the Schur complement method again (having already pre-computed A−1)
results in the following equation for the unknown crack opening displacements ∆u:

(Y−CA−1B)(∆u) = −CA−1f . (4.3)

Consequently, the ordinary surface data (consisting of both tractions and displace-
ments) becomes s = A−1(f −B ∆u), where the first term on the right-hand side

36 4 High-resolution fracture simulation

(A−1f) corresponds to the solution of the unfractured system, and the second term
(−A−1B ∆u) describes the influence of the fractures onto the overall deformation.
We use the Eigen library [23] to solve these linear systems. In particular we use their
partial-pivot L-U decomposition for inverting matrices and solving all linear systems
except (4.3). When solving (4.3) for the crack opening displacements, we have observed
better performance when using Eigen’s Cholesky factorization with pivoting.

Recall that nodes on the crack front are not degrees of freedom in the BEM system, as
their crack opening displacement is constrained to 0 (see ch. 2.5). Consequently, our
crack initiation method must generate at least one interior node for each new crack.
Furthermore, as the crack front propagates, nodes that were previously located on the
crack front become interior nodes. At this point, they now contribute a crack opening
DOF, but their one-ring neighbourhood in the BEM mesh is already fixed. Note
that this one-ring neighbourhood is the region within which the DOF’s corresponding
shape function is non-zero; as only the crack front can move, this region will not
change anymore in subsequent time steps. Therefore, the fracture blocks B and C in
eq. (4.2), consisting of W and X in (2.38), as well as Y, grow along with the vector
of opening displacements ∆u whenever new fracture surfaces are created by either
crack initiation or propagation. However, because the shape-function support regions
of existing degrees of freedom do not change during crack propagation, no matrix entry
ever changes once it has been computed. Consequently, we compute each entry in the
entire BEM system matrix exactly once, amortizing the matrix assembly cost over the
course of the fracture simulation.

4.3 Surface stress evaluation

In order to facilitate crack initiation at surfaces, we now describe how to evaluate
surface stress from the elastostatic solution described in the previous chapter. In
particular, we compute an accurate 3D stress tensor for a surface triangle given the
displacements of its nodes ui (interpolated linearly over the element), as well as the
traction qe (constant over the element). This surface data is either given as a boundary
condition, or found by solving eq. (4.2).

In theory, we could use the boundary representation of the stress field, eq. (2.23), to
evaluate a stress sample anywhere inside the object. As the evaluation point approaches
the boundary, however, the resulting singularities in the surface integrals would again
require regularization. Without regularization, the interior evaluation suffers from
numerical noise close to the surface. Instead, we aim to evaluate surface stress on
a per-element basis and avoid costly integrations over the entire surface. Figure 10
shows that our surface stress evaluation agrees well with the interior stress according
to eq. (2.23).

In order to determine the surface stress σe on each element, recall the following con-
ditions introduced in ch. 2.2: σe must satisfy eq. (2.7), i.e. σen1 = qe, where n1 is
the triangle’s face normal. The surface stress must also be symmetric (σe = σ

T

e).

4.3 Surface stress evaluation 37

Figure 9: Illustra-
tion of Poisson con-

traction.

Finally, the (in-plane) deformation of the element must be
related to its stress according to the constitutive model,
eq. (2.11). However, when converting from a plane stress on
a triangle to a 3D stress, we need to account for the Poisson
contraction in the plane of this triangle caused by the given
out-of-plane traction qe. As illustrated in fig. 9, a traction
(blue arrows) causes the object to deform from its rest state
(transparent) to a stretched state (brown), and the triangle
on the top face (yellow) contracts as indicated by the yellow
arrows.

For each surface triangle, we first define a local coordinate system by the vectors n1

(the triangle’s surface normal), n2 (the unit vector along the first edge of the triangle),
and n3 := n1 × n2. We then compute a 2D stress σ2d in the plane spanned by n2

and n3, correct it for Poisson contraction, and finally combine it with the out-of-plane
traction to build the 3D stress.

e1
e2

e3

a

b

cIn order to compute σ2d, we map the nodal displacements
into the (n2×n3)-plane and collect them in the vector u2d, as
illustrated in the inset figure. Let (a, b, c) be the coordinates
of the triangle’s corners in rest space, and (ua, ub, uc) the
nodal displacement at each corner. We then map the triangle
into the 2D plane such that a → (0, 0), b → (e1, 0), and
c→ (e2, e3), where e1 = ‖b− a‖ is the length of the edge ab,
e2 = (c − a) · (b − a)/e1 is the projected length of the edge
ac in the direction of ab, and e3 = ‖(c− a)− (b− a)e2/e1‖
is the orthogonal distance from the edge ab to node c. We then apply the same
transformation to the deformed configuration of the triangle (a + ua, b + ub, c + uc)
and obtain the deformed 2D coordinates (f1, f2, f3). The combined 2D displacement
vector is then u2d := (0, 0, e1 − f1, 0, e2 − f2, e3 − f3)

T.

The in-plane stress computation follows the principle of a standard 2D FEM discretiza-
tion, as introduced in ch. 2.3.1. In particular, the three independent components of
σ2d are (σab, σ⊥ab, τ)T := SBeu2d, i.e. the normal stresses along, and orthogonal to the
edge ab respectively, as well as the in-plane shear. The matrix form σ2d is then the
symmetric (2× 2)-matrix built from these components. Here S encodes the Hookean
stress-strain relation and Be contains the derivatives of the linear shape functions
within the triangle (whose area is Ae) as follows (see also eq. (11.60) in [42]):

S =







λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ





 and (4.4)

Be =







e3 0 −e3 0 0 0
0 e1 − e2 0 e2 0 −e1

e1 − e2 e3 e2 −e3 −e1 0







1

2Ae

. (4.5)

38 4 High-resolution fracture simulation

Figure 10: Comparison of
interior stress (2.23) and

surface stress (4.6).

We then rotate σ2d into the global 3D coordinate system
to obtain traction vectors q∗

2 and q∗
3. These traction

vectors are (q∗
2 q∗

3) := (n2 n3) σ2d, where (n2 n3) is a
(3 × 2)-matrix containing the local in-plane coordinate
axes as columns. In other words, q∗

2 and q∗
3 are defined

as the first and second column of the rotated 2D stress
respectively.

Given three traction vectors with corresponding or-
thogonal normals, the 3D stress could be constructed
by dyadic summation, as in eq. (4.6). However,
summation over (qe,q

∗
2,q

∗
3) will in general produce

an asymmetric matrix, because the tractions built
from the in-plane stresses might not be consistent

with the given out-of-plane traction qe. In order to obtain a symmetric result, the
traction vectors need to satisfy q2 · n1 = qe · n2 and q3 · n1 = qe · n3. Furthermore,
the presence of an out-of-plane traction will modify the in-plane tractions due
to Poisson’s effect. Consequently, we define the corrected in-plane tractions as
qi := q∗

i +n1(qe · ni)+ni(qe · n1)ν/(1− ν), where i ∈ 2, 3 and ν is Poisson’s ratio.
Finally, we compute the 3D per-element stress by dyadic summation:

σe := (qe q2 q3) (n1 n2 n3)
T. (4.6)

Verifying that σe is symmetric and satisfies σen1 = qe is straightforward. In order to
derive the factor ν/(1− ν) for the Poisson correction, consider a cube under uniaxial
tension σz, as illustrated in fig. 9: the strain along the z-axis εz satisfies σz = Eεz,
where E is Young’s modulus. The Poisson contraction along both x- and y-axis is
εx = εy = −νεz. Now consider a triangle on the top face of this cube: the in-
plane stress due to Poisson’s effect is σx = E∗(εx + νεy) = −E∗(1 + ν)νεz with
E∗ := E/(1− ν2) (and analogously for σy), which is exactly the result we get for σ2d.
However, this stress is caused by the out-of-plane tension σz; there is no external force
along either x- or y-axis, so we know that the correct result should be σx = σy = 0.
Consequently, we need to add E∗(1 + ν)νεz = νEεz(1 + ν)/(1− ν2) = σzν/(1− ν) to
both σx and σy.

4.4 Crack initiation

In principle, it is possible to initiate cracks anywhere inside the object or on its surface,
based on any criterion due to interior or surface stress or strain, or at any location
specified by the user. In some of our test cases, we also start the simulation with
an object already containing cracks of a particular shape and size. For efficiency
reasons, we use per-element surface stress according to eq. (4.6) as our main criterion
for crack initiation. Conversely, evaluating interior stress using eq. (2.23) would require
integration over the entire surface in a BEM framework. Another reason to work with

4.4 Crack initiation 39

surface stress is that the interior stress field is divergence free in the absence of body
forces according to eq. (2.12) (i.e. there are no internal sources of stress), so we expect
its maxima to be located at the boundary surface. Our surface-based crack initiation
method also works on previously existing fractures, thus allowing for branching cracks.

We start a new crack if all of the following conditions hold:

(a) a surface element’s principal stress exceeds the local material strength,
(b) this element has not initiated a crack before,
(c) this element is farther than the average BEM edge-length (rc) away from any crack

front, and
(d) the user-specified limit for the maximum number of cracks in the simulation has

not been reached yet.

Condition (a) is our main (Rankine-type) criterion for crack initiation, and we use the
maximal principal stress to account for tensile fracture, as well as the minimal principal
stress for compressive fracture. The element where the stress magnitude exceeds the
strength the most will be fractured first. Note that the material’s strength can vary
in space, and we evaluate it at the centroid of each element. Many materials are
easier to break under tension than under compression, i.e. their compressive strength
is higher than their tensile strength. We allow the user to specify the (constant) ratio
of compressive- to tensile strength to account for this effect.

In the COD-SGBEM approach, fractures are not connected to other surfaces in the
BEM mesh, which means that we do not cut any elements in the mesh when a crack
reaches another surface. Consequently, we keep a list of “fractured” elements to test
condition (b), such that every element can initiate at most one crack. Otherwise,
we risk creating overlapping elements in the mesh, which would introduce untreated
singularities in the BEM integrals. Recall that due to the stress singularity around a
crack front, using a Rankine-type fracture criterion in its vicinity is not appropriate.
Condition (c) ensures that our Griffith-type crack propagation criterion takes prece-
dence in this situation. Intuitively, (c) means that starting a new crack too close to a
crack front is probably erroneous and also becomes redundant as soon as that crack
front propagates. Both conditions (c) and (d) increase the efficiency of our method by
reducing, or limiting, the total number of cracks. We find that condition (d) is also an
easy way to allow the user some control over the simulation.

When we evaluate condition (a), we compute the surface stress as described in ch. 4.3.
For each (ordinary) surface element e we use the corresponding entries from the BEM
solution vectors (qe, ui) (where i iterates over the nodes of triangle e) to obtain the
stress tensor σe according to eq. (4.6). We then compute the eigenvalues and eigenvec-
tors of σe to find the maximal and minimal principal stress and their corresponding
principal planes. The same process also allows us to handle new cracks branching off of
existing fracture elements with minor modifications: in this case, due to the traction-
free assumption, qe is always zero, while the nodal displacement is composed of the
crack’s average displacement uc and the crack opening displacement. Consequently,
we find the displacement of the positive or negative crack face as u±

i = uc(xi)±∆ui/2.

40 4 High-resolution fracture simulation

(a) (b) (c)

Figure 11: A newly created crack (a), its BEM mesh after 2 propagation steps (b)
and the corresponding fracture surface (c). Note that the initially hexagonal shape is
not visible after crack propagation. Figure 18 shows a complete view of this example,

including the toughness field used to bias crack propagation.

In order to approximate the average displacement, we evaluate the representation for-
mula, eq. (2.20), at the nodes xi of the fracture element e by integrating over the
ordinary surface (excluding fracture surfaces). We then initiate the branching crack
on the positive or negative side of the fracture element depending on which side suffers
the higher principal stress magnitude.

We place every new crack such that it lies in the principal plane corresponding to
the principal stress that lead to crack initiation, while the centre of the new crack
is aligned with the centroid of the generating surface element and offset along that
element’s normal vector (such as to avoid any intersections between the generating
element and the new crack). We choose a simple planar hexagon of radius 0.2 rc as
our initial crack shape, which is triangulated with one central node, providing the
first crack opening degree of freedom of the new crack in the BEM mesh. In order
to avoid visually distracting artefacts due to this very simple initial crack shape, we
constrain the crack propagation direction to be planar in the first propagation sub
step. This constraint ensures that the crack front turns away from the crack’s initial
plane smoothly, and the initially hexagonal shape is not visually apparent in the output
(assuming that the new crack propagates at least once), as shown in fig. 11.

4.5 Crack propagation

So far, we have discussed how to solve the elastostatic problem in the presence of
fractures, and how to initiate new cracks due to surface stress. We are now ready
to formulate a crack propagation criterion that describes how fractures grow due to
arbitrary loads. We first extend the analytical results presented in ch. 2.4 from mode-
I-II loading to arbitrary 3D loading, and formulate an equation of motion for the
crack front. We then show how to treat tensile and compressive fracture in the same
framework. Most importantly, we present how to simulate crack propagation at a much
higher resolution than the elastostatic deformation by interpolating stress intensities
in ch. 4.5.2, and finally we discuss our treatment of spatially varying toughness and its
influence on the crack propagation behaviour.

4.5 Crack propagation 41

4.5.1 Mixed mode crack front motion

We start our derivation of an equation of motion for a point p on the crack front
from eq. (2.31) and (2.36). Given the stress intensities (KI, KII, KIII) describing the
singular stress field in the vicinity of p with respect to the local coordinate system
(n1, n2, n3), we want to model the motion of this point as the crack front propagates.
The local coordinate axes, as defined in ch. 2.4 (fig. 6), are the fracture surface normal,
the crack-front (forward facing) normal, and the crack-front tangent respectively.

First, we calculate the (approximate) propagation speed, based on the idea of [17],
for mode-I fracture, eq. (2.31). We want to extend this propagation speed to a mixed-
mode loading situation, while ignoring issues arising from the elastodynamic behaviour
of the material as much as possible. In order to do so, we define the overall effective
SIF Keff by combining all three SIFs, and accounting for the pre-factors with which
they contribute to the energy release rate in eq. (2.32):

K2
eff := K2

I +K2
II +K2

III/(1− ν). (4.7)

We then substitute Keff for KI in eq. (2.31) to find the approximate propagation speed

v(Keff) = cR(1−K2
c /K

2
eff) if Keff > Kc, 0 otherwise. (4.8)

Note that in order to simplify the implementation, we do not consider the angular vari-
ation of the singular stress field when determining the propagation speed, and we only
continue with the more involved direction calculations, described in the remainder of
this chapter, if the effective SIF exceeds the material’s toughness: Keff > Kc. In other
words, we only allow a fracture to propagate (in any direction) if the load is sufficiently
high for it to propagate straight ahead. As fractures tend to align orthogonally to a
principal stress direction (in particular we enforce this alignment when initiating new
cracks), and propagate mostly under mode-I dominated loading (see also [58]), this
simplification is reasonable.

Once we have determined the propagation speed, we also need to find the propagation
direction. Any point on the crack front may only move in the plane locally orthogonal
to the crack-front tangent, i.e. the (n1 × n2)-plane. We then define the propagation
direction in terms of the angle θ, such that the corresponding unit vector in 3D
is sin(θ)n1 + cos(θ)n2, see also fig. 6. Assuming the kink model, as introduced in
ch. 2.4, we find the stress intensities (Kθ, Kr, K3) in a coordinate frame rotated by θ
according to eq. (2.35) and the corresponding energy release rate is

G(θ) =
[

(K2
θ +K2

r)(1− ν2) +K2
3(1 + ν)

]

/E. (4.9)

Under the condition that K3 = 0 (i.e. under mode-I-II loading conditions), the angle θ∗

that maximizes this energy release rate is given by eq. (2.36). However, under mixed
mode loading, where all three SIFs are non-zero, a closed-form expression for the opti-
mal angle is not known. While we could, of course, find the optimal angle numerically,

42 4 High-resolution fracture simulation

0

1
9

019
0

50

100

θ*

K
III

a
n

g
u

la
r

e
rr

o
r

10

20

30

K
II

(a) K
II

K
III

0 1 9
0

1

9

0.1°

2°

2°5°

10°

20°

0.1°

angular error contours

(b)

Figure 12: The crack propagation angle according to eq. (4.10) (a) due to given mode-
II and III SIFs in multiples of KI; color shows the absolute angular error compared to
numerically optimizing G(θ) defined in eq. (4.9). Image (b) shows contour lines of this

error.

there is another problem in the rare case that mode-I loading is small and mode-II
and III are both large, but almost equal to each other, i.e. |KI/KII| ≈ |KI/KIII| << 1
and |KII/KIII| ≈ 1: in this case the optimal angle θ∗ is close to 0◦ when KIII > KII,
but about 70◦ when KII > KIII, with a steep transition between the two cases. This
sudden change of the optimal angle under small variations of the loading conditions
can lead to unpleasant visual artefacts.

Consequently, we use a different approach: intuitively, both pure mode-I and mode-III
loading conditions drive the crack “forward” (locally), i.e. θ∗ = 0 in both cases. (This
fact can easily be seen when setting KI 6= 0, KII = KIII = 0 or KIII 6= 0, KI = KII = 0
in eq. (2.35): only the cosine-terms remain non-zero.) We now ignore the different
angular variations of the mode-I and III SIF fields and group the two together into
one effective mode-I-III SIF KI,III, while again accounting for the different pre-factors
with which they contribute to the energy release rate: K2

I,III := K2
I +K2

III/(1− ν).
Substituting KI,III for KI (and setting KIII = 0), we can now again compute the
optimal propagation angle using eq. (2.36), which now reads:

θ∗(KI,III, KII) = 2 atan
KI,III −

√

K2
I,III + 8K2

II

4KII

. (4.10)

The error due to this simplifying assumption, in terms of absolute angle difference,
is shown in fig. 12; in particular, this error is less than 2◦ whenever |KIII| < |KI|,
which is very likely as cracks tend to propagate in such a way as to maximize local
mode-I loading. In summary, we define the 3D motion of a point p on the crack front
according to eq. (4.8) and (4.10). The crack propagation velocity vector at p is then:

ṗ = v(Keff) sin[θ∗(KI,III, KII)] n1 + v(Keff) cos[θ∗(KI,III, KII)] n2. (4.11)

4.5 Crack propagation 43

(a) (b)

Figure 13: A cube breaks under compression into multiple fragments (b). Displace-
ments in image (a) are magnified; arrows show tractions resulting from Dirichlet bound-
ary conditions. Note that the input mesh is not symmetric, which causes slight differ-
ences in the surface stresses, resulting in asymmetric crack initiation, even though the

material properties are homogeneous.

Compressive crack propagation
Note that the sign of KI (and similarly Kθ) indicates whether the crack front is cur-
rently under tension (positive) or compression (negative), whileKI,III is always positive.
In the case of compressive fracture, this drawback needs to be accounted for. We focus
on tensile fracture during the derivation of our crack propagation method throughout
this chapter, i.e. assuming that Kθ > 0. The main point of this section is to introduce
a fast and simple approach that allows us to treat compressive fracture within the
same framework.

First, recall that due to the assumptions of linear elasticity, in particular working
with infinitesimally small deformations, self-collision forces (where the two faces of a
crack are compressed together) are negligible. Instead, we opt for a phenomenological
description, similar to the approach we use for crack initiation, based on the observation
that most materials are more difficult to break under compression than under tension.
As input parameters we consider the tensile toughness Kc and the ratio of compressive-
to tensile toughness fc := Kcomp

c /Kc.

In the tensile case we seek to propagate the crack in a direction where Kθ > Kc, con-
versely, under compression we need to find a direction where Kθ < 0 and −Kθ > fcKc.
In order to keep the remaining implementation of our crack propagation method un-
changed, we first decide whether the crack propagates under tension or under compres-
sion: we choose compressive fracture if maxKθ < −minKθ/fc, where Kθ is evaluated
according to eq. (2.35). In the case of compressive fracture we then replace all three
stress intensity factors by Ki ← −Ki/fc and proceed with the calculations of propa-
gation speed, direction, and influence of the toughness gradient as in the tensile case.

Figure 13 shows an example of a cube under compression (using Dirichlet boundary
conditions on the top and bottom faces, red arrows show resulting surface tractions):
due to Poisson’s effect the cube also bulges out orthogonally to the axis of compression.

44 4 High-resolution fracture simulation

Consequently, both a (horizontal) compressive fracture and secondary (vertical) tensile
fractures appear in the result, cutting the cube into multiple fragments (only the four
largest fragments are shown).

4.5.2 High-resolution crack propagation

(a)

(b)

(c)

Figure 14: Overview of our
crack-propagation method:
we sample the crack front
at a high resolution (a),
propagate each crack-front
marker (b), and then up-

date the BEM mesh (c).

Now that we have an equation of motion for the crack
front, we are ready to simulate the crack propagation
process. The crack front motion, eq. (4.11), is deter-
mined by the stress intensity factors and their corre-
sponding local coordinate axes. Our crack propagation
method consequently proceeds as follows: we first solve
the BEM system for per-node crack opening displace-
ments on a coarse triangle mesh, eq. (4.3), and compute
(coarse) stress intensities for each crack-front edge. We
then sample each edge by placing a fixed number of
crack-front markers on it and interpolate the SIFs from
the mesh to the markers. Finally, we integrate (4.11)
over time, for each marker independently, using a sim-
ple forward Euler scheme. Once each marker has prop-
agated for a fixed number of small time steps (which
we call “sub steps”), we complete the (full) time step
by adding new elements to the BEM mesh representing
the newly created fracture surface. Figure 14 illustrates
this process. Any crack-front marker that reaches an-

other surface is “deactivated” and not allowed to propagate any further; see ch. 6.2 for
details on how we detect these cases.

n1

n2

n3

∆u

d

Figure 15: We use crack
opening displacement at the
interior node of the trian-
gle containing a crack-front
edge to evaluate stress in-

tensities.

Evaluating stress intensities
We first evaluate the stress intensity factors for each
crack-front edge in the BEM mesh using the displace-
ment correlation technique, eq. (2.39). Note that each
crack-front edge is part of exactly one triangle in the
mesh. This triangle must also have a third node that
does not lie on the crack front. (Otherwise all three
edges of the triangle would be crack fronts, and the tri-
angle does not contribute a crack opening degree of free-
dom to the BEM system. Such configurations can never
occur due to the way we construct the mesh during
both crack initiation and propagation.) Having found
this third, interior node within the triangle containing
the crack-front edge of interest, we then fetch the crack
opening displacement at this node from the solution vec-

tor of (4.3). The correlation distance d is then the orthogonal distance from the
crack-front edge to the interior node, as illustrated in fig. 15. Of course, the local

4.5 Crack propagation 45

crack-front coordinate system is easily defined in terms of the triangle’s face normal
and the crack-front edge’s tangent. Evaluating per-edge stress intensities according to
(2.39) is now straightforward. Especially in our case of piecewise-linear (opening) dis-
placement interpolation over the BEM mesh, the displacement correlation technique is
not particularly accurate; nevertheless we believe this simple approach to be sufficient
for our needs.

Finally, we average both the stress intensities, as well as the local coordinate frames,
from the crack-front edges to the nodes, effectively smoothing them. We use an
unweighted average regardless of the crack front’s geometry: each node receives a
50% contribution from both its adjacent edges. Afterwards, we re-normalize and re-
orthogonalize the local coordinate axes at each node.

Motion of crack-front markers
Recall the user-defined resolution parameters rc (coarse) and rf (fine): we aim to keep
the distance between any two crack-front markers close to rf and the edge length in the
BEM mesh close to rc. Consequently, we sample each crack-front edge with n equally
spaced markers (when the crack first occurs), where n = ⌈rc/rf⌉. The piecewise-linear
curve connecting these markers (in fixed order) defines the high-resolution geometry
of the crack front. We maintain equidistant spacing between the markers by sliding
them along the high-resolution crack front after each propagation sub step.

Ensuring equal spacing among the markers allows us to linearly interpolate stress
intensities (and local coordinate axes) from an edge in the BEM mesh to the crack-
front markers in a geometry-agnostic fashion: let pij

k , k = 1..n, denote the markers
along the edge ij (connecting the mesh nodes xi and xj), then the mode-I SIF for
each marker is KI(p

ij
k) = (k − 1)KI(xj)/n + (n + 1 − k)KI(xi)/n (and analogously

for the remaining stress intensity factors). We use the same interpolation scheme for
the local coordinate axes n1 (the surface normal) and n3 (the crack-front tangent),
then normalize the resulting vectors, and finally compute n2 = n3× n1, which implies
n1 · n2 = 0. This way, we ensure that n1 and n2 (which we use to define the motion
of each marker) are always orthogonal. Using this interpolation scheme, along with
a piecewise-constant interpolation over time, we can evaluate the crack propagation
velocity at every crack-front marker p using eq. (4.11) and integrate the crack-front
motion over time.

Note that the SIFs describe the (singular) stress field near the crack front by splitting it
into analytically known singular functions and their magnitude. Consequently, the SIFs
vary much less dramatically than the stress field itself. By interpolating coarse SIFs
onto (the updated position of) the crack-front markers in every sub step, we capture
the rapid change in the (near) stress field at a high resolution as the crack front moves.
We do not need to update the BEM result after every sub step, because the far-field
stress changes much more slowly. Similarly, we can safely use a low-resolution BEM,
because far-field stress gradients are comparatively small. Applying the SIFs at the
current marker location in every sub step automatically models the fast shifting of the
stress singularity as the crack front advances.

46 4 High-resolution fracture simulation

(a) (b) (c)

Figure 16: When the crack front propagates, the length of an edge in the BEM mesh
either remains within (0.2rc, 1.4rc) (a), grows too long (b), or too short (c). We
subdivide (b) or contract (c) the edge to ensure the new fracture surface elements

(grey triangles) fit the user-specified resolution.

We choose the duration of a sub step ∆ts such that cR∆ts = rf , which means that
in every sub step each marker moves no further than rf . As the markers move, we
record the fracture surface generated by this crack-front motion as an implicit surface
on a sparse volumetric grid, see also ch. 6.2. Once we have completed n forward Euler
sub steps, i.e. the maximal distance any marker may have moved is rc, we update
the BEM mesh by generating new elements for the additional crack surface spanned
by the motion of the high-resolution crack front. Again, we aim to create new crack-
front edges whose length is approximately rc, so we place a mesh node at the average
position of every n crack-front markers.

If the markers have spread out, or moved closer towards each other, during the crack
propagation time step, we apply edge contraction or subdivision operations in order to
keep the resulting crack-front edge lengths within the interval (0.2rc, 1.4rc) (measured
with respect to the resulting mesh node positions). Consequently, there are only three
different ways how to triangulate the surface spanned by the crack-front motion, as
illustrated in figure 16: when two adjacent crack-front nodes (black squares) propagate
to new positions (along the blue arrows) their new distance is either (a) still within
the allowed range, (b) too long, or (c) too short. In case (a) we add two new triangles
(grey) to the BEM mesh, connecting the previous and the new nodes (black circles).
In case (b) we double the sampling density along the high-resolution crack front to find
the position where we insert a new mesh node, and consequently add three triangles
to the mesh. Having increased the number of markers, each of the resulting two new
crack-front edges is already sampled by n markers after the subdivision. Finally, in
case (c) we replace the crack-front edge by a single node and add only one triangle.
We delete the markers along the contracted edge, and re-distribute markers of the
adjacent edges, such that the crack front remains uniformly sampled. Note that as
a special case, it may happen that only one of the two nodes of an edge propagates
and accordingly one of the grey triangles in fig. 16 does not exist (this exception only
applies to cases (a) and (b), as we do not allow edge contraction unless both nodes
have propagated). In summary, we add new elements to the BEM mesh according to
the motion of the high-resolution crack front, while making sure that the size of these
elements meets the coarse resolution target. We never modify elements that are already
present in the BEM mesh during this process, which allows us to re-use all previously
computed blocks of the BEM system matrix in eq. (4.2). After each crack propagation

4.5 Crack propagation 47

step, those mesh nodes that represented the previous crack-front state now become
new crack opening degrees of freedom, because they are now interior nodes on the
fracture surface due to the additional triangles created during the propagation step.
Consequently, we extend the BEM system matrix in (4.2) accordingly and compute
the corresponding new matrix entries following eq. (2.26).

In most of our examples (see ch. 8), we choose a resolution ratio (rf/rc ≈ n) in the
range of 20 to 50 (please also refer to table 1), meaning the resolution of the crack
front (and the implicit fracture surfaces) is up to 50 times higher than the resolution
of the BEM mesh. Consequently, the number of degrees of freedom required in the
deformation model (compared to a uniform surface mesh at full resolution) is reduced
by a factor of up to 502 = 2.500. Recall that when using a standard BEM approach,
the matrix assembly time scales quadratically in the number of degrees of freedom,
meaning that it would take roughly 6 million times longer to assemble the linear
system for a full-resolution elastostatic BEM (a similar argument applies to the memory
requirement). Clearly, using a standard full-resolution BEM is too expensive and fast
approximate methods (such as a fast multipole method) would be required. According
to fig. 7 in [79], their fast multipole implementation results in a practical speed-up
if the BEM mesh contains more than 20.000 nodes. Using our high-resolution crack
propagation method and a coarse BEM, we can easily operate below this threshold;
most of our examples use less than 5.000 nodes (or roughly 10.000 triangles following
Euler’s formula), see tables 1 and 3.

Smooth fracture surfaces
During the forward Euler time stepping we always use SIFs from the preceding BEM
step. Due to this (temporally) piecewise-constant SIF interpolation, the optimal prop-
agation direction θ∗ given by eq. (4.10) would jump in between BEM steps and remain
constant during the crack propagation simulation, causing visually unpleasant kinks in
the resulting fracture surface. This issue could be solved by using a higher-order time
integration, but as re-computing θ∗ requires a BEM update, it would be expensive to
do so. If we were using a higher order interpolation of SIFs over time (for example
a piecewise-linear one), θ∗ would become (at least) a continuous function over time,
and integrating (4.11) would move each marker along a smooth curve. Consequently,
fractures in homogeneous materials form smooth surfaces. Instead of investing compu-
tation time in a more accurate time integration scheme, we achieve a visually similar
result by enforcing a smooth transition from the previous propagation direction to the
new one after each BEM update. To this end, we store each crack-front marker’s last
propagation direction at the end of a (full) time step and linearly blend to the new di-
rection over the course of the following time step. We define this blended direction θ̃∗ as

θ̃∗ := wtθ
∗ + θ∗

old(1− wt), (4.12)

where θ∗ results from eq. (4.10) using the current SIF values, while θ∗
old uses the SIF

values from the previous BEM step (or is set to zero if the crack has just been initi-
ated). Furthermore, wt is a weight that linearly transitions from 0 in the first crack

48 4 High-resolution fracture simulation

propagation sub step after the BEM update to 1 in the last sub step before the next
BEM update.

In summary, our crack propagation method computes an approximate solution to the
equations of crack-front motion, producing smooth high-resolution fracture surfaces.
The primary input to this method are stress intensities, derived from (coarse) piecewise-
linear crack-opening displacements. While we use a quasi-static deformation method,
jumping from one elastostatic solution to the next as we add new (coarsely triangu-
lated) fractures, our crack-front sampling and direction blending approach effectively
avoid visually distracting artefacts on the resulting (finely resolved) fracture surfaces.

4.5.3 Inhomogeneous materials

While being able to produce smooth fracture surfaces for perfectly homogeneous mate-
rials is an important feature of a brittle fracture simulation, most fractures we observe
in real-world materials have a distinctive visual quality, such as the photograph shown
in fig. 2b; see also the images collected by Becker and Lampman [3], in particular fig. 5
and 41 there. The goal of this chapter is to build a simple model resulting in realistic
and visually interesting surface patterns when applied to inhomogeneous materials.
Note that our underlying BEM elastostatics solver, however, cannot handle spatially
varying material properties in terms of elasticity parameters (i.e. Young’s modulus and
Poisson’s ratio, or equivalently the Lamé parameters) – it is only applicable to homo-
geneous isotropic linear elastic materials. The main idea to side-step this limitation is
to allow spatially varying fracture parameters (strength and toughness). In particular,
during crack propagation we assume that the presence of a toughness gradient at the
crack front causes a deviation from its optimal propagation path in favour of moving
towards a less tough region nearby. With this approach, we can exploit the fact that
these fracture-related material parameters do not appear in any of the elastostatic
BEM calculations, and consequently we are free to choose spatially varying fields for
these parameters. Our crack initiation method, as described in ch. 4.4, already han-
dles spatially varying strength: we add new cracks in decreasing order of how much
the principal stress magnitude exceeds the material’s local strength at each surface
element. Consequently, a spatially varying strength field automatically biases crack
initiation towards weaker regions. This effect can also be used as a tool to control the
simulation, see for example fig. 18.

During crack propagation, however, the local toughness only affects the propagation
speed, eq. (4.8), but not the (optimal) direction (4.10). Intuitively, we expect cracks
to propagate towards regions where the material is less tough and therefore the crack
can propagate faster, and possibly further, and thereby achieve a higher overall strain
energy release compared to trying to break through a tougher region (where it could
possibly get stuck due to insufficient stress intensity). We model this behaviour heuris-
tically by modifying the propagation direction using the (spatial) toughness gradient
∇Kc. The first step is to find not only the optimal propagation direction (where the
rotated mode-I SIF Kθ is maximal), but also an interval of valid directions, within

4.5 Crack propagation 49

which the stress intensity exceeds the local toughness, as illustrated in fig. 17. We can
then pick the direction out of this interval that best matches the (negative) toughness
gradient, leading the crack front towards more fragile regions.

Recall that for a crack-front marker located at p we have defined local surface and
crack-front normals (n1, n2) by interpolating the corresponding normals from the BEM
mesh. In order to determine the propagation direction in an inhomogeneous material
θ̂, we project the toughness gradient ∇Kc (evaluated at p) into the (n1 × n2)-plane
and convert the result to polar coordinates (θ∇, r∇) within this plane. In other words,
we compute θ∇ = tan−1 [(∇Kc · n2)/(∇Kc · n1)] and r2

∇ = (∇Kc · n1)
2 + (∇Kc · n2)

2.
In our implementation we apply the standard atan2 function to the negative gradient
to make sure that θ∇ is in the correct quadrant, pointing in the direction of steepest
toughness decrease.

Obviously, there is no guarantee that the energy release rate in the direction of the
toughness gradient, G(θ∇) according to eq. (4.9), will be sufficient to propagate the
crack in this direction. Using again the grouping of mode-I and III SIFs, similar to
eq. (4.10), and evaluating eq. (2.35), the effective stress intensity when rotating the
crack locally by θ around the crack-front tangent becomes

Kθ = KI,IIIcos3(θ/2)− 3KIIcos2(θ/2) sin(θ/2). (4.13)

Kθ

θ

Kc

θmin θmax

θ∗

Figure 17: Valid crack prop-
agation directions.

Because the optimal direction θ∗ in (4.10) maximizes
this rotated mode-I SIF and the corresponding rotated
mode-II SIF in this direction is Kr(θ∗) = 0, we conserva-
tively define the interval of valid propagation directions
solely based on Kθ. More formally, the valid interval
(highlighted region in fig. 17) is (θmin, θmax) such that
Kθ > Kc if θmin ≤ θ ≤ θmax, where Kc is evaluated at
the current marker position p.

Analogous to the stress intensities (KI, KII, KIII),
as well as the optimal propagation direction θ∗, this
valid interval also changes discontinuously from one
BEM step to the next. Following the same approach as our direction blending for
homogeneous materials, θ̃∗ in eq. (4.12), we also interpolate the valid interval linearly
over time (during sub-stepping) between the current and previous BEM results:
θ̃min := wtθmin + θold

min(1 − wt) (and analogously for θ̃max). This process ensures a
continuous transition of the allowed propagation directions over time. We are now
ready to compute the valid direction closest to the toughness gradient in each sub
step: θ̃∇ = arg minθ∈I |θ − θ∇|, where I := (θ̃min, θ̃max). In order to avoid visual
artefacts from numerical errors when the toughness gradient has either a small
magnitude, or is almost parallel to the crack-front tangent, we compute the final
propagation direction θ̂ in an inhomogeneous material as a weighted average between
the (smoothed) optimal direction θ̃∗ and the toughness minimizing (valid) direction θ̃∇:

50 4 High-resolution fracture simulation

(a) (b)

(c)

(d) (e)

Figure 18: Cube under tension: (a) toughness (yellow line indicates minimum), (b)
strength (blue line indicates minimum), BEM mesh (c) after two fracture simulation
steps and (e) at the end of the simulation (red arrows show resulting surface tractions).
Generated fragments (d) show a smooth fracture surface originating near the strength

minimum and propagating towards the toughness minimum (front face cut away).

θ̂ =wθ̃∗ + θ̃∇(1− w), where

w :=1/ (1 + r∇rc/Kc) .
(4.14)

Note that the magnitude of the projected toughness gradient has units of toughness
over length, so the resulting weight w is dimensionless. The derivation of the inhomo-
geneous crack-propagation direction does not impose any restrictions on how to define
a spatially varying toughness field in our implementation, as long as we can query
both the toughness value and gradient at any point inside of the breaking object. For
most of our results we use the OpenVDB library [11] to implement a tileable tough-
ness field, in particular to model granular materials described in the following section.
Nevertheless, even simple toughness fields, defined in closed form, can create visually
interesting fracture surface details. For example, the results shown in fig. 19 use a

4.5 Crack propagation 51

(a) (b) (c)

Figure 19: A notched bar in a 3-point-bending test: (a) initial BEM mesh and loading,
as well as example results (b, c) using closed form toughness fields. See also fig. 35 for

further results.

toughness function of the form Kc = a − b cos(f p · l), modelling a “layered” mate-
rial, where the unit vector l defines the orientation of the layers, a and b specify the
toughness magnitude, and the spatial frequency f controls the layer “thickness”. The
advantage of these simple toughness fields is that gradients can be easily computed
analytically.

Granular materials
Another interesting subject are materials with a granular structure. Such grains ap-
pear on a micron scale in many metals, but they also appear on larger scales in rock
compounds or concrete, for example. We do not make any assumptions on the scale
at which we run our simulations (except that continuum mechanics must still be a
valid model), as both cases may be of interest and their respective fracture patterns
exhibit many similarities. We use the freely available tool DREAM3D [10] to generate
a realistic, periodic grain structure. DREAM3D outputs a tileable surface mesh of
the grain boundaries. We then compute an unsigned distance function to the grain
boundary surfaces. We store this unsigned distance function on a sparse volumetric
grid, using OpenVDB [11], see also ch. 6.1 for details. Finally, we map every point in
3D space into this periodic tiling of grains, and assign a toughness value proportional
to the distance to the nearest grain boundary. That is, toughness is minimal at grain
boundaries and maximal deep inside each grain, such that the material is more likely
to fracture near grain boundaries rather than through the grains. Figure 35 shows re-
sults for such a granular material model with the same initial geometry and boundary
conditions as depicted in fig. 19.

52

5 Linear-runtime approximations

In chapter 4 we have presented our high-resolution fracture simulation method based on
a coarse linear BEM elastostatics solver. Due to the lower resolution of the simulation
mesh, the resulting BEM system has significantly fewer degrees of freedom compared
to a full-resolution deformation method. However, the matrix blocks corresponding
to fracture surfaces, B, C, and Y in eq. (4.2), still grow as the fracture simulation
proceeds. In order to achieve good fracture behaviour, we need to update the BEM
solution after a fixed number of crack propagation sub steps (and then check for new
crack initiation events). This means that the time required to assemble the additional
matrix entries and then solve eq. (4.3), as well as the memory required to store the
linear system, grows with the fractures.

In particular, the assembly time and memory requirement of a BEM system scale
quadratically in the number of DOFs, while solving this dense linear system (with
standard factorization methods) scales cubically. Note that in our results we have
observed that for a moderate number of DOFs the assembly time dominates the total
runtime of the solver. As discussed in ch. 4.5.2, we do not use enough DOFs to merit
a fast approximate BEM implementation (which would reduce the assembly time of
larger systems). Similarly, because the assembly time is the bottleneck in most of
our examples, it would not pay off to use a more elaborate linear solver than the
factorization methods provided by Eigen [23]. From eq. (4.2) we can easily see that
the matrix blocks B and C relate crack-opening degrees of freedom to ordinary surface
degrees of freedom, whereas Y encodes direct crack-crack interactions. Consequently,
B and C only grow linearly with the number of crack-opening DOFs, while the ordinary
surface DOFs remain unchanged. However, Y grows quadratically with the fractures.

The goal of this chapter is to introduce approximations that allow us to avoid updating
Y. Instead, we want to work only with the ordinary surface and the crack fronts when
simulating crack propagation. The advantages of these approximations are a reduced
theoretical complexity, as well as a practical speed-up, and a significant reduction in
memory consumption. On the other hand, we will lose the ability to treat crack-crack
interactions accurately. In particular, the method for initiating branching cracks as
described in ch. 4.4 will no longer work. While we could in theory formulate different
branching criteria in the context of our approximations, we choose not to do so in this
work. The main reason is that the improved complexity of our approximate fracture
method allows us to generate such a large number of fractures that the absence of
branching (or other crack-crack interactions) is no longer visually noticeable in the
results. Because we aim to speed up the computation on the coarse resolution, all
calculations in this chapter focus on data stored on the BEM mesh, in particular per-
node stress intensities and crack opening displacements near crack fronts. The methods
for propagating a crack front, recording the high-resolution fracture surface, and con-
structing the additional elements for the BEM mesh remain the same as described in
the previous chapter.

53

Furthermore, we formulate our approximations in such a way that we can switch
from the full solution (as in ch. 4) to the approximate solution (described in this
chapter) after each time step, even if there are already fractures present in the object.
This approach leads to a simple but effective hybrid method, where we use the full
BEM solution as long as the number of elements in the BEM mesh remains below
a user-specified threshold, and we switch to the fast approximations as soon as that
threshold is exceeded. Consequently, we can maintain the ability to handle crack-crack
interactions and branching as long as there are sufficiently few fractures (where these
effects may be perceivable in the result) and seamlessly transition to the faster, less
accurate method later on.

Our approximate fracture simulation method consist of two main components: a stress
intensity estimator (ch. 5.1), which we use to drive the crack propagation, and a crack
opening displacement estimator (ch. 5.2), which contributes an update to the right-
hand side of eq. (4.2). We estimate the stress intensity factors on the crack front from
the ordinary surface data, and similarly, once we have estimated the new crack opening
displacements behind the crack front, we only update the first row (corresponding to
the ordinary surface data) in (4.2). In this way, our fast approximations circumnavigate
all computations involving the problematic matrix block Y. Conceptually, when using
the hybrid method, all fractures present before we switch to the faster method are
treated as if they were ordinary surfaces (except that their corresponding right-hand
side vector remains 0 at all times).

5.1 Stress intensity factors

Having outlined the main idea for our fast approximate fracture simulation, we now
focus on estimating stress intensity factors from ordinary surface data. As a starting
point serve the analytic results obtained for simple object and fracture geometries, as
summarized in [22]. In particular, in 2D plane strain or plane stress problems including
a single straight crack, the stress fields that are either symmetric or anti-symmetric
about the crack’s axis (i.e. pure mode-I or mode-II loaded situations respectively) can
be represented by a complex stress function according to Westergaard [75], see also
eq. (1.122) and (1.123) in [22].

This approach was then used by Irwin [33] to derive the stress field around a mode-I
loaded straight crack, stated in eq. (2.28), which relates the stress in the vicinity of a
crack tip to the stress intensity factor KI. In the context of linear elasticity, one can
assume the elastostatic solution to a problem containing a crack under external (far-
field) loading to be a superposition of two partial problems, see ch. 4.4.1 in [22]. The
first part deals with the external loads, but ignores the presence of the crack, while the
second part accounts only for the crack under no external loads. Note that in the final
solution, we know that the crack must be traction-free. Consequently, the boundary
conditions on the crack faces in the second partial problem must be chosen such as to
negate the traction observed at the location of the crack in the first one. Combining

54 5 Linear-runtime approximations

Westergaard’s approach with the near-field stress based on Irwin’s results, eq. (2.33),
and separating near- and far-field loading by superposition produces a relationship
between the far-field loading and the stress intensity factors depending on the geometry
of both the object and the crack. For further details, see eq. (4.30)–(4.41) in [22].

σ σ

τ

2a a

(a) (b)

Figure 20: Planar crack problems
with analytical stress intensity so-
lutions, adapted from table 4.1 in

[22].

Obviously, the geometries (and boundary condi-
tions) for which such closed-form results can be
derived are somewhat limited, and most cases as-
sume an infinite extent of the object in question in
at least one dimension. Nevertheless, assuming a
sufficiently simple geometry, this method allows
deriving stress intensity factors from (constant)
stress far away from the crack (far-field stress),
or point forces acting on the crack faces. A sum-
mary of various geometries and resulting stress in-
tensities can be found in [22], table 4.1. For our
purposes, considering the two basic cases shown
in fig. 20 is sufficient. In the first case, an infinite

plate under far-field tension σ and shear τ contains a straight centre crack of length 2a.
In the second one, a half-space under far-field tension contains an edge crack of length
a. The stress intensities due to these far-field loadings are KI = σ

√
πa, KII = τ

√
πa,

or KI = 1.1215 σ
√
πa respectively.

Due to the infinite extent of the computational domain and the constant far-field
conditions, the elastostatic stress (∇ · σ = 0) in the absence of a crack is constant
throughout the object. This observation motivates the main idea of our SIF estimator:
given a point p on the crack front, we first measure the stress due to the ordinary
surface displacements and tractions (ignoring all fractures) according to eq. (2.23).
We then conceptually replace the actual geometry of the object with the straight
edge crack of fig. 20b, setting the far-field stress to the traction caused by the
observed stress at the crack front. Based on the analytical results summarized above,
we then formulate the following basic SIF estimator in 3D for a point on the crack front:

Ki = 1.1215
[

nT

i σ(p)n1

]

4
√
πA, (5.1)

where σ(p) is the stress at p evaluated in the absence of any cracks. The local
coordinates and stress intensities are defined as usual (see fig. 4), so n1 is the crack’s
surface normal (and consequently σ(p)n1 is the traction observed at the location of
the crack front with respect to the crack’s tangent plane).

In order to avoid numerical issues if the crack front is too close to the ordinary surface
(where the integral kernels in eq. (2.23) approach a singularity), we transition to a
surface stress evaluation, as described in ch. 4.3, if p is closer to the ordinary surface
than 10% of the closest surface triangle’s size. More formally, we use surface stress
whenever minx̃∈Γ‖x̃− p‖ < 0.1 l, where l is the length of the longest edge of the
triangle in the BEM mesh closest to p. We then project the traction vector σ(p)n1

5.1 Stress intensity factors 55

1 3 5 7 9 11
−2

0

2

4

6

8

10
x 10

7

time step

s
tr

e
s
s
 i
n

te
n

s
it
y

K
I

K
II

BEM

BEM

BEM K
III

K
I

K
II

est

est

est K
III

(a) 1 4 7 10 13
−5

0

5

10

15

20
x 10

7

time step

s
tr

e
s
s
 i
n

te
n

s
it
y

BEM

BEM

BEM

K
I

K
II

K
III

est

est

est

K
I

K
II

K
III

(b)

Figure 21: SIF estimates using up-to-date BEM surface data: (a) cube with 45◦ centre
crack (as in fig. 34) and (b) initially unfractured cube (as in fig. 18). Both examples
use mixed boundary conditions: fixed displacement on the base and constant traction

on the top of the cube.

onto each of the local coordinate axes to find the associated stress intensity factor.
Finally, we measure the total surface area A of the crack (in the coarse BEM mesh)
and assume a circular shape, such that the effective crack length (cross-section radius)

is a =
√

A/π. We use the constant factor 1.1215 corresponding to the edge crack case
because our crack initiation method always starts cracks at another surface.

We now want to test this basic estimator against the displacement correlation technique
we have used so far. For this test, we run the full fracture simulation, solving for the
elastostatic deformation including crack opening displacements and computing SIFs as
described in ch. 4. After each BEM update, we also approximate SIFs according to
eq. (5.1) and compare the results in fig. 21. The estimated SIFs increase more than
the COD-based ones as the crack reaches the surface towards the end of the simulation
(where the BEM formulation underestimates the COD as discussed in ch. 2.5). In
general, this comparison shows that eq. (5.1) can produce fairly accurate SIFs if we
use a BEM solution that already accounts for the presence of fractures as an input.
However, we do not gain any practical advantage by doing so, as we would still need to
solve the entire BEM system including all fractures. In order to build a faster method,
we need to estimate the stress intensities based on a solution to the unfractured BEM
system, eq. (2.25). (If we use our hybrid method, the BEM system does include some
fractures, but it will not be updated with newly generated ones anymore once we
switch to the fast estimators.)

Unfortunately, simply ignoring (new) fractures and estimating the stress intensities
according to eq. (5.1) based on “outdated” surface data causes two serious issues, as
shown in fig. 22: first, the SIFs (a) are severely underestimated (even though the
increasing crack area is accounted for in the estimator), making the material appear
artificially tougher. Furthermore, when running the crack propagation simulation as

56 5 Linear-runtime approximations

1 3 5 7 9 11
−1

0

1

2

3

4
x 10

7

time step

s
tr

e
s
s
 i
n

te
n

s
it
y

BEM K
I

BEM K
II

BEM K
III

est K
I

est K
II

est K
III

(a) (b)

Figure 22: The basic SIF estimator fails to
capture the increasing stress intensity as the
crack grows (a) and also causes oscillation
artefacts on the fracture surface (b, c). Im-
ages (a) and (b) show the same test case as
fig. 21a and 34; image (c) shows a mode-II
loaded edge-cracked cube with fixed displace-
ment on the base and constant traction on the

top as in fig. 32II. (c)

in ch. 4.5 the propagation path, and consequently the resulting fracture surface (b),
exhibits unacceptable oscillation artefacts. Especially in mode-II dominated cases (c)
these oscillations can become quite severe.

We address the issue of underestimated SIFs (a) in ch. 5.2 and focus on avoiding oscil-
lating crack propagation paths (b, c) here. We believe that these oscillation artefacts
occur because our assumption of a planar circular crack in an infinitely large object un-
der constant far-field stress never holds in practice. Consequently, even small errors in
the ratio of mode-I to mode-II loading result in a crack propagation behaviour that fails
to align the fracture surface normal with a principal stress direction. Once the crack
has propagated in a slightly wrong direction for one time step, the local coordinate
axes at the crack front change accordingly, and the propagation path over-compensates
for the error in the next time step.

We aim to rectify this behaviour by choosing the ratio η := KII/KI,III such that the
resulting propagation angle θ∗ aligns the crack’s surface normal with an eigenvector of
the stress σ. Again, we find σ using eq. (2.23) in the interior of the object, or eq. (4.6)
on (or very near) the ordinary surface. The propagation angle θ∗ in the crack front’s
local coordinate system is defined in eq. (4.10). Substituting KII = ηKI,III there and
solving for the ratio η that produces a desired angle θ∗ yields

5.1 Stress intensity factors 57

η(θ∗) = tan(θ∗/2)/(2tan2(θ∗/2)− 1), (5.2)

if cos(θ∗) ≥ 1/3, i.e. θ∗ is less than approximately 70◦. We do not explicitly
handle larger turning angles, which can only occur under compression. Having
computed the desired ratio, we set the stress intensities accordingly. Following
the idea of eq. (5.1), the combined magnitude of the stress intensities is supposed
to be K2

I,III +K2
II = (1.1215λ 4

√
πA)2, where λ is the eigenvalue (principal stress

magnitude) corresponding to the eigenvector (principal stress direction) we are try-
ing to align the fracture with. Consequently, we obtain the following estimate for KI,III:

KI,III = sλ, s :=
√

1/
(

1 + η(θ∗)2
)

1.1215
4
√
πA. (5.3)

For the purpose of simulating crack propagation, it would suffice to estimate KI,III

and KII in this way. In the following chapter, however, we are going to need all three
SIFs separately. Consequently, we split KI,III into KI and KIII based on the angle α
between the chosen principal stress direction and the crack-front tangent (n3) in the
(n1 × n3)-plane. Recalling that K2

I,III := K2
I +K2

III/(1− ν), we finally arrive at our
improved 3D SIF estimator :

KI = sλ
√

1− | cosα|,
KII = sλ η(θ∗), and

KIII = sλ sign(− cos(α))
√

| cosα|(1− ν).

(5.4)

These estimates depend directly on the angles (α, θ) between the local crack front co-
ordinate axes and a principal component of the local stress σ (measured in the absence
of fractures). The final step then is to choose the appropriate principal direction (eigen-
vector) of σ. The fracture process should release as much elastic energy as possible;
therefore the default choice is the eigenvector corresponding to the largest eigenvalue.
However, this eigenvector might not be sufficiently close to the fracture surface nor-
mal to satisfy cos(θ∗) ≥ 1/3. In this case, we choose either the second largest or the
most negative eigenvalue, depending on which one has the higher magnitude (while
also accounting for the material’s ratio of compressive to tensile toughness for negative
eigenvalues). If two eigenvectors are not sufficiently aligned with the surface normal,
we choose the remaining one. Because σ is symmetric, it has orthogonal eigenvectors
with real eigenvalues, so at least one of them must be close enough to the surface
normal to be a valid choice (as any eigenvector can be multiplied by −1, we have a
possible choice every 90◦).

The SIF estimator (5.4) aligns the crack propagation angle with an eigenvector of the
local stress and successfully avoids oscillation artefacts on the fracture surface. Final
results corresponding to the failure cases above (fig. 22b and c) are shown in fig. 34c
and 33II respectively. Figure 23 shows a similar mode-II loaded edge-cracked cube
using pure Neumann boundary conditions (constant, opposite tractions on the upper

58 5 Linear-runtime approximations

(a) (b)

1 3 5 7
0

2

4

6

x 10
6

time step

s
tr

e
s
s
 i
n
te

n
s
it
y

K
I

K
II

K
III

K
I

K
II

K
III

BEM

BEM

BEM

est

est

est

(c) 1 3 5 7

0

2

4

6

x 10
6

time step

s
tr

e
s
s
 i
n
te

n
s
it
y

BEM K
I

BEM K
II

BEM K
III

est K
I

est K
II

est K
III

(d)

Figure 23: A mode-II loaded edge-cracked cube with pure Neumann boundary con-
ditions: (a) oscillation artefacts caused by the basic SIF estimator, (b) aligning the
propagation angle with a principal stress direction removes these problems, but the
SIFs (c) are still underestimated. The method presented in ch. 5.2 yields improved SIF

estimates (d).

and lower half of the cracked side face). Similar to the other examples, the oscillations
caused by the basic estimator (a) are effectively removed (b), but the SIFs (c) are still
too low compared to the full BEM solution; we now turn our attention to obtaining
improved SIF estimates (d).

5.2 Crack opening displacements

In the previous chapter we have described how to estimate stress intensities based
on the object’s ordinary surface displacements and tractions. At the beginning of
each fracture simulation, we obtain this information by solving a boundary element
system. As the object fractures, however, it effectively weakens and deforms more easily
overall. In other words, adding crack opening degrees of freedom due to fracturing
influences the resulting displacements and tractions on the object’s ordinary surface.
Consequently, in order to get more accurate SIF estimates, it is necessary to update

5.2 Crack opening displacements 59

the surface displacements after each crack propagation time step. A full BEM solve,
eq. (2.38) and (4.2), would give the correct new displacements, but doing so would be
too costly. As our main goal is to avoid this procedure, this chapter describes how to
approximate the change of the ordinary surface data (u, q) due to estimated crack
opening displacements ∆ũ.

Given the (estimated) stress intensities Ki at the beginning of any one time step,
and the new crack-front position at the end of the same (full) time step, we can
estimate the crack-opening displacement ∆ũ at the previous crack-front position by
inverting the displacement correlation technique, eq. (2.39), resulting in the following
components of the COD with respect to the local crack-front coordinates (n1, n2, n3):

(∆û)i = Kic
√

2d/(µ
√
π), (5.5)

where µ is the shear modulus, d is the distance the crack has propagated during
the time step, and c = 1 if i = 3 and c = (1 − ν) otherwise. Transforming back to
standard Cartesian coordinates, we find the estimated opening displacements:

∆ũ =
∑

i
ni(∆û)i. (5.6)

We can now substitute the estimated new opening displacements for the unknown ones
in eq. (4.2) and move them to the right-hand side. Remember that we only aim to
update the object’s ordinary surface data, so we consider only the first row in eq. (4.2),
which now reads As + B ∆ũ = f . Consequently, we update the right-hand side by
f ← f − B ∆ũ after each BEM step and then compute the new surface data. The
system matrix A itself does not change due to these updates. Recall that we invert
A at the beginning of the simulation, and consequently, finding the updated surface
data means computing only a single matrix-vector product. The matrix B describes
the influence of (new) estimated crack opening displacements on the surface degrees of
freedom; as we only need the result of the product B ∆ũ, we never explicitly assemble
this matrix. Similarly, for each time step we only need to compute B ∆ũ for those
crack-front nodes (in the BEM mesh) that have actually propagated during this time
step (i.e. nodes that were on the crack front at the start of the time step, but are now
on the interior of the fracture surface as the crack front has moved on).

As shown in fig. 24, updating the surface data in this manner allows the local stress
to increase, yielding good stress intensity estimates for basic test cases. The result-
ing high-resolution fracture surface for the initially unfractured cube (SIFs shown in
fig. 24b) is visually indistinguishable from the full BEM result shown in fig. 18. Please
refer to fig. 34 for the resulting fracture surface of the centre-cracked case (fig. 24a).

60 5 Linear-runtime approximations

1 3 5 7 9 11
−1

0

1

2

3

4
x 10

7

time step

s
tr

e
s
s
 i
n

te
n

s
it
y

BEM K
I

BEM K
II

BEM K
III

est K
I

est K
II

est K
III

(a) 1 4 7 10 13
−5

0

5

10

15
x 10

7

time step

s
tr

e
s
s
 i
n

te
n

s
it
y

BEM K
I

BEM K
II

BEM K
III

est K
I

est K
II

est K
III

(b)

Figure 24: Comparison of stress intensity factors obtained with the full BEM solution
(solid lines) and our fast estimator (dashed lines) for (a) the 45◦ centre-cracked cube
(as in fig. 34) and (b) the cube with varying strength and toughness fields (as in fig. 18).

5.3 Scaling and speed up

In order to analyse the computational cost of our approximations, let l be the number
of mesh nodes on the crack front. Recall that during crack propagation we ensure
that the edge lengths between two adjacent crack front nodes is close to the coarse
resolution parameter rc, so l corresponds to the crack front length. In order to perform
one crack propagation time step, we first need to compute the local stress at l different
locations, which allows us to estimate stress intensities. In the interior of the object
each stress evaluation requires integration over the object’s ordinary surface, but ex-
cluding fracture surfaces. (Surface stress evaluations are faster, but only apply to crack
front nodes close to the ordinary surface.) Assuming the number of surface degrees of
freedom is n, the runtime required for evaluating all per-node stress intensities in one
time step is O(ln). Similarly, the right-hand side update (B ∆ũ) is only computed for
those crack-front nodes that have actually propagated during the time step. Again,
we need to integrate over the ordinary surface (but not over other fracture surfaces),
therefore this calculation also takes at most O(ln) time. Recall that the mesh of the
object’s ordinary surface never changes during the fracture simulation, which means
n remains constant and the cost per time step scales linearly with the length of the
crack front. As our approximations remove the need to assemble and store the dense
matrix Y altogether, it also reduces the required memory considerably.

Conversely, computing the full BEM solution after every time step scales (at least)
quadratically with the current surface area (including fractures). In principle, a fast
multipole method could reduce the runtime to (almost) linear in the (fracture) surface
area per time step. Consequently, our linear scaling in the crack front length represents
a significant improvement over previous methods. The resulting practical speed-up
compared to our full BEM solution depends strongly on the number of fracture elements
in the mesh. For simple cases with less than 1000 elements, such as those shown in

5.3 Scaling and speed up 61

fig. 37, the total runtime is dominated by the high-resolution crack propagation and
fracture surface recording, and is therefore almost equal for both the full BEM and
the approximate solution. On more complex examples, however, our approximations
are considerably faster (see also ch. 8.2): for example, we obtained a speed-up of
approximately 35x for the scene shown in fig. 41, using about 3x less memory. Figure 25
shows the CPU time required to compute each crack propagation time step for the first
two collisions happening in that scene. For such complex scenes, the two methods do
not proceed in exactly the same way, which results in a different amount of elements
for each run. Nevertheless, our estimate solution is consistently faster, especially of
course for large problems (note the logarithmic scale on the runtime axis in fig. 25).
Figure 40c shows a similar result for our hybrid method, where we switch from the full
BEM solution to the fast approximate one when the mesh size exceeds 3000 elements.

5000 10000 15000
10

0

10
2

10
4

no. of elements

ti
m

e
 p

e
r

s
te

p
 [
s
] BEM 1

BEM 2

est 1

est 2

Figure 25: Runtime per full time
step: comparison of the BEM so-
lution and fast estimators (for the

scene shown in fig. 41).

Having established that the runtime cost for a
single time step scales linearly in the crack-front
length, it follows that the computational cost of
the entire fracture simulation is linear in the gen-
erated fracture surface area, because the required
number of time steps is directly related to the dis-
tance the crack front needs to traverse in order
to span the fracture surface (assuming a positive
average propagation speed). As the cost of pro-
ducing any explicit surface must at least scale with
the surface area, we conclude that this crack prop-
agation method provides optimal scaling.

62

6 Geometry and topology handling

The goal of this chapter is to capture the high-resolution geometry of the fracture
surfaces created by our crack propagation simulation and then analyse the resulting
topology of the broken object, i.e. find out where the object has broken into sepa-
rate fragments. While most of this chapter deals with computations involving high-
resolution surface data, we also need to take the requirements of the boundary element
method, used for the coarse deformation simulation, into account in this process.

On the coarse resolution level, we use a triangle mesh to describe the surface of a
breakable object. As described in earlier chapters, fracture surfaces are not connected
to any other surface in this mesh representation. Instead we use one triangle sheet for
each fracture, which is bounded by the (coarse) crack front. Fortunately, constructing
these meshes during the fracture simulation is fairly straightforward, as described in
ch. 4.4 and 4.5. Consequently, the only task left to do on the coarse resolution level is
to construct a suitable mesh of the object’s ordinary surface from the input geometry
at the start of the simulation, as described in ch. 6.1.

One important condition for the BEM to work properly is that there must not be
any (self-)intersections in the mesh, otherwise the integrals in eq. (2.26) would contain
singularities that could not be treated using standard regularization methods. Conse-
quently, even though we generate each fracture mesh independently, we must ensure
that cracks do not intersect one another. Similarly, crack fronts cannot physically
propagate through any other surface: if a point on the crack front reaches another
surface, the material is broken all the way up to the surface, which means that the
stress singularity at that point disappears as the material breaks apart. In order to
avoid visual artefacts in the output geometry when fractures meet, we need to handle
these cases on the fine resolution level.

We choose an implicit surface representation on the fine resolution level, which we
introduce in ch. 6.1. The main motivation for this choice (as opposed to an explicit
mesh) is to avoid complicated meshing operations on the high-resolution geometry.
Chapter 6.2 describes how we use this approach to handle fractures, and how we
detect when they reach other surfaces. We then present how we find fragments in the
presence of small numerical errors robustly in ch. 6.3. Finally, we describe various
possibilities for constructing the output geometry in order to visualize the results of
our fracture simulation in ch. 6.4.

Figure 26 shows a 2D illustration of our approach: in the coarse BEM mesh, the frac-
tures are not connected to one another, nor to the object’s surface. The high-resolution
geometry of the object, as well as all fracture surfaces, are stored as individual implicit
surfaces. Fractures are slightly “thickened” (dark grey regions in fig. 26b) in order
to simplify the calculations. Stopping crack propagation when a crack front reaches
another fracture ensures that they slightly overlap in this representation, but do not
cut through one another. Similarly, cracks can propagate up to the object’s ordinary
surface, but not outside of it. Finally, we “cut” the object with all fractures using

63

(a) (b) (c)

Figure 26: Overview of geometry representations: the coarse BEM mesh (a) and level-
set surfaces of individual fractures (b). Cutting the object with all fractures reveals

three separate fragments (c).

the set-difference operation according to eq. (6.1), producing a single implicit surface
for the entire broken object. We then use this surface representation to separate the
resulting fragments, as illustrated in fig. 26c.

6.1 Level-set surfaces and mesh conversion

An implicit representation of a surface Γ is the (zero-)level-set of a scalar function
Φ : R3 → R, i.e. Γ = {x : Φ(x) = 0}. A convenient choice for Φ(x) is the distance
from x to the point on Γ closest to x, or more formally Φ(x) = miny∈Γ ‖x− y‖.
In this case, we call Φ an unsigned distance function. If Γ is a closed orientable
manifold (such as the surface of an object), meaning that Γ is the boundary of a
(positive) volume, we can convert Φ to a signed distance function Φs (SDF), where
we set Φs(x) := −Φ(x) if x is inside of the volume bounded by Γ and Φs(x) := Φ(x)
otherwise. We drop the subscript for convenience of notation from now on and denote
both signed and unsigned distance functions as Φ. Unless stated otherwise, we work
with SDFs. One major advantage of SDFs over triangle meshes is that set operations,
such as union, intersection, and difference of two volumes Ω1 and Ω2, represented by
SDFs Φ1 ≤ 0 and Φ2 ≤ 0 respectively, can be computed conveniently as follows, see
also [40]:

(Ω1 ∩ Ω2) = {x : max[Φ1(x), Φ2(x)] ≤ 0}
(Ω1 ∪ Ω2) = {x : min[Φ1(x), Φ2(x)] ≤ 0}

(Ω1\Ω2) = {x : max[Φ1(x), −Φ2(x)] ≤ 0}
(6.1)

In order to store an implicit surface, the values of Φ are typically sampled on a regular
grid and interpolated (tri-linearly) if required. In our application, the grid spacing,
i.e. the distance between two neighbouring sampling points, equals the user-specified
(fine) resolution parameter rf . However, storing a dense grid would cause unnecessary
memory usage if the surface needs to be represented at a high resolution, while the
exact SDF values are not interesting further away from the surface. In particular, we

64 6 Geometry and topology handling

only want to keep the exact values of Φ(x) if |Φ(x)| ≤ h rf , where h is the half-width
of a narrow band of samples around the surface. Outside of this narrow band, we only
need to know the sign of Φ. We use h = 3 for all our results.

The OpenVDB library [11, 52] implements an efficient data structure to store such a
sparse volumetric distance function. According to Museth [52], the idea of OpenVDB
is to “dynamically arrange blocks (or tiles) of a grid in a hierarchical data structure
resembling a B+tree”. Although not required by OpenVDB, we use a “node-centric”
view of the grid in this work, which means that the distance function samples are
stored at the grid nodes, also referred to as voxels. In terms of memory access, voxel
values are stored in the leaves of the tree data structure. Additionally, each voxel
stores a state (active or inactive). Only voxels in the narrow band around the surface
will be active. Outside of the narrow band, voxels are grouped together into small
cubes, referred to as tiles, and then hierarchically into larger tiles until we reach the
root of the tree data structure. For details see also fig. 2 and 3 in [52]. By default the
OpenVDB tree structure has four levels with branching factors of (25, 24, 23) between
them respectively, which means that the smallest tiles will contain a cube of 8× 8× 8
voxels, while the largest tiles contain a cube of 32× 32× 32 intermediate tiles. We use
this default configuration for all our results.

Converting between implicit and explicit surface representations
OpenVDB conveniently includes methods for converting a triangle mesh (explicit sur-
face) to a (signed or unsigned) distance function (implicit surface) and vice versa.
Converting a triangle mesh to an unsigned distance function is fairly straightforward:
for each grid point (within the narrow band) one computes the distance to the closest
point on the closest triangle. In order to construct a signed distance function (assuming
the mesh bounds a volume and has consistently oriented triangles), the sign of Φ(x)
close to the surface is found, in parallel, by scan conversion [28], basically finding the
exterior contour of 2D slices first, and assigning inside values based on ray-intersection
tests. The method presented by Houston et al. [28] also handles meshes that are not
perfectly closed. Making sure that the signs are available outside of the narrow band
requires a flood-filling operation, where the signs are propagated away from the sur-
face in a bottom-up manner [52]. If the input surface is closed and orientable, no
inconsistencies can arise during the flood-fill.

Similarly, there exist several methods for extracting a triangle mesh from a SDF,
which can be classified as either primal contouring (such as marching cubes, see for
example [40]) or dual contouring, see [35]. While the standard marching-cubes method
places a mesh vertex along each edge connecting neighbouring grid points that is
intersected by the surface, dual contouring places a mesh vertex inside of a grid cell
intersected by the surface. OpenVDB provides an adaptive dual contouring scheme:
the final position of a mesh vertex in a particular grid cell is the average of the marching-
cubes locations computed for the edges of that cell. One important consequence of this
approach is that in order to reliably build a mesh from the implicit surface stored in
an OpenVDB grid, signed distance function values must be available at the corners of
all grid cells intersected by the surface. Additionally, OpenVDB allows to adaptively

6.1 Level-set surfaces and mesh conversion 65

simplify the resulting mesh in areas of low curvature, reducing the overall amount of
output vertices. Note that standard dual contouring schemes technically could produce
non-manifold output geometry. OpenVDB, however, implements a more advanced
version “that produces topologically robust two-manifold meshes” [12].

Surface meshing
At the start of a fracture simulation, the user typically provides a high-resolution sur-
face mesh of the object. We first convert this mesh to a signed distance function using
OpenVDB’s conversion tool as described above. Similarly, if we use our rigid-body
coupling, every new fragment (see ch. 7.3) has a high-resolution level-set representa-
tion (which we compute as described in ch. 6.3). In both cases, we need to construct
a coarse triangle mesh from this implicit surface in order to simulate the elastostatic
deformation with the boundary element method. For now, we only focus on meshing
the object’s (or fragment’s) ordinary surface. We deal with pre-existing fractures inside
of a fragment in ch. 7.3.

We convert the implicit surface to a high-resolution triangle mesh using OpenVDB’s
built-in dual contouring method described earlier in this chapter. We then apply
quadric simplification [18], reducing the number of triangles to a user-specified tar-
get (our examples use up to roughly 1000 triangles for this initial mesh). We utilize
the implementation available in the VCGlib library [73], which also prevents changing
the local topology of the mesh during simplification. Nevertheless, due to this mesh
simplification step, self-intersections may occur in the coarsened version. In this case,
we detect all intersecting pairs of triangles, delete all triangles in their one-ring neigh-
bourhood, and apply an intersection-free hole-filling step (also provided by VCGlib)
to construct a mesh suitable for BEM computations. Finally, note that the BEM so-
lution is only well-defined inside of the BEM mesh. During the simplification step,
some parts of the BEM mesh might end up being slightly inside of the high-resolution
surface, which may cause fractures in the vicinity to stop propagating before reaching
the surface. To mitigate such issues, we allow the user to specify a small distance
(typically less than the implicit surface’s narrow-band width) by which the BEM mesh
is inflated along the average normal direction at each mesh vertex.

When using rigid-body dynamics, all fragments are represented in the rigid-body scene
by meshes as well, which are used to perform collision detection. We build these meshes
in a similar fashion to the BEM mesh, constructing the high-resolution mesh first and
then applying quadric simplification. However, the target number of triangles for these
meshes can be specified separately and is typically higher than for the BEM meshes,
but still coarser than the high-resolution output geometry. We use 5x as many triangles
for collision detection meshes than for BEM meshes in most of our results.

66 6 Geometry and topology handling

6.2 Implicit fracture surfaces

In principle, a fracture surface could be represented either by an unsigned distance
function, or by two signed distance functions: one that defines the surface itself, and
a second one that intersects the surface to define the crack front, as done in [20]. We
instead opt for a simpler way to represent a fracture with a single SDF as follows: we
first compute an unsigned distance function Φu(x), which is 0 exactly at the fracture
surface (and positive otherwise). Due to the grid based sampling, reconstructing the 0-
level-set without signs would be very challenging in this situation. We could in theory
assign signs based on the surface normals of the fracture, but as a fracture surface does
not enclose any volume on its own, these signs would not be globally consistent, and
therefore would not result in a proper SDF. In particular, combining multiple fractures
and cutting the object with them would be difficult. Instead we “thicken” the crack
by defining Φf (x) := Φu(x) −

√
3rf/2, such that instead of a single fracture surface

we now have a thin volume around the fracture where Φf < 0. We can then take the
difference of the object and this fracture volume using eq. (6.1), resulting in a small
“gap” around the fracture, see also fig. 3. The “thickness” of the fracture (

√
3rf) equals

the length of the space-diagonal of a grid cell, which is the smallest possible choice
that ensures that this “fracture volume” completely encloses the given fracture surface
(without adding holes due to sampling artefacts). We can also union together two such
SDFs, eq. (6.1), to incrementally extend a fracture after each crack propagation step.

Crack front surface intersections
Intuitively, when (a segment of) a crack front reaches any other surface it disappears,
in the sense that instead of the two crack faces meeting at the crack front, they now
connect to separate parts of the other surface. Contrary to the explicit fracture surface
tracking proposed in [79], this change of topology is not represented immediately in our
implementation. Instead, we keep the object’s geometry unchanged until the fracture
simulation is completed, and we store each crack on a separate VDB grid (and as
a separate triangle sheet in the BEM mesh). Consequently, whenever a crack-front
marker reaches any other surface after a crack propagation sub step, we “deactivate”
(rather than delete) this marker such that it can no longer propagate any further. In
particular, we distinguish three different cases as illustrated in fig. 27: when a crack-
front marker propagates within one sub step from its previous position p0 to a new
position p1, we need to detect whether the line connecting these two points intersects

(a) the object’s (ordinary) surface,
(b) another crack, or
(c) the same crack that the marker belongs to.

In each of these cases, we treat every marker individually and independently of its
neighbours, and test against the fracture surfaces that are already stored in the level-
set grids (up to the crack-front location of the previous sub step, but not including the
current one). In this way, we avoid dealing with degenerate cases or direct line-line
collisions. We find that this simplification works sufficiently well in practice, although
theoretically some collisions might be missed until the following step.

6.2 Implicit fracture surfaces 67

Φo < 0

Φo > 0

p0

p1

(a)

Φf < 0 Φf > 0

p0

p1

x

(b)

Φf < 0

Φf < 0

Φf > 0

p0

p1

x

(c)

Figure 27: Three cases where a crack-front marker’s propagation path in one sub step
either leaves the interior of the object (a), intersects another crack (b), or self-intersects

its own crack (c).

Detecting when a crack reaches the object’s ordinary surface (a) is the simplest of
these three cases: clearly, cracks are only allowed to propagate inside of the object,
but not outside. Therefore, if Φo is the object’s SDF representation, any marker where
Φo(p1) > 0 is deactivated. We do not need to access Φo(p0) here, although usually
Φo(p0) < 0 holds, because we initiate cracks inside of the object (albeit close to the
surface).

Finding an intersection of a crack-front marker’s propagation path with another crack
(b) is slightly more involved, because the marker may have “grazed” the other crack
such that both the start and end point are outside of the other crack, i.e. Φf (p0) > 0
and Φf (p1) > 0. (Remember that Φf is negative in a small region around the fracture
surface and positive everywhere else.) Consequently, in order to reliably find all such
intersections, we need to check if there exists a point along the line connecting p0 and
p1 such that Φf (x) < 0, where x = (1−α)p0 +p1α and α ∈ (0, 1). Obviously, we need
to check this condition independently for all cracks, except the one that the marker in
question belongs to.

Finally, detecting self-intersections (c) is even more complicated. Here Φf now denotes
the SDF of the same crack as the marker we are investigating. In this case, we must
expect Φf (p0) < 0, meaning that the marker’s starting position is already inside of
a broken region with respect to the crack’s implicit surface representation. In order
to detect self-intersections, while avoiding false-positives due to this circumstance,
we limit our search to that part of the line connecting p0 and p1 where we would
expect the value of Φf to be positive. If the crack-front marker has moved away
from the crack surface, we expect the SDF value at some intermediate position x to
be at least Φf (x) ≥ ϕ(x), where ϕ(x) := Φf (p0) + ‖x− p0‖ sin(45◦). Allowing for
a “misalignment” of up to 45◦ produces reasonable results in practice. (Note that

68 6 Geometry and topology handling

Φf has a local minimum close to p0 if the crack state up to the marker’s starting
position is already represented in the SDF.) Intuitively, a self-intersection occurs if
the marker’s propagation path contains a point that is sufficiently far away from
p0 (in order to avoid false-positives), but still close enough to the crack to cause an
intersection, and the SDF gradient at this point indicates that the propagation path
moves back towards the crack, rather than away from it. More formally, we detect
a self-intersection if there exists a point x = (1− α)p0 + p1α with α ∈ (0, 1) such that

ϕ(x) > 0,

Φf (x) <
√

3rf/2, and

(∇Φf |x) · (p1 − p0) < 0.

(6.2)

6.3 Finding fragments

Once the fracture simulation terminates (either due to reaching the time-step limit,
or because no new fractures were created in a time step), we want to split the broken
object into a collection of fragments. We first build a signed distance function rep-
resenting the broken object by taking the set-difference of the object’s SDF and (the
set-union of) all fractures. OpenVDB already implements all the required set opera-
tions according to eq. (6.1). We then find the resulting fragments and store each one
in a separate grid. Each fragment is a connected volume of the original object, again
bounded by a manifold surface. We detect individual fragments using a connected
component search on the subset of negative (narrow-band) voxels in the grid repre-
sentation of the broken object. This procedure follows a standard breath-first-search
algorithm, which is already provided in OpenVDB. However, due to the sparse grid
data structure, as well as possible numerical errors during the fracture simulation, we
implement two optional modifications, which are described in the remainder of this
chapter: (a) we can also include tiles in the connected component search, and (b) we
can remove small “spindles” connecting two otherwise separate regions.

Please note that we perform this fragmentation step on the high-resolution data, not
on the coarse mesh used for computing the elastostatic deformation. Consequently, our
method not only produces visual detail beyond the deformation resolution, but also
the topology of the broken object is not limited by the coarse resolution. In particular,
this allows our fracture simulation to produce debris much smaller than the BEM
element size. See for example fig. 41. Once we have separated the fragments, we can
then easily extract a highly detailed mesh for rendering or post-fracture animation.
Furthermore, we couple our quasi-static fracture simulation with rigid-body dynamics
(see ch. 7) such that objects can fracture due to collisions; their fragments then become
new breakable objects and can in turn collide and break again.

6.3 Finding fragments 69

Breath-first-search including tiles
In this section, we present our extension to the breath-first-search algorithm, such
that the tiles of a sparse OpenVDB grid are also included. In the following discussion,
the input SDF is the implicit surface representation of the object after the fracture
simulation (already cut by all cracks), and the output is a collection of separate SDFs,
each representing one fragment (i.e. one connected component of the input surface).

The standard breath-first-search segmentation algorithm proceeds as follows: we first
deactivate all voxels in the input grid where the stored SDF value is positive. As long
as there are active voxels remaining, we initialize a queue with one random active voxel
and a new empty grid to store the next fragment in. While the queue is not empty, we
remove the first voxel, copy it to the fragment’s output grid and then deactivate it in
the input grid. Finally, we add all neighbouring voxels that are still active in the input
grid to the back of the queue. Recall that in order to accurately recover the surface,
we need SDF values at all corners of each cell that is intersected by the surface, which
means that if we find a neighbouring voxel with a positive value, we also copy this
voxel’s value to the fragment’s grid, but we do not add this voxel to the queue. We
ensure that all outside corner values are copied by always checking all 26 neighbours
of a voxel (including diagonal neighbours, also referred to as Moore neighbourhood).

Our crack initiation method always places a new crack close to another surface. There-
fore the standard algorithm works well in this case, because the narrow band of active
voxels around each fracture overlaps with the narrow band of another surface in a small
region where the fracture started. However, the user does have the option to start the
simulation with pre-defined fractures that could be deep inside of the object such that
their narrow band does not overlap the narrow band of any other surface. In this case,
the standard segmentation would remove such interior cracks. One approach to avoid
this problem would be to activate all voxels in the interior of the object first, but that
would waste a lot of memory and runtime by effectively negating all the advantages of
the sparse grid data structure. Instead, we extend the algorithm to also allow entire
tiles to be added to the queue and process them in a similar way during the neighbour-
hood search: the only issue is how to define which neighbours of a tile to add to the
queue. If one side face of the tile is adjacent to multiple smaller tiles, or single voxels,
it could be necessary to add all those neighbours to the queue.

However, if we assume a graded adaptive grid structure (as provided by OpenVDB),
starting with a narrow band of active voxels around the surface, then a region of small
tiles just outside of the narrow band, and finally larger tiles far away from the surface,
the situation is more manageable. In this case, it is sufficient to add only 6 neighbours
of a tile to the queue: one for each face of the tile. In other words, if there is at most
one tree-level between any two neighbouring tiles, all (smaller) tiles (or voxels) that
are adjacent to the same face of the larger tile must be the same size. Consequently,
once we process one of these smaller neighbours, we are guaranteed to also find the
remaining ones in the next step. This way, we slowly work our way down from the
large tiles to smaller ones and finally back to the voxel level.

70 6 Geometry and topology handling

(a) (b) (c)

Figure 28: Breaking the armadillo’s claw: a small spindle (a) prevents proper frag-
mentation, our over-segmentation method with s = rf removes the spindle (b), but
preserves visual details of the fracture surface. Setting s = 1.5rf , however, results in

objectionable artefacts (c).

Detail preserving over-segmentation
The segmentation algorithm described so far is fast and reliable if the input data is
accurate. Numerical errors can occur, however, because the crack front is assumed to
be a polyline connecting markers that are propagated independently. Consequently,
the level-set representation of the final state after the fracture simulation may contain
some small erroneous gaps between fractures that should have closed up. Once we
cut the object by these fractures (that do not fit together properly), a small piece of
unbroken material remains, which we call a “spindle” (i.e. a small region where the
broken object’s SDF should be positive, but is actually negative). These spindles may
end up connecting two otherwise separate fragments. Clearly, such thin connections
would easily break in real objects, therefore the goal of this section is to remove these
spindles (as long as they are small enough), while preserving as much of the visual
detail of the fracture surfaces as possible.

The basic idea is to over-segment the input SDF: instead of running the breath-first-
search algorithm on the input directly, we first add a user-defined (small, positive)
threshold s to the entire input SDF (effectively “shrinking” the object and widening
the cracks), then run the segmentation algorithm on this modified SDF as above, and
finally subtract the threshold value from the resulting fragment SDFs to recover the
original value at each voxel. Doing so, however, means that voxels that are very close
to the surface are now skipped by the segmentation routine, resulting in a loss of visual
detail on the surface (even if we were extrapolating the missing SDF values outwards).

Recall that, in order to recover the surface of the object, we require correct values at all
corners of each cell intersected by the surface (including positive values outside of the
object). If we stop the segmentation algorithm earlier, not all of the required values
will be available. Consequently, we need to copy those values from the input grid to the
fragment’s grid afterwards. In doing so, we must avoid introducing artefacts that could
occur if we, by accident, copied parts of the adjacent fragment as well. (Remember
that we represent fractures by a thin region where the broken object’s SDF is positive.)
For each fragment, we copy only those voxel values that hold a positive value in the
input grid and are located within the d-ring neighbourhood of a voxel that has been

71

copied to the fragment by the (over-)segmentation algorithm. The distance d is 1+s/rf

rounded to the nearest integer. Unfortunately, this procedure only works as intended
if the user-specified threshold for over-segmentation satisfies 0 ≤ s ≤ rf , i.e. we can
only remove spindles that are smaller than the grid spacing, otherwise we lose surface
detail in the process. Of course we are always bound to lose some information around
the spindles, and possibly around sharp features as well. Nevertheless, keeping the
over-segmentation threshold within the grid spacing preserves almost all the surface
detail, as shown in fig. 28. By default we use s = rf for our results. A summary of our
final segmentation routine is shown in pseudo-code form in Appendix B, listing 1.

6.4 Visualizing results

While we store the high-resolution geometry as an implicit surface (for each fragment),
we typically extract a triangle mesh (explicit surface representation) using OpenVDB’s
dual contouring scheme in order to visualize our results. Depending on the application,
the user may choose to modify the final output in various ways, which we summarize
in this chapter. In particular, we can either output the undeformed (material space)
geometry, or add the interpolated elastic deformation from the BEM solution to the
high-resolution output. Of course, this can also be done after every BEM time step
to show intermediate states during the fracture simulation, or even after every crack-
propagation sub step by interpolating the deformation in between time steps. Finally,
our implicit surface representation artificially thickens fractures in order to construct
a reliable signed distance function. While doing so facilitates cutting the object with
cracks, intersection testing, and fragment detection, as described earlier, it does leave
visually unpleasant gaps between the two faces of a crack. Consequently, we present a
simple approach to remove these gaps from the final output.

Recall that the BEM solution, eq. (2.38), splits the deformation of the object into two
parts: a continuous (piecewise-linear) displacement field over the ordinary surface and
a displacement discontinuity across fracture surfaces (the crack opening displacement).
In particular, the overall displacement of fractures is not directly available. Instead we
use the representation formula, eq. (2.20), evaluating the continuous displacement field
in the interior of the object, to find the crack’s average displacement uc. We evaluate
this average displacement at every node of the crack’s (coarse) mesh by integrating
(2.20) over the object’s ordinary surface only (excluding any other cracks). We can
then add the crack opening displacement ∆u to find the displacement of both the
positive and the negative face of the crack as u± = uc ±∆u/2.

Elastic deformation
While it is straightforward to build a detailed mesh in undeformed material space from
the implicit surface, the elastic deformation is only available on the coarse BEM mesh.
In order to deform the high-resolution output mesh accordingly, we interpolate the
coarse displacements onto the vertices of the fine mesh. The first step to performing
this interpolation is to find the closest point y on the coarse mesh for every vertex x

72 6 Geometry and topology handling

(-,-,-) (-,u,-) (-,u,Δ)

(c,-,-) (c,u,-) (c,u,Δ)

Figure 29: Breaking the ears off the Stanford bunny. Overview of various possible
output modes: “c” . . . close gaps due to level-set thickening, “u” . . . add continuous

displacement, “Δ” . . . add crack opening displacement.

of the fine mesh. In order to accelerate these closest point queries, we use a coarse
OpenVDB grid (with grid spacing rc, i.e. roughly the same resolution as the BEM
mesh): each grid cell stores a list of (coarse mesh) triangles intersecting that cell. For
any vertex x within a given grid cell, we then only need to test the triangles listed in
that cell, or in the cell’s neighbours, to find the closest point y on the coarse mesh.

For stiff but weak materials that fail before undergoing large deformations, the crack
opening displacements are typically small. In these situations, it is sufficient to vi-
sualize only the continuous deformation of the object, ignoring crack opening dis-
placements. To do so, we distinguish two cases in order to find the interpolated dis-
placement at each vertex of the output mesh x: either the closest point y lies on
an ordinary surface element, or on a fracture element. In the first case, we evalu-
ate the (piecewise-linear) surface displacement field at y and move the vertex by this
displacement: xnew = x + u(y).

In the second case, we first evaluate the continuous displacement field uc at the coarse
fracture mesh nodes, then interpolate it piecewise-linearly within the coarse element
containing y, and finally offset the vertex by xnew = x+uc(y). This procedure is much
faster than having to evaluate a surface integral, eq. (2.20), for every vertex in the fine
output mesh.

6.4 Visualizing results 73

Crack opening displacements
So far, we have added the continuous displacement field to the high-resolution output
mesh, either directly from an ordinary surface element, or via the average displacement
of a fracture element. Of course, for softer (or tougher) materials, the crack opening
displacement will be visually interesting. In these cases, we also want to add this
discontinuous deformation to the output geometry. In order to do so for each vertex of
the output mesh x, we first find the closest point on a fracture element yf (which might
not be the closest point on the coarse mesh overall), using again our acceleration grid
structure. If yf is closer to x than the narrow-band half-width of the high-resolution

VDB grid, i.e. if
∥

∥

∥yf − x
∥

∥

∥ ≤ 3 rf in our implementation, we evaluate the crack opening
displacement ∆u(yf) at this point, otherwise we do not proceed. As the COD specifies
only the difference in the displacement field between the two faces of the crack, we
first need to determine whether x lies on the positive or the negative face of the crack.
Because we have already thickened all fractures in the implicit surface representation,
the generated high-resolution mesh vertices on each crack face will be slightly offset
from the original fracture surface, generated by the motion of the high-resolution crack
front. This means that we can decide the sign of the COD based on whether this offset
puts the vertex on the positive or the negative side of the original fracture surface. Of
course, this test has to be performed on the high-resolution surface data. (To this end
we also store the high-resolution surface normals in an auxiliary OpenVDB grid that
has the same active voxel structure as the fracture surface’s SDF grid.)

When interpolating the continuous deformation, as discussed earlier, we only distin-
guish whether the closest point on the coarse mesh y of any output mesh vertex x
lies on the ordinary surface or on a fracture surface. Here, we need to consider three
cases instead: if y lies on a fracture surface, and consequently y = yf , we can offset
the vertex by the displacement of this fracture surface (having already determined
the correct sign of the COD): xnew = x + uc(y) ±∆u(y)/2. Conversely, if y lies on
the ordinary surface, and outside of the narrow-band of the nearest fracture, we do
not add any crack opening displacement. Again, this approximation is much faster
than carefully evaluating boundary integrals for all output vertices. The third case,
however, are vertices that are close to both the ordinary surface and a fracture. In
this case, where y 6= yf , we need to combine the continuous deformation of the ordi-
nary surface with the crack opening displacement of the fracture. In order to create
a visually pleasing, smooth transition between the two, we blend the COD with a
weight w∆ that is 1/2 at the fracture surface, 0 outside of the crack grid’s narrow
band, and linear within the narrow band. Finally, the high-resolution vertex is offset
by xnew = x + u(y) ± ∆u(yf)w∆. In this discussion we have focused on the case
where x lies within the narrow band of one fracture surface. In general some vertices
will lie close to intersections (and consequently within the narrow band) of more than
one crack. In this situation we analogously add opening displacement offsets for each
nearby fracture.

In the case of compressive fracture the crack opening displacement is oriented along
the (outward) surface normal, which means offsetting the output mesh by this COD

74 6 Geometry and topology handling

could create self-intersecting geometry, which leads to unpleasant visual artefacts in
many standard rendering methods. Note that this situation is not a problem for the
fracture simulation, as the material’s different response to compression, as opposed
to tension, due to self-collision is treated phenomenologically via different (typically
higher) strength and toughness values for compressive fracture. Also note that the
deformation is assumed to be infinitesimally small in the linear elastic model. However,
in order to produce a visually appealing output, we do provide the option to remove
any compressive components from the opening displacement before we proceed with
deforming the output mesh. In particular, we update the COD at each coarse mesh
vertex with ∆u←∆u− (∆u ·n)n if ∆u ·n > 0, where n is the outward surface unit
normal.

Closing gaps
The user may choose to close the gaps introduced by the level-set representation of
fracture surfaces. In order to do this, we first take every vertex of the undeformed
high-resolution mesh x and compute its closest point on the (also undeformed, high-
resolution) original fracture surface xc. If we want to have an undeformed mesh, but
close the gaps at fractures, we can move the vertex to xc. However, if we want to also
apply some deformation, we first add the interpolated displacement to find xnew before
closing the gap by moving the vertex to xclosed = xnew + (xc−x). (Remember that we
need to distinguish the positive and negative side of the crack when adding the COD,
so the small gap is actually useful there, and closing it earlier would introduce more
problems.) Of course this additional step only applies to output mesh vertices x whose
closest point y lies on a fracture surface in the coarse mesh.

Summary
In summary, we first perform an interior evaluation of the continuous part of the dis-
placement field (uc) at all fracture surface nodes in the BEM mesh, determining the
average displacement of a crack on the coarse scale. For each vertex in the (fine) output
mesh, we then find the closest triangle in the coarse mesh and perform linear interpo-
lation of the continuous displacement field within that triangle. If the vertex is in the
vicinity of a fracture, we first decide whether it lies on the positive or negative face of
the crack, based on the high-resolution surface normals. We then interpolate the COD
and offset the vertex to its deformed position. We allow the user to choose whether the
artificial gaps due to the implicit surface representation of fractures are removed from
the output geometry, and which components (if any) of the deformation are added to
the output. Figure 29 shows an overview of different possible output configurations,
while the implementation is detailed in pseudo-code form in Appendix B, listing 2.

Note that our implementation of the method outlined in this chapter is not perfect:
in particular, numerical errors can sometimes result in choosing the wrong sign for the
COD. If the COD is large compared to the narrow-band width of the OpenVDB grid,
it can lead to visual artefacts on the high-resolution output mesh. Our approach of
linearly fading out the COD away from the crack helps to avoid some of these issues.
In order to produce visually appealing results, we clean up the deformed mesh in
post-processing by applying slight mesh simplification and smoothing in some cases.

75

7 Coupling to rigid body dynamics

While deriving our fracture simulation method, ch. 4, as well as our fast approxima-
tions, ch. 5, we have always considered only one object breaking up into any number
of fragments. This approach is useful for animations that focus on the details of the
fracture process as we can specify the boundary conditions directly. Animating more
complex scenes including many (possibly fracturing) objects, however, is somewhat
cumbersome with this approach, where we would need to manually derive the appro-
priate boundary conditions for each object that we want to fracture. Consequently,
the goal of this chapter is to couple our fracture simulation method to a standard
impulse-based rigid-body system (Bullet [8]).

While modern rigid-body engines handle a great variety of interactions between the
objects in a scene, such as joints, motors, springs, and generic constraints [4], we work
only with the most basic features: Newtonian motion under gravity and collisions. We
augment a standard rigid-body scene by marking any number of objects in the scene as
breakable and specify all the parameters required by our fracture simulation per object.
A rigid-body model resolves collisions by transferring impulses (in units of momentum,
i.e. force integrated over time) between the colliding objects. In order to construct the
boundary conditions for our fracture simulation, we convert these impulses to forces
and apply them as piecewise-constant traction boundary conditions, see ch. 7.2.

We run a new instance of our fracture simulation method for each breakable object
that experiences a collision exceeding either an impulse or a force threshold. Once
a fracture simulation is completed, we replace the object that just broke by all its
resulting fragments; each fragment becomes a new, independent rigid body from this
point on, see ch. 7.3. As each of these fracture simulations runs independently, we
limit our discussion to one single instance from now on. Note that the considerations
presented in this chapter apply equally to both the full boundary element fracture
simulation, ch. 4, as well as our fast approximations, ch. 5.

As input to our fracture simulation, we now consider an object and a set of collision
points with impulses applied along the direction of approach. We then transition from
the rigid to the elastostatic model and convert the collision impulses to surface trac-

(a) (b) (c)

Figure 30: “Breaking Π”: using a weak material, the top bar crumbles under its own
weight. Note that gravity is handled by the rigid-body system and we do not need to

explicitly add it to the BEM formulation.

76 7 Coupling to rigid body dynamics

tions. We are then left with an elastostatic problem that has pure Neumann boundary
conditions; in this case the solution is only defined up to arbitrary translation and (lin-
earized) rotation, and the resulting linear BEM system contains a null-space. We first
describe how to regularize the BEM system in ch. 7.1 and defer the details on how we
construct these boundary conditions to ch. 7.2. The boundary traction field generally
contains both rigid and deformational components, but only the deformational part
can be handled in the elastostatic model. Consequently, the surface traction field must
be free of global translation and linearized rotation, otherwise the regularization we
apply to the BEM system would counteract these components and lead to undesirable
results. We refer to a traction field that fulfils these requirements as “balanced”.

In summary, the main components needed to couple our fracture method to a rigid-
body system are:

(a) regularizing a pure Neumann elastostatic boundary value problem,
(b) constructing a balanced surface traction field from collision impulses, yielding the

right-hand-side vector fN of eq. (7.4), and
(c) creating a new rigid body for each resulting fragment (including its initial position

and velocity).

7.1 Regularizing the Neumann problem

In the absence of Dirichlet boundary conditions, the elastostatic SGBEM system,
eq. (2.25), reduces to Du = fN , which is now rank-deficient as any (linearized) rigid
motion is in the null-space of D (up to numerical errors). Once we add fracture
surfaces (contributing unknown crack-opening degrees of freedom), following the same
strategy as in eq. (2.38), we get

(

D X
XT Y

)(

u
∆u

)

=

(

fN

0

)

. (7.1)

In order to reliably solve this underdetermined linear elastostatic system we construct
a Tikhonov regularizer, which penalizes global translation and linearized rotation.
This regularizer consists of two components: T := (TT

d TT

r)T, where each part is a
3 × 3n block, where n is the number of nodes in the BEM mesh (excluding fracture
surfaces). The first block Td measures the average surface displacement us given a
piecewise linear displacement field u, and similarly, the second block Tr measures the
global surface rotation rs:

us =
1

A

∫

Γ
u(x) dx =

1

A

∑

e

1

3
Ae

∑3

i=1
ue,i = Tdu, (7.2)

and

77

rs =
1

A

∫

Γ
u(x)× x dx = Tru

=
1

A

∑

e

1

3
Ae

∑3

i=1
ue,i ×

1

4
(xe,i + xe,1 + xe,2 + xe,3).

(7.3)

Here ue,i denotes the displacement of the i-th node in triangle e, while xe,i is the mate-
rial space position of this node. Furthermore, Ae is the area of triangle e, while A is the
total surface area. Integration proceeds over the object’s ordinary surface Γ (excluding
fractures) and we assume (without loss of generality) that the object’s centre of mass
is at the coordinate origin. We can now apply the regularizer T to the rank-deficient
linear system Du = fN , yielding the well-posed problem DR u = DTfN , where the
regularized system matrix is DR := DTD + γTTT. We choose the parameter γ to be
the squared average of the diagonal of D: γ = (tr(D)/(3n))2.

Intuitively, we want the regularizer to be roughly as “important” as the system
matrix itself. The exact value of γ is not crucial because the regularizer acts only
on the null-space of D by construction. The boundary conditions, however, must be
compatible with a solution free of translation and rotation, or in other words, the
right hand side fN must be in the range of D as pointed out in [78]. We present a
method similar to the one in [78] to build such a surface traction field from collision
impulses in the next chapter. In the presence of fractures, applying the regularization
to the first row of eq. (7.1) results in:

(

DR DTX
XT Y

)(

u
∆u

)

=

(

DTfN

0

)

. (7.4)

We solve eq. (7.4) following the approach of eq. (4.3). Similar to the matrix block
A in eq. (4.2), the regularized matrix block DR does not change when new crack-
opening degrees of freedom are added during the fracture simulation. Consequently,
we compute and store the inverse of DR at the beginning of the fracture simulation.
Figure 31 shows a comparison of results obtained with and without our regularizer.
Note that the correct deformation is small (and magnified in the image) due to the
high stiffness of the material, while the unregularized system (setting γ = 0 in DR)
produces unphysical behaviour.

7.2 Balanced tractions from collision impulses

In this chapter we describe how to construct a traction field that is free from global
translational and rotational forces and consequently admits an elastostatic equilibrium
solution of eq. (7.4). We build this traction field from the collision impulses reported
by the rigid-body system: we first convert collision impulses to surface tractions, using
a Hertzian contact model to estimate the collision duration, similar to [19,41]. We then
remove global force and torque from the traction field, similar to [78]. Finally, we map
each of the object’s collision points to the closest element in the BEM mesh and add a

78 7 Coupling to rigid body dynamics

corresponding piecewise-constant traction to this element. Recall that the total force
is the integral of the traction over the element’s area. Consequently, each collision
point contributes a traction Jn̂/(tcAe) to the entry of the input traction vector qi

corresponding to the closest element e. Here Ae is the area of this element, J is the
impulse transferred by the collision, n̂ is a unit vector pointing along the direction
of approach (in the object’s local coordinate system), and finally, tc is the contact
duration.

The collision impulse is independent from the rigid-body time step, therefore we need
to estimate the contact duration tc for each collision (instead of using the rigid-body
step size directly). In order to do so, we briefly summarize Hertzian contact the-
ory here. Hertz [25] describes the collision of two elastic spheres, or equivalently
of one elastic sphere with a rigid plane. This sphere is described by an effective
elastic modulus E = [(1− ν2

1)/E1 + (1− ν2
2)/E2]−1, radius R = (R−1

1 +R−1
2)−1, and

mass m = (m−1
1 +m−1

2)−1. Each of these three effective quantities combines the pa-
rameters of both objects involved in the collision. The collision duration is then
tc = 2.87[m2/(E2Rv)]1/5, where v is the velocity (magnitude) with which the two ob-
jects locally approach one another. We refer the interested reader to [61] for a detailed
derivation of the collision duration. We obtain the required parameters as follows:
elasticity parameters and densities are user inputs and constant per object, the local
velocities of the contact points, as well as the transferred impulse, result from the rigid-
body simulation, and the effective radii are the inverse of the objects’ surface mean
curvature at the contact locations. We measure the volume of each object, required to
compute its mass, using its high-resolution implicit surface representation.

We then find the smallest possible correction qc such that the resulting traction field
q := qi − qc has no global linear force or torque by solving a quadratic optimization
problem with linear constraints. Similar to eq. (7.2) and (7.3), except that we now
use piecewise constant instead of piecewise linear shape functions, we build the
linear constraints f s =

∫

Γ q(x) dx = Sfq = 0 and τ s =
∫

Γ q(x)× x dx = Sτ q = 0 to
enforce zero global force and (linearized) torque respectively. We can now write our
optimization problem as min qT

c qc s.t. Sf (qi − qc) = 0 and Sτ (qi − qc) = 0, or
equivalently as the KKT system with Lagrange multipliers v:

[

I ST

S 0

] [

qc

v

]

=

[

0
b

]

, S :=

[

Sf

Sτ

]

, b :=

[

Sfqi

Sτ qi

]

. (7.5)

In theory, one could also use an area-weighted norm in the objective function, which
could improve results in situations where mesh elements of very different areas occur.
Due to the way we construct our BEM meshes (see ch. 6.1), we do not need to do
so in our application. The Schur complement solution of eq. (7.5) is qc = −STv and
v = −(SST)−1b. Note that the matrix SST has dimension 6 × 6 regardless of the
number of triangles in the mesh. This matrix can be built directly, requiring only a
single pass through the element list. The projection used in [78] applies a similar idea
to a tetrahedral mesh. Their method, however, requires a QR-factorization of a 3n×6
system for a mesh with n nodes.

79

Having found the balanced piecewise-constant surface traction field q closest to the
input tractions qi, we assemble the right-hand-side vector fN in eq. (7.4) according
to eq. (2.27). At this point, we are ready to proceed with the fracture simulation,
using either the full BEM solution of ch. 4, or our fast estimators as in ch. 5. In the
former case we solve eq. (7.4) instead of eq. (2.38) in every BEM time step, while in
the latter case, the update to the right-hand side turns into fN ← fN −X ∆ũ, using
the estimated crack-opening displacements ∆ũ according to eq. (5.6).

7.3 Generating rigid bodies for fragments

So far, we have described how we start a fracture simulation for an object that ex-
periences a sufficiently forceful collision in the rigid-body scene. Once this fracture
simulation is completed, we identify new fragments and update the rigid-body scene
accordingly. As described in ch. 6, we use a sparse level-set function to represent the
high-resolution surface of an object, including all fractures; we then use our modified
breath-first-search algorithm to find connected components, i.e. fragments. The final
step of coupling our fracture method to the rigid-body system is then to replace the
broken object by its fragments. Only large enough fragments become breakable rigid
bodies; this way we avoid spending time on fracture simulations for small pieces that
are barely visible in the final output.

In the following discussion, we refer to the rigid body that has just fractured as the
“parent” object. At the beginning of the rigid-body simulation we compute the total
volume of every breakable object, and we copy this information from the parent to its
fragments after every fracture simulation; we call this the “original volume”. We then
classify fragments into the following four groups based on their (relative) volume:

(a) Very small fragments (0.5% or less of the original volume): for efficiency reasons
these fragments are not allowed to fracture any further in our implementation.
In order to speed up collision detection performed by the rigid-body engine, we
represent them by their convex hull in the rigid-body scene.

(b) Small fragments (0.5–2% of the original volume) cannot fracture either, but use a
(possibly non-convex) mesh for collision detection.

(c) Large fragments (more than 2% of the original, but less than 95% of the parent’s
volume) become breakable objects and can fracture again in subsequent rigid-body
time steps. These fragments have both a mesh for collision detection, as well as a
(coarser) mesh for BEM computations required by later fracture simulation runs.

(d) Very large fragments: if we find a fragment that has more than 95% of its imme-
diate parent’s volume, we do not create a new BEM mesh, but instead retain the
one from the parent object along with its operator matrices; we only update the
collision detection mesh in the rigid-body scene. This way, we avoid the overhead
incurred from constructing a new BEM mesh, as well as building, regularizing, and
pre-factoring the system matrix DR. If there is no such fragment, we delete the
parent object, along with all its associated BEM data, as soon as all its fragments
have been processed.

80 7 Coupling to rigid body dynamics

We choose to classify fragments mostly based on the original volume, rather than the
volume of their immediate parent object, because it retains a better notion of scale: a
fragment of a particular size should be treated in the same way regardless of whether
it has broken off of the original object right away, or after a series of intermediate
fracture events. We build the meshes required for collision detection in the same way
as the ones used for BEM calculations (except that we use a higher resolution than
the BEM meshes, but still coarser than the output resolution). We use approximately
5 times more elements for collision meshes than for BEM meshes in all our results,
except for the scene shown in fig. 42, where we keep the collision meshes very close to
the resolution of the output geometry.

Except for large ones, all other fragments are easily handled by adding (or updating)
their shape in the rigid-body scene and copying all material parameters from the
parent. We set the initial position and velocity of all fragments such that they match
the motion of the parent object before the collision happened. Once all fragments are
in place, we repeat the rigid-body step that caused the collision (but without starting
any new fracture simulations), allowing the newly created fragments to respond to the
collision. This simple approach produces visually convincing collision responses in our
results. A possibly more accurate approach would be to compute additional “fracture
impulses” that drive fragments away from one another as elastic energy is released
once they break apart, as done in [78].

The rigid-body system also handles gravity, even if objects rest on top of one another:
the objects are accelerated downwards due to gravity, while the collision system restores
them to a non-overlapping state. We can then use the resulting collision impulse for
our fracture simulations, which allows us to ignore gravity in our BEM formulation.
Figure 30 shows such a situation, where the horizontal bar breaks under its own weight.
Also note that the large fragments shown in fig. 30b break again due to subsequent
collisions.

Fragments containing incomplete cracks
For each large fragment, we need to build a boundary element mesh and assemble
the linear system (7.4). However, the fragment may contain cracks that occurred
during the previous fracture simulation, but do not cut it into separate pieces (yet).
Consequently, we have to represent these cracks in the BEM mesh and allow them
to grow further in subsequent fracture simulations; we refer to them as “incomplete”
cracks, see also fig. 43.

We first build a BEM mesh of the fragment’s ordinary surface (excluding incomplete
cracks) as described in ch. 6.1. We then identify all incomplete fractures and copy
fracture elements that are inside of the fragment from the parent’s into the fragment’s
BEM mesh. This way, the representation of an incomplete fracture in the fragment’s
mesh is a subset of its representation in the parent’s mesh. We take care to ensure
that this subset is again a manifold with boundary, in particular the new (coarse)
crack front, which is the bounding curve of this subset of triangles, has exactly two
edges meeting at each node. If this criterion is not met at any node, we additionally

7.3 Generating rigid bodies for fragments 81

copy all triangles containing this node. Conversely, if a triangle consists only of crack-
front nodes, it does not contribute a crack-opening degree of freedom, so we remove
all such triangles. Of course, we also copy the high-resolution level-set representation
of all incomplete cracks to the fragment. Additionally, wherever the new crack front
coincides with the old one, we copy the high-resolution crack-front data as well. This
treatment allows “old” fractures to propagate further if the fragment experiences a
collision at a later rigid-body time step.

(a) (b)

(c) (d)

Figure 31: Hitting the Stanford armadillo on the nose: our regularizer reliably solves
the pure Neumann boundary value problem (a, b); displacement vectors (green) and
mesh deformation are 10x magnified. Without regularization, the displacement field (c)
contains large rigid components that lead to unphysical behaviour and almost flattens
the armadillo (d); displacement vectors (blue) are scaled by 0.01, mesh deformation

drawn to scale.

82

8 Results

In the previous chapters, we have presented the components of our quasi-static fracture
simulation in detail, namely a high-resolution crack propagation algorithm driven by a
coarse elastostatic boundary element method, fast estimators improving the theoretical
complexity, as well as speeding up the practical runtime, of our algorithm, a level-set
based treatment of a fractured object’s geometry and topology at high resolution, and
finally, a two-way coupling between our fracture method and a standard rigid-body
dynamics system. We are now ready to look at various results our method can produce,
both in terms of basic verification test cases, as well as example scenes involving
complex fracture behaviour of multiple objects. Tables 1–3 provide an overview of the
simulation and material parameters used for the results discussed in the remainder of
this chapter.

Animation output
We use either Kitware Paraview or Autodesk Maya R© to render our results. For basic
scenes, without the rigid-body method described in ch. 7, the output of our fracture
simulation is a collection of meshes of the fracturing object or its fragments, generated
either after every crack-propagation sub step (if we want to show a super-slow-motion
animation of the fracturing process), after every BEM time step (for a similar slow-
motion animation), or just once at the end of the fracture simulation (if only the
resulting fragments are of interest). In the latter case, we can then run a rigid-body
animation (within Maya) as a post process in order to produce visually interesting
motion of the resulting fragments; fig. 40 shows an example of this approach.

If we want to produce a slow-motion animation, where every time step (or possibly
even every sub step) becomes one animation frame, we output the complete state of
the simulation after each full BEM time step. For efficiency reasons, both in terms
of runtime and disk usage, we output only small incremental updates to the implicit
surface after each sub step and then combine these updates with the data from the pre-
vious time step to build a high-resolution mesh for each sub step in a post-processing
pass. This procedure avoids wasting time on producing high-resolution output geome-
try during the simulation and therefore makes it easier for the user to run a simulation,
inspect the results, and decide whether to invest time in producing detailed sub-step
output afterwards. Note that we can visualize the deformation of a breaking object
after each time step as shown in fig. 29. In a similar way, we can also produce such
results for sub steps by interpolating displacements (piecewise linearly) over time be-
tween the previous and following time step. Due to the high crack propagation speed
(especially in stiff materials), our time steps are usually on the order of milliseconds to
microseconds, meaning that these slow-motion animations show a much smaller time
scale than a typical rigid-body animation.

Consequently, when using our two-way rigid-body coupling, as described in ch. 7,
we choose not to output intermediate fracture simulation states. Instead, we set the
maximal number of crack propagation time steps such that the entire facture simulation

83

cannot exceed the rigid-body time-step duration (nor the estimated collision duration).
At the end of each fracture simulation, we then output the final simulation state,
together with a surface mesh for each resulting fragment. We first output these meshes
at a reduced resolution for preview purposes, and allow the user to build the high-
resolution version in a post-processing step. Furthermore, when an object breaks,
we need to either update its visual representation (if the fracture simulation results
in a very large fragment, see ch. 7.3), or remove it from the animation (as it has
been replaced by a collection of fragments). Similarly, for these rigid-body coupled
scenes we also need to output the motion of all objects in the scene. To this end,
we automatically generate a MEL script that instructs Maya to set motion key frames
(position and orientation) for all active objects after each rigid-body step, as well as
automatically hide all broken objects that are no longer active, and load the meshes
of new fragments into the animation. The resulting scene then contains the entire
animation, including the motion and fracturing of all the objects and their fragments.
Apart from choosing lighting, material appearance, and camera parameters, this scene
is ready for rendering.

8.1 Basic test cases

In this chapter, we first show some basic test cases, using homogeneous materials, to
demonstrate that our method produces fracture surfaces in line with the theoretical
predictions of LEFM. We then show examples of various material toughness fields and
their influence on the resulting fracture surfaces. We compare result obtained solving
the full BEM system to those of our fast approximate method. We also show that our
rigid-body coupling integrates well with both fracture simulation methods.

First, we consider a cube containing a planar edge-crack under mode-I, II, and III
loading respectively (see fig. 4). For these three situations, assuming a homogeneous
material, fig. 7 illustrates the expected fracture behaviour described in ch. 2.4. The
simulation starts with a coarsely meshed cube (similar to the one shown in fig. 34a)
with a planar, horizontal initial crack in the middle of the left side face. Our results in
fig. 32 use the full BEM method and reproduce the desired fracture shapes. Here, we
also demonstrate the ability of our method to handle various boundary condition (BC)
types: the mode-I case is defined by Dirichlet BCs (fixed displacements) at the top
and bottom face of the cube (and homogeneous Neumann BCs on the sides), while the
mode-II case uses a homogeneous Dirichlet BC (zero displacement) on the bottom face
and an inhomogeneous Neumann BC (constant traction) on the top face. Similarly,
we can define a predominantly mode-II loaded situation by applying inhomogeneous
Neumann BCs (in opposite directions) on the upper and lower half of the broken side
face (left/back) instead, as shown in fig. 23. In this particular test case, we also add a
traction along the opening (mode-I) direction, whose magnitude is 30% of the mode-
II traction magnitude, resulting in a positive KI in the first time step, as shown in
fig. 23d (the qualitative appearance of the fracture surface is almost unchanged by this
additional mode-I loading). Note the different angles of the resulting fracture surface

84 8 Results

(I) (II) (III)

Figure 32: Edge-cracked cube under pure loading modes (I–III): results using the full
BEM solution.

(I) (II) (III)

Figure 33: Edge-cracked cube under pure loading modes (I–III): results using the fast
estimation method.

between fig. 32II and 23b, depending on how the boundary conditions restrict the
deformation of the object. Finally, the mode-III loaded case (fig. 32III) also uses pure
Neumann BCs (similar to fig. 23b) pulling the upper and lower half of the broken side
face in opposite, but tangential, directions respectively. Whenever we apply Neumann
boundary conditions only, we use the regularization method described in ch. 7.1. In the
mode-III case we observe the characteristic “twisting” motion of the crack front. This
twist is caused by variation of the local mode-II SIF along the crack front. (Note that
we do not explicitly model this twisting behaviour based on the local mode-III SIF.) In
the absence of toughness gradients, the piecewise-linear nature of the SIF-field driving
the crack propagation simulation becomes visually apparent in fig. 32III, revealing that
the BEM mesh resolution is significantly coarser than the implicit surface (and output)
resolution. In all these test cases we observe that crack propagation proceeds in such
a way as to maximize the local mode-I loading at the crack front, see also [58].

In chapter 5 we introduced the main components of our fast SIF estimation method,
namely alignment with an eigenvector of the stress field and an update to the right-
hand side of the linear elastostatic system. Figure 22 shows that a basic estimator
without these modifications both suffers from oscillation artefacts on the resulting
fracture surface and underestimates the stress intensities as the crack front propagates
(especially when it reaches the object’s ordinary surface). Figure 24 shows that with
our modifications, we are able to obtain good SIF estimates for basic test cases. We
also successfully avoid any oscillation artefacts, as shown in fig. 23b, as well as fig. 34c.
Running the same examples as in fig. 32, using our fast approximations instead of the

8.1 Basic test cases 85

(a) (b) (c)

Figure 34: Cube with a 45◦ inclined penny-shaped crack: (a) initial BEM mesh, (b)
BEM result, (c) result using fast estimators. Figure 24a shows a comparison of SIF

values obtained for (b) and (c) during crack propagation.

full BEM solution, shows that our SIF and COD estimators qualitatively reproduce
the fracture behaviour, as shown in fig. 33. The mode-III case is, however, not resolved
as cleanly and slightly loses its symmetry due to numerical errors. In our experiments
we have observed that KI is still slightly underestimated in the mode-II case with
mixed boundary conditions (fig. 33II), making the material appear artificially tougher.
We accept this limitation, as the qualitative fracture behaviour is very close to the
full BEM solution, and also because our rigid-body coupling always works with pure
Neumann boundary conditions.

Next, we consider a cube under uniform tension along the vertical axis, applying a
Dirichlet BC on the base and an inhomogeneous Neumann BC on the top face. This
cube contains an initially penny-shaped crack inclined by 45◦ to the direction of tension,
see fig. 34a. Assuming again a homogeneous material, the fracture surface produced
by our boundary element method (fig. 34b) smoothly approaches the plane orthogonal
to the axis of tension. Our (full BEM) result for this standard test case is qualitatively
very close to the X-FEM result of Gravouil et al. [20]. The effect is less pronounced
when using our fast approximate method (fig. 34c), but still qualitatively acceptable.
Forcing the propagation path to align with a stress eigenvector avoids the oscillation
issue (seen in fig. 22b), but also to some extent suppresses the characteristic kink
observed at the edge of the initial crack (see also fig. 9 in [58] for a 2D example).
Figure 24a shows that our estimated stress intensity values closely match the full
BEM solution in this test case.

Figure 13 shows a similar situation for a uniaxially loaded cube, but this time under
compression instead of tension and without any initial fractures. We apply Dirichlet
BCs on the top and bottom face resulting in a compressive mode-I load. In this case,
we simulate multiple fractures as created by our crack initiation method. The primary
one then propagates under compressive loading, while secondary cracks appear and
propagate under tension caused by Poisson’s effect, roughly orthogonal to the primary
fracture. The final result is that the cube breaks into multiple fragments; the four
largest ones are shown in fig. 13b.

86 8 Results

(a) (b) (c)

Figure 35: A notched bar in a 3-point-bending test (see also fig. 19): (a) full BEM
result with a homogeneous material, (b) BEM result with a granular material, (c)

result of our fast approximation method using the same granular material.

Having established that both our full BEM, as well as our fast approximate method,
handle homogeneous materials successfully, we now consider inhomogeneous materials.
Recall that varying elasticity parameters are difficult to treat in a BEM framework,
and we consequently focus on (spatially) varying fracture parameters (strength and
toughness) instead. We first demonstrate how the simulation can be controlled using
carefully tailored strength and toughness fields. Consider a cube under uniform ver-
tical tension (similar to fig. 13, but with opposite signs on the prescribed boundary
displacements). We then use the strength field shown in fig. 18b to bias crack initi-
ation towards the middle of the cube. In a homogeneous material, the crack would
propagate under mode-I loading and form a planar surface, as in fig. 32I. However, we
use the toughness field shown in fig. 18a to bias crack propagation towards a lower,
parallel plane. As shown in fig. 18c–e, the fracture starts in the low-strength region (see
also fig. 11 for a close-up view) and smoothly approaches the plane of minimal tough-
ness. We limit crack initiation to a single fracture in order to make the propagation
behaviour clearly visible.

We then reproduce the well-known 3-point-bending test of a notched bar. Figure 19a
shows the initial mesh and an illustration of the applied boundary conditions: pre-
scribed zero displacements are drawn as red bars, while arrows indicate prescribed sur-
face tractions. In this case, there are no fractures in the initial geometry. Instead, the
notch creates a stress concentration, which causes cracks to naturally initiate nearby.
This test case shows that our crack initiation method (ch. 4.4) agrees with LEFM
theory and experiments. Please note the small ridges in fig. 35a formed by individual
cracks propagating parallel to each other and eventually intersecting. Similar patterns
are often found in nature and are sometimes referred to as “river lines” in the litera-
ture [3]. This 3-point-bending test is also one of the few cases where the limitations
of the COD-BEM formulation, discussed in chapter 2.5, become visually apparent as
small ripples close to the bottom surface of the bar. In that region, the COD and hence
SIF values are influenced by the nearby surface, causing deviations in the crack front’s
path. Figure 35b shows the same setup, but now using a toughness field modelling a
granular material, in which case these artefacts become barely noticeable due to the
surface patterns arising from the inhomogeneous material. Again, our fast approximate
method yields qualitatively equivalent results, fig. 35c, providing further evidence that

8.1 Basic test cases 87

(a) (b)

Figure 36: Breaking a “chain link”: a high-strength material produces only two frac-
tures (a), whereas a low-strength material results in additional partial cracks (b).

our SIF and COD estimates are physically reasonable. The compressive zone close to
the bottom of the bar (resulting from the bending deformation), however, is not quite
as well resolved by the approximate method, resulting in a fracture surface that is not
as perpendicular to the length-axis of the bar compared to the full BEM solution. In
general, we observe that simulating a small number of clean cuts through an object
requires a more accurate deformation solution, which means that the full BEM simu-
lation is the better choice than the fast estimators in such cases. The approximation
errors quickly become visually unnoticeable as the number of fractures increases.

Figure 36 shows a “chain link” breaking under uniaxial tension. This is another ex-
ample where the object’s geometry naturally concentrates crack initiation around the
region of minimal cross-section area. We use Dirichlet boundary conditions displacing
the left and right outside faces along their normal direction (note that the images show
the resulting fragments positioned differently in order to better display the fracture
surfaces). In the first example (fig. 36a) we use the material properties of poly-methyl-
methacrylate (PMMA, also known as “acrylic glass”), which has a relatively high
strength compared to its toughness. Consequently only two cracks initiate, and both
propagate until the object is cut into two pieces. On the other hand, in the second
example (fig. 36b) we use the material properties of concrete, which has a relatively low
strength. As a result, we see multiple partial fractures (which eventually stop propa-
gating due to insufficient stress intensity) in addition to the ones that separate the two
fragments. In this example we also use a granular material model, which leads to in-
teresting fracture surface patterns: perturbations due to varying toughness propagate
with the crack front, leaving clearly visible directional patterns called “chevrons” in
their wake. Consequently, the propagation direction is discernible in the final fracture
surface. As multiple fractures propagate close to one another, some river lines also ap-
pear. These chevrons and river lines are a signature of brittle fractures in nature, see
also [3]. Another common feature is that the surface roughness increases with distance
from the initiation site, which itself is fairly smooth. To our knowledge, our approach
is the first method in computer graphics to produce these physically realistic surface
details.

88 8 Results

BEM EST HYB

Figure 37: “Breaking Π”: comparison of fracture methods (full BEM, fast estimators,
and hybrid method).

So far, we have discussed cases where we specify the geometry, boundary conditions,
and material parameters of a single object, and then run one instance of our fracture
simulation method. Tables 1 and 2 give an overview of the simulation and material
parameters, as well as the total runtime required to compute these results.

Finally, we turn our attention to the rigid-body coupling described in ch. 7. Figure 30
shows a test case where a bar (without notching) rests on two pillars: in the rigid-body
simulation, the bar is accelerated downwards by gravity, while the collision response
system produces an impulse to counter this motion. Balancing the traction field re-
sulting from these impulses (as described in ch. 7.2) results in a bending deformation
similar to the previously discussed 3-point test. We choose material parameters for the
bar such that it is so weak that the gravitational load is sufficient to break it. However,
in the absence of notches, fractures occur more widely spread rather than concentrated
around a small area. This result shows that we do not need to add body forces due to
gravity directly to our BEM formulation (and we can safely assume g = 0 in eq. (2.12)
for all our examples). The large fragments seen in fig. 30b break again as they undergo
further collisions with the ground or the pillars.

Similarly, we can of course choose a stronger material and break the bar by dropping
a wrecking ball on top of it, as shown in fig. 37. We obtain qualitatively similar results
from either the full BEM solution, our fast estimators, or a hybrid method formed by
combining both approaches (solving the full BEM system as long as the system size is
sufficiently small and switching to the fast method afterwards). For the hybrid example
in fig. 37, we switch to the fast estimators when there are more than 400 elements in the
BEM mesh. This threshold applies to each fracture simulation instance independently.

The granular toughness field applied to the bar in fig. 37 contains on average approxi-
mately 50× 12 grains per cross section area. The interior of the grains is 40% tougher
than the grain boundary surfaces. Similarly, the notched bar in fig. 35b (and c) con-
tains roughly 21× 13 grains per cross section area and the toughness increases by 10%
away from grain boundaries. Please also refer to table 2 for further material parameters
used in our single-fracture experiments.

89

(a) (b) (c)

Figure 38: Tearing the armadillo; image (c) shows the BEM mesh of one of the fractures
at the end of the simulation.

(a) (b) (c)

Figure 39: Splitting the armadillo with a user-specified initial fracture; image (c) shows
the BEM mesh of the fracture at an intermediate step during the simulation, red points
indicate crack-front markers that have reached the surface, blue points indicate markers

that are still propagating.

8.2 Further examples

In this chapter we show additional examples demonstrating the versatility of our frac-
ture simulation framework. We also compare our fast approximations to the standard
BEM in more complicated scenarios, where the advantages in terms of runtime and
memory consumption of our new method are much more pronounced than in the simple
test cases discussed in the previous chapter.

In our first example (fig. 38), we apply a horizontal traction on the claws of the Stanford
armadillo (indicated by red arrows in the image), while keeping the feet fixed. We use
the material parameters of PMMA with an additional granular toughness field. The
resolution of the implicit surface representation is 50x higher than the resolution of
fracture elements in the BEM mesh, resulting in sharp features on the edge of the
fracture surface (fig. 38b), but taking only three full BEM time steps to simulate.
In this situation, the total runtime of just under one minute is dominated by the
assembly of the initial BEM system matrix at the start of the simulation. Note that our
surface-stress-based crack-initiation method again places cracks in regions of narrow
cross-section with respect to the axis of traction.

90 8 Results

(a) (b) 1500 4000 6500 9000

20

40

60

80

no. of elements

ti
m

e
 p

e
r

s
te

p
 [
s
]

BEM only

BEM stage

EST stage

(c)

Figure 40: Bunny smash: graph shows CPU time per crack-propagation time step for
our hybrid method compared to our full BEM method.

(a) (b) 1e−007 0.0001 0.1
0

0.5

1

volume ratio
c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

our result
Mott’s formula

(c)

Figure 41: Bunny smash with two-way rigid-body coupling: graph shows fragment
volume distribution compared to Mott’s formula.

Similarly, in fig. 39 we apply the same boundary conditions as in fig. 38. We use a
material of the same overall properties as well, but a coarser rolled grain structure.
Instead of our stress-based crack initiation method, we manually specify one initial
crack (placed vertically in the neck) and do not allow any more cracks to initiate. With
this slight manipulation of the initial conditions, our fracture simulation proceeds to
split the armadillo down the middle. Recall that the feet are fixed and consequently
there is very little stress applied to the legs, so the fracture propagates mostly through
the upper body.

Figure 40 demonstrates the efficiency of our fast SIF estimation method compared
to the standard BEM approach. We smash the Stanford bunny by applying zero-
displacement boundary conditions on the base (where the bunny touches the ground)
and a fixed indentation on the back of the bunny. We then run a single fracture
simulation and add the rigid-body dynamics of the resulting fragments in a post-
processing step. During the fracture simulation, we use our hybrid method with a
threshold of 3000 triangles in the mesh. We compare the CPU time required to compute
each crack propagation time step to a control run solving the full BEM system in
fig. 40c. While the standard BEM quickly becomes very slow, the runtime required
for a time step using our estimation method is independent from the total number of
elements in the mesh: it only scales with the length of the crack front, which actually
reduces slightly as the crack front reaches the object’s surface (in some places earlier
than in others). We plot the timings for the control run until it exceeds 4GB of memory.
In contrast, when switching to our fast approximate method the entire simulation runs
within this memory budget.

8.2 Further examples 91

Figure 42: Bunny on a column: left image shows initial BEM meshes, note that our
method robustly handles badly shaped triangles on the column.

In fig. 41 we show a similar example, but now including our two-way rigid-body cou-
pling. In this scene we use our fast approximations right from the start of the simu-
lation. Choosing a weaker material for the bunny, we manage to produce over 1000
fragments in four rigid-body steps. We show the distribution of fragment volumes in
fig. 41c and compare it to Mott’s formula, a widely accepted theoretical model for

fragment size distribution, which is given by P (V) = e−
3
√

ζV , ζ = 6/V̄ . Here V̄ is the
average fragment volume (see also eq. (20) in [14]). Figure 41c plots the probability
that a randomly selected fragment has a relative volume equal or larger than a given
ratio. Fragment volumes are measured relative to the original object’s volume. The
volume distribution of our result is in good agreement with theoretical predictions
overall, except that our result contains less very small fragments than predicted. We
believe this deviation to be mostly due to the resolution limit of the implicit surface
on which we store the high-resolution geometry; i.e. fragments much smaller than the
voxel size cannot be represented.

As described in ch. 5.3, the speed-up (i.e. the reduction of runtime spent on fracture
simulation for a particular scene) depends strongly on the number of elements used
to represent fractures. Our basic comparisons in figures 32–35 and 37 take about the
same time for both methods as they contain very few elements. For the “bowl” example
in fig. 45, a scene of medium complexity, the fast approximate fracture simulation is
about 10x faster than the full BEM version. Similarly, our hybrid method used in
the bunny-smash example (fig. 40) reduces the overall runtime roughly by a factor
of 14, which means that the simulation completes in less than 15 minutes, instead of
almost 3.5 hours required for the full BEM solution. On our largest example in terms
of fracture elements, fig. 41, the fast approximate method is about 35x faster than the
BEM, and the fracture simulation takes about 22 minutes instead of 13 hours. All of
these timings refer only to the fracture simulation, excluding time spent on rigid-body
dynamics.

92 8 Results

Figure 43: Breaking a window: left image shows BEM meshes of remaining large
fragments after the first fracture event, containing many incomplete cracks. All four

fragments break again into smaller pieces in subsequent rigid-body time steps.

More artistic examples are shown in figures 42–45, all of which use our two-way coupled
rigid-body dynamics and fracture approach. Please refer to table 3 for an overview
of our method’s performance on these scenes. In fig. 42 the Stanford bunny rests
on top of a column; we then shoot the column with a cannon ball. As the top of
the column breaks, its motion also pushes the bunny upwards. Using again a weak
material for the bunny, this sudden acceleration is enough to break its ears (due to
their narrow cross-section). As the bunny’s body falls down, it hits a sharp corner of
one of the column’s fragments and shatters further. For this scene we use rigid-body
collision meshes that are almost the same resolution as the output geometry in order
to resolve the numerous contacts between fragments. Consequently, the runtime spent
on rigid-body dynamics (marked with ‘*’ in table 3) is much higher than for most
other scenes (where we use lower resolution collision shapes, see also ch. 7.3). In most
of our other examples, fracture simulation accounts for about 70% of the total CPU
time and rigid-body dynamics for the other 30%. Some scenes lead to fairly complex
contacts between various fragments, resulting in a roughly 50-50 split of the overall
runtime. (Note that we use mesh-based collision detection, but do not implement more
advanced methods, such as approximate convex decomposition [43] that could improve
the rigid-body runtime.)

Even though boundary element based methods are most efficient for objects with
large volume to surface ratios, our method is still capable of fracturing a thin (but
volumetric) window, shown in fig. 43. After the first fracture simulation, some large
fragments with many incomplete cracks remain. As we copy these incomplete cracks
from the parent object to the large fragment’s BEM mesh, they can propagate further
once the large fragment collides with another object in a subsequent rigid-body step.
Eventually, many of these incomplete cracks grow further cutting out many smaller
fragments in the process.

The first example of fig. 44 shows a brick-breaking setup. In this scene we also use
our hybrid method, switching from the full BEM to the approximate solution at 300
elements (which is roughly half-way through a fracture simulation as we start each one
with 200 elements and the largest number of elements in one run is 412). In this scene
we need to accurately compute the major cut through each brick, but do not want to

8.2 Further examples 93

invest runtime in any of the less interesting branching cracks. Our hybrid method is
ideally suited for this task and we can still use a resolution ratio of rf/rc = 50 for all
five bricks.

The second scene in fig. 44 starts with the orange armadillo standing in front of a wall.
The blue armadillo then smashes into the first one at a high speed and both of them
crash into the wall. Similarly, in the first scene of fig. 45 a bunny and an armadillo
collide and then drop into a glass bowl. Finally, the second scene in fig. 45 shows
various simple objects, such as boxes, cylinders, and tori, dropped from a height on top
of one another. This scene produces the second largest number of fragments among our
examples. Due to the high impact velocities, as well as the large number of fragments,
computing rigid-body dynamics takes almost twice as long as the fracture simulation
itself. All three scenes described in this paragraph use only the fast approximate
fracture method.

These examples, as well as all the other results presented in this chapter, demonstrate
that our fracture method is well capable of producing a wide variety of visually de-
tailed, physically plausible fractures in both controlled test setups and complex artistic
animations.

94 8 Results

Figure 44: Further results 1: a brick-breaking scene simulated with our hybrid method,
and an argument among armadillos simulated with our fast approximation method.

Figure 45: Further results 2: smashing a bunny and an armadillo into a glass bowl,
and dropping some geometric primitives on the floor.

8.2 Further examples 95

Example Fig. M ms me voxels rc/rf steps t [s] ci

Cube compressive 13 B 120 1407 339 33,3 22 91,20 *16
Cube controlled 18 B 120 389 205 20 12 7,79 *1
Notched bar (layered h) 19b B 416 687 1005 30 7 22,11 *3
Notched bar (layered v) 19c B 416 735 1255 37,5 9 30,22 *3
Edge-cracked cube, II n 23b E 312 476 339 30 7 10,27 i
Edge-cracked cube, II n 23d B 312 474 339 30 7 12,35 i
Edge-cracked cube, I 32I B 312 562 339 26,7 10 16,43 i
Edge-cracked cube, II 32II B 312 563 339 26,7 10 15,82 i
Edge-cracked cube, III 32III B 312 464 339 46,7 7 14,75 i
Edge-cracked cube, I 33I E 312 540 339 26,7 9 11,30 i
Edge-cracked cube, II 33I E 312 565 339 26,7 11 13,46 i
Edge-cracked cube, III 33III E 312 490 339 46,7 10 15,06 i
Centre-cracked cube 34b B 244 1093 339 16,7 11 28,61 i
Centre-cracked cube 34c E 244 1098 339 16,7 11 13,83 i
Notched bar 35a B 416 822 1005 30 8 29,01 *5
Notched bar (granular) 35b B 416 727 1005 30 8 17,35 *3
Notched bar (granular) 35c E 416 770 1005 30 *9 17,25 *3
Chain link (PMMA) 36a B 272 431 561 66,7 4 18,40 2
Chain link (concrete) 36b B 310 630 673 80 8 57,44 7
Armadillo tearing 38 B 1200 1251 763 50 3 57,49 2
Armadillo splitting 39 B 1000 1169 763 50 9 51,85 i
Bunny smashing 40 H 1000 10981 525 20 38 892,25 22

Table 1: Fracture simulation examples (without rigid-body coupling): simulation pa-
rameters and runtime. Columns: Name and figure reference, used method (M): either
full BEM (B), fast estimator (E), or hybrid method (H), number of elements in the
BEM mesh at the start of the simulation ms and at the end of the simulation me,
number of voxels (grid nodes) in the implicit surface representation along the largest
extent of the object’s axis-aligned bounding box, ratio of implicit surface resolution
to fracture BEM mesh resolution rf/rc (which equals the number of sub steps per
BEM time step), number of BEM time steps, total simulation runtime on a 3.2 GHz
quad-core desktop processor in seconds t, and number of crack initiation events (ci, ‘i’
indicates a pre-defined initial fracture). In columns ‘steps’ and ‘ci’ a ‘*’ denotes that

the user-specified limit of time steps or cracks has been reached.

96 8 Results

Example Fig. E ν ρ TS Kc fc

Cube compressive 13 2,5E+10 0,2 2300 3,0E+6 5,5E+5 3
Cube controlled 18 3,1E+9 0,327 1200 * 5.0E+5 – 2.0E+6 2
Notched bar (layered h) 19b 3,1E+9 0,327 1200 7,6E+7 1.0E+3 – 5.0E+4 2
Notched bar (layered v) 19c 3,1E+9 0,327 1200 7,6E+7 1.0E+3 – 1.5E+4 2
Edge-cracked cube, II n 23b 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Edge-cracked cube, II n 23d 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Edge-cracked cube, I 32I 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Edge-cracked cube, II 32II 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Edge-cracked cube, III 32III 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Edge-cracked cube, I 33I 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Edge-cracked cube, II 33I 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Edge-cracked cube, III 33III 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Centre-cracked cube 34b 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Centre-cracked cube 34c 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Notched bar 35a 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Notched bar (granular) 35b 3,1E+9 0,327 1200 7,6E+7 1.0E+6 – 1.1E+6 3
Notched bar (granular) 35c 3,1E+9 0,327 1200 7,6E+7 1.0E+6 – 1.1E+6 3
Chain link (PMMA) 36a 3,1E+9 0,327 1200 7,6E+7 1,0E+6 2
Chain link (concrete) 36b 2,5E+10 0,2 2300 3,0E+6 5.5E+5 – 5.6E+5 10
Armadillo tearing 38 3,1E+9 0,327 1200 7,6E+7 1.0E+6 – 1.1E+6 2
Armadillo splitting 39 3,1E+9 0,327 1200 7,6E+7 1.0E+6 – 1.1E+6 2
Bunny smashing 40 3,1E+9 0,327 1200 1,6E+8 5,0E+5 2

Table 2: Fracture simulation examples (without rigid-body coupling): material pa-
rameters. Columns: Name and figure reference, Young’s modulus E [Pa], Poisson’s
ratio ν, density ρ [kg/m3], tensile strength (crack initiation threshold) TS [Pa], tensile
fracture toughness (critical stress intensity) Kc [Pa m1/2], and compressive factor fc

(defines both compressive strength and toughness relative to tensile values). (*) The
tensile strength for the controlled cube example varies vertically between 7.6MPa in

the centre and 76MPa on the top and bottom of the cube.

8.2 Further examples 97

Example Fig. M f runs mmax tf [s] trb [s] steps 1/dt

Breaking Π 30 B 105 23 626 181.03 33.22 1000 250
Breaking Π 37 B 122 17 1004 388.58 79.97 1000 250
Breaking Π 37 E 100 13 933 292.73 140.60 1000 250
Breaking Π 37 H 168 16 1225 461.36 108.76 1000 250
Bunny shooting 41 E 1099 5 15381 1328.17 565.92 500 250
Column and bunny 42 E 367 18 7980 966.81 *2628.18 1000 250
Window 43 E 455 7 6459 1256.85 1731.38 1000 250
Brick breaking 44 H 60 26 412 216.11 78.18 500 2000
Armadillos 44 E 148 14 1792 885.95 1710.42 600 250
Bowl 45 E 139 14 3250 845.99 351.32 500 250
Falling objects 45 E 654 77 704 706.43 1498.49 1000 500

Table 3: Fracture simulation examples with rigid-body coupling. Columns: Name and
figure reference, used method (M): either full BEM (B), fast estimator (E), or hybrid
method (H), number of fragments at the end of the scene f , number of rigid-body
collisions causing new fractures (runs), maximum number of triangles contained in a
single fracture simulation run mmax, total runtime required for all fracture simulations
tf (measured on a 3.2 GHz quad-core desktop processor), total runtime spent on rigid-
body dynamics trb (the ‘*’ indicates that we use a higher collision shape resolution for
one of our scenes), number of rigid-body steps, rigid-body frame rate per seconds 1/dt.

All these examples use less than 4GB of memory.

98

9 Conclusion

In this thesis, we have presented a novel method for simulating brittle fracture dy-
namics for visual effects purposes. The basis of our approach is a symmetric Galerkin
boundary element method. From the BEM solution, we compute stresses on surfaces,
as well as stress intensities at crack fronts (where the stress field itself is singular).
According to linear elastic fracture mechanics, we simulate crack propagation based
on these stress intensities, while using surface stresses only for crack initiation. This
separation effectively avoids artificial shattering often seen in purely stress-based frac-
ture simulations. We enable artistic control over our simulations via spatially varying
strength and toughness fields.

We sample the crack front at a significantly higher resolution than the BEM mesh when
simulating crack propagation. The motion of the propagating crack front then defines
the fracture surface. Interpolating the stress intensity factors from the coarse mesh
onto the high-resolution crack front allows us to increase the resolution of the frac-
ture surface well beyond the resolution of the BEM mesh, breaking a long-standing
restriction of previous fracture simulation methods in computer graphics. This ap-
proach, combined with the ability to handle spatially varying toughness, allows us to
produce highly-detailed fracture surfaces. Additionally, we have also introduced fur-
ther approximations to the BEM solution, which significantly improve the efficiency
and theoretical complexity of our method.

Consequently, our method is capable of producing realistic fractures at a high resolu-
tion in a reasonably short time on commodity hardware (see tables 1 and 3). While
one could quickly add visual detail to coarse fracture surfaces in a post-processing step,
doing so typically lacks the realism that our results exhibit, as many brittle fracture
patterns found in nature arise from the motion of the propagating crack front. Fur-
thermore, the topology of the resulting fragments would be determined by the coarse
simulation; in contrast the topology is defined by the high-resolution fractures in our
method (otherwise we would not be able to produce the numerous tiny fragments vis-
ible in many of our results). In theory, our method could be used to generate fracture
surface templates for geometric animation methods as well (for example the methods
presented in [49,70]). While we leave this avenue for future work, we instead couple our
fracture simulation framework to a standard rigid-body dynamics engine. This cou-
pling simplifies authoring animation sequences involving multiple objects and fracture
events due to collisions among them. We show how to treat new fragments as addi-
tional rigid bodies in the scene and allow them to fracture further if they experience
another collision.

While it is difficult to directly compare to volumetric finite element methods, our
experiments showed that a single FEM-based elastostatic solution for the initial state
of the edge-cracked cube example (fig. 32) takes roughly 1.2s if the crack front is
resolved at a high resolution, or 0.2s for a low-resolution crack front. The tetrahedral
mesh adaptively transitions to the same, coarse resolution, as our BEM surface mesh,

99

away from the crack front. These timings were obtained with the open source FEM
implementation available at http://elmerfem.org (v. 8.0). Our full BEM solution in
the mode-I loaded case (fig. 32I) takes roughly 270 sub steps in about 16s (on the same
machine; see table 1), which amortizes the BEM cost to approximately 0.06s per sub
step. This indicates that even at low-resolution, the FEM-based fracture simulation
would have to work with local updates (as done in 2D in [60]) that take about 30%
of a full solve in each sub step to match our runtime (ignoring time spent on meshing
operations). While this comparison is by no means exhaustive, it indicates that our
approach is a promising alternative to volumetric FEM-based fracture simulation, when
using low-resolution surface meshes. However, a finite element method (combined with
a fast sparse linear solver) can achieve a better runtime complexity than a standard
BEM (using a dense linear solver) as the mesh resolution increases. Instead of trying
to work with known acceleration methods to improve the BEM complexity (such as
a fast multipole method [79] or adaptive cross approximation [44]), we decided to
introduce even more aggressive approximations in order to address this issue. Instead
of approximately solving the entire BEM system, we choose to ignore direct crack-
crack interactions completely, which allows us to reduce the size of the BEM system
considerably. While our approximations sacrifice accuracy of the deformation solution
to a much larger extent than the previously mentioned approaches, they still produce
acceptably good estimates for our fracture simulation.

Because our method is based on quasi-static linear elasticity, it is inherently inade-
quate to simulate large deformations or ductile fracture. However, it is well suited
for handling brittle fracture in reasonably stiff materials. In such materials, fractures
typically propagate very fast (on the order of 1km/s in PMMA or concrete) and hence
a high temporal resolution is required to trace the crack front. Similarly, in these
materials a fully dynamic deformation method would require very small time steps in
order to resolve the rapidly changing stress field around a propagating crack. Instead,
our sub-stepping scheme avoids the need to update the BEM solution in every step:
we take a fixed number of sub steps (equal to the resolution ratio rf/rc) before this
update (at the end of the full time step). During sub-stepping, we assume that the
stress intensity factors remain constant. These SIFs are specified in the crack front’s
local coordinate frame, which automatically handles the fact that the stress singularity
at the crack front moves with the front as it propagates through the material. While
we emphasize that we do not need to change existing elements during our fracture
simulation (resulting in less effort spent on BEM matrix assembly and meshing), it
could be beneficial to the overall runtime to simplify the mesh of a fracture surface
once the crack front has moved on, keeping the number of degrees of freedom as low
as possible, when using the full BEM solution (instead of our fast approximations).

In our current implementation, we use a basic single-threaded rigid-body system based
on Bullet [8] and our coupling to the fracture simulation considers collisions only.
For future work, it would be interesting to also include inertial forces, such that fast
spinning can cause fractures as well. We only use a standard mesh-based collision
detection algorithm, which is prone to producing “popping” artefacts in the motion of

http://elmerfem.org

100 9 Conclusion

objects when trying to resolve multiple contacts within one frame. This issue could be
improved, and also sped up, by convex decomposition approaches [43]. For example,
the scene shown in fig. 42 contains some geometrically interlocking fragments, which
require fairly high-resolution collision shapes, and consequently slow down the collision
detection step of the rigid-body solver considerably. Because we did not implement
known rigid-body optimizations, the time spent on rigid-body dynamics (marked with
‘*’ in Table 3) should not be considered to be representative in this case. If rigid-
body popping artefacts occur, they can fairly easily be removed by post-processing
the motion. We accept these limitations, as we focus on the fracture simulation and
consider improving rigid-body dynamics to be outside of the scope of this work.

In our tests (ch. 8.1), we show that our SIF estimation works well for crack propagation
and yields results that qualitatively match those of the full BEM approach. However,
in the current implementation, our crack initiation method handles branching only if
we use the full BEM solution. In theory, we could add an additional crack branching
criterion to our fast estimators. For example, during SIF estimation, we choose one
eigenvalue (and -vector) of the local regular stress field to compute the stress intensi-
ties; we could similarly use (one of) the remaining two eigenvalues, which correspond
to eigenvectors close to the crack surface’s tangent plane, to implement a branching
criterion. Furthermore, our fast estimators also ignore direct crack-crack interactions,
although some analytical results exist describing these effects (sometimes referred to
as “transmission factors” [22]). Even though our approximations improve the over-
all runtime of the simulation considerably, we still need to solve (at least) one BEM
system at the start of the fracture simulation. In future work, it might be possible
to further speed up this initial BEM solution by using a pre-computed proxy shape,
similar to the “sound proxy” of [78].

In summary, our new approach to brittle fracture, based on boundary elements and
Lagrangian crack propagation, provides the first method in computer graphics for
simulating fractures, in the presence of material toughness variations, beyond the res-
olution of the underlying deformation method. Additionally, we have presented a way
to approximate stress intensities and crack opening displacements in order to speed
up crack propagation even further. Because it focuses the computational effort on the
high-resolution crack-front geometry, our method is capable of efficiently generating
extremely detailed and physically realistic fracture surfaces. This approach results in
an efficient physics-based simulation of brittle fracture, which is both faster in practice
and has theoretically superior scaling to previous finite or boundary element methods.
In light of the fact that any method that generates a fracture surface mesh must iterate
over each node in that mesh at least once, we consider the linear scaling of our fast
approximate crack propagation algorithm to be optimal.

101

References

[1] Abdelaziz, Y., and Hamouine, A. A survey of the extended finite element.
In Computers & Structures (2008), vol. 86, pp. 1141–1151.

[2] Aliabadi, M. H. Boundary element formulations in fracture mechanics. In
Applied Mechanics Reviews (1997), vol. 50, American Society of Mechanical En-
gineers, pp. 83–96.

[3] Becker, W. T., and Lampman, S. Fracture appearance and mechanisms of
deformation and fracture. In Materials Park, OH: ASM International (2002),
pp. 559–586.

[4] Bender, J., Erleben, K., Trinkle, J., and Coumans, E. Interactive
Simulation of Rigid Body Dynamics in Computer Graphics. In EUROGRAPHICS
2012 State of the Art Reports (2012).

[5] Bernstein, D. S. Matrix Mathematics: Theory, Facts, and Formulas with Ap-
plication to Linear Systems Theory. Princeton University Press, 2005.

[6] Bower, A. F. ENGN2210 Lecture Notes on Continuum Mechanics. Brown
University, 2012.

[7] Chen, Z., Yao, M., Feng, R., and Wang, H. Physics-inspired Adaptive
Fracture Refinement. In ACM Trans. Graph. (2014), vol. 33, pp. 113:1–113:7.

[8] Coumans, E. Bullet Physics Simulation. In ACM SIGGRAPH 2015 Courses
(2015).

[9] Danson, D. Linear isotropic elasticity with body forces. In Progress in Boundary
Element Methods: Volume 2, C. A. Brebbia, Ed. Springer, 1983, pp. 101–135.

[10] DREAM3D. A Digital Representation Environment for the Analysis of Mi-
crostructure in 3D. v. 4.2.4, http://dream3d.bluequartz.net.

[11] DreamWorks Animation. OpenVDB. v. 2.2.0, http://www.openvdb.org.

[12] DreamWorks Animation. OpenVDB Release Notes. Accessed 20.06.2017,
http://www.openvdb.org/documentation/doxygen/changes.html.

[13] Duffy, M. G. Quadrature Over a Pyramid or Cube of Integrands with a Sin-
gularity at a Vertex. In SIAM Journal on Numerical Analysis (1982), vol. 19,
pp. 1260–1262.

[14] Elek, P., and Jaramaz, S. Fragment size distribution in dynamic fragmen-
tation: Geometric probability approach. In FME Transactions (2008), vol. 36,
pp. 59–65.

http://dream3d.bluequartz.net
http://www.openvdb.org
http://www.openvdb.org/documentation/doxygen/changes.html

102

[15] Feynman, R. P., Leighton, R. B., and Sands, M. The Feynman Lectures
on Physics: Volume 2. Addison-Wesley, 1963.

[16] Frangi, A., Novati, G., Springhetti, R., and Rovizzi, M. 3D fracture
analysis by the symmetric Galerkin BEM. In Computational Mechanics (2002),
vol. 28, Springer, pp. 220–232.

[17] Freund, L. B. Dynamic Fracture Mechanics. Cambridge Monographs on Me-
chanics. Cambridge University Press, 1998.

[18] Garland, M., and Heckbert, P. S. Surface Simplification Using Quadric
Error Metrics. In SIGGRAPH 97, Annual Conference Series (1997), SIGGRAPH
’97, ACM Press/Addison-Wesley Publishing Co., pp. 209–216.

[19] Glondu, L., Marchal, M., and Dumont, G. Real-Time Simulation of Brittle
Fracture Using Modal Analysis. In IEEE TVCG (2013), vol. 19, pp. 201–209.

[20] Gravouil, A., Moës, N., and Belytschko, T. Non-planar 3D crack growth
by the extended finite element and level sets – part II: level set update. In INT J
NUMER METH ENG (2002), vol. 53, John Wiley & Sons, Ltd., pp. 2569–2586.

[21] Griffith, A. A. The Phenomena of Rupture and Flow in Solids. In Philosophical
Transactions of the Royal Society of London (1921), vol. 221, pp. 163–198.

[22] Gross, D., and Seelig, T. Fracture Mechanics, 2nd ed. Springer, 2011.

[23] Guennebaud, G., Jacob, B., et al. Eigen, 2010. v. 3, http://eigen.

tuxfamily.org.

[24] Guiggiani, M. The evaluation of cauchy principal value integrals in the boundary
element method – a review. In Mathematical and Computer Modelling (1991).

[25] Hertz, H. Über die Berührung fester elastischer Körper. In J. reine und ange-
wandte Math. (1881), vol. 92, pp. 156–171.

[26] Hibbeler, R. C. Mechanics of Materials, 8th ed. Pearson Prentice Hall, 2010.

[27] Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for
Engineering. Wiley, 2000.

[28] Houston, B., Nielsen, M. B., Batty, C., Nilsson, O., and Museth,
K. Hierarchical RLE Level Set: A Compact and Versatile Deformable Surface
Representation. In ACM Trans. Graph. (2006), vol. 25, pp. 151–175.

[29] HyENA. Hyperbolic and Elliptic Numerical Analysis, Graz University of Tech-
nology. v. 04.11.2013, http://www.mech.tugraz.at/HyENA.

[30] Iben, H. N., and O’Brien, J. F. Generating surface crack patterns. In Proc.
ACM SIGGRAPH/Eurographics SCA (2006), pp. 177–185.

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.mech.tugraz.at/HyENA

103

[31] Ingraffea, A., and Wawrzynek, P. Finite Element Methods for Linear
Elastic Fracture Mechanics. In Comprehensive Structural Integrity, Volume 3:
Numerical and Computational Methods, R. de Borst and H. A. Mang, Eds. Else-
vier, 2003.

[32] Irving, G., Teran, J., and Fedkiw, R. Invertible Finite Elements for Robust
Simulation of Large Deformation. In Proc. ACM SIGGRAPH/Eurographics SCA
(2004), pp. 131–140.

[33] Irwin, G. R. Analysis of Stresses and Strains Near the End of a Crack Traversing
a Plate. In Journal of Applied Mechanics (1957).

[34] James, D. L., and Pai, D. K. ArtDefo: Accurate Real Time Deformable
Objects. In SIGGRAPH 99, Annual Conference Series (1999), pp. 65–72.

[35] Ju, T., Losasso, F., Schaefer, S., and Warren, J. Dual Contouring of
Hermite Data. In ACM Trans. Graph. (2002), vol. 21, pp. 339–346.

[36] Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M.
Enrichment Textures for Detailed Cutting of Shells. In ACM Trans. Graph. (2009),
vol. 28, pp. 50:1–50:10.

[37] Keeler, T., and Bridson, R. Ocean Waves Animation Using Boundary In-
tegral Equations and Explicit Mesh Tracking. In Proc. ACM SIGGRAPH/Euro-
graphics SCA (2014), pp. 11–19.

[38] Kielhorn, L. A time-domain symmetric Galerkin BEM for viscoelastodynamics.
Verl. der Techn. Univ. Graz, 2009.

[39] Klár, G., Gast, T., Pradhana, A., Fu, C., Schroeder, C., Jiang, C.,
and Teran, J. Drucker-Prager Elastoplasticity for Sand Animation. In ACM
Trans. Graph. (2016), vol. 35, pp. 103:1–103:12.

[40] Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P. Feature
Sensitive Surface Extraction from Volume Data. In Proc. ACM SIGGRAPH 2001
(2001), pp. 57–66.

[41] Koschier, D., Lipponer, S., and Bender, J. Adaptive Tetrahedral Meshes
for Brittle Fracture Simulation. In Proc. ACM SIGGRAPH/Eurographics SCA
(2014), pp. 57–66.

[42] Larson, M. G., and Bengzon, F. The Finite Element Method: Theory,
Implementation, and Applications. Springer, 2013.

[43] Mamou, K., and Ghorbel, F. A simple and efficient approach for 3D mesh
approximate convex decomposition. In 16th IEEE Int. Conf. Image Processing
(ICIP) (2009), pp. 3501–3504.

104

[44] Messner, M., and Schanz, M. An accelerated symmetric time-domain bound-
ary element formulation for elasticity. In Engineering Analysis with Boundary
Elements (2010), vol. 34, pp. 944–955.

[45] Moës, N., Gravouil, A., and Belytschko, T. Non-planar 3D crack growth
by the extended finite element and level sets – part I: mechanical model. In INT
J NUMER METH ENG (2002), vol. 53, John Wiley & Sons, Ltd., pp. 2549–2568.

[46] Molino, N., Bao, Z., and Fedkiw, R. A Virtual Node Algorithm for Chang-
ing Mesh Topology During Simulation. In ACM Trans. Graph. (2004), vol. 23,
pp. 385–392.

[47] Monegato, G. Numerical evaluation of hypersingular integrals. In Journal of
Computational and Applied Mathematics (1994).

[48] Mousavi, S. E., Grinspun, E., and Sukumar, N. Higher-order extended
finite elements with harmonic enrichment functions for complex crack problems.
In INT J NUMER METH ENG (2011), vol. 86, John Wiley & Sons, Ltd., pp. 560–
574.

[49] Müller, M., Chentanez, N., and Kim, T.-Y. Real Time Dynamic Fracture
with Volumetric Approximate Convex Decompositions. In ACM Trans. Graph.
(2013), vol. 32, pp. 115:1–115:10.

[50] Müller, M., and Gross, M. Interactive Virtual Materials. In Proc. Graphics
Interface (2004), pp. 239–246.

[51] Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. Real-time
Simulation of Deformation and Fracture of Stiff Materials. In Proc. Eurographic
Workshop on Computer Animation and Simulation (2001), pp. 113–124.

[52] Museth, K. VDB: High-resolution Sparse Volumes with Dynamic Topology. In
ACM Trans. Graph. (2013), vol. 32, pp. 27:1–27:22.

[53] Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. Anima-
tion of Fracture by Physical Modeling. In The Visual Computer (1991), vol. 7,
Springer-Verlag New York, Inc., pp. 210–219.

[54] O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. Graphical Model-
ing and Animation of Ductile Fracture. In ACM Trans. Graph. (2002), vol. 21,
pp. 291–294.

[55] O’Brien, J. F., and Hodgins, J. K. Graphical Modeling and Animation of
Brittle Fracture. In SIGGRAPH 99, Annual Conference Series (1999), pp. 137–
146.

[56] Osher, S., and Fedkiw, R. Signed Distance Functions. In Level Set Methods
and Dynamic Implicit Surfaces. Springer, 2003, ch. 2.

105

[57] Parker, E. G., and O’Brien, J. F. Real-time Deformation and Fracture
in a Game Environment. In Proc. ACM SIGGRAPH/Eurographics SCA (2009),
pp. 165–175.

[58] Patricio, M., and Mattheij, R. Crack propagation analysis. In CASA-report
0723 (2007).

[59] Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas,
L. J. Meshless Animation of Fracturing Solids. In ACM Trans. Graph. (2005),
vol. 24, pp. 957–964.

[60] Pfaff, T., Narain, R., de Joya, J. M., and O’Brien, J. F. Adaptive
Tearing and Cracking of Thin Sheets. In ACM Trans. Graph. (2014), vol. 33,
pp. 110:1–110:9.

[61] Popov, V. L. Rigorous Treatment of Contact Problems – Hertzian Contact. In
Contact Mechanics and Friction, Physical Principles and Applications. Springer,
2010, ch. 5.

[62] Portela, A., Aliabadi, M. H., and Rooke, D. P. The Dual Boundary
Element Method: effective implementation for crack problems. In INT J NUMER
METH ENG (1992), vol. 33, John Wiley & Sons, Ltd, pp. 1269–1287.

[63] Rabczuk, T. Computational Methods for Fracture in Brittle and Quasi-Brittle
Solids: State-of-the-Art Review and Future Perspectives. In ISRN Applied Math-
ematics (2013), vol. 2013, p. Article ID 849231.

[64] Rice, J. R. A Path Independent Integral and the Approximate Analysis of Strain
Concentration by Notches and Cracks. In J. Appl. Mech (1968).

[65] Sauter, S., and Schwab, C. Boundary Element Methods. Springer, 2011.

[66] Schvartzman, S. C., and Otaduy, M. A. Fracture Animation Based on
High-dimensional Voronoi Diagrams. In Proc. 18th ACM SIGGRAPH i3D ’14
(2014), pp. 15–22.

[67] Smith, J., Witkin, A., and Baraff, D. Fast and Controllable Simulation of
the Shattering of Brittle Objects. In Computer Graphics Forum (2001), vol. 20,
Blackwell Publishers Ltd, pp. 81–91.

[68] Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A.
A Material Point Method for Snow Simulation. In ACM Trans. Graph. (2013),
vol. 32, pp. 102:1–102:10.

[69] Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and
Selle, A. Augmented MPM for Phase-change and Varied Materials. In ACM
Trans. Graph. (2014), vol. 33, pp. 138:1–138:11.

106

[70] Su, J., Schroeder, C., and Fedkiw, R. Energy Stability and Fracture for
Frame Rate Rigid Body Simulations. In Proc. ACM SIGGRAPH/Eurographics
SCA (2009), pp. 155–164.

[71] Sutradhar, A., Paulino, G., and Gray, L. J. Symmetric Galerkin Bound-
ary Element Method. Springer, 2008.

[72] Terzopoulos, D., and Fleischer, K. Modeling Inelastic Deformation: Vis-
colelasticity, Plasticity, Fracture. In SIGGRAPH Comput. Graph. (1988), vol. 22,
ACM, pp. 269–278.

[73] VCGlib. The VCG Library, Visual Computing Lab, CNR-ISTI. Accessed
15.04.2014, http://vcg.isti.cnr.it/~cignoni/newvcglib/html.

[74] Wang, Y., Jiang, C., Schroeder, C., and Teran, J. An Adaptive Virtual
Node Algorithm with Robust Mesh Cutting. In Proc. ACM SIGGRAPH/Euro-
graphics SCA (2014), pp. 77–85.

[75] Westergaard, H. M. Bearing Pressures and Cracks. In Journal of Applied
Mechanics (1939).

[76] Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R.,
and O’Brien, J. F. Dynamic Local Remeshing for Elastoplastic Simulation. In
ACM Trans. Graph. (2010), vol. 29, pp. 49:1–49:11.

[77] Wilde, A. J., and Aliabadi, M. H. A 3-D Dual BEM formulation for the
analysis of crack growth. In Computational Mechanics (1999), vol. 23, Springer-
Verlag, pp. 250–257.

[78] Zheng, C., and James, D. L. Rigid-body Fracture Sound with Precomputed
Soundbanks. In ACM Trans. Graph. (2010), vol. 29, pp. 69:1–69:13.

[79] Zhu, Y., Bridson, R., and Greif, C. Simulating Rigid Body Fracture with
Surface Meshes. In ACM Trans. Graph. (2015), vol. 34, pp. 150:1–150:11.

http://vcg.isti.cnr.it/~cignoni/newvcglib/html

107

Appendix

A List of fracture simulation parameters

Simulation method

(1) Choose between solving the full BEM system in every time step or using our fast
estimator.

(2) Hybrid method: set (1) to full BEM and define the number of elements in the
BEM mesh beyond which we switch to the fast estimator.

Material

(3) E: Young’s modulus
(4) ν: Poisson’s ratio
(5) ρ: Density
(6) TS: Tensile Strength
(7) Kc: Toughness (critical tensile stress intensity)
(8) fc: Ratio of compressive to tensile strength and toughness respectively
(9) Choose a spatial modifier for strength and/or toughness. (Optional)

Input

(10) Input file(s): can be either a (coarse) BEM mesh with enumerated boundary
regions, or a high-resolution triangle mesh, with an additional text file specifying
boundary regions (based on a convex intersection of half-spaces).

(11) Boundary conditions: for each boundary region, specify either a fixed, constant
displacement (Dirichlet boundary) or a constant traction (Neumann boundary).
Note that every boundary element must be contained in exactly one boundary
region, and every such region must have exactly one boundary condition for the
problem to be well defined.

(12) Location and orientation of small initial cracks. (Optional)
(13) The target number of triangles in the coarse BEM mesh if parameter (10) refers

to a high-resolution mesh.
(14) An offset distance (in multiples of parameter (16), the level-set resolution) by

which the BEM mesh vertices are moved along their outward normal after mesh-
ing. This parameter can be used to avoid the BEM mesh being inside of the
high-resolution surface of the object after mesh simplification.

Resolution and output

(15) rc: The resolution (target edge length) of the coarse BEM mesh representation
of fracture surfaces.

(16) rf : The resolution (voxel size) of all level-set grids.
(17) s: The segmentation threshold for robustly detecting fragments and writing each

fragment to a separate output mesh file.
(18) Output file name (without extension); output consists of both a VTK mesh and

VDB level-set data per full time step.

108

(19) Choose whether to output additional level-set data for each sub step as well.
(20) The maximum number of full time steps.
(21) The maximum number of cracks (prevents further crack initiation if reached).
(22) Post-processing: quality of high-resolution output meshes.
(23) Post-processing: choose whether to remove gaps introduced by the level-set rep-

resentation from fractures in high-resolution output meshes.
(24) Post-processing: choose whether to add interpolated displacements to high-

resolution output meshes.
(25) Post-processing: if (24) is set, choose whether to also add interpolated crack-

opening displacements to high-resolution output meshes.

109

B Pseudo-code listings

1 GridLi s t f indSegments (Grid input , double s , bool u s e T i l e s)
2 f o r each (va lue in input)
3 i f (u s e T i l e s | | va lue i s voxe l)
4 value += s
5 s e tAc t i v eS ta t e (va lue <= 0) // s e t i n s i d e va lue s to " a c t i v e "
6 whi le (input has a c t i v e va lue s)
7 segment = startNewSegment ()
8 queue = emptyQueue ()
9 queue . push (input . f i r s tAc t i v eCoo rd ())

10 whi le (queue not empty)
11 coord = queue . pop ()
12 i f (segment [coord] i s a c t i v e) cont inue ;
13 i f (input [coord] i s voxe l)
14 segment [coord] = input [coord] // copy from input
15 f o r (i n t n = 0 ; n < 26 ; n++) // check a l l 26 ne ighbours
16 i f (neighbour [n] i s a c t i v e in input)
17 // neighbour [n] i s i n s i d e
18 input . d ea c t i va t e (neighbour [n])
19 // i f neighbour [n] i s a t i l e , d ea c t i va t e the whole t i l e
20 i f (neighbour [n] i s not a c t i v e in segment)
21 queue . push (neighbour [n])
22 e l s e i f (neighbour [n] i s not a c t i v e in segment)
23 // neighbour [n] i s ou t s id e
24 segment [neighbour [n]] = input [neighbour [n]]
25 segment . a c t i v a t e (neighbour [n])
26 e l s e // input [coord] i s a t i l e
27 bndBox = input . getTileBoundingBox (coord)
28 n_ijks [0] = bndBox . min () + (−1 , 0 , 0)
29 n_ijks [1] = bndBox . min () + (0 ,−1 , 0)
30 n_ijks [2] = bndBox . min () + (0 , 0 ,−1)
31 n_ijks [3] = bndBox . max() + (1 , 0 , 0)
32 n_ijks [4] = bndBox . max() + (0 , 1 , 0)
33 n_ijks [5] = bndBox . max() + (0 , 0 , 1)
34 f o r (i n t n = 0 ; n < 6 ; n++) // check 6 ne ighbours at co rne r s
35 // proce s s neighbour as above . . .
36 segment . s i g n e d F l o o d F i l l () // f i l l in s i g n s f o r i n t e r i o r r e g i o n s
37 // a c t i v a t e voxe l s s l i g h t l y ou t s id e o f a c t i v e r eg i on
38 segment . d i l a t e V o x e l s (1+round (s / r_f))
39 f o r each (a c t i v e voxe l in segment)
40 i f (voxe l . va lue i s unset) // ac t i va t ed by d i l a t e V o x e l s
41 i f (input [voxe l . coord ()] > s) // value−s remains p o s i t i v e
42 voxe l . va lue = input [voxe l . coord ()] // copy from input
43 voxe l . va lue −= s
44 foundSegments . push (segment)
45 re turn foundSegments

Listing 1: Segmenting an OpenVDB level-set input grid into separate output grids,
optionally using tile-based breath-first search and an over-segmentation threshold s of

up to 1 voxel size.

110

1 writeVisualMesh (s t r i n g f i l e , bool addDisp , bool addCOD, bool doClose)
2 f r a c turedObjec t = ob j e c t . copy ()
3 f o r each (g r id in f r a c t u r e s)
4 f r a c turedObjec t = c s g I n t e r s e c t i o n (f racturedObject , g r id)
5

6 segments = findSegments (f racturedObject , s , t rue)
7 f o r each (segment in segments)
8 mesh = VolumeToMesh(segment)
9

10 i f (doClose) // remove " gaps " due to SDF r e p r e s e n t a t i o n o f f r a c t u r e s
11 f o r each (p in mesh . v e r t i c e s)
12 q = f indCloses tPo intOnFracture ()
13 // we use OpenVDB ’ s C lo s e s tSur f a c ePo in t t o o l
14 c l o s i n g [p] = q − p
15

16 i f (addDisp){
17 f o r each (p in mesh . v e r t i c e s)
18 t r i L i s t = findNearbyBEMtriangles (p) // with in d i s t ance o f rc

19 c l o s e s t T r i a n g l e = f i n d C l o s e s t T r i a n g l e (p , t r i L i s t)
20 u_c [p] = interpo la teCont inousDi sp lacement (p , c l o s e s t T r i a n g l e)
21 i f (addCOD)
22 cod [p] = 0
23 f o r each (f r a c t u r e in l i s t F r a c t u r e s (t r i L i s t))
24 // l i s t F r a c t u r e s e x t r a c t s a s e t o f unique IDs
25 // o f f r a c t u r e s u r f a c e s occur ing in t r i L i s t
26 c l o s e s t T r i a n g l e = f i n d C l o s e s t T r i a n g l e (
27 p , matchingTris (t r i L i s t , f r a c t u r e)
28)
29 cod [p] += interpolateCOD (p , f r a c tu r e , c l o s e s t F r a c t u r e T r i)
30 // interpolateCOD chooses the s i gn based on
31 // the high−r e s o l u t i o n f r a c t u r e s u r f a c e normal and
32 // data from neighbour ing output mesh v e r t i c e s
33 p += cod [p] // add crack−opening disp lacement (d i s cont inuous)
34 p += u_c [p] // add cont inuous disp lacement
35

36 i f (doClose)
37 p += c l o s i n g [p] // add gap−c l o s i n g disp lacement
38

39 writeMeshFi le (f i l e . append (segment . ID) , mesh)

Listing 2: Building output meshes for all segments, optionally adding continuous dis-
placements, crack-opening displacements, and removing gaps introduced by the signed

distance function representation of fractures.

	Introduction
	Related work
	Terminology
	Problem statement

	Background
	Notation and vector calculus
	Continuum mechanics
	Finite and boundary element methods
	Weak form and FEM
	Boundary integral equations and BEM

	Linear elastic fracture mechanics
	Fracture simulation

	Design choices and overview
	High-resolution fracture simulation
	Algorithm overview
	Elastostatics with fractures
	Surface stress evaluation
	Crack initiation
	Crack propagation
	Mixed mode crack front motion
	High-resolution crack propagation
	Inhomogeneous materials

	Linear-runtime approximations
	Stress intensity factors
	Crack opening displacements
	Scaling and speed up

	Geometry and topology handling
	Level-set surfaces and mesh conversion
	Implicit fracture surfaces
	Finding fragments
	Visualizing results

	Coupling to rigid body dynamics
	Regularizing the Neumann problem
	Balanced tractions from collision impulses
	Generating rigid bodies for fragments

	Results
	Basic test cases
	Further examples

	Conclusion
	References
	Appendix
	List of fracture simulation parameters
	Pseudo-code listings

