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Abstract
Weconsider the following dynamic load-balancing process: given an underlying graph
G with n nodes, in each step t ≥ 0, a random edge is chosen, one unit of load is
created, and placed at one of the endpoints. In the same step, assuming that loads
are arbitrarily divisible, the two nodes balance their loads by averaging them. We are
interested in the expected gap between the minimum and maximum loads at nodes
as the process progresses, and its dependence on n and on the graph structure. Peres
et al. (Random Struct Algorithms 47(4):760–775, 2015) studied the variant of this
process, where the unit of load is placed in the least loaded endpoint of the chosen
edge, and the averaging is not performed. In the case of dynamic load balancing on
the cycle of length n the only known upper bound on the expected gap is of order
O(n log n), following from the majorization argument due to the same work. In this
paper, we leverage the power of averaging and provide an improved upper bound of
O(

√
n log n). We introduce a new potential analysis technique, which enables us to

bound the difference in load between k-hop neighbors on the cycle, for any k ≤ n/2.
We complement this with a “gap covering” argument, which bounds the maximum
value of the gap by bounding its value across all possible subsets of a certain structure,
and recursively bounding the gaps within each subset. We also show that our analysis
can be extended to the specific instance of Harary graphs. On the other hand, we prove
that the expected second moment of the gap is lower bounded by �(n). Additionally,
we provide experimental evidence that our upper bound on the gap is tight up to a
logarithmic factor.
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1 Introduction

This paper considers balls-into-bins processes where a sequence of m weights are
placed into n bins via some randomized procedure, with the goal of minimizing the
load imbalance between the most loaded and the least loaded bin. This family of
randomized processes has been used to model several practical allocation problems,
such as load-balancing [3,14,20], hashing [9], or even relaxed data structures [1,2].

The classic formulation of this problem is known as d-choice process, in each step,
a newweight is generated, and is placed in the least loaded of d randomly chosen bins.
If d = 1, then we have the uniform random choice scheme, whose properties are well
understood, e.g. [18]. In particular, if we placem = n unit weights into the bins, then it
is known that themost loaded binwill have expected�(log n/ log log n) load, whereas
ifm = �(n log n)we have that the expectedmaximum load ism/n+�(

√
m log n/n).

Seminal work by Azar et al. [3] showed that, if we place n unit weights into n bins
by the d-choice process with d ≥ 2, then, surprisingly, the maximum load is reduced
to �(log log n/ log d). A technical tour-de-force by Berenbrink, Czumaj, Steger, and
Vöcking [4] extended this result to the “heavily-loaded” case where m � n, showing
that in this case the maximum load is m/n + log log n/ log d + O(1) with failure
probability at most 1/ polyn. An elegant alternative proof for a slightly weaker version
of this result was later provided by Talwar and Wieder [23].

More recently, Peres et al. [17] considered the graphical version of this process,
where the bins are the vertices of a graph, an edge is chosen at every step, and the
weight is placed at the less loaded endpoint of the edge, breaking ties arbitrarily. (The
reader will notice that the classic 2-choice process corresponds to the case where the
graph is a clique.) The authors focus on the evolution of the gap between the highest
and lowest loaded bins, showing that, for graphs of β-edge-expansion [17], this gap
is O(log n/β), with probability 1 − 1/polyn.

Another closely related line of work considers static load-balancing processes,
where each node in a graph starts with an arbitrary initial load, and the endpoints
average their current loads at each step. Note that load balancing schemes which are
commonly used in this setting are usually more involved than simply averaging the
loads of the endpoints of the randomly chosen node, but the tools used in their analysis
are still applicable to the static version of our process. To analyze such processes, it is
common to map the process to a Markov chain and analyse its convergence [6,10,12],
or derive an upper bound on a potential function which captures the discrepancy
between the loads [5]. In both cases, the gap between the highest and lowest loaded
bins can be characterized by the spectral gap of the graph [7,11,19,21,22].

By contrast to these two lines of previouswork, in this paperwe consider a graphical
load balancing in the dynamic case, where weights arrive at each step rather than being
statically allocated initially, but we allow balancing via continuous averaging, i.e. the
resulting weights after the balancing step equal the average of the sum of the weights
of the two nodes prior to balancing. Thus, our averaging step is more powerful relative
to d-choice or static averaging, but it is applied in the more challenging dynamic
scenario.

We will focus on the gap in the dynamic case on graphs of low expansion, specifi-
cally on cycles. In [17], it is shown that, in this case (but without averaging), the gap
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is O(n log n) both in expectation and with high probability. The techniques used in
[17] imply that the averaging of the loads does not worsen the gap in expectation, our
aim is to show that it actually helps to reduce it. Also, directly applying the tools from
the static process to the dynamic one results in the upper bound which is larger than
O(n log n). Upper bounding the gap for cycle graphs is known to be a challenging
open problem [16]. As suggested in [17], to deal with the cycle case, there is a need for
a new approach, which takes the structure of the load balancing graph into account.

1.1 Contribution

In this paper, we address this question for the case where averaging is performed on a
cycle graph. LetGap(t) be a difference between highest and lowest loads of the nodes
at time step t . We provide the upper bound on the gap in the dynamic, heavily-loaded
case, via a new potential argument. More formally, for any t > 0, we show that for a
cycle graph with n vertices:

E[Gap(t)] = O(
√
n log(n)). (1)

We show that our technique can be used to upper bound the gap for the 4-
connected Harary Graph. We complement this result with a lower bound of �(n)

on E[(Gap(t))2]. Further, we provide experimental evidence that the gap is of order
�(

√
n), making our upper bound accurate up to a log n factor. Our results extend to the

case where the load generated at each node is weighted according to some distribution
whose second moment is bounded. Formally, we allow our input to come from any
distribution W , such that E[W 2] ≤ M2, for some M > 0.

1.2 Technical Overview

Our upper bound result is based on two main ideas. The first introduces a new
parametrized hop-potential function, which measures the squared difference in load
between any k-hop neighbors on the graph, where k ≥ 1 is a fixed hop parameter. Let
G = (V , E) be our input graph, where V = {1, 2, . . . , n}. Throughout the paper, for
any 1 ≤ i ≤ n we assume that the nodes i + n and i − n are the same as the node i .
Let xi (t) be the load of node i at step t . Then, we define the k-hop potential as:

φk(t) =
n∑

i=1

(xi (t) − xi+k(t))
2.

The first technical step in the proof is to understand the expected (“steady-state”)
value of the k-hop potential. We show that, in expectation, the k-hop potential has
a recursive structure. While the expected values of k-hop potentials cannot be com-
puted precisely, we can isolate upper and lower bounds on their values for cycles. In
particular, for the k-hop potential on an n-cycle, we prove the following bound:

E[φk(t)] ≤ k(n − k) − 1, ∀k ≥ 1. (2)
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In the second technical step, we shift gears, aiming to bound themaximum possible
value of the gap between any two nodes, leveraging the fact that we understand the
hop potential for any k ≥ 1. We achieve this via a “gap covering” technique, which
characterizes the maximum value of the gap across all possible subsets of a certain
type.

More precisely, in the case of a cycle of length n = 2m , for each node i and hop
count k, we define the set family Ai

k to be formed of nodes {i, i + 2m−k, i + 2 ×
2m−k, i + 3 × 2m−k, . . . } (since we are on a cycle, i = i + 2m−k2k). Then for any
1 ≤ k ≤ m, we will have

n∑

i=1

GapAi
k
(t) ≤

n∑

i=1

GapAi
k−1

(t) + n√
2m−k

√
φ2m−k (t), (3)

where GapX (t) is the maximal gap inside the set X at time t . Intuitively, this result
allows us recursively characterize the gap value at various “resolutions” across the
graph.

Finally, we notice that we can “cover” the gap between any two nodes by carefully
unwinding the recursion in the above inequality, considering all possible subsets of a
well-chosen structure, and recursively bounding the gaps within each subset (this step
is particularly delicate in the case where n is not a power of two, please see Sect. 5).
We obtain that

E[Gap(t)] = O(
√
n log(n)), (4)

as claimed. The logarithmic slack is caused by the second term on the right-hand-
side of (2). We note that this technique extends to the case where inserted items are
weighted, where the weights are coming from some distribution of bounded second
moment.

1.3 Lower Bound

It is interesting to ask whether this upper bound is tight. To examine this question,
we revisit the recursive structure of the k-hop potential, which we used to obtain the
upper bound in Eq. (3). We can leverage this structure to obtain a lower bound on
the expected k-hop potential as well. Starting from this lower bound, we can turn the
upper bound argument “inside out,” to obtain a linear lower bound on the expected
squared gap:

E[Gap(t)2] = �(n). (5)

We conjecture that both upper and lower bounds on the expected gap are of order
O(

√
n) (given that E[W 2] is constant), and examine this claim empirically in Sect. 6.
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1.4 Extensions and Discussion

We believe that the analysis template we described above is general, and can be
extended to other graph families, such as regular expanders. Here, we focus on obtain-
ing tight bounds on the gap for cycles, which is technically non-trivial, and leave
the extensions for other graph families as future work. To substantiate our generality
claim, we exhibit an application of our analysis technique to the specific instance of
Harary graphs [13] in Sect. 7. More precisely, we provide the upper bound on a gap
for a graph on n vertices, where each vertex i is connected with edges to vertices
i − 2, i − 1, i + 1 and i + 2.

We discuss the relation between our results and bounds for the graphical power-of-
two process on a cycle [17] in Sect. 8.

1.5 RelatedWork

As we have already discussed broad background, we will now mainly focus on the
technical differences from previous work. As stated, we are the first to specifically
consider the dynamic case for continuous averaging on cycles. The static case has been
studied both with continuous averaging [5–7,10–12,19,22] and discrete averaging
[21]. However, their techniques would not apply (or would result in a worse bound)
in our case, since we consider that weights would be introduced dynamically, during
the processes’ execution.

To our knowledge, the only non-trivial upper bound on the gap of the process we
consider which would follow from previous work is of O(n log n), by the potential
analysis of [17]: they consider 2-choice load balancing, and one can re-do their poten-
tial analysis for (continuous) averaging load balancing, yielding the same bounds.
(Specifically, one can use the same definition of the potential �(t) as in this reference,
and will obtain the same upper bounds, since the pairwise load balancing we con-
sider has slightly stronger guarantees.) However, as our bounds show, the resulting
analysis is quite loose in the case of cycle graphs, yielding an �(

√
n) gap between

the bounds yielded by these techniques. Technically, this is a consequence of the
majorization technique used in [17], which links dynamic averaging on the cycle with
a very weak form of averaging on the clique. Reference [8] studies the performance
differences between various load-balancing techniques; specifically, it shows that con-
tinuous averaging cannot improve the bound on the gap relative to d-choice on the
clique. Unfortunately, this result does not seem to extend to arbitrary graphs.

Our potential analysis is substantially different from that of [17], as they track a sum
of exponential potentials across the entire graph. By contrast, our analysis tracks the
squared load differences between k-hop neighbors, establishing recurrences between
these potentials. We note that this is also different from the usual square potentials
used for analyzing averaging load balancing, e.g. [15], which usually compare against
the global mean, as opposed to pairwise potential differences. Our approach is also
different from the classic analyses of e.g. [3], which perform probabilistic induction
on the number of bins at a given load, assuming a clique.
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Generally, our technique can be seen as performing the induction needed to bound
the gap not on the bin loads, as is common in previous work, e.g. [3], but over the
topology of the graph. This approach is natural, sincewewish to obtain tight, topology-
specific bounds, but we believe we are the first to propose and analyze it successfully.

2 Averaging on the Cycle: Upper Bounding the Gap

2.1 Preliminaries

We consider a cycle graph G = (V , E) where V = {1, 2, . . . , n}, such that each
node i is connected to its left and right neighbors, i − 1 and i + 1 (recall that for any
1 ≤ i ≤ n the nodes i + n and i − n are the same as the node i).

We consider a stochastic process following real time t ≥ 0, in which, at each step
t +1, a ball of weightw(t) ≥ 0 is generated from a same distributionW . We associate
a real-valued load xi (t) with each node i (xi (t) is the value after t steps). Initially,
we have that xi (0) = 0 for every node i . At step t + 1, an edge (i, i + 1) is chosen
uniformly at random, and the two endpoint nodes update their weights as follows:

xi (t + 1) = xi+1(t + 1) = xi (t) + xi+1(t) + w(t)

2
.

We will assume that the second moment of the distribution W is bounded. That
is: E[W 2] ≤ M2, for some M > 0. For simplicity, we will assume that weights are
normalized by M . This gives us that E[W 2] ≤ 1.

Let X(t) = (x1(t), x2(t), . . . , xn(t)) be the vector of the bin weights after step t .
First, we define the following potential functions:

∀k ∈ {1, 2, . . . , n − 1} : φk(t) :=
n∑

i=1

(xi (t) − xi+k(t))
2.

Notice that for every 1 ≤ i ≤ n, we have that φi (t) = φn−i (t). We want to analyze
what is the value of these functions in expectation after an additional ball is thrown,
for a given load vector X(t).

We start with φ1(t + 1):

E[φ1(t + 1)|X(t), w(t)] =
n∑

i=1

1

n

(( xi (t) + xi+1(t) + w(t)

2
− xi+2(t)

)2

+
( xi (t) + xi+1(t) + w(t)

2
− xi−1(t)

)2

+
∑

j �=i−1,i,i+1

(x j (t) − x j+1(t))
2
)

. (6)
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Notice that:

n∑

i=1

∑

j �=i−1,i,i+1

(x j (t) − x j+1(t))
2 = (n − 3)φ1(t). (7)

Hence we need to bound the remaining terms:

n∑

i=1

(( xi (t) + xi+1(t) + w(t)

2
− xi+2(t)

)2 +
( xi (t) + xi+1(t) + w(t)

2
− xi−1(t)

)2)

=
n∑

i=1

(
2xi (t)2 + 2xi+1(t)2 + 2w(t)2 + 4xi (t)xi+1(t)

4

+ xi+2(t)
2 + xi−1(t)

2 − (xi (t) + xi+1(t))(xi−1(t) + xi+2(t))

)
.

where we used the fact that terms, which are linear in w(t), cancel out.
The right side of the above equation can be rewritten as:

n∑

i=1

xi (t)2

2
+

n∑

i=1

xi+1(t)2

2
+

n∑

i=1

xi+2(t)
2 +

n∑

i=1

xi−1(t)
2

+
n∑

i=1

xi (t)xi+1(t) −
n∑

i=1

xi (t)xi−1(t) −
n∑

i=1

xi+1(t)xi+2(t)

−
n∑

i=1

xi (t)xi+2(t) −
n∑

i=1

xi+1(t)xi−1(t) + nw(t)2

2

= 3
n∑

i=1

xi (t)
2 −

n∑

i=1

xi (t)xi+1(t) − 2
n∑

i=1

xi (t)xi+2(t) + nw(t)2

2

=
n∑

i=1

(
xi (t) − xi+1(t)

)2

2
+

n∑

i=1

(
xi (t) − xi+2(t)

)2 + nw(t)2

2

= φ1(t)

2
+ φ2(t) + nw(t)2

2
.

By using the above equation and Eq. (7) in Eq. (6) we get that

E[φ1(t + 1)|X(t), w(t)] = n − 2

n
φ1(t) + 1

2

(
w(t)2 − φ1(t)

n

)
+ φ2(t)

n
.

Now, we proceed with calculating the expected value of φk(t + 1),
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for 2 ≤ k ≤ 	n/2
:

E[φk(t + 1)|X(t), w(t)] =
n∑

i=1

1

n

(( xi (t) + xi+1(t) + w(t)

2
− xi−k(t)

)2

+
( xi (t) + xi+1(t) + w(t)

2
− xi+1−k(t)

)2

+
( xi (t) + xi+1(t) + w(t)

2
− xi+k(t)

)2

+
( xi (t) + xi+1(t) + w(t)

2
− xi+1+k(t)

)2

+
∑

j �=i−k,i+1,i,i+1

(x j (t) − x j+k(t))
2
)

.

Notice that:

1

n

n∑

i=1

∑

j �=i−k,i+1−k,i+k,i+1+k

(x j (t) − x j+k(t))
2 = n − 4

n
φk(t).

In the similar way as for φ1(t) the remaining terms can be rewritten as:

n∑

i=1

1

n

(
xi (t)

2 + xi+1(t)
2 + w(t)2 + 2xi (t)xi+1(t) + 4x2i (t)

−
(
xi (t) + xi+1(t)

)(
xi+k(t) + xi+k+1(t) + xi−k(t) + xi−k+1(t)

))

= 1

n

(
nw(t)2 + 6

n∑

i=1

xi (t)
2 + 2

n∑

i=1

xi (t)xi+1(t) − 4
n∑

i=1

xi (t)xi+k(t)

− 2
n∑

i=1

xi (t)xi+k+1(t) − 2
n∑

i=1

xi (t)xi+k−1(t)

)

= 2

n
φk(t) + (w(t)2 − φ1(t)

n
) + φk+1(t)

n
+ φk−1(t)

n
.

Hence, we get that:

E[φk(t + 1)|X(t), w(t)] = n − 2

n
φk(t) + (w(t)2 − φ1(t)

n
) + φk+1(t)

n
+ φk−1(t)

n
.

If we remove conditioning on w(t) (note that E[w(t)2] = E[W 2]) and express
these equations for
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φ1(t + 1), φ2(t + 1), . . . , φn−1(t + 1) (recall that φk(t) = φn−k(t)), we get:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[φ1(t + 1)|X(t)] = ( n−2
n )φ1(t) + 1

2 (E[W 2] − φ1(t)
n ) + φ2(t)

n .

E[φ2(t + 1)|X(t)] = ( n−2
n )φ2(t) + (E[W 2] − φ1(t)

n ) + φ1(t)
n + φ3(t)

n .

. . .

E[φ	 n
2 
(t + 1)|X(t)] = ( n−2

n )φ	 n
2 
(t) + (E[W 2] − φ1(t)

n )

+φ	 n2 
−1(t)

n + φ	 n2 
+1(t)

n .

. . .

E[φn−2(t + 1)|X(t)] = ( n−2
n )φn−2(t)

+(E[W 2] − φ1(t)
n ) + φn−3(t)

n + φn−1(t)
n .

E[φn−1(t + 1)|X(t)] = ( n−2
n )φn−1(t) + 1

2 (E[W 2] − φ1(t)
n ) + φn−2(t)

n .

(8)

Using the above equations we can prove the following:

Lemma 1 For every t ≥ 0 and 1 ≤ k ≤ n − 1, we have that

E[φk(t)] ≤ (k(n − k) − 1)E[W 2] ≤ k(n − k) − 1. (9)

Proof Let�(t) = (φ1(t), φ2(t), . . . , φn−1(t)) be the vector of values of our potentials
at time step t and let Y = (y1, y2, . . . , yn−1), be the vector containing our desired
upper bounds for each potential. That is: for each 1 ≤ i ≤ n − 1, we have that
yi = (i(n − i) − 1)E[W 2].

An interesting and easily checkable thing about the vector Y is that

E[�(t + 1)|�(t) = Y ] = Y . (10)

Next, consider the vector Z(t) = (z1(t), z2(t), . . . zn−1(t)) = Y − �(t). Our goal
is to show that for every step t and coordinate i , E[zi (t)] ≥ 0.

We have that

E[z1(t + 1)|X(t)] = y1 − E[φ1(t + 1)|X(t)]
= (

n − 2

n
)y1 + 1

2
(E[W 2] − y1

n
) + y2

n

−
(

(
n − 2

n
)φ1(t) + 1

2
(E[W 2] − φ1(t)

n
) + φ2(t)

n

)

= (
n − 2

n
)z1(t) − z1(t)

2n
+ z2(t)

n
.

and for 2 ≤ i ≤ 	 n
2 
, we have that

E[zi (t + 1)|X(t)] = (
n − 2

n
)zi (t) − z1(t)

n
+ zi+1(t)

n
+ zi−1(t)

n
.
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Hence we get the following equations (recall that zi (t) = zn−i (t)):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n × E[z1(t + 1)|X(t)] = (n − 2 − 1
2 )z1(t) + z2(t).

n × E[z2(t + 1)|X(t)] = −z1(t) + z1(t) + (n − 2)z2(t) + z3(t).

n × E[z3(t + 1)|X(t)] = −z1(t) + z2(t) + (n − 2)z3(t) + z4(t).

. . .

n × E[z	 n
2 
(t + 1)|X(t)] = −z1(t) + z	 n

2 
−1(t) + (n − 2)z	 n
2 
(t) + z	 n

2 
+1(t).

(11)

Next, using induction on t , we show that for every t ≥ 0

0 ≤ E[z1(t)] ≤ E[z2(t)] ≤ · · · ≤ E[z	 n
2 
(t)]. (12)

The base case holds trivially since Z(0) = Y . For the induction step, assume that
0 ≤ E[z1(t)] ≤ E[z2(t)] ≤ · · · ≤ E[z	 n

2 
(t)]. First, we have that

nE[z1(t + 1)] = nEX(t)[E[z1(t + 1)|X(t)]] = (n − 2 − 1

2
)E[z1(t)] + E[z2(t)] ≥ 0.

Additionally, we have that:

nE[z1(t + 1)] = (n − 2 − 1

2
)E[z1(t)] + E[z2(t)] ≤ (n − 2)E[z1(t)] + E[z2(t)]

≤ (n − 2)E[z2(t)] + E[z3(t)] = nE[z2(t + 1)].

For 2 ≤ i ≤ 	 n
2 
 − 2, we have that

nE[zi (t + 1)] = −E[z1(t)] + E[zi−1(t)] + (n − 2)E[zi (t)] + E[zi+1(t)]
≤ −E[z1(t)] + E[zi (t)] + (n − 2)E[zi+1(t)] + E[zi+2(t)]
= nE[zi+1(t + 1)].

Next, observe that by our assumption:
E[z	 n

2 
+1(t)] = E[z� n
2 �−1(t)] ≥ E[z	 n

2 
−2(t)]. Finally, by using this observation we
get that

nE[z	 n
2 
−1(t + 1)] = −E[z1(t)] + E[z	 n

2 
−2(t)] + (n − 2)E[z	 n
2 
−1(t)] + E[z	 n

2 
(t)]
≤ −E[z1(t)] + E[z	 n

2 
+1(t)] + E[z	 n
2 
−1(t)] + (n − 3)E[z	 n

2 
−1(t)] + E[z	 n
2 
(t)]

≤ −E[z1(t)] + E[z	 n
2 
+1(t)] + E[z	 n

2 
−1(t)] + (n − 2)E[z	 n
2 
(t)]

= nE[z	 n
2 
(t + 1)].

This completes the proof of the lemma. 
�
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3 Upper Bound on the Gap for n = 2m

In this section we upper bound a gap in expectation for the case when n = 2m . is quite
technical but not necessarily more interesting, and is provided in the Sect. 5.

We begin with some definitions. For a set A ⊆ {1, 2, . . . , n}, let

GapA(t) = max
i∈A

xi (t) − min
i∈A

xi (t).

Also, let Ai
k be {i, i + 2m−k, i + 2 × 2m−k, i + 3 × 2m−k, . . . } (Notice that i =

i+2m−k2k). Our proofworks as follows: for each 1 ≤ i ≤ n and 1 ≤ k ≤ m, we look at

the vertices given by the sets Ai
k−1 and Ai+2m−k

k−1 and try to characterise the gap after we

merge those sets (note that this will give us the gap for the set Ai
k = Ai

k−1 ∪ Ai+2m−k

k−1 ).
Using this result, we are able to show that

∑n
i=1 GapAi

k
(t) is upper bounded by

∑n
i=1 GapAi

k−1
(t) plus n times maximum load difference between vertices at hop

distance 2m−k . Next, we use 2m−k hop distance potential φ2m−k (t) to upper bound
maximum load difference between the vertices at hop distance 2m−k . By summing up
the derived inequality for k = 1 to m, we are able to upper bound

∑n
i=1 GapAi

m
(t) in

terms of
∑n

i=1 GapAi
0
(t) and

∑m
k=1 φ2m−k (t). Notice that by our definitions, for each i ,

GapAi
0
(t) = 0 (Ai

0 contains only vertex i) and GapAi
m
(t) = Gap(t) (Ai

m contains all
vertices). Hence, what is left is to use the upper bounds for the hop distance potentials,
which we derived in the previous section.

We start by proving the following useful lemma.

Lemma 2 For any 1 ≤ i ≤ n and 1 ≤ k ≤ m, we have that

2GapAi
k
(t) ≤ 2 max

j∈Ai
k

|x j (t) − x j+2m−k (t)| + Gap
Ai+2m−k
k−1

(t) + GapAi
k−1

(t).

(13)

Proof Fix vertex i . Recall that Ai
k = Ai

k−1 ∪ Ai+2m−k

k−1 .
Let u = argmax j∈Ai

k
x j (t) and let v = argmin j∈Ai

k
x j (t). We consider several cases

on the membership of nodes u and v, and bound the gap in each one:
Case 1 u ∈ Ai

k−1 and v ∈ Ai
k−1. Then GapAi

k
(t) = GapAi

k−1
(t) and we have that

GapAi
k
(t) = |xu(t) − xv(t)|

≤ |xu+2m−k (t) − xu(t)| + |xv+2m−k (t) − xv(t)|
+ |xu+2m−k (t) − xv+2m−k (t)|

≤ |xu+2m−k (t) − xu(t)| + |xv+2m−k (t) − xv(t)|
+ Gap

Ai+2m−k
k−1

(t)

≤ 2 max
j∈Ai

k

|x j (t) − x j+2m−k (t)| + Gap
Ai+2m−k
k−1

(t),
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where we used the fact that both u + 2m−k and v + 2m−k belong to Ai+2m−k

k−1 . This
gives us that

2GapAi
k
(t) ≤ 2 max

j∈Ai
k

|x j (t) − x j+2m−k (t)| + Gap
Ai+2m−k
k−1

(t) + GapAi
k−1

(t). (14)

Case 2 u ∈ Ai
k−1 and v ∈ Ai+2m−k

k−1 . Then we have that:

GapAi
k
(t) = |xu(t) − xv(t)| ≤ |xu(t) − xv+2m−k (t)| + |xv+2m−k (t) − xv(t)|

≤ GapAi
k−1

(t) + max
j∈Ai

k

(|x j (t) − x j+2m−k (t)|)

and

GapAi
k
(t) = |xu(t) − xv(t)| ≤ |xu(t) − xu+2m−k (t)| + |xu+2m−k (t) − xv(t)|

≤ Gap
Ai+2m−k
k−1

(t) + max
j∈Ai

k

(|x j (t) − x j+2m−k (t)|),

where we used v + 2m−k ∈ Ai
k−1 and u + 2m−k ∈ Ai+2m−k

k−1 . Hence, we again get that

2GapAi
k
(t) ≤ 2 max

j∈Ai
k

|x j (t) − x j+2m−k (t)| + Gap
Ai+2m−k
k−1

(t) + GapAi
k−1

(t). (15)

Case 3 u ∈ Ai+2m−k

k−1 and v ∈ Ai+2m−k

k−1 , is similar to Case 1.

Case 4 v ∈ Ai
k−1 and u ∈ Ai+2m−k

k−1 , is similar to Case 2.

�

Next, we upper bound the quantity
∑n

i=1 max j∈Ai
k
|x j (t) − x j+2m−k (t)|.

Lemma 3 For any 1 ≤ k ≤ m:

n∑

i=1

max
j∈Ai

k

|x j (t) − x j+2m−k (t)| ≤ n√
2m−k

√
φ2m−k (t). (16)

Proof Notice that for any i and i ′ ∈ Ai
k , we have that A

i
k = Ai ′

k ,
hence max j∈Ai

k
|x j (t) − x j+2m−k (t)| = max j∈Ai ′

k
|x j (t) − x j+2m−k (t)| and this means

that

n∑

i=1

max
j∈Ai

k

|x j (t) − x j+2m−k (t)| = n

2m−k

2m−k∑

i=1

max
j∈Ai

k

|x j (t) − x j+2m−k (t)|

Cauchy−Schwarz≤ n

2m−k

√
2m−k

√√√√
2m−k∑

i=1

max
j∈Ai

k

|x j (t) − x j+2m−k (t)|2

123



Algorithmica

≤ n

2m−k

√
2m−k

√√√√
n∑

j=1

|x j (t) − x j+2m−k (t)|2

= n√
2m−k

√
φ2m−k (t),

where in the last inequality we used a fact that sets A1
k, A

2
k, . . . , A

2m−k

k are disjoint. 
�
Finally, using the above lemmas we can upper bound the expected gap at step t :

Theorem 1 For every t ≥ 0, we have that

E[Gap(t)] = O(
√
n log(n)).

Proof From Lemma 2 we have that

n∑

i=1

2GapAi
k (t)

≤
n∑

i=1

GapAi
k−1

(t) +
n∑

i=1

Gap
Ai+2m−k
k−1

(t)

+
n∑

i=1

2 max
j∈Ai

k

|x j (t) − x j+2m−k (t)|

= 2
n∑

i=1

GapAi
k−1

(t) + 2
n∑

i=1

max
j∈Ai

k

|x j (t) − x j+2m−k (t)|.

After dividing the above inequality by 2 and applying Lemma 3 we get that:

n∑

i=1

GapAi
k
(t) ≤

n∑

i=1

GapAi
k−1

(t) + n√
2m−k

√
φ2m−k (t).

Next, we sum up the above inequality for k = 1 to m:

m∑

k=1

n∑

i=1

GapAi
k
(t) ≤

m∑

k=1

n∑

i=1

GapAi
k−1

(t) +
m∑

k=1

n√
2m−k

√
φ2m−k (t).

Recall that
∑n

i=1 GapAi
m
(t) = nGap(t) and

∑n
i=1 GapAi

0
(t) = 0. Hence, we get that

nGap(t) ≤
m∑

k=1

n√
2m−k

√
φ2m−k (t).

Next, we apply Jensen’s inequality and Lemma 1:

nE[Gap(t)] ≤
m∑

k=1

n√
2m−k

E

√
φ2m−k (t)
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≤
m∑

k=1

n√
2m−k

√
E[φ2m−k (t)]

≤
m∑

k=1

n√
2m−k

√
2m−k(n − 2m−k)

≤ mn
√
n = n(log n)

√
n.

This gives us the proof of the theorem. 
�

4 Gap Lower Bound

Next we prove the following theorem, which lower bounds the second moment of the
gap in expectation.

Theorem 2 The following limit holds:

lim
t→∞E[Gap(t)2] = �(nE[W 2])).

Proof In this case we want to prove that not only does vector Z(t) have positive
coordinates in expectation, but also E[z	 n

2 
] converges to 0. This will give us that φ	 n
2 


approaches its upper bound (	 n
2 
� n

2 � − 1)E[W 2] in expectation. Then, we can show
that there exist two nodes (at distance 	 n

2 
) such that the expected square of difference
between their loads is �(nE[w2]).

Recall from Eq. (11) that

nE[z	 n
2 
(t+1)] = −E[z1(t)] + E[z	 n

2 
+1(t)] + E[z	 n
2 
−1(t)] + (n − 2)E[z	 n

2 
(t)].

We also know that Inequalities (12) hold for every t , hence we get that

E[z	 n
2 
(t+1)] ≤ E[z	 n

2 
(t)] − E[z1(t)]
n

.

The above inequality in combination with Inequalities (12) means that

E[z	 n
2 
(t + 	n

2

 + 1)] ≤ E[z	 n

2 
(t + 1)] −
t+	 n

2 
∑

i=t

E[z1(i)]
n

≤ E[z	 n
2 
(t + 1)] − E[z1(t + 	 n

2 
)]
n

(17)

Again by using Eq. (11) and Inequalities (12), we can show that for every 1 ≤ i ≤
	 n
2 
 − 1:

E[zi (t + 1)] ≥ E[zi+1(t)]
n

.
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This gives us that:

E[z1(t + 	n
2

)] ≥

(1
n

)
E[z2(t + 	n

2

 − 1)] ≥

(1
n

)2
E[z3(t + 	n

2

 − 2)]

≥ · · ·
≥

(1
n

)	 n
2 
−1

E[z	 n
2 
(t + 	n

2

 − (	n

2

 − 1))]

=
(1
n

)	 n
2 
−1

E[z	 n
2 
(t + 1)].

By plugging the above inequality in Inequality (17). we get that

E[z	 n
2 
(t + 	n

2

 + 1)] ≤ E[z	 n

2 
(t + 1)] − E[z1(t + 	 n
2 
)]

n

≤ E[z	 n
2 
(t + 1)] −

(1
n

)	 n
2 

E[z	 n

2 
(t + 1)]

=
(
1 −

(1
n

)	 n
2 
)

E[z	 n
2 
(t + 1)].

Because

(
1 −

(
1
n

)	 n
2 
)

< 1 and does not depend on t , we get that

lim
t→∞E[z	 n

2 
(t)] = 0.

This means thatlimt→∞ E[φ	 n
2 
(t)] = �(n2E[W 2]).

Let Gap	 n
2 
(t) = max1≤i≤n |xi (t) − xi+	 n

2 
(t)|. Note that:

Gap(t)2 ≥ Gap	 n
2 
(t)2 ≥ φ	 n

2 
(t)
n

.

Hence

lim
t→∞E[Gap(t)2] = �(nE[W 2]).

Unfortunately we are not able to obtain the lower bound on the gap, since our
approach uses the fact that the upper bounds on k-hop potentials are ’tight’. Since our
potentials are quadratic, we are not able to derive any kind of lower bound for the gap
itself. Intuitively, this will be an issue with any argument which uses convex potential.


�

5 Upper Bound on the Gap, General Case

To prove Theorem 1 for the general case, we need to redefine our sets Ai
k . In order to

do this, for each k we define 2k dimensional vector�k = (δ1k , δ
2
k , . . . , δ

2k
k ). For k = 0,
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we have that �k = (n). For 	log n
 ≥ k > 0 we set �k = (αk, δ
1
k−1 − αk, αk, δ

2
k−1 −

αk, . . . , αk, δ
2k−1

k−1 − αk). where

αk =
{	 n

2k−1 
/2, if	 n
2k−1 
 is even.⌊

� n
2k−1 �/2

⌋
, otherwise.

First we prove the following Lemma:

Lemma 4 For any 	log n
 ≥ k ≥ 0, we have that

1.
∑2k

i=1 δik = n.
2. For any 1 ≤ i ≤ 2k , δik ∈ {� n

2k
� 	 n

2k

} (notice that this means αk = 	 n

2k

 or

αk = � n
2k

�).
Proof We prove the lemma using induction on k. Base case k = 0 holds trivially. For
the induction step, assume that Properties 1 and 2 hold for k − 1, we aim to prove

that they hold for k as well. We have that
∑2k

i=1 δik = ∑2k−1

i=1 (αk + δik−1 − αk) =
∑2k−1

i=1 δik−1 = n. To prove Property 2 we consider several cases:

Case 1 n
2k−1 = 2q, for some integer q.

We have that αk = q, and hence for any 1 ≤ i ≤ 2k−1, δik−1 − αk = q. Since
	 n
2k


 = q, Property 2 holds.

Case 2 n
2k−1 = 2q + 1, for some integer q.

We have that αk = q, and hence for any 1 ≤ i ≤ 2k−1, δik−1 − αk = q + 1. Since
	 n
2k


 = q and � n
2k

� = q + 1, Property 2 holds.

Case 3 n
2k−1 = 2q + ε, for some integer q and 0 < ε < 1.

We have that 	 n
2k−1 
 = 2q and � n

2k−1 � = 2q + 1. Additionally, αk = q, and hence

for any 1 ≤ i ≤ 2k−1, (δik−1 − αk) ∈ {q, q + 1}. Since 	 n
2k


 = q and � n
2k

� = q + 1,
Property 2 holds.

Case 4 n
2k−1 = 2q + 1 + ε, for some integer q and 0 < ε < 1.

We have that 	 n
2k−1 
 = 2q + 1 and � n

2k−1 � = 2q + 2. Additionally, αk = q + 1,

and hence for any 1 ≤ i ≤ 2k−1, (δik−1 − αk) ∈ {q, q + 1}. Since 	 n
2k


 = q and
� n
2k

� = q + 1, Property 2 holds. 
�
Next, for 	log n
 ≥ k > 0 we set

Ai
k = {i, i + δ1k , i + δ1k + δ2k , . . . , i +

2k−1∑

j=1

δ
j
k }.

It is easy to see that for any 	log n
 ≥ k > 0 and i , we have that |Ai
k | = 2k ,

Ai
k = Ai

k−1 ∪ Ai+αk
k−1 and Ai

k−1 ∩ Ai+αk
k−1 = ∅. Also notice that for any u ∈ Ai

k−1,

u + αk ∈ Ai+αk
k−1 and for any u ∈ Ai+αk

k−1 , u − αk ∈ Ai
k−1.

Next we prove the lemma which is similar to the Lemma 2 for n = 2m case:
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Lemma 5 For any 1 ≤ i ≤ n and 	log n
 ≥ k > 0, we have that

2GapAi
k
(t) ≤ 2 max

j∈Ai
k

|x j (t) − x j+αk (t)| + Gap
A
i+αk
k−1

(t) + GapAi
k−1

(t). (18)

Proof Notice that the statement we need to prove is identical to that of Lemma 2,
with the exception that in the letter we use 2m−k instead of αk . The proofs are also
almost identical (2m−k can be simply replaced with αk). The only difference is that the

proof of Lemma 2 uses the property that for any u ∈ Ai+2m−k

k−1 , |xu(t)− xu+2m−k (t)| ≤
max j∈Ai

k
|x j (t)− x j+2m−k (t)| and u+2m−k ∈ Ai

k−1. Instead, we will use the property

that for any u ∈ Ai+αk
k−1 , |xu(t)− xu−αk (t)| ≤ max j∈Ai

k
|x j (t)− x j+αk (t)| and u−αk ∈

Ai
k−1. 
�
Next, we upper bound

∑n
i=1 max j∈Ai

k
|x j (t)− x j+αk (t)|, by proving the following

lemma, which is the analogue of Lemma 3.

Lemma 6

n∑

i=1

max
j∈Ai

k

|x j (t) − x j+αk (t)| ≤
⌈ n

	 n
2k



⌉√

	 n

2k

√φαk (t) (19)

Proof Notice that for any 1 ≤ u ≤ n and the sets Au
k , A

u+1
k , . . . , A

u+	 n
2k


−1

k are

disjoint, because for any 1 ≤ j ≤ 2k , δ j
k ≥ 	 n

2k

 (this means that for any 1 ≤ i ≤ n,

distances between consecutive vertices in Ai
k are at least 	 n

2k

). Using this fact and

Cauchy–Schwarz inequality we get that

u+	 n
2k


−1∑

i=u

max
j∈Ai

k

|x j (t) − x j+αk (t)|

≤
√

	 n

2k



√√√√√
u+	 n

2k

−1∑

i=u

max
j∈Ai

k

|x j (t) − x j+αk (t)|2

≤
√

	 n

2k


√√√√

n∑

j=1

|x j (t) − x j+αk (t)|2 =
√

	 n

2k

√φαk (t)

Since the above inequality holds for any u we can write that:

n∑

i=1

max
j∈Ai

k

|x j (t) − x j+αk (t)| ≤
⌈ n

	 n
2k



⌉√

	 n

2k

√φαk (t). 
�


�
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With the above three lemmas in place, we are ready to prove Theorem 1 for general
n.

From Lemma 5 we have that

n∑

i=1

2GapAi
k (t)

≤
n∑

i=1

GapAi
k−1

(t) +
n∑

i=1

Gap
A
i+αk
k−1

(t)

+
n∑

i=1

2 max
j∈Ai

k

|x j (t) − x j+αk (t)|

= 2
n∑

i=1

GapAi
k−1

(t) + 2
n∑

i=1

max
j∈Ai

k

|x j (t) − x j+αk (t)|.

After dividing the above inequality by 2 and applying Lemma 6, we get that:

n∑

i=1

GapAi
k
(t) ≤

n∑

i=1

GapAi
k−1

(t) +
⌈ n

	 n
2k



⌉√

	 n

2k

√φαk (t).

Notice that for any i , GapiA0
(t) = 0. Hence, after summing up the above inequality

for k = 1 to 	log n
 we get that

n∑

i=1

GapAi	log n

(t) ≤

	log n
∑

k=1

⌈ n

	 n
2k



⌉√

	 n

2k

√φαk (t).

Let i ′ = argmini GapAi	log n

(t). Notice that consecutive vertices in Ai ′	log n
 are 1 or

2 edges apart, hence for any 1 ≤ i ≤ n, either i ∈ Ai ′	log n
 or i + 1 ∈ Ai ′	log n
. This
gives us that

Gap(t) ≤ GapAi ′	log n

(t) + 2max

i
|xi (t) − xi+1(t)|

= GapAi ′	log n

(t) + 2

√
max
i

|xi (t) − xi+1(t)|2 ≤ GapAi ′	log n

(t) + 2

√
φ1(t).

By combining the above two inequalities we get that

nGap(t) ≤ nGapAi ′	log n

(t) + 2n

√
φ1(t) ≤

n∑

i=1

GapAi	log n

(t) + 2n

√
φ1(t)

≤
	log n
∑

k=1

⌈ n

	 n
2k



⌉√

	 n

2k

√φαk (t) + n

√
φ1(t).
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Fig. 1 The evolution of average gap divided by square root of n, where n is the number of bins

Next, we apply Jensen’s inequality and Lemma 1 (we are going to use a looser
upper bound: E[φi (t)] ≤ i(n − i) − 1 ≤ in)

nE[Gap(t)] ≤ 2nE
√[φ1(t)] +

	log n
∑

k=1

⌈ n

	 n
2k



⌉√

	 n

2k

E√

φαk (t)

≤ 2n
√
E[φ1(t)] +

	log n
∑

k=1

⌈ n

	 n
2k



⌉√

	 n

2k

√E[φαk (t)]

≤ 2n
√
n +

	log n
∑

k=1

⌈ n

	 n
2k



⌉√

	 n

2k

√αkn = O(n

√
n log n).

This completes the proof.

6 Experimental Validation

On the practical side, we implemented our load balancing algorithm with unit weight
increments on a cycle. The results confirm our hypothesis that the gap is of order
�(

√
n). In our experiment we observe the evolution of gap as we perform up to

109 increment operations. In Fig. 1 we ran our experiment 100 times and calculated
average gap over all runs. x-axis shows number of balls thrown (which is the same
as the number of increments) and y-axis is current average gap divided by

√
n. The

experiment shows that once the number of thrown balls is large enough, the gap stays
between

√
n and 1.4

√
n.
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7 Harary Graph, Upper Bound on the Gap

Recall that the Harary graph Hk,n is a k-connected graph with n vertices, which has
the smallest possible number of edges. In this section we show that our approach can
be extended to the Harary graph H4,n (unless specified we will assume H4,n to be the
Harary graph): each vertex i is connected with edges to vertices i − 1, i + 1 (called
cycle edges), i − 2 and i + 2 (called extra edges). As before, the operation consists of
picking an edge u.a.r and doing increment and averaging (for the simplicity we assume
that increments have unit weights, the result can be extended to the random weights,
in the similar fashion to the cycle case). After careful calculations which mimic the
calculations for the cycle case, but by taking extra edges of the Harary graph into the
account, we can derive the following equations for the hop potentials (hop distance is
counted over the cycle edges only):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E[φ1(t + 1)] = n−2
n E[φ1(t)] + 3

4 + E[φ1(t)]
4n + E[φ3(t)]

2n

E[φ2(t + 1)] = n−2
n E[φ2(t)] + 3

4 − E[φ2(t)]
4n + E[φ3(t)]

2n + E[φ4(t)]
2n

. . .

E[φk(t + 1)] = n−2
n E[φk(t)] + 1 − E[φ1(t)]

2n − E[φ2(t)]
2n + E[φk−2(t)]

2n + E[φk−1(t)]
2n

+E[φk+1(t)]
2n + E[φk+2(t)]

2n

Recall that for the cycle potential φk(t + 1) depends on the potentials φk(t), φk+1(t),
φk−1(t) andφ1(t) (please see Eq. (8)). In the case of Harary graphφk(t+1) depends on
the potentials φk+2(t), φk+1(t), φk(t), φk−1(t), φk−2(t), φ1(t) and φ2(t). The reason is
that we are able to perform load balancing operation on two hop neighbours. Similarly,
if we have a graph where each vertex is connected with all vertices which are at hop
distance at most � (this is the Harary graph H2�,n), then φk(t + 1) will depend on
φk+�(t), . . . , φk+1(t), φk(t), φk−1(t), . . . , φk−�(t), and φ1(t), φ2(t), . . . , φ�(t). Next
step is to find the stationary points for the hop potentials. That is: the values which
stay the same after we apply step given by the above equations. As before (please see
Lemma 1), these values will be used as the upper bounds for the expected values of
potentials. In the case of H4,n , we get that for every t and k:

E[φk(t)] ≤ 2

5
k(n − k) + α. (20)

Here, extra term α has a closed form, which we omit and instead concentrate on the
property that it is upper bounded by 2n. Observe that since the Harary graph contains
cycle and we defined our hop potentials based on the hop counts of that cycle, we can
upper bound the gap by using:

E[Gap(t)] ≤
m∑

k=1

1√
2m−k

E

√
φ2m−k (t) ≤ O(

√
n log n). (21)
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Notice that since α ≤ 2n, for large enough k and n, the upper bound for E[φk(t)] can
be two times smaller than the upper bound for the cycle case, which was shown in
Lemma 1. Hence, we can use this to slightly improve the constant hidden by big O
notation in the upper bound. In general, we conjecture that for any pair of parameters
1 ≤ l1 < l2 ≤ n, a gap for the Harary graph H2l2,n is smaller than a gap for the Harary
graph H2l1,n . Unfortunately, we are not able to provide the exact dependence of a gap
on the Harary graph parameter.

8 Discussion and FutureWork

We have shown that in the case of dynamic averaging on a cycle the gap between
highest and lowest loaded bins is upper bounded by O(

√
n log n) in expectation.

Additionally we showed that the expected square of the gap is lower bounded by
�(n). It the future, it would be interesting to further tighten our results, matching our
experimental analysis. We conjecture that the “correct” bound on the expected gap
is �(

√
n). As already discussed, we also plan to extend our results to more general

graph families, in particular grid graphs.

8.1 Comparison of Two-Choice and Averaging Load Balancing

Finally, it is interesting to ask if it is possible to extend our gap bounds to the case
of the classic two-choice load balancing process. In particular, is it possible to show
that the gap in the case of averaging process is always smaller in expectation than
the gap in the case of two choice process? Intuitively this should be the case, since
the load balancing operation in the case of averaging can be viewed as picking up a
random edge, incrementing the load of the less loaded endpoint, and then averaging the
values. The extra averaging step should notmake the gap larger. Indeed, the exponential
potential used to analyse the gap in [17] can be used to upper bound the gap for the
averaging process, since the exponential function is convex and averaging values does
not increase it (by Jensen’s inequality).

Unfortunately, it is not clear if averaging helps to actually decrease the exponential
potential. Additionally, this argument shows that averaging does not make the gap
worse if applied to the particular technique of upper bounding the gap, and it is not
clear if the gap itself is actually smaller, if we use averaging on top of the two-choice
process. We conjecture that there exists a majorization argument which is based on
how often the process performs the averaging step. More precisely, we consider the
setting where after the increment step (using two choice), we perform averaging with
probability β. The gap should decrease in expectation as we increase β. Note that the
only result which lower bounds the gap for the two-choice process on the cycle is the
straightforward �(log n) lower bound which can be shown for the clique [17]. Where
The lower bound comes from the observation that if �(n log n) balls of weight one
are placed into n bins according to the two choice process, then the average load is
�(log n) and with constant probability there exists a bin which is empty. What would
make the existence of the majorization argument interesting is that it would allow us to
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show that the lower bound we derived on the second moment of the gap while always
performing averaging step on the cycle (β = 1) can be automatically used as the lower
bound on the gap for two choice on the cycle (β = 0). We plan to investigate this
connection in future work.
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