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Abstract

This dissertation focuses on algorithmic aspects of program verification, and presents modeling

and complexity advances on several problems related to the static analysis of programs, the

stateless model checking of concurrent programs, and the competitive analysis of real-time

scheduling algorithms. Our contributions can be broadly grouped into five categories.

Our first contribution is a set of new algorithms and data structures for the quantitative and data-

flow analysis of programs, based on the graph-theoretic notion of treewidth. It has been observed

that the control-flow graphs of typical programs have special structure, and are characterized

as graphs of small treewidth. We utilize this structural property to provide faster algorithms

for the quantitative and data-flow analysis of recursive and concurrent programs. In most cases

we make an algebraic treatment of the considered problem, where several interesting analyses,

such as the reachability, shortest path, and certain kind of data-flow analysis problems follow as

special cases. We exploit the constant-treewidth property to obtain algorithmic improvements

for on-demand versions of the problems, and provide data structures with various tradeoffs

between the resources spent in the preprocessing and querying phase. We also improve on the

algorithmic complexity of quantitative problems outside the algebraic path framework, namely

of the minimum mean-payoff, minimum ratio, and minimum initial credit for energy problems.

Our second contribution is a set of algorithms for Dyck reachability with applications to data-

dependence analysis and alias analysis. In particular, we develop an optimal algorithm for Dyck

reachability on bidirected graphs, which are ubiquitous in context-insensitive, field-sensitive

points-to analysis. Additionally, we develop an efficient algorithm for context-sensitive data-

dependence analysis via Dyck reachability, where the task is to obtain analysis summaries of

library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear

time, after which the contribution of the library in the complexity of the client analysis is (i) linear

in the number of call sites and (ii) only logarithmic in the size of the whole library, as opposed to



x

linear in the size of the whole library. Finally, we prove that Dyck reachability is Boolean Matrix

Multiplication-hard in general, and the hardness also holds for graphs of constant treewidth.

This hardness result strongly indicates that there exist no combinatorial algorithms for Dyck

reachability with truly subcubic complexity.

Our third contribution is the formalization and algorithmic treatment of the Quantitative Inter-

procedural Analysis framework. In this framework, the transitions of a recursive program are

annotated as good, bad or neutral, and receive a weight which measures the magnitude of their

respective effect. The Quantitative Interprocedural Analysis problem asks to determine whether

there exists an infinite run of the program where the long-run ratio of the bad weights over the

good weights is above a given threshold. We illustrate how several quantitative problems related

to static analysis of recursive programs can be instantiated in this framework, and present some

case studies to this direction.

Our fourth contribution is a new dynamic partial-order reduction for the stateless model checking

of concurrent programs. Traditional approaches rely on the standard Mazurkiewicz equivalence

between traces, by means of partitioning the trace space into equivalence classes, and attempting

to explore a few representatives from each class. We present a new dynamic partial-order

reduction method called the Data-centric Partial Order Reduction (DC-DPOR). Our algorithm

is based on a new equivalence between traces, called the observation equivalence. DC-DPOR

explores a coarser partitioning of the trace space than any exploration method based on the

standard Mazurkiewicz equivalence. Depending on the program, the new partitioning can be even

exponentially coarser. Additionally, DC-DPOR spends only polynomial time in each explored

class.

Our fifth contribution is the use of automata and game-theoretic verification techniques in the

competitive analysis and synthesis of real-time scheduling algorithms for firm-deadline tasks.

On the analysis side, we leverage automata on infinite words to compute the competitive ratio

of real-time schedulers subject to various environmental constraints. On the synthesis side, we

introduce a new instance of two-player mean-payoff partial-information games, and show how

the synthesis of an optimal real-time scheduler can be reduced to computing winning strategies

in this new type of games.
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1 Introduction

1.1 Introduction

The central aim of software verification is to guarantee correctness of programs, where cor-

rectness is formally specified. For example, a program for sorting names in alphabetical order

should not crash, should always produce output, and the output it produces should be indeed a

sorted version of the input. Correctness criteria might even specify the outcome when the input

is not expected, e.g. if instead of names we accidentally input a list of numbers, we would not

expect a sorted list of names as output, but some form of warning. Beyond correctness, there are

many other desirable aspects of program behavior we would like to be able to verify, such as

responsiveness, efficiency and resource consumption. In all such cases, we would like to verify

program behavior systematically, by means of another program, the “verifier”, which would take

as input the program under consideration, and would deduce whether the desirable aspects are

met.

Turing’s seminal paper [Turing, 1936] marked the dawn of computer science with a negative

result, namely the undecidability of the halting problem. In high level, there is no systematic

(algorithmic) way to decide whether a Turing machine halts on some input. Rice’s theorem [Rice,

1953] generalizes the halting problem to any non-trivial property (i.e., any property held by

some programs but not all) of the language recognized by a Turing machine. The theorem

implies that every non-trivial property concerning the behavior of programs written in a Turing-

complete language admits no automated solution (see [Hopcroft, 2007; Sipser, 1996] for a

general reference).
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Traditionally, there have been two general ways to circumvent this universal negative result.

1. Algorithms with relaxed correctness. Such algorithms can operate on Turing-complete

models of computation but have weak correctness guarantees, and typically make one-

sided or two-sided errors by sacrificing soundness or completeness (or both). For example,

given an input program and a specification, the algorithm might generate spurious warnings

that the program violates the specification.

2. Algorithms that operate on abstract models of actual programs. Such algorithms come with

strong correctness guarantees, but operate on non Turing-complete models of computation,

which approximate program behavior.

In many cases these two approaches are combined, for example in order to tackle intractability due

to complexity besides undecidability. There also exist approaches which operate on progressively

refined abstractions of the program. Typically, each abstraction is complete wrt program behavior

but unsound, i.e., some model executions do not correspond to actual program executions. Upon

a spurious warning of incorrect program behavior, the abstraction is refined so that the new

overapproximation does not include the spurious instances.

In most of the above approaches, once a model of the program and a specification have been

fixed, an efficient algorithm is needed to verify the compliance of the model to the specification.

The focus of this dissertation is on algorithmic improvements for such verification tasks, which

operate on program abstractions represented as finite or recursive graphs, and offer strong worst-

case complexity guarantees. In the rest of this introduction we first outline some fundamental

concepts in program analysis, quantitative verification, stateless model checking and real-time

scheduling. Afterwards, we present some examples that motivate the results presented in this

dissertation.

1.1.1 Program Analysis and Verification

Recursive State Machines. Recursive State Machines (RSMs) were first introduced in [Alur

et al., 2005] to serve as a model of programs consisting of several functions which invoke each

other. Although they are strongly equivalent to Pushdown Systems (PDSs) [Alur et al., 2005],

they are a more intuitive and natural model of programs, and the algorithmic complexity of
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various relevant problems depends explicitly on natural parameters, such as the number of entries,

exits and boxes. A large number of path-related problems have been a subject of extensive

study on recursive graphs (either RSMs or PDSs). Reachability has been studied in the works

of [Bouajjani et al., 1997; Schwoon, 2002; Chaudhuri, 2008; Alur et al., 2016], and extended

to more complex model checking problems, such as linear time logics [Esparza et al., 2000;

Schwoon, 2002; Alur et al., 2016]. A notable extension to reachability algorithms is, so

called, generalized reachability [Bouajjani et al., 2003a; Reps et al., 2005; Lal et al., 2005;

Reps et al., 2007; Lal and Reps, 2008; Chatterjee et al., 2017], where each transition of the

RSM is labeled with the weights of a semiring (typically a semi-lattice), and the task is to

compute the semiring distance between nodes and configurations of the system. A special type

of RSMs, namely single-entry single-exit RSMs have been used on interprocedural analysis,

usually under the name “supergraphs”. The famous IFDS/IDE framework [Reps et al., 1995a;

Reps, 1997; Horwitz et al., 1995; Sagiv et al., 1996; Reps, 1997; Bodden, 2012] reduces a

large class of interprocedural analyses to essentially computing semiring distances. In some

fundamental cases [Reps et al., 1995a; Reps, 1997], the problem is reduced to the problem

of reachability on the “exploded supergraph”, which encodes both control-flow and data-flow

information. Several variants of recursive graphs have also been used for the verification of

concurrent systems as for example in [Harel et al., 1997; Alur et al., 1999; Bouajjani et al., 2003b;

Bouajjani et al., 2005; Qadeer and Rehof, 2005; Bozzelli et al., 2006; Kahlon and Gupta, 2007;

La Torre et al., 2008; Atig et al., 2008; Suwimonteerabuth et al., 2008; Lal et al., 2008;

Lal and Reps, 2009; Kahlon et al., 2013; Farzan et al., 2013] and many practical tools have been

developed as well [Qadeer and Rehof, 2005; Lal and Reps, 2009; Suwimonteerabuth et al., 2008;

Lal et al., 2012]. RSMs have also been studied in the context of games as e.g. in [Alur et al., 2006;

Chatterjee and Velner, 2012].

Static analysis. Static analysis techniques provide ways to obtain information about programs

without actually executing the programs on specific inputs. Static analysis explores the program

behavior for all possible inputs and all possible executions. For non-trivial programs, it is

impossible to explore all the possibilities, and hence static analysis uses approximations to

account for all the possibilities [Cousot and Cousot, 1977b]. The various static analysis methods

can be broadly grouped into two categories. In the intraprocedural setting, each method of the

program is analyzed separately. Such analysis is more lightweight but also less precise, as it

ignores the effects of program executions which involve invocations and returns to and from other
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procedures. In the interprocedural setting, the effect of executions that involve the invocation of

program procedures is taken into account. Interprocedural analyses are usually more resource

demanding, but also more precise.

Data-flow analysis. The main aim of data-flow analysis is to infer various facts (often called

data facts) about the values of variables appearing in various program locations (i.e., locations of

the underlying control-flow graph). It appears at the heart of numerous applications, ranging

from alias analysis, to data dependencies (modification and reference side effect), to constant

propagation, to live and use analysis [Reps et al., 1995a; Sagiv et al., 1996; Callahan et al., 1986;

Grove and Torczon, 1993; Landi and Ryder, 1991; Knoop et al., 1996; Cousot and Cousot, 1977a;

Müller-Olm and Seidl, 2004; Giegerich et al., 1981; Knoop and Steffen, 1992; Reps et al., 2005;

Naeem and Lhoták, 2008; Zhang et al., 2014].

A wide range of data-flow problems has an algebraic paths formulation, expressed as a “meet-

over-all-paths” analysis [Kildall, 1973]. Perhaps the most well-known case is that of inter-

procedural finite distributive subset (IFDS) flow functions considered in [Reps et al., 1995a].

Given a finite domain D and a universe F of distributive data-flow functions f : 2D → 2D,

a weight function wt associates each edge of the control-flow graphs with a flow function.

A flow function f is distributive if f(X) =
⋃

x∈X f({x}) (or f(X) =
⋂

x∈X f({x}), de-

pending on the problem under consideration). The weight of a path is then defined as the

composition of the flow functions along its edges, and the data-flow distance between two

nodes u, v is the meet ⊓ (union or intersection) of the weights of all u ⇝ v paths. The

data-flow analysis then can be reduced to the problem of reachability on the “exploded su-

pergraph”, which encodes both control-flow and data-flow information [Reps et al., 1995a;

Reps, 1997]. The interprocedural distributive environment (IDE) framework [Sagiv et al., 1996]

extends the IFDS framework to unbounded domains. In this case, the flow functions (called

environment transformers) map elements from the finite domain D to values in an infinite set

(e.g., of the form f : D → N). An environment transformer is denoted as f [d → ℓ], meaning

that the element d ∈ D is mapped to value ℓ, while the mapping of all other elements remains

unchanged. Similarly to the case of IFDS, IDE problems are phrased as “meet-over-all-paths”

problems between program locations. Data-flow analysis is also a field of intensive study

in the context of concurrency (e.g. [Bouajjani et al., 2003a; Grunwald and Srinivasan, 1993;

Knoop et al., 1996; Farzan and Madhusudan, 2007; Chugh et al., 2008; Kahlon et al., 2009;
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De et al., 2011]), where (part of) the underlying analysis is also based on a “meet-over-all-paths”

approach, as in the case of IFDS/IDE.

CFL and Dyck reachability. A very important instance of language reachability in static analysis

is CFL reachability, where the input language is context-free, which can be used to model, e.g.,

context-sensitivity or field-sensitivity. The CFL reachability formulation has applications to a

very wide range of static analysis problems, such as interprocedural data-flow analysis [Reps

et al., 1995b], slicing [Reps et al., 1994], shape analysis [Reps, 1995a], impact analysis [Arnold,

1996], type-based flow analysis [Rehof and Fähndrich, 2001] and alias/points-to analysis [Shang

et al., 2012; Sridharan and Bodík, 2006a; Sridharan et al., 2005; Xu et al., 2009a; Yan et al.,

2011a; Zheng and Rugina, 2008], etc. In practice, widely-used large-scale analysis tools, such

as Wala [Wal, 2003] and Soot [Vallée-Rai et al., 1999; Bodden, 2012], equip CFL reachability

techniques to perform such analyses. In most of the above cases, the languages used to define

the problem are those of properly-matched parenthesis, which are known as Dyck languages,

and form a proper subset of context-free languages. Thus Dyck reachability is at the heart of

many problems in static analysis.

Preprocess vs Query. A topic of widespread interest is that of on-demand analysis [Babich

and Jazayeri, 1978; Zadeck, 1984; Horwitz et al., 1995; Duesterwald et al., 1995; Reps, 1995b;

Sagiv et al., 1996; Reps, 1997; Yuan et al., 1997; Naeem et al., 2010]. The main goal is to avoid

analyzing the whole program when the focus is on obtaining solutions for specific locations of

the program. Such analysis has several advantages, such as (quoting from [Horwitz et al., 1995;

Reps, 1997]) (i) narrowing down the focus to specific points of interest, (ii) narrowing down

the focus to specific data-flow facts of interest, (iii) reducing work in preliminary phases,

(iv) sidestepping incremental updating problems, and (v) offering demand analysis as a user-

level operation. For example, in constant propagation a relevant question is whether some

variable remains constant between a pair of control-flow locations. The problem of on-demand

analysis allows us to distinguish between a single preprocessing phase (one-time computation),

and a subsequent query phase, where queries are answered on demand. The two extremes

of the preprocessing and query phase are: (i) complete preprocessing (aka transitive closure

computation) where the result is precomputed for every possible query, and hence queries

are answered by simple table lookups; and (ii) no preprocessing where every query requires

a new computation. In general, there can be a tradeoff between the preprocessing and query
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computation. Most of the existing work on on-demand analysis does not make a formal distinction

between preprocessing and query phases, as the provided complexities only guarantee the same

worst-case complexity property, namely that the total time for handling any sequence of queries

is no worse than the complete preprocessing. Hence most existing tradeoffs are practical, without

any theoretical guarantees.

1.1.2 Quantitative Verification

Boolean vs quantitative verification. The traditional view of verification has been qualitative

(boolean), in which traces of a system are classified as “correct" or “incorrect”. In the recent

years, motivated by applications to analyze resource-constrained systems (such as embedded

systems), there has been a large interest to study quantitative properties of systems. Quantitative

verification extends the traditional boolean verification in two directions. First, it enjoys a rich

expressive power of quantitative properties, such as resource consumption and performance

guarantees, which cannot be expressed in a boolean setting. Second, it allows for quantifiable

measures of model compliance to specifications, as opposed to the boolean nature of model

checking. For example, a boolean property may require that every request is eventually granted,

whereas a quantitative property can measure for each trace the average waiting time between

requests and corresponding grants. Not only is this property inherently quantitative, quantities

can also be used to measure the extent to which a trace deviates from the desired behavior.

Quantitative extensions. Given the importance of quantitative verification, the traditional quali-

tative view of verification has been extended in several ways. Some notable examples concern

quantitative languages and quantitative automata [Droste et al., 2009; Chatterjee et al., 2010a;

Chatterjee et al., 2010c; Chatterjee et al., 2014b; Chatterjee et al., 2010b; Velner et al., 2015a;

Droste and Meinecke, 2012; Chatterjee et al., 2016c; Chatterjee et al., 2016b; Chatterjee et al.,

2016d; Chatterjee et al., 2015c; Boker et al., 2015], as well as quantitative logics for specification

languages [Boker et al., 2011; Bouyer et al., 2014; Almagor et al., 2013]. Quantitative objectives

have been proposed in several applications such as for worst-case execution time (see [Wilhelm

et al., 2008] for survey), power consumption [Tiwari et al., 1994], prediction of cache behavior

for timing analysis [Ferdinand et al., 99], and performance measures [Bloem et al., 2009a;

Chatterjee et al., 2010a; Filar and Vrieze, 1997; Droste and Meinecke, 2010], to name



7

a few. Quantitative abstraction-refinement frameworks for finite-state systems with mean-

payoff objectives have also been studied in [Cerný et al., 2013]. Quantities are also suit-

able for expressing robustness of systems, which extends the idea of model checking to

model measuring [Černý et al., 2012; Samanta et al., 2013; Henzinger and Otop, 2013;

Henzinger and Otop, 2014; Henzinger et al., 2014; Henzinger et al., 2016]. Besides verifi-

cation, quantities have also been used in quantitative synthesis and repair [Bloem et al., 2009a;

Bloem et al., 2009b; Černý et al., 2011; Samanta et al., 2014; Chatterjee et al., 2015b;

D’Antoni et al., 2016].

The core algorithmic question in many of the above studies is a graph algorithmic problem that

requires to analyze a graph wrt a quantitative property.

The algebraic path problem. The algebraic path problem is phrased wrt a closed semiring

S = (Σ,⊕,⊗,0,1) and a weighted graph G = (V,E,wt), where the weight function wt :

E → Σ assigns to each edge a weight of the domain of the semiring. The problem asks to

determine the semiring distance between pairs of nodes. The algebraic path problem generalizes

various related graph path problems, such as the reachability, shortest path, maximum reliability

and maximum capacity path problems [Cormen et al., 2009; Aho and Hopcroft, 1974; Mohri,

2002; Zimmermann, 2011; Carré, 1971; Lehmann, 1977; Mahr, 1984; Fink, 1992]. In static

program analysis, some data-flow frameworks (consisting of finite, distributive, subset data-

flow functions or IFDS) reduce to computing semiring distances over an appropriate data-flow

semiring [Reps et al., 1995a; Horwitz et al., 1995]. Several existing algorithms for solving

specific instances of the problem can be straightforwardly generalized to solve the algebraic

path problem, such as Warshall’s algorithm [Warshall, 1962] for computing the transitive

closure, Floyd’s algorithm [Floyd, 1962] for computing all-pairs shortest paths, the Gauss-Jordan

algorithm [Cormen et al., 2009] for matrix inversion, Viterbi’s algorithm [Viterbi, 1967] used in

probabilistic parsing and Kleene’s construction [Kleene, 1956] of regular expressions from finite

state automata. We refer to [Fink, 1992] for a survey on various algorithms for the algebraic path

problem.

IFDS/IDE as algebraic path problems. The IFDS/IDE frameworks make, in essence, an algebraic

treatment of the data-flow analysis. This is a consequence of the distributivity of the data-flow

functions, which allows the composition operator ◦ to distribute over the meet operator ⊔. The

underlying semiring forms a semi-lattice (F,⊓, ◦,∅, I), where F is the set of all distributive
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data-flow functions, and I is the identity function and the identity environment transformer in

the case of IFDS and IDE respectively.

Reachability/distance problems. The pair reachability and distance problems are special

cases of the algebraic path problem phrased on the appropriate semiring (the boolean

semiring ({0, 1},∨,∧, 0, 1) in the case of reachability and the tropical semiring (R⩾0 ∪

{∞},min,+,∞, 0) in the case of distances). Both problems are two of the most classic

graph algorithmic problems which, given a pair of nodes u, v, ask to compute if there is

a path from u to v (in the case of reachability) and the weight of the shortest path from

u to v (in the case of shortest paths). The single-source variant given a node u asks

to solve the pair problem u, v for every node v. Finally, the all pairs variant asks to

solve the pair problem for each pair u, v. While there exist many classic algorithms for

the distance problem, such as A∗-algorithm (pair) [Hart et al., 1968], Dijkstra’s algorithm

(single-source) [Dijkstra, 1959], Bellman-Ford algorithm (single-source) [Bellman, 1958;

Ford, 1956; Moore, 1959], Floyd-Warshall algorithm (all pairs) [Floyd, 1962; Warshall, 1962;

Roy, 1959], and Johnson’s algorithm (all pairs) [Johnson, 1977] and others for various special

cases, there exist in essence only two different algorithmic ideas for reachability: Fast matrix

multiplication (all pairs) [Fischer and Meyer, 1971] and DFS/BFS (single-source) [Cormen et al.,

2009].

Mean payoff, ratio and initial credit for energy problems. Although the mean-payoff, ratio

and initial credit for energy properties cannot be phrased as algebraic path problems, they are

closely related to the distance problem. The minimum mean-payoff problem on graphs is known

as the minimum mean cycle problem of [Karp, 1978]. Informally, the input to the problem is

a graph and a weight function that assigns integer weights to the edges of the graph, and the

task is to compute an infinite path of the graph with the smallest average weight. The problem

has large modeling power, and has been studied extensively [Madani, 2002; Lawler, 1976;

Young et al., 1991; Burns, 1991; Orlin and Ahuja, 1992; Dasdan and Gupta, 1998; Hartmann

and Orlin, 1993; Karp and Orlin, 1981]. For some special cases there exist faster approximation

algorithms [Chatterjee et al., 2014a]. We refer to [Dasdan et al., 1998] for an excellent exposition

to various algorithms for the minimum mean-payoff problem. The mean-payoff problem is

one of the most well-studied objectives in quantitative games [Liggett and Lippman, 1969;

Ehrenfeucht and Mycielski, 1979; Zwick and Paterson, 1996; Bjorklund et al., 2004; Brim et al.,
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2011], and the graph problem can be viewed as the one-player version. Recently, both the one-

player and two-player versions of the mean payoff problem were studied on infinite-state systems

and multiple dimensions [Chatterjee and Velner, 2012; Velner, 2012; Chatterjee and Velner, 2013;

Velner, 2014; Velner, 2015; Velner et al., 2015b].

The ratio problem generalizes the mean payoff problem in the following way. Instead of a single

weight function we are now given two weight functions; the first assigning integer weights and

the second assigning positive integer weights to the edges of the graph. The task is to compute an

infinite path of the graph for which the ratio of the sum of weights of the first function over the

sum of weights of the second function is the smallest possible. The ratio problem has bee studied

thoroughly both by the graph-theory and the systems-verification community [Lawler, 1976;

Burns, 1991; Gerez et al., 1992; Hartmann and Orlin, 1993; Ito and Parhi, 1995; Mathur et al.,

1998; Cochet-terrasson et al., 1998; Chatterjee and Velner, 2012], and one standard way to solve

it is by reducing it to the mean-payoff problem. Typically, in practice for both the ratio and

mean-payoff problem Howard’s policy iteration algorithm [Howard, 1960; Cochet-terrasson

et al., 1998] is the fastest and uses O(m) time per iteration. The number of iterations needed for

the policy iteration algorithm is not known to be polynomial though.

The minimum initial credit for energy problem takes as input a graph and a weight function

which assigns an integer weight to each edge. The task is to determine for each node smallest

initial energy value such that there is an infinite path starting from that node and so that the

sum of the weights along that path added to the initial energy stays non-negative. The problem

has been studied in [Bouyer et al., 2008], in the context of weighted timed automata with

additional energy constraints. Energy constraints have also been widely studied in conjunction

with mean-payoff objectives, as, for example, in [Brim et al., 2011; Chatterjee et al., 2012;

Velner et al., 2015b].

1.1.3 Graphs of Constant Treewidth

The significance of constant treewidth. The notion of treewidth of graphs as an elegant mathe-

matical tool to analyze graphs was introduced in [Robertson and Seymour, 1984]. Informally, the

treewidth of a graph measures how close the graph is to a tree (a graph has treewidth 1 precisely if

it is a tree). The significance of constant treewidth in graph theory is huge, mainly because several
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problems on graphs become complexity-wise easier. Given a tree decomposition of a graph with

treewidth t, many NP-complete problems for arbitrary graphs can be solved in time polynomial

(even linear) in the size of the graph, but exponential in t [Arnborg and Proskurowski, 1989;

Bern et al., 1987; Bodlaender, 1988; Bodlaender, 1993; Bodlaender, 2005]. Even for problems

that can be solved in polynomial time, faster algorithms can be obtained for low treewidth graphs,

for example, for the distance problem [Chaudhuri and Zaroliagis, 1995]. The constant-treewidth

property of graphs has also been used in the context of logic: Monadic Second Order (MSO)

logic is a very expressive logic, and a celebrated result of [Courcelle, 1990] showed that for

constant-treewidth graphs the decision questions for MSO can be solved in polynomial time;

a result extended to deterministic logspace in [Elberfeld et al., 2010]. Dynamic algorithms for

the special case of graphs with treewidth 2 have been considered in [Bodlaender, 1994] and

extended to various tradeoffs by [Hagerup, 2000]; and [Lacki, 2013] shows how to maintain

the strongly connected component decomposition under edge deletions for constant-treewidth

graphs. Various other models (such as probabilistic models of Markov decision processes

and games played on graphs for synthesis) with the constant-treewidth restriction have also

been considered [Chatterjee and Lacki, 2013; Obdrzálek, 2003]. The impact of treewidth

in the complexity of various verification problems has been studied in [Ferrara et al., 2005;

Madhusudan and Parlato, 2011],

Computing tree decompositions. The problem of computing tree decompositions of constant-

treewidth graphs has been studied extensively [Reed, 1992; Robertson and Seymour, 1995;

Bodlaender and Hagerup, 1995; Bodlaender, 1996; Feige et al., 2005; Bodlaender et al., 2013].

More importantly, in the context of programming languages, it was shown in [Thorup, 1998]

that the control-flow graphs of goto-free programs in many programming languages have con-

stant treewidth. This theoretical result was subsequently extended to more programming lan-

guages [Gustedt et al., 2002; Burgstaller et al., 2004]. Even in cases where no small bound on the

treewidth of control-flow graphs exists, in practice the treewidth remains small. For example, it

was shown in [Gustedt et al., 2002] that though in theory Java programs might not have constant

treewidth, in practice Java programs have small treewidth. The small treewidth of control-

flow graphs has lead to improvements on the problem of register allocation [Thorup, 1998;

Bodlaender et al., 1998; Krause, 2013; Krause, 2014]. For example, the SDCC compilers

implements tree-decomposition based algorithms for performance optimizations [Krause, 2013].
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We refer to [Bodlaender, 1993; Kloks, 1994; Bodlaender, 1998; Bodlaender, 2005] for detailed

expositions to the notion of treewidth and its applications.

1.1.4 Partial-order Reduction Techniques in Stateless Model Checking of

Concurrent Programs

Stateless model checking of concurrent programs. The verification of concurrent programs

is one of the major challenges in formal methods. Due to the combinatorial explosion on the

number of interleavings, errors found by testing are hard to reproduce (often called Heisen-

bugs [Musuvathi et al., 2008]), and the problem needs to be addressed by a systematic exploration

of the state space. Model checking [Clarke et al., 1999a] addresses this issue, however, since

model checkers store a large number of global states, stateless model checking cannot be applied

to realistic programs. One solution that is adopted is stateless model checking [Godefroid, 1996],

which avoids the above problem by exploring the state space without explicitly storing the global

states. This is typically achieved by a scheduler, which drives the program execution based on the

current interaction between the processes. Well-known tools such as VeriSoft [Godefroid, 1997;

Godefroid, 2005] and CHESS [Madan Musuvathi, 2007] have successfully employed stateless

model checking.

Partial-Order Reduction (POR). Even though stateless model-checking addresses the global

state space issue, it still suffers from the combinatorial explosion of the number of interleavings,

which grows exponentially. While there are many approaches to reduce the number of explored

interleavings, such as, depth-bounding and context bounding [Lal and Reps, 2009; Musuvathi

and Qadeer, 2007], the most well-known method is partial order reduction (POR) [Clarke et al.,

1999b; Godefroid, 1996; Peled, 1993]. The principle of POR is that two interleavings can

be regarded as equivalent if one can be obtained from the other by swapping adjacent, non-

conflicting (independent) execution steps. The theoretical foundation of POR is the equivalence

class of traces induced by the Mazurkiewicz trace equivalence [Mazurkiewicz, 1987], and

POR explores at least one trace from each equivalence class. POR provides a full coverage

of all behaviors that can occur in any interleaving, even though it explores only a subset of

traces. Moreover, POR is sufficient for checking most of the interesting verification properties

such as safety properties, race freedom, absence of global deadlocks, and absence of assertion
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violations [Godefroid, 1996].

Dynamic Partial-order Reduction (DPOR). Dynamic partial-order reduction (DPOR) [Flana-

gan and Godefroid, 2005] improves the precision of POR by recording actually occurring

conflicts during the exploration and using this information on-the-fly. DPOR guarantees

the exploration of at least one trace in each Mazurkiewicz equivalence class when the ex-

plored state space is acyclic and finite, which holds for stateless model checking, as usu-

ally the length of executions is bounded [Flanagan and Godefroid, 2005; Godefroid, 2005;

Musuvathi et al., 2008]. Recently, an optimal method for DPOR was developed [Abdulla et al.,

2014].

1.1.5 Real-time Scheduling

Competitive analysis of real-time schedulers. Competitive analysis [Borodin and El-Yaniv,

1998] has been the primary tool for studying the performance of such scheduling algorithms

[Baruah et al., 1992]. It allows to compare the performance of an on-line algorithm A, which

processes a sequence of inputs without knowing the future, with what can be achieved by an

optimal off-line algorithm C that does know the future (a clairvoyant algorithm): the competitive

factor gives the worst-case performance ratio of A vs. C over all possible scenarios.

In a seminal paper [Baruah et al., 1992], Baruah et al. proved that no on-line scheduling algorithm

for single processors can achieve a competitive factor better than 1/4 over a clairvoyant algorithm

in all possible job sequences of all possible tasksets. The proof is based on constructing a specific

job sequence, which takes into account the on-line algorithm’s actions and thereby forces any

such algorithm to deliver a sub-optimal cumulated utility. For the special case of zero-laxity

tasksets of uniform value-density, where utilities equal execution times, they also provided the

on-line algorithm TD1 with competitive factor 1/4, concluding that 1/4 is a tight bound for this

family of tasksets. In [Baruah et al., 1992], the 1/4 upper bound was also generalized, by showing

that there exist tasksets with importance ratio k, defined as the ratio of the maximum over the

minimum value-density in the taskset, in which no on-line scheduler can have competitive

factor larger than 1
(1+

√
k)2

. In subsequent work [Koren and Shasha, 1995], the on-line scheduler

Dover was introduced, which provides the performance guarantee of 1
(1+

√
k)2

in any taskset with

importance ratio k, showing that this bound is also tight.
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Firm-deadline tasks Firm-deadline tasks arise in various application domains, e.g., machine

scheduling [Gupta and Palis, 2001], multimedia and video streaming [Abeni and Buttazzo,

1998], QoS management in bounded-delay data network switches [Englert and Westermann,

2007] and even networks-on-chip [Lu and Jantsch, 2007], Starting out from [Baruah et al.,

1992], classic real-time systems research has studied the competitive factor of both simple and

extended real-time scheduling algorithms. The competitive analysis of simple algorithms was

been extended in various ways later on: Energy consumption [Aydin et al., 2004; Devadas

et al., 2010] (including dynamic voltage scaling), imprecise computation tasks (having both

a mandatory and an optional part and associated utilities) [Baruah and Hickey, 1998], lower

bounds on slack time [Baruah and Haritsa, 1997], and fairness [Palis, 2004]. Note that dealing

with these extensions involved considerable ingenuity and efforts w.r.t. identifying and analyzing

appropriate worst case scenarios, which do not necessarily carry over even to minor variants of

the problem. Maximizing cumulated utility while satisfying multiple resource constraints is also

the purpose of the Q-RAM (QoS-based Resource Allocation Model) [Rajkumar et al., 1997]

approach.

Algorithmic game theory in scheduling. Algorithmic game theory [Nisan et al., 2007] has been

applied to classic scheduling problems since decades, primarily in economics and operations

research, see e.g. [Koutsoupias, 2011] for just one example of some more recent work. It

has also been applied for real-time scheduling of hard real-time tasks in the past: Besides

Altisen et al. [Altisen et al., 2002], who used games for synthesizing controllers dedicated to

meeting all deadlines, Bonifaci and Marchetti-Spaccamela [Bonifaci and Marchetti-Spaccamela,

2012] employed graph games for automatic feasibility analysis of sporadic real-time tasks in

multiprocessor systems: Given a set of sporadic tasks (where consecutive releases of jobs of

the same task are separated at least by some sporadicity interval), the algorithms provided in

[Bonifaci and Marchetti-Spaccamela, 2012] allow to decide, in polynomial time, whether some

given scheduling algorithm will meet all deadlines. A partial-information game variant of their

approach also allows to synthesize an optimal scheduling algorithm for a given task set (albeit

not in polynomial time).

Competitive analysis in fixed environments. Although the competitive factor characterizes the

worst-case performance of an online scheduler in the worst-case setting, it is hardly informative

of the performance of the algorithm in a fixed setting. Since the taskset arising in a particular
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application is usually known, a relevant problem is to determine the competitiveness of scheduling

algorithms in fixed tasksets. The competitive ratio of an online scheduler A in a taskset T is

informally defined as the smallest long-run ratio of the cumulative utility ofA over the cumulative

utility received by a clairvoyant scheduler on the same sequence of task releases, where the

tasks now come from T . Two relevant problems for the automated competitive analysis in fixed

tasksets are the following.

(1) The competitive analysis question asks to compute the competitive ratio of a given on-line

algorithm.

(2) The competitive synthesis question asks to construct an on-line algorithm with optimal

competitive ratio.

1.2 Motivating Examples

In this section we provide some examples which have motivated the research presented in this

dissertation.

1.2.1 Motivating Example: Constant-treewidth in Static Analysis

Consider the program shown in Fig. 1.1 comprising two methods dot_vector and dot_matrix.

For simplicity we focus on on-demand local reachability, i.e., given any two nodes of the same

control-flow graph, whether there is a path from one to the other. Observe that even on local

reachability we have to solve an interprocedural problem, as a path between nodes of the control-

flow graph of dot_matrix might go through nodes of the control-flow graph of dot_vector. We

are interested in handling multiple reachability queries, which need to be answered fast. For

this purpose we are allowed a preprocessing phase, in which we can spend some resources in

building a data structure that will allow for fast handling of queries.

Preprocess vs Query. Traditional approaches appear in the following two extremes, where we

use n as the input size, and the stated complexities ar upper bounds wrt the worst case:
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internal entry exit call return

Method: dot_vector
Input: x, y ∈ Rn

Output: The dot product x⊤y

1 result← 0

2 for i← 1 to n do

3 z ← x[i] · y[i]

4 result← result+ z

5 end

6 return result

Method: dot_matrix

Input: A ∈ Rn×k, B ∈ Rk×m

Output: The dot product A×B

1 C ← zero matrix of size n×m

2 for i← 1 to n do

3 for j ← 1 to m do

4 Call dot_vector(A[i, :], B[:, j])

5 C[i, j]← the value returned at Line 4

6 end

7 end

8 return C

1

2

3

4

5

6

1

2

3

4

5

6

7

8

1

1, 2

2, 3

2, 3, 4

2, 5

5, 6

1

1, 2

2, 3

3, 4

3, 4, 5

2, 3, 6

2, 7

7, 8

Figure 1.1: Example of a program consisting of two methods, their control-flow graphs Gi =

(Vi, E
′
i) where nodes correspond to line numbers, and the corresponding tree decompositions.

Complete preprocessing, which requires O(n2) time and space and after which queries are

answered in O(1) time, and

No preprocessing, which answers each query in time O(n). Although in this case smarter
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approaches exist, such as storing intermediate results of every arriving query, they suffer

in two respects. In terms of space, the memory requirements grow as we store each

intermediate result. In terms of time, the only given guarantee is that of same worst-case

complexity, namely that the total time for handling any sequence of queries is no worse

than the complete preprocessing.

In this dissertation we provide new data structures for handling algebraic path queries efficiently,

by exploiting the constant-treewidth property of control-flow graphs. Our focus is on same-

context queries, where the two nodes reside in the same function. Note that same-context queries

require interprocedural analysis, as although the endpoints of paths are in the same function, the

paths are allowed to traverse multiple functions. For example, our new data structures operate on

the tree decompositions of the control-flow graphs, which can be preprocessed in O(n · log n)

time and using only O(n) space, after which pair queries are handled in O(1) time.

Preprocess of libraries. Assume that dot_matrix is part of some library, and different imple-

mentations of dot_vector are passed as a callback function to the library each time the library

is linked to a main program. More generally, let n1 and n2 be the size of the library and the

main program, respectively, with n2 >> n1, and b the number of callback locations. Typically

we have b << n2, i.e., the number of callback locations is much smaller than the size of the

library. Traditionally, the whole program needs to be analyzed anew with each linking, leading to

O(n1 ·n2) time for the transitive closure each time, by running O(n1) single-source computations

from the locations of the main program. At this point pair reachability queries on the main

program can be handled in O(1) time. In contrast, our new data structures can preprocess the

library once in O(n2) time. Each time a new main program links to the library, at the cost of

O(n1 · log n1 + b · log n2), pair reachability queries can be handled in O(1) time. Hence the full

cost of analyzing a huge library is only paid once, and each linking cost has a small dependency

on the size of the library.

1.2.2 Motivating Example: Quantitative Interprocedural Analysis

Consider the program shown in Fig. 1.2. Our focus is on the containers that are allocated in

Line 9 and in Line 20. We call a container underutilized if in every infinite interprocedural path

of the corresponding RSM the container holds a bounded number of elements. The intended
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1 vo id qux ( Queue q , i n t x ) {

2 q . push ( ( x , x / 2 ) ) ;

3 i f ( x > 0 ) {

4 qux ( q , x / 2 ) ;

5 }

6 }

7

8 Queue b a r ( i n t x ) {

9 r e t u r n new Queue ( x∗x ) ;

10 }

12 vo id foo ( i n t x ) {

13 i f ( x % 2){

14 Queue q1 = b a r ( x ) ;

15 qux ( q1 , x ) ;

16 }

17 e l s e

18 {

19 f o r ( i n t y = 0 ; y < x ; y++ ) {

20 Queue q2 = new Queue ( y ) ;

21 q2 . push ( ( y , x ) ) ;

22 f o r ( i n t z = 0 ; z < y ; z++ )

23 {

24 q2 . push ( ( z , y ) ) ;

25 . . .

26 q2 . pop ( ) ;

27 }

28 }

29 }

30 }

Figure 1.2: Underutilized container analysis.
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interpretation is that if the container holds only a few elements in every path, it might not be

worthy to pay the large cost in resources for initializing the container, and some other data

structure can be used instead.

Our task is to analyze the program for containers that may be underutilized. The problem can be

cast in our Quantitative Interprocedural Analysis framework, as follows. We assign a weight

of +1 to every transition of the RSM that adds an element to the analyzed container (i.e., the

container performs a push() operation). Similarly, we assign a weight of -1 to every transition

of the RSM that removes an element from the analyzed container (i.e., the container performs

a pop() operation). Additionally, we assign a large finite negative weight to the transition that

corresponds to the initialization of the container. This is because a reinitialization of an existing

container removes all its elements. Hence, in order to not report the container as possibly

underutilized, we need to ignore all elements added to the container up to the reinitialization

point, and find a new path from that point on in the RSM that adds an unbounded number of

elements. In the end, the algorithmic problem that we need to solve is to detect whether there

exists an infinite path of the RSM in which the long run ratio of the positive weights over the

negative weights is larger than 0. Note that the proper use of the container might be because of

an intraprocedural loop, or because of an interprocedural loop (i.e., due to recursion). Hence the

problem we need to solve is an interprocedural mean-payoff problem.

In our example, there exist runs that go through line 14 and properly use the container that is

allocated in line 9, since the qux method can add unbounded number of elements to the queue

(due to its recursive call). However, the container in line 20 is underutilized, since in every run

the number of elements is bounded by 2.

In this dissertation we develop a new framework that allows to capture quantitative properties on

recursive programs, called the Quantitative Interprocedural Analysis framework. We provide a

generic algorithm for performing Quantitative Interprocedural Analysis, and show how various

relevant static program-analysis problems can be expressed as Quantitative Interprocedural

Analysis instances.
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Process p1 :

1. write x;

2. read x;

Process p2 :

1. write x;

2. read x;

Figure 1.3: A system of two processes with two events each.

1.2.3 Motivating Example: Data-centric Partial-order Reduction

Consider a concurrent system that consists of two processes and a single global variable x shown

in Fig. 1.3. Denote by wi and ri the write and read events to x by process pi, respectively. The

system consists of four events which are all pairwise dependent, except for the pair r1, r2. Two

traces t and t′ are called Mazurkiewicz equivalent, denoted t ∼M t′, if they agree on the order

of dependent events. The traditional DPOR based on the Mazurkiewicz equivalence ∼M will

explore at least one representative trace from every class induced on the trace space by the

Mazurkiewicz equivalence. There exist 23

2
= 4 possible orderings of dependent events, as there

are 23 possible interleavings, but half of those reorder the independent events r1, r2, and thus

will not be considered. The traditional Mazurkiewicz-based DPOR will explore the following

four traces.

t1 : w1, r1, w2, r2 t2 : w1, w2, r1, r2

t3 : w2, w1, r1, r2 t4 : w2, r2, w1, r1

Note however that t1 and t4 are state-equivalent, in the sense that the local states visited by

p1 and p2 are identical in the two traces. This is because each read event observes the same

write event in t1 and t4. In contrast, in every pair of traces among t1, t2, t3, there is at least one

read event that observes a different write event in that pair. This observation makes it natural

to consider two traces equivalent if they contain the same read events, and every read event

observes the same write event in both traces. This example illustrates that it is possible to have

coarser equivalence on traces than the traditional Mazurkiewicz equivalence. The challenge then

is to design an enumerative exploration of the trace space that

1. is optimal wrt the new coarser equivalence, i.e., it examines precisely one (or a constant

constant number of) trace(s) per class, and
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2. spends only polynomial time per explored trace.

In this dissertation we develop a new equivalence on traces, called the observation equivalence.

Informally, two traces are observation equivalent if they contain the same events, and every

read event observes the same write event in both traces, under sequential consistency memory

semantics. We show that the observation equivalence is always coarser than the traditional

Mazurkiewicz equivalence, and can be even exponentially coarser. Based on the observation

equivalence, we develop a new enumerative exploration of the trace space, called the data-centric,

partial-order reduction (DC-DPOR).

1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative

trace from each observation class, while spending polynomial time per class. Hence,

our algorithm is optimal wrt the observation equivalence, and in several cases explores

exponentially fewer traces than any enumerative method based on the Mazurkiewicz

equivalence.

2. For cyclic architectures, we consider an equivalence between traces which is finer than

the observation equivalence; but coarser than the Mazurkiewicz equivalence, and in cases

is exponentially coarser. Our DC-DPOR algorithm remains optimal under this trace

equivalence.

1.2.4 Motivating Example: Competitive Analysis of Real-time Schedulers

We illustrate the need for automated, case-specific competitive analysis of real-time schedulers,

by focusing on two well-known scheduling policies, First-in First-out (FIFO) and Earliest

Deadline First (EDF), and showing that none dominates the other in the firm-deadline setting. In

this setting time proceeds in discrete steps, and in each time point some new task instances are

released to the system and require to be scheduled for some time. Each task is defined by three

positive integer values τi = (Ci, Di, Vi), where

Ci denotes the total workload that τi generates,

Di denotes the relative deadline of τi, and

Vi denotes the utility of τi.
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When an instance of τi is released, the scheduler receives utility Vi if it schedules that instance for

Ci time units (not necessarily consecutively) within Di time units. We additionally restrict every

task to release at most once instance per time unit. We will denote by CRT (A) the competitive

ratio of scheduler A in taskset T , defined as the smallest long-run ratio of the cumulative utility

of A over the cumulative utility received by a clairvoyant scheduler on the same sequence of

task releases. To simplify our analysis we make the following assumptions.

1. We have an infinite sequence of task releases i.e., new tasks are released infinitely often,

though we do not restrict the frequency of releases.

2. If at any time the workload of a task is more than its relative deadline, neither policy will

schedule it (as it is bound to not complete in time).

3. If EDF has scheduled at least one unit of workload of some instance of a task, that instance

has priority over any other instance (of any task) with the same deadline.

It is easy to see that due to Item 2 and Item 3, any task which is scheduled by either policy for at

least one unit of time is in fact scheduled to completion and contributes to the received utility.

We will construct two simple tasksets T1, T2, such that FIFO has better competitive ratio than

EDF in T1, and EDF has better competitive ratio than FIFO in T2. Our analysis is rather crude,

but sufficient for the purposes of this example.

Taskset T1: FIFO beats EDF. Consider the taskset T1 = {τ1 = (n, n + 1, n), τ2 = (1, 1, 1)}.

Here we have a long task τ1 with laxity 1 and a short, zero-laxity task τ2.

CRT1(EDF) ⩽
2

n+1
. Indeed, consider an infinite periodic sequence X which consists of con-

secutive, non-overlapping intervals (Ii)i⩾1 of length n+ 1. The task τ1 is released once,

in the beginning of Ii. The task τ2 is released twice, one time each in the first two time

units of Ii. See Fig. 1.4a for an illustration. Then EDF will schedule to completion the

two instances of τ2, but will miss τ1, and thus will receive a utility of 2 in I . Instead, a

clairvoyant scheduler receives utility of at least n+ 1 in I , by scheduling to completion τ1

and one instance of τ2. Hence CRT1(EDF) ⩽
2

n+1
.

CRT1(FIFO) ⩾
1
2
. Let X be any sequence of task releases. We define a sequence of intervals

(Ii)i⩾1 of length either n or n + 1 each as follows. I1 starts the first time the task τ1 is

released in X , and for all i ⩾ 1,
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τ2τ1 τ1 τ2τ1 τ1

τ2τ1 τ1 τ2τ1 τ1

Ii Ii+1

(a) The intervals (Ii)i⩾1 in the case of EDF. In each Ii EDF misses each instance of τ2 and thus receives

utility at most 2. In contrast a clairvoyant scheduler can receive utility n+ 1 in Ii.

τ2 τ2τ1 τ1

τ2 τ2τ1 τ1

Ii Ii+1

(b) The intervals (Ii)i⩾1 in the case of FIFO. In each Ii FIFO will schedule at least the instance of τ2 to

completion regardless of releases of τ1 instances. Hence FIFO will receive utility at least n by completing

tasks released in Ii.

Figure 1.4: Task sequences from taskset T1. Solid lines represent workload. Dashed lines

represent deadlines.
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• if τ2 is released in the beginning of Ii and scheduled by FIFO, Ii lasts n + 1 time

units, otherwise

• Ii lasts n time units.

The interval Ii+1 starts the first time τ1 is released after the end of Ii. See Fig. 1.4b for an

illustration. We first measure the utility that FIFO and any clairvoyant scheduler obtain by

completing tasks released in any Ii. Note that at the beginning of each Ii, every released

task has been either completed or discarded by FIFO, as FIFO will schedule to completion

exactly one instance of τ1 in Ii (the one that defines the beginning of Ii) and discard all

other instances of τ1. Then FIFO obtains utility at least n, as it schedules τ1 either right

away in Ii, or possibly with one unit time delay, if τ2 is also released in the beginning of

Ii. On the other hand, any clairvoyant scheduler receives utility at most 2 · n for tasks

released in Ii. Indeed, the clairvoyant scheduler can complete at most two instances of τ1

released in Ii, in which case it cannot complete any instance of τ2 released in Ii, and hence

it obtains utility 2 · n. It is not hard to see that in any other case, it obtains utility less than

2 · n. Hence the ratio of the utility of FIFO over any clairvoyant scheduler in each Ii is at

least 1
2
. Finally, we claim that FIFO and any clairvoyant scheduler obtain the same utility

by completing tasks released outside the interval Y =
⋃

i Ii. Indeed, by definition τ1 is

not released outside Y , and FIFO does not schedule workload of τ1 outside Y . Hence,

any of the instances of τ2 released outside Y is scheduled by FIFO. We thus conclude that

CRT1(FIFO) ⩾
1
2
.

Taskset T2: EDF beats FIFO. Consider the taskset T2 = {τ1 = (n, n, n), τ2 = (2, 2 · n, 2)}.

Here we have a long, zero laxity task τ1 and a short task τ2 with laxity 2 · n− 2.

CRT2(EDF) ⩾
1
c

(for fixed c). Let X be any sequence of task releases. If X contains only

finitely many releases of τ1, then CRT2(EDF) = 1. To see this, first note that we can

focus only on the releases of τ2, since τ1 contributes only finite utility. Then, observe that

any set of instances of τ2 scheduled to completion by any clairvoyant algorithm can be

scheduled non preemptively and in an earliest-deadline first policy. Finally, let x be the

first instance of τ2 scheduled by the clairvoyant scheduler and not by EDF. Then there must

be an instance y with deadline earlier than x, such that EDF schedules x but the clairvoyant

scheduler does not. Observe that swapping x and y in the schedule of the clairvoyant
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τ2τ1

τ2τ1

Ii

(a) The intervals (Ii)i⩾1. In each Ii, EDF will either schedule some instance of τ2 or not. If not, when the

last instance of τ2 is released, EDF must schedule an instance of τ1 with earlier deadline. That instance

was released at least n rounds ago, and since it was not completed, EDF was busy with scheduling some

other workload during the past n rounds. In all cases EDF will receive utility at least n by completing

tasks with deadline within Ii.

τ2τ1

τ2 τ1

Ii

(b) The intervals (Ii)i⩾1 in the case of FIFO. In each Ii FIFO misses each instance of τ2 and thus receives

utility at most 2. In contrast a clairvoyant scheduler can receive utility n+ 2 in Ii.

Figure 1.5: Task sequences from taskset T2. Solid lines represent workload. Dashed lines

represent deadlines.
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scheduler, i.e., dropping y and scheduling x does not modify the utility obtained by the

clairvoyant scheduler. Hence, up to the release of instance x, EDF and the clairvoyant

scheduler have identical behavior and thus obtain the same utility. The claim then follows

by an easy induction of such utility-preserving task swaps.

We now consider the case where there are infinitely many releases of τ1. We define a

sequence of intervals (Ii)i⩾1 of length 2 · n each (except possibly for I1 which might have

smaller length) as follows. I1 ends at the deadline of the the first released instance of τ1,

and interval Ii+1 ends at the deadline of the first instance of τ1 which is released at least

n time units after the end of Ii. See Fig. 1.5a for an illustration. We first measure the

utility that EDF and any clairvoyant scheduler obtain by completing tasks whose deadline

ends in any of Ii. Let xi be the instance of τ1 that defines Ii. EDF obtains utility at least

n, as it either schedules xi to completion, in which case it obtains utility at least n, or it

does not. In the second case there is an instance of a task with deadline before the end

of Ii, which prevents EDF from scheduling xi. If there is such an instance of τ1, it is

scheduled to completion and EDF obtains utility at least n in Ii. Otherwise there is an

instance y of τ2 released at least n times before xi, and yi has not been completed when

xi is released. This means that EDF is scheduling some instance in the whole interval

between the release of yi and the release of xi, and each such instance has a deadline

within Ii (otherwise EDF would have completed yi before xi is released). Since EDF

schedules every task to completion and the tasks have uniform value density (equal to 1),

it will obtain utility at least n. On the other hand, any clairvoyant scheduler can obtain

utility at most 4 · n, by completing every task instance that has deadline in Ii, and there are

at most 4 · n units of workload belonging to such tasks. Hence the ratio of the utility of

EDF over any clairvoyant scheduler in each Ii is at least 1
4
.

Let Y =
⋃

i Ii, and we turn our attention to the utility of EDF and any clairvoyant scheduler

obtained by completing tasks with deadlines outside Y . Focus on any contiguous interval

Zi between Ii and Ii+1. Observe that by definition, there are no more than n releases of τ1

in Zi. Hence, after time point 2 · n in Zi there exist only instances of τ2 in the system, and

the argument which supports the infinite releases of τ1 can be used to show that EDF will

complete at least as many instances of τ2 as the clairvoyant scheduler does after that point.

It follows that in the worst case, the number of instances with deadline in Zi completed
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by the clairvoyant scheduler is bounded by a constant multiple of n, so that the utility

received is bounded by c′ · n, for some c′. Assuming that (in the worst case) EDF obtains

no utility in Zi, the competitive ratio is Cτ2(EDF) ⩾ 1
c
, where c = c′ + 4.

CRT2(FIFO) ⩽
2

n+2
. Indeed, consider an infinite periodic sequence X which consists of consec-

utive, non-overlapping intervals (Ii)i⩾1 of length 2 · n. In the beginning of Ii we have a

release of τ2, and in the next time unit a release of τ1. See Fig. 1.5b for an illustration. FIFO

will schedule to completion τ2 but will miss τ1, and hence will obtain utility 2. Instead, a

clairvoyant scheduler can obtain utility n+ 2 by first scheduling τ2, then preempting τ2 to

schedule τ1 to completion, and then completing with the second workload of τ2. Hence

CRT2(FIFO) ⩽
2

n+2
.

Conclusion. Note that as n→∞ we have

lim
n→∞

CT1(FIFO)
CT1(EDF)

=∞ and lim
n→∞

CT2(EDF)
CT2(FIFO)

=∞

and thus FIFO is “arbitrarily more competitive” than EDF in T1, and EDF is “arbitrarily more

competitive” than FIFO in T2. Observe that this is insensitive to how the two scheduling policies

break ties. Additionally, all tasks have the same value density (i.e., the fraction Vi

Ci
which captures

the average utility per unit workload is the same in all tasks τi) and thus our conclusion also

holds in settings where the utility of each task equals the workload of the task.

The above exposition serves as a simple illustration of the need for automated, case-specific

competitive analysis to determine the optimal scheduler in a given setting. Going one step further,

one might look for a synthesis approach that automatically constructs the optimal scheduler

given a taskset.

In this dissertation we develop a framework for the automated competitive analysis and competi-

tive synthesis of real-time scheduling algorithms.

1. In the case of competitive analysis, the framework takes as input a fixed taskset, a finite-

state real-time scheduling algorithm and optional constraints on the released tasks, ex-

pressed using finite-state automata. The framework automatically computes the competi-

tive ratio of the scheduling algorithm in the given setting.

2. In the case of competitive synthesis, the framework takes as input a fixed taskset. The

output is a real-time scheduling algorithm that is optimal for the given taskset, i.e., it
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achieves the highest competitive ratio among all real-time scheduling algorithms, in the

given taskset.

1.3 Outline

The rest of this document is organized as follows.

In Chapter 2 we introduce the main formalism, which is that of finite graphs and recursive

(infinite) graphs (or RSMs), whose transitions are annotated with weights coming from

the domain of a closed semiring. We also introduce the notion of tree decompositions

and treewidth, and present several existing and new results regarding computing tree

decompositions, which prove helpful in later chapters. Our central result is a strong notion

of balanced tree decompositions, together with an efficient algorithm for constructing

such tree decompositions of graphs of constant treewidth. Informally, a strongly balanced

tree-decomposition is a binary tree-decomposition in which the number of descendants of

each bag is typically approximately half of that of its parent. This is a stronger notion of

balancing that the usual one which requires that the tree decomposition simply has height

logarithmic on its size.

In Chapter 3 we deal with the algebraic path problem on finite graphs of constant treewidth. To

this end, we first develop a dynamic data structure for handling general semiring distances

on constant-treewidth graphs. The data structure has a preprocessing phase, after which it

can handle efficiently (i) queries on the semiring distance between nodes, and (ii) dynamic

updates of edge weights. We also provide data structures for the special case of reachability

and distance queries, and obtain important improvements over the general case of algebraic

path queries wrt arbitrary semirings.

In Chapter 4 we consider the algebraic path problem on RSMs. We utilize the data structures

from Chapter 3 both to provide an efficient solution to the general algebraic path problem

and to obtain improvements for special cases of IFDS/IDE, reachability and distance

queries.

In Chapter 5 we focus on the problem of Dyck reachability, and its applications to data-
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dependence and alias analysis. We develop an algorithm for Dyck reachability on bidi-

rected graphs, and prove that it is optimal. Additionally, we present an approach for

context-sensitive data-dependence analysis of libraries, and the problem of creating sum-

maries to speed-up subsequent client analysis. Finally, we prove that Dyck reachability

is, in general, Boolean Matrix Multiplication-hard, thereby proving the (conditional)

optimality of the existing, cubic-time algorithms for the problem.

In Chapter 6 we present the Quantitative Interprocedural Analysis (QIA) framework. In this

framework, the transitions of a recursive program are annotated as good, bad or neutral, and

receive a weight which measures the magnitude of their respective effect. The Quantitative

Interprocedural Analysis problem asks to determine whether there exists an infinite run of

the program where the long-run ratio of the bad weights over the good weights is above a

given threshold. We illustrate how several quantitative problems related to static analysis

of recursive programs can be instantiated in this framework, and present some case studies

to this direction.

In Chapter 7 we consider the algebraic path problem on concurrent systems of constant-

treewidth components. Here the weight function assigns weights to global transitions of

the concurrent system (as opposed to local weights for each component). We make use of

our balancing notion of tree decompositions from Chapter 2 to provide several algorithmic

tradeoffs between preprocessing and query times. Our results come with several optimality

guarantees, which imply that further complexity improvements over our algorithms are

either unlikely, or impossible.

In Chapter 8 we study three classic quantitative verification properties, namely, the minimum

mean-payoff, minimum ratio, and minimum initial credit for energy properties. Although

these properties cannot be expressed in the algebraic path framework, they are closely

related to the shortest path problem. We provide several algorithms for exact and approx-

imate solutions to the minimum mean-payoff and minimum ratio problems on graphs

of constant treewidth. We also study the minimum initial credit for energy problem on

arbitrary graphs, and obtain a significant improvement over the existing approach. Fi-

nally, we present a significant algorithmic improvement for the problem restricted on

constant-treewidth graphs.
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In Chapter 9 we present a new dynamic partial-order reduction method for stateless model

checking of concurrent programs, called the Data-centric Partial Order Reduction

(DC-DPOR). Our algorithm is based on a new equivalence between traces, called the

observation equivalence. DC-DPOR explores a coarser partitioning of the trace space than

any exploration method based on the standard Mazurkiewicz equivalence. Depending

on the program, the new partitioning can be even exponentially coarser. Additionally,

DC-DPOR spends only polynomial time in each explored class.

In Chapter 10 we study the competitive analysis and competitive synthesis problems on real-

time schedulers for firm-deadline tasks. Given a fixed taskset, we first provide algorithms

for computing the competitive ratio of any real-time scheduler represented as a labeled

transition system, and then establish the computational complexity of synthesizing an

optimal real-time scheduler for that taskset (i.e., one that achieves the largest possible

competitive ratio).
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2 Preliminaries

2.1 Introduction

In this chapter we introduce some notation that will be helpful for the exposition of the ideas

in this dissertation. The main formalism is that of finite graphs and recursive (infinite) graphs

(or RSMs), whose transitions are annotated with weights coming from the domain of a closed

semiring. We also introduce the notion of tree decompositions and treewidth, and present

several existing and new results regarding computing tree decompositions. One crucial result in

this section concerns the construction of strongly balanced tree decompositions. Informally, a

strongly balanced tree-decomposition is a binary tree-decomposition in which the number of

descendants of each bag is typically approximately half of that of its parent. This is a stronger

notion of balancing that the one found usually in the literature, which requires that the tree

decomposition simply has height logarithmic on its size. Strongly balanced tree decompositions

are of importance in Chapter 7, where we deal with concurrent systems of constant-treewidth

components.

Organization. The rest of this chapter is organized as follows.

1. In Section 2.2 we introduce some general notation.

2. In Section 2.3 we introduce notation on graphs and tree decompositions, and present

several facts regarding tree decompositions. Additionally, we state the algebraic path

problem on graphs.
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3. In Section 2.4 we introduce notation on RSMs, and state the algebraic path problem on

RSMs.

2.2 General Notation

Notation on sets and sequences. Given a number r ∈ N, we denote by [r] = {1, 2, . . . , r} the

natural numbers from 1 to r. Given a set X and a k ∈ N, we denote by Xk =
∏k

i=1 X , the k

times Cartesian product of X . A finite sequence x1, . . . xk is denoted for short by (xi)1⩽i⩽k or

(xi)1⩽i⩽k, and write (xi)i or (xi)i respectively when k is implied from the context. Similarly, we

write {xi}1⩽i⩽k, or simply {xi}i then k is implied from the context, to denote the set {x1, . . . xk}.

Given a sequence Y and integers i, j ⩾ 1 with i < j, we denote by Y [i, j] the subsequence of Y

from position i to position j (inclusive). Given a sequence Y , we denote by y ∈ Y the fact that y

appears in Y , and given additionally a set X , denote by Y ∩X the set of elements that appear

both in Y and X .

Semirings. We fix a closed semiring S = (Σ,⊕,⊗,0,1) where Σ is a countable set, ⊕ and ⊗

are binary operators on Σ, and 0,1 ∈ Σ, and the following properties hold:

1. ⊕ is infinitely associative, infinitely commutative, and 0 is the neutral element,

2. ⊗ is associative, and 1 is the neutral element,

3. ⊗ infinitely distributes over ⊕,

4. 0 absorbs in multiplication, i.e., ∀a ∈ Σ : a⊗ 0 = 0.

Additionally, we consider that

1. S idempotent, i.e., for every s ∈ Σ we have that s⊕ s = s, and

2. S is equipped with a closure operator ∗, such that ∀s ∈ Σ : s∗ = 1⊕(s⊗s∗) = 1⊕(s∗⊗s)

(i.e., the semiring is closed).

Conventionally, we let ⊕(∅) = 0 and ⊗(∅) = 1. The idempotence property defines a partial

order ⪯⊆ Σ× Σ, such that ∀s1, s2 ∈ Σ, we have that s1 ⪯ s2 iff s1 ⊕ s2 = s1.
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Computational model. Our model of computation is the standard RAM model with word size

W = Θ(log n). Several of the results presented here rely on, so called, “word tricks”, which

perform operations on Θ(log n) bits in constant time, by grouping the bits to O(1) machine

words. We also use constant-time lowest common ancestor queries, which also make use of word

tricks.

2.3 Graphs and Tree Decompositions

2.3.1 Graphs

In the current section we fix a semiring S = (Σ,⊕,⊗,0,1).

Graphs, weighted paths and semiring distances. We denote by G = (V,E,wt) a weighted

finite directed graph (henceforth called simply a graph) where V is a set of n nodes and

E ⊆ V × V is an edge relation of m edges, along with a weight function wt : E → Σ that

assigns to each edge of G an element from Σ. In several cases where the weight function is of no

interest, we will simply let G = (V,E) be a directed graph. The undirected variant of G is an

unweighted undirected graph G′ = (V,E ′) such that (u, v) ∈ E ′ iff (u, v) ∈ E or (v, u) ∈ E,

i.e., G′ is obtained from G by ignoring the direction on the edges. Given a set of nodes X ⊆ V ,

we denote by G[X] = (X,E ∩ (X ×X)) the subgraph of G induced by X . A path P : u⇝ v

is a sequence of nodes (x1, . . . , xk) such that x1 = u, xk = v, and for all 1 ⩽ i < k we have

(xi, xi+1) ∈ E. The length of P is |P | = k− 1, and a single node is itself a 0-length path. A path

P is simple if no node repeats in the path (i.e., the path does not contain a cycle). Given two paths

P1 = (x1, . . . xk) and P2 = (y1, yℓ) with xk = y1, we denote by P1 ◦ P2 the concatenation of P2

on P1. We use the notation x ∈ P to denote that a node x appears in P , and e ∈ P to denote

that an edge e appears in P . Given a set B ⊆ V , we denote by P ∩ B the set of nodes of B

that appear in P . Given a path P = (x1, . . . , xk), the weight of P is ⊗(P ) =
⨂

(wt(xi, xi+1))i

if |P | ⩾ 1 else ⊗(P ) = 1. Given nodes u, v ∈ V , the semiring distance (or simply, distance)

d(u, v) is defined as d(u, v) =
⨁

P :u⇝v⊗(P ), and d(u, v) = 0 if no such P exists.

Trees. A (rooted) tree T = (VT , ET ) is an undirected graph with a distinguished node r which

is the root such that there is a unique simple path P v
u : u ⇝ v for each pair of nodes u, v. We
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denote by |T | = |VT | the number of nodes in T . Given a tree T with root r, the level Lv(u) of

a node u is the length of the simple path P r
u from u to the root r, and every node in P r

u is an

ancestor of u. If v is an ancestor of u, then u is a descendant of v. Note that a node u is both an

ancestor and descendant of itself. For a pair of nodes u, v ∈ VT , the lowest common ancestor

(LCA) of u and v is the common ancestor of u and v with the largest level. The parent u of v

is the unique ancestor of v in level Lv(v)− 1, and v is a child of u. A leaf of T is a node with

no children. For a node u ∈ VT , we denote by T (u) the subtree of T rooted in u (i.e., the tree

consisting of all descendants of u). A tree is called k-ary if every node has at most k children

(e.g., in a binary tree every node has at most two children). A full k-ary tree is a k-ary tree in

which every non-leaf node has exactly k children. The height of T is maxu Lv(u) (i.e., it is the

length of the longest path P r
u ). Given a tree T , a connected component C ⊆ VT of T is a set of

nodes of T such that for every pair of nodes u, v ∈ C, the unique simple path P v
u in T visits only

nodes in C. We call the graph T [C] a contiguous subtree of T .

Balanced trees. A tree T = (VT , ET ) is called balanced if its height is O(log |VT |). Given two

constants 0 < β < 1 and γ ∈ N+, we say that a node u of T is (β, γ)-balanced if for every

descendant v of u with Lv(v)− Lv(u) ⩾ γ, we have that |T (v)| ⩽ β · |T (u)|. Intuitively, every

subtree rooted far below u must contain only a constant fraction of the nodes of T (u). A tree T

is called (β, γ)-balanced if every node in VT is (β, γ)-balanced.

The algebraic path problem. Given a closed semiring S = (Σ,⊕,⊗,0,1) and a weighted

graph G = (V,E,wt), the algebraic path problem for a pair of nodes (u, v) asks for the semiring

distance from u to v, defined as

d(u, v) =
⨁

P :u⇝v

wt(P )

In this dissertation we will deal with various small variations of this problem, such as, for

example, the single-source version, the all-pairs version, as well as dynamic versions of the

problem where some edge weights might change over time.

Hereinafter, we will use the term semiring distance or distance wrt a semiring to refer to the

general definition of d(u, v) introduced here. To stay consistent with the literature, we will refer

to the semiring distance wrt the tropical semiring simply as distance.
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Figure 2.1: A graph G with treewidth 2 (left) and a corresponding tree-decomposition Tree(G)

(right).

2.3.2 Tree Decompositions

Tree decompositions and treewidth [Robertson and Seymour, 1984]. Given a graph G, a

tree-decomposition Tree(G) = (VT , ET ) is a tree with the following properties.

C1: VT = {B1, . . . , Bb : for all 1 ⩽ i ⩽ b. Bi ⊆ V } and
⋃

Bi∈VT
Bi = V . That is, each

node of Tree(G) is a subset of nodes of G, and each node of G appears in some node of

Tree(G).

C2: For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi. That is, the endpoints of each

edge of G appear together in some node of Tree(G).

C3: For all Bi, Bj and any bag Bk that appears in the simple path Bi ⇝ Bj in Tree(G), we

have Bi ∩ Bj ⊆ Bk. That is, every node of G is contained in a contiguous subtree of

Tree(G).

To distinguish between the nodes of G and the nodes of Tree(G), the sets Bi are called bags. The

width of a tree-decomposition Tree(G) is the size of the largest bag minus 1 and the treewidth of

G is the width of a minimum-width tree decomposition of G. It follows from the definition that

if G has constant treewidth, then m = O(n). A graph has treewidth 1 precisely if its undirected

variant is a tree.

Notation on tree decompositions. Let G be a graph and T = Tree(G) a tree decomposition

of G. We denote by Lv(Bi) the level of Bi in Tree(G). For u ∈ V , we say that a bag B is
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the root bag of u if B is the bag with the smallest level among all bags that contain u, i.e.,

Bu = argminB∈VT : u∈B Lv (B). By definition, there is exactly one root bag for each node u. We

often write Bu for the root bag of node u, and denote by Lv(u) = Lv (Bu). Additionally, we

denote by B(u,v) the bag of the largest level that is the root bag of one of u, v. Finally, given a

bag B, we denote by

• T (B) the subtree of T rooted at B, by

• VT (B) the nodes of G that appear in the bags of T (B), and by

• VT (B) the nodes of G that appear in B and its ancestors in T .

Example 2.1 (Graph and tree decomposition). The treewidth of a graph G is an intuitive

measure which represents the proximity of G to a tree, though G itself not a tree. The treewidth

of G is 1 precisely if G is itself a tree [Robertson and Seymour, 1984]. Consider an example

graph and its tree decomposition shown in Fig. 2.1. It is straightforward to verify that all the

three conditions of tree decomposition are met. Each node in the tree is a bag, and labeled by the

set of nodes it contains. Since each bag contains at most three nodes, the tree decomposition has

width 2. The bag {2, 8, 10} is the root of Tree(G), the root bag of node 6 is B6 = {6, 7, 9}, the

level of node 9 is Lv(9) = Lv({8, 9, 10}) = 1, and the bag of the edge (9, 1) is B(9,1) = {1, 8, 9}.

We have VT (B6) = {6, 7, 9, 4, 5} and VT (B6) = {6, 7, 9, 8, 10, 2}. The subtree T (B6) is shown

in bold.

Separator property. A key property of a tree-decomposition Tree(G) is that the nodes of

each bag B form a separator of G. Removing B splits Tree(G) into a number of connected

components. The separator property states that every path between nodes that appear in bags

of different components has to go through some node in B. This is formally stated in the

following lemma. This separator property serves as a basis for some useful lemmas regarding

node distances on a graph given a tree-decomposition (Lemmas 2.3 and 2.4).

Lemma 2.1 ([Bodlaender, 1998, Lemma 3]). Consider a graph G = (V,E), a tree-

decomposition T = Tree(G), and a bag B of T . Let (Ci)i be the components of T created

by removing B from T , and let Vi be the set of nodes that appear in bags of component Ci. For

every i ̸= j, nodes u ∈ Vi, v ∈ Vj and path P : u⇝ v, we have that P ∩B ̸= ∅ (i.e., all paths

between u and v go through some node in B).
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B1 B2 B3 B4

u x2 x3 x4

x2 x3 x4 v

Figure 2.2: Illustration of Lemma 2.3. If P is the unique simple path B1 ⇝ B4 in Tree(G),

then there exist (not necessarily distinct) xi ∈ Bi−1 ∩ Bi with 1 < i ⩽ 4 such that d(u, v) =

d(u, x2)⊗ d(x2, x3)⊗ d(x3, x4)⊗ d(x4, v).

Using Lemma 2.1, we prove the following stronger version of the separator property, which will

be useful throughout the paper.

Lemma 2.2. Consider a graph G = (V,E) and a tree-decomposition Tree(G). Let u, v ∈ V ,

and consider two distinct bags B1 and Bj such that u ∈ B1 and v ∈ Bj . Let P ′ : B1, B2, . . . , Bj

be the unique simple path in T from B1 to Bj . For each i ∈ {2, . . . , j} and for each path

P : u⇝ v, there exists a node xi ∈ (Bi−1 ∩Bi ∩ P ).

Proof. Let T = Tree(G). Fix a number i ∈ {2, . . . , j}. We argue that for each path P : u⇝ v,

there exists a node xi ∈ (Bi−1 ∩Bi ∩ P ). We construct a tree T ′, which is similar to T except

that instead of having an edge between bag Bi−1 and bag Bi, there is a new bag B, that contains

the nodes in Bi−1 ∩Bi, and there is an edge between Bi−1 and B and one between B and Bi. It

is easy to see that T ′ satisfies the properties C1-C3 of a tree-decomposition of G. By Lemma 2.1,

each bag B′ in the unique path P ′′ : B1, . . . , Bi−1, B,Bi, . . . , Bj in T ′ separates u from v in G.

Hence, each path u⇝ v must go through some node in B, and the result follows.

The following lemma states that for nodes that appear in bags B, B′ of the tree-decomposition

T = Tree(G), their distance can be written as a sum of distances d(xi, xi+1) between pairs of

nodes (xi, xi+1) that appear in bags Bi that constitute the unique B ⇝ B′ path in T . See Fig. 2.2

for an illustration.

Lemma 2.3. Consider a weighted graph G = (V,E,wt) and a tree-decomposition Tree(G).

Let u, v ∈ V , and P ′ : B1, B2, . . . , Bj be a simple path in T such that u ∈ B1 and v ∈ Bj . Let

A = {u} ×
(∏

1<i⩽j (Bi−1 ∩Bi)
)
× {v}. Then d(u, v) =

⨁
(x1,...,xj+1)∈A

⨁j
i=1 d(xi, xi+1).

Proof. Consider a witness path P : u ⇝ v such that wt(P ) = d(u, v). By Lemma 2.2,

there exists some node xi ∈ (Bi−1 ∩ Bi ∩ P ), for each i ∈ {1, . . . , j}. It easily follows that

d(u, v) =
⨂j

i=1 d(xi, xi+1) with x1, . . . xj+1 ∈ A.
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Lemma 2.3 reduces the problem of computing the distance d(u, v) between any pair (u, v), to

computing the local distance between every pair nodes that appear together in some bag. The

following crucial lemma states that given a tree decomposition of constant width, such local

distances can be computed in time linear in the size of the tree-decomposition.

Lemma 2.4 ([Chaudhuri and Zaroliagis, 1995, Lemma 7]). Given a weighted graph G =

(V,E,wt) of treewidth t and a tree-decomposition T = (VT , ET ) of G of width O(t), we can

compute for all bags B ∈ VT a local distance map LDB : B ×B → Σ with LDB(u, v) = d(u, v)

in total time O(|VT | · t3) and space O(|VT | · t2).

We note that the above lemma is found as [Chaudhuri and Zaroliagis, 1995, Lemma 7], where

the complexity bounds are stated at a factor t larger. However, that lemma is concerned with

also computing a shortest-path witness of each local distance. It follows easily from the proofs

of [Chaudhuri and Zaroliagis, 1995, Lemma 7] that if we are only interested in the local distances,

the obtained upperbounds are those stated in Lemma 2.4.

Various types of tree decompositions. There exist various types of tree decompositions, mostly

based on the number of elements a bag B differs from its neighbors Bi [Bodlaender, 1998].

Here we introduce a few more notions, which will be useful throughout. As is often the case,

transforming a tree decomposition from one type to another is typically an efficient operation.

Let G be a graph of treewidth t, and Tree(G) = (VT , ET ) a tree decomposition of G. Then,

Tree(G) is called

• α-approximate, for some fixed α ∈ N, if it has width at most α · (t+ 1)− 1;

• (α, β, γ)-balanced if it is α-approximate and (β, γ)-balanced;

• nicely rooted, if every bag is the root bag of at most one node of G;

• small, if |VT | = O(n
t
);

• smooth, if (i) for every bag B ∈ VT we have |B| = t+ 1, and (ii) for every pair of bags

(B1, B2) ∈ ET we have |B1 ∩B2| = t.

Note that the various notions on trees carry over to tree decompositions, e.g., Tree(G) might be

k-ary, balanced e.t.c.
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Constructing and manipulating tree decompositions. Given a graph G, the problem of

determining the treewidth t of G and constructing a tree-decomposition Tree(G) of width t is

known to be NP-complete [Arnborg et al., 1987]. However, the problem is fixed-parameter

tractable (FPT) on the treewidth, and for constant-treewidth graphs there exist various linear-time,

or almost-linear-time algorithms for constructing a tree decomposition Tree(G) whose width

either achieves, or approximates the treewidth of G [Bodlaender, 1996; Bodlaender et al., 2013].

Here we will make use of the following theorem, which states that balanced tree decompositions

of constant-treewidth graphs can be constructed efficiently in both time and space.

Theorem 2.1. For every graph G with n nodes and bounded treewidth t = O(1), a balanced

binary tree decomposition Tree(G) of O(n) bags and

1. width 3 · t + 2 can be constructed in O(n) time and space [Bodlaender and Hagerup,

1995],

2. width 4 · t+ 3 can be constructed in DLOGSPACE(and hence polynomial time) [Elberfeld

et al., 2010].

In several cases, we find it useful to work with binary tree decompositions. The following lemma

states that any tree decomposition can be made binary efficiently, while preserving the width and

increasing the height by at most a logarithmic term.

Lemma 2.5 (Binary Tree Decompositions). Let G be a graph, and T1 = (VT1 , ET1) be a tree

decomposition G with width t and height η. A binary tree decomposition T2 = (VT2 , ET2) of

G with width t, size |VT2| = O(VT1) and height O(η + log |VT1|) can be constructed in O(n · t)

time.

Proof. We turn T1 to a binary tree-decomposition T2 = (V2, E2), as follows. We traverse T1

bottom-up, and we replace every bag B of T1 with k > 2 children with a binary tree TB of height

⌊log k⌋. The leaves of TB are the children of B, whereas every internal node of TB consists of a

copy of B. We call these copies the new bags of T2. Note that TB has size O(k), and thus T2

has size O(n). Finally, note that a bag in T2 has a single child iff it is not a new bag in T2, and it

has a single child in T1 as well. Hence every path from the root to a leaf of T2 can traverse at

most O(log |VT1|) new bags, and thus the height of T2 increases by at most a O(log |VT1|) term

compared to T1. Finally, it is easy to see that T2 is a tree decomposition of G, and has the same

width as T1. The time bound follows trivially.
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The following lemma states that a tree decomposition can be made nicely rooted efficiently.

Lemma 2.6 (Nicely-rooted Tree Decompositions). Given a tree decomposition Tree(G) of G

of width O(t) and O(n) bags, a nicely rooted, binary tree decomposition Tree′(G) of width O(t)

can be constructed in O(n · t) time. If t = O(1) and Tree(G) is balanced, then so is Tree′(G).

Proof. First, Tree(G) can be turned into a binary tree decomposition T1 by Lemma 2.5, and T1

remains balanced. Then, we can make T1 nicely rooted simply by replacing each bag B which is

the root of k > 1 nodes x1, . . . xk with a chain of bags B1, . . . , Bk = B, where each Bi is the

parent of Bi+1, and Bi+1 = Bi ∪ {xi+1}. Note that this keeps the tree binary and increases its

height by at most a factor t, hence if t = O(1) and Tree(G) is balanced, then the resulting tree is

also balanced.

Hence, combined with Theorem 2.1, a nicely rooted, balanced binary tree decomposition of a

constant-treewidth graph can be constructed in O(n) time. The following lemma states that a

tree decomposition can be made small efficiently.

Lemma 2.7 (Small Tree Decompositions). Given a tree decomposition Tree(G) of G of width

O(t) and O(n) bags, a small, binary tree decomposition Tree′(G) of width O(t) can be con-

structed in O(n · t) time. Moreover, if Tree(G) is balanced, then so is Tree′(G).

Proof. Let k = O(t) be the width of Tree(G). The construction is achieved using the following

steps.

1. Following the steps of [Bodlaender, 1996, Lemma 2.4], we turn Tree(G) to a smooth

tree-decomposition T1 = (V1, E1). The process of [Bodlaender, 1996, Lemma 2.4] can

be performed O(n · t) time and increases the height by at most a factor 2, hence if

Tree(G) is balanced, T1 is also balanced, and by [Bodlaender, 1996, Lemma 2.5], we have

|V1| = O(n).

2. We turn T1 to a binary decomposition T2 in O(n · t) time using Lemma 2.5. Note that if

T1 is balanced, then so is T2.

3. We construct a tree-decomposition T3 = (V3, E3) by partitioning T2 to disjoint connected

components of size between k
2

and k each (the last component might have size less than
k
2
) and contracting each such component to a single bag in T3. Since T2 is smooth, the
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number of nodes in the union of the bags of each component is at most 2 · k. Hence the

width of T3 is O(k). The partitioning is done as follows. We traverse T2 bottom-up and

group bags into components in a greedy way. In particular, given that the traversal is on a

current bag B, we keep track of the number of bags iB below B (not including B) that

have not been grouped to a component yet. The first time we find iB ⩾ t, let B′ be the

child of B with the largest number iB′ among the children of B. We group B′ and its

ungrouped descendants into a new component C, and continue with the traversal. Observe

that the size of C is k
2
⩽ |C| < k.

4. Finally, we construct Tree′(G) by turning T3 to a binary tree-decomposition as in Step 2.

Note that all steps above require O(n · t) time. The desired result follows.

Hence, combined with Theorem 2.1, a small, balanced binary tree decomposition of a constant-

treewidth graph can be constructed in O(n) time. The following important theorem states that

(α, β, γ)-balanced tree decompositions can be constructed efficiently. Recall that the factor α

determines how close to optimal the width of the tree decomposition is, while the parameters

(β, γ) determine how strongly-balanced it is. Theorem 2.2 provides a tradeoff between the two

properties, by constructing tree decompositions that have tunable width and balance, based on

two parameters δ and λ. A tree decomposition can be made more strongly balanced, if one

allows its width to increase. As the proof is technical, we provide only a sketch here, and devote

the next subsection in the formal proof.

Theorem 2.2 ((α, β, γ)-tree decompositions). For every graph G with n nodes and constant

treewidth, for any fixed δ > 0 and λ ∈ N with λ ⩾ 2, let α = 4·λ
δ

, β =
(
1+δ
2

)λ−1, and γ = λ. A

binary (α, β, γ) tree-decomposition Tree(G) with O(n) bags can be constructed in O(n · log n)

time and O(n) space.

(Sketch). Here we only outline the construction. The formal proof can be found in Section 2.3.3.

The construction considers that a tree-decomposition Tree′(G) of width t and O(n) bags is given

(which can be obtained using e.g. [Bodlaender, 1996] in O(n) time). Given the parameters

δ > 0 and λ ∈ N with λ ⩾ 2, Tree′(G) is turned to an (α, β, γ) tree-decomposition, for α = 4·λ
δ

,

β =
(
1+δ
2

)λ−1, and γ = λ, in two conceptual steps.

1. A tree of bags RG is constructed, which is (β, γ)-balanced.
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Nh(C) B C2C1

Figure 2.3: Illustration of one recursive step of Rank on a component C (gray). C is split into

two sub-components C1 and C2 by removing a list of bags X = (Bi)i. Once every λ recursive

calls, X contains one bag, such that the neighborhood Nh(Ci) of each Ci is at most half the size

of Nh(C) (i.e., the red area is split in half). In the remaining λ− 1 recursive calls, X contains m

bags, such that the size of each Ci, is at most 1+δ
2

fraction the size of C. (i.e., the gray area is split

in almost half).

2. RG is turned to an α-approximate tree decomposition of G.

The first construction is obtained by a recursive algorithm Rank, which operates on inputs

(C, ℓ), where C is a component of Tree′(G), and ℓ ∈ [λ] specifies the type of operation the

algorithm performs on C. Given such a component C, we denote by Nh(C) the neighborhood

of C, defined as the set of bags of Tree′(G) that are incident to C. Informally, on input (C, ℓ),

the algorithm partitions C into two sub-components C1 and C2 such that either (i) the size of

each Ci is approximately half the size of C, or (ii) the size of the neighborhood of each Ci is

approximately half the size of the neighborhood of C. In more detail,

1. If ℓ > 0, then C is partitioned into components Y = (C1, . . . , Cr), by removing a list of

bags X = (B1, . . . Bm), such that |Ci| ⩽ δ
2
· |C|. The union of X yields a new bag B in RG.

Then Y is merged into two components C1, C2 with |C1| ⩽ |C2| ⩽ 1+δ
2
· |C|. Finally, each

Ci is passed on to the next recursive step with ℓ = (ℓ+ 1) mod λ.

2. If ℓ = 0, then C is partitioned into two components C1, C2 such that |Nh(Ci) ∩ Nh(C)| ⩽
|Nh(C)|

2
by removing a single bag B. This bag becomes a new bag B in RG, and each Ci is

passed on to the next recursive step with ℓ = (ℓ+ 1) mod λ.

Fig. 2.3 provides an illustration. The second construction is obtained simply by inserting in each

bag B of RG the nodes contained in the neighborhood Nh(C) of the component C from which B

was constructed. Finally, the tree decomposition is made binary using Lemma 2.5, which keeps

the size and height of the tree asymptotically the same.
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Remark 2.1. The notion of balanced tree decompositions exists in the literature [Elberfeld et al.,

2010; Baruah and Hickey, 1998], but balancing only requires that the height of the tree is

logarithmic in its size. In Theorem 2.2 we develop a stronger notion of balancing, which will

become crucial in obtaining the results of latter sections.

2.3.3 Proof of Theorem 2.2

We now present in detail the construction of an (α, β, γ)-balanced tree decomposition. Given

constants 0 < δ ⩽ 1 and λ ⩾ 2, throughout this section we fix

α =
4 · λ
δ

; β =

(
1 + δ

2

)λ−1

; γ = λ

We show how given a graph G of treewidth t and a tree-decomposition Tree′(G) of b bags and

width t, we can construct in O(b · log b) time and O(b) space a (α, β, γ) tree-decomposition with

b bags. That is, the resulting tree-decomposition has width at most α · (t + 1), and for every

bag B and descendant B′ of B that appears γ levels below, we have that |T (B′)| ⩽ β · |T (B)|

(i.e., the number of bags in T (B′) is at most β times as large as that in T (B)). The result is

established in two steps.

Tree components and operations Split and Merge. Given a tree-decomposition T = (VT , ET ),

and a connected component C of T , the neighborhood Nh(C) of C is the set of bags in VT \ C

that have a neighbor in C, i.e.

Nh(C) = {B ∈ VT \ C : ({B} × C) ∩ ET ̸= ∅}

Given a component C, we define the operation Split as Split(C) = (X ,Y), where X ⊆ C is

a list of bags (B1, . . . B 2
δ
) and Y is a list of sub-components (C1, . . . Cr) such that removing

each bag Bi from C splits C into the subcomponents Y , and for every i we have |Ci| ⩽ δ
2
· |C|.

Note that since C is a component of a tree, we can find a single separator bag that splits C into

sub-components of size at most |C|
2

. Applying this step recursively for log 2
δ

levels yields the

desired separator set X . For technical convenience, if this process yields less than 2
δ

bags, we

repeat some of these bags until we have 2
δ

many.
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Consider a list of components Y = (C1, . . . Cr), and let z =
∑

i |Ci|. Let j be the largest integer

such that
∑j

i=1 |Ci| ⩽
z
2
. We define the operation Merge(Y) = (C1, C2), where C1 =

⋃j
i=1 Ci

and C2 =
⋃r

i=j+1 Ci. The following claim is trivially obtained.

Claim 2.1. If |Ci| < δ
2
· z for all i, then |C1| ⩽ |C2| ⩽ 1+δ

2
· z.

Proof. By construction, 1−δ
2
· z < |C1| ⩽ 1

2
· z, and since C1 and C2 partition Y , we have

|C1|+ |C2| = z. The result follows.

Construction of a (β, γ)-balanced rank tree. In the following, we consider that TG =

Tree′(G) = (VT , ET ) is a tree-decomposition of G and has |VT | = b bags. Given the pa-

rameters λ ∈ N with λ ⩾ 2 and 0 < δ < 1, we use the following algorithm Rank to construct a

tree of bags RG. Rank operates recursively on inputs (C, ℓ) where C is a component of TG and

ℓ ∈ {0} ∪ [λ− 1], as follows.

1. If |C| · δ
2
⩽ 1 , construct a bag B =

⋃
B∈C B, and return B.

2. Else, if ℓ > 0 , let (X ,Y) = Split(C). Construct a bag B =
⋃

Bi∈X Bi, and let (C1, C2) = Merge(Y).

Call Rank recursively on input (C1, (ℓ + 1) mod λ) and (C2, (ℓ + 1) mod λ), and let

B1, B2 be the returned bags. Make B1 and B2 the left and right child of B, and return the

resulting tree.

3. Else, if ℓ = 0, if |Nh(C)| > 1, find a bag B whose removal splits C into connected components

C1, C2 with |Nh(Ci)∩Nh(C)| ⩽ |Nh(C)|
2

. Call Rank recursively on input (C1, (ℓ+1) mod λ)

and (C2, (ℓ+1) mod λ), and let B1, B2 be the returned bags. Make B1 and B2 the left and

right child of B, and return the resulting tree. Finally, if |Nh(C)| ⩽ 1, call Rank recursively

on input (C, (ℓ− 1) mod λ), and return the tree obtained by this recursive call.

Algorithm 1 provides the formal description of the algorithm.

In the following we use the symbols B and B to refer to bags of TG and RG respectively.

Given a bag B, we denote by C(B) the input component of Rank when B was constructed, and

define the neighborhood of B as Nh(B) = Nh(C(B)). Additionally, we denote by Bh(B) the

set of separator bags B1, . . . Br of C that were used to construct B. It is straightforward that

Bh(B1) ∩ Bh(B2) = ∅ for every distinct B1 and B2.
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Algorithm 1: Rank
Input: A component C of TG, a natural number ℓ ∈ [λ]

Output: A rank tree RG

1 Assign T ← an empty tree

2 if |C| · δ2 ⩽ 1 then

3 Assign B ←
⋃

B∈C B and make B the root of T

4 else if ℓ > 0 then

5 Assign (X ,Y)← Split(C)

6 Assign B ←
⋃

Bi∈X Bi

7 Assign (C1, C2)← Merge(Y)

8 Assign T1 ← Rank(C1, (ℓ+ 1) mod λ)

9 Assign T2 ← Rank(C2, (ℓ+ 1) mod λ)

10 Make B the root of T and T1 and T2 its left and right subtree

11 else

12 if |Nh(C)| > 1 then

13 Let B ← a bag of C whose removal splits C to C1, C2 with |Nh(Ci) ∩ Nh(C)| ⩽ |Nh(C)|
2

14 Assign B ← B

15 Assign T1 ← Rank(C1, (ℓ+ 1) mod λ)

16 Assign T2 ← Rank(C2, (ℓ+ 1) mod λ)

17 Make B the root of T and T1 and T2 its left and right subtree

18 else

19 Assign T ← Rank(C, (ℓ− 1) mod λ)

20 end

21 end

22 return T
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Claim 2.2. Let B and B′ be respectively a bag and its parent in RG. Then Nh(B) ⊆ Nh(B′) ∪

Bh(B′), and thus |Nh(B)| ⩽ |Nh(B′)|+ 2
δ
.

Proof. Every bag in Nh(C(B)) is either a bag in Nh(C(B′)), or a separator bag of C(B′), and

thus a bag of Bh(B′).

Note that every bag B of TG belongs in Bh(B) of some bag B of RG, and thus the bags of RG

already cover all nodes and edges of G (i.e., properties C1 and C2 of a tree decomposition). In the

following we show how RG can be modified to also satisfy condition C3, i.e., that every node u

appears in a contiguous subtree of RG. Given a bag B, we denote by NhV(B) = B∪
⋃

B∈Nh(B) B,

i.e., NhV(B) is the set of nodes of G that appear in B and its neighborhood. In the sequel, to

distinguish between paths in different trees, given a tree of bags T (e.g. TG or RG) and bags B1,

B2 of T , we write B1 ⇝T B2 to denote the unique simple path from B1 to B2 in T .

We say that a pair of bags (B1, B2) form a gap of some node u in a tree of bags T (e.g., RG) if

u ∈ B1 ∩ B2 and for the unique simple path P : B1 ⇝T B2 we have that |P | ⩾ 2 (i.e., there

is at least one intermediate bag in P ) and for all intermediate bags B in P we have u ̸∈ B.

The following crucial lemma shows that if B1 and B2 form a gap of u in R̂G, then for every

intermediate bag B in the path P : B1 ⇝RG
B2, u must appear in some bag of Nh(B).

Lemma 2.8. For every node u, and pair of bags (B1, B2) that form a gap of u in RG, such that

B1 is an ancestor of B2, for every intermediate bag B in P : B1 ⇝RG
B2 in RG, we have that

u ∈ NhV(B).

Proof. Fix any such a bag B, and since B1 and B2 form a gap of u, there exist bags B1 ∈ Bh(B1)

and B2 ∈ Bh(B2) with u ∈ B1 ∩B2. Consider the time point j that bag B was constructed. Let

Br be the rightmost bag of the path P1 : B1 ⇝TG
B2 that had been chosen as a separator in

some previous step j′ < j of the algorithm. Note that B1 has been chosen as such a separator,

therefore Br is well defined. We argue that Br ∈ Nh(B), which implies that u ∈ NhV(B). This

is done in two steps.

1. Since B2 is a descendant of B, we have that B2 ∈ C(B), i.e., B2 is a bag of the component

when B was constructed.
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Br B2 C(B) Nh(B)

Figure 2.4: Illustration of Lemma 2.8. Since B2 belongs to C(B) and the blue sub-component

has not been split yet, the bag Br is in the neighborhood of the blue sub-component, and thus in

the neighborhood of C(B).

2. By the choice of Br, for every intermediate bag Bi in the path Br ⇝TG
B2 we have that

at the time B was constructed, each Bi belongs to the same component as B2, and hence

Br is incident to that component.

These two points imply that Br ∈ Nh(B). From the properties of tree decomposition we know

that u ∈ Br. It follows that u ∈ NhV(B), as desired. Figure 2.4 provides an illustration of the

argument.

Turning the rank tree to a tree decomposition. Lemma 2.8 suggests a way to turn the rank

tree RG to a tree-decomposition. Let R̂G = Replace(RG) be the tree obtained by replacing each

bag B of RG with NhV(B). For a bag B in RG let B̂ be the corresponding bag in R̂G and vice

versa.

Claim 2.3. If there is a pair of bags B̂1, B̂2 that form a gap of some node u in R̂G, then there is a

pair of bags B̂′
1, B̂′

2 that also form a gap of u, and B̂′
1 is ancestor of B̂′

2.

Proof. First, note that neither parent of the bags B̂1 and B̂2 in R̂G contains u. Assume that neither

of B̂1, B̂2 is ancestor of the other.

1. If for some i ∈ {1, 2} there is no bag Bi ∈ Bh(Bi) such that u ∈ Bi, then u ∈ NhV(Bi)\Bi
and hence there is an ancestor B′

i of Bi such that u ∈ NhV(B′
i). Thus B̂′

i and B̂i form a gap

of u in R̂G.

2. Else, there exists a B1 ∈ Bh(B1) and B2 ∈ Bh(B2) such that u ∈ B1 ∩B2. Let B be first

bag in the path B1 ⇝TG
B2 that was chosen as a separator. We have B ∈ Bh(B) for some
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ancestor B of B1 and B2, therefore u ∈ NhV(B), and thus B̂ forms a gap of u with both

B̂1 and B̂2 in R̂G.

It follows that in both cases there exists an ancestor B̂′
i of some B̂i so that the two form a gap of

u in R̂G.

The following lemma states that R̂G is a tree decomposition of G.

Lemma 2.9. R̂G = Replace(RG) is a tree-decomposition of G.

Proof. It is straightforward to see that the bags of R̂G cover all nodes and edges of G (properties

C1 and C2 of the definition of tree-decomposition), because for each bag B, we have that B ⊆ B̂.

It remains to show that every node u appears in a contiguous subtree of R̂G (i.e., that property C3

is satisfied).

Assume towards contradiction otherwise, and by Claim 2.3 it follows that there exist bags B̂1 and

B̂2 in R̂G that form a gap of some node u such that B̂1 is an ancestor of B̂2. Let P̂ : B̂1 ⇝R̂G
B̂2

be the path between them, and P : B1 ⇝RG
B2 the corresponding path in RG. By Lemma 2.8 we

have u ̸∈ B1 ∩ B2, otherwise for every intermediate bag B ∈ P̂ we would have u ∈ NhV(B) and

thus u ∈ B̂. Additionally, we have u ∈ B2, otherwise by Claim 2.2, we would have u ∈ NhV(B′
2),

where B′
2 is the parent of B2, and thus u ∈ B̂′

2, contradicting the assumption that B̂1 and B̂2 form

a gap of u. Hence u ̸∈ B1. A similar argument as that of Claim 2.3 shows that for the parent B′
1

of B1, we have that u ∈ B′
1, and wlog, take B′

1 to be the lowest ancestor of B1 with this property.

Then B′
1 is also an ancestor of B2, and B′

1 and B2 form a gap of u in RG. Then by Lemma 2.8, for

every intermediate bag B in the path B′
1 ⇝RG

B2 we have that u ∈ NhV(B), thus u ∈ B̂. Since

the path B̂1 ⇝ R̂GB̂2 is a suffix of B̂′
1 ⇝R̂G

B̂2, we have that B̂1 and B̂2 cannot form a gap of u.

We have thus arrived at a contradiction, and the desired result follows.

Properties of the tree-decomposition R̂G. Lemma 2.9 states that R̂G obtained by replacing each

bag of RG with NhV(B) is a tree-decomposition of G. The remaining of the section focuses

on showing that R̂G is a (α, β, γ) tree-decomposition of G, and that it can be constructed in

O(b · log b) time and O(b) space. Recall the definition of the parameters

α =
4 · λ
δ

; β =

(
1 + δ

2

)λ−1

; γ = λ

Lemma 2.10. The following assertions hold:
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1. Every bag B̂ of R̂G is (β, γ)-balanced.

2. For every bag B̂ of R̂G, we have |B̂| ⩽ α · (t+ 1).

Proof. We prove each item separately.

1. For every bag B constructed by Rank, in at least γ − 1 out of every γ levels, Item 2 of the

algorithm applies, and by Claim 2.1, the recursion proceeds on components C1 and C2 that

are at most 1+δ
2

times as large as the input component C in that recursion step. Thus B is

(β, γ)-balanced in RG, and hence B̂ is (β, γ)-balanced in R̂G.

2. It suffices to show that for every bag B, we have |Nh(B)| ⩽ α − 1 = 2 · (2
δ
) · λ − 1.

Assume towards contradiction otherwise. Let B be the first bag that Rank constructed such

that |Nh(B)| ⩾ 2 · (2
δ
) · λ. Let B′ be the lowest ancestor of B in RG that was constructed

by Rank on some input (C, ℓ) with ℓ = 1, and let B′′ be the parent of B′ in RG (note that

B′ can be B itself). By Item 3 of Rank, it follows that |Nh(B′)| ⩽ ⌊ |Nh(B
′′)|

2
⌋ + 1. Note

that B′ is at most λ − 1 levels above B (as we allow B′ to be B). By Claim 2.2, the

neighborhood of a bag can increase by at most (2
δ
) from the neighborhood of its parents,

hence Nh(B′) ⩾ (2
δ
) · (λ + 1). The last two inequalities lead to |Nh(B′′)| ⩾ 2 · (2

δ
) · λ,

which contradicts our choice of B.

The desired result follows.

Example 2.2 (Balancing a tree decomposition). Fig. 2.5 illustrates an example of R̂G con-

structed out of a tree-decomposition Tree′(G). First, Tree′(G) is turned into a binary and

balanced tree RG and then into a binary and balanced tree R̂G. If the numbers are pointers

to bags, such that Tree′(G) is a tree-decomposition for G, then R̂G is a binary and balanced

tree-decomposition of G. The values of λ and δ are immaterial for this example, as R̂G becomes

perfectly balanced (i.e., (1
2
, 1)-balanced).

We conclude this subsection with the proof of Theorem 2.2.

Proof of Theorem 2.2. By Theorem 2.1, an initial tree-decomposition Tree′(G) of G with width

t and b = O(n) bags can be constructed in O(n) time. Lemma 2.9 and Lemma 2.10 prove that

the constructed R̂G is a (α, β, γ) tree-decomposition of G. The time and space complexity come

from the construction of RG by the recursion of Rank. It can be easily seen that every level of
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Figure 2.5: Given the tree-decomposition Tree(G) on the left, the graph in the middle is the

corresponding RG and the one on the right is the corresponding tree-decomposition R̂G =

Replace(RG) after replacing each bag B with NhV(B).

the recursion processes disjoint components Ci of Tree′(G) in O(|Ci|) time, thus one level of

the recursion requires O(b) time in total. There are O(log b) such levels, since every λ levels,

the size of each component has been reduced to at most a factor
(
1+δ
2

)λ−1. Hence the time

complexity is O(b · log b) = O(n · log n). The space complexity is that of processing a single

level of the recursion, hence O(b) = O(n).

2.4 Recursive State Machines

Recursive State Machines (RSMs). A single-entry single-exit recursive state machine (RSM

from now on) over an alphabet Σ, as defined in [Alur et al., 2005], is a set RSM =

{A1, A2, . . . , Ak}, such that for each 1 ⩽ i ⩽ k, the component state machine (CSM)

Ai = (Bi, Yi, Vi, Ei,wti), where Vi = Ni ∪ {eni} ∪ {exi} ∪ Callsi ∪ Returnsi, consists of:

• A set Bi of bi boxes.

• A map Yi, mapping each box in Bi to an index in {1, 2, . . . , k}. We say that a box b ∈ Bi

corresponds to the CSM with index Yi(b).

• A set Vi of nodes, consisting of the union of the sets Ni, {eni}, {exi}, Callsi and Returnsi.

The number ni is the size of Vi. Each of these sets, besides Vi, are w.l.o.g. assumed to be

pairwise disjoint.

– The set Ni is the set of internal nodes.

– The node eni is the entry node.
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– The node exi is the exit node.

– The set Callsi is the set of call nodes. Each call node is a pair (x, b), where b is a box

in Bi and x is the unique entry node enYi(b) of the corresponding CSM with index

Yi(b).

– The set Returnsi is the set of return nodes. Each return node is a pair (y, b), where b

is a box in Bi and y is the unique exit node exYi(b) of the corresponding CSM with

index Yi(b).

• A set Ei of internal edges. Each edge is a pair in (Ni ∪ {eni} ∪Returnsi)× (Ni ∪ {exi} ∪

Callsi).

• A map wtiEi → Σ, mapping each edge in Ei to a label in the domain Σ of the semiring S.

We let N =
⋃

iNi, E =
⋃

i Ei B =
⋃

i Bi, V =
⋃

i Vi, En = {eni}i, Ex = {exi}i Calls =⋃
i Callsi and Returns =

⋃
i Returnsi. Additionally, we let ni = |Ni|, n = |N |, m = |Ei|,

m = |E|, and denote by wt : E → Σ the union of all weight functions {wti}i.

Control-flow graphs of CSMs and the treewidth of RSMs. Given an RSM RSM =

{A1, A2, . . . , Ak}, the control-flow graph Gi = (Vi, E
′
i) of CSM Ai consists of Vi as the set of

nodes and E ′
i as the set of edges, where E ′

i consists of the edges Ei of Ai, and for each box b, the

call node (v, b) of that box (i.e. for v = enYi(b)) has an edge to the return node (v′, b) of that box

(i.e. for v′ = exYi(b)). We say that the RSM has treewidth t, if t is the smallest integer such that

for each index 1 ⩽ i ⩽ k, the graph Gi = (Vi, E
′
i) has treewidth at most t.

It is known that the control-flow graphs of structured programs from most programming lan-

guages have constant treewidth. This was first proved in [Thorup, 1998], and later followed by

other works which extend the result to other programming languages. (e.g. [Burgstaller et al.,

2004]).

Theorem 2.3 ([Thorup, 1998; Burgstaller et al., 2004]). The following bounds hold for the

treewidth of control-flow graphs of programs from various programming languages.

• Goto-free Algol and Pascal programs have control-flow graphs of treewidth ⩽ 3.

• All Modula-2 programs have control-flow graphs of treewidth ⩽ 5.
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• Goto-free C programs have control-flow graphs of treewidth ⩽ 6.

• Goto-free without labeled loops have control-flow graphs of treewidth ⩽ 6.

Example 2.3 (RSM and tree decompositions). Fig. 2.6 shows an example of a program for

matrix multiplication consisting of two methods (one for vector multiplication invoked by the one

for matrix multiplication). The corresponding control-flow graphs, and their tree decompositions

that achieve treewidth 2 are also shown in the figure.

Configurations and transitions. A configuration of an RSM is a pair C = (v, L), where v is

a node in (N ∪ {en} ∪ Returns) and L is a sequence of boxes. The stack height SH(C) of a

configuration C = (v, L) is the number of boxes in the sequence L. The set of transitions E are

edges between configurations. The global weight function wt maps each transition in E to a

label in the domain Σ of the semiring S. We have that there is a transition from configuration

C1 = (v1, L1), where v1 ∈ Vi for some 1 ⩽ i ⩽ k, to configuration C2 = (v2, L2) with label

σ = wt(C1, C2) if and only if one of the following holds:

• Internal transition: We have that v2 ∈ Ni (i.e., v2 is an internal node of Ai) and the

following hold: (i) L1 = L2; and (ii) (v1, v2) ∈ Ei; and (iii) σ = wti((v1, v2)).

• Entry transition: We have that v2 = enYi(b) (i.e., v2 is the entry node of AYi(b)), for

some box b, and the following hold: (i) L1 ◦ b = L2; and (ii) (v1, (v2, b)) ∈ Ei; and

(iii) σ = wti((v1, (v2, b))).

• Return transition: We have that v2 = (v, b) ∈ Returnsj is a return node, for some exit

node v = exi and some box b with Yj(b) = i, and the following hold: (i) L1 = L2 ◦ b; and

(ii) (v1, v) ∈ Ei; and (iii) σ = wti((v1, v)).

Note that in a configuration (v, L), the node v cannot be exi or in Callsi. In essence, the

corresponding configuration is at the corresponding return node, instead of at the exit node, or

corresponding entry node, instead of at the call node, respectively.

Execution paths and stack heights. An execution path is a sequence of configurations and

labels π = ⟨C1, σ1, C2, σ2 . . . , σℓ−1, Cℓ⟩, such that for each integer i where 1 ⩽ i ⩽ ℓ − 1,

we have that (Ci, Ci+1) ∈ E and σi = wt(Ci, Ci+1). Occasionally our interest is only on the

configurations of an execution path, in which case we simply write π = ⟨C1, C2, . . . , Cℓ⟩. The
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length of π is ℓ. We say that the stack height SH(π) of an execution path π = ⟨C1, C2, . . . , Cℓ⟩ is

SH(π) = maxi SH(Ci), i.e., it is the maximum stack height of a configuration in the execution

path. The additional stack height of π is the additional height of the stack in the segment of the

path, i.e., ASH(π) = SH(π)−max(SH(C1), SH(Cℓ). For a pair of configurations C, C ′, the set

{C ⇝ C ′} is the set of execution paths ⟨C1, σ1, C2, σ2 . . . , σℓ−1, Cℓ⟩, for any ℓ, where C = C1 and

C ′ = Cℓ. Given a set X of execution paths and some h ∈ N, the set R(X, h) ⊆ X is the subset

of execution paths with stack height at most h. Given a complete semiring S = (Σ,⊕,⊗,0,1),

the weight of a execution path π = ⟨C1, σ1, C2, σ2 . . . , σℓ−1, Cℓ⟩ is ⊗(π) =
⨂

(σ1, . . . , σℓ−1).

The algebraic path problem for RSMs. Given configurations c, c′, the configuration semiring

distance d(c, c′) is defined as d(c, c′) =
⨁

π:c⇝c′ ⊗(π). Given configurations c, c′ and a stack

height h ∈ N, the bounded-height configuration semiring distance d(c, c′, h) is defined as

d(c, c′, h) =
⨁

π∈R({c⇝c′},h)⊗(π). Given a CSM Ai and two nodes u, v ∈ {en} ∪Ni ∪Returnsi,

the same-context semiring distance d(u, v) from u to v is defined as d(u, v) = d((u,∅), (v,∅)).

Similarly, given a stack height h ∈ N, the bounded-height same-context distance from u to v is

defined as d(u, v) = d((u,∅), (v,∅), h). Note that the above definition of semiring distances

only allows for so called valid paths [Reps et al., 1995a; Sagiv et al., 1996], i.e., paths that fully

respect the calling contexts of an execution.
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internal entry exit call return

Method: dot_vector
Input: x, y ∈ Rn

Output: The dot product x⊤y

1 result← 0

2 for i← 1 to n do

3 z ← x[i] · y[i]

4 result← result+ z

5 end

6 return result

Method: dot_matrix

Input: A ∈ Rn×k, B ∈ Rk×m

Output: The dot product A×B

1 C ← zero matrix of size n×m

2 for i← 1 to n do

3 for j ← 1 to m do

4 Call dot_vector(A[i, :], B[:, j])

5 C[i, j]← the value returned at Line 4

6 end

7 end

8 return C
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Figure 2.6: Example of a program consisting of two methods, their control-flow graphs Gi =

(Vi, E
′
i) where nodes correspond to line numbers, and the corresponding tree decompositions,

each one achieving treewidth 2.
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3 Semiring Distance Oracles on

Low-treewidth Graphs

3.1 Introduction

In this chapter we focus on the algebraic path problem on graphs of constant treewidth. We first

consider queries wrt an arbitrary complete, closed semiring S, and then focus on the important

special cases of reachability (phrased on the boolean semiring) and shortest path (phrased on the

tropical semiring). In all cases the input is a graph G with n nodes, and a tree-decomposition

Tree(G) of G with b = O(n) bags and width t. The computational model is the standard RAM

with wordsize W = Θ(log n).

Previous results. Semiring distances on constant-treewidth graphs have been previously con-

sidered in [Hagerup, 2000]. The algorithmic question of the distance (pair, single-source, all

pairs) problem wrt the tropical semiring for low-treewidth graphs has been considered exten-

sively in the literature, and many data structures have been presented [Akiba et al., 2012;

Chaudhuri and Zaroliagis, 1995; Planken et al.; Akiba et al., 2013; Bauer et al., 2013;

Columbus, 2012]. The previous results are incomparable, in the sense that the best data structure

depends on the treewidth and the number of queries. The pair reachability query for low-treewidth

graphs has been considered in [Yano et al., 2013]. Despite many results for constant-(or low-)

treewidth graphs, none of them improves the complexity for the basic single-source reachability

problem, i.e., the bound for DFS/BFS has not been improved in any of the previous works.

Our results. Our algorithms take as input a graph G with n nodes and treewidth t, and a tree-

decomposition Tree(G) of O(n) bags and width O(t). Our main contributions are as follows
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Preprocessing time Update time Query time

O(n) O(log n) O(log n)

Table 3.1: A data structure for handling single-source and pair semiring distance queries on a

graph G of n nodes and constant treewidth.

(summarized in Tables 3.1 to 3.3):

1. Our first contribution is a data structure for handling semiring distances in G. It supports

preprocessing G in O(n) time, after which it can handle weight updates in O(log n) time

and pair semiring distance queries in O(log n) time each.

2. Our second contribution is a data structure that supports reachability queries in G. The

computational complexity we achieve is as follows: (i) O(n · t2) preprocessing (construc-

tion) time; (ii) O(n · t) space; (iii) O(⌈t/ log n⌉) pair-query time; and (iv) O(n · t/ log n)

time for single-source queries. Note that for constant-treewidth graphs, the data structure

is optimal in the sense that it only uses linear preprocessing time, and supports answering

queries in the size of the output (the output for single-source queries requires one bit per

node, and thus has size Θ(n/W ) = Θ(n/ log n)). Moreover, also for constant-treewidth

graphs, the data structure answers single-source queries faster than DFS/BFS, after linear

preprocessing time (which is asymptotically the same as for DFS/BFS). Thus there exists a

constant c0 such that the total of the preprocessing and querying time of the data structure

is smaller than that of DFS/BFS for answering at least c0 single-source queries.

3. Our third contribution is a space-time tradeoff data structure that supports distance pair

queries in G and given a number ϵ ∈ [1
2
, 1]. The weights of G come from the set of

integers Z, but we do not allow negative cycles. For constant-treewidth graphs, our

data structure requires (i) polynomial preprocessing time; (ii) O(nϵ) working space; and

(iii) O(n1−ϵ · α(n)) time for pair queries.

Technical contributions. Our results rely on three key technical contributions:

1. Our data structure for general semiring distances relies on the newly introduced notion

of U-shaped paths. Informally, given a bag B of a tree-decomposition T , a path is U-

shaped in B if all its intermediate nodes are contained in the subtree of T rooted at
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Preprocessing time Space
Query

Reference
Single-source Pair

O(n · log n) O(n · log n) O(n · log n) O(log n) [Yano et al., 2013]

O(n) O(n) O(n) O(α(n)) [Chaudhuri and Zaroliagis, 1995]

DFS/BFS – O (n) O(m) O(m) [Cormen et al., 2009]

Our Result O(n) O(n) O
(

n
logn

)
O(1) Theorem 3.2

Table 3.2: Data structures for pair and single-source reachability queries, on a directed graph

G with n nodes, m edges, and a treewidth t. The model of computation is the standard RAM

model with wordsize W = Θ(log n). We denote by α(n) the inverse of the Ackermann function

on input n. Space usage refers to the total space used during the preprocessing and query phase.

B. In the preprocessing and update phases, the data structure maintains the semiring

distance between every pair of nodes (u, v), restricted to U-shaped paths (i.e., the weight

of the smallest-weight U-shaped path from u to v). In the query phase, the data structure

combines O(log n) such “U-shaped distances” to obtain the semiring distance between

nodes.

2. For pair reachability queries, the key idea is to store reachability information from each

node to O(log n) other nodes. For single-source queries, for some nodes this reachability

information might be of size Θ(n), but on average remains O(log n). Our data structure

computes reachability information in such a way that allows for compact representation and

fast retrieval using word tricks, which, for constant-treewidth graphs leads to asymptotically

optimal preprocessing and query (both pair and single-source) bounds. The idea of storing

O(log n) information per node has appeared before ([Yano et al., 2013; Chaudhuri and

Zaroliagis, 1995]) however those algorithms follow different approaches, where word

tricks do not seem to be applicable (at least not without significantly modifying the

algorithms).

3. For distance queries, we devise a procedure for shrinking a tree-decomposition of size

O(n) to one of size O(n1−ϵ), by partitioning the tree-decomposition to components of

sufficient size. A key property of this partitioning is that each component has only a

constant number of neighbor components. We show how this shrank tree-decomposition
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Row Preprocessing time Space usage Pair query time Single-source query time From

1 O(n2) O(n2) O(1) O(n) [Planken et al.] a

2 O(n) O(n) O(α(n)) O(n) [Chaudhuri and Zaroliagis, 1995]

3 O(n · log h) O(n) O(log log n) O(n · log log n) b [Akiba et al., 2012]

4 O(n · log2 n) O(n · log n) O(log n) O(n · log n)b [Akiba et al., 2013]

5 O(n · log n) O(n · log n) O(log2 n) O(n · log2 n) b [Bauer et al., 2013; Columbus, 2012]

6 Not given O(nϵ · log2 n) c O(n1−ϵ · log n) – d [Akiba et al., 2012] e

Our Result Polynomial O(nϵ) O(n1−ϵ · α(n)) – d Theorem 3.3

Table 3.3: Data structures for pair and single-source distance queries, on a weighted directed

graph G with n nodes, m edges, and a tree decomposition of width O(1) and height h. The

number ϵ can be any fixed number in [1
2
, 1] and α(n) is the inverse Ackermann function. Space

usage refers to the total space used during the preprocessing and query phase. When measuring

space complexity, we do not count the input size. Rows 1-6 are previous results.

a This data structure solves the all pairs problem in the given time and space bounds.
b Obtained by multiplying the time for a pair query by n.
c This is the space usage after preprocessing.
d Not given/supported since the size of the output is larger than the data structure.
e Note that [Akiba et al., 2012] does not explicitly state the tradeoff given (they only state

linear space), but it follows from their technique by picking other values for their variable

k. Also, note that [Akiba et al., 2012] requires a tree-decomposition to be part of the input,

whereas our data structure only requires that the graph G is part of the input.

can be preprocessed for answering pair distance queries in the stated bounds.

Organization. The rest of this chapter is organized as follows.

1. In Section 3.2 we present our dynamic data structure for handling general semiring distance

queries on graphs of low treewidth, with also supporting weight updates.

2. In Section 3.3 we present our data structure for handling reachability queries on graphs of

low treewidth.

3. In Section 3.4 we present our data structure for handling distance queries (wrt the tropical

semiring) on graphs of low treewidth, while providing a space-time tradeoff between the
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space used in preprocessing and the query time.

3.2 Dynamic Algorithms for Preprocess, Update and Query

In the current section we present a data structure that takes as input a weighted graph G =

(V,E,wt) of n nodes, treewidth t = O(1) and weight function wt : E → Σ over a complete,

closed semiring S, and a nicely rooted, balanced, binary tree decomposition Tree(G) of width

O(t), and achieves the following tasks:

1. Preprocessing the tree-decomposition Tree(G) to semiring distance queries fast.

2. Updating the preprocessed Tree(G) upon change of the weight wt(u, v) of an edge (u, v).

3. Querying the preprocessed Tree(G) to retrieve the distance d(u, v) of any pair of nodes

(u, v).

3.2.1 Algorithms Preprocess, Update and Query

Intuition and U-shaped paths. A central concept in our algorithms is that of U-shaped paths.

Given a bag B and nodes u, v ∈ B we say that a path P : u⇝ v is U-shaped in B, if one of the

following conditions hold:

1. Either |P | > 1 and for all intermediate nodes w ∈ P , we have that B is an ancestor of Bw,

2. or |P | ⩽ 1 and B is Bu or Bv (i.e., B is the root bag of u or v).

Informally, given a bag B, a U-shaped path in B is a path that traverses intermediate nodes whose

root bag is either B or some descendant bag of B in Tree(G). In the following we present three

algorithms for (i) preprocessing a tree decomposition, (ii) updating the data structures of the

preprocessing upon a weight change wt(u, v) of an edge (u, v), and (iii) querying for the distance

d(u, v) for any pair of nodes u, v. The intuition behind the overall approach is that for every path

P : u ⇝ v and z = argminx∈PLv(x), the path P can be decomposed to paths P1 : u ⇝ z and

P2 : z ⇝ v. By Lemma 2.1, if we consider the path P ′ : Bu ⇝ Bz and any bag Bi ∈ P ′, we can

find nodes x, y ∈ Bi ∩ P1 (not necessarily distinct). Then P1 is decomposed to a sequence of
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U-shaped paths P i
1, one for each such Bi, and the weight of P1 can be written as the ⊗-product

of the weights of P i
1, i.e., ⊗(P1) =

⨂
(⊗(P i

1)). A similar observation holds for P2. Hence, the

task of preprocessing and updating is to summarize in each Bi the weights of all such U-shaped

paths between all pairs of nodes appearing in Bi. To answer the query, the algorithm traverses

upwards the tree Tree(G) from Bu and Bv, and combines the summarized paths to obtain the

weights of all such paths P1 and P2, and eventually P , such that ⊗(P ) = d(u, v).

Informal description of preprocessing. Algorithm Preprocess (Algorithm 2) associates with

each bag B a local U-shaped distance map LUDB : B × B → Σ. Upon a weight change,

algorithm Update (Algorithm 3) updates the local U-shaped distance map of some bags. It will

hold that after the preprocessing and each subsequent update, LUDB(u, v) =
⨁

P :u⇝v{⊗(P )},

where all P are U-shaped paths in B. Given this guarantee, we later present algorithm Query

(Algorithm 5) for answering (u, v) queries with d(u, v), the distance from u to v.

Algorithm Preprocess is a dynamic programming algorithm. It traverses Tree(G) bottom-up,

and for a currently examined bag B that is the root bag of a node x, it calls Merge to compute the

local U-shaped distance map LUDB . In turn, Merge computes LUDB depending only on the local

U-shaped distance maps LUDBi
of the children {Bi} of B, and uses the closure operator ∗ to

capture possibly unbounded traversals of cycles whose smallest-level node is x. See Algorithms 1

and 2 for a formal description.

Algorithm 1: Merge

Input: A bag Bx with children {Bi}i

Output: A local U-shaped distance map LUDBx

1 Assign wt′(x, x)←
(⨂
{LUDB1(x, x)

∗, . . . , LUDBj (x, x)
∗}
)∗

2 foreach u ∈ Bx with u ̸= x do

3 Assign wt′(x, u)←
⨁
{wt(x, u), LUDB1(x, u), . . . , LUDBj (x, u)}

4 Assign wt′(u, x)←
⨁
{wt(u, x), LUDB1(u, x), . . . , LUDBj (u, x)}

5 end

6 foreach u, v ∈ Bx do

7 Assign δ ←
⨂

(wt′(u, x),wt′(x, x),wt′(x, v))

8 Assign LUDBx(u, v)←
⨁
{δ, LUDB1(u, v), . . . , LUDBj (u, v)}

9 end
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Algorithm 2: Preprocess
Input: A tree-decomposition Tree(G) = (VT , ET )

Output: A local U-shaped distance map LUDB for each bag B ∈ VT

1 Traverse Tree(G) bottom up and examine each bag B with children {Bi}i

2 if B is the root bag of some node x then

3 Assign LUDB ← Merge on B

4 else

5 foreach u, v ∈ B do

6 Assign LUDB(u, v)←
⨁
{LUDB1(u, v), . . . , LUDBj (u, v)}

7 end

8 end

Lemma 3.1. At the end of Preprocess, for every bag B and nodes u, v ∈ B, we have

LUDB(u, v) =
⨁

P :u⇝v{⊗(P )}, where all P are U-shaped paths in B.

Proof. The proof is by induction on the parents. Initially, B is a leaf, and root of some node x,

thus each such path P can only go through x, and hence will be captured by Preprocess. Now

assume that the algorithm examines a bag B, and by the induction hypothesis the statement is

true for all {Bi} children of Bx. The correctness follows easily if B is not the root bag of any

node, since every such P is a U-shaped path in some child Bi of B. Now consider that B is

the root bag some node x, and any U-shaped path P ′ : u ⇝ v that additionally visits x, and

decompose it to paths P1 : u⇝ x, P2 : x⇝ x and P3 : x⇝ v, such that x is not an intermediate

node in either P1 or P3, and we have by distributivity:⨁
P ′

⊗(P ′) =
⨁

P1,P2,P3

⨂
(⊗(P1),⊗(P2),⊗(P3))

=
⨂(⨁

P1

⊗(P1),
⨁
P2

⊗(P2),
⨁
P3

⊗(P3)

)

Note that P1 and P3 are also U-shaped in one of the children bags Bi of Bx, hence by the

induction hypothesis in Line 3 and Line 2 of Merge we have wt′(u, x) =
⨁

P1
⊗(P1) and

wt′(x, v) =
⨁

P3
⊗(P3). Also, by decomposing P2 into a (possibly unbounded) sequence of

paths P i
2 : x⇝ x such that x is not intermediate node in any P i

2, we get that each such P i
2 is a



61

U-shaped path in some child Bli of B, and we have by distributivity and the induction hypothesis⨁
P2

⊗(P2) =
⨁

P 1
2 ,P

2
2 ,...

⨂(
⊗(P 1

2 ),⊗(P 2
2 ), . . .

)

=
⨁

Bl1
,Bl2

,...

⨂⎛⎝⨁
P 1
2

⊗(P 1
2 ),
⨁
P 2
2

⊗(P 2
2 ), . . .

⎞⎠
=

⨁
Bl1

,Bl2
,...

⨂(
LUDBl1

(x, x), LUDBl2
(x, x), . . .

)

and the last expression equals wt′(x, x) from Algorithm 1 of Merge. The above conclude that in

Line 6 of Merge we have δ =
⨁

P ′ ⊗(P ′).

Finally, each U-shaped path P : u⇝ v in B either visits x, or is U-shaped in one of the children

Bi. Hence after Line 8 of Merge has run on B, for all u, v ∈ B we have that LUDB(u, v) =⨁
P :u⇝v⊗(P ) where all paths P are U-shaped in B. The desired results follows.

Lemma 3.2. Preprocess requires O(n) semiring operations.

Proof. Merge requires O(t2) = O(1) operations, and Preprocess calls Merge at most once for

each bag, hence requiring O(n) operations.

u

x

v

P1

P3

P2

wt′(u, x)
wt′(x, v)

wt′(x, x)

Figure 3.1: Illustration of the inductive argument of Preprocess.

Informal description of updating. Algorithm Update is called whenever the weight wt(x, y)

of an edge of G has changed. Given the guarantee of Lemma 3.1, after Update has run on

an edge update wt(x, y), it restores the property that for each bag B we have LUDB(u, v) =⨁
P :u⇝v{⊗(P )}, where all P are U-shaped paths in B. See Algorithm 3 for a formal description.

Lemma 3.3. At the end of each run of Update, for every bag B and nodes u, v ∈ B, we have

LUDB(u, v) =
⨁

P :u⇝v{⊗(P )}, where all P are U-shaped paths in B.
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Algorithm 3: Update
Input: An edge (x, y) with new weight wt(x, y)

Output: A local U-shaped distance map LUDB for each bag B ∈ VT

1 Assign B ← B(x,y), the highest bag containing the edge (x, y)

2 repeat

3 Call Merge on B

4 Assign B ← B′ where B′ is the parent of B

5 until Lv(B) = 0

Proof. First, by the definition of a U-shaped path P in B it follows that the statement holds for

all bags not processed by Update, since for any such bag B and U-shaped path P in B, the path

P cannot traverse (u, v). For the remaining bags, the proof follows an induction on the parents

updated by Update, similar to that of Lemma 3.1.

Lemma 3.4. Update requires O(log n) operations per update.

Proof. Merge requires O(t2) = O(1) operations, and Update calls Merge once for each bag in

the path from B(u,v) to the root. Recall that the height of Tree(G) is O(log n), and the result

follows.

Informal description of querying. Algorithm Query answers a (u, v) query with the distance

d(u, v) from u to v. Because of Lemma 2.2, every path P : u⇝ v is guaranteed to go through

the least common ancestor (LCA) BL of Bu and Bv, and possibly some of the ancestors B of BL.

Given this fact, algorithm Query uses the procedure Climb to climb up the tree from Bu and Bv

until it reaches BL and then the root of Tree(G). For each encountered bag B along the way, it

computes maps δu(w) =
⨁

P1
{⊗(P1)}, and δv(w) =

⨁
P2
{⊗(P2)} where all P1 : u⇝ w and

P2 : w ⇝ v are such that the root bag of each intermediate node y is a descendant of B. This

guarantees that for path P such that d(u, v) = ⊗(P ), when Query examines the bag Bz that is

the root bag of z = argminx∈PLv(x), it will be d(u, v) =
⨂

(δu(z), δv(z)). Hence, for Query it

suffices to maintain a current best solution δ, and update it with δ ←
⨁
{δ,
⨂

(δu(x), δv(x))}

every time it examines a bag B that is the root bag of some node x. Fig. 3.2 presents a pictorial

illustration of Query and its correctness. Algorithm 4 presents the Climb procedure which, given

a current distance map of a node δ, a current bag B and a flag Up, updates δ with the distance to
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(if Up = True), or from (if Up = False) each node in B. See Algorithm 4 and Algorithm 5 for a

formal description.

Algorithm 4: Climb
Input: A bag B, a map δ, a flag Up

Output: A new map δ

1 Remove from δ all w ̸∈ B

2 Assign δ(w)← 0 for all w ∈ B and not in δ

3 if B is the root bag of some node x then

4 if Up then /* Climbing up */

5 Update δ with δ(w)←
⨁
{δ(w),

⨂
(δ(x), LUDB(x,w))}

6 else /* Climbing down */

7 Update δ with δ(w)←
⨁
{δ(w),

⨂
(δ(x), LUDB(w, x))}

8 end

9 return δ

Lemma 3.5. Query returns δ = d(u, v).

Proof. Let P : u⇝ v be any path from u to v, and z = argminx∈PLv(x) the lowest level node

in P . Decompose P to P1 : u⇝ z, P2 : z ⇝ v, and it follows that ⊗(P ) =
⨂

(⊗(P1),⊗(P2)).

We argue that when Query examines Bz, it will be δu(z) =
⨁

P1
⊗(P1) and

⨁
P2

δv(z) = ⊗(P2).

We only focus on the δu(z) case here, as the δv(z) is similar. We argue inductively that when

algorithm Query examines a bag Bx, for all w ∈ Bx we have δu(w) =
⨁

P ′{⊗(P ′)}, where all

P ′ are such that for each intermediate node y we have Lv(y) ⩾ Lv(x). Initially (Line 1), it is

x = u, Bx = Bu, and every such P ′ is U-shaped in Bu, hence LUDBx(x,w) =
⨁

P ′{⊗(P ′)}

and δu(w) =
⨁

P ′{⊗(P ′)}. Now consider that Query examines a bag Bx (Lines 7 and 18) and

the claim holds for Bx′ a descendant of Bx previously examined by Query. If x does not occur

in P ′, it is a consequence of Lemma 2.2 that w ∈ Bx′ , hence by the induction hypothesis, P ′

has been considered by Query. Otherwise, x occurs in P ′ and decompose P ′ to P ′
1, P ′

2, such that

P ′
1 ends with the first occurrence of x in P ′, and it is ⊗(P ) =

⨂
(⊗(P ′

1),⊗(P ′
2)). Note that P ′

2

is a U-shaped path in Bx, hence LUDBx(x,w) =
⨁

P ′
2
{⊗(P ′

2)}. Finally, as a consequence of

Lemma 2.2, we have that x ∈ Bx′ , and by the induction hypothesis, δu(x) =
⨁

P ′
1
{⊗(P ′

1)}. It

follows that after Query processes Bx, it will be δu(w) =
⨁

P ′{⊗(P ′)}. By the choice of z, when

Query examines the bag Bz, it will be δu(z) =
⨁

P1
{⊗(P1)}. A similar argument shows that
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Algorithm 5: Query
Input: A pair (u, v)

Output: The distance d(u, v) from u to v

1 Initialize map δu with δu(w)← LUDBu(u,w)

2 Initialize map δv with δv(w)← LUDBv(w, v)

3 Assign BL ← the LCA of Bu, Bv in Tree(G)

4 Assign B ← Bu

5 repeat

6 Assign B ← B′ where B′ is the parent of B

7 Call Climb on B and δu with flag Up set to True

8 until B = BL

9 Assign B ← Bv

10 repeat

11 Assign B ← B′ where B′ is the parent of B

12 Call Climb on B and δv with flag Up set to False

13 until B = BL

14 Assign B ← BL

15 Assign δ ←
⨁

x∈BL
⊗(δu(x), δv(x))

16 repeat

17 Assign B ← B′ where B′ is the parent of B

18 Call Climb on B and δu with flag Up set to True

19 Call Climb on B and δv with flag Up set to False

20 if B is the root bag of some node x then

21 Assign δ ←
⨁
{δ,
⨂

(δu(x), δv(x))}

22 until Lv(B) = 0

23 return δ
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at that point it will also be δv(z) =
⨁

P2
{⊗(P2)}, hence at that point δ =

⨂
(⊗(P1),⊗(P2)) =

d(u, v).

Lemma 3.6. Query requires O(log n) semiring operations.

Proof. Climb requires O(t2) = O(1) operations and Query calls Climb once for every bag in the

paths from Bu and Bv to the root. Recall that the height of Tree(G) is O(log n), and the result

follows.

uBu
x1

x1 zBx1
= BL

z x2Bx2

vx2Bv

Bz
z

Figure 3.2: Illustration of Query in computing the distance d(u, v) = ⊗(P ) as a sequence of

U-shaped paths, whose weight has been captured in the local distance map of each bag. When

Bz is examined, with z = argminx∈PLv(x), it will be δu(z) = d(u, z) and δv(z) = d(z, v), and

hence by distributivity d(u, v) =
⨂

(δu(z), δv(z)).

We summarize the results of this section in the following theorem.

Theorem 3.1. Consider a graph G = (V,E) of n nodes and constant treewidth, and a nicely

rooted, balanced, binary tree decomposition Tree(G) of constant width. The following assertions

hold:

1. Preprocess requires O(n) semiring operations;

2. Update requires O(log n) semiring operations per edge-weight update; and

3. Query correctly answers distance queries using O(log n) semiring operations.

Witness paths. Our algorithms so far have only been concerned with returning the distance

d(u, v) of the pair query u, v. In several cases of semirings (e.g. Boolean, Tropical), the distance
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d(u, v) is realized by a single acyclic path. Then, it is straightforward to also obtain a witness

path, i.e., a path P : u⇝ v such that⊗(P ) = d(u, v), with some minor additional preprocessing.

Here we outline how.

Whenever Merge updates the local U-shaped distance LUDB(u, v) between two nodes in a bag

B, it does so by considering the distances to and from an intermediate node x. It suffices to

remember that intermediate node for every such local U-shaped distance. Then, the witness path

to a local U-shaped distance in B can be obtained straightforwardly by a top-down computation

on Tree(G) starting from B. Recall that in essence, Query answers a distance query u, v by

combining several local U-shaped distances along the paths Bu ⇝ Bz and Bz ⇝ Bv, where z is

the node with the minimum level in a path P : u ⇝ v such that ⊗(P ) = d(u, v). Since from

every such local U-shaped distance a witness sub-path Pi can be obtained, P is reconstructed by

juxtaposition of all such Pi. Finally, this process costs O(|P |) time.

3.3 Optimal Reachability for Low-Treewidth Graphs

In this section we present algorithms for building and querying a data structure Reachability,

which handles single-source and pair reachability queries over an input a weighted graph G of n

nodes and treewidth t.

Intuition. Informally, the preprocessing consists of first obtaining a small, balanced and binary

tree-decomposition T of G, and computing the local reachability information in each bag B (i.e.,

the pairs (u, v) ∈ E∗ with u, v ∈ B) using Lemma 2.4. Then, the whole of preprocessing is done

on T , by constructing two types of sets, which are represented as bit sequences and packed into

words of length W = Θ(log n). Initially, every node u receives an index iu, such that for every

bag B, the indices of nodes whose root bag is in T (B) form a contiguous interval. Additionally,

for every appearance of node u in a bag B, the node u receives a local index lBu in B. For brevity,

a sequence (A0, A1, . . . Ak) will be denoted by (Ai)0⩽i⩽k. When k is implied, we simply write

(Ai)i. The following two types of sets are constructed.

1. Sets that store information about subtrees. Specifically, for every node u, the set Fu stores

the relative indices of nodes v that can be reached from u, and whose root bag is in T (Bu).

These sets are used to answer single-source queries.
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2. Sets that store information about ancestors. Specifically, for every node u, two sequences

of sets are stored (Fi
u)0⩽i⩽Lv(u), (T

i
u)0⩽i⩽Lv(u), such that Fi

u (resp., Ti
u) contains the local

indices of nodes v in the ancestor bag Bi
u of Bu at level i, such that (u, v) ∈ E∗ (resp.,

(v, u) ∈ E∗). These sets are used to answer pair queries.

The sets of the first type are constructed by a bottom-up pass, whereas the sets of the second

type are constructed by a top-down pass. Both passes are based on the separator property of tree

decompositions (recall Lemmas 2.1 and 2.2), which informally states that reachability properties

between nodes in distant bags will be captured transitively, through nodes in intermediate bags.

Reachability Preprocessing. We now give a formal description of the preprocessing of

Reachability that takes as input a graph G of n nodes and treewidth t, and a balanced tree-

decomposition T = Tree(G) of width O(t). After the preprocessing, Reachability supports

single-source and pair reachability queries. We say that we “insert” set A to set A′ meaning that

we replace A′ with A ∪ A′. Sets are represented as bit sequences where 1 denotes membership

in the set, and the operation of inserting a set A “at the i-th position” of a set A′ is performed by

taking the bit-wise logical OR between A and the segment [i, i+ |A|] of A′. The preprocessing

consists of the following steps.

1. Turn T to a small, balanced binary tree-decomposition of G of width O(t), using

Lemma 2.7.

2. Preprocess T to answer LCA queries in O(1) time [Harel and Tarjan, 1984].

3. Use Lemma 2.4 to compute the local distance map LDB : B ×B → {0, 1} for every bag

B w.r.t reachability, i.e., for any bag B and nodes u, v ∈ B, we have LDB(u, v) = 1 iff

(u, v) ∈ E∗.

4. Apply a preorder traversal on T , and assign an incremental index iu to each node u at

the time the root bag B of u is visited. If there are multiple nodes u for which B is the

root bag, assign the indices to those nodes in some arbitrary order. Additionally, store the

number su of nodes whose root bag is in T (B) and have index at least iu. Finally, for each

bag B and u ∈ B, assign a unique local index lBu to u, and store in B the number of nodes

(with multiplicities) aB contained in all ancestors of B, and the number bB of nodes in B.

5. For every node u, initialize a bit set Fu of length su, pack it into words, and set the first bit
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to 1.

6. Traverse T bottom-up, and for every bag B execute the following step. For every pair of

nodes u, v ∈ B such that B is the root bag of v and iu < iv and LDB(u, v) = 1, insert

Fv to the segment [iv − iu, iv − iu + sv] of Fu (the nodes reachable from v now become

reachable from u, through v).

7. For every node u initialize two sequences of bit sets (Ti
u)0⩽i⩽Lv(u), (F

i
u)0⩽i⩽Lv(u), and pack

them into consecutive words. Each set Ti
u and Fi

u has size bBi
u
, where Bi

u is the ancestor of

Bu at level i.

8. Traverse T top-down, and for B the bag currently visited, for every node x ∈ B, maintain

two sequences of bit sets (T
i

x)0⩽i⩽Lv(B) and (F
i

x)0⩽i⩽Lv(B). Each set T
i

x and F
i

x has size bBi ,

where Bi is the ancestor of B at level i. Initially, B is the root of T (hence Lv(B) = 0),

and set the position lBw of F
0

x (resp., T
0

x) to 1 for every node w such that LDB(x,w) = 1

(resp., LDB(w, x) = 1). For each other bag B encountered in the traversal, do as follows.

Let S = B ∩B′, where B′ is the parent of B in T , and let x range over S.

(a) For each node x, create a set Tx (resp., Fx) of 0s of length bB, and for every w ∈ B

such that LDB(x,w) = 1 (resp., LDB(w, x) = 1), set the lBw -th bit of Fx (resp., Tx)

to 1. Append the set Tx (resp., Fx) to (T
i

x)i (resp., (F
i

x)i). Now each set sequence

(T
i

x)i and (F
i

x)i has size aB + bB.

(b) For each u ∈ B whose root bag is B, initialize set sequences (F
i

u)i and (T
i

u)i with

0s of length aB + bB each, and set the bit at position lBu of F
Lv(B)

u and T
Lv(B)

u to 1.

For every w ∈ B with LDB(u,w) = 1 (resp., LDB(w, u) = 1), insert (F
i

w)i to (F
i

u)i

(resp., (T
i

w)i to (T
i

u)i). Finally, set (Fi
u)i equal to (F

i

u)i (resp., (Ti
u)i equal to (T

i

u)i).

Fig. 3.3 illustrates the constructed sets on a small example.

It is fairly straightforward that at the end of the preprocessing, the i-th position of each set Fu is

1 only if (u, v) ∈ E∗, where v is such that iv − iu = i. The following lemma states the opposite

direction, namely that each such i-th position will be 1, as long as the path P : u⇝ v only visits

nodes with certain indices.

Lemma 3.7. At the end of preprocessing, for every pair of nodes u and v with iu ⩽ iv ⩽ iu + su,

if there exists a path P : u⇝ v such that for every w ∈ P , we have iu ⩽ iw ⩽ iu + su, then the
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1

8

9

2

10

3

6

4

7 5

(a)

u iu Bit-set Fu

0 1 2 3 4 5 6 7 8 9

2 0 1 1 1 1 0 0 1 0 1 1

8 1 1 0 0 0 0 0 0 0 1

10 2 1 1 0 0 1 0 1 1

9 3 1 0 0 1 0 1

7 4 1 1 1 1

6 5 1 1 0

4 6 1

5 7 1

1 8 1

3 9 1

(b)

8, 9, 10

1, 8, 9

2, 8, 10

2, 3, 10

7, 8, 9

6, 7, 9

4, 6, 9 5, 6, 7

(c)

i = 0 i = 1 i = 2 i = 3

v 2 8 10 8 9 10 7 8 9 6 7 9

l
Bi

6
v 0 1 2 0 1 2 0 1 2 0 1 2

(Fi
6)i 1 1 1 1 1 1 0 1 1 1 0 1

(Ti
6)i 0 0 0 0 0 0 1 0 0 1 1 0

(d)

Figure 3.3: a, c: A graph G and a tree-decomposition Tree(G). b: The sets Fu constructed from

step 5 to answer single-source queries. The j-th bit of a set Fu is 1 iff (u, v) ∈ E∗, where v is

such that iv − iu = j. d: The set sequences (Fi
u)i and (Ti

u)i constructed from step 6 to answer

pair queries, for u = 6. For every i ∈ {0, 1, 2, 3} and ancestor Bi
6 of B6 at level i, every node

v ∈ Bi
u is assigned a local index l

Bi
6

v . The j-th bit of set Fi
6 (resp. Ti

6) is 1 iff (6, v) ∈ E∗ (resp.

(v, 6) ∈ E∗), where v is such that lB
i
6

v = j.

(iv − iu)-th bit of Fu is 1.

Proof. We prove inductively the following claim. For every ancestor B of Bv, if there exists

w ∈ B and a path P1 : w ⇝ v, then exists x ∈ B ∩ P1 such that ix ⩽ iv ⩽ ix + sx and the

iv − ix-th bit of Fx is 1. The proof is by induction on the length of the simple path P2 : B ⇝ Bv.
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1. If |P2| = 0, the statement is true by taking x = v, since the 0-th bit of Fv is 1.

2. If |P2| > 0, examine the child B′ of B in P2. By Lemma 2.2, there exists x ∈ B ∩B′ ∩ P ,

and let P3 : x ⇝ v. By the induction hypothesis there exists some y ∈ B′ ∩ P3 with

iy ⩽ iv ⩽ iy+sy and the iv−iy-th bit of Fy is 1. If y ∈ B, we take x = y. Otherwise, B′ is

the root bag of y, and by the local distance computation of Lemma 2.4, it is LDB′(x, y) = 1.

By the choice of x, y we have that Bx is an ancestor of By. Thus, by construction we have

ix < iy and sx ⩾ sy + iy − ix, and hence ix ⩽ iv ⩽ ix + sx. Then in step 5, Fy is inserted

in position iy − ix of Fx, thus the bit at position iy − ix + iv − iy = iv − ix of Fx will be 1,

and we are done.

When Bu is examined, by the above claim there exists x ∈ P such that ix ⩽ iv and the iv − ix-th

bit of Fx is 1. If x = u we are done. Otherwise, by the choice of P , we have iu < ix, which can

only happen if Bu is also the root bag of x. Then in step 5, Fx is inserted in position ix − iu of

Fu, and hence the bit at position ix − iu + iv − ix = iv − iu of Fx will be 1, as desired.

Similarly, given a node u and an ancestor bag Bi
u of Bu at level i, the j-th position of the set Fi

u

(resp., Ti
u) is 1 only if (u, v) ∈ E∗ (resp., (v, u) ∈ E∗), where v ∈ Bi

u is such that lB
i
u

v = j. The

following lemma states that the inverse is also true.

Lemma 3.8. At the end of preprocessing, for every node u, for every v ∈ Bi
u where Bi

u is the

ancestor of Bu at level i, we have that if (u, v) ∈ E∗ (resp., (v, u) ∈ E∗), then the l
Bi

u
v -th bit of

Fi
u (resp., Ti

u) is 1 .

Lemma 3.9. Given a graph G with n nodes and treewidth t, let T (G) be the time and S(G) be

the space required for constructing a balanced tree-decomposition of G with O(n) bags and

width O(t). The preprocessing phase of Reachability on G requires O(T (G) + n · t2) time and

O(S(G) + n · t) space.

Proof. First, we construct a balanced tree-decomposition T = Tree(G) of G in T (G) time and

S(G) space. We establish the complexity of each preprocessing step separately.

1. Using Lemma 2.7, this step requires O(n · t) time. From this point on, T consists of

b = O(n
t
) bags, has height h = O(log n), and width t′ = O(t).

2. By a standard construction for balanced trees, preprocessing T to answer LCA queries in

O(1) time requires O(b) = O(n
t
) time.
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3. By Lemma 2.4, this step requires O(b · t′3) = O(n
t
· t3) = O(n · t2) time and O(b · t′2) =

O(n
t
· t2) = O(n · t) space.

4. Every bag B is visited once, and each operation on B takes constant time. We make O(t′)

such operations in B, hence this step requires O(b · t′) = O(n) time in total.

5-6. The space required in this step is the space for storing all the sets Fu of size su each, packed

into words of length W :

∑
u∈V

⌈ su
W

⌉
=

h∑
i=0

∑
u:Lv(u)=i

⌈ su
W

⌉
⩽

h∑
i=0

∑
u:Lv(u)=i

( su
W

+ 1
)

=
1

W
·

h∑
i=0

∑
u:Lv(u)=i

su +
h∑

i=0

∑
u:Lv(u)=i

1 ⩽
1

W
·

h∑
i=0

n · (t′ + 1) + n = O(n · t)

since h = O(log n), t′ = O(t) and W = Θ(log n). Note that we have
∑

u:Lv(u)=i su ⩽

n · (t′+1) because |
⋃

u Fu| ⩽ n (as there are n nodes) and every element of
⋃

u Fu belongs

to at most t′ + 1 such sets Fu (i.e., for those u that share the same root bag at level i). The

time required in this step is O(n · t) in total for iterating over all pairs of nodes (u, v) in

each bag B such that B is the root bag of either u or v, and O(n · t2) for the set operations,

by amortizing O(t) operations per word used.

6. The time and space required for storing each sequence of the sets (Fi
u)0⩽i⩽Lv(u) and

(Ti
u)0⩽i⩽Lv(u) is:

∑
u∈V

2 ·
⌈
aBu + bBu

W

⌉
⩽ 2 · n ·

⌈
(t′ + 1) · h

W

⌉
= O(n · t)

since aBu + bBu ⩽ (t′ + 1) · h, h = O(log n) and W = Θ(log n).

7. The space required is the space for storing the set sequences (T
i

v)i and (F
i

v)i, which is O(t2)

by a similar argument as in the previous item. The time required is O(t) for initializing

every new set sequence (T
i

u)i and (F
i

u)i and this will happen once for each node u at its

root bag Bu, hence the total time is O(n · t).
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Reachability Querying. We now turn our attention to the querying phase.

• Pair query. Given a pair query (u, v), find the LCA B of bags Bu and Bv. Obtain the

sets FLv(B)
u and T

Lv(B)
v of size bB. Each set starts in bit position aB of the corresponding

sequence (Fi
u)i and (Ti

v)i. Return True iff the logical-AND of FLv(B)
u and T

Lv(B)
v contains

an entry which is 1.

• Single-source query. Given a single-source query u, create a bit set A of size n, initially

all 0s. For every node x ∈ Bu with ix ⩽ iu, if the lBu
x -th bit of FLv(u)

u is 1, insert Fx to the

segment [ix, ix + sx] of A. Then traverse the path from Bu to the root of T , and let Bi
u be

the ancestor of Bu at level i < Lv(Bu). For every node x ∈ Bi
u, if the l

Bi
u

x -th bit of Fi
u is 1,

set the ix-th bit of A to 1. Additionally, if Bi
u has two children, let B be the child of Bi

u

that is not ancestor of Bu, and jmin and jmax the smallest and largest indices, respectively,

of nodes whose root bag is in T (B). Insert the segment [jmin − ix, jmax − ix] of Fx to the

segment [jmin, jmax] of A. Report that the nodes v reached from u are those v for which

the iv-th bit of A is 1.

The following lemma establishes the correctness and complexity of the query phase.

Lemma 3.10. After the preprocessing phase of Reachability, pair and single-source reachability

queries are answered correctly in O
(⌈

t
logn

⌉)
and O

(
n·t
logn

)
time respectively.

Proof. Let t′ = O(t) be the width of the small tree-decomposition constructed in Step 1. The

correctness of the pair query comes immediately from Lemmas 2.1 and 3.8 , which implies that

every path u⇝ v must go through the LCA of Bu and Bv. The time complexity follows from

the O
(⌈

t
W

⌉)
word operations on the sets FLv(B)

u and T
Lv(B)
v of size O(t) each.

Now consider the single-source query from a node u and let v be any node such that there is a

path P : u⇝ v. Let B be the LCA of Bu, Bv, and by Lemma 2.1, there is a node y ∈ B ∩ P .

Let x be the last such node in P , and let P ′ : x⇝ v be the suffix of P from x. It follows that P ′

is a path such that for every w ∈ P ′ we have ix ⩽ iw ⩽ ix + sx.

1. If Bv is an ancestor of Bu, then necessarily x = v, and by Lemma 3.8, the lBv -th bit of

F
Lv(B)
u is 1. Then the algorithm sets the iv-th bit of A to 1.

2. Else, Bx is an ancestor of Bv (recall that a bag is an ancestor of itself), and by Lemma 3.7,
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the (iv − ix)-th bit of Fx is 1.

(a) If B is Bu, the algorithm will insert Fx to the segment [ix, ix + sx] of A, thus the

ix + iv − ix = iv-th bit of A is set to 1.

(b) If B is not Bu, it can be seen that jmin ⩽ iv ⩽ jmax, where jmin and jmax are the

smallest and largest indices of nodes whose root bag is in T (B′), with B′ the child of

B that is not ancestor of Bu. Since the (iv − ix)-th bit of Fx is 1, the (iv − jmin)-th

bit of the [jmin, jmax] segment of Fx is 1, thus the jmin + iv − jmin = iv-th bit of A is

set to 1.

Regarding the time complexity, the algorithm performs O(h · t′) = O(h · t) set insertions to A.

For every position j of A, the number of such set insertions that overlap on j is at most t′ + 1

(once for every node in the LCA of Bu and Bv, where v is such that iv = j). Hence if Hi is

the size of the i-th insertion in A, we have
∑

i Hi ⩽ n · (t′ + 1). Since the insertions are word

operations, the total time spent for the single source query is

h∑
i=0

⌈
Hi

W

⌉
⩽ h+

h∑
i=0

Hi

W
⩽ h+

n · (t′ + 1)

W
= O

(
n · t
log n

)
since h = O(log n), t′ = O(t) and W = Θ(log n).

We summarize the results of this section in the following theorem.

Theorem 3.2. Given a graph G of n nodes and treewidth t, let T (G) be the time and S(G) be

the space required for constructing a balanced tree-decomposition Tree(G) of O(n) bags and

width O(t) on the standard RAM with wordsize W = Θ(log n). The data structure Reachability

correctly answers reachability queries and requires

1. O(T (G) + n · t2) preprocessing time;

2. O(S(G) + n · t) preprocessing space;

3. O
(⌈

t
logn

⌉)
pair query time; and

4. O
(

n·t
logn

)
single-source query time.

For constant-treewidth graphs we have that T (G) = O(n) and S(G) = O(n) (Theorem 2.1) and

thus from Theorem 3.2 we obtain the following corollary.
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Corollary 3.1. Given a graph G of n nodes and constant treewidth, the data structure

Reachability requires O(n) preprocessing time and space, and correctly answers (i) pair reacha-

bility queries in O(1) time, and (ii) single-source reachability queries in O
(

n
logn

)
time.

3.4 Space vs Query Time Tradeoff for Sublinear Space

In this section we present the data structure LowSpDis, for low-space distance queries. Our

results make use of the following lemma, where α(n) is the inverse of the Ackermann function

on input (n, n).

Lemma 3.11 ([Chaudhuri and Zaroliagis, 1995]). Consider a weighted graph G = (V,E,wt) of

n nodes and constant-treewidth, and a tree-decomposition T of G of O(n) nodes and constant

width. There exists a data structure DistanceLP that answers distance queries on G and requires

1. O(n) preprocessing time and space; and

2. O(α(n)) pair query time.

The main idea is to partition the initial tree-decomposition T to sufficiently large components,

and discard all bags that don’t appear in the boundary of their component. We use Lemma 3.11

to preprocess T and the induced graph. Answering a pair query (u, v) is performed similarly

as in Lemma 3.11, but requires additional time for processing the components in which u and

v appear (since they have not been preprocessed). The challenge comes in performing these

computations within the targeted space and time bounds.

Informal description. Here we outline the key steps required for LowSpDis to achieve the

bounds stated in Theorem 3.3. Throughout this section we fix a constant ϵ ∈ [1
2
, 1]. The

preprocessing consists of the following conceptual steps.

1. A binary tree-decomposition T = Tree(G) of O(n) bags is constructed in polynomial time

and logarithmic space, using Theorem 2.1. Hence, LowSpDis does not store T explicitly,

but uses the logspace construction of Theorem 2.1 to traverse T and access its bags.

2. A tree-partitioning algorithm LowSpTreePart is used to partition T into O(n1−ϵ) compo-

nents C of size O(nϵ) each. A key point in this construction is that every such component
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C contains a constant number of bags on its boundary.

3. Given a list of components C = (C1, . . . , Cℓ) constructed in the previous step, a tree of

bags called summary tree T is constructed. The summary tree occurs by contracting every

component Ci of T to a single bag Bi. Moreover, Bi contains precisely the nodes that appear

in the bags of the boundary of Ci. Since there are O(1) such bags for every component,

each Bi has constant size. The key point in this step is that T is a tree-decomposition of G

restricted on the nodes that appear in bags of T . Moreover, T has size O(n1−ϵ) instead of

O(n), which is the size of the initial tree-decomposition T .

4. Since T is a tree-decomposition, Lemma 3.11 applies to preprocess T in the stated bounds.

5. An algorithm LowSpLD is used to compute the distance d(u, v) between any pair of nodes

u, v that appear together in some boundary bag of a component Ci. This is achieved by

traversing T in a particular way, and applying a standard, linear-space computation on

each component Ci separately. Since |Ci| = O(nϵ), this requires O(nϵ) space. Since the

boundary bags of Ci are constantly many, the algorithm only needs to store constant-size

information per component, and thus O(n1−ϵ) = O(nϵ) information in total.

6. Finally, given a node u, it is crucial to obtain the set Vu of nodes that u can reach going

through nodes v that appear in bags of T . Moreover, this set needs to be obtained in linear

time in the size of the component, i.e., O(n1−ϵ). This is achieved by a graph traversal on

G starting from u, in combination with perfect hashing for testing in O(1) time whether a

node v appears in bags of T .

A query u, v is answered by LowSpDis using the following conceptual steps.

1. First, the algorithm retrieves the sets Vu and Vv. If v ∈ Vu, then the distance d(u, v) is

retrieved by constructing a tree-decomposition Tu of G[Vu], and using standard methods

for solving the problem in Tu, in O(nϵ) time. Similarly if u ∈ Vv.

2. If v ̸∈ Vu and u ̸∈ Vv, then the algorithm again constructs the tree-decompositions Tu and

Tv of G[Vu] and G[Vv] respectively. The algorithm retrieves two bags Bu and Bv of T with

Bu ⊆ Vu and Bv ⊆ Vv, and uses the standard methods of the previous item to obtain the

distances d(u, x) and d(y, v), for every node x ∈ Bu and Bv. Additionally, the algorithm

uses Lemma 3.11 to obtain the distance d(x, y) between every such pair x, y. Finally, the
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algorithm returns the value minx∈Bu,y∈Bv(d(u, x) + d(x, y) + d(y, v)).

In the remaining of this section we describe in detail the above phases of LowSpDis.

Tree partitioning: The algorithm LowSpTreePart. We first describe algorithm LowSpTreePart,

which operates on a binary tree-decomposition T = (VT , ET ) of O(n) bags. Given a constant

ϵ, LowSpTreePart splits T to O(n1−ϵ) connected components C ⊆ VT of size |C| = O(nϵ).

Each component C is implicitly represented as a list of bags C(B1, . . . , Bk), which mark the

boundaries of C in T . The root of C(B1, . . . , Bk) is B = argminBi
Lv(Bi), i.e., the smallest-

level bag among all Bi. We will consider w.l.o.g. that B1 is always the root bag of component

C(B1, . . . , Bk). A bag B′ belongs to C iff the Lv(B′) ⩾ Lv(B1) and the unique simple path

B ⇝ B1 in T does not contain any of the Bi as intermediate bags.

The algorithm traverses T in post-order, and maintains a two variables x, y ∈ N, that represent

the size of the current component C and the number of components that appear directly below

C. As the algorithm backtracks to a bag B, it updates x = x1 + x2 + 1 and y = y1 + y2, where

xi, yi is the pair corresponding to the child B′
i of B (recall that T is binary), or sets x = x1 + 1

and y = y1 if B has only one child B′
1. If x ⩾ nϵ or y ⩾ 3, the algorithm creates a new

component C(B1, . . . , Bk), where B1 is the current bag B, and B2, . . . , Bk are parents of roots

of components that have been constructed already (or leaves of T ). Finally, the algorithm sets

x = 0 and y = 1, and proceeds to the parent of B.

Lemma 3.12. LowSpTreePart constructs O(n1−ϵ) components. For every constructed compo-

nent C(B1, . . . , Bk) we have |C| ⩽ 2 · nϵ − 1 and k ⩽ 5.

Proof. If |C| > 2·nϵ−1, then, before backtracking to B1, the algorithm examined a child B of B1

with value x ⩾ j, and thus would have grouped B and B1 in different components. It is easy to see

that every root of a component appears in the same component with its children, a contradiction.

A similar argument holds for showing that k ⩽ 5. We now argue that LowSpTreePart constructs

O(n1−ϵ) components. We say that the algorithm “performs a type A cut” and “performs a type B

cut” when it constructs a component based on the criterion x ⩾ j and y ⩾ 3 respectively. Let X

and Y be the number of type A and type B cuts. Every type A cut constructs a component of

size at least j, hence X = O(n1−ϵ). Additionally, we have Y ⩽ X , hence X + Y = O(n1−ϵ),

as desired. To see that Y ⩽ X , let Z be a counter that counts the sum of the y values that

LowSpTreePart maintains at any point in the traversal. Observe that a type A cut increases Z by
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at most one, and a type B cut decreases Z by at least one. Since Z is always non-negative, we

have that there is at least one type A cut for each type B cut, thus Y ⩽ X . The desired result

follows.

We denote by Root(C) the root bag of a component C. Given two components C1, C2 constructed

by LowSpTreePart, we say that C1 is the parent of C2 if Root(C1) is the lowest ancestor of

Root(C2) among all bags that appear as roots in some component. In such case, C2 is a child of C1.

Given a component C that is the parent of components C1, . . . , Ci, we let Merge(C) = C ∪
⋃

j Cj .

The summary-tree construction SummaryTree. Let C = (C1, . . . , Cℓ) = LowSpTreePart(T )

be the list of components that LowSpTreePart returns, where each component is implicitly

represented by the bags of its boundary, i.e., Ci = Ci(Bi
1, . . . , B

i
ki
). We construct a summary tree

of bags T = SummaryTree(C) = (V ,E) as follows.

1. V consists of bags Bi for 1 ⩽ i ⩽ ℓ, where Bi = Bi
1 ∪ · · · ∪Bi

ki
, i.e., Bi is the union of all

bags in the boundary of Ci.

2. We have (Bi,Bj) ∈ E if Ci is a parent of Cj .

The following lemma follows easily from Lemma 3.12 and the above construction.

Lemma 3.13. Let VS =
⋃

Bi∈V Bi be the set of nodes of G that appear in bags of the summary

tree T . Then T is a tree-decomposition of the graph G[VS] induced by VS . T has O(n1−ϵ) bags

and constant width.

Local distance computation in low space LowSpLD. Let C = (C1, . . . , Cℓ) =

LowSpTreePart(T ) be the list of components constructed by LowSpTreePart. We describe

algorithm LowSpLD, which computes the distance d(u, v) between any pair of nodes u, v that

appear in the root bag Root(Ci) of some component Ci. Let Ti = Tree(G)[Merge(Ci)] be the

subtree of Tree(G) restricted in the bags of component Ci and its children components, and

Vi =
⋃

B∈Merge(Ci) B the set of nodes that appear in bags of Merge(Ci). It is easy to verify that

Ti is a subtree of T , and thus a tree decomposition of the graph G[Vi] = (Vi, Ei) induced by

Vi. The algorithm LowSpLD operates as follows. For every component C, it maintains a local

distance map LDRoot(C) : Root(C) × Root(C) → R. Initially, LDRoot(C)(u, v) = wt(u, v) for

every component C and pair of nodes u, v ∈ Root(C). Then, LowSpLD performs the following

two passes.
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1. Traverse T bottom-up, and for every encountered bag B that corresponds to component

C, let C1, . . . , Ck be the children components of C. Obtain the tree-decomposition Ti, and

construct a weight function wti : Ei → R defined as follows:

wti(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
LDRoot(C)(u, v) if u, v ∈ Root(C)

LDRoot(Ci)(u, v) if u, v ∈ Root(Ci) for some 1 ⩽ i ⩽ k

wt(u, v) otherwise

and execute the local distance computation of Lemma 2.4 Afterwards, update LDRoot(C)

and LDRoot(Ci) for all 1 ⩽ i ⩽ k with the newly discovered distances.

2. Traverse T top-down, and for every encountered bag B execute the steps of Step 1.

Lemma 3.14. At the end of LowSpLD, for every component C and nodes u, v ∈ Root(C) we

have LDRoot(C)(u, v) = d(u, v). Moreover, LowSpLD operates in O(nϵ) space and polynomial

time.

Proof. The correctness of LowSpLD follows straightforwardly from Lemmas 2.3 and 2.4. Since

T has constant width, the size of each local distance map LDRoot(C) has constant size. Hence the

space used by the algorithm is asymptotically the space required for storing T , plus the space for

constructing each tree-decomposition Ti. By Lemma 3.13 the former requires O(n1−ϵ) space,

while by Lemma 3.12 the latter O(nϵ) space. Since ϵ ⩾ 1
2
, we conclude that the space usage is

O(nϵ). The polynomial time bound follows from the space bound.

Fast component retrieval GetCompNodes. Given a node u of G, we are interested in retrieving

the set Vu of nodes that u can reach in G without going through nodes v that appear in bags

of T . The desired set Vu can be obtained in O(nϵ) time by a performing any standard graph

traversal on G starting from u, and making sure that the traversal never expands a node v that

appears in the bags of T . This can be done if testing whether v appears in any of the bags of

T can be performed in constant time. Let VS =
⋃

Bi∈V Bi be the set of all such nodes, and

k = |VS| = O(n1−ϵ). We cannot store VS as a standard bit-set which allows O(1) membership

testing, as this would require linear space (i.e., beyond our space bound O(nϵ)). The problem

can be solved using standard techniques from perfect hashing to store the set VS . In the query

phase, given a node u, GetCompNodes detects that u ∈ VS by testing whether u equals its entry

in the hash table.
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LowSpDis Preprocessing. We now describe the preprocessing phase of LowSpDis. The input is

a weighted graph G = (V,E,wt) of constant treewidth, and a constant ϵ ∈ [1
2
, 1].

1. Construct a binary tree-decomposition T = Tree(G) in logspace Theorem 2.1.

2. Use LowSpTreePart to construct a list of components C = (C1, . . . , Cℓ) =

LowSpTreePart(T ), with ℓ = n1−ϵ (i.e., LowSpTreePart is executed with j = nϵ).

3. Construct the local distance maps LDRoot(C) using LowSpLD.

4. Construct the summary tree T = SummaryTree(C) = (V ,E). For every component Ci
that corresponds to Bi in T , find a node z ̸∈ Bi that appears in bags of Ci, and associate z

with Bi.

5. Use Lemma 3.11 to build a data structure DistanceLP on G[VS] and T .

6. Let VS =
⋃

Bi∈V Bi be the set of nodes of G that appear in bags of the summary tree T .

Construct the data structure GetCompNodes on VS .

LowSpDis Querying. We now turn our attention to the query phase of LowSpDis.

1. Use the data structure GetCompNodes to construct the sets Vu and Vv.

2. Construct the tree-decompositions Tu and Tv of the graphs G[Vu] and G[Vv] induced by

Vu and Vv. This is done using some standard linear-time algorithm, e.g. [Bodlaender and

Hagerup, 1995, Lemma 2]. If u ∈ Vv, insert u to every bag of Tv, and use Lemma 2.4 to

obtain the distance d(u, v). Similarly if v ∈ Vu.

3. If u ̸∈ Vv and v ̸∈ Vu let Bu be the unique bag of T with that is associated with a node

zu ∈ Vu, and Bv the unique bag of T that is associated with a node zv ∈ Vv. Insert every

node of Bu in every bag of Tu, and every node of Bv in every bag of Tu, and use Lemma 2.4

to obtain the distances d(u, x) and d(y, v) for every node x ∈ Bu and y ∈ Bv. Return

the value minx∈Bu,y∈Bv(d(u, x) + d(x, y) + d(y, v)) where for every pair x, y the distance

d(x, y) is obtained by querying DistanceLP.

We arrive at the following theorem.
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Theorem 3.3. Let (1) a constant ϵ ∈ [1
2
, 1]; and (2) a weighted graph G = (V,E,wt) with n

nodes and of constant treewidth, be given. The data structure LowSpDis correctly answers pair

distance queries on G and requires

1. Polynomial in n preprocessing time;

2. O(nϵ) working space; and

3. O(n1−ϵ · α(n)) pair query time.

Proof. It is clear from Lemmas 3.11 to 3.14 that the preprocessing of LowSpDis requires polyno-

mial time and O(nϵ) space, where ϵ ⩾ 1
2
. In the query phase, LowSpDis uses O(nϵ) time and

space for extracting the sets Vu and Vv, since each has size O(nϵ). Using a linear time and space

algorithm for constructing the tree-decompositions Tu and Tv, this step also requires O(n1−ϵ)

time and space. If u ∈ Vv or v ∈ Vu, applying Lemma 2.4 on Tu and Tv is also done in O(n1−ϵ)

time and space.

If u ̸∈ Vv and v ̸∈ Vu, note that by Lemma 3.13 Bu and Bv have constant size, hence after

inserting every node of Bu to every bag of Tu and every node of Bv to every bag of Tv, Tu

and Tv still have constant width. Hence all distances d(u, x) and d(v, y) can be obtained using

Lemma 2.4 in O(n1−ϵ) time and space. Finally, DistanceLP will be queried for the distances

d(x, y) of a constant number of pairs x, y, and by Lemma 3.11, all such queries can be served in

O(n1−ϵ · α(n)) time.
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4 Semiring Distances on RSMs of

Constant Treewidth

4.1 Introduction

In this chapter we focus on the algebraic path problem for RSMs, which models various

interprocedural analysis problems. In turn, these problems have numerous applications, ranging

from alias analysis, to data dependencies (modification and reference side effect), to constant

propagation, to live and use analysis [Reps et al., 1995a; Sagiv et al., 1996; Callahan et al., 1986;

Grove and Torczon, 1993; Landi and Ryder, 1991; Knoop et al., 1996; Cousot and Cousot, 1977a;

Giegerich et al., 1981; Knoop and Steffen, 1992; Naeem and Lhoták, 2008; Zhang et al., 2014].

We obtain algorithmic improvements for the general algebraic path problem, by exploiting the

fact that the control-flow graphs of typical programs have small treewidth.

The algebraic path problem for RSMs. To specify properties of traces of a RSM we consider

a very general framework, where edges of the RSM are labeled from a closed semiring (which

subsumes bounded and finite distributive semirings), and we refer to the labels of the edges as

weights. For a given path, the weight of the path is the semiring product of the weights on the

edges of the path, and to choose among different paths we use the semiring plus operator. For

example, (i) with Boolean semiring (with semiring product as AND, and semiring plus as OR)

we can express the reachability property; (ii) with tropical semiring (with real-edge weights,

semiring product as standard sum, and semiring plus as minimum) we can express the shortest

path property; and (iii) with Viterbi semiring (with probability value on edges, semiring product

as standard multiplication and semiring plus as maximum) we can express the most probable

path property. The algebraic path problem expressed in our framework subsumes the IFDS/IDE
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frameworks [Reps et al., 1995a; Sagiv et al., 1996] which consider finite semirings and meet

over all paths as the semiring plus operator. Since IFDS/IDE are subsumed in our framework,

the large and important class of data-flow analysis problems that can be expressed in IFDS/IDE

frameworks can also be expressed in our framework.

Two important aspects. In the traditional algorithms for interprocedural analysis, the starting

point is typically fixed as the entry point of a specific method. In graph theoretic parlance, graph

algorithms can consider two types of queries: (i) a pair query that given nodes u and v (called

(u, v)-pair query) asks for the semiring distance from u to v; and (ii) a single-source query that

given a node u asks for the answer of (u, v)-pair queries for all nodes v. Thus the traditional

algorithms for interprocedural analysis have focused on the answer for one single-source query.

Moreover, the existing algorithms also consider that the input control-flow graph is arbitrary, and

do not exploit the fact that most control-flow graphs satisfy some elegant structural properties.

Here we consider two new aspects, namely, (i) multiple pair and single-source queries, and

(ii) exploit the fact that typically the control-flow graphs of programs satisfy an important

structural property, namely they are graphs of small treewidth. We describe in details the two

aspects.

• Multiple queries. We first describe the relevance of pair and multiple pair queries, and

then the significance of even multiple single-source queries. For example, in constant

propagation, given a function call, a relevant question is whether some variable remains

constant within the entry and exit of the function (in general it can be between a pair

of nodes of the program). This shows that the pair query problem, and the multiple

pair queries are relevant in many applications. Finally, consider a run-time optimization

scenario, where the goal is to decide whether a variable remains constant from now on.

This corresponds to a single-source query, where the starting point is the current execution

point of the program. Thus, multiple pair queries and multiple single-source queries are

relevant for several important static analysis problems.

• Constant treewidth. A very well-known concept in graph theory is the notion of treewidth

of a graph, which is a measure of how similar a graph is to a tree (a graph has treewidth 1

precisely if it is a tree) [Robertson and Seymour, 1984]. The treewidth of a graph is

defined based on a tree decomposition of the graph [Halin, 1976] (see Section 2.3 for a

formal definition). Besides the mathematical elegance of the treewidth property for graphs,
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Preprocessing time Space
Query

Reference
Single-source Pair

Our O(n · log n+ h · b · log n) O(n · log n) O(n) O(1) Theorem 4.1

Result O(n+ h · b · log n) O(n) O(n) O(log n) Theorem 4.1

Table 4.1: Interprocedural same-context semiring distances on RSMs with n nodes, b boxes and

constant treewidth, for stack height h.

there are many classes of graphs which arise in practice and have constant treewidth. The

most important example is that the control-flow graph for goto-free programs for many

programming languages are of constant treewidth [Thorup, 1998], and it was also shown

in [Gustedt et al., 2002] that typically all Java programs have constant treewidth.

Our contributions. We consider RSMs where every CSM (Component State Machine) has

constant treewidth, and the algorithmic question of answering multiple single-source and multiple

pair semiring distance queries, where each query is a same-context query (a same-context query

starts and ends with an empty stack, see [Chaudhuri, 2008] for the significance of same-context

queries). In the analysis of multiple queries, there is a very important algorithmic distinction

between one-time preprocessing (denoted as the preprocessing time), and the work done for

each individual query (denoted as the query time). There are two end-points in the spectrum

of tradeoff between the preprocessing and query resources that can be obtained by using the

classic algorithms for one single-source query, namely, (i) the complete preprocessing, and

(ii) the no preprocessing. In complete preprocessing, the single-source answer is precomputed

with every node as the starting point (for example, in graph reachability this corresponds to

computing the all-pairs reachability problem with the classic BFS/DFS algorithm [Cormen et al.,

2009], or with fast matrix multiplication [Fischer and Meyer, 1971]). In no preprocessing, there

is no preprocessing done, and the algorithm for one single-source query is used on demand

for each individual query. We consider the computation on a standard RAM with wordsize

W = Θ(log n), and focus on various possible tradeoffs in preprocessing vs query time. Our

main contributions are as follows:

• (General result). Since we consider arbitrary semirings (i.e., not restricted to finite

semirings) we consider the stack height bounded problem, where the distance between
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Preprocessing time Space
Query

Reference
Single-source Pair

IDE/IFDS

(complete

preprocessing)

O(n2 · |D|3) O(n2 · |D|2) O(n · |D|) O(|D|) [Reps et al., 1995a]

IDE/IFDS

(no

preprocessing)

- O(n · |D|2) O(n · |D|3) O(n · |D|3) [Reps et al., 1995a]

Our O(n · log n · |D|3) O(n · log n · |D|2) O(n · |D|2) O(|D|2) Corollary 4.1

Results O((n+ b · log n) · |D|3) O(n · |D|2) O(n · |D|2) O(log n · |D|2) Corollary 4.1

|D| = Ω(log n) O(n · |D|3) O(n · |D|2) O(n · |D|2/ log n) O(|D|2/ log n) Corollary 4.2

Table 4.2: Interprocedural same-context semiring distances on RSMs with n nodes, b boxes and

constant treewidth, where the semiring is over the subset of |D| elements and the plus operator is

the meet operator of the IFDS framework. Existing results are taken from [Reps et al., 1995a].

Our results are obtained from Corollary 4.1 and Corollary 4.2

Preprocessing time Space
Query

Reference
Single-source Pair

Complete preprocessing O(n2) O(n2) O(n) O(1) [Reps et al., 1995a]

No preprocessing - O(n) O(n) O(n) [Reps et al., 1995a]

Our Result O(n+ b · log n) O(n) O
(

n
logn

)
O(1) Corollary 4.3

Table 4.3: Interprocedural same-context reachability on RSMs with n nodes, b boxes and constant

treewidth. Existing results are taken from [Reps et al., 1995a] using the IFDS/IDE framework

with |D| = 1. Our results are obtained from Corollary 4.3.
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Preprocessing time Space
Query

Reference
Single-source Pair

Complete

preprocessing

1 O(n2 · log n) O(n2) O(n) O(1) [Schwoon, 2002]

No

preprocessing

2 - O(n) O(n · log n) O(n · log n) [Schwoon, 2002]

Our O(n · log n) O(n · log n) O(n) O(1) Corollary 4.4

Result O(n+ b · log n) O(n) O(n) O(log n) Corollary 4.4

Table 4.4: Interprocedural same-context distances with non-negative weights for RSMs with n

nodes, k CSMs, b boxes and constant treewidth.
1 The preprocessing time is obtained by executing Dijkstra’s algorithm b times in each of the k

CMSs, followed by executing Dijkstra’s algorithm from n source nodes.
2 The single-source and pair query times are obtained by executing Dijkstra’s algorithm b times

in each of the k CMSs.

nodes is witnessed by paths whose stack height is bounded by a parameter h. While

in general for arbitrary semirings there does not exist a bound on the stack height, if

the semiring contains subsets of a finite universe D, and the semiring plus operator is

intersection or union, then solving the problem with sufficiently large bound on the stack

height is equivalent to solving the problem without any restriction on stack height. Our

main result is an algorithm where the one-time preprocessing phase requires O(n · log n+

h · b · log n) semiring operations, and then each subsequent bounded stack height pair

query can be answered in constant number of semiring operations, where n is the number

of nodes of the RSM and b the number of boxes (see Table 4.1 and Theorem 4.1). If we

specialize our result to the IFDS/IDE setting with finite semirings from a finite universe of

distributive functions 2D → 2D, and meet over all paths as the semiring plus operator, then

we obtain the results shown in Table 4.2 (Corollary 4.1). For example, our approach with a

factor of O(log n) overhead for one-time preprocessing, as compared to no preprocessing,

can answer subsequent pair queries by a factor of Ω(n · |D|) faster. Additionally, when

|D| = Ω(log n), our algorithm requires only O(n · |D|3) preprocessing after which pair

queries are answered in O(|D|2/ log n) time. Note that the complexity of the standard

IFDS/IDE algorithm is O(n · |D|3) for answering one single-source query, whereas in the
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same preprocessing time, our algorithm handles every pair query efficiently. An important

feature of our algorithms is that they are simple and implementable.

• (Reachability and distance). We now discuss the significance of our result for the important

special cases of reachability and distances with non-negative weights.

– (Reachability). Observe that reachability follows as a special case of our general

result, by setting |D| = 1. We improve further this case, by combining our general

result with Theorem 3.2 from Section 3.3. We obtain a data structure that handles

same-context queries for interprocedural reachability and uses (i) O(n · log n) prepro-

cessing time; (ii) O(n) space; (iii) O(1) pair query time; and (iv) O(n/ log n) time

for single-source queries. For example, if we consider Θ(n) pair queries, then both

full preprocessing and no preprocessing take quadratic time in total, whereas our

approach requires O(n · log n+ n) = O(n · log n) time. See Table 4.3.

– (Distances with non-negative weights). We now consider the problem of distances

with non-negative weights, where the current best-known algorithm for RSMs with

unique entries and exists comes from [Schwoon, 2002]. Each single-source query

requires O(n · log n) based on a variant of Dijkstra’s shortest-path algorithm phrased

on RSMs. The complete preprocessing requires O(n2 · log n) time for computing

the transitive closure using n single-source queries. The complete preprocessing

additionally requires Θ(n2) space, at the cost of which single-source and pair distance

queries are handled in O(n) and O(1) time respectively. In contrast, we show that

(i) with O(n+ b · log n) preprocessing time and O(n) space, we can answer single-

source (resp. pair) queries in O(n) (resp. O(log n)) time; and (i) with O(n · log n)

time and space, we can answer single-source (resp. pair) queries in O(n) (resp. O(1))

time. Thus our approach provides a significant theoretical improvement over the

existing approaches. See Table 4.4.

• (Experimental results). Besides the theoretical improvements, we demonstrate the effec-

tiveness of our approach on several well-known benchmarks from programming languages.

We have used the tool for computing tree decompositions from [van Dijk et al., 2006a], and

all benchmarks of our experimental results have small treewidth. We have implemented

our algorithms for reachability (both intraprocedural and interprocedural) and distance
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with non-negative weights (only intraprocedural), and compare their performance against

complete and no preprocessing approaches for same-context queries. Our experimen-

tal results show that our approach obtains a significant improvement over the existing

approaches (of complete and no preprocessing).

A byproduct of our results: on demand analysis. Several previous works such as [Horwitz

et al., 1995] have stated the importance and asked for the development of data structures and

analysis techniques to support dynamic updates. Though our main results are for the problem

where the RSM is given and fixed, our main technical contribution is a dynamic algorithm that

can also be used in other applications to support dynamic updates, and is thus also of independent

interest. For example, consider a large library which is linked to different main programs upon

compilation. Traditionally, for every different main program, the resulting program linked with

the library needs to be analyzed anew. In contrast, our data structures can be used to preprocess

the library once, so that each new analysis spends little time on the library.

Organization. The rest of this chapter is organized as follows.

1. In Section 4.2 we present our data structures for handling bounded-height same-context

semiring distances on RSMs of constant treewidth.

2. In Section 4.3 we present an experimental evaluation of our algorithms on RSMs of

benchmark programs.

4.2 Algorithms for Constant Treewidth RSMs

We consider the bounded-height same-context semiring-distance problem on RSMs of constant

treewidth. The input is (i) a constant-treewidth RSM RSM = {A1, A2, . . . , Ak}, where Ai

consists of ni nodes and bi boxes; (ii) a complete semiring (Σ,⊕,⊗,0,1); and (iii) a maximum

stack height h. Our task is to create a data structure that after some preprocessing can answer

queries of the following form:

1. Given a pair ((u,∅), (v,∅)) of configurations, compute the semiring distance

d((u,∅), (v,∅), h).
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2. Given a source configuration (u,∅), compute the semiring distance d((u,∅), (v,∅), h)

for every node v in the same CSM as u.

For this purpose, we present the algorithm RSMDistance, which performs such preprocessing

using a data structureD consisting of the algorithms Preprocess, Update and Query of Section 3.2.

At the end of RSMDistance it will hold that pair semiring-distance queries in a CSM Ai can

be answered in O(log ni) semiring operations. We later present some additional preprocessing

which suffers a factor of O(log ni) in the preprocessing space, but reduces the pair query time to

constant.

Our algorithm RSMDistance can be viewed as a Bellman-Ford computation on the call graph of

the RSM (i.e., a graph where every node corresponds to a CSM, and an edge connects two CSMs

if one appears as a box in the other). Informally, RSMDistance consists of the following steps.

1. In a preprocessing phase, it uses Theorem 2.1 and Lemma 2.6 to compute a nicely rooted,

balanced, binary tree decomposition Tree(Gi) of the CFG Gi each CSM Ai.

2. It preprocesses the control-flow graphs Gi = (Vi, E
′
i) of the CSMs Ai using Preprocess

of Section 3.2, where the weight function wti for each Gi is extended such that

wti((en, b), (ex, b)) = 0 for all pairs of call and return nodes to the same box b. This

allows the computation of d(u, v, 0) for all pairs of nodes (u, v), since no call can be made

while still having zero stack height.

3. Then, iteratively for each ℓ, where 1 ⩽ ℓ ⩽ h, given that we have a dynamic data structure

D (concretely, an instance of the dynamic algorithms Update and Query from Section 3.2)

for computing d(u, v, ℓ− 1), the algorithm does as follows: First, for each Gi whose entry

to exit distance d(eni, exi, ℓ− 1) has changed from the last iteration and for each Gj that

contains a box pointing to Gi, it updates the call to return distance of the corresponding

nodes, using Query.

4. Then, it obtains the entry to exit distance d(enj, exj, ℓ) to see if it was modified, and

continues with the next iteration of ℓ+ 1.

See Algorithm 6 for the formal description.

Correctness and logarithmic pair query time. The algorithm RSMDistance is described so
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Algorithm 6: RSMDistance

Input: A set of control-flow graphs G = {Gi}1⩽i⩽k, stack height h

1 foreach Gi ∈ G do

2 Construct a nicely rooted, balanced, binary tree-decomposition Tree(Gi)

3 Call Preprocess on Tree(Gi)

4 end

5 distances← [Call Query on (eni, exi) of Gi]1⩽i⩽k

6 modified← {1, . . . , k}

7 for ℓ← 1 to h do

8 modified′ ← ∅

9 foreach i ∈ modified do

10 foreach Gj that contains boxes bj1 , . . . , bjl s.t. Yj(bjx) = i do

11 Call Update on Gj for the weight change wt((eni, bjl), (exi, bjx))← distances[i]

12 δ ← Query(enj , exj)

13 if δ ̸= distances[j] then

14 modified′ ← modified′ ∪ {j}

15 distances[j]← δ

16 end

17 end

18 modified← modified′

19 end
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that a proof by induction is straightforward for correctness. Initially, running the algorithm

Preprocess from Section 3.2 on each of the graphs Gi allows queries for the distances d(u, v, 0)

for all pairs of nodes (u, v), since no method call can be made. Also, the induction follows directly

since for every CSM Ai, updating the distance from call nodes (en, b) to the corresponding

return nodes (ex, b) of every box b that corresponds to a CSM Aj whose distance d(enj, exj) was

changed in the last iteration ℓ, ensures that the distance d(u, v, ℓ+ 1) of every pair of nodes u, v

in Ai is computed correctly. This is also true for the special pair of nodes eni, exi, which feeds the

next iteration of RSMDistance. Finally, RSMDistance requires O(
∑k

i=1(ni)) time to construct a

nicely rooted, balanced, binary tree decomposition (Theorem 2.1 and Lemma 2.6), O(n) time

to preprocess all Gi initially, and O(
∑k

i=1(bi · log ni)) to update all Gi for one iteration of the

loop of Line 4 (from Theorem 3.1). Hence, RSMDistance uses O(
∑k

i=1(ni + h · bi · log ni))

preprocessing semiring operations. Finally, it is easy to verify that all preprocessing is done in

O(
∑

i ni) = O(n) space.

After the last iteration of algorithm RSMDistance, we have a data structure D that occupies O(n)

space and answers distance queries d(u, v, h) in O(log ni) time, with u, v ∈ Vi, by calling Query

from Section 3.2 for the distance d(u, v) in Gi.

Example 4.1 (RSMDistance on the RSM of Fig. 2.6). We now present a small example of

how RSMDistance is executed on the RSM of Fig. 2.6 for the case of reachability. In this case,

for any pair of nodes (u, v), we have d(u, v) = True iff u reaches v. Table 4.5(a) illustrates

how the local distance maps LUDBx look for each bag Bx of each of the CSMs of the two

methods dot_vector and dot_matrix. Each column represents the local distance map of the

corresponding bag Bx, and an entry (u, v) means that LUDBx(u, v) = True (i.e., u reaches v).

For brevity, in the table we hide self loops (i.e., entries of the form (u, u)) although they are

stored by the algorithms. Initially, the stack height ℓ = 0, and Preprocess is called for each graph

(Line 3). The new reachability relations discovered by Merge are shown in bold. Note that at

this point we have wt(4, 5) = False in method dot_matrix, as we do not know whether the call to

method dot_vector actually returns. Afterwards, Query is called to discover the distance d(1, 6)

in method dot_vector (Line 5). Table 4.5 (b) shows the sequence in which Query examines

the bags of the tree decomposition, and the distances δ1, δ6 and δ it maintains. When B2 is

examined, δ = True and hence at the end Query returns δ = True. Finally, since Query returns

δ = True, the weight wt(4, 5) between the call-return pair of nodes (4, 5) in method dot_matrix

is set to True. An execution of Update (Line 11) with this update on the corresponding tree
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dot_vector dot_matrix

ℓ/LUDBx B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6 B7 B8

ℓ = 0
− (1, 2) (2, 3) (2, 3) (2, 5) (5, 6) − (1, 2) (2, 3) (3, 4) (3, 4) (2, 6) (2, 7) (7, 8)

(3, 4) (5, 3) (3, 6)

(Preprocess) (4, 2) (6, 2)

(2,4) (3,2)

ℓ = 1
− (1, 2) (2, 3) (2, 3) (2, 5) (5, 6) − (1, 2) (2, 3) (3, 4) (3, 4) (2, 6) (2, 7) (7, 8)

(3, 4) (5, 3) (3, 6)

(Update) (4, 2) (4,5) (6, 2)

(2, 4) (4,3) (3, 2)

(a)

dot_vector

B6 B5 B2 B1

Query δ6 = {5, 6} δ6 = {2, 5} δ6 = {1, 2} δ6 = {1}

d(1, 6)
− − δ1 = {1, 2} δ1 = {1}

− − δ = True δ = True

(b)

Table 4.5: Illustration of RSMDistance on the tree decompositions of methods dot_vector and

dot_matrix from Fig. 2.6. Table 4.5a shows the local distance maps for each bag and stack height

ℓ = 0, 1. Table 4.5b shows how the distance query d(1, 6) in method dot_vector is handled.

decomposition (Table 4.5(a) for ℓ = 1) updates the entries (4, 5) and (4, 3) in LUDB5 of method

dot_matrix (shown in bold). From this point, any same-context distance query can be answered

in logarithmic time in the size of its CSM by further calls to Query.

Linear single-source query time. In order to handle single-source queries, some additional

preprocessing is required. The basic idea is to use RSMDistance to process the graphs Gi, and

then use additional preprocessing on each Gi by applying existing algorithms for graphs with

constant treewidth. This is achieved using Lemma 2.4, which states that for each bag B of each

tree-decomposition Tree(Gi), a local distance map LDB : B×B → Σ with LDB(u, v) = d(u, v)

can be computed in time and space O(ni). After all such maps LDB have been computed for

each B, it is straightforward to answer single-source queries from some node u in linear time.
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The algorithm simply maintains a map A : Vi → Σ, and initially A(v) = d(u, v) for all v ∈ Bu,

and A(v) = 0 otherwise. Then, it traverses Tree(Gi) in a BFS manner starting at Bu, and for

every encountered bag B and v ∈ B, if A(v) = 0, it sets A(v) =
⨁

z∈B
⨂

(A(z), d(z, v)). The

correctness follows directly from Lemma 2.3. For constant treewidth, this results in a constant

number of semiring operations per bag, and hence O(ni) time in total.

Constant pair query time. After RSMDistance has returned, it is possible to further preprocess

the graphs Gi to reduce the pair query time to constant, while increasing the space by a factor of

log ni. For constant treewidth, this can be obtained by adapting [Chaudhuri and Zaroliagis, 1995,

Theorem 10] to our setting, which in turn is based on a rather complicated algorithmic technique

of [Alon and Schieber, 1987]. We present a more intuitive, simpler and implementable approach

that has a dynamic programming nature. In Section 4.3 we present some experimental results

obtained by this approach.

Recall that the extra preprocessing for answering single-source queries in linear time consists in

computing the local distance maps LDB for every bag B. To handle pair queries in constant time,

we further traverse each Tree(Gi) one last time, bottom-up, and for each node u we store maps

Fu,Tu : V Bu
i → Σ, where V Bu

i is the subset of Vi of nodes that appear in Bu and its descendants

in Tree(Gi). The maps are such that Fu(v) = d(u, v) and Tu = d(v, u). Hence, Fu stores the

distances from u to nodes in V Bu
i , and Tu stores the distances from nodes in V Bu

i to u. The maps

are computed in a dynamic programming fashion, as follows:

1. Initially, the maps Fu and Tu are constructed for all u that appear in a bag B which is

a leaf of Tree(Gi). The information required has already been computed as part of the

preprocessing for answering single-source queries. Then, Tree(Gi) is traversed up, level

by level.

2. When examining a bag B such that the computation has been performed for all its children,

for every node u ∈ B and v ∈ V B
i , we set Fu(v) =

⨁
z∈B

⨂
{d(u, z),Fz(v)}, and

similarly for Tu =
⨁

z∈B
⨂
{d(z, u),Tz(v)}.

An application of Lemma 2.2 inductively on the levels processed by the algorithm can be used

to show that when a bag B is processed, for every node u ∈ B and v ∈ V B
i , we have Tu(v) =⨁

P :v⇝u⊗(P ) and Fu(v) =
⨁

P :u⇝v⊗(P ). Finally, there are O(ni) semiring operations done at

each level of Tree(Gi), and since there are O(log ni) levels, O(ni · log ni) operations are required
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in total. Hence, the space used is also O(ni · log ni). We furthermore preprocess Tree(Gi) in

linear time and space to answer LCA queries in constant time (note that since Tree(Gi) is

balanced, this is standard). To answer a pair query u, v, it suffices to first obtain the LCA B

of Bu and Bv, and it follows from Lemma 2.3 that d(u, v) =
⨁

z∈B
⨂
{Tz(u), Fz(v)}, which

requires a constant number of semiring operations.

Theorem 4.1. Fix the following input: (i) a constant treewidth RSM A = {A1, A2, . . . , Ak},

where Ai consists of ni nodes and bi boxes; (ii) a complete semiring (Σ,⊕,⊗,0,1); and (iii) a

maximum stack height h. Let n =
∑

i ni. RSMDistance operates in the following complexity

bounds.

1. Using O(n+h ·
∑k

i=1 bi · log ni) semiring operations and O(n) space, it correctly answers

same-context semiring distance pair queries in O(log ni), and same-context semiring

distance single-source queries in O(ni) semiring operations.

2. Using O(
∑k

i=1(ni · log ni + h · bi · log ni)) semiring operations O(
∑k

i=1(ni · log ni))

space, it correctly answers same-context semiring distance pair queries in O(1) semiring

operations, and same-context semiring distance single-source queries in O(ni) semiring

operations.

Remark 4.1. We note that the pair query time of Item 1 in Theorem 4.1 can be improved further

to O(α(ni)) time, where α(ni) is the inverse of the Ackermann function on input (ni, ni). This

is achieved using [Chaudhuri and Zaroliagis, 1995, Theorem 10, Item (ii)], instead of the process

described above. This result is only of theoretical interest, as (i) the hidden constants are large,

and (ii) the data structure for achieving such bounds is hard to be implemented in practice.

IFDS/IDE framework. In the special case where the algebraic path problem belongs to the

IFDS/IDE framework, we have a meet-composition semiring (F,⊓, ◦,∅, I), where F is a set

of distributive flow functions 2D → 2D, D is a set of data facts, ⊓ is the meet operator (either

union or intersection), ◦ is the flow function composition operator, and I is the identity flow

function. For a fair comparison, the ◦ semiring operation does not induce a unit time cost, but

instead a cost of O(|D|) per data fact (as functions are represented as bipartite graphs [Reps

et al., 1995a]). Because the set D is finite, and the meet operator is either union or intersection,

it follows that the image of every data fact will be updated at most |D| times. Hence, in the

preprocessing phase where Preprocess(Gi) is called for each graph Gi, the total time spent for
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each Gi is O(ni · |D|3). Additionally, Line 7 of RSMDistance needs to change so that instead

of h iterations, the body of the loop is carried up to a fixpoint. The amortized cost for all edge

updates per Gi is then O(bi · log ni · |D|3) (as there are |D| data facts), and we have the following

corollary (also see Table 4.2).

In the query phase we fix a source node u (in the case of single-source queries) or a source/desti-

nation pair (u, v) (in the case of pair queries), as well as the set of data facts X that hold in the

source node u (of either query). Since we deal with sets of data facts and not flow functions,

each application of the composition operator yields a new set of data facts, and the meet operator

corresponds to the union or intersection of two data-fact sets. Each such operation incurs a cost

O(|D|2). We thus arrive at the following corollary.

Corollary 4.1 (IFDS/IDE). Fix the following input a (i) constant treewidth RSM A =

{A1, A2, . . . , Ak}, where Ai consists of ni nodes and bi boxes; and (ii) a meet-composition

semiring (F,⊓, ◦,∅, I) where F is a set of distributive flow functions D → D, ◦ is the flow

function composition operator and ⊓ is the meet operator. Let n =
∑

i ni. RSMDistance

operates in the following complexity bounds.

1. Using O(|D|3 · (n+
∑k

i=1 bi · log ni) preprocessing time and O(n · |D|2) space, it correctly

answers same-context algebraic pair queries in O(log ni · |D|2) time, and same-context

algebraic single-source queries in O(ni · |D|2) time.

2. Using O(|D|3 ·
∑k

i=1(ni · log ni)) preprocessing time and O(|D|2 ·
∑k

i=1(ni · log ni))

space, it correctly answers same-context algebraic pair queries in O(|D|2) time, and

same-context algebraic single-source queries in O(ni · |D|2) time.

A speedup for large data-fact domains. Here we outline a speedup for the algebraic path problem

wrt the IFDS framework when the domain of data facts D is such that |D| = Ω(log n). In this

case, sets of data facts can be represented as bit sets, where the i-th bit of a bit set X is one iff

it contains the i-th data fact. When |D| = Ω(log n), such bit sets can be stored compactly in

machine words. Since in the standard RAM model each machine word has size Θ(log n), such a

set X can be stored using O(|D|/ log n) words. The meet ⊓ (union/intersection) of two data-fact

sets can be performed in O(|D|/ log n) time, by computing the bit-wise OR/AND operation

on the corresponding machine words. Similarly, a distributive flow function f : 2D → 2D can

be represented using O(|D|2/ log n) words, by storing a bit set Xi for every data fact di for
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which f(di) = Xi. Using bit sets, every update of a flow function with a new data flow pair

di → dj incurs a O(|D|/ log n) time cost, simply by performing the bit-wise OR/AND operation

(depending on whether the meet operator is union/intersection) between the data-fact sets f(di)

and f(dj). Since there can be at most |D|2 updates of data flow pairs di → dj per graph edge,

the total preprocessing cost for each graph Gi is ni · |D|3/ log n. Similarly, in the update phase

(Line 7) the amortized cost per Gi is bi · log ni · |D|3/ log n. Finally, in the query phase, where

we track data facts rather than data-flow functions, data-fact operations require O(|D|/ log n)

word operations per data fact. We thus arrive at the following corollary.

Corollary 4.2 (IFDS/IDE, large domain). Fix the following input a (i) constant treewidth

RSM A = {A1, A2, . . . , Ak}, where Ai consists of ni nodes and bi boxes; and (ii) a meet-

composition semiring (F,⊓, ◦,∅, I) where F is a set of distributive flow functions D → D with

|D| = Ω(log n), ◦ is the flow function composition operator and ⊓ is the meet operator. Let

n =
∑

i ni. RSMDistance operates in the following complexity bounds.

1. Using O(n/ log n) · |D|3 ·
∑k

i=1 bi · log ni) preprocessing time and O((n/ log n) · |D|2)

space, it correctly answers same-context algebraic pair queries in O(|D|2) time, and

same-context algebraic single-source queries in O(ni · |D|2/ log n) time.

2. Using O(n · |D|3) preprocessing time and O(n · |D|2) space, it correctly answers same-

context algebraic pair queries in O(|D|2/ log n) time, and same-context algebraic single-

source queries in O(ni · |D|2/ log n) time.

Reachability. The special case of reachability is obtained from Corollary 4.1 by setting |D| = 1.

In conjunction with Theorem 4.1, we obtain an improvement. This is achieved by executing the

algorithm RSMDistance as before, in order to infer in every CSM Ai the reachability information

between every pair of call and return nodes (c, r). Afterwards, every corresponding graph Gi can

be viewed independently, so that we can use Reachability of Section 3.3 to further preprocess it in

order to handle same-context reachability queries. This approach yields the following corollary.

Corollary 4.3 (Interprocedural Reachability). Fix the following input a (i) constant treewidth

RSM A = {A1, A2, . . . , Ak}, where Ai consists of ni nodes and bi boxes. Let n =
∑

i ni.

RSMDistance uses O(n+
∑k

i=1 bi · log ni) preprocessing time and O(n) space, and correctly

answers same-context pair reachability queries in O(1) time, and same-context single-source

reachability queries in O( ni

logn
) time.
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Distances with non-negative weights. The distance (or shortest path) problem can be formu-

lated on the tropical semiring (R⩾0 ∪ {∞},min,+,∞, 0). We consider that both semiring

operators cost unit time (i.e., the weights occurring in the computation fit in a constant number

of machine words). Since we consider non-negative weights, the distance between any pair

of nodes is realized by an interprocedural path of stack height at most b, as no boxes need to

appear more than once at any time in the stack of the path. Hence, we can solve the distance

problem by setting h = b in Theorem 4.1. However, our restriction to non-negative weights

allows for a significant speedup, achieved by algorithm RSMDistanceTrop (see Algorithm 7).

RSMDistanceTrop is obtained from RSMDistance by using a priority queue to store the dis-

tances from entries to exits. In each iteration of the while loop in Line 7 we extract the element

of the queue with the smallest entry-to-exit distance, and update the entry-to-exit distances

of all remaining elements in the queue that correspond to CSMs which invoke the CSM that

corresponds to the extracted element. The algorithm has similar flavor to the classic Dijk-

stra’s algorithm for distances on finite graphs with non-negative edge weights [Dijkstra, 1959;

Cormen et al., 2009]. The time complexity is O(n) time for executing Preprocess, plus the time

required for each execution of Update and Query. Note that Update is executed at least as many

times as Query, and since both require time logarithmic in the size of the respective Gi, it suffices

to count the total time spent on Update. Since Line 10 is executed at most once per box, the total

time spent on Update is O(
∑k

i=1 bi · log ni). We thus obtain the following corollary for distances

with non-negative weights.

Corollary 4.4 (Interprocedural Shortest paths). Fix the following input a (i) constant treewidth

RSM A = {A1, A2, . . . , Ak}, where Ai consists of ni nodes and bi boxes; (ii) a tropical semiring

(R⩾0 ∪ {∞},min,+,∞, 0). Let n =
∑

i ni. RSMDistanceTrop operates in the following

complexity bounds.

1. Using O(n+
∑k

i=1 bi · log ni)) preprocessing time and O(n) space, it correctly answers

same-context shortest path pair queries in O(log ni), and same-context single-source

distance queries in O(ni) time.

2. Using O(
∑k

i=1 ni · log ni) preprocessing time and O(
∑k

i=1(ni · log ni)) space, it correctly

answers same-context pair distance queries in O(1) time.

Interprocedural witness paths. As in the case of simple graphs from Section 3.2, we can
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Algorithm 7: RSMDistanceTrop

Input: A set of control-flow graphs G = {Gi}1⩽i⩽k

1 foreach Gi ∈ G do

2 Construct a nicely rooted, balanced, binary tree-decomposition Tree(Gi)

3 Call Preprocess on Tree(Gi)

4 end

5 distances← [Call Query on (eni, exi) of Gi]1⩽i⩽k

6 PriorityQueueQ← [(i,Call Query on (eni, exi) of Gi)]1⩽i⩽k

7 while Q is not empty do

8 (i, δ)← Q.pop()

9 foreach Gj that contains boxes bj1 , . . . , bjl s.t. Yj(bjx) = i do

10 Call Update on Gj for the weight change wt((eni, bjl), (exi, bjx))← δ

11 δ′ ← Query(enj , exj)

12 if δ′ < distances[j] then

13 distances[j]← δ′

14 Decrease the key of j in Q to δ′

15 end

16 end
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retrieve a witness path for any distance d(u, v, h) that is realized by acyclic interprocedural paths

P : (u,∅)⇝ (v,∅), without affecting the stated complexities. The process is straightforward.

Let Ai contain the pair of nodes u, v on which the query is asked. Initially, we obtain the witness

intraprocedural path P ′ : u⇝ v, as described in Section 3.2. Then, we proceed recursively to

obtain a witness path Pj between the entry enj and exit exj nodes of every CSM Aj such that

P ′ contains an edge between a call node (en, b) and a return node (ex, b) with Yi(B) = j. That

is, we reconstruct a witness path for every call to a CSM whose weight has been summarized

locally in Ai. This process constructs an interprocedural witness path P : u ⇝ v such that

⊗(P ) = d(u, v) in O(|P |) time.

4.3 Experimental Results

Setup. We have implemented our algorithms for linear-time single-source and constant-time

pair queries presented in Section 4.2 and have tested them on graphs obtained from the DaCapo

benchmark suit [Blackburn, 2006] that contains several, real-world Java applications. Every

benchmark is represented as a RSM that consists of several CSMs, and each CSM corresponds to

the control-flow graph of a method of the benchmark. We have used the Soot framework [Vallée-

Rai et al., 1999] for obtaining the control-flow graphs, where every node of the graph corresponds

to one Jimple statement of Soot, and the tool of [van Dijk et al., 2006a] to obtain their tree

decompositions. Our experiments were run on a standard desktop computer with a 3.4GHz CPU,

on a single thread.

Interprocedural reachability and intraprocedural distances. In our experiments, we focus

on the important special case of reachability and distances with non-negative weights We have

considered CSMs of moderate to large size (all CSMs with at least five hundred nodes), as

for small CSMs the running times are negligible. The first step was to execute an interproce-

dural reachability algorithm from the program entry to discover all actual call to return edges

((en, b), (ex, b)) of every CSM Ai (i.e., all invocations that actually return), and then consider the

control-flow graphs Gi independently.

• (Reachability). For every Gi, the complete preprocessing in the case of reachability was

done by executing ni DFSs, one from each source node. The single-source query from u
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Benchmarks

Interprocedural Reachability

Preprocessing Query

Single-source Pair

n t Ours Complete Ours No Prepr. Ours No Prepr.

antlr 698 1.0 76316 136145 15.3 166.3 0.15 14.34

bloat 696 2.3 27597 54335 3.9 72.5 0.10 14.34

chart 1159 1.5 22191 90709 2.3 80.9 0.13 22.32

eclipse 656 1.6 37010 138905 6.7 239.1 0.19 15.76

fop 1209 1.7 30189 91795 2.9 60.6 0.12 43.0

hsqldb 698 1.0 55668 180333 13.0 219.0 0.14 13.89

jython 748 1.5 43609 68687 7.2 85.7 0.11 12.84

luindex 885 1.3 36015 142005 5.6 202.7 0.16 26.44

lusearch 885 1.3 51375 189251 12.8 211.4 0.13 26.01

pmd 644 1.4 31483 52527 2.5 83.9 0.13 12.5

xalan 698 1.0 57734 138420 8.0 235.0 0.19 14.28

Jflex 1091 1.6 51431 91742 3.1 50.8 0.11 20.46

muffin 1022 1.7 29905 66708 2.6 52.7 0.10 18.57

javac 711 1.8 32981 59793 4.8 75.2 0.11 11.86

polyglot 698 1.0 68643 150799 12.2 184.5 0.14 14.14

Table 4.6: Average statistics gathered from our experiments on the DaCapo benchmark suit.

Times are in microseconds.

is answered by executing one DFS from u, and the pair query u, v is handled similarly,

but we stop as soon as v is reached. This methodology correctly answers interprocedural

same-context reachability queries on CMSs reachable from the program entry.

• (Distances). In the case of distances we performed intraprocedural analysis on each

Gi. We assign both positive and negative weights to each edge of Gi uniformly at

random from the range [−10, 10]. For general semiring path properties, the Bellman-Ford

algorithm [Cormen et al., 2009] is a very natural one, which in the case of distances

weights can handle positive and negative weights, as long as there is no negative cycle.

To have a meaningful comparison with Bellman-Ford (as a representative of a general
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Benchmarks

Intraprocedural Shortest path

Preprocessing Query

Single-source Pair

n t Ours Complete Ours No Prepr. Ours No Prepr.

antlr 698 1.0 221578 1.13·107 251 24576 0.36 24576

bloat 696 2.3 87950 1.15·107 257 25239 0.37 25239

chart 1159 1.5 125468 1.24·108 398 88856 0.39 88856

eclipse 656 1.6 152293 1.07·107 533 23639 0.46 23639

fop 1209 1.7 153728 3.94·108 1926 113689 2.71 113689

hsqldb 698 1.0 215063 1.23·107 236 24322 0.36 24322

jython 748 1.5 159085 1.42·107 386 29958 0.32 29958

luindex 885 1.3 163108 2.97·107 258 51192 0.37 51192

lusearch 885 1.3 219015 2.90·107 254 50719 0.34 50719

pmd 644 1.4 140974 9.14·106 327 22572 0.37 22572

xalan 698 1.0 186695 1.10·107 380 24141 0.43 24141

Jflex 1091 1.6 154818 1.24·108 231 83093 0.36 83093

muffin 1022 1.7 125938 1.02·108 265 80878 0.38 80878

javac 711 1.8 117390 1.31·107 370 26180 0.34 26180

polyglot 698 1.0 228758 1.15·107 244 24400 0.35 24400

Table 4.7: Average statistics gathered from our experiments on the DaCapo benchmark suit.

Times are in microseconds.

semiring framework), we considered both positive and negative weights, but do not allow

negative cycles. We note that although our algorithm Algorithm 7 assumes non-negative

weights, the case of intraprocedural distances, handled by algorithms Preprocess and

Query of Section 3.2 as well as the algorithms presented in this section for constant time

pair-query time can handle negative weights. For complete preprocessing we run the

classic Floyd-Warshall algorithm. Under no preprocessing, for every single-source and

pair query we run the Bellman-Ford algorithm.

Results. Our experimental results are shown in Tables 4.6 and 4.7. In each table, the second (resp.

third) column shows the average number of nodes (resp. treewidth) of CSMs of each benchmark.
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The running times of preprocessing are gathered by averaging over all CSMs in each benchmark.

The running times of querying are gathered by averaging over all possible single-source and pair

queries in each CSM, and then averaging over all CSMs in each benchmark. Below we make

some observations on the experimental results.

1. The average treewidth of control-flow graphs is confirmed to be very small, and does not

scale with the size of the graph. In fact, even the largest treewidth is four.

2. The preprocessing time of our algorithm is significantly less than the complete preprocess-

ing, by factor of 1.5 to 4 times in the case of reachability, and by orders of magnitude in

the case of distances.

3. In both reachability and distances, all queries are handled significantly faster after our

preprocessing, than without preprocessing. We also note that for distance queries, Bellman-

Ford answers single-source and pair queries in the same time, which is significantly slower

than both our single-source and pair queries. Finally, we note that after our preprocessing,

our data structure handles reachability queries faster than the DFS. Hence, the theoretical

sublinear times of Corollary 3.1 are also obtained in practice.

Since our work focuses on same-context queries and the IFDS/IDE framework does not have

this restriction, a direct comparison with the IFDS/IDE framework would be biased in our favor.

In the experimental results for interprocedural reachability with same-context queries we show

that we are faster than even DFS (which is faster than IFDS/IDE).
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5 Optimal Dyck Reachability with

Applications to Data-dependence and

Alias Analysis

5.1 Introduction

In this chapter we present improved upper bounds, lower bounds, and experimental results for

algorithmic problems related to Dyck reachability, which is a fundamental problem in static

analysis. We present the problem description, its main applications, the existing results, and our

contributions.

Alias analysis. Alias analysis has been one of the major types of static analysis and a subject

of extensive study [Sridharan et al., 2013; Choi et al., 1993; Landi and Ryder, 1992; Hind,

2001]. The task is to decide whether two pointer variables may point to the same object

during program execution. As the problem is computationally expensive [Horwitz, 1997;

Ramalingam, 1994], practically relevant results are obtained via approximations. One popular

way to perform alias analysis is via points-to analysis, where two variables may alias if their

points-to sets intersect. Points-to analysis is typically phrased as a Dyck reachability problem on

Symbolic Points-to Graphs (SPGs), which contain information about variables, heap objects and

parameter passing due to method calls [Xu et al., 2009a; Yan et al., 2011a]. In alias analysis

there is an important distinction between context and field sensitivity, which we describe below.

• Context vs field sensitivity. Typically, the Dyck parenthesis are used in SPGs to specify

two types of constraints. Context sensitivity refers to the requirement that reachability
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paths must respect the calling context due to method calls and returns. Field sensitivity

refers to the requirement that reachability paths must respect field accesses of composite

types in Java [Sridharan and Bodík, 2006a; Sridharan et al., 2005; Xu et al., 2009a;

Yan et al., 2011a], or references and dereferences of pointers [Zheng and Rugina, 2008]

in C. Considering both types of sensitivity makes the problem undecidable [Reps, 2000].

Although one recent workaround is approximation algorithms [Zhang and Su, 2017], the

standard approach has been to consider only one type of sensitivity. Field sensitivity has

been reported to produce better results, and being more scalable [Lhoták and Hendren,

2006]. We focus on context-insensitive, but field-sensitive points-to analysis.

Data-dependence analysis. Data-dependence analysis aims to identify the def-use chains in a

program. It has many applications, including slicing [Reps et al., 1994], impact analysis [Arnold,

1996] and bloat detection [Xu et al., 2010a]. It is also used in compiler optimizations, where

data dependencies are used to infer whether it is safe to reorder or parallelize program state-

ments [Kuck et al., 1981]. Here we focus on the distinction between library vs client analysis

and the challenge of callbacks.

• Library vs Client. Modern-day software is developed in multiple stages and is interrelated.

The vast majority of software development relies on existing libraries and third-party

components which are typically huge and complex. At the same time, the analysis of

client code is ineffective if not performed in conjunction with the library code. These

dynamics give rise to the potential of analyzing library code once, in an offline stage, and

creating suitable analysis summaries that are relevant to client behavior only. The benefit

of such a process is two-fold. First, library code need only be analyzed once, regardless of

the number of clients that link to it. Second, it offers fast client-code analysis, since the

expensive cost of analyzing the huge libraries has been spent offline, in an earlier stage.

Data-dependence analysis admits a nice separation between library and client code, and

has been studied in [Tang et al., 2015; Palepu et al., 2017].

• The challenge of callbacks. As pointed out recently in [Tang et al., 2015], one major obsta-

cle to effective library summarization is the presence of callbacks. Callback functions are

declared and used by the library, but are implemented by the client. Since these functions

are missing when the library code is analyzed, library summarization is ineffective and the

whole library needs to be reanalyzed on the client side, when callback functions become
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available.

Algorithmic formulations and existing results. We describe below the key algorithmic prob-

lems in the applications mentioned above and the existing results. We focus on data-dependence

and alias analysis via Dyck reachability, which is the most standard way for performing such

analysis. Recall that the problem of Dyck reachability takes as input a (directed) graph, where

some edges are marked with opening and closing parenthesis, and the task is to compute for

every pair of nodes whether there exists a path between them such that the parenthesis along its

edges are matched.

1. Points-to analysis. Context-insensitive, field-sensitive points-to analysis via Dyck reach-

ability is phrased on an SPG G with n nodes and m edges. Additionally, the graph is

bidirected, meaning that if G has an edge (u, v) labeled with an opening parenthesis,

then it must also have the edge (v, u) labeled with the corresponding closing parenthesis.

Bidirected graphs are found in all existing works on alias analysis via Dyck reachabil-

ity, and their importance has been remarked in various works [Yuan and Eugster, 2009;

Zhang et al., 2013].

The best existing algorithms for the problem appear in the recent work of [Zhang et al.,

2013], where two algorithms are proposed. The first has O(n2) worst-case time complexity;

and the second has O(m · log n) average-case time complexity and O(m · n · log n) worst-

case complexity. Note that for dense graphs m = Θ(n2), and the first algorithm has better

average-case complexity too. We elaborate further on the difference between average-case

and worst-case complexities in Remark 5.3 of Section 5.3.2.

2. Library/Client data-dependence analysis. The standard algorithmic formulation of context-

sensitive data-dependence analysis is via Dyck reachability, where the parenthesis are

used to properly match method calls and returns in a context-sensitive way [Reps, 2000;

Tang et al., 2015]. The algorithmic approach to Library/Client Dyck reachability consists

of considering two graphs G1 and G2, for the library and client code respectively. The

computation is split into two phases. In the preprocessing phase, the Dyck reachability

problem is solved on G1 (using a CFL/Dyck reachability algorithm), and some summary

information is maintained, which is typically in the form of some subgraph G′
1 of G1. In

the query phase, the Dyck reachability problem is solved on the combination of the two
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graphs G′
1 and G2. Let n1, n2 and n′

1 be the sizes of G1, G2 and G′
1 respectively. The

algorithm spends O(n3
1) time in the preprocessing phase, and O((n′

1 + n2)
3) time in the

query phase. Hence we have an improvement if n′
1 >> n1.

In the presence of callbacks, library summarization via CFL reachability is ineffective,

as n′
1 can be as large as n1. To face this challenge, the recent work of [Tang et al., 2015]

introduced TAL reachability. This approach spends O(n6
1) time on the client code (hence

more than the CFL reachability algorithm), and is able to produce a summary of size

s < n1 even in the presence of callbacks. Afterwards, the client analysis is performed

in O((s + n2)
6) time, and hence the cost due to the library only appears in terms of its

summary.

3. Dyck reachability on general graphs. As we have already mentioned, Dyck reachability

is a fundamental algorithmic formulation of many types of static analysis. For general

graphs (not necessarily bidirected), the existing algorithms require O(n3) time, and they

essentially solve the more general CFL reachability problem [Yannakakis, 1990]. The

current best algorithm is due to [Chaudhuri, 2008], which utilizes the well-knwon Four

Russians’ Trick to exhibit complexity O(n3/ log n). The combinatorial cubic barrier for

CFL parsing [Lee, 2002] implies the same barrier for CFL reachability [Reps, 1997]. On

the other hand, Dyck parsing is linear-time solvable, which leaves a lot of room for truly

sub-cubic algorithms for Dyck reachability.

Our contributions. Our main contributions can be characterized in three parts: (a) improved

upper bounds; (b) lower bounds with optimality guarantees; and (c) experimental results. We

present the details of each of them below.

Improved upper bounds. Our improved upper bounds are as follows:

1. For Dyck reachability on bidirected graphs with n nodes and m edges, we present an

algorithm with the following bounds: (a) The worst-case complexity bound is O(m+ n ·

α(n)) time and O(m) space, where α(n) is the inverse Ackermann function, improving

the previously known O(n2) time bound. Note that α(n) is an extremely slowly growing

function, and for all practical purposes, α(n) ⩽ 4, and hence practically the worst-case

bound of our algorithm is linear. (b) The average-case complexity is O(m) improving the

previously known O(m · log n) bound. See Table 5.1 for a summary.
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2. For Library/Client Dyck reachability we exploit the fact that the data-dependence graphs

that arise in practice have special structure, namely they contain components of small

treewidth. We denote by n1 and n2 the size of the library graph and client graph, and

by k1 and k2 the number of call sites in the library graph and client graph, respectively.

We present an algorithm that analyzes the library graph in O(n1 + k1 · log n1) time and

O(n1) space. Afterwards, the library and client graphs are analyzed together only in

O(n2 + k1 · log n1 + k2 · log n2) time and O(n1 + n2) space. Hence, since typically

n1 >> n2 and ni >> ki, the cost of analyzing the large library occurs only in the

preprocessing phase. When the client code needs to be analyzed, the cost incurred due to

the library code is small. See Table 5.2 for a summary.

Lower bounds and optimality guarantees. Along with improved upper bounds we present lower

bound and conditional lower bound results that imply optimality guarantees. We note that

optimal guarantees for graph algorithms are rare.

1. For Dyck reachability on bidirected graphs we present a matching lower bound of Ω(m+

n · α(n)) for the worst-case time complexity. Thus we obtain matching lower and upper

bounds for the worst-case complexity, and thus our algorithm is optimal wrt to worst-case

complexity. Since the average-case complexity of our algorithm is linear, the algorithm is

also optimal wrt the average-case complexity.

2. For Library/Client Dyck reachability note that k1 ⩽ n1 and k2 ⩽ n2. Hence our algo-

rithm for analyzing library and client code is almost linear time, and hence optimal wrt

polynomial improvements.

3. For Dyck reachability on general graphs we present a conditional lower bound. In algo-

rithmic study, a standard problem for showing conditional cubic lower bounds is Boolean

Matrix Multiplication (BMM) [Lee, 2002; Henzinger et al., 2015; Vassilevska Williams

and Williams, 2010; Abboud and Vassilevska Williams, 2014]. While fast matrix multipli-

cation algorithms exist (such as Strassen’s algorithm [Strassen, 1969]), these algorithms

are not “combinatorial”1. The standard conjecture (called the BMM conjecture) is that

1Not combinatorial means algebraic methods [Le Gall, 2014], which are algorithms with large constants. In

contrast, combinatorial algorithms are discrete and non-algebraic; for detailed discussion see [Henzinger et al.,

2015]
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Worst-case Time Average-case Time Space Reference

Existing O
(
n2
)

O
(
min

(
n2,m · log n

))
O(m) [Zhang et al., 2013]

Our Result O(m+ n · α(n)) O(m) O(m) Theorem 5.1 , Corollary 5.1

Table 5.1: Comparison of our results with existing work for Dyck reachability on bidirected

graphs with n nodes and m edges. We also prove a matching lower-bound for the worst-case

analysis. Thus our algorithm is optimal wrt worst-case complexity.

there is no truly sub-cubic2 combinatorial algorithm for BMM, which has been widely

used in algorithmic studies for obtaining various types of hardness results [Lee, 2002;

Henzinger et al., 2015; Vassilevska Williams and Williams, 2010; Abboud and Vas-

silevska Williams, 2014]. We show that Dyck reachability on general graphs is BMM hard.

More precisely, we show that for any δ > 0, any algorithm that solves Dyck reachability

on general graphs in O(n3−δ) time implies an algorithm that solves BMM in O(n3−δ/3)

time. Since all algorithms for Dyck reachability are combinatorial, it establishes a con-

ditional hardness result (under the BMM conjecture) for general Dyck reachability. Our

hardness shows that the existing cubic algorithms are optimal (modulo logarithmic factor

improvements), under the BMM conjecture.

Experimental results. A key feature of our algorithms are that they are simple to implement.

We present experimental results both on alias analysis (see Section 5.6.1) as well as library/client

data-dependence analysis (see Section 5.6.2) and show that our algorithms outperform previous

approaches for the problems on real-world benchmarks.

Organization The rest of this chapter is organized as follows.

1. In Section 5.2 we present some definitions regarding Dyck languages and Dyck reachabil-

ity.

2. In Section 5.3 we present a new algorithm for performing Dyck reachability on bidirected

graphs, and prove its optimality wrt worst-case and average-case complexity.

2Truly sub-cubic means polynomial improvement, in contrast to improvement by logarithmic factors such as

O(n3/ log n)
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Approach Time Space Reference

Library Client Library Client

CFL O
(
n3
1

)
O
(
(n1 + n2)

3
)

O
(
n2
1

)
O
(
(n1 + n2)

2
)

[Tang et al., 2015]

TAL O
(
n6
1

)
O
(
(s+ n2)

6
)

O
(
n4
1

)
O
(
(s+ n2)

4
)

[Tang et al., 2015]

Our Result O (n1 + k1 · log n1) O
(
n2 +

∑2
i=1 ki · log ni

)
O(n1) O(n1 + n2) Theorem 5.5

Table 5.2: Library/Client CFL reachability on the library graph of size n1 and the client graph of

size n2.

s is the number of library summary nodes, as defined in [Tang et al., 2015].

k1 is the number of call sites in the library code, with k1 < s.

k2 is the number of call sites in the client code.

3. In Section 5.4 we show that Dyck reachability on general graphs is Boolean Matrix

Multiplication-hard. The result also holds for graphs of low treewidth.

4. In Section 5.5 we present our approach to library summarization wrt Dyck reachability for

context-sensitive data-dependence analysis.

5. In Section 5.6 we present an experimental evaluation of the algorithms described in

Section 5.3 and Section 5.5, and compare them to the current state-of-the-art algorithms

found in the literature.

5.2 Preliminaries

Dyck Languages. Given a nonnegative integer k ∈ N, we denote by Σk = {ϵ} ∪ {αi, αi}ki=1 a

finite alphabet of k parenthesis types, together with a null element ϵ. We denote by Lk the Dyck

language over Σk, defined as the language of strings generated by the following context-free

grammar Gk:

S → S S | A1 A1 | . . . | Ak Ak | ϵ ; Ai → αi S ; Ai → S αi
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Given a string s and a non-terminal symbol X of the above grammar, we write X ⊢ s to

denote that X produces s according to the rules of the grammar. In the rest of the chapter we

consider an alphabet Σk and the corresponding Dyck language Lk. We also let ΣO
k = {αi}ki=1

and ΣC
k = {αi}ki=1 be the subsets of Σk of only opening and closing parenthesis, respectively.

Labeled graphs, Dyck reachability, and Dyck SCCs (DSCCs). We denote by G = (V,E) a

Σk-labeled directed graph where V is the set of nodes and E ⊆ V × V × Σk is the set of edges

labeled with symbols from Σk. Hence, an edge e is of the form e = (u, v, λ) where u, v ∈ V

and λ ∈ Σk. We require that for every u, v ∈ V , there is a unique label λ such that (u, v, λ) ∈ E.

Often we will be interested only on the endpoints of an edge e, in which case we represent

e = (u, v), and will denote by λ(e) the label of e. Given a path P , we define the label of P as

λ(P ) = λ(e1) . . . λ(er). Given two nodes u, v, we say that v is Dyck-reachable from u if there

exists a path P : u ⇝ v such that λ(P ) ∈ Lk. In that case, P is called a witness path of the

reachability. A set of nodes X ⊆ V is called a Dyck SCC (or DSCC) if for every pair of nodes

u, v ∈ X , we have that u reaches v and v reaches u. Note that there might exist a DSCC X and

a pair of nodes u, v ∈ X such that every witness path P : u⇝ v might be such that P ̸⊆ X , i.e.,

the witness path contains nodes outside the DSCC. Note that is in contrast to the usual SCCs.

5.3 Dyck Reachability on Bidirected Graphs

In this section we present an optimal algorithm for solving the Dyck reachability problem on

Σk-labeled bidirected graphs G. First, in Section 5.3.1, we formally define the problem. Second,

in Section 5.3.2, we describe an algorithm BidirectedReach that solves the problem in time

O(m+n ·α(n)), where n is the number of nodes of G, m is the number of edges of G, and α(n)

is the inverse Ackermann function. Finally, in Section 5.3.3, we present an Ω(m + n · α(n))

lower bound.

5.3.1 Problem definition

We start with the problem definition of Dyck reachability on bidirected graphs. For the modeling

power of bidirected graphs we refer to [Yuan and Eugster, 2009; Zhang et al., 2013] and our
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results Section 5.6.

Bidirected Graphs. A Σk labeled graph G = (V,E) is called bidirected if for every pair of

nodes u, v ∈ V , the following conditions hold. (1) (u, v, ϵ) ∈ E iff (v, u, ϵ) ∈ E; and (2) for

all 1 ⩽ i ⩽ k we have that (u, v, αi) ∈ E iff (v, u, αi) ∈ E. Informally, the edge relation is

symmetric, and the labels of symmetric edges are complimentary wrt to opening and closing

parenthesis.

Remark 5.1 ([Zhang et al., 2013]). For bidirected graphs the Dyck reachability relation forms

an equivalence, i.e., for all bidirected graphs G, for every pair of nodes u, v, we have that v is

Dyck-reachable from u iff u is Dyck-reachable from v.

Remark 5.2. We consider without loss of generality that a bidirected graph G has no edge (u, v)

such that λ(u, v) = ϵ, i.e., there are no ϵ-labeled edges. This is because in such a case, u, v form

a DSCC, and can be merged into a single node. Merging all nodes that share an ϵ-labeled edge

requires only linear time, and hence can be applied as a preprocessing step at (asymptotically)

no extra cost.

Dyck reachability on bidirected graphs. We are given a Σk-labeled bidirected graph G =

(V,E), and our task is to compute for every pair of nodes u, v whether v is Dyck-reachable from

u. As customary, we consider that k = O(1), i.e., k is fixed wrt to the input graph [Chaudhuri,

2008]. In view of Remark 5.1, it suffices that the output is a list of DSCCs. Note that this way the

output has size Θ(n) instead of Θ(n2) that would be required for storing one bit of information

per u, v pair. Additionally, the pair query time is O(1), simply by testing whether the two nodes

belong to the same DSCC.

5.3.2 An almost linear-time algorithm

We present our algorithm BidirectedReach, for Dyck reachability on bidirected graphs, with

almost linear-time complexity.

Informal description of BidirectedReach. We start by providing a high-level description of

BidirectedReach. The main idea is that for any two distinct nodes u, v to belong to some DSCC

X , there must exist two (not necessarily distinct) nodes x, y that belong to some DSCC Y

(possibly X = Y ) and a closing parenthesis αi ∈ ΣC
k such that (x, u, αi), (y, v, αi) ∈ E. The
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algorithm uses a Disjoint Sets data structure to maintain DSCCs discovered so far. Each DSCC

is represented as a tree T rooted on some node x ∈ V , and x is the only node of T that

has outgoing edges. However, any node of T can have incoming edges. See Fig. 5.1 for an

illustration. Upon discovering that a root node x of some tree T has two or more outgoing edges

(x, u1, αi), (x, u2, αi), . . . (x, ur, αi), for some αi ∈ ΣC
k , the algorithm uses r Find operations of

the Disjoint Sets data structure to determine the trees Ti that the nodes ui belong to. Afterwards,

a Union operation is performed between all Ti to form a new tree T , and all the outgoing edges

of the root of each Ti are merged to the outgoing edges of the root of T .

Complexity overview. The cost of every Find and Union operation is bounded by the inverse

Ackermann function α(n) (see [Tarjan, 1975]), which, for all practical purposes, can be consid-

ered constant. Additionally, every edge-merge operation requires constant time, using a linked

list for storing the outgoing edges. Although list merging in constant time creates the possibility

of duplicate edges, such duplicates come at no additional complexity cost. Since every Union of

k trees reduces the number of existing edges by k−1, the overall complexity of BidirectedReach

is O(m · α(n)). We later show how to obtain the O(m+ n · α(n)) complexity.

We are now ready to give the formal description of BidirectedReach. We start with introducing

the Union-Find problem, and its solution given by a disjoint sets data structure.

The Union-Find problem. The Union-Find problem is a well-studied problem in the area of

algorithms and data structures [Galil and Italiano, 1991; Cormen et al., 2009]. The problem is

defined over a universe X of n elements, and the task is to maintain partitions of X under set

union operations. Initially, every element x ∈ X belongs to a singleton set {x}. A union-find

sequence σ is a sequence of m (typically m ⩾ n) operations of the following two types.

1. Union(x, y), for x, y ∈ X , performs a union of the sets that x and y belong to.

2. Find(x), for x ∈ X , returns the name of the unique set containing x.

The sequence σ is presented online, i.e., an operation needs to be completed before the next

one is revealed. Additionally, a Union(x, y) operation is allowed in the i-th position of σ only if

the prefix of σ up to position i− 1 places x and y on different sets. The output of the problem

consists of the answers to Find operations of σ. It is known that the problem can be solved in

O(m · α(n)) time, by an appropriate Disjoint Sets data structure [Tarjan, 1975], and that this
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complexity is optimal [Aspvall et al., 1979; Banachowski, 1980].

The DisjointSets data structure. We consider at our disposal a Disjoint Sets data structure

DisjointSets which maintains a set of subsets of V under a sequence of set union operations. At

all times, the name of each set X is a node x ∈ X which is considered to be the representative of

x. DisjointSets provides the following operations.

1. For a node u, MakeSet(u) constructs the singleton set {u}.

2. For a node u, Find(u) returns the representative of the set that u belongs to.

3. For a set of nodes S ⊆ V which are pairwise in different sets, and a distinguished node

x ∈ S, Union(S, x) performs the union of the sets that the nodes in S belong to, and makes

x the representative of the new set.

The DisjointSets data structure can be straightforwardly obtained from the corresponding Disjoint

Sets data structures used to solve the Union-Find problem [Tarjan, 1975], and has O(α(n))

amortized complexity per operation. Typically each set is stored as a rooted tree, and the root

node is the representative of the set.

Formal description of BidirectedReach. We are now ready to present formally BidirectedReach

in Algorithm 8 (for the initialization phase) and Algorithm 9 (for the computation phase). Recall

that, in view of Remark 5.2, we consider that the input graph has no ϵ-labeled edges. In the

initialization phase (Algorithm 8), the algorithm constructs a map Edges : V × ΣC
k → V ∗. For

each node u ∈ V and closing parenthesis αi ∈ ΣC
k , Edges[u][αi] will store the nodes that are

found to be reachable from u via a path P such that Ai ⊢ λ(P ) (i.e., the label of P has matching

parenthesis except for the last parenthesis αi). Observe that all such nodes must belong to the

same DSCC.

The main computation happens in Algorithm 9. Upon extracting an element (u, αi) from the

queue, the algorithm obtains the representatives v of the sets of the nodes in Edges[u][αi]. Since

all such nodes belong to the same DSCC, the algorithm chooses an element x to be the new

representative, and performs a Union operation of the underlying sets. The new representative

x gathers the outgoing edges of all other nodes v ∈ Edges[u][αi], and afterwards Edges[u][αi]

points only to x. We note that our requirement for specifying the representative of a set union
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operation (i.e., the x in Union(S, x)) is only so that x and u are distinct nodes in the the main

loop of Algorithm 9, which makes the algorithm easier to present.

s

tu

v

w x

y

z

α1

α2

α1

α2

α3

α3

α2

Figure 5.1: A state of BidirectedReach consists of a set of trees, with outgoing edges coming

only from the root of each tree.

Algorithm 8: BidirectedReach Initialization
Input: A Σk-labeled bidirected graph G = (V,E)

Output: A DisjointSets map of DSCCs

// Initialization

1 Q ← an empty queue

2 Edges← a map V × ΣC
k → V ∗ implemented as a linked list

3 DisjointSets← a disjoint-sets data structure over V

4 foreach u ∈ V do

5 DisjointSets.MakeSet(u)

6 for i← 1 to k do

7 Edges[u][αi]← (v : (u, v, αi) ∈ E)

8 if |Edges[u][αi]| ⩾ 2 then

9 Insert (u, αi) in Q

10 end

11 end

Example. We illustrate our algorithm on an example. Consider the state of the algorithm given

by Figure 5.1. There are currently 3 DSCCS, with representatives s, v and z. Observe that nodes

s and z have at two outgoing edges each that have the same type of parenthesis, hence they

must have been inserted in the queue Q at some point. Assume that Q = [(s, α1), (z, α3)]. The

algorithm will exhibit the following sequence of steps.
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Algorithm 9: BidirectedReach Computation
Input: A Σk-labeled bidirected graph G = (V,E)

Output: A DisjointSets map of DSCCs

// Computation

1 while Q is not empty do

2 Extract (u, αi) from Q

3 if u = DisjointSets.Find(u) then

4 Let S ← {DisjointSets.Find(w) : w ∈ Edges[u][αi]}

5 if |S| ⩾ 2 then

6 Let x← some arbitrary element of S \ {u}

7 Make DisjointSets.Union(S, x)

8 for j ← 1 to k do

9 foreach v ∈ S \ {x} do

10 if u ̸= v or i ̸= j then

11 Move Edges[v][αj ] to Edges[x][αj ]

12 else

13 Append (x) to Edges[x][αj ]

14 end

15 end

16 if |Edges[x][αj ]| ⩾ 2 then

17 Insert (x, αj) in Q

18 end

19 else

20 Let x← the single node in S

21 end

22 if u ̸∈ S or |S| = 1 then

23 Edges[u][αi]← (x)

24 end

25 return DisjointSets
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1. The element (z, α3) is extracted from Q. We have Edges[z][α3] = (x, y). Observe that x

and y belong to the same DSCC rooted at v, hence in Line 4 the algorithm will construct

S = {v}. Since |S| = 1, the algorithm will simply set Edges[z][α3] = (v) in Line 22, and

no new DSCC has been formed.

2. The element (s, α1) is extracted from Q. We have Edges[s][α1] = (u, z). Since u and

z belong to different DSCCs, the algorithm will construct S = {s, z}, and perform a

DisjointSets.Union(S, x) operation, where x = z. Note that union-by-rank will make

the tree of z a subtree of the tree of s, i.e., z will become a child of s. Afterwards, the

algorithm swaps the names of z and s, as required by the choice of x in Line 6. Finally,

in Line 11, the algorithm will move Edges[s][αi] to Edges[z][αi] for i = 1, 2. Since now

|Edges[z][α2]| ⩾ 2, the algorithm inserts (z, α2) in Q. See Figure 5.2a.

3. The element (z, α2) is extracted from Q. We have Edges[z][α2] = (v, z). Since v and

z belong to different DSCCs, the algorithm will construct S = {v, z}, and perform a

DisjointSets.Union(S, x) operation, where x = v. Note that union-by-rank will make the

tree of v a subtree of the tree of z, i.e., v will become a child of z. Afterwards, the algorithm

swaps the names of v and z, as required by the choice of x in Line 6. Finally, in Line 11,

the algorithm will move Edges[z][α2] to Edges[v][α2]. Since now |Edges[v][α2]| ⩾ 2, the

algorithm inserts (v, α2) in Q. See Figure 5.2b.

4. The element (v, α2) is extracted from Q. We have Edges[v][α2] = (v, t). Observe that v

and t belong to the same DSCC rooted at v, hence in Line 4 the algorithm will construct

S = {v}. Since |S| = 1, the algorithm will simply set Edges[v][α2] = (v) in Line 22, and

will terminate.
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α2

(b)

Figure 5.2: The intermediate stages of BidirectedReach starting from the stage of Figure 5.1.
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Correctness. We start with the correctness statement of BidirectedReach, which is established

in two parts, namely the soundness and completeness, which are shown in the following two

lemmas.

Lemma 5.1 (Soundness). At the end of BidirectedReach, for every pair of nodes u, v ∈ V , if

DisjointSets.Find(u) = DisjointSets.F ind(v) then u and v belong to the same DSCC.

Proof. The proof is by showing by induction on the number of times the main loop of Algorithm 9

is executed, that

1. every set of DisjointSets forms a DSCC of G, and

2. for every pair u, v ∈ V and αi ∈ ΣC , if v is in the same set of DisjointSets as some node

w ∈ Edges[u][αi] then there are paths P u
v : v ⇝ u and P v

u : u⇝ v such that Ai ⊢ λ(P u
v )

and Ai ⊢ λ(P v
u ).

The claim follows easily after the initialization phase, since every set of DisjointSets is a single

node, and the Edges map is initialized with the edges of G. Now, assume that the claim holds

before an execution of the main loop of Algorithm 9. Let u be the node as defined in Line 2,

and v1, v2 be two nodes of the set S constructed in Line 4. By the induction hypothesis, there

exist paths P u
v1

: v1 ⇝ u and P v2
u : u ⇝ v2 such that Ai ⊢ λ(P u

v1
) and Ai ⊢ λ(P v2

u ), and thus

S ⊢ λ(P u
v1
◦ P v2

u ) and λ(P u
v1
◦ P v2

u ) ∈ Lk. Hence v2 is Dyck reachable from v1 and Item 1 holds.

We now consider Item 2 of the claim, and let u be the node defined in the previous paragraph.

Let x be the node of S defined in Line 6, and v any other node of S. By the induction hypothesis,

for every j in Line 8, every y ∈ Edges[v][αj] and every z in the same set as y, we have that

there exist paths P z
v : v ⇝ z and P v

z : z ⇝ v such that Aj ⊢ λ(P z
v ) and Aj ⊢ λ(P v

z ).

Additionally, there exist paths P u
v : v ⇝ u, P x

u : u⇝ x, P u
x : x⇝ u and P v

u : u⇝ v such that

S ⊢ λ(P u
v ◦ P x

u ), λ(P
u
x ◦ P v

u ). Let P x
z = P v

z ◦ P u
v ◦ P x

u and P z
x = P u

x ◦ P v
u ◦ P z

v . Observe that

P x
v : v ⇝ x and P z

x = x ⇝ z, and additionally Aj ⊢ P x
z and Aj ⊢ P z

x . Hence Item 2 of the

claim holds after Line 11 is executed.

The desired result follows.
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Lemma 5.2 (Completeness). At the end of BidirectedReach, for every pair of nodes u, v ∈ V

in the same DSCC, u and v belong to the same set of DisjointSets.

Proof. The proof is by showing inductively that for every even r, for every pair of nodes u, v ∈ V

such that v is Dyck-reachable from u via a path P v
u : u⇝ v with |P | ⩽ r, BidirectedReach will

reach a state where u and v belong to the same set of DisjointSets.

After the initialization phase (Algorithm 8), the claim holds for r = 0. Now assume that the

claim holds for some r, and we will show that it holds for r + 2. Let v be Dyck-reachable from

u via a path P v
u of length r + 2. We consider two cases.

1. There exists a node x ̸= u, v such that x is Dyck-reachable from u via a path P x
u : u⇝ x

and v is Dyck-reachable from x via a path P v
x : x ⇝ v such that |P x

u |, |P v
x | ⩽ r. Then,

by the induction hypothesis, BidirectedReach will reach a state where x is placed in the

same set as u, and a state where x is placed in the same set as v. After BidirectedReach

has reached both states, u and v are in the same set, as required.

2. If there exists no such node x, then there exists a parenthesis pair αi, αi ∈ Σk such that

αi S αi ⊢ λ(P v
u ). Thus there exist two nodes y, z and a path P v

u = u → y ⇝ z → v,

where u → y and z → v are single edges, and P z
y : y ⇝ z is a path from y to z of

length r, and additionally (i) λ(u, y) = αi, (ii) λ(z, v) = αi, and (iii) S ⊢ λ(P y
z ). Note

that possibly y = z, or even u = y = z. By the induction hypothesis, BidirectedReach

will reach a state where y and z are placed in the same set of DisjointSets. Let x be the

representative of that set at that point, and by Line 11 (or Line 13, if x = y or x = z)

we obtain that u, v ∈ Edges[αi][x] at that point. Since |Edges[αi][x]| ⩾ 2, the element

(u, αi) was inserted in Q at that point. It is easy to verity that at some later point, an

element (w, αi) is extracted from Q (possibly w = x) such that w is the representative

of the set of x and u, v ∈ Edges[αi][w]. Since w is a representative of the set it belongs

to, we have w = DisjointSets.Find(w), and the condition in Line 3 holds true. If, at that

point, u and v are still in different sets of DisjointSets, then for the set S constructed

in Line 4 we have |S| ⩾ 2. Hence, the condition of Line 5 evaluates to true, and after

DisjointSets.Union(S, x) has been executed in Line 7, u and v will be placed in the same

set of DisjointSets.
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The desired result follows.

Complexity. We now establish the complexity of BidirectedReach, in a sequence of lemmas.

Lemma 5.3. The main loop of Line 1 in Algorithm 9 will be executed O(n) times.

Proof. Initially Q is populated by Line 9 of Algorithm 8, which inserts O(n) elements, as

k = O(1). Afterwards, for every ℓ ⩽ k = O(1) elements (u, αj) inserted inQ via Line 17, there

is at least one node v ∈ S which stops being a representative of its own set in DisjointSets, and

thus will not be in S in further iterations. Hence Q will contain O(n) elements in total, and the

result follows.

The sets Sj and S ′
j . Consider an element (u, αi) extracted from Q in the j-th iteration of the

algorithm in Line 1. We denote by S ′
j the set Edges[u][αi], and by Sj the set S constructed in

Line 4. If S was not constructed in that iteration (i.e., the condition in Line 3 does not hold), then

we let Sj = ∅. It is easy to see that |Sj| ⩽ |S ′
j| for all j. The following crucial lemma bounds

the total sizes of the sets S ′
j constructed throughout the execution of BidirectedReach.

Lemma 5.4. Let r be the number of iterations of the main loop in Line 1 of Algorithm 9. We

have
∑r

j=1 |S ′
j| = O(m).

Proof. By Lemma 5.3 we have r = O(n). Let J = {j : |S ′
j| ⩾ 2}, and it suffices to prove that∑

j∈J S
′
j = O(m).

We first argue that after a pair (u, αi) has been extracted from Q in some iteration j ∈ J , the

number of edges in Edges decreases by at least |S ′
j|−1. We consider the following complementary

cases depending on the condition of Line 22.

1. If the condition holds, then we have |Edges[u][αi]| = 1 after Line 23 has been executed.

2. Otherwise, we must have u ∈ S and |S| ⩾ 2, hence there exists some x ∈ S \ {u} chosen

in Line 6, and all edges in Edges[u] will be moved to Edges[x] for some v = u in Line 9.

Hence |Edges[u][αi]| = 0.

Note that because of Line 10, the edges in Edges[u][αi] are not moved to Edges[x][αi], hence all

Edges[u][αi] (except possibly one) will no longer be present at the end of the iteration. Since
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S ′
j = Edges[u][αi] at the beginning of the iteration, we obtain that the number of edges in Edges

decreases by at least |S ′
j| − 1.

We define a potential function Φ : N → N, such that Φ(j) equals the number of elements in

the data structure Edges at the beginning of the j-th iteration of the main loop in Line 1 of

Algorithm 9. Note that (i) initially Φ(1) = m, (ii) Φ(j) ⩾ 0 for all j, and (iii) Φ(j + 1) ⩽ Φ(j)

for all j, as new edges are never added to Edges. Let (u, αi) be an element extracted from Q

at the beginning of the j-the iteration, for some j ∈ J . As shown above, at the end of the

iteration we have removed at least |S ′
j| − 1 edges from Edges, and since |S ′

j| ⩾ 2, we obtain

Φ(j + 1) ⩽ Φ(j)− |S ′
j|/2. Summing over all j ∈ J , we obtain

∑
j∈J

|S ′
j| ⩽ 2 ·

∑
j∈J

(Φ(j)− Φ(j + 1))
[
as Φ(j + 1) ⩽ Φ(j)− |S ′

j|/2
]

= 2 ·
|J |∑
ℓ=1

(Φ(jℓ)− Φ(jℓ + 1)) [for jℓ < jℓ+1]

⩽ 2 · Φ(j1) [as Φ is decreasing and thus Φ(jℓ+1) ⩽ Φ(jℓ + 1)]

⩽ 2 ·m [as Φ(j1) ⩽ Φ(1) = m]

The desired result follows.

Finally, we are ready to establish the complexity of BidirectedReach.

Lemma 5.5 (Complexity). BidirectedReach requires O(m · α(n)) time and O(m) space.

Proof. The O(m) space bound follows easily by the data-structures, hence our focus will be on

the time complexity. It is straightforward that the initialization phase (Algorithm 8) requires

O(m) time, and our focus will be on the main computation (Algorithm 9).

First we bound the amount of time spent in the operations of the data structure DisjointSets. Since

a DisjointSets.Find(w) operation has amortized time O(α(n)) [Tarjan, 1975], using Lemma 5.4,

the total time for constructing the sets Sj in Line 4 is bounded by

α(n) ·
r∑

j=1

|S ′
j| = O(m · α(n))
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Similarly, the total time required for making the DisjointSets.Union(Sj, x) operations in Line 7

is

α(n) ·
r∑

j=1

|Sj| ⩽ α(n) ·
r∑

j=1

|S ′
j| = O(m · α(n))

Second, we bound the amount of time spent within BidirectedReach, i.e., without counting the

time in DisjointSets. All lines except for the loop in Line 9 are executed a number of times

proportional to the iterations of the main loop of Algorithm 9, hence by Lemma 5.3, the total

time spent outside the inner loop of Line 9 is O(n). Finally, observe that every line of the inner

loop is executed O(|S ′
j|) times. Hence, by Lemma 5.4, we obtain that the total time spent in the

inner loop is O(m). Note that each move operation in Line 11 and append operation in Line 13

takes constant time, by using a linked-list implementation of each set Edges[u][αi].

The desired result follows.

A speedup for non-sparse graphs. Observe that in the case of sparse graphs m = O(n),

and Lemma 5.5 yields the complexity O(n · α(n)). Here we describe a modification of

BidirectedReach that reduces the complexity from O(m · α(n)) to O(m + n · α(n)), and thus

is faster for graphs where the edges are more than a factor α(n) as many as the nodes (i.e.,

m = ω(n · α(n))). The key idea is that if a node u has more than k outgoing edges initially, then

it has two distinct outgoing edges labeled with the same closing parenthesis αi ∈ ΣC
k , and hence

the corresponding neighbors can be merged to a single DSCC in a preprocessing step. Once

such a merging has taken place, u only needs to keep a single outgoing edge labeled with αi to

that DSCC. This preprocessing phase requires O(m) time for all nodes, after which there are

only O(n) edges present, by amortizing at most k edges per node of the original graph (recall

that k = O(1)). After this preprocessing step has taken place, BidirectedReach is executed with

O(n) edges in its input, and by Lemma 5.5 the complexity is O(n · α(n)). We conclude the

results of this section with the following theorem.

Theorem 5.1 (Worst-case complexity). Let G = (V,E) be a Σk-labeled bidirected graph of n

nodes and m = Ω(n) edges. BidirectedReach correctly computes the DSCCs of G and requires

O(m+ n · α(n)) time and O(m) space.

Linear-time considerations. Note that α(n) is an extremely slowly growing function, and for all

practical purposes α(n) ⩽ 4. Indeed, the smallest n for which α(n) = 5 far exceeds the estimated
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number of atoms in the observable universe. Additionally, since it is known that a Disjoint Sets

data structure operates in amortized constant expected time per operation [Doyle and Rivest, 1976;

Yao, 1985], we obtain the following corollary regarding the expected time complexity of our

algorithm.

Corollary 5.1 (Average-case complexity). For bidirected graphs, the algorithm

BidirectedReach requires O(m) expected time for computing DSCCs.

Remark 5.3 (Comparison with existing work.). We briefly compare our work with the previous

best-known results of [Zhang et al., 2013].

• Algorithm 5. Algorithm 5 of [Zhang et al., 2013] solves Dyck reachability on bidirected

graphs, and the complexity is O(m · log n) (see [Zhang et al., 2013, Theorem 4]). Although

not explicitly mentioned in the theorem, the complexity bound is for the average-case

complexity, and not the worst-case complexity. The average case comes from their Fast-

Doubly-Linked-List (FDLL) data structure, the query and deletion time of which are taken

to be O(1) in the average case. However, the worst-case time complexity of each of these

is O(n). Using the worst-case time for each operation in FDLL yields the upper bound of

O(n ·m · logn) time, since (i) as argued in [Zhang et al., 2013, Theorem 4] the main loop

of the algorithm is executed O(m · log n) times, and (ii) every FDLL query and delete

operation inside that loop takes O(n) time instead of O(1).

• Algorithm 2. The same work presents Algorithm 2 which has worst-case complexity O(n2)

(shown in [Zhang et al., 2013, Theorem 2]), and thus dominates O(n ·m · log n) on graphs

with no isolated nodes.

Hence, until now, the best worst-case complexity for the problem has been O(n2), and the best

average-case complexity has been O(min{n2,m · log n}). The new bounds we establish are

O(m+ n · α(n)) and O(m), respectively.

5.3.3 An Ω(m+ n · α(n)) lower bound

Theorem 5.1 implies that Dyck reachability on bidirected graphs can be solved in almost linear-

time. A theoretically interesting question is whether the problem can be solved in linear time in

the worst case. We answer this question in the negative by proving that every algorithm for the
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problem requires Ω(m+n ·α(n)) time, and thereby proving that our algorithm BidirectedReach

is indeed optimal wrt worst-case complexity.

The Separated Union-Find problem. A sequence σ of Union-Find operations is called sepa-

rated if all Find operations occur at the end of σ. Hence σ = σ1 ◦ σ2, where σ1 contains all

Union operations of σ. We call σ1 a union sequence and σ2 a find sequence. The Separated

Union-Find problem is the regular Union-Find problem over separated union-find sequences.

Note that this version of the problem has an offline flavor, as, at the time when the algorithm

is needed to produce output (i.e. when the suffix of Find operations starts) the input has been

fixed (i.e., all Union operations are known). We note that the Separated Union-Find problem

is different from the Static Tree Set Union problem [Gabow and Tarjan, 1985], which restricts

the type of allowed Union operations, and for which a linear time algorithm exists on the RAM

model. The following lemma states a lower bound on the worst-case complexity of the problem.

Lemma 5.6. The Separated Union-Find problem over a universe of size n and sequences of

length n has worst-case complexity Ω(n · α(n)).

Proof. The proof is essentially the proof of [Aspvall et al., 1979, Theorem 4.4], by observing

that the sequences constructed there to prove the lower bound are actually separated union-find

sequences.

The union graph Gσ1 . Let σ1 be a union sequence over some universe X . The union graph of

σ1 is a Σ1-labeled bidirected graph Gσ1 = (V σ1 , Eσ1), defined as follows.

1. The node set is V σ1 = X ∪ {zi}1⩽i⩽|σ1| where the nodes zi do not appear in X .

2. The edge set is Eσ1 = {(zi, xi, α), (zi, yi, α)}1⩽i⩽|σ1|, where xi, yi ∈ X are the elements

such that the i-th operation of σ1 is Union(xi, yi).

See Fig. 5.3 for an illustration.

A lower bound for Dyck reachability on bidirected graphs. We are now ready to prove our

lower bound. The proof consists in showing that there exists no algorithm that solves the problem

in o(n · α(n)) time. Assume towards contradiction otherwise, and let A′ be an algorithm that

solves the problem in time o(n · α(n)). We construct an algorithm A that solves the Separated

Union-Find problem in the same time.
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σ1 = Union(u, v), Union(x, y), Union(w, v), Union(w, x)

u v x yw

z1 z2

z3

z4

α α α α
α α

α α

Figure 5.3: A union sequence σ1 and the corresponding graph Gσ1 .

Let σ = σ1 ◦ σ2 be a separated union-find sequence, where σ1 is a union sequence and σ2 is a

find sequence. The algorithm A operates as follows. It performs no operations until the whole of

σ1 has been revealed. Then, A′ constructs the union graph Gσ1 , and uses A′ to solve the Dyck

reachability problem on Gσ1 . Finally, every Find(x) operation encountered in σ2 is handled by

A by using the answer of A′ on Gσ1 .

It is easy to see that A handles the input sequence σ correctly. Indeed, for any sequence of union

operations Union(xi, yi), . . . ,Union(xj, yj) that bring two elements x and y to the same set, the

edges (zi, xi, α), (zi, yi, α), . . . , (zj, xj, α), (zj, yj, α) must bring x and y to the same DSCC of

GΣ1 . Finally, the algorithm A requires O(n) time for constructing G and answering all queries,

plus o(n · α(n)) time for running A′ on GΣ1 . Hence A operates in o(n · α(n)) time, which

contradicts Lemma 5.6.

The above establishes that any Dyck reachability algorithm for bidirected graphs of n nodes and

m edges requires Ω(n · α(n)) time. Additionally, any such algorithm requires Ω(m) time, since

the size of the input is Ω(m). Hence we establish the following theorem.

Theorem 5.2 (Lower-bound). Any Dyck reachability algorithm for bidirected graphs with n

nodes and m = Ω(n) edges requires Ω(m+ n · α(n)) time in the worst case.

Theorem 5.2 together with Theorem 5.1 yield the following corollary.

Corollary 5.2 (Optimality). The Dyck reachability algorithm BidirectedReach for bidirected

graphs is optimal wrt to worst-case complexity.
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5.3.4 An Ω(m+ n · α(n)) lower bound for Dyck reachability on constant-

treewidth bidirected graphs

In this section we consider Dyck reachability on constant-treewidth bidirected graphs. We start

with a remark about the question and our result.

Remark 5.4. In Theorem 5.2 we establish a lower bound for Dyck reachability on general

bidirected graphs. For Dyck reachability on bidirected trees, a linear-time (O(n)-time) algorithm

is known [Zhang et al., 2013]. For a large variety of problems, the complexity on graphs with

constant treewidth coincides with the complexity on trees, e.g., for shortest paths [Chaudhuri

and Zaroliagis, 1995], various combinatorial optimization problems [Bertele and Brioschi,

1972], and even NP-complete problems [Arnborg and Proskurowski, 1989; Bern et al., 1987;

Bodlaender, 1988]. Thus a natural question is whether linear-time algorithm for Dyck reachability

can be obtained for constant-treewdith bidirected graphs. Quite unexpectedly, we present

a superlinear lower bound of Ω(n · α(n)) time for Dyck reachability on constant-treewdith

bidirected graphs. We show that for Dyck reachability on bidirected graphs, graphs of treewidth 3

are as hard to solve as arbitrary graphs.

3-access sequences. A union-find sequence is called 3-access if every element appears in at

most 3 Union operations. As the following lemma shows, the union-find problem over 3-access

sequences is as hard as over general sequences.

Lemma 5.7. Any algorithm for the Union-Find problem over 3-access sequences requires

Ω(m · α(n)) time, where n is the length of the input sequence.

Proof. Consider any algorithm A′ that solves the Union-Find problem over 3-access sequences.

We will describe an algorithm A that can handle arbitrary sequences using A as an oracle. Given

a sequence σ of length n, the algorithm A will be constructing a new, 3-access sequence σ′, and

running A′ on σ′.

The algorithm simply uses a fresh surrogate symbol xi ̸∈ X to replace the i-th appearance of the

symbol x ∈ X in σ in a union operation. Consider an operation Union(x, y), where x, y appear

for the i-th and j-th time in σ, respectively. The algorithm A introduces two new surrogate

symbols xi, yj , and extends σ′ by the following operations: Union(xi−1, xi), Union(yj−1, yj),

Union(xi, yj).
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It is easy to see that σ′ is a 3-access sequence of length at most 3 ·m. Hence the running time of

A is asymptotically equal to that of A′, i.e. o(m · α(n)). This contradicts the lower bound of

Lemma 5.6.

The desired result follows.

In the next lemma we show that the union graph Gσ of a 3-access sequence σ has constant

treewidth.

Lemma 5.8. Given a 3-access union-find sequence σ, the graph Gσ has treewidth at most 3.

Proof. Let X be the universe of σ. We construct a tree decomposition Tree(Gσ) as follows.

1. The node set of Tree(Gσ) contains one bag Bx per node x ∈ X . The contents the bag are

Bx = {x, zi1 , zi2 , zi3}, where zij , for 1 ⩽ j ⩽ 3, are the nodes of Gσ that have an outgoing

edge (zij , x, α) ∈ Eσ.

2. Given two nodes x, y ∈ X , there exists an edge (Bx, By) in Tree(Gσ) iff σ contains an

operation Union(x, y).

First, observe that Tree(Gσ) is indeed a tree, as if there exists a cycle C, the edge of C that

corresponds to the last Union operation of σ represents some Union(x, y) such that x and y were

already in the same set at that point. By the definition of the Union-Find problem, Union(x, y)

was not allowed at that point, and σ is an invalid sequence.

Second, we argue that Tree(Gσ) is a tree decomposition. It is easy to see that every node

and edge of Gσ is covered by some bag of Tree(Gσ). To argue that every node appears in a

contiguous subtree of Tree(Gσ), note that (i) every node x ∈ X appears in a single bag Bx, and

(ii) every node zij ∈ V σ \X appears only in two bags Bx, By, such that the ij-th operation of σ

is Union(x, y), and these two bags are connected by an edge.

Finally, it follows easily that Tree(Gσ) has width at most 3, since, by construction, every bag

contains at most 4 nodes. We conclude that Gσ has treewidth at most 3. The desired result

follows.
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Lemma 5.7 and Lemma 5.8 together with the reduction of Theorem 5.2 lead to the following

theorem.

Theorem 5.3 (Lower-bound for low-treewidth graphs). Any Dyck reachability algorithm

requires Ω(n · (α(n))) time for the class of constant-treewidth bidirected graphs of n nodes.

5.4 Dyck Reachability on General Graphs

We present a hardness result regarding the Dyck reachability problem on general graphs. Recall

Dyck languages are a subset of Context-free languages. The problem of language parsing of a

string of length n is a special case of language reachability on a graph of n+ 1 nodes arranged

in a line.

Theoretical question. In parsing, there is a big difference between Dyck and general CFL

languages. CFL parsing is known to Boolean Matrix Multiplication hard [Lee, 2002], whereas

Dyck parsing can be easily solved in O(n) time.

Given the linear-time algorithm for Dyck parsing, an important theoretical question is whether

Dyck reachability for general graphs can be solved in truly sub-cubic time, since none of the

existing algorithms is truly sub-cubic. Note that since Dyck reachability is a combinatorial

graph problem, techniques such as fast-matrix multiplication (e.g. Strassen’s algorithm [Strassen,

1969]) are unlikely to be applicable. Hence we consider combinatorial (i.e., discrete, graph-

theoretic) algorithms. The standard BMM-conjecture [Lee, 2002; Henzinger et al., 2015;

Vassilevska Williams and Williams, 2010; Abboud and Vassilevska Williams, 2014] states that

there is no truly sub-cubic (O(n3−δ), for δ > 0) combinatorial algorithm for Boolean Matrix

Multiplication. We resolve the question for Dyck reachability on general graphs in negative,

under the BMM-conjecture, that is, we show that Dyck reachability on general graphs is BMM-

hard. We establish this by showing Dyck reachability on general graphs is hard as CFL parsing,

which we present below.

The gadget graph GG . Given a Context-free grammar G in Chomsky normal form, we construct

the gadget graph GG = (V G, EG) as follows.

1. The node set V G contains two distinguished nodes x, y, together with a node xi for the i-th
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B → b
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Figure 5.4: (5.4a) A grammar G for the language anbn, (5.4b) The gadget graph GG , (5.4c) The

parse graph GG
s , given a string s = s1, . . . dn.

production rule pi. Additionally, if pi is of the form A → B C, then V G contains a node yi.

2. The edge set EG contains an edge (x, xi, αA), where A is the left hand side symbol of the

i-th production rule pi of G. Additionally,

(a) if pi is of the form A → a, then EG contains an edge (xi, y, αa), else

(b) if pi is of the form A → B C, then EG contains the edges (xi, yi, αC) and (yi, y, αB).

See Fig. 5.4a, Fig. 5.4b for an illustration.

The parse graph GG
s . Given a grammar G and an input string s = s1, . . . sn, we construct the

parse graph GG
s = (V G

s , EG
s ) as follows. The graph consists of two parts. The first part is a line

graph that contains nodes v, u0, u1, . . . un, with the edges (v, u0, αS) and (ui−1, ui, αsi) for all

1 ⩽ i ⩽ n. The second part consists of a n copies of the gadget graph GG , counting from 0

to n − 1. Finally, we have a pair of edges (ui, xi, ϵ), (yi, ui, ϵ) for every 0 ⩽ i < n, where xi

(resp. yi) is the distinguished x node (resp. y node) of the i-th gadget graph. See Fig. 5.4c for an

illustration.

Lemma 5.9. The node un is Dyck-reachable from node v iff s is generated by G.
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Proof. Given a path P , we denote by λ(P ) the substring of λ(P ) that consists of all the closing-

parenthesis symbols of λ(P ). The proof follows directly from the following observation: the

parse graph GG
s contains a path P : v ⇝ un with λ(P ) ∈ L if and only if λ(P ) corresponds to a

pre-order traversal of a derivation tree of the string s wrt the grammar G.

Theorem 5.4 (CFL-parsing hardness). If there exists a combinatorial algorithm that solves the

Dyck reachability problem in time T (n), where n is the number of nodes of the input graph, then

there exists a combinatorial algorithm that solves the CFL parsing problem in time O(n+T (n)).

Since CFL-parsing is BMM-hard, combining Theorem 5.4 with [Lee, 2002, Theorem 2] we

obtain the following corollary.

Corollary 5.3 (BMM hardness: Conditional cubic lower bound). For any fixed δ > 0, if

there is a combinatorial algorithm that solves the Dyck reachability problem in O(n3−δ) time,

then there is a combinatorial algorithm that solves Boolean Matrix Multiplication in O(n3−δ/3)

time.

Remark 5.5 (BMM hardness for low-treewidth graphs). Note that since the size of the gram-

mar G is constant, the parse graph GG
s has constant treewidth. Hence the BMM hardness of

Corollary 5.3 also holds if we restrict our attention to Dyck reachability on graphs of constant

treewidth.

5.5 Library/Client Dyck Reachability

In this section we present some new results for library/client Dyck reachability with applications

to context-sensitive data-dependence analysis. One crucial step to our improvements is the fact

that we consider that the underlying graphs are not arbitrary, but have special structure. We start

with Section 5.5.1 which defines formally the graph models we deal with, and their structural

properties. Afterwards, in Section 5.5.2 we present our algorithms.

5.5.1 Problem definition

Here we present a formal definition of the input graphs that we will be considering for library/-

client Dyck reachability with application to context-sensitive data-dependence analysis. Each
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input graph G is not an arbitrary Σk-labeled graph, but has two important structural properties.

1. G can be naturally partitioned to subgraphs G1, . . . Gℓ, such that every Gi has only ϵ-

labeled edges. Each such Gi = (Vi, Ei) corresponds to a method of the input program.

There are only a few nodes of Vi that have incoming edges that are non-ϵ-labeled. Similarly,

there are only a few nodes of Vi that have outgoing edges that are non-ϵ-labeled. These are

nodes that correspond to the input parameters and return statements of the i-th method of

the program, which are almost always only a few.

2. Each Gi is a graph of low treewidth. This is an important graph-theoretic property which,

informally, means that Gi is similar to a tree (although Gi is not a tree).

In the following definitions, we make the above structural properties formal and precise. We start

with the first structural property, we captures the fact that the input graph G consists of many

local graphs Gi, one for each method of the input program, and the parenthesis-labeled edges

model context sensitivity.

Program-valid partitionings. Let G = (V,E) be a Σk-labeled graph. Given some 1 ⩽ i ⩽ k,

we define the following sets.

Vc(αi) = {u : ∃(u, v, αi) ∈ E} Ve(αi) = {v : ∃(u, v, αi) ∈ E}

Vx(αi) = {u : ∃(u, v, αi) ∈ E} Vr(αi) = {v : ∃(u, v, αi) ∈ E}

In words, (i) Vc(αi) contains the nodes that have a αi-labeled outgoing edge, (ii) Ve(αi) contains

the nodes that have a αi-labeled incoming edge, (iii) Vx(αi) contains the nodes that have a

αi-labeled outgoing edge, and (iv) Vr(αi) contains the nodes that have a αi-labeled incoming

edge. Additionally, we define the following sets.

Vc =
⋃
i

Vc(αi) Ve =
⋃
i

Ve(αi) Vx =
⋃
i

Vx(αi) Vr =
⋃
i

Vr(αi)

Consider a partitioning V = {V1, . . . , Vℓ} of the node set V , i.e.,
⋃

i Vi = V and Vi ∩ Vj = ∅

for all 1 ⩽ i, j ⩽ ℓ. We say that V is program-valid if the following conditions hold: for

every 1 ⩽ i ⩽ k, there exist some 1 ⩽ j1, j2 ⩽ ℓ such that (i) Vc(αi), Vr(αi) ⊆ Vj1 , and

(ii) Ve(αi), Vx(αi) ⊆ Vj2 . Intuitively, the parenthesis-labeled edges of G correspond to method
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calls and returns, and thus model context sensitivity. Each parenthesis type models the calling

context, and each G[Vi] corresponds to a single method of the program. Since the calling

context is tied to two methods (the caller and the callee), conditions (i) and (ii) must hold for the

partitioning.

A program-valid partitioning V = {V1, . . . Vℓ} is called b-bounded if there exists some b ∈ N

such that for all 1 ⩽ j ⩽ ℓ we have that |Ve ∩ Vj|, |Vx ∩ Vj| ⩽ b. Note that since V is program-

valid, this condition also yields that for all 1 ⩽ i ⩽ k we have that |Vc(αi)|, |Vr(αi)| ⩽ b. In this

chapter we consider that b = O(1), i.e., b is constant wrt the size of the input graph.

This is true since the sets Ve ∩ Vj and Vx ∩ Vj represent the input parameters and the return

statements of the j-th method in the program. Similarly, the sets Vc(αi), Vr(αi) represent the

variables that are passed as input and the variables that capture the return, respectively, of the

method that the i-th call site refers to. In all practical cases, each of the above sets has constant

size (or even size 1, in the case of return variables).

Program-valid graphs. The graph G is called program-valid if there exists a constant b ∈

N such that G has b-bounded program valid partitioning. Given a such a partitioning V =

{V1, . . . , Vℓ}, we call each graph Gi = (Vi, Ei) = G[Vi] a local graph. Given a partitioning of

V to the library partition V 1 and client partition V 2, V induces a program-valid partitioning on

each of the library subgraph G1 = G[V 1] and G2 = G[V 2]. See Fig. 5.5 for an example.

We now present the second structural property of input graphs that we exploit for data-dependence

analysis. Namely, for a program-valid input graph G with a program-valid partitioning V =

{V1, . . . , Vℓ} the local graphs Gi = G[Vi] are graphs of low treewidth. It is known that the

control-flow graphs (CFGs) of goto-free programs have small treewidth [Thorup, 1998]. The

local graphs Gi are not CFGs, but rather graphs defined by def-use chains. As we show in our

experiments Section 5.6.2, the local def-use graphs of real-world benchmarks also have small

treewidth in each method. Below, we make the above notions precise.

Program-valid treewidth. Let G = (V,E) be a Σk-labeled program-valid graph, and V =

{V1, . . . , Vℓ} a program-valid partitioning of G. For each 1 ⩽ i ⩽ ℓ, let Gi = (Vi, Ei) = G[Vi].

We define the graph G′
i = (Vi, E

′
i) such that

E ′
i = Ei

⋃
1⩽j⩽k

(Vc(αj) ∩ Vi)× (Vr(αj) ∩ Vi)
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and call G′
i the maximal graph of Gi. In words, the graph G′

i is identical to Gi, with the

exception that G′
i contains an extra edge for every pair of nodes u, v ∈ Vi such that u has

opening-parenthesis-labeled outgoing edges, and v has closing-parenthesis-labeled incoming

edges. We define the treewidth of V to be the smallest integer t such that the treewidth of each G′
i

is at most t. We define the width of the pair (G,V) as the treewidth of V , and the program-valid

treewidth of G to be the smallest treewidth among its program-valid partitionings.

The Library/Client Dyck reachability problem on program-valid graphs. Here we define

the algorithmic problem that we solve in this section. Let G = (V,E) be a Σk-labeled, program-

valid graph and V a program-valid partitioning of G that has constant treewidth (k need not be

constant). The set V is further partitioned into two sets, V1 and V2 that correspond to the library

and client partitions, respectively. We let V 1 =
⋃

Vi∈V1 Vi and V 2 =
⋃

Vi∈V2 Vi, and define the

library graph G1 = (V 1, E1) = G[V 1] and the client graph G2 = (V 2, E2) = G[V 1].

The task is to answer Dyck reachability queries on G, where the queries are either (i) single

source queries from some node u ∈ V 2, or (ii) pair queries for some pair u, v ∈ V 2. The

computation takes place in two phases. In the preprocessing phase, only the library graph G1

is revealed, and we are allowed to do some preprocessing to compute reachability summaries.

In the query phase, the whole graph G is revealed, and our task is to handle queries fast, by

utilizing the preprocessing done on G1.

5.5.2 Library/Client Dyck reachability on Program-valid Graphs

We are now ready to present our method for computing library summaries on program-valid

graphs in order to speed up the client-side Dyck reachability. The approach is very similar to the

RSMDistance algorithm in Chapter 4 for handling interprocedural semiring distances on RSMs.

Outline of our approach. Our approach consists of the following conceptual steps. We let the

input graph G = (V,E) be any program-valid graph of constant treewidth, with a partitioning of

V into the library component V 1 and the client component V 2. Since G is program-valid, it has

a constant-treewidth, program-valid partitioning V , and we consider V1 to be the restriction of V

to the set V 1. Hence we have V1 = {V1, . . . Vℓ} be a program-valid partitioning of G[V 1], which

also has constant treewidth. Our approach consists of the following steps.
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: f1(x, y)

1 if y%2 = 1 then

2 z ← x+ y

3 else

4 z ← x · y

5 end

6 return z

: g(x, y)

1 x← 2

2 y ←

3 p← f(x, y)

4 return p

: f2(x, y)

1 if x%2 = 1 then

2 z ← 2 · x

3 else

4 z ← 2 · x+ 1

5 end

6 return z

1 2

3

4

1 2

3

4 5

ϕ

6

1 2

3

4 5

ϕ

6

}1}1 }2 }2

}1 }2

f1(x, y) f2(x, y)g()

Figure 5.5: Example of a library/client program and the corresponding program-valid data-

dependence graph. The library consists of method g() which has a callback function f(x, y).

The client implements f(x, y) either as f1(x, y) or f2(x, y). The parenthesis-labeled edge model

context-sensitive dependencies on parameter passing and return. Note that depending on the

implementation of f , there is a data dependence of the variable p on y.
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1. We construct a local graph Gi = (Vi, Ei) and the corresponding maximal local graph

G′
i = (Vi, E

′
i) for each Vi ∈ V . Recall that G′

i is a conventional graph, since, by definition,

E ′
i contains only ϵ-labeled edges. Since V has constant treewidth, each graph G′

i has

constant treewidth, and we construct a tree decomposition Tree(G′
i).

2. We exploit the constant-treewidth property of each G′
i to build a data structure D which

supports the following two operations: (i) Querying whether a node v is reachable from a

node u in G′
i, and (ii) Updating Gi by inserting a new edge (x, y). Moreover, each such

operation is fast, i.e., it is performed in O(log ni) time.

3. Recall that V 1, V 2 are the library and client partitions of G, respectively. In the prepro-

cessing phase, we use the data structure D to preprocess G[V 1] so that any pair of library

nodes that is Dyck-reachable in G[V 1] is discovered and can be queried fast. Hence this

library-side reachability information serves as the summary on the library side.

4. In the query phase, we useD to process the whole graph G, using the summaries computed

in the preprocessing phase.

Step 1. Construction of the local graphs Gi and the tree decompositions. The local graphs

Gi are extracted from G[V 1] by means of its program-valid partitioning V1 = {V1, . . . Vℓ}. We

consider this partitioning as part of the input, since every local graph Gi in reality corresponds

to a unique method of the input program represented by G. Let ni = |Vi|. The maximal local

graphs G′
i = (Vi, E

′
i) are constructed as defined in Section 5.5.1. Each tree decomposition

Tree(G′
i) is constructed in O(ni) time using Theorem 2.1. Observe that since Ei ⊆ E ′

i (i.e., Gi

is a subgraph of its maximal counterpart G′
i), Tree(G

′
i) is also a tree decomposition of Gi. We

define Tree(Gi) = Tree(G′
i) for all 1 ⩽ i ⩽ ℓ.

Step 2. Description of the data structure D. Here we describe the data structure D, which

is built for a conventional graph Gi = (Vi, Ei) (i.e., Ei has only ϵ-labeled edges) and its tree

decomposition Tree(Gi). The purpose of D is to handle reachability queries on Gi. The data

structure supports three operations, given in Algorithm 10, Algorithm 11 and Algorithm 12.

1. The D.Preprocess (Algorithm 10) operation builds the data structure for Gi.

2. The D.Update (Algorithm 11) updates the graph Gi with a new edge (x, y), provided that

there exists a bag B such that x, y ∈ B.
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3. The D.Query (Algorithm 12) takes as input a pair of nodes x, y and returns True iff y is

reachable from x in Gi, considering all the update operations performed so far.

Algorithm 10: D.Preprocess
Input: A tree-decomposition

Tree(Gi) = (VT , ET )

1 Traverse Tree(G) bottom up

2 foreach encountered bag B do

3 Construct the graph G(B) = (B,R(B))

4 Compute the transitive closure G∗(B)

5 foreach (u, v) ∈ B do

6 if u⇝ v in G∗(B) then

7 Insert u, v in R

8 end

9 end

Algorithm 11: D.Update
Input: A new edge (x, y)

1 Traverse Tree(G) from B(u,v) to the root

2 foreach encountered bag B do

3 Construct the graph G(B) = (B,R(B))

4 Compute the transitive closure G∗(B)

5 foreach u, v ∈ B do

6 if u⇝ v in G∗(B) then

7 Insert (u, v) in R

8 end

9 end

The reachability set R. The data structure D is built by storing a reachability set R between

pairs of nodes. The set R has the crucial property that it stores information only between pairs of

nodes that appear in some bag of Tree(Gi) together. That is, R =⊆
⋃

B B × B. Given a bag

B, we denote by R(B) the restriction of R to the nodes of B. The reachability set is stored as a

collection of 2
∑

i ·ni sets RF (u) and RB(u), one for every node u ∈ Vi. In turn, the set RF (u)

(resp. RB(u)) will store the nodes in Bu (recall that Bu is the root bag of node u) for which

it has been discovered that can be reached from u (resp., that can reach u). It follows directly

from the definition of tree decompositions that if (u, v) ∈ Ei is an edge of Gi then u ∈ Bv or

v ∈ Bu. Hence, given a bag B and nodes u, v ∈ B, querying whether (u, v) ∈ R reduces to

testing whether v ∈ RF (u) or u ∈ RB(v). Similarly, inserting (u, v) to R reduces to inserting

either v to RF (u) (if v ∈ Bu), or u to RB(v) (if u ∈ Bv).

Remark 5.6. The map R requires O(n) space. Since each Gi is a constant-treewidth graph, every

insert and query operation on R requires O(1) time.

Correctness and complexity of D. Here we establish the correctness and complexity of each

operation of D.

It is rather straightforward to see that for every pair of nodes (u, v) ∈ R, we have that v is
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reachable from u. The following lemma states a kind of weak completeness: if v is reachable

from u via a path of specific type, then (u, v) ∈ R. Although this is different from strong

completeness, which would require that (u, v) ∈ R whenever v is reachable from u, it is

sufficient for ensuring completeness of the D.Query algorithm.

Algorithm 12: D.Query
Input: A pair of nodes x, y

1 Let X ← {x}, Y ← {y}

2 Traverse Tree(G) from Bx to the root

3 foreach encountered bag B do

4 foreach u, v ∈ B do

5 if u ∈ X and (u, v) ∈ R then

6 Add v to X

7 end

8 end

9 Traverse Tree(G) from By to the root

10 foreach encountered bag B do

11 foreach u, v ∈ B do

12 if v ∈ Y and (u, v) ∈ R then

13 Add u to Y

14 end

15 end

16 return True iff X ∩ Y ̸= ∅

Algorithm 13: Process
Input: Method graphs

G1 = (V1, E1), . . . , Gℓ = (Vℓ, Eℓ)

1 foreach 1 ⩽ i ⩽ ℓ do

2 Construct Tree(Gj)

3 Run D.Preprocess on Tree(Gi)

4 end

5 Pool← {G1, . . . Gℓ}

6 while Pool ̸= ∅ do

7 Extract Gj from Pool

8 foreach u ∈ Vj ∩ Ve, v ∈ Vj ∩ Vx do

9 if D.Query(u, v) then

10 foreach

x : (x, u, αi) ∈ E, y : (v, y, αi) ∈ E do

11 Let Gr = (Vr, Er) be the graph such

that x, y ∈ Vr

12 if not D.Query(x, y) then

13 Run D.Update on Tree(Gr) on (x, y)

14 Insert Gr in Pool

15 end

16 end

17 end

Left-right-contained paths. We introduce the notion of left-right contained paths, which is

crucial for stating the correctness of the data structure D. Given a bag B of Tree(Gi), we say

that a path P : x ⇝ y is left-contained in B if for every node w ∈ P , if w ̸= x, we have

that Bw ∈ T (B). Similarly, P is right-contained in B if for every node w ∈ P , if w ̸= y, we

have that Bw ∈ T (B). Finally, P is left-right-contained in B if it is both left-contained and

right-contained in B.
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Lemma 5.10. The data structure D maintains the following invariant. For every bag B and

pair of nodes u, v ∈ B, if there is a P v
u : u ⇝ v which is left-right contained in B, then after

D.Preprocess has processed B, we have (u, v) ∈ R.

Proof. We prove that the invariant holds (i) at the end of D.Preprocess, and (ii) after each

execution of D.Update.

1. D.Preprocess. The proof is given by induction on the sequence of bags processed by

D.Preprocess. The claim is true if B is a leaf of T , as all P v
u paths considered can only

contain nodes from B. Now let B be some non-leaf bag examined by the algorithm, and by

the induction hypothesis the claim holds for all children B1, . . . Bl of B. The claim follows

directly from the induction hypothesis if B is not the root bag of any node. Otherwise, let

x1, . . . xl be the nodes whose root bag is B, and note that any path P v
u can be decomposed

to P v
u = P

xi1
u ◦ P xi2

xi1
◦ · · · ◦ P v

xir
, where in all cases P b

a is a path a⇝ b, and no node xi is

present in any P b
a except possibly for the endpoints a and b. By the induction hypothesis,

we have (a, b) ∈ R, and thus after the transitive closure G∗(B) is computed, we have that

(u, v) ∈ R.

2. D.Update. The proof is similar to that of D.Preprocess. The key observation is that if

a path P v
u : u ⇝ v of interest uses the new edge (x, y), then it must be that u, v appear

together in B(x,y) or one of its ancestors, and these are exactly the bags that are processed

by D.Update.

The desired result follows.

It is rather straightforward that at the end of D.Query, for every node w ∈ X (resp. w ∈ Y ) we

have that w is reachable from x (resp. y is reachable from w). This guarantees that if D.Query

returns True, then y is indeed reachable from x, via some node w ∈ X ∩ Y (recall that the

intersection is not empty, due to Line 16). The following lemma states completeness, namely

that if y is reachable from x, then D.Query will return True.

Lemma 5.11. On input x, y, if y is reachable from x, then D.Query returns True.

Proof. Let P : x ⇝ y be a simple path, and z = argw∈P min Lv(w) be the node of P with

the minimum level (possibly w = x or w = y). We show that at the end of D.Query we have
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w ∈ X ∩ Y . We only argue that w ∈ X , as the proof of w ∈ Y is similar.

First, observe that due to Lemma 2.1, Bw must be either Bx or some proper ancestor of Bx. We

show the following: for every ancestor bag B of Bx, for every node z ∈ B, if there exists a

right-contained path P z
x in B, then z ∈ X . Note that proving this statement yields that w ∈ X ,

as by the choice of w we have that Pw
x is a right-contained path in Bw.

We prove the above claim by induction on the ancestors of Bx. The claim is true when B = Bx,

directly from Lemma 5.10. Now let B be any ancestor of Bx at level i, and by the induction

hypothesis the claim holds for the ancestor B′ of B at level i+ 1. Examine any path of interest

P z
x , and observe that P z

x can be decomposed to paths P y
x ◦ P z

y such that (i) P y
x is right-contained

in the bag B′ which is an ancestor of Bx and child of B, and (ii) P z
y is left-right-contained in B.

By the induction hypothesis, we have that y ∈ X . By Lemma 5.10, we have (y, z) ∈ R. Then,

in Line 5 will add z in X .

The desired result follows.

The following lemma states the complexity of D operations.

Lemma 5.12. D.Preprocess requires O(ni) time. Every call to D.Update andD.Query requires

O(log ni) time.

Proof. We establish the complexity of each method separately.

1. D.Preprocess. Observe that since the graph has constant treewidth, we have |B| = 1 for

each encountered bag, and hence the transitive closure is computed in O(1) time. The

algorithm will examine each bag once, and since, by Theorem 2.1, there are O(n) bags,

the total running time of D.Update is O(n).

2. D.Update. Similarly as before, the transitive closure in each bag requires O(1) time. By

Theorem 2.1, Tree(G) has height O(log n), and D.Update will examine O(log n) bags.

3. D.Query. First, note that by Theorem 2.1, Tree(G) has height O(log n), and thus the sets

X and Y can be implemented as bit-sets of size O(log n), which allows for O(1)-time

insertion and querying, and O(log n) time for computing the intersection.
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Step 3. Preprocessing the library graph G[V 1]. Given the library subgraph G[V 1] and one

copy of the data structure D for each local graph Gi of G[V 1], the preprocessing of the library

graph is achieved via the algorithm Process, which is presented in Algorithm 13. In high

level, Process initially builds the data structure D for each local graph Gi using D.Preprocess.

Afterwards, it iteratively uses D.Query to test whether there exists a local graph Gj and two

nodes u ∈ Vj ∩ Ve, v ∈ Vj ∩ Vx such that v is reachable from u in Gj . If so, the algorithm

iterates over all nodes x, y such that (x, u, αi) ∈ E and (v, y, αi) ∈ E, and uses a D.Query

operation to test whether y is reachable from x in their respective local graph Gr. If not, then

Process uses a D.Update operation to insert the edge x, y in Gr. Since this new edge might

affect the reachability relations among other nodes in Vr, the graph Gr is inserted in Pool for

further processing. See Algorithm 13 for a formal description.

The following two lemmas state the correctness and complexity of Process.

Lemma 5.13. At the end of Process, for every graph Gi = (Vi, Ei) and pair of nodes u, v ∈ Vi,

we have that v is reachable from u in G[V 1] iff D.Query returns True.

Proof. Given two nodes x, y and a path P : x⇝ y such that S ⊢ λ(P ), we denote by SH(P ) the

stack height of P , defined as the largest number of consecutive opening parenthesis in λ(P ). The

proof of the lemma then follows by induction on the stack height of the witness path P : u⇝ v.

In the base case we have SH(P ), and the correctness follows directly from the correctness of

D.Query, since λ(P ) = ϵ (i.e., P traverses only ϵ-labeled edges).

Now assume that the claim holds for all witness paths with stack height r, and we show that

it holds for witness paths of stack height r + 1. Indeed, let P : u ⇝ v be a witness path of

stack height SH(P ) = r + 1, and Gr = (Vr, Er) the graph such that u, v ∈ Vr. Then P can be

decomposed in the following way:

P = u⇝ x1 → y1 ⇝ w1 → z1 ⇝ x2 → y2 ⇝ w2 → z2 . . . zq ⇝ v

so that the following hold.

1. For each j there exists 1 ⩽ i ⩽ k such that xj ∈ Vc(αi), yj ∈ Ve(αi), wj ∈ Vx(αi) and

zj ∈ Vr(αi).
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2. Each path Pj : yj ⇝ wj has stack height SH(Pj) ⩽ r.

3. The paths u⇝ x1 and zq ⇝ v have stack height 0.

By the induction hypothesis, for each path Pj above, the algorithm will reach a state where

D.Query returns True in Line 9, and hence will use D.Update on (xj, zj) of the graph Gr in

Line 13. When the last such update operation takes place, we have that v is reachable from u in

the graph Gr augmented with the edges (xj, zj), and by the correctness of the operations of D in

Lemma 5.10, we have that D.Query returns True on query u, v.

The desired result follows.

Lemma 5.14. Let n =
∑

i ni, and k1 be the number of labels appearing in E ⊆ V 1 × V 1 × Σk

(i.e., k1 is the number of call sites in G[V 1]). Process requires O(n+ k1 · log n) time.

Proof. First, using Theorem 2.1 we obtain that the algorithm spends
∑

i O(ni) = O(n) time for

constructing all tree decompositions in Line 2. Similarly, by Lemma 5.12 the algorithm spends∑
iO(ni) = O(n) time for building the data structure D in Line 3.

We now turn our attention to the main loop in Line 6. We first bound the time taken for

processing the graphs inserted in Pool at the beginning of the loop. Since G is b-bounded

for b = O(1), for every graph Gj defined in Line 7 there will be O(b) = O(1) executions of

D.Query. Hence the total time taken for D.Query operations for the graphs initially in Pool

is
∑ℓ

i=1O(log ni) = O(n). For the time spent in D.Query and D.Update due to the loop in

Line 10, first note that every D./Query and D.Update require O(log n) time each. Since the

graph G is b-bounded, for constant b, we have |Vc(αi)|, |Vr(αi)| ⩽ b = O(1), hence summing

over all pairs of edges (x, u, αi), (v, y, αi) in Line 10, we obtain

k1∑
i=1

|Vc(αi)| · |Vr(αi)| ·O(log n) = O(k1 · b2 · log n) = O(k1 · log n)

Finally, we bound the time spent in the main loop of Line 6 due to graphs added in Pool in

Line 14. Since G is b-bounded, the condition in Line 12 can hold true O(b2) times for each graph.

Hence, there will be O(n) graphs added in Pool due to Line 14, and the analysis is similar to the

previous paragraph, yielding a O(k · log n) bound.
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The desired result follows.

Step 4. Library/Client analysis. We are ready to describe the library summarization for

Library/Client Dyck reachability. Let G = (V,E) be the program-valid graph representing

library and client code, and V 1, V 2 a partitioning of V to library and client nodes.

1. In the preprocessing phase, the algorithm Process is used to preprocess G[V 1]. Note that

since G is a program valid graph, so is G[V 1], hence Process can execute on G[V 1]. The

summaries created are in form of D.Update operations performed on edges (x, y).

2. In the querying phase, the set V 2 is revealed, and thus the whole of G. Hence now Process

processes G, without using D.Preprocess on the graphs Gi that correspond to library

methods, as they have already been processed in step 1. Note that the graphs Gi that

correspond to library methods are used for querying and updating.

It follows immediately from Lemma 5.13 that at the end of the second step, for every local graph

Gi = (Vi, Ei) of the client graph, for every pair of nodes u, v ∈ Vi, v is Dyck-reachable from u

in the program-valid graph G if and only if D.Query returns True on input u, v.

Now we turn our attention to complexity. Let n1 = |V 1| and n2 = |V 2|. By Lemma 5.14, the

time spent for the first step is, O(n1 + k1 · log n1), and the time spent for the second step is

O(n2 + k1 · log n1 + k2 · log n2).

Constant-time queries. Recall that our task is to support O(1)-time queries about the Dyck

reachability of pairs of nodes on the client subgraph G[V 2]. As Lemma 5.13 shows, after Process

has finished, each such query costs O(log n2) time. We use existing results for reachability

queries on constant-treewidth graphs [Chatterjee et al., 2016e, Theorem 6] which allow us to

reduce the query time to O(1), while spending O(n2) time in total to process all the graphs.

Theorem 5.5. Consider a Σk-labeled program-valid graph G = (V,E) of constant program-

valid treewidth, and the library and client subgraphs G1 = (V 1, E1) and G2 = (V 2, E2). For

i ∈ {1, 2} let ni = |V i| be the number of nodes, and ki be the number of call sites in each graph

Gi, with k1 + k2 = k. The algorithm DynamicDyck requires

1. O(n1 + k1 · log n1) time and O(n1) space in the preprocessing phase, and

2. O(n2 + k1 · log n1 + k2 · log n2) time and O(n1 + n2) space in the query phase,
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after which pair reachability queries are handled in O(1) time.

5.6 Experimental Results

In this section we report on experimental results obtained for the problems of (i) alias analysis

via points-to analysis on SPGs, and (ii) library/client data-dependence analysis.

5.6.1 Alias analysis

Implementation. We have implemented our algorithm BidirectedReach in C++ and evaluated its

performance in performing Dyck reachability on bidirected graphs. The algorithm is implemented

as presented in Section 5.3, together with the preprocessing step that handles the ϵ-labeled edges.

Besides common coding practices we have performed no engineering optimizations. We have

also implemented [Zhang et al., 2013, Algorithm 2], including the Fast-Doubly-Linked-List

(FDLL), which was previously shown to be very efficient in practice.

Experimental setup. In our experimental setup we used the DaCapo-2006-10-MR2 suit [Black-

burn, 2006], which contains 11 real-world benchmarks. We used the tool reported in [Yan et al.,

2011b] to extract the Symbolic Points-to Graphs (SPGs), which in turn uses Soot [Vallée-Rai

et al., 1999] to process input Java programs. Our approach is similar to the one reported in [Xu

et al., 2009a; Yan et al., 2011b; Zhang et al., 2013]. The outputs of the two compared methods

were verified to ensure validity of the results. No compiler optimizations were used. All experi-

ments were run on a Windows-based laptop with an Intel Core 2.40 GHz CPU and 16 GB of

memory.

SPGs and points-to analysis. For the sake of completeness, we outline the construction of

SPGs and the reachability relation they define. A more detailed exposition can be found in [Xu

et al., 2009a; Yan et al., 2011b; Zhang et al., 2013]. An SPG is a graph, the node set of which

consists of the following three subsets: (i) variable nodes V that represent variables in the

program, (ii) allocation nodes O that represent objects constructed with the new expression, and

(iii) symbolic nodes S that represent abstract heap objects. Similarly, there are three types of

edges, as follows, where Fields = {fi}1⩽i⩽k denotes the set of all fields of composite data types.
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1. Edges of the form V ×O × {ϵ} represent the objects that variables point to.

2. Edges of the form V × S × {ϵ} represent the abstract heap objects that variables point to.

3. Edges of the form (O ∪ S)× (O ∪ S)× Fields represent the fields of objects that other

objects point to.

We note that since we focus on context-insensitive points-to analysis, we have not included edges

that model calling context in the definition of the SPG. Additionally, only the forward edges

labeled with fi are defined explicitly, and the backwards edges labeled with f i are implicit, since

the SPG is treated as bidirected. Memory aliasing between two objects o1, o2 ∈ S ∪ O occurs

when there is a path o1 ⇝ o2, such that every opening field access fi is properly matched by a

closing field access f i. Hence the Dyck grammar is given by S → S S | fi S f i | ϵ. This allows

to infer the objects that variable nodes can point to via composite paths that go through many

field assignments. See Fig. 5.6 for a minimal example.

z.f = x
y = z.f

x z y

x z y
f f

Figure 5.6: A minimal program and its (bidirected) SPG. Circles and squares represent variable

nodes and object nodes, respectively. Only forward edges are shown.

Analysis of results. The running times of the compared algorithms are shown in Table 5.3. We

can see that the algorithm proposed here for Dyck reachability ion bidirected graphs is much

faster than the existing algorithm of [Zhang et al., 2013] in all benchmarks. The highest speedup

is achieved in benchmark luindex, where our algorithm is 13x times faster. We also see that all

times are overall small.

5.6.2 Library/Client data dependence analysis.

Implementation. We have implemented our algorithm DynamicDyck in Java and evaluated its

performance in performing Library/Client data-dependency analysis via Dyck reachability. Our

algorithm is built on top of Wala [Wal, 2003], and is implemented as presented in Section 5.5.

Besides common coding practices we have performed no engineering optimizations. We used
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Figure 5.7: Running time of our algorithm vs [Zhang et al., 2013] for context-insensitive field-

sensitive points-to analysis on SPGs of various benchmarks. The top row shows the total time

(in ms) taken for the slowest method to perform the analysis. The total time is taken as the sum

of the time spent in analyzing library and client code. The y-axis shows the percentage of time

that each method took as compared to the slowest method.

Benchmark Fields Nodes Edges Our Algorithm Existing Algorithm

antlr 172 13708 23547 0.428783 1.34152

bloat 316 43671 103361 17.7888 34.6012

chart 711 53500 91869 8.99378 34.9101

eclipse 439 34594 52011 3.62835 12.7697

fop 1064 101507 178338 42.5447 148.034

hsqldb 43 3048 4134 0.012899 0.073863

jython 338 56336 167040 40.239 55.3311

luindex 167 9931 14671 0.068013 0.636346

lusearch 200 12837 21010 0.163561 1.12788

pmd 357 31648 58025 2.21662 8.92306

xalan 41 2342 2979 0.006626 0.045144

Table 5.3: Comparison between our algorithm and the existing from [Zhang et al., 2013]. The

first three columns contain the number of fields (Dyck parenthesis), nodes and edges in the SPG

of each benchmark. The last two columns contain the running times, in seconds.
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the LibTW library [van Dijk et al., 2006a] for computing the tree decompositions of the input

graphs, under the greedy degree heuristic.

Experimental setup. We have used the tool of [Tang et al., 2015] for obtaining the data-

dependence graphs of Java programs. In turn, that tool uses Wala [Wal, 2003] to build the graphs,

and specifies the parts of the graph that correspond to library and client code. Java programs are

suitable for Library/Code analysis, since the ubiquitous presence of callback functions makes the

library and client code interdependent, so that the two sides cannot be analyzed in isolation. Our

algorithm was compared with the TAL reachability and CFL reachability approach, as already

implemented in [Tang et al., 2015]. The comparison was performed in terms of running time

and memory usage, first for the analysis of library code to produce the summaries, and then

for the analysis of the library summaries with the client code. The outputs of all three methods

were compared to ensure validity of the results. The measurements for our algorithm include the

time and memory used for computing the tree decompositions. All experiments were run on a

Windows-based laptop with an Intel Core 2.40 GHz CPU and 16 GB of memory.

Benchmarks. Our benchmark suit is similar to that of [Tang et al., 2015], consisting of 12 Java

programs from SPECjvm2008 [SPE, 2008], together with 4 randomly chosen programs from

GitHub [Git, 2008]. We note that as reported in [Tang et al., 2015], they are unable to handle the

benchmark serial from SPECjvm2008, due to out-of-memory issues when preprocessing the

library (recall that the space bound for TAL reachability is O(n4)). In contrast, our algorithm

handles serial easily, and is thus included in the experiments.

Analysis of results. Our experimental comparison is depicted in Fig. 5.8 and Table 5.4 for

running time and Fig. 5.9 and Table 5.5 for memory usage. We briefly discuss our findings.

Treewidth. First, we comment on the treewidth of the obtained data-dependence graphs, which is

reported on Table 5.4 and Table 5.5. Recall that our interest is not on the treewidth of the whole

data-dependence graph, but on the treewidth of its program-valid partitioning, which yields a

subgraph for each method of the input program. In each line of the tables we report the average

treewidth of each benchmark, averaging over the subgraphs of its program-valid partitioning.

We see that the treewidth is typically very small (i.e., in most cases it is 5 or 6) in both library

and client code. One exception is the client of mpegaudio, which has large treewidth. Observe

that even this corner case of large treewidth was easily handled by our algorithm.
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Time. Table 5.4 shows the time spent by each algorithm for analyzing library code and client code

separately. We first focus on total time, taken to be the sum of the times spent by each algorithm

in the library and client graph of each benchmark. We see that in every benchmark, our algorithm

significantly outperforms both TAL and CFL reachability, reaching a 10x-speedup compared to

TAL (in mpegaudio), and 5x-speedup compared to CFL reachability (in helloworld). Note that

the benchmark serial is missing from the figure, as TAL reachability runs out of memory. The

benchmark can be found on Table 5.4, where our algorithm achieves a 630x-speedup compared

to CFL reachability.

We now turn our attention to the trade-off between library preprocessing and client querying

times. Here, the advantage of TAL over CFL reachability is present for handling client code.

However, even for client code our algorithm is faster than TAL in all cases except one, and

reaches even a 30x-speedup over TAL (in sunflow). Finally, observe that in all cases, the total

running time of our algorithm on library and client code combined is much smaller than each of

the other methods on library code alone.

Memory. Fig. 5.9 and Table 5.5 compare the total memory used for analyzing library and client

code. We see that our algorithm significantly outperforms both TAL and CFL reachability in all

benchmarks. Again, TAL uses more memory that CFL in the preprocessing of libraries, but less

memory when analyzing client code. However, our algorithm uses even less memory than TAL in

all benchmarks. The best performance gain is achieved in serial, where TAL runs out of memory

after having consumed more than 12 GB. For the same benchmark, CFL reachability uses more

than 4.3 GB. In contrast, our algorithm uses only 130 MB, thus achieving a 33x-improvement

over CFL, and at least a 90x-improvement over TAL. We stress that for memory usage, these

are tremendous gains. Finally, observe that for each benchmark, the maximum memory used by

our algorithm for analyzing library and client code is smaller than the minimum memory used

between library and client, by each of the other two methods.

Improvement independent of callbacks. We note that in contrast to TAL reachability, the

improvements of our algorithm are not restricted to the presence of callbacks. Indeed, the

algorithms introduced here significantly outperform the CFL approach even in the presence of no

callbacks. This is evident from Table 5.4, which shows that our algorithm processes the library

graphs much faster than both CFL and TAL reachability.
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Figure 5.8: Time comparison of our algorithm with TAL and CFL for performing data dependence

analysis via CFL reachability. The top row shows the total time (in ms) taken for the slowest

method to perform the analysis. The total time is taken as the sum of the time spent in analyzing

library and client code. The y-axis shows the percentage of time that each method took as

compared to the slowest method. The benchmark serial is missing, as TAL mems-out.
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Figure 5.9: Space comparison of our algorithm with TAL and CFL for performing data depen-

dence analysis via CFL reachability. The top row shows the total memory usage (in MB) of

the most memory-demanding method to perform the analysis. The total space is taken as the

maximum of the space used in analyzing library and client code. The y-axis shows the percentage

of memory that each method used as compared to the most memory-demanding method. The

benchmark serial is missing, as TAL mems-out.
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Nodes TW Our Algorithm TAL CFL

Benchmark Lib. Cl. Lib. Cl. Lib. Cl. Lib. Cl. Li. Cl.

helloworld 16003 296 5 3 229 5 1044 31 855 578

check 16604 3347 5 4 228 54 1062 72 821 620

compiler 16190 536 5 3 248 11 995 57 876 572

sample 3941 28 4 1 86 1 258 14 368 113

crypto 20094 3216 5 5 273 66 1451 196 961 776

derby 23407 1106 6 3 389 22 1301 83 1003 1100

mpegaudio 28917 27576 5 24 204 177 5358 253 1864 1586

xml 71474 2312 5 3 489 115 5492 100 1891 2570

mushroom 3858 7 4 1 86 1 230 14 349 124

btree 6710 1103 4 4 144 34 583 111 571 197

startup 19312 621 5 3 279 17 1651 110 1087 946

sunflow 15615 85 5 2 217 1 1073 31 811 549

compress 16157 1483 5 3 240 23 1119 112 783 999

parser 7856 112 4 1 172 3 443 21 572 241

scimark 16270 2027 5 5 220 34 1004 70 805 595

serial 69999 468 8 3 440 9 MEM-OUT MEM-OUT 117147 165958

Table 5.4: Running time of our algorithm vs the TAL and CFL approach for data-dependence

analysis with library summarization. Times are in milliseconds. MEM-OUT indicates that the

algorithm run out of memory. The number of nodes and treewidth reflects the average case

among all methods in each benchmark.
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Nodes TW Our Algorithm TAL CFL

Benchmark Lib. Cl. Lib. Cl. Lib. Cl. Lib. Cl. Li. Cl.

helloworld 16003 296 5 3 31 27 321 44 104 126

check 16604 3347 5 4 34 31 336 89 132 184

compiler 16190 536 5 3 31 28 329 44 108 137

sample 3941 28 4 1 19 16 232 59 59 64

crypto 20094 3216 5 5 45 45 261 61 127 188

derby 23407 1106 6 3 46 41 600 88 204 265

mpegaudio 28917 27576 5 24 96 96 516 219 262 397

xml 71474 2312 5 3 108 108 463 153 373 480

mushroom 3858 7 4 1 19 16 230 59 58 58

btree 6710 1103 4 4 22 19 308 65 72 89

startup 19312 621 5 3 66 66 345 92 178 230

sunflow 15615 85 5 2 30 27 315 43 102 124

compress 16157 1483 5 3 32 29 338 50 105 131

parser 7856 112 4 1 22 19 320 64 73 83

scimark 16270 2027 5 5 32 29 134 49 106 140

serial 69999 468 8 3 130 130 MEM-OUT MEM-OUT 3964 4314

Table 5.5: Memory usage of our algorithm vs the TAL and CFL approach for data-dependence

analysis with library summarization. Memory usage is in Megabytes. MEM-OUT indicates that

the algorithm run out of memory. The number of nodes and treewidth reflects the average case

among all methods in each benchmark.
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6 Quantitative Interprocedural Analysis

6.1 Introduction

In this chapter we present the Quantitative Interprocedural Analysis framework. We illustrate how

several quantitative problems related to static analysis of recursive programs can be instantiated

in this framework, and present some case studies to this direction.

Interprocedural quantitative analysis. Quantitative objectives such as mean-payoff and ratio

objectives provide the appropriate framework to express several important system properties

such as resource consumption and timeliness. While finite-state systems with mean-payoff

objectives have been studied in the literature, the static analysis of RSMs with mean-payoff and

ratio objectives has largely been ignored. An interprocedural analysis is precise if it provides the

“meet-over-all-valid-paths” solution (a path is valid if it respects the fact that when a procedure

finishes it returns to the site of the most recent call). In the quantitative setting, the problem

corresponds to finding the maximal value over all valid paths and to produce a witness (symbolic)

path for that value. In this section we consider precise interprocedural quantitative analysis for

RSMs with mean-payoff and ratio objectives.

Our contributions. We present a flexible and general modeling framework for quantitative

analysis and show how it can be used to reason about quantitative properties of programs and

about potential optimizations in the program. We present an efficient polynomial-time algorithm

for precise interprocedural quantitative analysis, which is implemented as a tool. We demonstrate

the efficiency of the algorithm with three case studies, and show that our approach scales to
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programs with thousands of methods.

1. (Theoretical modeling). We show that RSMs with mean-payoff and ratio objectives provide

a robust framework that naturally captures a wide variety of static program analysis

optimization and reasoning problems.

(a) (Detecting container usage). An important problem for performance analysis is

detection of runtime bloat that significantly degrades the performance and scalability

of programs [Mitchell and Sevitsky, 2007; Xu and Rountev, 2010]. A common

source of bloat is inefficient use of containers [Xu and Rountev, 2010]. We show

that the problem of detecting usage of containers can be modeled as RSMs with ratio

objectives. A good use of a container corresponds to a good event and no use of the

container is a bad event, and a misuse is represented as a low ratio of good vs bad

events. Hence the container usage problem is naturally modeled as ratio analysis

of RSMs. While the problem of detecting container usage was already considered

in [Xu and Rountev, 2010], our different approach has the following benefits (see

Section 6.5.2 for a comparison). First, our approach can handle recursion ([Xu

and Rountev, 2010] does not handle recursion). Second, our approach is sound,

and does not yield false positives. Third, the approach of [Xu and Rountev, 2010]

ignored DELETE operations and we are able to take into consideration both ADD and

DELETE operations (thus provide a more refined analysis). Moreover, our algorithmic

approach for analysis of RSMs is polynomial, whereas the algorithmic approach

of [Xu and Rountev, 2010] in the worst case can be exponential.

(b) (Static profiling of programs). We use our framework to model a conceptually new

way for static profiling of programs for performance analysis. A line in the code (or a

code segment) is referred as hot if there exists a run of the program where the line of

code is frequently executed. For example, a function is referred as hot if there exists

a run of the program where the function is frequently invoked, i.e., the frequency of

calls to the function among all function calls is at least a given threshold. Similarly, a

collection of functions is referred as hot if there exists a run of the program where

the collection is frequently invoked (note that a collection of methods might be

frequently invoked even if each individual method is not). Again this problem is

naturally modeled as ratio problem for RSMs, and our approach statically detects
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methods that are more frequently invoked. Optimization of frequently executed code

would naturally lead to performance improvements and reasoning about hot spots in

the code can assist the complier to apply optimization such as function inlining and

loop unrolling (see Sections 6.3.2 and 6.3.3 for more details).

(c) (Other applications). We show the generality of our framework by demonstrating that

it is suitable for the theoretical modeling of diverse applications such as interproce-

dural worst-case execution time analysis, evaluating speedup in parallel computation,

and interprocedural average energy consumption analysis.

2. (Algorithmic analysis). The quantitative analysis of RSMs with mean-payoff objectives

can be achieved in polynomial time by a reduction to pushdown systems with mean-

payoff objectives (which can be solved in polynomial time [Chatterjee and Velner, 2012]).

However, the resulting algorithm in the worst case has time complexity that is a polynomial

of degree thirteen and space complexity that is a polynomial of degree six (which is

prohibitive in practice). We exploit the special theoretical properties of RSMs in order to

improve the theoretical upper bound and get an algorithm that in the worst case runs in

cubic time and with quadratic space complexity. In addition, we exploit the properties of

real-world programs and introduce optimizations that give a practical algorithm that is

much faster than the theoretical upper bound when the relevant parameters (the total number

of entry, exit, call, and returns nodes) are small, which is typical in most applications.

Finally we present a linear-time reduction of the quantitative analysis problem with ratio

objectives to mean-payoff objectives.

3. (Tool and experimental results). We have implemented our algorithm and developed a tool

in the Java Soot framework [Vallée-Rai et al., 1999]. We show through two case studies

that our approach scales to relatively large programs from well-known benchmarks. The

details of the case studies are as follows:

(a) (Detecting container usage). Our experimental results show that our tool scales to

relatively large benchmarks (DaCapo 2009 [Blackburn et al., 2006]), and discovers

relevant and useful information that can be used to optimize performance of the

programs. Our tool could analyze all containers in several benchmarks. Our sound

approach allows us to avoid false reports and our simple mathematical modelling
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even allows us to report misuses that were not reported in other works.

(b) (Static profiling of programs). We run an analysis to detect (i) hot methods and

(ii) hot collections of methods for various thresholds. Our experimental results on

the benchmarks report only a small fraction of the functions as hot for high threshold

values, and thus give useful information about potential functions to be optimized for

performance gain. In addition we perform a dynamic profiling and mark the top 5%

of the most frequently invoked functions as hot. Our experiments show a significant

correlation between the results of the static and dynamic analysis. In addition, we

show that the sensitivity and specificity of the static classification can be controlled

by considering different thresholds, where lower thresholds increase the sensitivity

and higher thresholds increase the specificity. We investigate the trade-off curve

(ROC curve) and demonstrate the prediction power of our approach.

Thus we show that several conceptually different problems related to program optimiza-

tions are naturally modeled in our framework, and demonstrate that we present a flexible

and generic framework for quantitative analysis of programs. Moreover, our case studies

show that our tool scales to benchmarks from real-world programs.

Related work. We discuss here some related work on the two experimental applications of our

approach, namely the detection of container bloat and the static profiling of programs.

Detecting inefficiently-used containers. Bloat detection and detecting inefficiently used containers

have been identified in many previous works as a major reason for program inefficiency. Dynamic

approaches for the problem were studied in many works such as [Mitchell et al., 2006; Mitchell

and Sevitsky, 2007; Dufour et al., 2008; Novark et al., 2009; Shacham et al., 2009; Shankar

et al., 2008; Xu et al., 2010b]. A manual approach was proposed in [Mitchell et al., 2006]

that uses structuring behavior using flow information, and a way to find data structures that

consume excessive memory was presented in [Mitchell and Sevitsky, 2007]. Dufour et al. [Dufour

et al., 2008] uses escape analysis to find excessive use of temporary data structures, and there

are many dynamic techniques to identify bloats [Novark et al., 2009; Shacham et al., 2009;

Shankar et al., 2008; Xu et al., 2009b; Xu et al., 2010b; Xu and Rountev, 2008]. A static

approach to analyze the problem was first considered in [Xu and Rountev, 2010], which is the

most closely related work to our case study. The work of [Xu and Rountev, 2010] provides
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an excellent exposition of the problem with several practical motivations. A big part of the

contribution of [Xu and Rountev, 2010] is an automated annotation for the functionality of

the containers operation. The main algorithmic approach of [Xu and Rountev, 2010] is to use

CFL-reachability (context-free reachability) to identify nesting loop depths and then use this

information for detecting misuse of containers.

Static profiling of programs. Static and dynamic profiling of programs is in the heart of program

optimization. Static profiling is typically used in branch predictions where the goal is to assign

probabilities to branches, and typically require some prior knowledge on the probability of inputs.

Static profiling of programs for branch predictions has been considered in [Ball and Larus, 1993;

Wu and Larus, 1994; Hennessy and Patterson, 2006; Wagner et al., 1994]. Dynamic profiling

has also been used in many applications related to performance optimizations, see [Wikipedia,

2015] for a collection of dynamic profiling tools. Two main drawbacks of dynamic profiling

are that it requires inputs, and it cannot be used for compiler optimizations. We use static

profiling to determine if a function is invoked frequently along some run of the program, and

do not require any prior knowledge on inputs. The techniques used in [Ball and Larus, 1993;

Wu and Larus, 1994; Wagner et al., 1994] involve solving linear equations with sparse matrix

solvers, whereas our solution method is different (i.e., based on quantitative analysis of RSMs).

Organization. The rest of this chapter is organized as follows.

1. In Section 6.2 we present some additional definitions on RSMs and phrase the quantitative

interprocedural analysis problem (QIA).

2. In Section 6.3 we outline several program analysis problems that can be cast in the QIA

framework.

3. In Section 6.4 we present a main algorithm for solving the QIA problem, as well as some

improved versions.

4. In Section 6.5 we present three experimental studies, regarding (i) potential misuses of

containers that might lead to container bloat (ii) static profiling to predict frequently used

methods, and (iii) static profiling to predict frequently used collections of methods.
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6.2 Definitions

We consider as input an RSM RSM = {A1, A2, . . . , Ak}, where Ai consists of ni nodes and bi

boxes, and n =
∑

i ni and b =
∑

i bi. Recall our definition of an execution path from Section 2.4

as a sequence of configurations π = (C1, . . . , Cℓ). For notational convenience, in this section we

frequently represent an execution path as an initial configuration followed by a sequence of RSM

transitions π = ⟨C1t1 . . . tℓ−1⟩. We will use the toy program of Fig. 6.1 as a running example

for this section. Our focus is on two related quantitative interprocedural problems: (i) the ratio

analysis problem, and (ii) the mean-payoff analysis problem.

The ratio analysis problem. In the ratio analysis problem, every transition of a RSM has a label

from the set {good , bad , neutral}. Intuitively, desirable events are labeled as good , undesirable

events are labeled as bad , and other events are labeled as neutral . The ratio analysis problem,

given an RSM RSM, a labeling of the events, and a threshold λ > 0, asks to determine whether

there exists an execution path where the ratio of the sum of the weights of good events over

the sum of the weights of the bad events is greater than the threshold λ. Formally, we consider

a positive integer-weight function wt, that assigns a positive integer-valued weight to every

transition of the RSM. For good and bad events, the weight denotes how good or how bad the

respective event is. For a finite execution path π we denote by good(wt(π)) (resp., bad(wt(π)))

the sum of weights of the good (resp., bad) events in π. In particular, for the weight function

wt that assigns weight 1 to every transition, we have that good(wt(π)) (resp. bad(wt(π)))

represents the number of good (resp. bad) events. We denote Rat(wt(π)) = good(wt(π))
max{1,bad(wt(π))}

the ratio of the sum of weights of good and bad events in π (note that in denominator we

have max{1, bad(wt(π))} to remove the pathological case of division by zero). For an infinite

execution path π we denote by

LimRat(wt(π))=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim inf
i→∞

Rat(wt(π[1, i])) if π has infinitely many

good or bad events;

0 otherwise;

Informally, this represents the ratio as the number of relevant (good/bad) events goes to infinity.

Our analysis focuses on execution paths with unbounded number of relevant events, and infinitely

many events provide an elegant abstraction for unboundedness. Hence, we investigate the

following problem:
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1 vo id main ( ) {

2 w h i l e ( x ) {

3 i f ( y > 0 )

4 foo ( x ) ;

5 e l s e

6 z = 7 ;

7 }

8 z ++;

9 r e t u r n ;

10 }

(a) main

internal entry exit call return

m:entry while(x)

z++

if(y>0)

z=7m:exit

m:foo ret m:call foo

(b) main CSM

1 i n t foo ( i n t x ) {

2 i f ( x > 1 )

3 foo ( x − 1 ) ;

4 x ++;

5 r e t u r n x ;

6 }

(c) foo

f:entry if(x>1) f:call foo

f:foo ret x++ f:exit

(d) foo CSM

Figure 6.1: An RSM that consists of two CSMs which represent the functions main() and foo().
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Given a RSM with labeling of good, bad, and neutral events, a positive integer

weight function wt, and a threshold λ ∈ Q such that λ > 0, determine whether there

exists an infinite execution path π such that LimRat(wt(π)) > λ.

Remark 6.1. Our approach can be extended to reason about finite execution paths by a adding an

auxiliary transition, labeled as a neutral event, from the final state of the program to its initial

state (also see Section 6.3.4).

Mean-payoff analysis problem. In the mean-payoff analysis problem we consider a RSM with

a rational-valued weight function wt. For a finite execution path π in a RSM we denote by

wt(π) the total weight of the path (i.e., the sum of the weights of the transitions in π), and by

Avg(wt(π)) = wt(π)
|π| the average of the weights, where |π| denotes the length of π. For an infinite

execution path π, we denote LimAvg(wt(π)) = lim infi→∞ Avg(wt(π[1, i])). The mean-payoff

analysis problem asks whether there exists an infinite path π such that LimAvg(wt(π)) > 0.

In Section 6.4 we show how the ratio analysis problem of RSMs reduces to the mean-payoff

analysis problem of RSMs.

Assigning context-dependent and path-dependent weights. In our model the numerical

weights are assigned to every transition of a RSM. First, note that since we consider weight

functions as an input and allow all weight functions, the weights could be assigned in a dependent

way. Second, in general, we can have an RSM, and a finite-state deterministic automaton (such

as a deterministic mean-payoff automaton [Chatterjee et al., 2010a]) that assigns weights. The

deterministic automaton can assign weights depending on different contexts (or call strings) of

invocations, or even independent of the context but dependent on the past few transitions (i.e.,

path-dependent), i.e., the automaton has the stack alphabet and transition of the RSM as input

alphabet and assigns weights depending on the current state of the automaton and an input letter.

We call such a weight function regular weight function. Given a regular weight function specified

by an automaton A and an RSM we can obtain a RSM (that represents the path-dependent

weights) by taking their synchronous product, and hence we will focus on RSMs for algorithmic

analysis. The regular weight function can also be an abstraction of the real weight function,

e.g., the regular weight function is an over-approximation if the weights that it assigns to the

good (resp. bad) events are higher (resp. lower) than the real weights. If the original weight

function is bounded, then an over-approximation with a regular weight function can be obtained

(which can be refined to be more precise by allowing more states in the automaton of the regular
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weight function). Note that the new RSM which is obtained from an RSM and automaton A has

a blowup in the number of states of A, and thus there is a tradeoff between the precision of A

and the size of the new RSM constructed.

6.3 Applications: Theoretical Modeling

In this section we show that many diverse problems for static analysis can be reduced to ratio

analysis of RSMs. We will present experimental results (in Section 6.5) for the problems

described in Section 6.3.1 and Section 6.3.2.

6.3.1 Container Analysis

The inefficient use of containers is the cause of many performance issues in Java. An excellent

exposition of the problem with several practical motivations is presented in [Xu and Rountev,

2010]. The importance of accurate identification of misuse of containers that minimizes (and

ideally eliminates) the number of false warnings was emphasized in [Xu and Rountev, 2010] and

much effort was spent to avoid false warnings for real-world programs. We show that the ratio

analysis for RSMs provides a mathematically sound approach for the identification of inefficient

use of containers.

Two misuses. We aim to capture two common misuses of containers following the definitions

in [Xu and Rountev, 2010]. The first inefficient use is an underutilized container that always

holds very few number of elements. The cause of inefficiency is two-fold: (i) a container is

typically created with a default number of slots, and much more memory is allocated than needed;

and (ii) the functionality that is associated with the container is typically not specialized to the

case that it has only very few elements. The second inefficiency is caused by overpopulated

containers that are looked up rarely, though potentially they can have many elements. This causes

a memory waste and performance penalty for every lookup. Thus we consider the following two

cases of misuse:

1. A container is underutilized if there exists a constant bound on the number of elements

that it holds for all runs of the program.
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2. For a threshold λ, a container is overpopulated if for all runs of the program the ratio of

GET vs ADD operations is less than λ.

We note that our approach is demand-driven (where users can specify to check the misuse of a

specific container).

Modeling. The modeling of programs as RSMs is standard. We describe how the weight function

and the ratio analysis problem can model the problem of detecting misuses. We abstract the

different container operations into GET, ADD, and DELETE operations. For this purpose we

require the user to annotate the relevant class methods by GET, ADD, or DELETE; and by a

weight function that corresponds to the number of GET, ADD, or DELETE operations that the

method does (typically this number is 1). For example, in the class HashSet, the add method

is annotated by ADD, the contains method is annotated by GET and the remove operation is

annotated by DELETE. The clear operation which removes all elements from the set is annotated

by DELETE but with a large weight (if clear appears in a loop, it dominates the add operations

of the loop). We note that the annotation can be automated with the approach that is described

in [Xu and Rountev, 2010].

1. When detecting underutilized containers we define ADD operations as good events and

DELETE operations as bad events, and check for threshold 1. Note that the relevant

threshold is 1: if the (long-run) ratio of ADD vs DELETE is not greater than 1, then the

total number of elements in the container is bounded by a constant. We remark that we

assume that a DELETE operation always succeeds, as our goal is to detect containers that

may be underutilized. Additionally, in some popular data-structures, DELETEoperations

always succeed as long as the data structure is not empty. This is the case, e.g., with the

pop operation in stacks and queues.

2. When detecting overpopulated containers we define GET operations as good events and

ADD operations as bad events, and check for the given threshold λ.

In addition, since we wish to analyze heap objects, the allocation of the container is a bad event

with a large weight (i.e., similar effect as of clear); see Example 6.1. The container is misused iff

the answer to the ratio analysis problem is NO (note that in the problem description for container

analysis we have quantification over all execution paths and for ratio analysis of RSMs the

quantification is existential). The detection is demand-driven and done for an allocated container
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1 vo id qux ( Queue q , i n t x ) {

2 q . push ( ( x , x / 2 ) ) ;

3 i f ( x > 0 ) {

4 qux ( q , x / 2 ) ;

5 }

6 }

7

8 Queue b a r ( i n t x ) {

9 r e t u r n new Queue ( x∗x ) ;

10 }

12 vo id foo ( i n t x ) {

13 i f ( x % 2){

14 Queue q1 = b a r ( x ) ;

15 qux ( q1 , x ) ;

16 }

17 e l s e

18 {

19 f o r ( i n t y = 0 ; y < x ; y++ ) {

20 Queue q2 = new Queue ( y ) ;

21 q2 . push ( ( y , x ) ) ;

22 f o r ( i n t z = 0 ; z < y ; z++ )

23 {

24 q2 . push ( ( z , y ) ) ;

25 . . .

26 q2 . pop ( ) ;

27 }

28 }

29 }

30 }

Figure 6.2: An example for underutilized container analysis.

c.

Details of modeling. Intuitively, a transition in the call graph is good if it invokes a functionality

that is annotated by a good operation (i.e., ADD operation for the underutilized analysis and

GET operation for the overpopulated analysis) and the object that invokes the operation points

to container c, and it is bad if the invoked operation is annotated as bad. Formally, for a

given allocated container c: If at a certain line a variable t that may point to c invokes a good

functionality, then we denote the transition as good. If t must point to c and invokes a bad

functionality, then we denote it as a bad events. All other transitions are neutral. Note that our

modeling is conservative. The misuse is detected for the container c if all runs of the program

have a ratio of good vs bad events that is below the threshold (in other words, the container is

not misused if there exists an execution path where the ratio of good vs bad events is above the

threshold, and this exactly corresponds to the ratio analysis of RSMs).

Example 6.1 (Underutilized container analysis). We illustrate some important aspects of
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the container analysis problem with an example. Consider the program shown in Fig. 6.2.

We consider the containers that are allocated in line 9 and in line 20 and analyze them for

underutilization. There exist runs that go through line 14 and properly use the container that is

allocated in line 9, since the qux method can add unbounded number of elements to the queue

(due to its recursive call). However, the container in line 20 is underutilized, since in every run the

number of elements is bounded by 2. However, note that if the DELETE operation is not handled,

then the container is reported as properly used. We note that since we assign large weights to the

allocation of the container, this prevents the analysis from reporting that q2 properly uses the

container that is allocated in line 20. In summary, the example illustrates the following important

features: (1) the proper usage of the container should be tested also outside of its allocation site
1 (2) sometimes the proper usage of a container is due to recursion; and (3) handling DELETE

operations appropriately increases the precision of analysis. While these important features are

illustrated with the toy example, such behaviors were also manifested in the programs of the

benchmarks (see Section 6.5.2 for details).

6.3.2 Static Profiling of Methods

Finding the most frequently executed lines in the code can help the programmer to identify the

critical parts of the program and focus on the optimization of these parts. It can also assist the

compiler (e.g., a C compiler) to decide whether it should apply certain optimizations such as

function inlining (replacing a function call by the body of the called function) and loop unrolling

(re-write the loop as a repeated sequence of similar independent statements). These optimizations

can reduce the running time of the program, but on the other hand, they increase the size of

the (binary) code. Hence, knowing whether the function or loop is hot (frequently invoked) is

important when considering the time vs. code size tradeoff. In this subsection we present the

model for profiling the frequency of function calls (which allows finding hot functions), and we

note that our profiling technique is generic and can be scaled to detect other hot spots in the code

(e.g., hot loops).

Problem description. Given a program with several functions, a function f is called λ-hot, if

1E.g., a Queue is allocated in bar function but the proper usage is done outside the allocation site, namely, after

the termination of bar.
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there exists an (interprocedural) execution path (of unbounded length) of the program where the

frequency of calls to f (among all function calls in the execution path) is at least λ. Formally, for

an execution path, given a prefix of length i, let #f(i) denote the number of calls to f and #c(i)

denote the number of function calls in the prefix of length i. The function is λ-hot if there exists

an execution path such that lim infi→∞
#f(i)
#c(i)

> λ.

Modeling. The modeling of programs as RSMs is straightforward. We describe the labeling

of events and weight function in RSMs to determine if a function f is λ-hot. First we label

call-transitions to f as good events and assign weight 1; then we label all other call-transitions as

bad events and assign them weight 1. To ensure that the number of calls to f also appear in the

denominator (in the total number of calls) we label transitions from the entry node of f as bad

events with weight 1. The function f is λ-hot iff the answer to the ratio analysis problem with

threshold λ is YES.

6.3.3 Static Profiling of Libraries

Modern software comprises thousands of methods and classes, which are usually grouped into

libraries. In several programming languages (e.g. C++), the developer decides whether libraries

will be statically or dynamically linked. While there are several factors that affect this choice

(e.g., compatibility issues, licensing restrictions etc.), one consideration is that of performance,

as statically linked libraries allow for speedups such as the following.

1. Interprocedural optimizations coming from the compiler by performing interprocedural

analysis on the target program together with the statically linked libraries.

2. Avoiding runtime overheads imposed by invocations of methods that lie in dynamically

linked libraries.

3. Cache-level optimizations, by allowing the compiler to arrange statically linked libraries

in such order to try to minimize cache misses.

On the other hand, infrequently used libraries might better be dynamically linked, (i) to keep the

interprocedural optimizations fast, (ii) keep the size of the executable small, and (iii) have fewer



162

cache misses. Estimating statically the frequently used libraries can assist static vs dynamic

linking.

Problem description. Similarly as in Section 6.3.2, given a program that links with several

libraries, a library ℓ is called λ-hot, if there exists an (interprocedural) execution path (of

unbounded length) of the program where the frequency of calls to methods of ℓ (among all

method calls to libraries in the execution path) is at least λ. Formally, for an execution path,

given a prefix of length i, let #ℓ(i) denote the number of calls to methods of the library ℓ and

#t(i) denote the number of function calls to library methods in the prefix of length i. The library

ℓ is λ-hot if there exists an execution path such that lim infi→∞
#ℓ(i)
#t(i)

> λ.

Modeling. The modeling is similar to that of Section 6.3.2. The program is modeled as an RSM.

Call transitions to methods of the library ℓ are labeled as good events, whereas call transitions

to methods of other libraries are labeled as bad events. To ensure that the number of calls to

methods of ℓ also appear in the denominator (in the total number of library calls) we label

transitions from the entry node of every method of ℓ as bad events. All labeled events receive

weight 1. The library ℓ is λ-hot iff the answer to the ratio analysis problem with threshold λ is

YES.

6.3.4 Estimating Worst-case Execution Time

The approach of [Cerný et al., 2013] for estimating worst-case execution time (WCET) is also

naturally captured by ratio analysis. While the intraprocedural problem was considered in [Cerný

et al., 2013], our approach allows the more general interprocedural analysis. In this approach,

we consider (as in [Cerný et al., 2013]) that each program statement is assigned a cost that

corresponds to its running time (e.g., number of CPU cycles).

Modeling. The modeling of WCET analysis of the program is as follows: We add to the RSM of

the program a transition from every terminal node to the initial node, and every such transition is

a bad event with weight 1. All the other transitions are good events and their weight is their cost

(running time). The WCET of the program is at most N cycles if and only if the answer to the

ratio analysis problem with threshold N is NO.
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g:entry g:exit

f:entry

f:call1 f:retn1

f:call1 f:retn2

f:exit

5

1

1
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4
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Figure 6.3: Illustration of the Quantitative Interprocedural Analysis problem for capturing the

interprocedural WCET. Positive weights indicate good transitions, whereas negative weights

indicate bad transitions.

Example 6.2 (Worst-case execution time.). Consider the interprocedural WCET problem

shown in Fig. 6.3, where we have a program that consists of two methods f and g. The main

method is f, which has two calls to method g. After having executed some intraprocedural

analysis locally in each method, we have obtain the respective WCET bounds between various

locations in each method, shown with positive integers. In order to reason about the total WCET,

a quantitative interprocedural analysis needs to account for execution paths that involve method

invocations and returns. Note that a precise interprocedural analysis will return that the WCET

is bounded by 10 time units. In contrast, if we apply only intraprocedural analysis and connect

(i) every method call to the entry of the invoked method, and (ii) every method return to the exit

of the invoked method, then the tightest WCET bound we obtain is 14 time units, i.e., much

looser than the bound we obtain from the precise interprocedural analysis.

6.3.5 Evaluating The Speedup in a Parallel Computation

The speed of a parallel computation is limited by the time needed for the sequential fraction of

the program. For example, if a program runs for 10 minutes on a single processor core, and

a certain part of the program that takes 2 minutes to execute cannot be parallelized, then the

minimum execution time cannot be less than two minutes (regardless of how many processors are
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devoted to a parallelized execution of this program). Hence, the speedup is at most 5. Amdahl’s

law [Amdahl, 1967] states that the theoretical speedup that can be obtained by executing a given

algorithm on a system capable of executing n threads of execution is at most 1
B+ 1

n
(1−B)

, where

B is the fraction of the algorithm that is strictly serial. Our ratio analysis technique can be used

to (conservatively) estimate the value of B and thus to evaluate the outcome of Amdahl’s law.

Modeling. As in Section 6.3.4, we consider that the cost of every program statement is given,

and we add to the RSM of the program a transition from every terminal node to the initial

node, this time as a neutral event with weight 0. All the transitions of the code that cannot be

parallelized are defined as good events, and the other transitions are defined as bad events. We

denote by P the fraction of the code that can be parallelized and by S the fraction of the code

that is strictly serial. The value of S
P

is at most λ if and only if the answer to the ratio analysis

problem with threshold λ is NO. Hence B is bounded by 1
1+ 1

λ

for which the answer to the ratio

analysis problem with threshold λ is NO.

6.3.6 Average Energy Consumption

In the case of many consumer electronics devices, especially mobile phones, battery capacity is

severely restricted due to constraints on size and weight of the device. This implies that managing

energy well is paramount in such devices. Since most mobile applications are non-terminating

(e.g., a web browser), the most important metric for measuring energy consumption is the average

memory consumption per time unit [Carroll and Heiser, 2010], e.g., watts per second.

Modeling. We consider that the running time and energy consumption of each statement in the

application code is given (or is approximated). In our modeling we split each transition in the

RSM into two consecutive transitions, the first is a good event and the next is a bad event. The

good event is assigned with a weight that corresponds to the energy consumption of the program

statement and the bad event is assigned with a weight that corresponds to the running time of

the statement. The average energy consumption of the application is at most λ if and only if the

answer to the ratio analysis problem is NO.
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6.4 An Algorithm for the Quantitative Interprocedural Anal-

ysis Problem

The mean-payoff analysis problem for RSMs can be solved in polynomial time, a result which

can be derived from [Chatterjee and Velner, 2012]. In this section we present three results. First,

we present an algorithm that significantly improves the current theoretical bound for the problem

for RSMs. Second, we present an efficient algorithm that in most practical cases is much faster

as compared to the theoretical upper bound. Finally, we present a linear reduction of the ratio

analysis problem to the mean-payoff analysis problem for RSMs.

6.4.1 An Improved Algorithm for Mean-payoff Analysis

In this section we first discuss the basic polynomial-time algorithm for mean-payoff analysis

of RSMs that can be obtained from the results on pushdown systems shown in [Chatterjee and

Velner, 2012].

Results of [Chatterjee and Velner, 2012] and reduction. The results of [Chatterjee and Velner,

2012] show that pushdown systems with mean-payoff objectives can be solved in polynomial

time. Given a pushdown system with state space Q and stack alphabet Γ, the polynomial-time

algorithm of [Chatterjee and Velner, 2012] can be described as follows. The algorithm is iterative,

and in each iteration it constructs a finite graph of size O(|Q| · |Γ|2) and runs a Bellman-Ford

style algorithm on the finite graph from each node. The Bellman-Ford algorithm on the finite

graph from all nodes in each iteration requires O(|Q|3 · |Γ|6) time and O(|Q|2 · |Γ|4) space. The

number of iterations required is O(|Q|2 · |Γ|2). Thus the time and space requirement of the

algorithm are O(|Q|5 · |Γ|8) and O(|Q|2 · |Γ|4), respectively. An RSM can be interpreted as a

pushdown system where N corresponds to Q and Returns corresponds to Γ.

Theorem 6.1 (Basic algorithm [Chatterjee and Velner, 2012]). The mean-payoff analysis

problem for RSMs can be solved in O(n5 · b8) time and O(n2 · b4) space, respectively.

Improved algorithm. We will present an improved polynomial-time algorithm for the mean-

payoff analysis of RSMs. The improvement relies on the following properties of RSMs:
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1. The transitions of a CSM are independent of the stack of a configuration, while in pushdown

systems the transitions can depend on the top symbol of the stack. This enables to reduce

the size of the finite graphs to be considered in every iteration.

2. Every call node has only one corresponding return node. Therefore, if a CSM A1 invokes

a CSM A2, then the behavior of A1 after the termination of A2 is independent of A2. This

enables us to reduce the number of iterations to O(b).

To present the improved algorithm and its correctness formally, we need a refined analysis and

extensions of the results of [Chatterjee and Velner, 2012]. We first describe a key aspect and

present an overview of the solution.

Remark 6.2. (Infinite-height lattice). Our algorithm will be an iterative algorithm till some

fixpoint is reached. However, for interprocedural analysis with finite-height lattices, fixpoints are

guaranteed to exist. Unfortunately in our case for mean-payoff objectives, it is an infinite-height

lattice. Thus a fixpoint is not guaranteed. For this reason the analysis for mean-payoff objectives

is more involved, and this is even in the case of finite graphs. For example, for reachability

objectives in finite graphs linear-time algorithms exist, whereas for finite graphs with mean-

payoff objectives the best-known algorithms (for over three decades) are quadratic [Karp, 1978].

This difference is even more pronounced in our case of recursive graphs.

Solution overview. In finite graphs the solution for the mean-payoff analysis is to check whether

the graph has a cycle C such that the sum of weights of C is positive. If such a cycle exists, then

a lasso execution path that leads to the cycle and then follows the cyclic execution path forever

has positive mean-payoff value. For RSMs we show that it is enough to find either a loop in the

program such that the sum of weights of the loop is positive or a sequence of calls and returns

with positive total weight such that the last invoked CSM is the same as the first invoked CSM.

For this purpose we compute a summary function that finds the maximum weight (according

to the sum of weights) execution path between every two statements of a method (i.e., between

every two nodes of a CSM). The computation is an extension of the Bellman-Ford algorithm to

RSMs. We show that it is enough to compute a summary function for RSMs with a stack height

that is bounded by some constant, and then all that is left is to mark pairs of nodes such that the

weight of a maximal weight execution path between them is unbounded. In finite graphs the

maximum weight between two nodes is unbounded only if the graph has a cycle with positive

sum of weights (i.e., an execution path with positive total weight that can be pumped). For
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RSMs it is also possible to pump special types of acyclic execution paths. We first characterize

these pumpable execution paths (up to Lemma 6.2). We then show how to compute a bounded

summary function (Lemma 6.3 and the paragraph that follows it and Example 6.5). Finally we

show how to use the summary function to solve the mean-payoff analysis problem. We start with

the basic notions related to stack heights and pumpable execution paths, and their properties

which are crucial for the algorithm.

Pumpable pair of execution paths. Let π = ⟨C1t1t2 . . . ⟩ be a finite or infinite execution path

(where each ti is a transition of RSM). A pumpable pair of execution paths for π is a pair of non-

empty sequences of transitions: (p1, p2) = (ti1ti1+1 . . . ti1+ℓ1 , ti2ti2+1 . . . ti2+ℓ2), for ℓ1, ℓ2 ⩾ 0,

i1 ⩾ 0 and i2 > i1+ ℓ1 such that for every j ⩾ 0 the execution path πj
(p1,p2)

obtained by pumping

the pair p1 and p2 of execution paths j times each is a valid execution path, i.e., for every j ⩾ 0

we have

πj
(p1,p2)

= ⟨C1t1 . . . ti1−1(p1)
jti1+ℓ1+1 . . . ti2−1(p2)

jti2+ℓ2+1 . . . ⟩

is a valid execution path. We illustrate the above definitions with the next example.

Example 6.3 (Pumpable pair of execution paths.). Consider the program from Fig. 6.1 and

the corresponding RSM. A possible execution path in the program is

m:entry → while(x) → if(y>0) → m:call foo → f:entry → if(x>1) →

f:call foo → f:entry → if(x>1) → x++ → f:exit → f:foo ret → x++ → f:exit →

m:foo ret→ while(x)

and we denote this execution path with π. Then ASH(π) = 2, and the pair of execution paths

f:entry → if(x>1) → f:call foo and f:foo ret → x++ → f:exit is a pumpable pair of execution

paths.

In the next lemmas we first show that every execution path with large additional stack has a

pumpable pair of execution paths, and then establish the connection of additional stack height

and the existence of pumpable pair of execution paths with positive weights in Lemma 6.2. The

key intuition for the proof of the next lemma is that an execution path with ASH(π) > b + 1

must contain a recursive call that can be pumped.

Lemma 6.1. Let π be a finite execution path with ASH(π) = d > b+ 1. Then π has a pumpable

pair of execution paths.
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Proof. Intuitively an execution path with ASH(π) > b + 1 must contain a recursive call that

can be pumped. We now present the detailed argument. Let C0 and Cj be the starting and the

end configurations of the finite execution path π, respectively. Let ℓ = max{SH(C0), SH(Cj)}.

Given π, let C1 be the first configuration in π of stack height strictly greater than ℓ and with a

call node u ∈ Callsi (for some CSM Ai) such that there exists a configuration C2 in π with a

call node v ∈ Callsi satisfying the following conditions: (i) u = v and (ii) in the execution path

segment in π between C1 and C2 the stack height is always at least SH(C1). Moreover, let C3 be

the first configuration after C2 of stack height SH(C1) and with a return node x ∈ Returnsi. We

first justify the existence of these configurations: (i) the existence of C1 and C2 follows by the

pigeonhole principle and the fact that ASH(π) > b+1; and (ii) the existence of C3 follows because

SH(C1) > SH(Cj) and hence the call corresponding to C1 must return in the execution path π.

Note that existence of C3 (i.e., the return of the call of C1) implies the existence of a configuration

C4 with a return node y ∈ Returnsi in the execution path such that SH(C4) = SH(C2), (this

corresponds to the return of the call of C2). Note that since u = v, it follows that x = y (as

they corresponds to the return of the same call node). The path segment p1 of π between C1 and

C2, and the path segment p2 of π between C4 and C3, constitutes a pumpable pair. The result

follows.

Lemma 6.2. Let C1, C2 be two configurations and j ∈ Z. Let d ∈ N be the minimal additional

stack height of all execution paths between C1 and C2 with total weight at least j. If d > b+ 1,

then there exists an execution path π∗ from C1 to C2 with additional stack height d that has a

pumpable pair (p1, p2) with wt(p1) + wt(p2) > 0.

Proof. Let us consider the set of execution paths Π between C1 and C2 with total weight at least

j, and let Πmin be the subset of Π that has minimal additional stack height. The proof is by

induction on the length of execution paths in Πmin. Consider an execution path π from Πmin

that has the shortest length among all execution paths in Πmin. Since ASH(π) = d > b + 1,

then by Lemma 6.1 it contains a pumpable pair. Let us consider the path π1 obtained from π by

pumping the pumpable pair zero times (i.e., the pumpable pair is removed). Since we remove

a part of the execution path we have that ASH(π1) ⩽ ASH(π). If wt(π1) ⩾ wt(π), then we

obtain an execution path π1 with weight at least j, with either smaller additional stack height

than π, or of shorter length, contradicting that π is the shortest length minimal additional stack

height execution path with weight at least j. Hence we must have wt(π1) < wt(π), and hence
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the pumpable pair has positive weight. Now for an arbitrary execution path π in Πmin we obtain

that it has a pumpable pair. Either the pumpable pair has positive weight and we are done, else

removing the pumpable pair we obtain a shorter length execution path of the same stack height,

and the result follows by inductive hypothesis on the length of execution paths.

Example 6.4 (Illustration of Lemma 6.2). We illustrate Lemma 6.2 on our running example.

Consider again the program from Fig. 6.1 and the corresponding RSM. Additionally, consider

a weight function that assigns -1 to the transition that foo calls recursively itself, +2 to the

transitions to the exit node of foo (i.e., when foo returns), and 0 to every other transition.

Examine two configurations C1 = (ϵ, f : if(x > 1)), C2 = (ϵ, f : exit), and note that for j = 4,

the minimal additional stack height d of all execution paths from C1 to C2 with total weight at

least j is d = 4, as they all have to make at least 4 recursive calls to foo to witness a weight

of at least 4 (in particular, i invocations and returns to and from foo contribute a weight of

i · (−1 + 2) = i). Since there are only 2 calls in total, Lemma 6.2 identifies a pumpable pair

of execution paths f:entry→ if(x>1)→ f:call foo and f:foo ret→ x++→ f:exit with positive

total weight. Indeed, the weight is −1 + 2 > 0, and the pair of execution paths is pumpable

due to recursion, as pointed in Example 6.3. Observe that this conclusion cannot be made using

Lemma 6.2 with e.g. j = 1, as in that case there is an execution path from C1 to C2 that witnesses

weight at least j and has additional stack height only 1 (i.e., the execution path that only calls

foo recursively once), which is less than the number of calls in the program.

Our algorithm for the mean-payoff analysis problem is based on detecting the existence of

certain non-decreasing execution paths with positive weight. The maximal weights of such

non-decreasing execution paths between node pairs are captured with the notion of a summary

function and bounded summary functions (with bounded additional stack height). We now

define them, and establish the lemma related to the number of bounded summary functions to be

computed.

Local minimum and non-decreasing execution paths. A configuration Ci in an execution

path π = ⟨C1, . . . , Cℓ⟩ is a local minimum if the stack height of Ci is minimal in π, i.e., |αi| =

min(|α1|, . . . , |αℓ|). An execution path from configuration (u, α) to (v, αβ) is a non-decreasing

α-execution path if (u, α) is a local minimum. Note that if a sequence of transitions is a non-

decreasing α-execution path for some α ∈ Returns∗, then the same sequence of transitions is

a non-decreasing γ-path for every γ ∈ Returns∗. Hence, we say that π is a non-decreasing
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Figure 6.4: Example of an execution path π = ⟨C1, . . . , Cℓ⟩, where j indexes the j-th configura-

tion of π, and αj is the stack of Cj . The configuration Ci is a local minimum of π. The suffix πi

of π starting at the i-th configuration is a non-decreasing execution path, as the top symbol of αi

is never popped.

execution path if there exists α ∈ Returns∗ such that π is a non-decreasing α-execution path.

Fig. 6.4 illustrates the concepts of local minimum and non-decreasing execution paths.

Summary function. Given the RSM RSM and α ∈ Returns∗, we define a summary function

sα :
⋃

1⩽i⩽k(Ni ×Ni)→ {−∞} ∪ Z ∪ {ω} as:

1. sα(u, v) = z ∈ Z iff the weight of the maximum weight non-decreasing execution path

from configuration (u, α) to configuration (v, α) is z.

2. sα(u, v) = ω iff for all j ∈ N there exists a non-decreasing execution path from (u, α) to

(v, α) with weight at least j.

3. sα(u, v) = −∞ iff there is no non-decreasing execution path from (u, α) to (v, α).

We note that for every α, β ∈ Returns∗ it holds that sα ≡ sβ. Hence, we consider only s ≡ sϵ

(where ϵ is the empty string and corresponds to empty stack). The computation of the summary

function is done by considering stack height bounded summary functions defined below.

Stack height bounded summary function. For every d ∈ N, the stack height bounded summary

function sd :
⋃

1⩽i⩽k(Ni ×Ni)→ {−∞} ∪ Z ∪ {ω} is defined as follows: (i) sd(u, v) = z ∈ Z

iff the weight of the maximum weight non-decreasing execution path from (u, ϵ) to (v, ϵ)

with additional stack height at most d is z; (ii) sd(u, v) = ω iff for all j ∈ N there exists a

non-decreasing execution path from (u, ϵ) to (v, ϵ) with weight at least j and additional stack

height at most d; and (iii) sd(u, v) = −∞ iff there is no non-decreasing execution path with

additional stack height at most d from (u, ϵ) to (v, ϵ).
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Facts of summary functions. We have the following facts: (i) for every d ∈ N, we have sd+1 ⩾ sd

(monotonicity); and (ii) sd+1 is computable from sd and RSM. By the above facts we get that

if sd ≡ sd+1, i.e., if a fix point is reached, then s ≡ sd. For interprocedural analysis with

finite-height lattices, fix points are guaranteed to exist. Unfortunately in our case, the image of

sℓ is infinite and moreover, it is an infinite-height lattice. Thus a fix point is not guaranteed. The

next lemma shows that we can compute all the non-ω values of s with the bounded summary

function.

Lemma 6.3. Let d = b+ 1. For all u, v ∈ N , if s(u, v) ∈ Z ∪ {−∞}, then s(u, v) = sd(u, v).

Proof. Obviously s(u, v) ⩾ sd(u, v). If sd(u, v) < s(u, v) it follows that there exists a non-

decreasing execution path π from u to v with wt(π) > sd(u, v). By the definition of the

bounded-height summary function it follows that ASH(π) > d, and w.l.o.g we assume that π

has the minimal additional stack height among all non-decreasing execution paths from u to

v with weight wt(π). Then by Lemma 6.2 it follows that π has a pumpable pair (p1, p2) with

wt(p1) + wt(p2) = wp > 0. Hence, for every j ⩾ 0 the execution path πj that is obtained from

π by pumping the pair (p1, p2) exactly j times has weight wt(πj) = wt(π) + (j − 1) · wp, and it

is a valid non-decreasing execution path from u to v. Hence, for every ℓ ∈ N the execution path

πj for j = ⌈ ℓ−wt(π)
wp

+ 1⌉ satisfies wt(πj) ⩾ ℓ (if ℓ ⩽ wt(π), then we set j = 1). By definition

we get that s(u, v) = ω, and this completes the proof.

By Lemma 6.3 we get that if sd+1(u, v) > sd(u, v) (for d = b+1), then s(u, v) = ω. Hence, the

summary function s is obtained by the fix point of the following computation: (i) Compute sℓ+1

from sℓ up to sd for d = b+1; (ii) for i ⩾ b+1, if sℓ+1(u, v) > sℓ(u, v), then set sℓ+1(u, v) = ω;

(iii) a fix point is reached after at most O(b) iterations (say j iterations), and then we set s ≡ sj .

This establishes that we require only O(b) iterations as compared to O(n2 · b2) iterations. The

number of returns and calls are the same and thus we significantly improve the number of

iterations required from the quartic worst-case bound to linear bound. We now describe the

computation of every iteration to obtain sℓ+1 from sℓ.

Computation of sℓ+1 from sℓ. We first compute a partial function, namely, s′i+1 : En × Ex →

{−∞, ω} ∪ Z that satisfies s′ℓ+1(u, v) = sℓ+1(u, v) for every u ∈ En and v ∈ Ex. We initialize
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s′0(u, v) = s0(u, v). For every CSM Ai we construct the weighted graph Gℓ
i by taking all

the nodes and transitions of Ai and by adding a transition between every call node and its

corresponding return node. For every transition between a pair of nodes u, v ∈ Ni \ (Callsi ∪

Returnsi) we assign the weight according to the original weight in RSM. For every transition

between a call node that invokes CSM Ap and a corresponding return node we assign the weight

s′i(enp, exp). To compute s′i+1 for CSM Ai we run one Bellman-Ford iteration over Gℓ
i for source

node eni and target node exi. We observe the next two key properties of s′i:

• For every iteration i, a CSM Ai, and pair of nodes u, v ∈ Ni we have that the weight of the

maximum weight execution path between u and v in Gℓ
i is exactly sℓ+1(u, v) (the proof is

by a simple induction over i).

• If s′i+1 ≡ s′i, then sℓ+1 ≡ sℓ (follows from the first key property).

Hence, to compute s we compute s′i+1 from s′i until we get s′i+1 ≡ s′i, and then we compute all

pairs maximum weight execution paths (e.g., by the Floyd-Warshall algorithm) over every Gℓ
i

and get sℓ+1 (and sℓ+1 ≡ s). The Floyd-Warshall algorithm has a cubic time complexity and

quadratic space complexity [Cormen et al., 2009]. Therefore, the time complexity for computing

every iteration of sℓ is O(
∑

i n
2
i ) and the complexity of the last step is O(

∑
i n

3
i ). The space

complexity of the last step is O(maxi n
2
i ), but to store sℓ we require O(

∑
i n

2
i ) space.

Summary graph. Given the RSM RSM with a summary function s, we construct the summary

graph Gr(RSM, s) = (Vs, Es,wts) of RSM with weight function wts : Es → Z ∪ {ω} as

follows: (i) Vs = N \ (Ex ∪ Returns); and (ii) Es = Einternal ∪ Ecalls where Einternal =

{(u, v) | u, v ∈ Ni for some i, and s(u, v) > −∞} contains the transitions in the same CSM and

Ecalls = {(u, v) | u ∈ Calls and v ∈ En and u is a call to a CSM with entry node v} contains

the call transitions. The weights of Einternal are according to the summary function s and the

weights of ECalls are according to the weights of these transitions in RSM (i.e., according to the

weight function wt of RSM). A simple cycle in Gr(RSM, s) is a positive simple cycle iff one of

the following conditions hold: (i) the cycle contains an ω edge; or (ii) the sum of the weights

of the cycles according to the weights of the summary graph is positive. Lemma 6.4 shows the

equivalence of the mean-payoff analysis problem and positive cycles in the summary graph.

Lemma 6.4. The RSM RSM has an execution path π with LimAvg(wt(π)) > 0 iff the summary

graph Gr(RSM, s) has a (reachable) positive cycle.
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Proof. If Gr(RSM, s) does not contain a positive cycle, then it follows that the weight of every

non-decreasing execution path in RSM is bounded by the weight of the maximum weight

execution path in Gr(RSM, s). Hence, for every infinite execution path π we get that every prefix

of π is a non-decreasing execution path from the initial configuration with bounded weight (sum

of weights bounded from above), and therefore LimAvg(wt(π)) ⩽ 0. Conversely, if Gr(RSM, s)

has a positive cycle, then it follows that there is an execution path π0π1 in Gr(RSM, s) such that

π0 and π1 are non-decreasing paths, π1 begins and ends in the same node (possibly at higher

stack height) and wt(π1) > 0. Hence, the path π0π
ω
1 is a valid execution path and satisfies

LimAvg(wt(π0π
ω
1 )) =

wt(π1)
|π1| > 0, where πω

1 = π1 · π1 · π1 . . . is the infinite concatenation of the

finite execution path π1. The desired result follows.

Algorithm and analysis. Algorithm 14 solves the mean-payoff analysis problem for RSMs.

The computation of the summary function requires O(b) computations of the partial summary

function s′i (Line 4). Each such computation requires k runs of Bellman-Ford algorithm (Line 6),

each run over a graph of ni nodes and mi edges (hence, each run takes O(ni · mi) time). In

addition the computation requires k runs of all pairs maximum weight path (Floyd-Warshall)

algorithm (Line 17). Each run is over a graph of O(ni) nodes (hence, each run takes O(n3
i ) time

and O(n2
i ) space). Finally we detect positive cycles by running Bellman-Ford algorithm once

over the summary graph (Line 19), which takes O(n ·m) time and O(n) space. Thus we obtain

the following result.

Theorem 6.2 (Improved algorithm). Algorithm 14 solves the mean-payoff analysis problem

for RSMs in O ((b · (
∑

i ni ·mi)) + (
∑

i n
3
i ) + n ·m) time and O(

∑
i n

2
i ) space.

Note that in the worst case the running time of Algorithm 14 is cubic and the space requirement

is quadratic. The next example is an illustration of a run of Algorithm 14.

Example 6.5 (Mean-payoff analysis). Consider the RSM of Fig. 6.5 that consists of CSMs

f and g and the entry of f is the initial entry of the program. We now describe the run of

Algorithm 14 over the RSM. For simplicity, we denote the graph of f by F and the graph of g by

G (and not by G1 and G2). Note that the number of call nodes is 3.

We first compute the summary function s′ and the first step is to compute s′0. We have

s′0(f:entry,f:exit) = −35, and s′0(g:entry,g:exit) = −25.

In order to compute s′1(f:entry,f:exit) we construct a graph F 0 from F by adding a transition
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Algorithm 14: Mean-payoff RSM Analysis
Input:

Output:

1 for i← 1 to k do

// Compute s′0 by running the Bellman-Ford algorithm on Gi

2 s′0(eni, exi)← BELLMAN-FORD(Gi)

3 end

4 ℓ← 1 while True do

5 for i← 1 to k do

6 Construct Gℓ−1
i according to s′ℓ−1

// Compute s′ℓ by running the Bellman-Ford algorithm over Gℓ−1
i

7 s′ℓ(eni, exi)← BELLMAN-FORD(Gℓ−1
i )

8 end

9 if s′ℓ ≡ s′ℓ−1 then

10 break

11 if ℓ > b+ 1 then

12 for i← 1 to k do

13 if s′ℓ(eni, exi) > s′ℓ−1(eni, exi) then

14 s′ℓ(eni, exi) = ω

15 end

16 ℓ← i+ 1

17 end

/* Compute s by executing Floyd-Warshall on each Gi wrt s′ℓ */

18 s← FLOYD-WARSHALL(s′ℓ)

19 Construct Gr(RSM, s) from s

// Execute the Bellman-Ford algorithm on Gr(RSM, s)

20 BELLMAN-FORD(Gr(RSM, s))

21 if Gr(RSM, s) has a positive cycle then

22 return Yes

23 else

24 return No

25 end
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internal entry exit call return

f:entry f:v

f:call g

f:exit

f:g ret
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-10

(a) CSM f

g:entry g:u1 g:u2

g:call g g:ret g

g:exit

g:call f g:ret f

-10 -10

-5 35 -10

-5

-10

(b) CSM g

f:entry f:v

f:call g g:entry g:u1 g:u2

g:call g g:call f
-30

-15

0 -10 ω

-5 -100

0

(c) Summary graph of f and g

Figure 6.5: Two CSMs f and g and their summary graph.
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from the node f:call g to the node f:ret g with weight s′0(g:entry,g:exit) and find the maximum

weight path from f:entry to f:exit in F 0. We get s′1(f:entry,f:exit) = −35. In order to compute

s′1(g:entry,g:exit) we construct a graph G0 from G by adding a transition from g:call g to g:ret g

with weight s′0(g:entry,g:exit) and a transition from g:call f to g:ret f with weight s′0(f:entry,f:exit)

and find the maximum weight path from g:entry to g:exit in G0. We get s′1(g:entry,g:exit) = −10.

Since s′1 ̸= s′0, we continue to compute s′2. We construct F 1 and G1 in the same manner as we

constructed F 0 and G0 (but take the values of s′1 instead of s′0) and get s′2(f:entry,f:exit) = −35,

s′2(g:entry,g:exit) = 5. For i = 3 we get s′3(f:entry,f:exit) = −35, s′3(g:entry,g:exit) = 20. For

i = 4, s′4(f:entry,f:exit) = −35, s′4(g:entry,g:exit) = 35.

For i = 5 we get s′5(f:entry,f:exit) = −20 and s′5(g:entry,g:exit) = 50. Since i > |Calls| + 1

and s′5(f:entry,f:exit) > s′4(f:entry,f:exit) and s′5(g:entry,g:exit) > s′4(g:entry,g:exit) we assign

assign s′5(f:entry,f:exit) = ω and s′5(g:entry,g:exit) = ω. In the sixth iteration we get a fix point

(that is, s′6 ≡ s′5) and exit the loop block.

From F 5 and G5 we compute the summary function s. For example

s(g:entry,g:u1) = ω and s(f:entry,f:v) = −30. Finally, we construct the sum-

mary graph (see Fig. 6.5c) and check whether a positive cycle exists. The cycle

f:entry→f:v→f:call g→g:entry→g:u1→g:u2→g:call f→f:entry contains an ω-edge and

thus, it is a positive cycle. Hence algorithm returns YES.

6.4.2 An Efficient Algorithm for Mean-payoff Analysis

Here we further improve the algorithm for the mean-payoff analysis problem for RSMs, and

the improvement depends on the fact that typically the number of entry, exit, call, and returns

nodes is much smaller than the size of the RSMs. Formally, in most typical cases we have

|Ex ∪ Returns ∪ Calls ∪ En| << n. Let Xi = {exi, eni} ∪ Returnsi ∪ Callsi and X =
⋃

i Xi.

We present an improvement that enables us to construct the summary function over graphs of

size O(|Xi|) (instead of graphs of size O(ni) of Section 6.4.1), and with at most O(b) iterations.

Hence, the algorithm in most typical cases will be much faster and require much smaller space.

Compact representation. The key idea for the improvement is to represent the CSMs in compact

form. The compact form of a CSM Ai, denoted by Comp(Ai), is a graph which consists of the
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entry, exit, call, and returns node of Ai. There is transition between every node in Comp(Ai),

and the weight of each transition is the maximum weight execution path between the nodes

with additional stack height 0 (and if there is no such execution path, then the weight is −∞).

Formally, Comp(Ai) = (V c
i , E

c
i ); where V c

i = Xi; Ec
i = V c

i × V c
i , and wti(v1, v2) = s0(v1, v2)

(where s0 is the bounded-height summary function of height 0). If in Comp(Ai) there is a cycle

with positive weight that is reachable from the entry node, then we say that Ai is a positive mean-

payoff witness. The computation of the compact form for a CSM Ai requires O(|Xi| · ni ·mi)

time and O(ni) space (running Bellman-Ford on each Comp(Ai)), and thus the compact form

for all CSMs can be computed in O(
∑

i |Xi| · ni ·mi) time and O(maxi ni) space (note that the

space can be reused).

Witness in summary graph of compact forms. After constructing the compact forms, we

compute a summary function for Comp(A1), . . . ,Comp(Ak), and a corresponding summary

graph. We say that there is an execution path with positive mean-payoff iff there exists a positive

cycle in the summary graph or there exists an execution path to the entry node of a positive

mean-payoff witness. The correctness of the algorithm relies on the next lemma.

Lemma 6.5. Let RSM = ⟨A1, . . . , Ak⟩ be an RSM, let Gr(RSM, s) be its summary graph and

let Comp(Gr(RSM, s)) be the summary graph that is formed by Comp(A1), . . . ,Comp(Ak). The

following assertions are equivalent:

1. Gr(RSM, s) has a (reachable) positive cycle.

2. Comp(Gr(RSM, s)) has a (reachable) positive cycle or a positive mean-payoff witness.

Proof. We first observe that every node in Comp(Gr(RSM, s)) exists also in Gr(RSM, s) and

that the weight of every execution path in Comp(Gr(RSM, s)) has the same weight for the

corresponding execution path in Gr(RSM, s) (this can be easily shown by induction over the

number of iterations that are needed to obtain a fix point in the bounded-height summary

function). Hence, if Gr(RSM, s) has a positive simple cycle that contains a call node c for

c ∈ Calls, then c is a node also in Comp(Gr(RSM, s)) and by the observation above, c is part

of a positive cycle in Comp(Gr(RSM, s)). Therefore, Comp(Gr(RSM, s)) has a positive cycle.

Otherwise, Gr(RSM, s) has a positive simple cycle that does not contain a call node. Hence, there

is a CSM Ai with a reachable positive simple cycle that has additional stack height 0. Therefore
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Comp(Gr(RSM, s)) has a positive cycle or a positive mean-payoff witness. This concludes the

proof of one direction and the proof for the converse direction is trivial.

The above lemma establishes the correctness of the computation on compact form graphs, and

gives us the following result.

Theorem 6.3 (Efficient algorithm). The mean-payoff analysis problem for RSMs can be solved

in O ((b · (
∑

i |Xi|3)) + |X|3) time and O(
∑

i |Xi|2 +maxi ni) space, where Xi = {exi, eni} ∪

Returnsi ∪ Callsi and X =
⋃

i Xi.

6.4.3 An Improved Algorithm for Mean-payoff Analysis on RSMs of Con-

stant Treewidth

Here we sketch an improved solution the mean-payoff analysis problem for RSMs of constant

treewidth. Note that the while loop in Line 4 of Algorithm 14 is similar to Algorithm 6 from

Section 4.2 for computing bounded stack-height distances. The modification then consists of the

following steps:

1. First, we execute Algorithm 6 for stack height h = b+ 1.

2. Then, we perform an all-pairs distance computation in each control-flow graph Gi of CSM

Ai, by breaking it down to ni single-source distance queries using the linear single-source

query time algorithm from Section 3.2.

3. Finally, we proceed from Line 18 of Algorithm 14 to detect a positive cycle on the summary

graph.

The time required for Algorithm 6 is O(n) for the preprocessing, plus O(b · log n) time for

updating the weight of call-to-return edges for each of the O(b) iterations. The all-pairs distance

computation of step 2 requires O(
∑

i n
2
i ) time. Finally, Algorithm 14 requires O(n ·m) time

for detecting a positive cycle on the summary graph. The space required is dominated by the

O(
∑

i n
2
i ) cost for storing the all-pairs distances in each control-flow graph Gi.

Theorem 6.4 (Algorithm for constant-treewidth RSMs). Given an RSM RSM of

constant treewidth, the mean-payoff analysis problem for RSM can be solved in

O (b ·
∑

i b · log ni + n ·m) time and O(
∑

i n
2
i ) space.
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6.4.4 Reduction: Ratio Analysis to Mean-payoff Analysis

We now establish a linear reduction of the ratio analysis problem to the mean-payoff analysis

problem. Given an RSM RSM with labeling of good, bad, and neutral events, a positive integer

weight function w, and rational threshold λ > 0, the reduction of the ratio analysis problem

to the mean-payoff analysis problem is as follows. We consider an RSM RSM′ with weight

function wλ for the mean-payoff objective defined as follows: for a transition e we have

wtλ(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wt(e) if e is labelled with good

−λ · wt(e) if e is labelled with bad

0 otherwise (if e is labelled with neutral )

The next lemma establishes the correctness of the reduction.

Lemma 6.6. Given an RSM RSM with labeling of good, bad, and neutral events, a positive

integer weight function w, and rational threshold λ > 0, let RSM′ be the RSM with weight

function wλ. There exists an execution path π in RSM with LimRat(wt(π)) > λ iff there exists

an execution path π in RSM′ with LimAvg(wλ(π)) > 0.

Proof. Observe that by the definition of wλ we have that for every ϵ > 0 and a finite execution

path π:

Rat(wt(π)) ⩾ λ+ ϵ iff Avg(wλ(π)) ⩾ ϵ.

LimAvg implies LimRat . Consider an infinite execution path π. If LimAvg(wtλ(π)) > 0,

then by definition there is an ϵ > 0 and m0 ∈ N such that for every m ⩾ m0 we have

Avg(wtλ(π[1,m])) ⩾ ϵ. Hence by the above observation there exist ϵ > 0 and m0 ∈ N such that

for every m ⩾ m0 we have Rat(wt(π[1,m])) ⩾ λ+ ϵ. Moreover, it follows that in π there are

infinitely many edges with positive weights (according to wλ) and hence π has infinitely many

good events. Hence we get that LimRat(wt(π)) > λ.

LimRat implies LimAvg . The proof for the converse direction is less trivial and relies on

properties of RSMs that we established. Suppose that there is an infinite execution path π with

LimRat(wt(π)) > λ. We note that every infinite execution path has infinitely many local minima

and let C1, C2, . . . be an infinite sequence of local minima in π. We have the following facts:
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1. The segment between every two such configurations Ci and Cj for i < j is a non-decreasing

execution path (since each Ci is a local minimum).

2. There is a configuration Cp with a node up such that for every ℓ ∈ N there exists a

configuration Cj (for p < j) with node uj such that the segment between Cp and Cj is of

length greater than ℓ and up = uj , i.e., Cp and Cj have the same node (follows from the

pigeonhole principle, since the number of local minima is infinite and we have finitely

many nodes).

We claim that there exists a non-decreasing finite execution path π∗ that is a segment of π, which

begins at Cp and ends at a configuration that has the same node (possibly at different stack

height), and we have Rat(wt(π∗)) > λ. Assume towards the contradiction of the claim that

for every configuration Cj with up = uj , with p < j, we have Rat(wt(π∗)) ⩽ λ. If π has only

finitely many good or bad events, then LimRat(wt(π)) = 0 < λ. Else we consider the following

sequence of prefixes of π: π0 is the prefix of π that ends in Cp; and πi is the segment that starts in

Cp and ends in the i-th local minimum after Cp that has the same node up. Then we have

Rat(π0 · πi) ⩽ λ+
wt(π0)

i
;

since the length of πi is at least i. Hence, by definition LimRat(wt(π)) ⩽ λ, which establishes

the desired contradiction. Thus we have that Rat(wt(π∗)) > λ and therefore Avg(wtλ(π
∗)) > 0

and the execution path π′ = π0(π
∗)ω is a valid path (since π∗ is a non-decreasing execution path

that begins and ends in the same node) with Avg(wtλ(π
′)) > 0. The desired result follows.

Remark 6.3. Note that in our reduction from ratio analysis to mean-payoff analysis we do not

change the RSM, but only change the weight function. Thus our algorithms from Theorems 6.2

and 6.3 can also solve the ratio analysis problem for RSMs. Moreover, our proof of Lemma 6.6

shows that for all execution paths π, if we have LimAvg(wtλ(π)) > 0, then we also have

LimRat(wt(π)) > λ, i.e., any witness for the mean-payoff analysis is also a witness for the ratio

analysis.

6.5 Experimental Results: Three Case Studies

In this section we present our experimental results on three case studies described in Section 6.3.1

and Section 6.3.2. We run our case studies on several benchmarks in Java, including DaCapo
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2009 benchmarks [Blackburn et al., 2006], and we use [Bodden et al., 2011; Lhoták and

Hendren, 2003] to assist Soot for the construction of the control-flow graphs. First we present

some optimizations that proved useful for speed-up in the benchmarks.

6.5.1 Optimizations for the Case Studies

We present four optimizations for the case studies: the first two are general, and the last two are

specific to our case studies. All optimizations presented here have provided significant speedups,

and are orthogonal to each other (i.e., they can be applied independently, and each optimization

results in approximately in a speedup of the same order independent of the other optimizations

that are present).

Faster computation of stack height bounded summary function. We note that if CSM Aℓ

invokes only CSMs Aj1 , . . . , Ajk , and s′ℓ(enjh , exjh) = s′ℓ−1(enjh , exjh) for all h ∈ {1, . . . , k},

then s′ℓ(eni, exi) = s′ℓ−1(eni, exi). Hence, when computing s′ℓ, we maintain a set Lℓ = {i |

s′ℓ(eni, exi) > s′ℓ−1(eni, exi)}, and in the next iteration we run Bellman-Ford algorithm only for

the CSMs that invoke CSMs from Lℓ.

Reducing the number of iterations for fix point. We now present an optimization that allows

us to reduce the number of bounded-height summary functions from O(b) to a practically

constant number. We note that the O(b) theoretical bound is tight. However, only pathological

cases can reach even a fraction of this bound. We note that in typical programs the average

nesting of function calls is practically constant (say 10). So if we do not get a fix point after

10 iterations (i.e., s′11 > s′10), then it is probably because there is a recursive call with positive

weight. If this is the case, then if we build the summary graph according to s11, we will get a

positive cycle in the summary graph, that is, we will get a witness for a path with a positive

mean-payoff, and we can stop the computation (since by definition s ⩾ s11, we get that this

witness is valid). Hence, our optimized algorithm is to compute the bounded-height summary

function s′ℓ and if s′ℓ > s′ℓ−1 and ℓ = 10, 20, 30, . . . , then we construct the summary graph and

look for a witness path. If a path is found, then we are done. Otherwise we continue and compute

s′ℓ+1.

Removing redundant CSMs. Consider an RSM RSM = ⟨A1, . . . , Ak⟩ in which every node is
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reachable from the program entry (the entry node of the main method). We say that CSM Ai

is non-redundant if (i) the CSM has non-zero weight transitions (good or bad events); or (ii) it

invokes a non-redundant CSM, and is called redundant otherwise. Let Ai be a redundant CSM.

For every path π that contains a transition to eni (an invocation of Ai), the segment of π between

that transition and the first transition to exi contains only neutral transitions. Because all nodes

of RSM are reachable, we can safely replace each call node that invokes Ai by an internal node

that leads to the corresponding return node, and label it as a neutral event. Our optimization then

consists of removing redundant CSMs, as follows:

1. First, we perform a single-source interprocedural reachability from the program entry,

which requires linear time ([Reps et al., 1995a]), and discard all non-reachable nodes in

all CSMs.

2. Then, we perform a backwards reachability computation on the call graph of RSM, starting

from the set of all CSMs that contain non-zero weight transitions. All detected redundant

CSMs are discarded, and calls to them are replaced according to the above description.

Hence, when computing the bounded-height summary function, the size of the graph is smaller

and the Bellman-Ford algorithm takes less time. Additionally, the number of calls b decreases,

which reduces the number of iterations required in the main loop of Algorithm 14. In the first

case study, typically more than half of the methods are eliminated in this process.

Incremental computation of summary functions. We present the final optimization which

is relevant for our second and third case studies. Let RSM1 be an RSM and let RSM2 be an

RSM that is obtained from RSM1 only by increasing some of the transitions weights. Let s1

be the summary function of RSM1. Then we can compute the summary function of RSM2 by

setting s′2ℓ ≡ s1 and by computing s′2ℓ from s′2ℓ+1 in the usual way. The correctness is almost

trivial. Since the weights of RSM2 are at least large as the weights of RSM1, we get that if we

conceptually add a transition (n1, n2) with weight s1(n1, n2) for every two nodes (in the same

CSM) in RSM2, then the weights of the paths with the maximal weight in RSM2 remain the same.

By assigning s′20 = s1 we only add such conceptual transitions. Hence, the correctness follows.

We now describe how this optimization speed up the analysis of the second case study. In the

static profiling for function frequencies, we need to build a summary graph for every function

f , and then run the mean-payoff analysis for every such graph. Given this optimization, we
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can first compute (only once) a summary graph for the case that all method invocations are bad

events. We denote this RSM by RSM∗ and the corresponding summary function by s∗. Note

that in RSM∗ all weights are negative, and the mean-payoff analysis answer is trivially NO. But

still the summary function computation, which computes the quantitative information about

the maximum weight context-free paths, provides useful information and saves recomputation.

To determine the frequency of f we assign weights to RSM and get RSMf , and the difference

between RSMf and RSM∗ is only in the weight that is assigned to the invocation of f . We then

compute the summary function sf for RSMf by first assigning s′f0 = s∗. In practical cases,

programs can have thousands of methods, but only small portion of them will have a path to f .

So along with the previous optimizations we get that only few Bellman-Ford runs are required

to compute sf . Overall, the computation of s∗ is expensive, and may take several minutes for a

large program, but it is done only once, and then the computation of each sf is much faster.

6.5.2 Container Analysis

Technical details about experimental results. We discuss a few relevant details about our

experiments and results.

• We use the points-to analysis tool of [Sridharan and Bodík, 2006b]. This tool provides

interprocedural on demand analysis for a may-alias relationship of two variables. We

say that a variable may point to an allocated container if it may-alias the container, and a

variable must point to an allocated container if it may-alias only one allocated container 2.

• For the underutilized containers the threshold is 1, and for the analysis of overpopulated

containers we set a threshold of 0.1 for our experimental results. That is, if the ratio

between the number of added elements to the number of lookup operations is more than

10, then the container is overpopulated.

Experimental results. Our experimental results on the benchmarks are reported in Table 6.1.

In the table, # M and # CO represent the number of methods and containers that are reachable

from the main entry of the program, respectively; # OP and # UC represent the number of

2In general, a singleton may-alias set does not establish must-alias relationship. However, this rule provides a

good approximation, as it is very rare that a variable does not point to any object in all of the program executions.
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overpopulated and underutilized containers discovered by our tool, respectively; and TA(s) and

TQ(s) represent the time required for alias analysis and the time required for the quantitative

analysis of RSMs (in seconds), respectively; and the entries of the respective columns represent

the time for overpopulated/underutilized container analysis. We now highlight some interesting

aspects of our experimental results. First, our approach for container analysis discovers containers

that are overpopulated or underutilized, while maintaining soundness. Second, the cases that we

identify reveal useful information for optimization, for example, in the first (batik-rasterizer) and

the second (batik-svgpp) benchmarks we identify containers that always have a small bounded

number of elements.

Benchmark # M # CO # OP # UC TA(s) TQ(s)

batik-rasterizer 21433 9 1 2 124/125 144/143

batik-svgpp 7859 3 0 3 20/20 14/13

mrt 9798 10 1 0 70/13 41/59

java_cup 8173 10 0 0 19/19 25/22

xalan 8729 6 3 2 5/5 41/43

polyglot 8068 8 2 2 0/0 17/17

antlr 8607 15 5 2 11/12 25/24

jflex 21852 43 3 6 2473/2614 178/210

avrora 13331 75 9 9 145/141 111/113

muffin 22503 50 3 5 2500/157 352/173

bloat06 10675 211 32 14 399/250 2241/2165

eclipse06 9335 74 8 4 37/22 222/164

jython06 12210 66 9 5 154/68 13593/8376

Table 6.1: Experimental results for container usage analysis

With our approach we were able to fully analyze all the containers in all benchmarks. Below

we present example snippets of code from the benchmarks where our analysis gives different

results from the analysis of the existing tool of [Xu and Rountev, 2010] with which we have

compared our results. The example in Fig. 6.7 shows that handling DELETE operations leads to

more refined analysis: in the example, if DELETE operations are not handled, then the misuse

is not detected. The example in Fig. 6.8 shows that the proper utilization of containers might

depend on the recursive calls. Finally, the example in Fig. 6.9 illustrates that the proper use of
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Figure 6.6: The ROC curves for the analysis of frequently invoked methods. The left plot shows

the results when all methods are analyzed. The right plot shows the results when only the active

methods are analyzed. The different dots of each curve correspond to different threshold values

λ.
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Benchmark # M # I T

antlr 768 326 1.2

bloat 2576 676 30.8

eclipse 1056 215 2.3

fop 429 47 0.4

luindex 567 239 0.7

lusearch 842 237 2.5

pmd 2547 589 11.5

Table 6.2: Experimental results for frequency of functions

containers can be outside its allocation site, and thus detecting proper use requires a quantitative

interprocedural framework, such as the one proposed here.

6.5.3 Static Profiling: Frequency of Function Calls

We have examined ten thresholds, namely 1
30
, 2
30
, 3
30
, ..., 10

30
, and for each threshold λ we say that a

method is statically hot if it is λ-hot (according to the definition in Section 6.3.2). We compared

the results to dynamic profiling from the DaCapo benchmarks [Blackburn et al., 2006]. In the

dynamic profiling we define the top 5% of the most frequently invoked functions as dynamically

hot. For example, if a program has 1000 functions, and in the benchmark 500 functions were

invoked at least once, then the 25 most frequently invoked functions are dynamically hot. We

note that theoretically speaking, the definitions of dynamic and static hotness are incomparable

(basically for any λ), but our experimental results show a good correlation between the two

notions. To illustrate the correlation we treat our static analysis as a classifier of hot methods, and

the specificity and sensitivity of the classifier are controlled by the threshold λ. The sensitivity of

a classifier is measured by the true positive rate (tpr), which is

#dynamically hot methods that are reported as statically hot
#dynamically hot methods

The specificity is determined by the false positive rate (fpr):

#non-dynamically hot methods that are reported as statically hot
#methods

For high values of λ, the classifier is expected to capture only dynamically hot methods (but

it will miss most of the dynamically hot methods), and thus it will have very high fpr but very
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1 p u b l i c vo id c l e a r e d ( ) {

2 . . .

3 i f ( l i s t != n u l l ) {

4 . . .

5 }

6 e l s e {

7 O b j e c t o = e l e m e n t s B y I d . remove ( i d ) ;

8 i f ( o != t h i s ) / / oops n o t us !

9 e l e m e n t s B y I d . p u t ( id , o ) ;

10 }

11 }

1 p u b l i c vo id run ( ) {

2 w h i l e ( t r u e ) {

3 . . .

4 i f ( . . . ) {

5 . . .

6 r c . c l e a r e d ( ) ;

7 }

8 . . .

9 }

10 . . .

11 }

Figure 6.7: An example from benchmark batik. The method run invokes cleared in a loop, and

in every invocation, one element of elementsById is removed and one element is added. Thus in

this loop the total number of elements in elementsById is bounded.

low tpr. For very low values of λ the classifier will report most of the methods as hot, so most

of the hot methods will be reported as hot, and we will have very high tpr but very low fpr. A

fundamental metric for classifier evaluation is a receiver operating characteristic (ROC) graph.

A ROC graph is a plot with the false positive rate on the X axis and the true positive rate on the

Y axis. The point (0,1) is the perfect classifier, and the area beneath an ROC curve can be used

as a measure of accuracy of the classifier.

In our experimental evaluation we only considered application functions (and not library func-

tions), and the results are presented in Table 6.2. In the table, # M represents the number of

application methods (that are reachable from the main entry of the program), # I represents the

number of application methods that were actually invoked in the execution of the benchmark,

T represents the average running time for the static analysis of a single method (i.e., to check

whether a single method is λ-hot for a fixed λ) (in seconds). For each λ we present the tpr and fpr

values of the classifications. We present an evaluation for two cases. In the first case we statically

analyze all the methods and calculate the tpr and fpr accordingly. In the second case we consider

only the active methods, namely, the methods that were invoked at least once in the program, and

we remove all the other methods from the program control flow graph. This simulates a typical

case where the programmer has prior knowledge on methods that are definitely not hot and can

instruct the static analysis to ignore them. The ROC curves are presented in Fig. 6.6, where the
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1 vo id addCNAME( CNAMERecord cname ) {

2 i f ( b a c k t r a c e == n u l l )

3 b a c k t r a c e = new Ve c to r ( ) ;

4 b a c k t r a c e . i n s e r t E l e m e n t A t ( cname , 0 ) ;

5 }

6

7 p u b l i c Se tResponse f i n d R e c o r d s ( Name name , s h o r t t y p e ) {

8 . . .

9 i f ( t y p e != Type .CNAME && t y p e != Type .ANY && r r s e t . ge tType ( ) == Type .CNAME)

10 {

11 z r = f i n d R e c o r d s ( cname . g e t T a r g e t ( ) , t y p e ) ;

12 z r . addCNAME( cname ) ;

13 . . .

14 }

15 . . .

16 r e t u r n z r ;

17 }

Figure 6.8: An example from benchmark muffin. The method findRecords has a recursive call,

and method addCNAME adds an element to vector backtrace. A path with recursion depth n

adds n elements to backtrace. Hence, backtrace may have unbounded number of elements and it

is not underutilized.
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1 H a s h t a b l e c g i ( Reques t r e q u e s t )

2 {

3 H a s h t a b l e a t t r s = new H a s h t a b l e ( 1 3 ) ;

4 . . .

5 i f ( que ry != n u l l )

6 {

7 S t r i n g T o k e n i z e r s t = new S t r i n g T o k e n i z e r ( decode ( que ry ) , "&" ) ;

8 w h i l e ( s t . hasMoreTokens ( ) )

9 {

10 . . .

11 a t t r s . p u t ( key , v a l u e ) ;

12 }

13 }

14 . . .

15 r e t u r n a t t r s ;

16 }

17

18 p u b l i c Reply r e c v R e p l y ( Reques t r e q u e s t )

19 {

20 . . .

21 e l s e i f ( r e q u e s t . g e t P a t h ( ) . e q u a l s ( " / admin / s e t " ) )

22 {

23 H a s h t a b l e a t t r s = c g i ( r e q u e s t ) ;

24 . . .

25 f o r ( i n t i = 0 ; i < e n a b l e d . s i z e ( ) ; i ++)

26 {

27 . . .

28 p r e f s . p u t ( key , ( S t r i n g ) a t t r s . g e t ( key ) ) ;

29 }

30 . . .

31 }

32 . . .

33 r e t u r n r e p l y ;

34 }

Figure 6.9: An example from benchmark muffin. The method cgi allocates the container attrs

and potentially adds it many elements. The method recvReply performs a get operation over

attrs in a loop. Since we analyze not only the operations that are nested in the allocation site, we

detect that attrs is not overpopulated.
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most left points on the graph are for λ = 10
30

and the fpr and tpr increases as λ decreases (until

it finally reaches 1
30

). In general, for most of the programs the static analysis gives useful and

quite accurate information. Specifically, the threshold λ = 7
30

captures more than half of the

hot methods for most benchmarks (i.e., except fop and antlr) and with a fpr less than 0.3 which

means that if a method was statically reported as not hot, then with probability 0.7 it is really not

hot. We note that the analysis over fop gives quite poor results because only 10% of the methods

were active. However, when we analyzed only the active methods we get better results for fop,

see the right hand graph in Fig. 6.6. When we only consider the active methods, the threshold

λ = 9
30

captures most of the dynamically hot methods while maintaining a fpr less than 0.1 (for

most programs).

6.5.4 Static Profiling: Frequency of Class Method Calls

We have experimented with the potential of our framework to statically predict collections of

methods, where the set will be frequently invoked. As discussed in Section 6.3.3, when such sets

of methods are software libraries, good predictions can assist static vs dynamic library linking.

As our prototype implementation has focused on Java programs, where static linking does not

apply (the JVM dynamically loads classes as they are referenced), we have grouped methods

based on the class they belong to. Then we applied the modeling of Section 6.3.3, where a Java

class is used as a substitute for a library.

We examined the thresholds 1
30
, 2
30
, 3
30
, ..., 16

30
. Similarly to the case of hot methods, for every

threshold λ we say that a class is statically hot if the collection of its methods is λ-hot (according

to the definition in Section 6.3.3). Again, we compared the results to dynamic profiling from the

DaCapo benchmarks [Blackburn et al., 2006]. In the dynamic profiling we define the top 5% of

the most frequently invoked classes as dynamically hot. Table 6.3 presents a summary of the

analysis, where # C represents the number of classes (that are reachable from the main entry of

the program), # I represents the number of classes that were actually invoked in the execution of

the benchmark, T represents the average running time for the static analysis of a single class (i.e.,

to check whether the collection of methods of a whole class is λ-hot for a fixed λ) (in seconds).

Fig. 6.10 shows the corresponding ROC curves. The leftmost point of each curve corresponds

to λ = 16
30

, and the fpr and tpr increase as we move to the right. We see that the static analysis
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Benchmark # C # I T

antlr 103 79 8.3

bloat 284 168 29.7

eclipse 187 69 4.2

fop 197 24 0.2

luindex 101 64 3.1

lusearch 164 69 9.0

pmd 379 130 10.5

Table 6.3: Experimental results for frequency of classes

provides useful information, as for most benchmarks it achieves relatively large tpr while keeping

the fpr reasonably low. The static analysis performs poorly in the case of fop, for which we have

seen in Section 6.5.3 that the overlap between methods discovered in the static and dynamic

analysis is very small.

Hot methods vs hot collections of methods. We clarify some differences between the concepts

of hot methods and hot collections of methods. First, we note that frequently invoked collections

of methods cannot be detected simply by detecting frequently invoked methods, and a separate

analysis is required. Fig. 6.11 illustrates the difference on a small example. We have used a

larger threshold range in our analysis of hot classes, and thus groups of functions are in general

expected to meet larger thresholds than individual functions. In our experimental results, the

information computed is not of direct use, as all classes are loaded on runtime by the JVM.

However, it is demonstrated that our framework can statically analyze programs and provide

meaningful suggestions as to which groups of methods (e.g., classes, libraries) will be frequently

used.

Remarks. We run the experiments on a single thread Intel Pentium 3.80GHz. For Table 6.1

results, the alias analysis did not complete for some benchmarks (e.g. fop, pmd). In Table 6.2 we

only show benchmarks for which we managed to obtain dynamic profiles. For a few benchmarks

(e.g. jython) the quantitative analysis took too long for the entire benchmark. In such cases, our

tool could be used to focus on specific functions.



192

Figure 6.10: The ROC curves for the analysis of frequently invoked classes. The different dots

of each curve correspond to different threshold values λ.
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1 c l a s s A:

2 {

3 p u b l i c vo id f1 ( )

4 {

5 . . .

6 }

7 p u b l i c vo id f2 ( )

8 {

9 . . .

10 }

11 p u b l i c vo id f3 ( )

12 {

13 . . .

14 }

15 }

16

17 vo id main ( )

18 {

19 A a = new A ( ) ;

20 w h i l e ( 1 )

21 {

22 a . f1 ( ) ;

23 a . f2 ( ) ;

24 a . f3 ( ) ;

25 }

26 }

Figure 6.11: Illustration of the difference between hot methods and hot collections of methods.

Here, the collection of the methods of class A is λ-hot for any threshold λ ⩽ 1. However, each of

the methods f1(), f2() and f3() of A are at most 1
3
-hot. Hence determining frequently invoked

collections of methods requires separate analysis, and cannot rely on simply detecting frequently

invoked methods.
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7 Semiring Distances on Concurrent

Systems of Constant-treewidth

Components

7.1 Introduction

In this section we consider concurrent finite-state systems where each component is a constant-

treewidth graph, and the algorithmic question is to determine the semiring distance between

pairs of nodes in the system. Our main contributions are algorithms which significantly improve

the worst-case running time of the existing algorithms. We establish conditional optimality

results for some of our algorithms in the sense that they cannot be improved without achieving

major breakthroughs in the algorithmic study of graph problems. Finally, we provide a prototype

implementation of our algorithms which significantly outperforms the existing algorithmic

methods on several benchmarks.

Concurrency and algorithmic approaches. The analysis of concurrent systems is one of the

fundamental problems in computer science in general, and programming languages in particular.

A finite-state concurrent system consists of several components, each of which is a finite-state

graph, and the whole system is a composition of the components. Since errors in concurrent

systems are hard to reproduce by simulations due to combinatorial explosion in the number of

interleavings, formal methods are necessary to analyze such systems. In the heart of the formal

approaches are graph algorithms, which provide the basic search procedures for the problem.

The basic graph algorithmic approach is to construct the product graph (i.e., the product of the
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component systems) and then apply the best-known graph algorithms on the product graph.

While there are many practical approaches for the analysis of concurrent systems, a fundamental

theoretical question is whether special properties of graphs that arise in analysis of programs can

be exploited to develop asymptotically faster algorithms as compared to the basic approach.

The algorithmic problem. In graph theoretic parlance, graph algorithms typically consider two

types of queries: (i) a pair query given nodes u and v (called (u, v)-pair query) asks for the

semiring distance from u to v; and (ii) a single-source query given a node u asks for the answer

of (u, v)-pair queries for all nodes v. In the context of concurrency, in addition to the classic

pair and single-source queries, we also consider partial queries. Given a concurrent system with

k components, a node in the product graph is a tuple of k component nodes. A partial node

u in the product only specifies nodes of a nonempty strict subset of all the components. Our

work also considers partial pair and partial single-source queries, where the query nodes are

partial nodes. Queries on partial nodes are very natural, as they capture properties between local

locations in a component, that are shaped by global paths in the whole concurrent system. For

example, constant propagation and dead code elimination are local properties in a program, but

their analysis requires analyzing the concurrent system as a whole.

Preprocess Query time

Time Space Single-source Pair
Partial

single-source
Partial pair

Previous results

[Lehmann, 1977; Floyd, 1962]

[Warshall, 1962; Kleene, 1956]

O(n6) O(n4) O(n2) O(1) O(n2) O(1)

Corollary 7.2 (ϵ > 0) O(n3) O(n2+ϵ) O(n2+ϵ) O(n2) O(n2+ϵ) O(n2)

Theorem 7.2 (ϵ > 0) O(n3+ϵ) O(n3) O(n2+ϵ) O(n) O(n2) O(1)

Corollary 7.3 (ϵ > 0) O(n4+ϵ) O(n4) O(n2) O(1) O(n2) O(1)

Table 7.1: The algorithmic complexity for computing algebraic path queries wrt a closed,

complete semiring on a concurrent graph G which is the product of two constant-treewidth

graphs G1, G2, with n nodes each.

Previous results. In this section we consider finite-state concurrent systems, where each compo-

nent graph has constant treewidth, and the trace properties are specified as semiring distances.
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Our framework can model a large class of problems: typically the control-flow graphs of pro-

grams have constant treewidth [Thorup, 1998; Gustedt et al., 2002; Burgstaller et al., 2004], and

if there is a constant number of synchronization variables with constant-size domains, then each

component graph has constant treewidth. Note that this imposes little practical restrictions, as

typically synchronization variables, such as locks, mutexes and condition variables have small

(even binary) domains (e.g. locked/unlocked state). The best-known graph algorithm for the

algebraic path problem is the classic Warshall-Floyd-Kleene [Lehmann, 1977; Floyd, 1962;

Warshall, 1962; Kleene, 1956] style dynamic programming, which requires cubic time. Two

well-known special cases of the algebraic paths problem are (i) computing the shortest path from

a source to a target node in a weighted graph, and (ii) computing the regular expression from

a source to a target node in an automaton whose edges are labeled with letters from a finite

alphabet. In the first case, the best-known algorithm is the Bellman-Ford algorithm with time

complexity O(n · m). In the second case, the well-known construction of Kleene’s [Kleene,

1956] theorem requires cubic time. The only existing algorithmic approach for the problem we

consider is to first construct the product graph (thus if each component graph has size n, and

there are k components, then the product graph has size O(nk)), and then apply the best-known

graph algorithm (thus the overall time complexity is O(n3·k) for general semiring distances).

Hence for the important special case of two components we obtain a hexic-time (i.e., O(n6))

algorithm. Moreover, the current best-known algorithms for the algebraic path problem event for

one pair query (or one single-source query) computes the entire transitive closure. Hence the

existing approach does not allow a tradeoff of preprocessing and query as even for one query the

entire transitive closure is computed.

Our contributions. Our main contributions are improved algorithmic upper bounds, proving

several optimality results of our algorithms, and experimental results. Below all the complexity

measures (time and space) are in the number of basic machine operations and number of semiring

operations. We elaborate our contributions below.

1. Improved upper bounds. We present improved upper bounds both for generally k compo-

nents, and the important special case of two components.

• General case. We show that for k ⩾ 3 components with n nodes each, af-

ter O(n3·(k−1)) preprocessing time, we can answer (i) single-source queries in

O(n2·(k−1)) time, (ii) pair queries in O(nk−1) time, (iii) partial single-source queries
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in O(nk) time, and (iv) partial pair queries in O(1) time; while using at all times

O(n2·k−1) space. In contrast, the existing methods [Lehmann, 1977; Floyd, 1962;

Warshall, 1962; Kleene, 1956] compute the transitive closure even for a single query,

and thus require O(n3·k) time and O(n2·k) space.

• Two components. For the important case of two components, the existing methods

require O(n6) time and O(n4) space even for one query. In contrast, we establish

a variety of tradeoffs between preprocessing and query times, and the best choice

depends on the number of expected queries. In particular, for any fixed ϵ > 0, we

establish the following three results.

Three results. First, we show (Corollary 7.2) that with O(n3) preprocessing time and

using O(n2+ϵ) space, we can answer single-source queries in O(n2+ϵ) time, and pair

and partial pair queries require O(n2) time. Second, we show (Theorem 7.2) that with

O(n3+ϵ) preprocessing time and using O(n3) space, we can answer pair and partial

pair queries in time O(n) and O(1), respectively. Third, we show (Corollary 7.3) that

the transitive closure can be computed using O(n4+ϵ) preprocessing time and O(n4)

space, after which single-source queries require O(n2) time, and pair and partial

pair queries require O(1) time (i.e., all queries require linear time in the size of the

output).

Tradeoffs. Our results provide various tradeoffs: The first result is best for answering

O(n1+ϵ) pair and partial pair queries; the second result is best for answering between

Ω(n1+ϵ) and O(n3+ϵ) pair queries, and Ω(n1+ϵ) partial pair queries; and the third

result is best when answering Ω(n3+ϵ) pair queries. Observe that the transitive closure

computation is preferred when the number of queries is large, in sharp contrast to

the existing methods that compute the transitive closure even for a single query. Our

results are summarized in Table 7.1 and the tradeoffs are pictorially illustrated in

Fig. 7.1.

2. Optimality of our results. Given our significant improvements for the case of two compo-

nents, a very natural question is whether the algorithms can be improved further. While

presenting matching bounds for polynomial-time graph algorithms to establish optimal-

ity is very rare in the whole of computer science, we present conditional lower bounds
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Figure 7.1: Given a concurrent graph G of two constant-treewidth graphs of n nodes each, the

figure illustrates the time required by the variants of our algorithms to preprocess G, and then

answer i pair queries and j partial pair queries. The different regions correspond to the best

variant for handling different number of such queries. In contrast, the current best solution

requires O(n6 + i+ j) time. For ease of presentation we omit the O(·) notation.
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which show that our combined preprocessing and query time cannot be improved without

achieving a major breakthrough in graph algorithms.

• Almost optimality. First, note that in the first result (obtained from Corollary 7.2)

our space usage and single-source query time are arbitrarily close to optimal, as

both the input and the output have size Θ(n2). Moreover, the result is achieved with

preprocessing time asymptotically less than Ω(n4), which is a lower bound for com-

puting the transitive closure (which has n4 entries). Furthermore, in our third result

(obtained from Corollary 7.3) the O(n4+ϵ) preprocessing time is arbitrarily close

to optimal, and the O(n4) preprocessing space is indeed optimal, as the transitive

closure computes the distance among all n4 pairs of nodes (which requires Ω(n4)

time and space).

• Conditional lower bound. In recent years, the conditional lower bound problem

has received vast attention in complexity theory, where under the assumption that

certain problems (such as matrix multiplication, all-pairs shortest path) cannot be

solved faster than the existing upper bounds, lower bounds for other problems

(such as dynamic graph algorithms) are obtained [Abboud and Williams, 2014;

Abboud et al., 2015; Henzinger et al., 2015]. The current best-known algorithm for

the algebraic path problem on general (not constant-treewidth) graphs is cubic in

the number of nodes. Even for the special case of shortest paths with positive and

negative weights, the best-known algorithm (which has not been improved over five

decades) is O(n ·m), where m is the number of edges. Since m can be Ω(n2), the

current best-known worst-case complexity is cubic in the number of nodes. We prove

that pair queries require more time in a concurrent graph of two constant-treewidth

graphs, with n nodes each, than in general graphs with n nodes. This implies

that improving the O(n3) combined preprocessing and query time over our result

(from Corollary 7.2) for answering r queries, for r = O(n), would yield the same

improvement over the O(n3) time for answering r pair queries in general graphs.

That is, the combination of our preprocessing and query time (from Corollary 7.2)

cannot be improved without equal improvement on the long standing cubic bound

for the shortest path and the algebraic path problems in general graphs. Additionally,

our result (from Theorem 7.2) cannot be improved much further even for n2 queries,
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as the combined time for preprocessing and answering n2 queries is O(n3+ϵ) using

Theorem 7.2, while the existing bound is O(n3) for general graphs.

3. Experimental results. We provide a prototype implementation of our algorithms which

significantly outperforms the baseline methods on several benchmarks.

Technical contributions. The results of this chapter rely on several novel technical contributions.

1. Upper bounds. Our upper bounds depend on a series of technical results.

(a) Given a concurrent graph G obtained from k constant-treewidth graphs Gi, we show

how a tree-decomposition of G can be constructed from the strongly balanced tree-

decompositions Ti of the components Gi, in time that is linear in the size of the output.

We note that G can have large treewidth, and thus determining the treewidth of G

can be computationally expensive. Instead, our construction avoids computing the

treewidth of G, and directly constructs a tree-decomposition of G from the strongly

balanced tree decompositions Ti. Although the resulting tree decomposition is not

optimal, it suffices for obtaining significant speedups on the algebraic path problem.

(b) Given the above tree-decomposition algorithm for concurrent graphs G, in Section 7.5

we present the algorithms for handling algebraic path queries. In particular, we

introduce the partial expansion G of G for additionally handling partial queries, and

describe the algorithms for preprocessing and querying G in the claimed time and

space bounds.

2. Lower bound. Given an arbitrary graph G (not of constant treewidth) of n nodes, we

show how to construct a constant-treewidth graph G′′ of 2 · n nodes, and a graph G′ that

is the product of G′′ with itself, such that algebraic path queries in G coincide with such

queries in G′. This construction requires quadratic time on n. The conditional optimality

of our algorithms follows, as improvement over our algorithms must achieve the same

improvement for the algebraic path problem on arbitrary graphs.

Organization. The rest of this chapter is organized as follows.

1. In Section 7.2 we present some definitions regarding concurrent graphs and extensions of

the algebraic path problem in the concurrent setting.
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2. In Section 7.4 we present a method for constructing a tree decomposition of a concurrent

graph, given a strongly-balanced tree decomposition for each component graph.

3. In Section 7.5 we present a data structure for preprocessing and querying a concurrent

graph that is the composition of k constant-treewidth graphs.

4. In Section 7.6 we present some (conditional, in cases) lower bounds which prove the

optimality of our data structure in handling algebraic path queries in several cases.

5. In Section 7.3 we sketch a modeling example where algebraic paths can be used for the

static analysis of a concurrent program.

6. In Section 7.7 we present an experimental evaluation of our data structure on some real-

world concurrent programs.

7.2 Definitions

Product graphs. A graph Gp = (Vp, Ep) is said to be the product graph of k graphs (Gi =

(Vi, Ei))1⩽i⩽k if Vp =
∏

i Vi and Ep is such that for all u, v ∈ Vp with u = ⟨ui⟩1⩽i⩽k and

v = ⟨vi⟩1⩽i⩽k, we have (u, v) ∈ Ep iff there exists a set I ⊆ [k] such that (i) (ui, vi) ∈ Ei for

all i ∈ I, and (ii) ui = vi for all i ̸∈ I. In words, an edge (u, v) ∈ Ep is formed in the product

graph by traversing a set of edges {(ui, vi) ∈ Ei}i∈I in some component graphs {Gi}i∈I , and

traversing no edges in the remaining {Gi}i ̸∈I . We say that Gp is the k-self-product of a graph G′

if Gi = G′ for all 1 ⩽ i ⩽ k.

Concurrent graphs. A graph G = (V,E) is called a concurrent graph of k graphs (Gi =

(Vi, Ei))1⩽i⩽k if V = Vp and E ⊆ Ep, where Gp = (Vp, Ep) is the product graph of (Gi)i. Given

a concurrent graph G = (V,E) and a node u ∈ V , we will denote by ui the i-th constituent of u.

We say that G is a k-self-concurrent of a graph G′ if Gp is the k-self-product of G′.

Various notions of composition. The framework we consider is quite general as it captures

various different notions of concurrent composition. Indeed, the edge set of the concurrent graph

is any possible subset of the edge set of the corresponding product graph. Then, two well-known
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Method: DiningPhilosophers

1 while True do

2 while fork not mine or knife not mine

do

3 if fork is free then

4 lock(ℓ)

5 acquire(fork)

6 unlock(ℓ)

7 end

8 if knife is free then

9 lock(ℓ)

10 acquire(knife)

11 unlock(ℓ)

12 end

13 end

14 dine(fork, knife)// for some time

15 lock(ℓ)

16 release(fork)

17 release(knife)

18 unlock(ℓ)

19 discuss()// for some time

20 end

1 20
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2, 7, 12
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4, 5, 7

5, 6, 7

7, 8, 12

8, 9, 12

9, 10, 12

10, 11, 12

Figure 7.2: A concurrent program, its control flow graph, and a tree decomposition of the

control-flow graph.

composition notions can be modeled as follows. For any edge (u, v) ∈ E of the concurrent graph

G, let Iu,v = {i ∈ [k] : (ui, vi) ∈ Ei} denote the components that execute a transition in (u, v).

1. In synchronous composition at every step all components make one move each, simultane-

ously. This is captured by Iu,v = [k] for all (u, v) ∈ E.

2. In asynchronous composition at every step only one component makes a move. This is

captured by |Iu,v| = 1 for all (u, v) ∈ E.

Partial nodes of concurrent graphs. A partial node u of a concurrent graph G is an element

of
∏

i(Vi ∪ {⊥}), where ⊥ ̸∈
⋃

i Vi. Intuitively, ⊥ is a fresh symbol to denote that a component
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is unspecified. A partial node u is said to refine a partial node v, denoted by u ⊑ v if for all

1 ⩽ i ⩽ k either vi = ⊥ or vi = ui. We say that the partial node u strictly refines v, denoted by

u ⊏ v, if u ⊑ v and u ̸= v (i.e., for at least one constituent i we have vi = ⊥ but ui ̸= ⊥). A

partial node u is called strictly partial if it is strictly refined by some node u ∈ V (i.e., u has at

least one ⊥). The notion of semiring distances is extended to partial nodes, and for partial nodes

u, v of G we define the semiring distance from u to v as

d(u, v) =
⨁

u⊑u,v⊑v

d(u, v)

where u, v ∈ V . In the sequel, a partial node u will be either (i) a node of V , or (ii) a strictly

partial node. We refer to nodes of the first case as actual nodes, and write u (i.e., without the bar).

Distances where one endpoint is a strictly partial node u succinctly quantify over all nodes of all

the components for which the corresponding constituent of u is ⊥. Observe that the distance still

depends on the unspecified components.

Semiring distance queries on concurrent graphs of constant-treewidth components. In this

chapter we are interested in the following problem. Let G = (V,E) be a concurrent graph of

k ⩾ 2 constant-treewidth graphs (Gi = (Vi, Ei))1⩽i⩽k, and wt : E → Σ be a weight function

that assigns to every edge of G a weight from a set Σ that forms a complete, closed semiring

S = (Σ,⊕,⊗,0,1). The semiring distance problem on G asks the following types of queries:

1. Single-source query. Given a partial node u of G, return the distance d(u, v) to every node

v ∈ V . When the partial node u is an actual node of G, we have a traditional single-source

query.

2. Pair query. Given two nodes u, v ∈ V , return the distance d(u, v).

3. Partial pair query. Given two partial nodes u, v of G where at least one is strictly partial,

return the distance d(u, v).

Fig. 7.2 presents the notions introduced in this section on a toy example on the dining philosophers

program. See Section 7.3 for an example on pair and partial pair queries in the analysis of the

dining philosophers program.

Input parameters. For technical convenience, we consider a uniform upper bound n on the

number of nodes of each Gi (i.e. |Vi| ⩽ n). Similarly, we let t = O(1) be an upper bound on the
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treewidth of each Gi. The number k is taken to be fixed and independent of n. The input of the

problem consists of the graphs (Gi)1⩽i⩽k, together with some representation of the edge relation

E of G.

Complexity measures. The complexity of our algorithms is measured as a function of n. In

particular, we ignore the size of the representation of E when considering the size of the input.

This has the advantage of obtaining complexity bounds that are independent of the representation

of E, which can be represented implicitly (such as synchronous or asynchronous composition) or

explicitly, depending on the modeling of the problem under consideration. The time complexity

of our algorithms is measured in number of operations, with each operation being either a basic

machine operation, or an application of one of the operations of the semiring.

7.3 Modeling Example

Fig. 7.2 illustrates the introduced notions in a small example of the well-known k dining

philosophers problem. For the purpose of the example, lock is considered a blocking operation.

Consider the case of k = 2 threads being executed in parallel. The graphs G1 and G2 that

correspond to the two threads have nodes of the form (i, ℓ), where i ∈ [20] is a node of the

control flow graph, and ℓ ∈ [3] denotes the thread that controls the lock (ℓ = 3 denotes that ℓ

is free, whereas ℓ = i ∈ [2] denotes that it is acquired by thread i). The concurrent graph G is

taken to be the asynchronous composition of G1 and G2, and consists of nodes ⟨x, y⟩, where x

and y is a node of G1 and G2 respectively, such that x and y agree on the value of ℓ (all other

nodes can be discarded). For brevity, we represent nodes of G as triplets ⟨x, y, ℓ⟩ where now

x and y are nodes in the control flow graphs G1 and G2 (i.e., without carrying the value of the

lock), and ℓ is the value of the lock. A transition to a node ⟨x, y, ℓ⟩ in which one component

Gi performs a lock is allowed only from a node where ℓ = 3, and sets ℓ = i in the target node

(i.e., ⟨x, y, i⟩). Similarly, a transition to a node ⟨x, y, ℓ⟩ in which one component Gi performs an

unlock is allowed from a node where ℓ = i, and sets ℓ = 3 in the target node(i.e., ⟨x, y, 3⟩).

Suppose that we are interested in determining (1) whether the first thread can execute

dine(fork, knife) without owning fork or knife, and (2) whether a deadlock can be reached

in which each thread owns one resource. These questions naturally correspond to partial pair
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and pair queries respectively, as in case (1) we are interested in a local property of G1, whereas

in case (2) we are interested in a global property of G. We note, however, that case (1) still

requires an analysis on the concurrent graph G. In each case, the analysis requires a set of data

facts D, along with dataflow functions f : 2D → 2D that mark each edge. These functions

are distributive, in the sense that f(A) =
⋃

a∈A f({a}). Hence, with a slight abuse of notation,

we can define f as functions f : D → D, and their extension to 2D → 2D is according to the

distributivity property.

Local property as a partial pair query. Assume that we are interested in determining whether

the first thread can execute dine(fork, knife) without owning fork or knife. A typical data fact set

is D = {fork, knife, null}, where each data fact denotes that the corresponding resource must

be owned by the first thread. The concurrent graph G is associated with a weight function wt

of dataflow functions f : 2D → 2D. The dataflow function wt(e) along an edge e behaves as

follows on input data fact F (we only describe the case where F = fork, as the other case is

symmetric).

1. If e transitions to a node in which the second thread acquires fork or the first thread releases

fork, then wt(e)(fork)→ null (i.e., fork is removed from the data facts).

2. Else, if e transitions to a node in which the first thread acquires fork, then wt(e)(null)→

fork (i.e., fork is inserted to the data facts).

Similarly for the F = knife data fact. The “meet-over-all-paths” operation is set intersection.

Then the question is answered by testing whether d(⟨1, 1, 3⟩, ⟨14,⊥, 3⟩) = {{fork, knife}}, i.e.,

by performing a partial pair query, in which the node of the second thread is unspecified.

Global property as a pair query. Assume that we are interested in determining whether the

two threads can cause a deadlock. Because of symmetry, we look for a deadlock in which the

first thread may hold the fork, and the second thread may hold the knife. A typical data fact set is

D = 2{fork,knife}. For a data fact F ∈ D we have

1. fork ∈ F if fork may be acquired by the first thread.

2. knife ∈ F if knife may be acquired by the second thread.

The concurrent graph G is associated with a weight function wt of dataflow functions f : 2D →
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2D. The dataflow function wt(e) along an edge e behaves as follows on input data fact F .

1. If e transitions to a node in which the second thread acquires fork or the first thread releases

fork, then wt(e)(F )→ F \ {fork} (i.e., the first thread no longer owns fork).

2. If e transitions to a node in which the first thread acquires fork, then wt(e)(F )→ F∪{fork}

(i.e., the first thread now owns fork).

3. If e transitions to a node in which the first thread acquires knife or the second thread

releases knife, then wt(e)(F )→ F \ {knife} (i.e., the second thread no longer owns knife).

4. If e transitions to a node in which the second thread acquires knife, then wt(e)(F ) →

F ∪ {knife} (i.e., the second thread now owns knife).

The “meet-over-all paths” operation is set union. Then the question is answered by testing

whether {fork, knife} ∈ d(⟨1, 1, 3⟩, ⟨2, 2, 3⟩), i.e., by performing a pair query, and finding

out whether the two threads can start the while loop with each one holding one resource.

Alternatively, we can answer the question by performing a single-source query from ⟨1, 1, 3⟩ and

finding out whether there exists any node in the concurrent graph G in which every thread owns

one resource (i.e., its distance contains {fork, knife}).

7.4 Concurrent Tree Decomposition

In this section we present the construction of a tree-decomposition Tree(G) of a concurrent graph

G = (V,E) of k constant-treewidth graphs. In general, G can have treewidth which depends on

the number of its nodes (e.g., G can be a grid, which has treewidth n, obtained as the product

of two lines, which have treewidth 1). While the treewidth computation for constant-treewidth

graphs is linear time [Bodlaender, 1996], it is NP-complete for general graphs [Bodlaender, 1993].

Hence computing a tree decomposition that achieves the treewidth of G can be computationally

expensive (e.g., exponential in the size of G). Here we develop an algorithm ConcurTree which

constructs a tree-decomposition ConcurTree(G) of G, given an (α, β, γ) tree-decomposition of

the components, in O(nk) time and space (i.e., linear in the size of G), such that the following

properties hold: (i) the width is O(nk−1); and (ii) for every bag in level at least i · γ, the size of

the bag is O(nk−1 · βi) (i.e., the size of the bags decreases geometrically along the levels).
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Algorithm ConcurTree for concurrent tree decomposition. Let G be a concurrent graph of

k graphs (Gi)1⩽i⩽k. The input consists of a full binary tree-decomposition Ti of constant

width for every graph Gi. In the following, Bi ranges over bags of Ti, and we denote by

Bi,r, with r ∈ [2], the r-th child of Bi. We construct the concurrent tree-decomposition

T = ConcurTree(G) = (VT , ET ) of G using the recursive procedure ConcurTree, which operates

as follows. On input (Ti(Bi))1⩽i⩽k, return a tree decomposition where

1. The root bag B is

B =
⋃

1⩽i⩽k

((∏
j<i

VTj
(Bj)

)
×Bi ×

(∏
j>i

VTj
(Bj)

))
(7.1)

2. If every Bi is a non-leaf bag of Ti, for every choice of ⟨r1, . . . , rk⟩ ∈ [2]k, repeat the

procedure for (Ti(Bi,ri))1⩽i⩽k, and let B′ be the root of the returned tree. Make B′ a child

of B.

3. If some Bi is a leaf bag of Ti, then the algorithm terminates.

See Algorithm 16 for the formal description.

Algorithm 16: ConcurTree
Input: Tree-decompositions Ti = (VTi , ETi)1⩽i⩽k with root bags (Bi)1⩽i⩽k.

Output: A tree decomposition T of the concurrent graph

1 Assign B ← ∅

2 Assign T ← a tree with the single bag B as its root

3 for i ∈ [k] do

4 Assign B ← B ∪
(∏

1⩽j<i VTj (Bj)×Bi ×
∏

i<j⩽k VTj (Bj)
)

5 end

6 if none of the Bi’s is a leaf in its respective Ti then

7 for every sequence of bags B′
1, . . . , B

′
k such that each B′

i is a child of Bi in Ti do

8 Assign T ′
i ← ConcurTree(T1(B

′
1), . . . , Tk(B

′
k))

9 Add T ′
i to Ti, setting the root of T ′

i as a new child of B

10 end

11 end

12 return T
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Figure 7.3: The tree-decomposition ConcurTree(G) of a concurrent graph G of two constant-

treewidth graphs G1 and G2.

Let Bi be the root of the tree-decomposition Ti. We denote by ConcurTree(G) the application of

the recursive procedure ConcurTree on (Ti(Bi))1⩽i⩽k. Fig. 7.3 provides an illustration.

Remark 7.1. Recall that for any bag Bj of a tree-decomposition Tj , we have VTj
(Bj) =

⋃
B′

j
B′

j ,

where B′
j ranges over bags in Tj(Bj). Then, for any two bags Bi1 , Bi2 , of tree-decompositions

Ti1 and Ti2 respectively, we have

VTi1
(Bi1)× VTi2

(Bi2) =
⋃

B′
i1
,B′

i2

(
B′

i1
×B′

i2

)
where B′

i1
and B′

i2
range over bags in Ti1(Bi1) and Ti2(Bi2) respectively. Since each tree-

decomposition Ti has constant width, it follows that |VTi1
(Bi1) × VTi2

(Bi2)| = O(|Ti1(Bi1)| ·

|Ti2(Bi2)|). Thus, the size of each bag B of ConcurTree(G) constructed in Eq. (7.1) on some

input (Ti(Bi))i is |B| = O(
∑

i

∏
j ̸=i nj), where ni = |Ti(Bi)|.

In view of Remark 7.1, the time and space required by ConcurTree to operate on input

(Ti(Bi))1⩽i⩽k where |Ti(Bi)| = ni, is given, up to constant factors, by

T (n1, . . . , nk) ⩽
∑
1⩽i⩽k

∏
j ̸=i

nj +
∑

(ri)i∈[2]k
T (n1,r1 , . . . , nk,rk) (7.2)

such that for every i we have that
∑

ri∈[2] ni,ri ⩽ ni.

The following lemma establishes the correctness of the construction.

Lemma 7.1. ConcurTree(G) is a tree decomposition of G.

Proof. We show that T satisfies the three conditions of a tree decomposition.
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C1 For each node u = ⟨ui⟩1⩽i⩽k, let j = argmini Lv(ui). Then u ∈ B, where B is the bag

constructed by step 1 of ConcurTree when it operates on input (Ti(Bi))1⩽i⩽k, where each

Ti is a tree decomposition, and additionally Bj = Buj
(i.e., Bj is the root bag of uj in Tj).

C2 Similarly, for each edge (u, v) ∈ E with u = ⟨ui⟩1⩽i⩽k and v = ⟨vi⟩1⩽i⩽k, let j =

argmini(max(Lv(ui), Lv(vi))), where argmini f(i) returns the value of i that minimizes

f . Then (u, v) ∈ B, where B is a bag similar to C1.

C3 For any node u = ⟨ui⟩1⩽i⩽k and path P : B ⇝ B′ with u ∈ B ∩ B′, let B′′ be any bag

of P . Since at least one of B, B′ is a descendant of B′′, we have VT (B) ⊆ VT (B
′′) or

VT (B
′) ⊆ VT (B

′′), and because u ∈ B∩B′, if B′′ was constructed on input (Ti(B
′′
i ))1⩽i⩽k,

where each Ti is a tree decomposition, we have ui ∈ VTi
(B′′

i ). Let (Ti(Bi))1⩽i⩽k and

(Ti(B
′
i))1⩽i⩽k be the inputs to the algorithm when B and B′ were constructed, and it

follows that for some 1 ⩽ j ⩽ k we have uj ∈ Bj ∩B′
j . Then B′′

j is an intermediate bag

in the path Pj : Bj ⇝ B′
j in Tj , thus uj ∈ B′′

j and hence u ∈ B′′.

The desired result follows.

We now turn our attention to the complexity. We start with analyzing the following recurrence,

which will be useful in the complexity analysis afterwards.

Lemma 7.2. Consider the following recurrence.

T (n1, . . . , nk) ⩽
∑
1⩽i⩽k

∏
j ̸=i

nj +
∑

(ri)i∈[2]k
T (n1,r1 , . . . , nk,rk) (7.3)

such that for every i we have that ni,1, ni,2 ⩾ 1 and
∑

ri∈[2] ni,ri ⩽ ni and as the base case we

have that if ni = 1 for some i, then

T (n1, . . . , nk) ⩽
∑
1⩽i⩽k

∏
j ̸=i

nj (7.4)

Then Eq. 7.3 has the solution

T (n1, . . . , nk) ⩽ 2 · k ·
∏

1⩽i⩽k

ni −
∑
1⩽i⩽k

∏
j ̸=i

nj. (7.5)

Proof. Observe that the right hand side of Eq. 7.5 is always larger than the right hand side of

Eq.7.4. Hence, in order to verify that Eq. 7.3 has Eq. 7.5 as a solution, it suffices to substitute
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Eq. 7.5 in Eq. 7.3 (i.e., we take Eq. 7.5 also as the base case solution). Indeed, substituting

Eq. 7.5 to the recurrence Eq. 7.3 we have

T (n1, . . . , nk) ⩽
∑
1⩽i⩽k

∏
j ̸=i

nj +
∑

(ri)i∈[2]k

(
2 · k ·

∏
1⩽i⩽k

ni,ri −
∑
1⩽i⩽k

∏
j ̸=i

nj,rj

)

=
∑
1⩽i⩽k

∏
j ̸=i

nj + 2 · k ·X − Y (7.6)

where

X =
∑

(ri)i∈[2]k

( ∏
1⩽i⩽k

ni,ri

)
and Y =

∑
(ri)i∈[2]k

(∑
1⩽i⩽k

∏
j ̸=i

nj,rj

)

We compute X and Y respectively.

X =
∑

(ri)i∈[2]k

( ∏
1⩽i⩽k

ni,ri

)
=
∑
r1∈[2]

n1,r1 ·

⎛⎝∑
r2∈[2]

n2,r2 ·

⎛⎝· · ·∑
rk∈[2]

nk,rk

⎞⎠⎞⎠ ⩽ ∏
1⩽i⩽k

ni (7.7)

by factoring out every ni,ri of the sum. Similarly,

Y =
∑

(ri)i∈[2]k

(∑
1⩽i⩽k

∏
j ̸=i

nj,rj

)
=
∑
1⩽i⩽k

⎛⎝ ∑
(ri)i∈[2]k

∏
j ̸=i

nj,rj

⎞⎠
=2 ·

∑
1⩽i⩽k

⎛⎝∑
r1∈[2]

n1,r1 · . . . (
∑

ri−1∈[2]

ni−1,ri−1
· (
∑

ri+1∈[2]

ni+1,ri+1
· . . . (

∑
rk∈[2]

nk,rk)))

⎞⎠
⩾2 ·

∑
1⩽i⩽k

∏
j ̸=i

nj (7.8)

The second equality is obtained by swapping the inner with the outer sum. The third equality

follows by expanding the sum over (ri)i ∈ [2]k. The final inequality is obtained since for all

1 ⩽ i ⩽ k we have ni,1+ni,2 ⩽ ni. Substituting inequalities Eq. 7.7 and 7.8 to Eq. 7.6 we obtain

T (n1, . . . , nk) ⩽
∑
1⩽i⩽k

∏
j ̸=i

nj + 2 · k ·X − Y ⩽ 2 · k ·
∏

1⩽i⩽k

ni −
∑
1⩽i⩽k

∏
j ̸=i

nj

as desired.

Lemma 7.3. ConcurTree requires O(nk) time and space.

Proof. It is easy to verify that ConcurTree(G) performs a constant number of operations per node

per bag in the returned tree decomposition. Hence we will bound the time taken by bounding

the size of ConcurTree(G). Consider a recursion step of ConcurTree on input (Ti(Bi))1⩽i⩽k. Let
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ni = |Ti(Bi)| for all 1 ⩽ i ⩽ k, and ni,ri = |Ti(Bi,ri)|, ri ∈ [2], where Bi,ri is the ri-th child

of Bi. In view of Remark 7.1, the time required by ConcurTree on this input is given by the

recurrence in Eq. (7.3), up to a constant factor. The desired result follows from Lemma 7.2.

We summarize the results of this section with the following theorem.

Theorem 7.1. Let G = (V,E) be a concurrent graph of k constant-treewidth graphs (Gi)1⩽i⩽k

of n nodes each. Let a binary (α, β, γ) tree-decomposition Ti for every graph Gi be given,

for some constant α. ConcurTree constructs a 2k-ary tree-decomposition ConcurTree(G) of

G in O(nk) time and space, with the following property. For every i ∈ N and bag B at level

Lv(B) ⩾ i · γ, we have |B| = O(nk−1 · βi).

Proof. Lemma 7.1 proves the correctness and Lemma 7.3 the complexity. Here we focus on

bounding the size of a bag B with Lv(B) ⩽ i · γ. Let (Ti(Bi))1⩽i⩽k be the input on ConcurTree

when it constructed B using Eq. (7.1) and ni = |Ti(Bi)|. Observe that Lv(B) = Lv(Bi) for all i,

and since each Ti is (β, γ)-balanced, we have that ni ⩽ O(n·βi). Since each Ti is α-approximate,

|Bi| = O(1) for all i. It follows from Eq. (7.1) and Remark 7.1 that |B| = O(nk−1 · βi).

7.5 Semiring Distances on Concurrent Graphs

We now turn our attention to the core algorithmic problem of this chapter, namely answering

semiring distance queries in a concurrent graph G of k constant-treewidth graphs (Gi)1⩽i⩽k. To

this direction, we develop a data structure ConcurSD (for concurrent semiring distances) which

will preprocess G and afterwards support single-source, pair, and partial pair queries on G.

Informal description of the preprocessing. The preprocessing phase of ConcurSD is handled

by algorithm ConcurPreprocess, which performs the following steps.

1. First, the partial expansion G of G is constructed by introducing a pair of strictly partial

nodes u1, u2 for every strictly partial node u of G, and edges between strictly partial nodes

and the corresponding nodes of G that refine them.

2. Second, the concurrent tree-decomposition T = ConcurTree(G) of G is constructed, and

modified to a tree-decomposition T of the partial expansion graph G.
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3. Third, a standard, two-way pass of T is performed to compute local distances. In this

step, for every bag B in T and all partial nodes u, v ∈ B, the distance d(u, v) is computed

(i.e., all-pair distances in B). Since we compute distances between nodes that are local in

a bag, this step is called local distance computation. This information is used to handle

(i) single-source queries and (ii) partial pair queries in which both nodes are strictly partial.

4. Finally, a top-down pass of T is performed in which for every node u and partial node

v ∈ VT (Bu) (i.e., v appears in some ancestor of Bu) the distances d(u, v) and d(v, u) are

computed. This information is used to handle pair queries in which at least one node is a

node of G (i.e., not strictly partial).

Bottom-up and top-down traversals. In the description of the preprocessing algorithm

ConcurPreprocess, we make use of two types of traversals of the tree decomposition. A bottom-

up traversal is any traversal of the tree in which a bag B is visited after all children of B have

been visited. A top-down traversal is any traversal of the tree in which a bag B is visited after

the parent of B has been visited.

Algorithm ConcurPreprocess. We now formally describe algorithm ConcurPreprocess for pre-

processing the concurrent graph G = (V,E) for the purpose of answering semiring distance

queries. For any desired 0 < ϵ ⩽ 1, we choose appropriate constants α, β, γ, which will

be defined later for the complexity analysis. On input G = (V,E), where G is a concurrent

graph of k constant-treewidth graphs (Gi = (Vi, Ei))1⩽i⩽k, and a weight function wt : E → Σ,

ConcurPreprocess operates as follows:

1. Construct the partial expansion G = (V ,E) of G together with an extended weight

function wt : E → Σ as follows.

(a) The node set is V = V ∪ {u1, u2 : ∃u ∈ V s.t. u ⊏ u}; i.e., V consists of nodes in

V and two copies for every partial node u that is strictly refined by a node u of G.

(b) The edge set is E = E ∪ {(u1, u), (u, u2) : u1, u2 ∈ V and u ∈ V s.t. u ⊏ u1, u2},

i.e., along with the original edges E, the first (resp. second) copy of every strictly

partial node has outgoing (resp. incoming) edges to (resp. from) the nodes of G that

refine it.

(c) For the weight function we have wt(u, v) = wt(u, v) if u, v ∈ V , and wt(u, v) = 1
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otherwise. That is, the original weight function is extended with value 1 (which is

neutral for semiring multiplication) to all new edges in G.

2. Construct the tree-decomposition T = (V T , ET ) of G as follows.

(a) Obtain an (α, β, γ) tree-decomposition Ti = Tree(Gi) of every graph Gi using

Theorem 2.2.

(b) Construct the concurrent tree-decomposition T = ConcurTree(G) of G using

(Ti)1⩽i⩽k.

(c) Let T be identical to T , with the following exception: For every bag B of T and

B the corresponding bag in T , for every node u ∈ B, insert in B all strictly partial

nodes u1, u2 of V that u refines. Formally, set B = B∪{u1, u2 : ∃u ∈ B s.t. u ⊏ u}.

Note that also u ∈ B.

Observe that the root bag of T contains all strictly partial nodes.

3. Perform the local distance computation on T as follows. For every partial node u, maintain

two map data structures FWDu, BWDu : Bu → Σ. Intuitively, FWDu (resp. BWDu) aims

to store the forward (resp., backward) distance, i.e., distance from (resp., to) u to (resp.

from) nodes in Bu. Initially set FWDu(v) = wt(u, v) and BWDu(v) = wt(v, u) for all

partial nodes v ∈ Bu (and FWDu(v) = BWDu(v) = 0 if (u, v) ̸∈ E). At any point in the

computation, given a bag B we denote by wtB : B×B → Σ a map data structure such that

for every pair of partial nodes u, v with Lv(v) ⩽ Lv(u) we have wtB(u, v) = FWDu(v)

and wtB(v, u) = BWDu(v).

(a) Traverse T bottom-up, and for every bag B, execute an all-pairs semiring distance

computation on G[B] with weight function wtB. This is done using standard algo-

rithms for the transitive closure, e.g. [Lehmann, 1977; Floyd, 1962; Warshall, 1962;

Kleene, 1956]. For every pair of partial nodes u, v with Lv(v) ⩽ Lv(u), set

BWDu(v) = d′(v, u) and FWDu(v) = d′(u, v), where d′(u, v) and d′(v, u) are the

computed distances in G[B].

(b) Traverse T top-down, and for every bag B perform the computation of Item 3a.

4. Perform the ancestor distance computation on T as follows. For every node u, maintain
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two map data structures Fu,Tu : VT (Bu) → Σ from partial nodes that appear in the

ancestor bags of Bu to Σ. These maps aim to capture distances between the node u and

nodes in the ancestor bags of Bu (in contrast to FWDu and BWDu which store distances

only between u and nodes in Bu). Initially, set Fu(v) = FWDu(v) and Tu(v) = BWDu(v)

for every partial node v ∈ Bu. Given a pair of partial nodes u, v with Lv(v) ⩽ Lv(u) we

denote by wt+(u, v) = Fu(v) and wt+(v, u) = Tu(v). Traverse T via a DFS starting from

the root, and for every encountered bag B with parent B
′
, for every node u such that B is

the root bag of u, for every partial node v ∈ VT (Bu), assign

Fu(v) =
⨁

x∈B∩B′

FWDu(x)⊗ wt+(x, v) (7.9)

Tu(v) =
⨁

x∈B∩B′

BWDu(x)⊗ wt+(v, x) (7.10)

If B is the root of T , simply initialize the maps Fu and Tu according to the corresponding

maps FWDu and BWDu constructed from Item 3.

5. Preprocess T to answer LCA queries in O(1) time [Harel and Tarjan, 1984].

See Algorithms 17 to 20 for the formal description of the above steps.

The following claim states that the first (resp. second) copy of each strictly partial node inserted

in Item 1 captures the distance from (resp. to) the corresponding strictly partial node of G.

Claim 7.1. For every partial node u and strictly partial node v we have d(u, v) = d(u, v2) and

d(v, u) = d(v1, u).

Proof. By construction, for every node v ∈ V that strictly refines v (i.e., v ⊏ v), we have

wt(v1, v) = d(v1, v) = 1 and wt(v, v2) = d(v, v2) = 1, i.e., every such v can reach (resp. be

reached from) v2 (resp. v1) without changing the distance from u. The claim follows easily.

Key novelty and insights. The key novelty and insights of our algorithm are as follows:

1. A partial pair query can be answered by breaking it down to several pair queries. Instead,

preprocessing the partial expansion of the concurrent graph allows to answer partial

pair queries directly. Moreover, the partial expansion does not increase the asymptotic

complexity of the preprocessing time and space.
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Algorithm 17: ConcurPreprocess Item 1
Input: Graphs (Gi = Vi, Ei)1⩽i⩽k, a concurrent graph G(V,E) of Gi’s and a weight function

wt : E → Σ

/* Construct the partial expansion G of G */

1 Assign V ← V

2 Assign E ← E

3 Create a map wt : E → Σ

4 Assign wt← wt

5 foreach u′ ∈
∏

i(Vi ∪ {⊥}) do

6 Let u ∈ V such that u ⊏ u′

7 Assign V ← V ∪
{
u1, u2

}
8 Assign E ← E ∪

{
(u1, u), (u, u2)

}
9 Set wt(u1, u)← 1

10 Set wt(u, u2)← 1

11 end

12 return G = (V ,E) and wt

Algorithm 18: ConcurPreprocess Item 2
Input: A tree-decomposition T = Tree(G) = (VT , ET ) and the partial expansion G = (V ,E)

/* Construct the tree-decomposition T of G */

1 Assign V T ← ∅

2 foreach bag B ∈ VT do

3 Assign B ← B foreach u ∈ B do

4 foreach u ∈ V such that u ⊏ u do

5 Assign B ← B ∪
{
u1, u2

}
6 end

7 end

8 Assign V T ← V T ∪ {B}

9 end

10 return T = (V T , ET )
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Algorithm 19: ConcurPreprocess Item 3
Input: The partial expansion tree-decomposition T = (V T , ET ), and weight function wt

/* Local distance computation */

1 foreach partial node u do

2 Create two maps FWDu, BWDu : Bu → Σ

3 for v ∈ Bu do

4 Assign FWDu(v)← wt(u, v)

5 Assign BWDu(v)← wt(v, u)

6 end

7 end

8 foreach bag B of T in bottom-up order do

9 Assign d′ ← the transitive closure of G[B] wrt wtB

10 foreach u, v ∈ B do

11 if Lv(v) ⩽ Lv(u) then

12 Assign BWDu(v)← d′(v, u)

13 Assign FWDu(v)← d′(u, v)

14 end

15 end

16 end

17 foreach bag B of T in top-down order do

18 Assign d′ ← the transitive closure of G[B] wrt wtB

19 foreach u, v ∈ B do

20 if Lv(v) ⩽ Lv(u) then

21 Assign BWDu(v)← d′(v, u)

22 Assign FWDu(v)← d′(u, v)

23 end

24 end

25 end
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Algorithm 20: ConcurPreprocess Item 4
Input: The partial expansion tree-decomposition T = (V T , ET ) and maps

FWDu, BWDu : Bu → Σ for every partial node u

/* Ancestor distance computation */

1 foreach node u ∈ V do

2 Create two maps Fu,Tu : VT (Bu)→ Σ

3 end

4 foreach bag B of T in DFS order starting from the root do

5 Let B′ be the parent of B

6 foreach node u ∈ B ∩ V such that B is the root of u do

7 foreach v ∈ VT (Bu) do

8 Assign Fu(v)←
⨁

x∈B∩B′
FWDu(x)⊗ wt+(x, v)

9 Assign Tu(v)←
⨁

x∈B∩B′
BWDu(x)⊗ wt+(v, x)

10 end

11 end

12 end

2. ConcurPreprocess computes the transitive closure only during the local distance computa-

tion in each bag (Item 3 above), instead of a global computation on the whole graph. The

key reason of our algorithmic improvement lies on the fact that the local computation is

cheaper than the global computation, and is also sufficient to handle queries fast.

3. The third key aspect of our algorithm is the strongly balanced tree decomposition, which

is crucially used in Theorem 7.1 to construct a tree decomposition for the concurrent

graph such that the size of the bags decreases geometrically along the levels. By using

the cheaper local distance computation (as opposed to the transitive closure globally) and

recursing on a geometrically decreasing series we obtain the desired complexity bounds for

our algorithm. Both the strongly balanced tree decomposition and the fast local distance

computation play important roles in our algorithmic improvements.

We now turn our attention to the analysis of ConcurPreprocess.

Lemma 7.4. T is a tree decomposition of the partial expansion G.
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Proof. By Theorem 7.1, ConcurTree(G) is a tree decomposition of G. To show that T is a tree

decomposition of the partial expansion G, it suffices to show that the conditions C1-C3 are met

for every pair of nodes u1, u2 that correspond to a strict partial node u of G. We only focus on

u1, as the other case is similar.

C1 This condition is met, as u1 appears in every bag of T that contains a node u that refines

u1.

C2 Since every node u1 is connected only to nodes u of G that refine u, this condition is also

met.

C3 First, observe that u1 appears in the root bag B of T . Then, for every simple path

P : B ⇝ B
′

from the root to some leaf bag B
′
, if B

′′
is the first bag in P where u1

does not appear, then some non-⊥ constituent of u does not appear in bags of TB
′′ , hence

neither does u1. Thus, u1 appears in a contiguous subtree of T .

The desired result follows.

In Lemma 7.5 we establish that the forward and backward maps computed by ConcurPreprocess

store the distances between nodes.

Lemma 7.5. At the end of ConcurPreprocess, the following assertions hold:

1. For all nodes u, v ∈ V such that Bu appears in T (Bv), we have Fu(v) = d(u, v) and

Tu(v) = d(v, u).

2. For all strictly partial nodes v ∈ V and nodes u ∈ V we have Fu(v
2) = d(u, v) and

Tu(v
1) = d(v, u).

3. For all strictly partial nodes u, v ∈ V we have FWDu1(v2) = d(u, v) and BWDu2(v1) =

d(v, u).

Proof. We describe the key invariants that hold during the traversals of T by ConcurPreprocess

in Items 3a, 3b and 4, after the algorithm processes a bag B.

Item 3a For every pair of partial nodes u, v ∈ B such that Lv(v) ⩽ Lv(u) we have FWDu(v) ⪯⨁
P1
⊗(P1) and BWDu(v) ⪯

⨁
P2
⊗(P2) where P1 and P2 are u ⇝ v and v ⇝ u paths

respectively that only traverse nodes in V T (B). The statement follows by a straightforward
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induction on the levels processed by the algorithm in the bottom-up pass. Note that if

u and v are partial nodes in the root of T , the statement yields FWDu(v) = d(u, v) and

BWDu(v) = d(v, u).

Item 3b The invariant is similar to the previous, except that P1 and P2 range over all u⇝ v and

v ⇝ u paths in G respectively. Hence now FWDu(v) = d(u, v) and BWDu(v) = d(v, u).

The statement follows by a straightforward induction on the levels processed by the

algorithm in the top-down pass. Note that the base case on the root follows from the

previous item, where the maps BWD and FWD store actual distances.

Item 4 For every node u ∈ B and partial node v ∈ VT (B) we have Fu(v) = d(u, v) and

Tu(v) = d(v, u). The statement follows from Lemma 2.3 and a straightforward induction

on the length of the path from the root of T to the processed bag B. Indeed, the statement

is true when B is the root of the tree decomposition, which serves as the basis of the

induction. This follows from the correctness Item 3b, as at this point the maps F and T

restricted to nodes of B are identical to the maps FWD and BWD restricted to nodes of B.

For the inductive step, consider any bag B, and assume that the statement holds for the

parent bag B
′
of B. Lemma 2.3 yields that for bag B

′′ ∈ VT (B), for every pair of partial

nodes u, v such that u ∈ B and v ∈ B
′′
, we have that

d(u, v) =
⨁
w∈B′

(d(u,w)⊗ d(w, v))

By the induction hypothesis, the distances d(w, v) are found in the map Fu, whereas the

distances d(u,w) are found, by the correctness of Item 3b in the maps FWDu and BWDu.

It follows that the algorithm combines the distances computed in these maps to compute

the distance d(u, v).

Statement 1 of the lemma follows from Item 4. Similarly for statement 2, together with the

observation that every strictly partial node v appears in the root of T , and thus v ∈ VT (Bu).

Finally, statement 3 follows again from the fact that all strictly partial nodes appear in the root

bag of T . The desired result follows.

Complexity analysis. We now consider the complexity analysis of ConcurPreprocess. Recall

that ConcurPreprocess takes as part of its input a desired constant 0 < ϵ ⩽ 1. We choose a

λ ∈ N and δ ∈ R such that λ ⩾ 4/ϵ and δ ⩽ ϵ/18. Additionally, we set α = 4·λ
δ

, β =
(
1+δ
2

)λ−1
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and γ = λ, which are the constants used for constructing an (α, β, γ) tree-decomposition

Ti = Tree(Gi) in Item 2a of ConcurPreprocess. We start with a technical lemma on two

recurrence relations, Tk and Sk, which are parameterized by k, and will help us bound the time

and space, respectively, spent by ConcurPreprocess.

Lemma 7.6. Consider the recurrences in Eqs. (7.11) and (7.12).

Tk(n) ⩽ n3·(k−1) + 2λ·k · Tk

(
n ·
(
1 + δ

2

)λ−1
)

(7.11)

Sk(n) ⩽ n2·(k−1) + 2λ·k · Sk

(
n ·
(
1 + δ

2

)λ−1
)

(7.12)

Then

1. Tk(n) = O(n3·(k−1)), and

2. (i) Sk(n) = O(n2·(k−1)) if k ⩾ 3, and (ii) S2(n) = O(n2+ϵ).

Proof. We analyze each recurrence separately. First we consider Eq. (7.11). Note that(
n ·
(
1 + δ

2

)λ−1
)3·(k−1)

=

(
1 + δ

2

)3·(λ−1)·(k−1)

· n3·(k−1) (7.13)

and

2λ·k ·
(
1 + δ

2

)3·(λ−1)·(k−1)

=
(1 + δ)3·(λ−1)·(k−1)

22·k·λ+3·(k+λ−1)
(7.14)

and since log(1 + δ) = ln(1+δ)
ln 2

< δ
ln 2

< 2 · δ, we have

(1 + δ)3·(λ−1)·(k−1) = 2log(1+δ)·3·(λ−1)·(k−1) < 26·δ·(λ−1)·(k−1)

Hence the expression in Eq. (7.14) is bounded by 2x with

x ⩽ 6 · δ · (λ− 1) · (k − 1)− 2 · k · λ+ 3 · (λ+ k − 1)

= −2 · λ · k · (1− 3 · δ) + 3 · (λ+ k − 1) · (1− 2 · δ)

Let f(k) = −2 · λ · k · (1− 3 · δ) + 3 · (λ+ k − 1) · (1− 2 · δ) and note that since λ ⩾ 4
ϵ
⩾ 4

and δ ⩽ ϵ
18
⩽ 1

18
, f(k) is decreasing, and thus maximized for k = 2, for which we obtain

f(2) = −4 · λ · (1− 3 · δ) + 3 · (λ+ 1) · (1− 2 · δ) = −λ · (1− 6 · δ) ⩽ 0 as δ ⩽ 1
18

. It follows

that there exists a constant c < 1 for which

2λ·k · Tk

(
n ·
(
1 + δ

2

)λ−1
)
⩽ c · n3·(k−1)



221

which yields that Eq. (7.11) follows a geometric series, and thus Tk(n) = O(n3·(k−1)).

We now turn our attention to Eq. (7.12). When k ⩾ 3, an analysis similar to Eq. (7.11) yields the

bound O(n2·(k−1)). When k = 2, since ϵ > 0, we write Eq. (7.12) as

S2(n) ⩽ n2+ϵ + 22·λ · S2

(
n ·
(
1 + δ

2

)λ−1
)

(7.15)

Similarly as above, we have(
n ·
(
1 + δ

2

)λ−1
)2+ϵ

=

(
1 + δ

2

)(2+ϵ)·(λ−1)

· n2+ϵ (7.16)

and

22·λ ·
(
1 + δ

2

)(2+ϵ)·(λ−1)

=
(1 + δ)(2+ϵ)·(λ−1)

2−2+ϵ·(λ−1)
(7.17)

and since log(1 + δ) = ln(1+δ)
ln 2

< δ
ln 2

< 2 · δ, we have

(1 + δ)(2+ϵ)·(λ−1) < 22·δ·(2+ϵ)·(λ−1)

Hence the expression in Eq. (7.17) is bounded by 2x with

x ⩽ 2 · δ · (2 + ϵ) · (λ− 1) + 2− ϵ · (λ− 1)

= (λ− 1) · (2 · δ · (2 + ϵ)− ϵ) + 2

⩽ (λ− 1) · 4 · ϵ+ 2 · ϵ2 − 18 · ϵ
18

+ 2

⩽ (1− λ) · ϵ · 2
3
+ 2

⩽ −(4− ϵ) · 2
3
+ 2 ⩽ 0

since δ ⩽ ϵ
18

and λ ⩾ 4
ϵ

and ϵ ⩽ 1. It follows that there exists a constant c < 1 for which

22·λ · S2(n) ⩽ c · n2+ϵ

which yields that Eq. (7.15) follows a geometric series, and thus S2(n) = O(n2+ϵ).

The following lemma analyzes the complexity of ConcurPreprocess, and makes use of the above

recurrences.

Lemma 7.7. ConcurPreprocess requires O(n2·k−1) space and

1. O(n3·(k−1)) time if k ⩾ 3, and
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2. O(n3+ϵ) time if k = 2.

Proof. We examine each step of the algorithm separately.

1. The time and space required for this step is bounded by the number of nodes introduced in

the partial expansion G, which is 2 ·
∑

i<k

(
n
i

)
= O(nk−1).

2. By Theorem 7.1, ConcurTree(G) is constructed in O(nk) time and space. In T , the size of

each bag B is increased by constant factor, hence this step requires O(nk) time and space.

3. In each pass, ConcurPreprocess spends |B|3 time to perform an all-pairs semiring distance

computation in each bag B of T [Lehmann, 1977; Floyd, 1962; Warshall, 1962; Kleene,

1956]. The space usage for storing all maps FWDu and BWDu for every node u whose

root bag is B is O(|B|2), since there are at most |B| such nodes u, and each map has size

|B|. By the previous item, we have |B| = O(|B|), where B is the corresponding bag of T

before the partial expansion of G. By Theorem 7.1, we have |B| = O(nk−1 · βi), where

Lv(B) ⩾ i · γ = i · λ, and β =
(
1+δ
2

)λ−1. Then, since T is a full 2k-ary tree, the time

and space required for preprocessing every γ = λ levels of T is given by the following

recurrences respectively (ignoring constant factors for simplicity).

Tk(n) ⩽ n3·(k−1) + 2λ·k · Tk

(
n ·
(
1 + δ

2

)λ−1
)

Sk(n) ⩽ n2·(k−1) + 2λ·k · Sk

(
n ·
(
1 + δ

2

)λ−1
)

By the analysis of Eqs. (7.11) and (7.12) of Lemma 7.6, we have that Tk(n) = O(n3·(k−1))

and (i) Sk(n) = O(n2·(k−1)) if k ⩾ 3, and (ii) S2(n) = O(n2+ϵ).

4. We first focus on the space usage. Let B
i

u denote the ancestor bag of Bu at level i. We

have

|VT (Bu)| ⩽
∑
i

|Bi

u| ⩽ c1 ·
∑
i

|B⌊ i
γ
⌋

u | ⩽ c2 ·
∑
i

|B
⌊ i
γ
⌋

u |

⩽ c3 ·
∑
i

(
nk−1 · βi

)
= O(nk−1)

for some constants c1, c2, c3. The first inequality comes from expressing the size of all

(constantly many) ancestors B
i

u with ⌊ i
γ
⌋ = j as a constant factor the size of B

⌊ i
γ
⌋

u . The
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second inequality comes from Item 1 of this lemma, which states that O(|B|) = O(|B|)

for every bag B. The third inequality comes from Theorem 7.1. The final equality holds

because β is a constant, and thus the sum forms a geometric series. By Item 2, there are

O(nk) such nodes u in T , hence the space required is O(n2·k−1).

We now turn our attention to the time requirement. For every bag B, the algorithm requires

O(|B|2) time to iterate over all pairs of nodes u and x in Eqs. (7.9) and (7.10) to compute

the values Fu(v) and Tu(v) for every v ∈ VT (B). Hence the time required for all nodes u

and one partial node v ∈ VT (B) to store the maps values Fu(v) and T(v) is given by the

recurrence

Tk(n) ⩽ n2·(k−1) + 2λ·k · Tk

(
n ·
(
1 + δ

2

)λ−1
)

The analysis of Eqs. (7.11) and (7.12) of Lemma 7.6 gives Tk(n) = O(n2·(k−1)) for k ⩾ 3

and T2(n) = O(n2+ϵ) (i.e., the above time recurrence is analyzed as the recurrence for Sk
of Lemma 7.6). From the space analysis we have that there exist O(nk−1) partial nodes

v ∈ VT (B) for every node u whose root bag is B. Hence the total time for this step is

O(n3·(k−1)) for k ⩾ 3, and O(n3+ϵ) for k = 2.

5. This step requires time linear in the size of T [Harel and Tarjan, 1984].

The desired result follows.

Algorithm ConcurQuery. In the query phase, ConcurSD answers distance queries using the

algorithm ConcurQuery. We distinguish three cases, according to the type of the query.

1. Single-source query. Given a source node u, initialize a map data structure A : V → Σ,

and initially set A(v) = FWDu(v) for all v ∈ Bu, and A(v) = 0 for all other nodes

v ∈ V \Bu. Perform a BFS on T starting from Bu, and for every encountered bag B and

nodes x, v ∈ B with Lv(v) ⩽ Lv(x), set A(v) = A(v)⊕ (A(x)⊗ FWDx(v)). Return the

map A.

2. Pair query. Given two nodes u, v ∈ V , find the LCA B of bags Bu and Bv. Return⨁
x∈B∩V (Fu(x)⊗ Tv(x)).

3. Partial pair query. Given two partial nodes u, v,

(a) If both u and v are strictly partial, return FWDu1(v2), else



224

(b) If u is strictly partial, return Tv(u
1), else

(c) Return Fu(v
2).

See Algorithms 21 to 23 for the formal description of the above steps. We thus establish the

following theorem.

Algorithm 21: ConcurQuery Single-source query
Input: A source node u ∈ V

Output: A map A : V → Σ that contains distances of nodes from u

1 Create a map A : V → Σ

2 for v ∈ V do

3 Assign A(v)← 0

4 end

5 for every bag B of T in BFS order starting from Bu do

6 for x, v ∈ B ∩ V do

7 if Lv(v) ⩽ Lv(x) then

8 Assign A(v)← A(v)⊕A(x)⊗ FWDx(v)

9 end

10 end

11 end

12 return A

Algorithm 22: ConcurQuery Pair query
Input: Two nodes u, v ∈ V

Output: The distance d(u, v)

1 Let B ← the LCA of Bu and Bv in T

2 Assign d← 0

3 for x ∈ B ∩ V do

4 Assign d← d⊕ FWD+
u (x)⊗ BWD+

v (x)

5 end

6 return d

Theorem 7.2. Let G = (V,E) be a concurrent graph of k constant-treewidth graphs (Gi)1⩽i⩽k,

and wt : E → Σ a weight function of G. For any fixed ϵ > 0, the data structure ConcurSD

correctly answers single-source and pair semiring distance queries and requires:
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Algorithm 23: ConcurQuery Partial pair query
Input: Two partial nodes u, v ∈ V , at least one of which is strictly partial

Output: The distance d(u, v)

1 if both u and v are strictly partial then

2 return FWDu1(v2)

3 else if u is strictly partial then

4 return BWD+
v (u

1)

5 else

6 return FWD+
u (v

2)

7 end

1. Preprocessing time

(a) O(n3·(k−1)) if k ⩾ 3, and

(b) O(n3+ϵ) if k = 2.

2. Preprocessing space O(n2·k−1).

3. Single-source query time

(a) O(n2·(k−1)) if k ⩾ 3, and

(b) O(n2+ϵ) if k = 2.

4. Pair query time O(nk−1).

5. Partial pair query time O(1).

Proof. The correctness of ConcurQuery for handling all queries follows from Lemma 2.3 and the

properties of the preprocessing established in Lemma 7.5. The preprocessing complexity is stated

in Lemma 7.7. The time complexity for the single-source query comes from the observation that

ConcurQuery spends quadratic time in each encountered bag, and the result follows from the

recurrence analysis of Eq. (7.12) in Lemma 7.6. The time complexity for the pair query follows

from the O(1) time to access the LCA bag B of Bu and Bv, and the O(|B|) = O(nk−1) time
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required to iterate over all nodes x ∈ B ∩ V . Finally, the time complexity for the partial pair

query follows from the O(1) time lookup in the constructed maps FWD, F and T.

Note that a single-source query from a strictly partial node u can be answered in O(nk) time by

breaking it down to nk partial pair queries. The most common case in analysis of concurrent

programs is that of two threads, for which we obtain the following corollary.

Corollary 7.1. Let G = (V,E) be a concurrent graph of two constant-treewidth graphs G1, G2,

and wt : E → Σ a weight function of G. For any fixed ϵ > 0, the data structure ConcurSD

correctly answers single-source and pair queries and requires:

1. Preprocessing time O(n3+ϵ).

2. Preprocessing space O(n3).

3. Single-source query time O(n2+ϵ).

4. Pair query time O(n).

5. Partial pair query time O(1).

Remark 7.2. In contrast to Corollary 7.1, the existing methods for handling even one pair

query require hexic time and quartic space [Lehmann, 1977; Floyd, 1962; Warshall, 1962;

Kleene, 1956] by computing the transitive closure. While our improvements are most significant

for semiring distance queries, they imply improvements also for special cases like reachability

(expressed in Boolean semirings). For reachability, the complete preprocessing requires quartic

time, and without preprocessing every query requires quadratic time. In contrast, with almost

cubic preprocessing we can answer pair (resp., partial pair) queries in linear (resp. constant)

time.

Note that Item 4 of ConcurPreprocess is required for handling pair queries only. By skipping this

step, we can handle every (partial) pair query u, v similarly to the single source query from u,

but restricting the BFS to the path P : Bu ⇝ Bv, and spending O(|B|2) time for each bag B of

P . Recall (Theorem 7.1) that the size of each bag B in T (and thus the size of the corresponding

bag B in T ) decreases geometrically every γ levels. Then, the time required for this operation is

O(|B′|2) = O(n2), where B
′
is the bag of P with the smallest level. This leads to the following

corollary.
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Corollary 7.2. Let G = (V,E) be a concurrent graph of two constant-treewidth graphs G1, G2,

and wt : E → Σ a weight function of G. For any fixed ϵ, the data structure ConcurSD (by

skipping Item 4 in ConcurPreprocess) correctly answers single-source and pair queries and

requires:

1. Preprocessing time O(n3).

2. Preprocessing space O(n2+ϵ).

3. Single-source query time O(n2+ϵ).

4. Pair and partial pair query time O(n2).

Finally, we can use ConcurSD to obtain the transitive closure of G by performing n2 single-

source queries. The preprocessing space is O(n2+ϵ) by Corollary 7.2, and the space of the output

is O(n4), since there are n4 pairs for the computed distances. Hence the total space requirement

is O(n4). The time requirement is O(n4+ϵ), since by Corollary 7.2, every single-source query

requires O(n2+ϵ) time. We obtain the following corollary.

Corollary 7.3. Let G = (V,E) be a concurrent graph of two constant-treewidth graphs G1, G2,

and wt : E → Σ a weight function of G. For any fixed ϵ > 0, the transitive closure of G wrt wt

can be computed in O(n4+ϵ) time and O(n4) space.

7.6 Conditional Optimality for Two Graphs

In the current section we establish the optimality of Corollary 7.2 in handling semiring distance

queries in a concurrent graph that consists of two constant-treewidth components. The key idea

is to show that for any arbitrary graph (i.e., without the constant-treewidth restriction) G of n

nodes, we can construct a concurrent graph G′ as a 2-self-concurrent asynchronous composition

of a constant-treewidth graph G′′ of 2 · n nodes, such that semiring queries in G coincide with

semiring queries in G′.

Arbitrary graphs as composition of two constant-treewidth graphs. We fix an arbitrary

graph G = (V,E) of n nodes, and a weight function wt : E → Σ. Let xi, 1 ⩽ i ⩽ n range over
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the nodes V of G, and construct a graph G′′ = (V ′′, E ′′) such that V ′′ = {xi, yi : 1 ⩽ i ⩽ n}

and E ′′ = {(xi, yi), (yi, xi) : 1 ⩽ i ⩽ n} ∪ {(yi, yi+1), (yi+1, yi) : 1 ⩽ i < n}.

Claim 7.2. The treewidth of G′′ is 1.

Proof. Observe that if we (i) ignore the direction of the edges and (ii) remove multiple appear-

ances of the same edge, we obtain a tree. It is known that trees have treewidth 1.

Given G′′, we construct a graph G′ as a 2-self-concurrent asynchronous composition of G′′.

Informally, a node xi of G corresponds to the node ⟨xi, xi⟩ of G′. An edge (xi, xj) in G is

simulated by two paths in G′.

1. The first path has the form P1 : ⟨xi, xi⟩⇝ ⟨xi, xj⟩, and is used to witness the weight of

the edge in G, i.e., wt(xi, xj) = ⊗(P1). It traverses a sequence of nodes, where the first

constituent is fixed to xi, and the second constituent forms the path xi → yi → yi′ →

· · · → yj → xj . The last transition will have weight equal to wt(xi, xj), and the other

transitions have weight 1. Any path that has the above form can be taken as P1.

2. The second path has the form P2 : ⟨xi, xj⟩⇝ ⟨xj, xj⟩, it has no weight (i.e., ⊗(P2) = 1),

and is used to reach the node ⟨xj, xj⟩. It traverses a sequence of nodes, where the second

constituent is fixed to xj , and the first constituent forms the path xi → yi → yi′ → · · · →

yj → xj . Any path that has the above form can be taken as P2.

Then the concatenation of P1 and P2 creates a path P : ⟨xi, xi⟩ ⇝ ⟨xj, xj⟩ with ⊗(P ) =

⊗(P1)⊗⊗(P2) = wt(xi, xj)⊗ 1 = wt(xi, xj).

Formal construction. We construct a graph G′ = (V ′, E ′) as a 2-self-concurrent asynchronous

composition of G′′, by including the following edges.

1. Black edges. For all 1 ⩽ i ⩽ n and 1 ⩽ j < n we have

(⟨xi, yj⟩, ⟨xi, yj+1⟩), (⟨xi, yj+1⟩, ⟨xi, yj⟩) ∈ E ′ , and for all 1 ⩽ i < n and 1 ⩽ j ⩽ n we

have (⟨yi, xj⟩, ⟨yi+1, xj⟩), (⟨yi+1, xj⟩, ⟨yi, xj⟩) ∈ E ′.

2. Blue edges. For all 1 ⩽ i ⩽ n we have (⟨xi, xi⟩, ⟨xi, yi⟩), (⟨yi, xi⟩, ⟨xi, xi⟩) ∈ E ′ .

3. Red edges. For all (xi, xj) ∈ E we have (⟨xi, yj⟩, ⟨xi, xj⟩) ∈ E ′.

4. Green edges. For all 1 ⩽ i, j ⩽ n with i ̸= j we have (⟨xi, xj⟩, ⟨yi, xj⟩) ∈ E ′.
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Figure 7.4: A graph G (left), and G′ that is a 2-self-product of a graph G′′ of treewidth 1 (right).

The weighted edges of G correspond to weighted red edges on G′. The distance d(xi, xj) in G

equals the distance d(⟨xi, xi⟩, ⟨xj, xj⟩) = d(⟨⊥, xi⟩, ⟨⊥, xj⟩) in G′.

Additionally, we construct a weight function such that wt′(⟨xi, yj⟩, ⟨xi, xj⟩) = wt(xi, xj) for

every red edge (⟨xi, yj⟩, ⟨xi, xj⟩), and wt′(u, v) = 1 for every other edge (u, v). Fig. 7.4 provides

an illustration of the construction.

Lemma 7.8. For every xi, xj ∈ V , there exists a path P : xi ⇝ xj with ⊗(P ) = z in G iff there

exists a path P ′ : ⟨xi, xi⟩⇝ ⟨xj, xj⟩ with ⊗(P ′) = z in G′.

Proof. Recall that only red edges contribute to the weights of paths in G′. We argue that there is

path P : ⟨xi, xi⟩⇝ ⟨xj, xj⟩ in G′ that traverses a single red edge iff there is an edge (xi, xj) in

G with ⊗(P ) = wt(xi, xj).

1. Given the edge (xi, xj), the path P is formed by traversing the red edge (⟨xi, yj⟩, ⟨xi, xj⟩)

as

⟨xi, xi⟩ → ⟨xi, yi⟩⇝ ⟨xi, yj⟩ → ⟨xi, xj⟩ → ⟨yi, xj⟩⇝ ⟨yi, xj⟩ → ⟨xj, yj⟩

Since wt((⟨xi, yj⟩, ⟨xi, xj⟩)) = wt(xi, xj) and all other edges of P have weight 1, we have

that ⊗(P ) = wt(xi, xj).

2. Every path P that traverses a red edge ⟨xi′ , yj′⟩ → ⟨xi′ , xj′⟩ has to traverse a blue edge

to ⟨xj′ , xj′⟩. Then xj′ must be xj , otherwise P will traverse a second red edge before

reaching ⟨xj, xj⟩.

The result follows easily from the above.
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Lemma 7.8 implies that for every xi, xj ∈ V , we have d(xi, xj) = d(⟨xi, xi⟩, ⟨xj, xj⟩), i.e., pair

queries in G for nodes xi, xj coincide with pair queries (⟨xi, xi⟩, ⟨xj, xj⟩) in G′. Observe that in

G′ we have d(⟨xi, xi⟩, ⟨xj, xj⟩) = d(⟨⊥, xi⟩, ⟨⊥, xj⟩), and hence pair queries in G also coincide

with partial pair queries in G′.

Theorem 7.3. For every graph G = (V,E) and weight function wt : E → Σ there exists a

graph G′ = (V × V,E ′) that is a 2-self-concurrent asynchronous composition of a constant-

treewidth graph, together with a weight function wt′ : E ′ → Σ, such that for all u, v ∈ V , and

⟨u, u⟩, ⟨v, v⟩ ∈ V ′ we have d(u, v) = d(⟨u, u⟩, ⟨v, v⟩) = d(⟨⊥, u⟩, ⟨⊥, v⟩). Moreover, the graph

G′ can be constructed in quadratic time in the size of G.

This leads to the following corollary.

Corollary 7.4. Let TS(n) = Ω(n2) be a lower bound on the time required to answer a single

semiring distance query wrt to a semiring S on arbitrary graphs of n nodes. Consider any

concurrent graph G which is an asynchronous self-composition of two constant-treewidth graphs

of n nodes each. For any data structure DS, let TDS(G, r) be the time required by DS to

preprocess G and answer r pair queries. We have TDS(G, 1) = Ω(TS(n)).

Conditional optimality of Corollary 7.2. Note that for r = O(n) pair queries, Corollary 7.2

yields that the time spent by our data structure ConcurSD for preprocessing G and answering

r queries is TConcurSD(G, r) = O(n3). The long-standing (over five decades) upper bound for

answering even one pair query for semiring distances in arbitrary graphs of n nodes is O(n3).

Theorem 7.3 implies that any improvement upon our results would yield the same improvement

for the long-standing upper bound, which would be a major breakthrough.

Almost-optimality of Theorem 7.2 and Corollary 7.3. Finally, we highlight some almost-

optimality results obtained by variants of ConcurSD for the case of two graphs. By almost-

optimality we mean that the obtained bounds are O(nϵ) factor worse that optimal, for any fixed

ϵ > 0 arbitrarily close to 0.

1. According to Theorem 7.2, after O(n3+ϵ) preprocessing time, single-source queries are

handled in O(n2+ϵ) time, and partial pair queries in O(1) time. The former (resp. later)

query time is almost linear (resp. exactly linear) in the size of the output. Hence the former

queries are handled almost-optimally, and the latter indeed optimally. Moreover, this is

achieved using O(n3+ϵ) preprocessing time, which is far less than the Ω(n4) time required
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for the transitive closure computation (which computes the distance between all n4 pairs

of nodes).

2. According to Corollary 7.3, the transitive closure can be computed in O(n4+ϵ) time, for

any fixed ϵ > 0, and O(n4) space. Since the size of the output is Θ(n4), the transitive

closure is computed in almost-optimal time and optimal space.

7.7 Experimental Results

In the current section we report on experimental evaluation of our algorithms, in particular of the

algorithms of Corollary 7.3. We have tested their performance for obtaining the transitive closure

on various concurrent graphs. We have focused on the transitive closure for a fair comparison

with the existing algorithmic methods, which compute the transitive closure even for a single

query. Since the contributions of this chapter are algorithmic improvements for semiring distance

queries, we considered the most fundamental representative of this framework, namely, the

shortest path problem. Our comparison is done against the standard Bellman-Ford algorithm,

which (i) has the best worst-case complexity for the problem, and (ii) allows for practical

improvements, such as early termination.

Basic setup. We outline the basic setup used in all experiments. We have used two different

sets of benchmarks, and obtain the control flow graphs of Java programs using Soot [Vallée-Rai

et al., 1999], and use LibTW [van Dijk et al., 2006b] to obtain the tree decompositions of the

corresponding graphs. For every obtained graph G′, we have constructed a concurrent graph G

as a 2-self asynchronous composition of G′, and then assign random integer weights in the range

[−103, 103], without negative cycles. Although this last restriction does not affect the running

time of our algorithms, it allows for early termination of the Bellman-Ford algorithm (and thus

only benefits the latter). The 2-self composition is a natural situation arising in practice, e.g. in

concurrent data structures where two threads of the same method access the data structure. We

note that the 2-self composition is no simpler than the composition of any two constant-treewidth

graphs, (recall that the lower-bound of Section 7.6 is established on a 2-self composition).

DaCapo benchmarks. In our first setup, we extracted control flow graphs of methods from the

DaCapo suit [Blackburn, 2006]. The average treewidth of the input graphs was around 6. This
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λ 2 3 4 5 6 7 8

% 6 7 16 22 25 57 17

Table 7.2: Percentage of cases for which the transitive closure of the graph G for the given value

of λ is at most 5% slower than the time required to obtain the transitive closure of G for the best

λ.

supplied a large pool of 120 concurrent graphs, for which we used Corollary 7.3 to compute

the transitive closure. This allowed us to test the scalability of our algorithms, as well as their

practical dependence on input parameters. Recall that our transitive closure time complexity is

O(n4+ϵ), for any fixed ϵ > 0, which is achieved by choosing a sufficiently large λ ∈ N and a

sufficiently small δ ∈ R when running the algorithm of Theorem Theorem 2.2. We computed the

transitive closure for various λ. In practice, δ has effects only for very large input graphs. For

this, we fixed it to a large value (δ = 1
3
) which can be proved to have no effect on the obtained

running times. Table 7.2 shows for each value of λ, the percentage of cases for which that value

is at most 5% slower than the smallest time (among all tested λ) for each examined case. We

find that λ = 7 works best most of the time.

Fig. 7.5 shows the time required to compute the transitive closure on each concurrent graph G by

our algorithm (for λ = 7) and the baseline Bellman-Ford algorithm. We see that our algorithm

significantly outperforms the baseline method. Note that our algorithm seems to scale much

better than its theoretical worst-case bound of O(n4+ϵ) of Corollary 7.3.

Concurrency with locks. Our second set of experiments is on methods from containers of

the java.util.concurrent library that use locks as their synchronization mechanism. The average

treewidth of the input graphs was around 8. In this case, we expanded the node set of the

concurrent graph G with the lock set [3]ℓ, where ℓ is the number of locks used by G′. Intuitively,

the i-th value of the lock set denotes which of the two components owns the i-th lock (the value

is 3 if the lock is free). Transitions to nodes that perform lock operations are only allowed wrt

the lock semantics. That is, a transition to a node of G where the value of the i-th lock is

1. (Lock aquire): j ∈ [2], is only allowed from nodes where the value of that lock is 3, and

the respective graph Gj is performing a lock operation on that edge.

2. (Lock release): 3, is only allowed from nodes where the value of that lock is j ∈ [2], and
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Figure 7.5: Time required to compute the transitive closure on concurrent graphs of various sizes.

Our algorithm is run for λ = 7. TO denotes that the computation timed out after 30 minutes.

the respective graph Gj is performing an unlock operation on that edge.

Similarly as before, we compared our transitive closure time with the standard Bellman-Ford

algorithm. Table 7.3 shows a time comparison between our algorithms and the baseline method.

We observe that our transitive closure algorithm is significantly faster, and also scales better.
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Java method n To(s) Tb(s)

ArrayBlockingQueue: poll 19 19 60

ArrayBlockingQueue: peek 20 20 81

LinkedBlockingDeque: advance 25 29 195

PriorityBlockingQueue: removeEQ 25 32 176

ArrayBlockingQueue: init 26 47 249

LinkedBlockingDeque: remove 26 49 290

ArrayBlockingQueue: offer 26 56 304

ArrayBlockingQueue: clear 28 33 389

ArrayBlockingQueue: contains 32 205 881

DelayQueue: remove 42 267 3792

ConcurrentHashMap: scanAndLockForPut 46 375 2176

ArrayBlockingQueue: next 46 407 3915

ConcurrentHashMap: put 72 1895 > 8 h

Table 7.3: Time required for the transitive closure on 2-self concurrent graphs extracted from

methods of the java.util.concurrent library. Each constituent graph has n nodes. To(s) and

Tb(s) correspond to our method and the baseline method respectively.
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8 Quantitative Verification on

Constant-treewidth Graphs

8.1 Introduction

In this chapter we study three classic quantitative verification properties, namely, the minimum

mean-payoff, minimum ratio, and minimum initial credit for energy properties. We provide

several algorithms for exact and approximate solutions to the minimum mean-payoff and mini-

mum ratio problems on graphs of constant treewidth. We also study the minimum initial credit

for energy problem on arbitrary graphs, and obtain a significant improvement over the existing

approach. Finally, we present a significant algorithmic improvement for the problem restricted

on constant-treewidth graphs.

The mean-payoff, ratio and minimum initial credit for energy problems. The three quan-

titative properties that have been studied for their relevance in analysis of reactive systems

are as follows. First, the mean-payoff property consists of a weight function that assigns to

every transition an integer-valued weight and assigns to each trace the long-run average of

the weights of the transitions of the trace. Second, the ratio property consists of two weight

functions (one of which is a positive weight function) and assigns to each trace the ratio of

the two mean-payoff properties (the denominator is wrt the positive function). The minimum

initial credit for energy property consists of a weight function (as in the mean-payoff property)

and assigns to each trace the minimum number to be added such that the partial sum of the

weights for every prefix of the trace is non-negative. For example, the mean-payoff property

is used for average waiting time, worst-case execution time analysis [Chatterjee et al., 2010a;

Cerný et al., 2013; Chatterjee et al., 2015a]; the ratio property is used in robustness analysis of
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Minimum mean-cycle value Minimum ratio-cycle value

[Orlin and Ahuja, 1992] [Karp, 1978] Our result

[Theorem 8.3]

(ϵ-approximate)

[Burns, 1991] [Lawler, 1976] Our result

[Corollary 8.2]

O(n1.5 · log(n ·W )) O(n2) O(n · log(n/ϵ)) O(n3) O(n2 · log(n ·W )) O(n · log(|a · b|))

Table 8.1: Time complexity of existing and our solutions for the minimum mean-cycle value

and ratio-cycle value problem in constant treewidth weighted graphs with n nodes and largest

absolute weight W , when the output is the (irreducible) fraction a
b
̸= 0.

[Bouyer et al., 2008] Our result

[Theorem 8.4,

Corollary 8.3]

Our result

[Theorem 8.6]

(constant

treewidth)

Time (decision) O(n2 ·m) O(n ·m) O(n · log n)

Time O(n3 ·m · log(n ·W )) O(n2 ·m) O(n · log n)

Space O(n) O(n) O(n)

Table 8.2: Complexity of the existing and our solution for the minimum initial credit problem on

weighted graphs of n nodes, m edges, and largest absolute weight W .

systems [Bloem et al., 2009b]; and the minimum initial credit for energy property for measuring

resource consumptions [Bouyer et al., 2008].

Algorithmic problems. Given a graph and a quantitative property, the value of a node is the

infimum value of all traces that start at the respective node. The algorithmic problem (namely,

the value problem) in the analysis of quantitative properties consists of a graph and a quantitative

property, and asks to compute either the exact value or an approximation of the value for every

node in the graph. The algorithmic problems are at the heart of many applications, such as

automata emptiness, model measuring, quantitative abstraction refinement, etc.

Previous results and our contributions. In this section we consider general graphs and graphs

with constant treewidth, and the algorithmic problems to compute the exact value or an approxi-

mation of the value for every node wrt to quantitative properties given as the mean-payoff, the

ratio, or the minimum initial credit for energy. We first present the relevant previous results, and
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then our contributions.

Previous results. We consider graphs with n nodes, m edges, and let W denote the largest

absolute value of the weights. The running time of the algorithms is characterized by the

number of arithmetic operations (i.e., each operation takes constant time); and the space usage is

characterized by the maximum number of integers the algorithm stores. The classic algorithm

for graphs with mean-payoff properties is the minimum mean-cycle problem of Karp [Karp,

1978], and the algorithm requires O(n ·m) running time and O(n2) space. A different algorithm

was proposed in [Madani, 2002] that requires O(n ·m) running time and O(n) space. Orlin

and Ahuja [Orlin and Ahuja, 1992] gave an algorithm running in time O(
√
n ·m · log(n ·W )).

For some special cases there exist faster approximation algorithms [Chatterjee et al., 2014a].

There is a straightforward reduction of the ratio problem to the mean-payoff problem. For

computing the exact minimum ratio, the fastest known strongly polynomial time algorithm

is Burns’ algorithm [Burns, 1991] running in time O(n2 ·m). Also, there is an algorithm by

Lawler [Lawler, 1976] that uses O(n ·m · log(n ·W )) time. For the minimum initial credit for

energy problem, the decision problem (i.e., is the energy required for node v at most c?) can be

solved in O(n2 ·m) time, leading to an O(n3 ·m · log(n ·W )) time algorithm for the minimum

initial credit for energy problem [Bouyer et al., 2008]. All the above algorithms are for general

graphs (without the constant-treewidth restriction).

Our contributions. Our main contributions are as follows.

1. Finding the mean-payoff and ratio values in constant-treewidth graphs. We present two

results for constant treewidth graphs. First, for the exact computation we present an

algorithm that requires O(n · log(|a · b|)) time and O(n) space, where a
b
̸= 0 is the

(irreducible) ratio/mean-payoff of the output. If a
b
= 0 then the algorithm uses O(n) time.

Note that log(|a · b|) ⩽ 2 log(n ·W ). We also present a space-efficient version of the

algorithm that requires only O(log n) space. Second, we present an algorithm for finding

an ϵ-factor approximation that requires O(n · log(n/ϵ)) time and O(n) space, as compared

to the O(n1.5 · log(n ·W )) time solution of Orlin & Ahuja, and the O(n2) time solution of

Karp (see Table 8.1).

2. Finding the minimum initial credit in graphs. We present two results. First, we consider

the exact computation for general graphs, and present (i) an O(n · m) time algorithm
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for the decision problem (improving the previous known O(n2 ·m) bound), and (ii) an

O(n2 ·m) time algorithm to compute the value of all nodes (improving the previous known

O(n3 ·m · log(n ·W )) bound). Finally, we consider the computation of the exact value

for graphs with constant treewidth and present an algorithm that requires O(n · log n) time

(improving the previous known O(n4 · log(n ·W )) bound) (see Table 8.2).

3. Experimental results. We have implemented our algorithms for the minimum mean cy-

cle and minimum initial credit problems and have run them on standard benchmarks

(DaCapo suit [Blackburn, 2006] for the minimum mean cycle problem, and DIMACS

challenges [dim] for the minimum initial credit problem). For the minimum mean cycle

problem, our results show that our algorithm has lower running time than all the classic

polynomial-time algorithms. For the minimum initial credit problem, our algorithm pro-

vides a significant speedup over the existing method. Both improvements are demonstrated

even on graphs of small/medium size.

Technical contributions. The key technical contributions of our work are as follows:

1. Mean-payoff and ratio values in constant-treewidth graphs. Given a graph with constant

treewidth, let c∗ be the smallest weight of a simple cycle. First, we present a linear-time

algorithm that computes c∗ exactly (if c∗ ⩾ 0) or approximately within a polynomial factor

(if c∗ < 0). Then, we show that if the minimum ratio value ν∗ is the irreducible fraction
a
b
, then ν∗ can be computed by evaluating O(log(|a · b|)) inequalities of the form ν∗ ⩾ ν.

Each such inequality is evaluated by computing the smallest weight of a simple cycle in a

modified graph. Finally, for ϵ-approximating the value ν∗, we show that O(log(n/ϵ)) such

inequalities suffice.

2. Minimum initial credit problem. We show that for general graphs, the decision problem

can be solved with two applications of Bellman-Ford-type algorithms, and the value

problem reduces to finding non-positive cycles in the graph, followed by one instance of

the single-source shortest-path problem. We then show how the invariants of the algorithm

for the value problem on general graphs can be maintained by a particular graph traversal

of the tree-decomposition for constant-treewidth graphs.

Organization. The rest of this chapter is organized as follows.
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1. In Section 8.2 we define the problems we study in this chapter, namely, the mean-payoff,

the ratio, and the minimum initial credit for energy problem.

2. In Section 8.3 we present an algorithm for dealing with a related graph problem, namely

the detection of a minimum-weight simple cycle of a graph with constant treewidth.

3. In Section 8.4 we present algorithms for exact solutions to the ratio problem, as well as

exact solutions and approximations to the mean-payoff problem on graphs of constant

treewidth.

4. In Section 8.5 we present algorithms for solving the minimum initial credit for energy

problem on both arbitrary graphs and graphs of constant treewidth.

5. In Section 8.6 we present an experimental evaluation of our algorithms for the mean-payoff

and minimum initial credit problems.

8.2 Definitions

We start with a few small modifications on the definitions regarding weighted graphs and paths

from Section 2.3.1. In particular, here we consider weighted graphs with possibly two weight

functions (instead of the usual one weight function), and possibly infinite paths (instead of only

finite paths).

Weighted graphs. We consider weighted directed graphs G = (V,E,wt,wt′) where V is the

set of n nodes, E ⊆ V × V is the edge relation of m edges, wt : E → Z is a weight function

that assigns an integer weight wt(e) to each edge e ∈ E, and wt′ : E → N+ is a weight function

that assigns strictly positive integer weights. For technical simplicity, we assume that there exists

at least one outgoing edge from every node. In certain cases where the function wt′ is irrelevant,

we will consider weighted graphs G = (V,E,wt), i.e., without the function wt′.

Paths, weights and values. The functions wt and wt′ naturally extend to paths, so that the

weight of a finite path P with |P | > 0 wrt the weight functions wt and wt′ is wt(P ) =∑
1⩽i<j wt(xi, xi+1) and wt′(P ) =

∑
1⩽i<j wt

′(xi, xi+1). The value of P is defined to be

wt(P ) = wt(P )
wt′(P )

. For the case where |P | = 0, we define wt(P ) = 0, and wt(P ) is undefined. An
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infinite path P = (x1, x2, . . . ) of G is an infinite sequence of nodes such that every finite prefix

P of P is a finite path of G. The functions wt and wt′ assign to P a value in Z ∪ {−∞,∞}: we

have wt(P) =
∑

i wt(xi, xi+1) and wt′(P) =∞. For a (possibly infinite) path P , Given a finite

path P1 = (x1, . . . xk) and a possibly infinite path P2 = (y1, . . . ) with xk = y1, we denote by

P1 ◦ P2 the path resulting from the concatenating P2 on P1.

Distances and witness paths. For nodes u, v ∈ V , we denote by d(u, v) = infP :u⇝v wt(P )

the distance from u to v. A finite path P : u ⇝ v is a witness of the distance d(u, v) if

wt(P ) = d(u, v). An infinite path P is a witness of the distance d(u, v) if the following

conditions hold:

1. d(u, v) = wt(P) = −∞, and

2. P starts from u, and v is reachable from every node of P .

Observe that d(u, v) = −∞ is only witnessed by infinite paths, whereas d(u, v) = ∞ is

not witnessed by any path. We note that this is consistent with our semiring treatment of

semiring distances as introduced in Section 2.3.1. Indeed, using a variant of the tropical semiring

(Z ∪ {−∞,∞}, inf,+,∞, 0) (where we define −∞+∞ =∞ and −∞ represents “arbitrarily

small”) it is easy to verify that d(u, v) = ⊕P :u⇝v ⊗ (P ) =∞ iff there exists an infinite path P

that is a witness of d(u, v).

Throughout the chapter, we follow the convention that the supremum (or maximum) and infimum

(or minimum) of the empty set is −∞ and∞ respectively, i.e., sup(∅) = max(∅) = −∞ and

inf(∅) = min(∅) = ∞. In the sequel we consider only nicely rooted, balanced and binary

tree-decompositions of constant width and = O(n) bags (and hence of height O(log n)). Such

tree decompositions can be constructed using Theorem 2.1 and Lemma 2.6.

8.2.1 Problems Considered

In this chapter, our interest is on the following three quantitative problems.

The minimum mean cycle problem [Karp, 1978]. Given a weighted directed graph G =

(V,E,wt), the minimum mean cycle problem asks to determine for each node u the mean value

µ∗(u) = minC∈Cu
wt(C)
|C| , where Cu is the set of simple cycles reachable from u in G. A cycle C
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with wt(C)
|C| = µ∗(u) is called a minimum mean cycle of u. For 0 < ϵ < 1, we say that a value µ

is an ϵ-approximation of the mean value µ∗(u) if |µ− µ∗(u)| ⩽ ϵ · |µ∗(u)|.

The minimum ratio cycle problem [Hartmann and Orlin, 1993]. Given a weighted directed

graph G = (V,E,wt,wt′), the minimum ratio cycle problem asks to determine for each node

u the ratio value ν∗(u) = minC∈Cu wt(C), where wt(C) = wt(C)
wt′(C)

and Cu is the set of simple

cycles reachable from u in G. A cycle C with wt(C) = ν∗
u is called a minimum ratio cycle of u.

The minimum mean cycle problem follows as a special case of the minimum ratio cycle problem

for wt′(e) = 1 for each edge e ∈ E.

The minimum initial credit problem [Bouyer et al., 2008]. Given a weighted directed graph

G = (V,E,wt), the minimum initial credit value problem asks to determine for each node u the

smallest energy value E(u) ∈ N ∪ {∞} with the following property: there exists an infinite path

P = (u1, u2 . . . ) with u = u1, such that for every finite prefix P of P we have E(u)+wt(P ) ⩾ 0.

Conventionally, we let E(u) =∞ if no finite value exists. The associated decision problem asks

given a node u and an initial credit c ∈ N whether E(u) ⩽ c.

8.3 Minimum Cycle

In the current section we deal with a related graph problem, namely the detection of a minimum-

weight simple cycle of a graph. In Section 8.4 we use solutions to the minimum cycle problem

to obtain the minimum ratio and minimum mean values of a graph.

The minimum cycle problem. Given a weighted graph G = (V,E,wt), the minimum cycle

problem asks to determine the weight c∗ of a minimum-weight simple cycle in G, i.e., c∗ =

minC∈C wt(C), where C is the set of simple cycles in G.

Here we present an algorithm called MinCycle that operates on a tree-decomposition Tree(G) of

an input graph G, and has the following properties.

1. If G has no negative cycles, then MinCycle returns the weight c∗ of a minimum-weight

cycle in G.
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2. If G has negative cycles, then MinCycle returns a value that is at most a polynomial (in n)

factor smaller than c∗.

U-shaped paths. Recall the definition of U-shaped paths from Section 3.2. Given a bag B

and nodes u, v ∈ B, we say that a path P : u ⇝ v is U-shaped in B, if one of the following

conditions hold:

1. Either |P | > 1 and for all intermediate nodes w ∈ P , we have that B is an ancestor of Bw,

2. or |P | ⩽ 1 and B is Bu or Bv (i.e., B is the root bag of u or v).

The following remark follows from the definition of tree decompositions, and states that every

simple cycle C can be seen as a U-shaped path P from the smallest-level node of C to itself.

Consequently, we can determine the value c∗ by only considering U-shaped paths in Tree(G).

Remark 8.1. Let C = (u1, . . . , uk) be a simple cycle in G, and uj = argminui∈C Lv(ui). Then

P = (uj, uj+1, . . . uk, u1, . . . , uj) is a U-shaped path in Buj
, and wt(P ) = wt(C).

Informal description of MinCycle. Note that integer-valued weights are a special case of the

tropical semiring. Our algorithm MinCycle is similar to the algorithm Preprocess (Algorithm 2)

from Section 3.2.1 phrased for complete semirings. It consists of a depth-first traversal of

Tree(G), and for each examined bag B computes a local U-shaped distance map LUDB :

B×B → Z∪{∞} such that for each u, v ∈ B, we have (i) LUDB(u, v) = wt(P ) for some path

P : u⇝ v, and (ii) LUDB(u, v) ⩽ minP wt(P ), where P are taken to be simple u⇝ v paths (or

simple cycles) that are U-shaped in B. This is achieved by traversing Tree(G) in post-order, and

for each root bag Bx of a node x, we update every LUDBx(u, v) with LUDBx(u, x)+LUDBx(x, v)

(i.e., we do path-shortening from node u to node v, by considering paths that go through x). See

Fig. 3.1 for an illustration.

In the end, MinCycle returns minx LUDBx(x, x), i.e., the weight of the smallest-weight U-shaped

(not necessarily simple) cycle it has discovered. Algorithm 24 gives MinCycle in pseudocode.

For brevity, in Line 5 we consider that if {u, v} ̸∈ E or {u, v} ̸⊆ Bi for some child Bi of B,

then LUDBi
(u, v) =∞.

In essence, MinCycle performs repeated summarizations of paths in G. The following lemma

follows easily from Lemma 3.3, and states that LUDB(u, v) is upper bounded by the smallest
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Algorithm 24: MinCycle

Input: A weighted graph G = (V,E,wt) and a balanced binary tree-decomposition Tree(G)

Output: A value c

1 Assign c←∞

2 Apply a post-order traversal on Tree(G), and examine each bag B with children B1, B2

3 begin

4 foreach u, v ∈ B do

5 Assign LUDB(u, v)← min(LUDB1(u, v), LUDB2(u, v),wt(u, v))

6 end

7 Discard LUDB1 , LUDB2

8 if B is the root bag of a node x then

9 foreach u, v ∈ B do

10 Assign LUD′
B(u, v)← min(LUDB(u, v), LUDB(u, x) + LUDB(x, v))

11 end

12 Assign LUDB ← LUD′
B

13 Assign c← min(c, LUDB(x, x))

14 end

15 return c
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weight of a U-shaped simple u⇝ v path in B.

Lemma 8.1. For every examined bag B and nodes u, v ∈ B, we have

1. LUDB(u, v) = wt(P ) for some path P : u ⇝ v (and LUDB(u, v) = ∞ if no such P

exists),

2. LUDB(u, v) ⩽ minP :u⇝v wt(P ) where P ranges over U-shaped simple paths and simple

cycles in B.

At the end of the computation, the returned value c is the weight of a (generally non-simple)

cycle C, captured as a U-shaped path on its smallest-level node. The cycle C can be recovered

by tracing backwards the updates of Line 10 performed by the algorithm, starting from the node

x that performed the last update in Line 13. Hence, if C traverses k distinct edges, we can write

c = wt(C) =
k∑

i=1

ki · wt(ei) (8.1)

where each ei is a distinct edge, and ki is the number of times it appears in C.

Lemma 8.2. Let h be the height of Tree(G). For every ki in Eq. (8.1), we have ki ⩽ 2h.

Proof. Note that the edge ei = (ui, vi) is first considered by MinCycle in the root bag Bi of node

xi, where xi = argmaxyi∈{ui,vi} Lv(yi) (Line 10). As MinCycle backtracks from Bi to the root

of Tree(G), the edge ei can be traversed at most twice as many times in each step (because of

Line 10, once for each term of the sum LUDB(u, x) + LUDB(x, v)). Hence, this doubling will

occur at most h times, and thus ki ⩽ 2h.

Lemma 8.3. Let c be the value returned by MinCycle, h be the height of Tree(G), and c∗ =

minC wt(C) over all simple cycles C in G. The following assertions hold:

1. If G has no negative cycles, then c = c∗.

2. If G has a negative cycle, then

(a) c ⩽ c∗.

(b) |c| = O
(
|c∗| · n · 2h

)
.
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Proof. By Remark 8.1, we have that c∗ = wt(P ) for a U-shaped path P : x⇝ x. By Lemma 8.1,

after MinCycle examines Bx, it will be c ⩽ LUDBx(x, x) ⩽ c∗, with the equalities holding if

there are no negative cycles in G (by the definition of c∗, as then LUDBx(x, x) is witnessed by a

simple cycle). By Line 10, c can only decrease afterwards, and again by the definition of c∗ this

can only happen if there are negative cycles in G. This proves Items 1 and 2a, and the remaining

of the proof focuses on showing that |c| = O
(
|c∗| · n · 2h

)
.

By rearranging the sum of Eq. (8.1), we can decompose the obtained cycle C into a set of k′+

non-negative simple cycles C+
i , and a set of k′− negative simple cycles C−

i , and each cycle C+
i

and C−
i appears with multiplicity k+

i and k−
i respectively. Then we have

|c| = |wt(C)| =

⏐⏐⏐⏐⏐
k′+∑
i=1

k+
i · wt(C+

i ) +
k′−∑
i=1

k−
i · wt(C−

i )

⏐⏐⏐⏐⏐ ⩽
⏐⏐⏐⏐⏐
k′−∑
i=1

k−
i · wt(C−

i )

⏐⏐⏐⏐⏐
⩽

k−∑
i=1

k−
i · |wt(C−

i )| ⩽ |c∗| ·
k′−∑
i=1

k−
i ⩽ |c∗| ·

k∑
i=1

ki = O
(
|c∗| · n · 2h

)
(8.2)

The first inequality follows from c < 0, the third inequality holds by the definition of c∗, and the

last inequality holds since the total number of (non-positive) simple cycle traversals of C cannot

be more than the total number of the edge traversals. Finally, we have
∑k

i=1 ki = O
(
n · 2h

)
,

since k = O(n), and by Lemma 8.2 we have ki ⩽ 2h.

Next we discuss the time and space complexity of MinCycle.

Lemma 8.4. Let h be the height of Tree(G). MinCycle accesses each bag of Tree(G) a constant

number of times, and uses O(h) additional space.

Proof. MinCycle accesses each bag a constant number of times, as it performs a post-order

traversal on Tree(G) (Line 2). Because it computes the local distances in a postorder manner,

the number of local distance maps LUDB it remembers is bounded by the height h of Tree(G).

Since Tree(G) has constant width, LUDB requires a constant number of words for storing a

constant number of nodes and weights in each B. Hence the total space usage is O(h), and the

result follows.

The following theorem summarizes the results of this section.
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Theorem 8.1. Let G = (V,E,wt) be a weighted graph of n nodes with constant treewidth, and

a balanced, binary tree-decomposition Tree(G) of G be given. Let c∗, be the smallest weight of

a simple cycle in G. Algorithm MinCycle uses O(n) time and O(log n) additional space, and

returns a value c such that:

1. If G has no negative cycles, then c = c∗.

2. If G has a negative cycle, then

(a) c ⩽ c∗.

(b) |c| = |c∗| · nO(1).

8.4 The Minimum Ratio and Mean Cycle Problems

In the current section we present algorithms for solving the minimum ratio and mean cycle

problems for weighted graphs G = (V,E,wt,wt′) of constant treewidth.

Remark 8.2. If G is not strongly connected, we can compute its maximal strongly connected

components (SCCs) in linear time [Tarjan, 1972], and use the algorithms of this section to

compute the minimum cycle ratio ν∗
i in every component Gi. Afterwards, we assign the ratio

values ν∗(u) for all nodes u as follows. First, mark every SCC Gi with M(Gi) = ν∗
i . Then, for

every bottom SCC Gi, (i) for every u in Gi assign ν∗(u) = M(Gi), (ii) for every neighbor SCC

Gj of Gi, mark Gj with M(Gj) = min(M(Gj),M(Gi)), (iii) remove Gi and repeat. Since these

operations require linear time in total, they do not impact the time complexity. We also argue

that we can focus on SCCs while using O(log n) space. Using [Elberfeld et al., 2010], we can

solve directed s-t connectivity in logspace for constant-treewidth graphs. For any node v, let

SCC(v) denote the strongly connected component of v. For each v we can find the value of the

minimum ratio cycle when the graph is restricted to SCC(v), using any algorithm that can solve

the problem if the graph is strongly connected, by simply ignoring all nodes w such that v cannot

reach w or w cannot reach v. Then, for any node u, the value ν∗(u) is computed by solving

the minimum ratio cycle problem restricted in SCC(v), for every node v reachable from u, and

returning the minimum of all these values. Therefore, we consider graphs G that are strongly

connected, and we will speak about the minimum ratio ν∗ and mean µ∗ values of G.
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In light of Remark 8.2, we consider graphs that are strongly connected, and hence it follows

that ν∗(u) is the same for every node u, and thus we will speak about the minimum ratio ν∗ and

mean µ∗ values of G.

Lemma 8.5. Let ν∗ be the ratio value of G. Then ν∗ ⩾ ν iff for every cycle C of G we have

wtν(C) ⩾ 0, where wtν(e) = wt(e)− wt′(e) · ν for each edge e ∈ E.

Proof. Indeed, for any cycle C we have wt(C) ⩾ ν∗ ⩾ ν. Then

wt(C) ⩾ ν ⇐⇒ wt(C)− ν ⩾ 0 ⇐⇒ wt(C)− ν · wt′(C)

wt′(C)
⩾ 0

⇐⇒ wt(C)− ν · wt′(C) ⩾ 0 ⇐⇒
∑
e∈C

(wt(e)− wt′(e) · ν) ⩾ 0 ⇐⇒ wtν(C) ⩾ 0

with the equality holding iff wt(C) = ν.

Hence, given a tree-decomposition Tree(G), for any guess ν of the ratio value ν∗, we can evaluate

whether ν∗ ⩾ ν by constructing the weight function wtν = wt − ν and executing algorithm

MinCycle on input Gν = (V,E,wtν). By Item 2a of Theorem 8.1 and Lemma 8.5 we have that

the returned value c of MinCycle is c ⩾ 0 iff wtν(C) ⩾ 0 for all cycles C, iff ν∗ ⩾ ν (and in fact

c = 0 iff ν∗ = ν).

Lemma 8.6. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with constant treewidth

and minimum ratio value ν∗. Let Tree(G) be a given balanced, binary tree-decomposition of G

of constant width. For any rational ν, the decision problem of whether ν∗ ⩾ ν (or ν∗ = ν) can

be solved in O(n) time and O(log n) extra space.

Proof. By Lemma 8.5, we can test whether ν∗ ⩾ ν by testing whether Gν = (V,E,wtν) has a

negative cycle. By Theorem 8.1, a negative cycle in Gν can be detected in O(n) time and using

O(log n) space.

8.4.1 Exact Solution

We now describe the method for determining the value ν∗ of G exactly. This is done by making

various guesses ν such that ν∗ ⩾ ν and testing for negative cycles in the graph Gν = (V,E,wtν).

We first determine whether ν∗ = 0, using Lemma 8.6. In the remaining of this section we assume

that ν∗ ̸= 0.
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Solution overview. Consider that ν∗ > 0. First, we either find that ν∗ ∈ (0, 1) (hence ⌊ν∗⌋ = 0),

or perform an exponential search of O(log ν∗) iterations to determine j ∈ N+ such that ν∗ ∈

[2j−1, 2j]. In the latter case, we perform a binary search of O(log ν∗) iterations in the interval

[2j−1, 2j] to determine ⌊ν∗⌋ (see Fig. 8.1). Then, we can write ν∗ = ⌊ν∗⌋+ x, where x < 1 is an

irreducible fraction a′

b
. It has been shown [Papadimitriou, 1979] that such x can be determined

by evaluating O(log b) inequalities of the form x ⩾ ν. The case for ν∗ < 0 is handled similarly.

Lemma 8.7. Let ν∗ ̸= 0 be the ratio value of G. The value ⌊ν∗⌋ can be obtained by evaluating

O(log |ν∗|) inequalities of the form ν∗ ⩾ ν.

Proof. First determine whether ν∗ > 0, and assume w.l.o.g. that this is the case (the process is

similar if ν∗ < 0). Perform an exponential search on the interval (0, 2 · ⌊ν∗⌋) by a sequence of

evaluations of the inequality ν∗ ⩾ νi = 2i. After log⌊ν∗⌋+ 1 steps we either have ⌊ν∗⌋ ∈ (0, 1),

or have determined a j > 0 such that ν∗ ∈ [νj−1, νj]. Then, perform a binary search in the interval

[νj−1, νj], until the running interval [ℓ, r] has length at most 1. Since νj − νj−1 = νj−1 ⩽ ν∗, this

will happen after at most log⌈ν∗⌉ steps. Then either ⌊ν∗⌋ = ⌊ℓ⌋ or ⌊ν∗⌋ = ⌊r⌋, which can be

determined by evaluating the inequality ν∗ ⩾ ⌊r⌋. A similar process can be carried out when

ν∗ < 0. Fig. 8.1 shows an illustration of the search.

ν0 ν1 ν2 . . . νj−1 νjν∗

Figure 8.1: Exponential search followed by a binary search to determine ⌊ν∗⌋

Let Tmax = maxe wt
′(e) be the largest weight of an edge wrt wt′. Since ν∗ is a number with

denominator at most (n− 1) ·Tmax, it can be determined exactly by carrying the binary search of

Lemma 8.7 until the length of the running interval becomes at most 1
((n−1)·Tmax)2

(thus containing

a unique rational with denominator at most (n − 1) · Tmax). Then ν∗ can be obtained by

using continued fractions, e.g. as in [Kwek and Mehlhorn, 2003]. We rely in the work of

[Papadimitriou, 1979] to obtain a tighter bound.

Lemma 8.8. Let ν∗ ̸= 0 be the ratio value of G, such that ν∗ is the irreducible fraction
a
b
∈ (−1, 1). Then ν∗ can be determined by evaluating O(log b) inequalities of the form ν∗ ⩾ ν.
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Proof. Consider that ν∗ > 0 (the proof is similar when ν∗ < 0). It is shown in [Papadimitriou,

1979] that a rational with denominator at most b can be determined by evaluating O(log b)

inequalities of the form ν∗ ⩾ ν. We remark that b is not required to be known, although the

work of [Papadimitriou, 1979] assumes that a bound on the denominator of ν∗ is known in

advance.

Sketch. For completeness, we outline the method of [Papadimitriou, 1979]. We only consider

the case where ν∗ ⩾ 0, as the complementary case can be handled analogously. A Farey

sequence [Graham et al., 1989] Fk of order k is the sequence of all irreducible fractions xk
i

yki

in increasing order for which 0 ⩽ xk
i ⩽ yki ⩽ k. Since wt(C) = ν∗, it follows that ν∗ is a

rational with denominator at most wt′(C), therefore ν∗ is a fraction in each Fk for k ⩾ wt′(C).

We can determine ν∗ by considering a sequence of Farey sequences of exponential orders

(F2k)1⩽k⩽⌈logwt′(C)⌉, and for each such sequence determine the successive fractions such that

x2k

i

y2
k

i

⩽ ν∗ ⩽
x2k

i+1

y2
k

i+1

For k = 1, this is trivial. As we transition from k to k + 1, we need to determine successive

fractions x2k+1

i

y2
k+1

i

and x2k+1

i+1

y2
k+1

i+1

such that

x2k+1

i

y2
k+1

i

⩽ ν∗ ⩽
x2k+1

i+1

y2
k+1

i+1

It is shown in [Papadimitriou, 1979] that there exist α1, β1, α2, β2 ⩾ 0 such that

x2k+1

i

y2
k+1

i

=
α1 · x2k

i + β1 · x2k

i+1

α1 · y2
k

i + β1 · y2
k

i+1

and
x2k+1

i+1

y2
k+1

i+1

=
α2 · x2k

i + β2 · x2k

i+1

α2 · y2
k

i + β2 · y2
k

i+1

Additionally, the number of inequalities that we need to evaluate for determining all such

α1, β1, α2, β2 for every transition up to stage k is O(k). Thus, after O(logwt′(C)) evaluations

we have determined the fractions of F⌈logwt′(C)⌉ for which

x2⌈log wt′(C)⌉
i

y2
⌈log wt′(C)⌉

i

⩽ ν∗ ⩽
x2⌈log wt′(C)⌉
i+1

y2
⌈log wt′(C)⌉

i+1

and one of the inequalities is an equality. The desired result follows.

Note that wt′(C) is not required to be known, although the work of [Papadimitriou, 1979]

assumes that a bound on the denominator of ν∗ is known in advance.
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Theorem 8.2. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with constant treewidth,

and λ = maxu |au · bu| such that ν∗(u) is the irreducible fraction au
bu

. Let T (G) and S(G) denote

the required time and space for constructing a balanced binary tree-decomposition Tree(G) of

G with constant width. The minimum ratio cycle problem for G can be computed in

1. O(T (G) + n · log(λ)) time and O(S(G) + n) space; and

2. O(S(G) + log n) space.

Proof. In view of Remark 8.2 the graph G is strongly connected and has a minimum ratio

value ν∗. Let ν∗ = ⌊ν∗⌋ + a′

b
with |a′

b
| < 1. By Lemma 8.7, ⌊ν∗⌋ can be determined by

evaluating O(log |ν∗|) = O(log |a|) inequalities of the form ν∗ ⩾ ν, and by Lemma 8.8, a′

b

can be determined by evaluating O(b) such inequalities. A balanced binary tree-decomposition

Tree(G) can be constructed once in T (G) time and S(G) space, and stored in O(n) space.

Tree(G) is also a tree-decomposition of every Gν required by Lemma 8.5. By Theorem 8.1 a

negative cycle in Gν can be detected in O(n) time and using O(log n) space. This concludes

Item 1. Item 2 is obtained by the same process, but with re-computing Tree(G) every time

MinCycle traverses from a bag to a neighbor (thus not storing Tree(G) explicitly).

Using Theorem 2.1 we obtain from Theorem 8.2 the following corollary.

Corollary 8.1. Let G = (V,E,wt,wt′) be a weighted graph of n nodes with constant treewidth,

and λ = maxu |au · bu| such that ν∗(u) is the irreducible fraction au
bu

. The minimum ratio value

problem for G can be computed in

1. O(n · log(λ)) time and O(n) space; and

2. O(log n) space.

By setting wt′(e) = 1 for each e ∈ E in Corollary 8.1 we obtain the following corollary for the

minimum mean cycle.

Corollary 8.2. Let G = (V,E,wt) be a weighted graph of n nodes with constant treewidth, and

λ = maxu |µ∗(u)|. The minimum mean value problem for G can be computed in

1. O(n · log(λ)) time and O(n) space; and

2. O(log n) space.
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8.4.2 Approximating the Minimum Mean Cycle

We now focus on the minimum mean cycle problem, and present algorithms for ϵ-approximating

the mean value µ∗ of G for any 0 < ϵ < 1 in O(n · log(n
ϵ
)) time, i.e., independent of µ∗.

Approximate solution in the absence of negative cycles. We first consider graphs G that do

not have negative cycles. Let C be a minimum mean value cycle, and C ′ a minimum weight

simple cycle in G, and note that µ∗ ∈ [0,wt(C ′)]. Additionally, we have

wt(C ′) ⩽ wt(C) =⇒ wt(C ′) ⩽
n

|C|
· wt(C) =⇒ wt(C ′) ⩽ (n) · µ∗

Consider a binary search in the interval [0,wt(C ′)], which in step i approximates µ∗ by the right

endpoint µi of its current interval. The error is bounded by the length of the interval, hence

µi − µ∗ ⩽ wt(C ′) · 2−i ⩽ (n− 1) · µ∗ · 2−i. To approximate within a factor ϵ we require

2−i · (n− 1) ⩽ ϵ =⇒ i ⩾ log(n) + log(
1

ϵ
) (8.3)

steps.

Remark 8.3. Note that for the minimum ratio value we have wt(C ′) ⩽ W ′ · n · ν∗, where

W ′ = maxe∈E wt′(e). For ϵ-approximating ν∗ we would need i ⩾ log(n·W
′

ϵ
) steps.

Approximate solution in the presence of negative cycles. We now turn our attention to ϵ-

approximating µ∗ in the presence of negative cycles in G. Note that uniformly increasing the

weight of each edge so that no negative edges exist does not suffice, as the error can be of order

ϵ · |W−| rather than ϵ · µ∗, where W− is the minimum edge weight.

Instead, let c be the value returned by MinCycle on input G. Item 2a of Theorem 8.1 guarantees

that for the weight function wt−|c|(e) = wt(e) + |c|, the graph G−|c| = (V,E,wt−|c|) has no

negative cycles (although it might still have negative edges). The following lemma states that µ∗

can be ϵ-approximated by ϵ′-approximating the value µ′∗ of G−|c|, for some ϵ′ polynomially (in

n) smaller than ϵ.
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Lemma 8.9. Let µ∗ and µ′∗ be the value of G and G−|c| respectively, and ϵ some desired

approximation factor of µ∗, with 0 < ϵ < 1. There exists an ϵ′ = ϵ
nO(1) such that if µ′ is an

ϵ′-approximation of µ′∗ in G−|c|, then µ = µ′ − |c| is an ϵ-approximation of µ∗ in G.

Proof. By construction, we have µ′∗ = µ∗ + |c|, where c defined above is the value returned by

MinCycle on G. Let c∗ be the weight of a minimum-weight simple cycle in G. By Theorem 8.1

Item 2b, we have that |c| = |c∗|·nO(1). Note that |c∗| ⩽ (n−1)·|µ∗|, hence µ′∗ = µ∗+|c∗|·nO(1) ⩽

|µ∗| · α for α = nO(1). Let ϵ′ = ϵ
α

. By ϵ′-approximating µ′∗ by µ′ we have

|µ′ − µ′∗| ⩽ ϵ′ · |µ′∗| =⇒ |(µ′ − |c|)− (µ′∗ − |c|)| ⩽ ϵ′ · |µ′∗|

=⇒ |µ− µ∗| ⩽ ϵ′ · |µ∗| · α ⩽ ϵ · |µ∗|

The desired result follows.

Theorem 8.3. Let G = (V,E,wt) be a weighted graph of n nodes with constant treewidth. For

any 0 < ϵ < 1, the minimum mean value problem can be ϵ-approximated in O(n · log(n
ϵ
)) time

and O(n) space.

Proof. In view of Remark 8.2 the graph G is strongly connected and has a minimum mean

value µ∗. First, we construct a balanced binary tree-decomposition Tree(G) of G in O(n) time

and space using Theorem 2.1. Let c be the value returned by MinCycle on the input graph

G. If c ⩾ 0, by Lemma 8.3 we have µ∗ ⩾ 0, and by Eq. (8.3) µ∗ can be ϵ-approximated in

O(log(n
ϵ
)) steps. If c < 0, we construct the graph G−|c| = (V,E,wt−|c|). By Lemma 8.9, µ∗

can be ϵ-approximated by ϵ′ approximating the mean value µ′∗ of G−|c|, where ϵ′ = ϵ
nO(1) . By

construction, G−|c| does not contain negative cycles, thus µ′∗ ⩾ 0, and by Eq. (8.3) µ′∗ can be

approximated in O(log( n
ϵ′
)) = O(log(n

ϵ
)) steps. By Lemma 8.4, each step requires O(n) time.

The statement follows.

8.5 The Minimum Initial Credit Problem

In the current section we present algorithms for solving the minimum initial credit problem on

weighted graphs G = (V,E,wt). We first deal with arbitrary graphs, and provide (i) an O(n ·m)
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algorithm for the decision problem, and (ii) an O(n2 ·m) for the value problem, improving the

previously best upper bounds. Afterwards we adapt our approach on graphs of constant treewidth

to obtain an O(n · log n) algorithm for the value problem.

Non-positive minimum initial credit. For technical convenience we focus on a variant of the

minimum initial credit problem, where energies are non-positive, and the goal is to keep partial

sums of path prefixes non-positive. Formally, given a weighted graph G = (V,E,wt), the

non-positive minimum initial credit value problem asks to determine for each node u ∈ V

the largest energy value E(u) ∈ Z⩽0 ∪ {−∞} with the following property: there exists an

infinite path P = (u1, u2 . . . ) with u = u1, such that for every finite prefix P of P we have

E(u) + wt(P ) ⩽ 0. Conventionally, we let E(u) = −∞ if no finite such value exists. The

associated decision problem asks given a node u and an initial credit c ∈ Z⩽0 whether E(u) ⩾ c.

Hence, here minimality is wrt the absolute value of the energy. A solution to the standard

minimum initial credit problem can be obtained by inverting the sign of each edge weight and

solving the non-positive minimum initial credit problem in the resulting graph.

We start with some definitions and lemmas that will give the intuition for the algorithms to follow.

First, we define the minimum initial credit of a pair of nodes u, v, which is the energy to reach v

from u (i.e., the energy is wrt a finite path).

Finite minimum initial credit. For nodes u, v ∈ V , we denote by Ev(u) ∈ Z⩽0 ∪ {−∞} the

largest value with the following property: there exists a path P : u⇝ v such that for every prefix

P ′ of P we have Ev(u) + wt(P ′) ⩽ 0. Note that for every pair of nodes u, v ∈ V , we have

E(u) ⩾ Ev(u) + E(v). Conventionally, we let Ev(u) = −∞ if no such value exists (i.e., there is

no path u⇝ v).

Remark 8.4. For any u ∈ V , let P : u⇝ v be a witness path for Ev(u) > −∞. Then

Ev(u) + wt(P ) ⩽ 0 =⇒ Ev(u) ⩽ −wt(P ) ⩽ −d(u, v)

i.e., the energy to reach v from u is upper bounded by minus the distance from u to v.

Highest-energy nodes. Given a (possibly infinite) path P with wt(P ) < ∞, we say that a

node x ∈ P is a highest-energy node of P if there exists a highest-energy prefix P1 of P

ending in x such that for any prefix P2 of P we have wt(P1) ⩾ wt(P2). Note that since the

weights are integers, for every pair of paths P ′
1, P

′
2, it is either |wt(P ′

1) − wt(P ′
2)| = 0 or
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|wt(P ′
1)−wt(P ′

2)| ⩾ 1. Therefore the set {wt(Pi)}i of weights of prefixes of P has a maximum,

and thus a highest-energy node always exists when wt(P ) <∞. The following properties are

easy to verify:

1. If x is a highest-energy node in a path P : u⇝ v, then Ev(x) = 0.

2. If x is a highest-energy node in an infinite path P , then E(x) = 0.

The following lemma states that the energy E(u) of a node u is the maximum energy Ev(u) to

reach a 0-energy node v.

Lemma 8.10. For every u ∈ V , we have E(u) = maxv:E(v)=0 Ev(u).

Proof. The direction E(u) ⩾ maxv:E(v)=0 Ev(u) is straightforward. For the other direction,

consider that E(u) > −∞ (trivially, −∞ ⩽ maxv:E(v)=0 Ev(u)) and let P be a witness path for

E(u). Since E(u) > −∞, we have wt(P) < ∞, and P has some highest-energy node x, thus

E(x) = 0. Since x is on the witness P of E(u), we have E(u) ⩽ Ex(u) ⩽ maxv:E(v)=0 Ev(u).

The result follows.

8.5.1 The Decision Problem for General Graphs

Here we address the decision problem, namely, given some node u ∈ V and an initial credit

c ∈ Z⩽0, determine whether E(u) ⩾ c. The following lemma states that if E(u) ⩾ c, then a

non-positive cycle can be reached from u with initial credit c, by paths of length less than n.

Lemma 8.11. For every u ∈ V and c ∈ Z⩽0, we have that E(u) ⩾ c iff there exists a simple

cycle C such that (i) wt(C) ⩽ 0 and (ii) for every v ∈ C we have that Ev(u) ⩾ c, which is

witnessed by a path Pv : u⇝ v with |Pv| < n.

Proof. For the one direction, if wt(C) ⩽ 0 we have wt(Cω) <∞, thus C contains a 0-energy

node w. By Lemma 8.10, E(u) = maxv:E(v)=0 Ev(u) ⩾ Ew(u) ⩾ c. For the other direction, let

P be a witness path for E(u), and we can assume w.l.o.g. that P does not contain positive cycles.

Then for every prefix Pv : u⇝ v of P we have E(u) +wt(Pv) ⩽ 0, thus Ev(u) ⩾ E(u) ⩾ c, and

the n-th such prefix contains a non-positive cycle C. The result follows.
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Algorithm DecisionEnergy. Lemma 8.11 suggests a way to decide whether E(u) ⩾ c. First,

we start with energy c from u, and perform a sequence of n− 1 relaxation steps, similar to the

Bellman-Ford algorithm, to discover the set V c
u of nodes that can be reached from u with initial

credit c by a path of length at most n− 1. Afterwards, we perform a Bellman-Ford computation

on the subgraph G[V ]cu induced by the set V c
u . By Lemma 8.11, we have that E(u) ⩾ c iff G[V ]cu

contains a non-positive cycle. Algorithm 25 (DecisionEnergy) gives a formal description. The

for loop in Line 6-Line 12 is similar to the procedure ROUND from the algorithm of [Bouyer

et al., 2008].

Detecting non-positive cycles. It is known that the Bellman-Ford algorithm can detect negative

cycles. To detect non-positive cycles in a graph G with n nodes and weight function wt, we

execute Bellman-Ford on G with a slightly modified weight function wt′ for which wt′(e) =

wt(e)− 1
n

. Then for any simple cycle C in G we have wt(C) ⩽ 0 iff wt′(C) < 0. Indeed,

wt′(C) < 0 ⇐⇒
∑
e∈C

wt(e)−
∑
e∈C

1

n
< 0 ⇐⇒ wt(C) <

|C|
n
⇐⇒ wt(C) ⩽ 0

since |C| ⩽ n and wt(C) ∈ Z.

The correctness of DecisionEnergy follows directly from Lemma 8.11. The time complexity is

O(n ·m) time spent in the for loop of Line 6-Line 12, plus O(n ·m) time for the Bellman-Ford.

We thus obtain the following theorem.

Theorem 8.4. Let G = (V,E,wt) be a weighted graph of n nodes and m edges. Let u ∈ V be

an initial node, and c ∈ Z⩽0 be an initial credit. The decision problem of whether E(u) ⩾ c can

be solved in O(n ·m) time and O(n) space.

8.5.2 The Value Problem for General Graphs

We now turn our attention to the value version of the minimum initial credit problem, where

the task is to determine E(u) for every node u. The following lemma establishes that if for all

energies to reach some node v we have Ev(w) < 0, then Ev(u) = −d(u, v), i.e., the energy to

reach v from every node u is minus the distance from u to v.

Lemma 8.12. If for all w ∈ V \ {v} we have Ev(w) < 0, then for each u ∈ V \ {v} we have

Ev(u) = −d(u, v).
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Algorithm 25: DecisionEnergy
Input: A weighted graph G = (V,E,wt), a node u ∈ V , an initial energy c ∈ Z⩽0

Output: True iff E(u) ⩾ c

// Initialization

1 foreach v ∈ V do

2 Assign D(s)←∞

3 end

4 Assign D(u)← c

5 Assign V c
u ← {u}

// n− 1 relaxation steps to discover V c
u

6 for i← 1 to n− 1 do

7 foreach (v, w) ∈ E do

8 if D(w) ⩾ D(v) + wt(v, w) and D(v) + wt(v, w) ⩽ 0 then

9 Assign D(w)← D(v) + wt(v, w)

10 Assign V c
u ← V c

u ∪ {w}

11 end

12 end

13 Execute Bellman-Ford on G[V ]cu

14 return True iff a non-positive cycle is discovered
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Proof. Let P : u ⇝ v be a witness path to the distance, i.e., wt(P ) = d(u, v) < ∞ (if

d(u, v) = ∞ the statement is trivially true). Since every highest-energy node x of P has

Ev(x) = 0, we have that x = v. Hence, P is a highest-energy prefix of itself, and for each prefix

P ′ of P we have −wt(P )+wt(P ′) ⩽ 0 and thus Ev(u) ⩾ −wt(P ) = −d(u, v). By Remark 8.4,

it is Ev(u) ⩽ −d(u, v). The result follows.

An O(n2 ·m) time solution to the value problem. Lemma 8.12 together with Theorem 8.4

lead to an O(n2 ·m) method for solving the minimum initial credit value problem. First, we

compute the set X = {v ∈ V : E(v) = 0} in O(n2 · m) time, by testing whether E(u) ⩾ 0

for each node u. Afterwards, we contract the set X to a new node z, and by Lemma 8.10 for

every remaining node u we have E(u) = maxv∈X Ev(u) = Ez(u). Since u ̸∈ X , the energy of

u is strictly negative, and thus Ez(u) < 0. Finally, by Lemma 8.12, we have Ez(u) = −d(u, z).

Hence it suffices to compute the distance of each node u to z, which can be obtained in O(n ·m)

time.

In the remaining of this subsection we provide a refined solution of O(k · n ·m) time, where

k = |X|+ 1 is the number of 0-energy nodes (plus one). Hence this solution is faster in graphs

where k = o(n). This is achieved by algorithm ZeroEnergyNodes for computing the set X faster.

Determining the 0-energy nodes. The first step for solving the minimum initial credit problem

is determining the set X of all 0-energy nodes of G. To achieve this, we construct the graph

G2 = (V2, E2,wt2) with a fresh node z ̸∈ V as follows:

1. The node set is V2 = V ∪ {z},

2. The edge set is E2 = E ∪ ({z} × V ),

3. The weight function wt2 : E2 → Z is

wt2(u, v) =

⎧⎨⎩ 0 if u = z

wt(u, v) otherwise

Remark 8.5. Since for every outgoing edge (z, x) of z we have wt2(z, x) = 0, if z is a highest-

energy node in a path of G2, so is x. Hence every non-positive cycle in G2 has a highest-energy

node other than z.
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Note that for every u ∈ V , the energy E(u) is the same in G and G2.

Algorithm ZeroEnergyNodes. Algorithm 26 describes ZeroEnergyNodes for obtaining the set

of all 0-energy nodes in G2. Informally, the algorithm performs a sequence of modifications

on a graph G , initially identical to G2. In each step, the algorithm executes a Bellman-Ford

computation on the current graph G with z as the source node, as long as a non-positive cycle C

is discovered. For every such C, it determines a highest-energy node w of C, inserts w to a set

of discovered nodes X , and modifies G by replacing every incoming edge (x,w) with an edge

(x, z) of the same weight, and then removing w. Finally, the algorithm returns the set X . See

Fig. 8.2 for an illustration.

As 0-energy nodes are discovered, ZeroEnergyNodes performs a sequence of modifications to the

graph G . We denote by Gk the graph G after the k-th node has been added to X (and G0 = G2).

We also use the superscript-k in our graph notation to make it specific to Gk (e.g. dk(u, z) and

Ek
z(u) denote respectively the distance from u to z, and the energy to reach z from u in Gk). The

following two lemmas establish the correctness of ZeroEnergyNodes.

Lemma 8.13. For every w ∈ X we have E(w) = 0.

Proof. The proof is by induction on the size of X . It is trivially true when |X | = 0. For the

inductive step, let w be the k + 1-th node added in X . By Line 7, w is a highest-energy node in a

non-positive cycle C of Gk. We split into two cases.

1. If z ̸∈ C, then C is also a cycle of G, hence w is a highest-energy node in the infinite path

P = Cω of G, and E(w) = 0.

2. If z ∈ C, let x be the node before z in C. By the modifications of Line 11 and Line 14, it

is wtk(x, z) = wt2(x,w
′), where w′ is a node that has been added to X when the algorithm

run on G i for some i < k. It follows that w is a highest-energy node in a path P : z ⇝ w′

in G2, and thus a highest-energy node in a suffix P ′ : w ⇝ w′ of P , where P ′ is a path in

G. Hence Ew′(w) = 0. By the induction hypothesis, w′ is a 0-energy node, i.e., E(w′) = 0,

thus by Lemma 8.10 we have E(w) ⩾ Ew′(w) = 0.

The result follows.

Lemma 8.14. For every w ∈ V : E(w) = 0 we have w ∈ X .
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Algorithm 26: ZeroEnergyNodes
Input: A weighted graph G2 = (V2, E2,wt2)

Output: The set {v ∈ V2 \ {z} : E(v) = 0}

1 Initialize sets V ← V2, E ← E2 and map wt ← wt2

2 Let G = (V ,E ,wt)

3 Initialize set X ← ∅

4 while True do

5 Execute Bellman-Ford from source node z in G

6 if exists non-positive cycle C then

7 Determine a highest-energy node w ̸= z in C

8 Assign X ← X ∪ {w}

9 foreach edge (x,w) ∈ E do

10 if (x, z) ̸∈ E then

11 Assign E ← E ∪ {(x, z)}

12 Assign wt(x, z)← wt2(x,w)

13 else

14 Assign wt(x, z)← min(wt2(x,w),wt(x, z))

15 end

16 end

17 Assign V ← V \ {w}

18 else

19 return X

20 end

21 end



260

Proof. Consider any w ∈ V : E(w) = 0. For some i ∈ N, we say that G i “is aware of w”

if either G i has a non-positive cycle C : w ⇝ w, or w ∈ X when |X | = i. Note that when

ZeroEnergyNodes terminates there are no non-positive cycles in G |X |. Hence, it suffices to argue

that there exists a k ∈ N such that for each i ⩾ k, G i is aware of w. We first argue that there

exists a k for which Gk is aware of w.

Let P be a witness for E(w) = 0, hence P traverses a non-positive cycle C1 in G, thus C1

exists in G0. Then there exists a smallest j ∈ N such that some node w′ of P is identified as

a highest-energy node in a non-positive cycle C2 of G j (possibly C1 = C2), and inserted to

X . If w = w′, we have that G j is aware of w. Otherwise, since E(w) = 0 and w′ is a node in

the witness P , we have Ew′(w) = 0. By the choice of w′, the path P exists in G j , therefore

Ej
w′(w) = Ew′(w) = 0, and by Remark 8.4, we have dj(w,w′) ⩽ 0. It is straightforward that

after the modifications in Lines 11 and 14, we have that dj+1(w, z) ⩽ dj(w,w′) ⩽ 0, and since

wt j(z, w) = wt2(z, w) = 0, we have a non-positive cycle C : w ⇝ w in G j+1 through z. Hence

either G j or G j+1 is aware of w, thus there exists a k ∈ N for which Gk is aware of w.

Finally, observe that the distance di(w, z) does not increase in any G i for i ⩾ k until w is inserted

to X , hence for each i ⩾ k, the graph G i is aware of w. The desired result follows.

Lemmas 8.13 and 8.14 establish that X = X , i.e. the set X returned by the algorithm is the set X

of zero-energy nodes of G.

Determining the negative-energy nodes. Having computed the set X of all the 0-energy nodes

of G, the second step for solving the minimum initial value credit problem is to determine the

energy of every other node u ∈ V \X . Recall the graph G |X| = (V |X|,E |X|,wt |X|) after the end

of ZeroEnergyNodes.

Lemma 8.15. For every u ∈ V \X we have E(u) = −d|X|(u, z).

Proof. Consider any node u ∈ V \ X = V |X| \ {z}. By Lemma 8.12, in the graph G we

have E(u) = maxv:E(v)=0 Ev(u), and by the correctness of ZeroEnergyNodes from Lemmas 8.13

and 8.14 we have X = {v : E(v) = 0}, thus E(u) = maxv∈X Ev(u). It is straightforward to

verify that at the end of ZeroEnergyNodes, we have maxv∈X Ev(u) = E
|X|
z (u), i.e., the maximum

energy to reach the set X in G is the energy to reach z in G |X|. For all v ∈ V |X| \ {z} it is
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E
|X|
z (v) < 0, otherwise we would have E(v) = 0 and thus v ∈ X and v ̸∈ V |X|. Then by

Lemma 8.12, E|X|
z (u) = −d|X|(u, z). We conclude that E(u) = −d|X|(u, z).

Hence, to compute the energy E(u) of every node u ∈ V \X , it suffices to compute its distance to

z in G |X|. This is straightforward by reversing the edges of G |X| and performing a Bellman-Ford

computation with z as the source node. Fig. 8.2 illustrates the algorithms on a small example.

We obtain the following theorem.
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Figure 8.2: Solving the value problem using operations on the graph G . Initially we examine G0,

and a non-positive cycle is found (boldface edges) with highest-energy node x. Thus E(x) = 0,

and we proceed with G1, to discover E(u) = 0. In G2 all cycles are positive, and the energy of

each remaining node is minus its distance to z.

Theorem 8.5. Let G = (V,E,wt) be a weighted graph of n nodes and m edges, and k = |{v ∈

V : E(v) = 0}|+1. The minimum initial credit value problem for G can be solved in O(k ·n ·m)

time and O(n) space.

Proof. Lemmas 8.13 to 8.15 establish the correctness, so it remains to argue about the complexity.

The while block of Line 4 is executed at most once for each 0-energy node, hence at most k times.

Inside the block, the execution of Bellman-Ford in Line 5 requires O(n ·m) time and O(m)

space. Since the Bellman-Ford algorithm uses backpointers to remember predecessors of nodes

in distances, a highest-energy node w of a non-positive cycle C in Line 7 can be determined

in O(n). Finally, the for loop of Line 9 will consider each edge (x,w) at most once, hence it

requires O(m) for all iterations of the while loop. Thus ZeroEnergyNodes uses O(k · n · m)
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time and O(n) space in total. The last execution of Bellman-Ford to determine the energy of

negative-energy nodes does not affect the complexity. The result follows.

Corollary 8.3. Let G = (V,E,wt) be a weighted graph of n nodes and m edges. The minimum

initial credit value problem for G can be solved in O(n2 ·m) time and O(n) space.

8.5.3 The Value Problem for Constant-treewidth Graphs

We now turn our attention to the minimum initial credit value problem for constant-treewidth

graphs G = (V,E,wt). Note that in such graphs m = O(n), thus Theorem 8.5 gives an O(n3)

time solution as compared to the existing O(n4 · log(n ·W )) time solution. This section shows

that we can do significantly better, namely reduce the time complexity to O(n · log n). This is

mainly achieved by algorithm ZeroEnergyNodesTW for computing the set X of 0-energy nodes

fast in constant-treewidth graphs.

Extended + and min operators. Recall the graph G2 = (V2, E2,wt2) from the last section.

Given Tree(G), a nicely rooted, balanced and binary tree-decomposition Tree(G2) of G2 with

width increased by 1 can be easily constructed by (i) inserting z to every bag of Tree(G), and

(ii) adding a new root bag that contains only z. Let I = Z× V ×Z. For a map f : V2× V2 → Z,

define the map gf : V2 × V2 → I as

gf (u, v) =

⎧⎨⎩ (f(u, v), u, 0) if f(u, v) < 0 or v = z

(f(u, v), v, f(u, v)) otherwise

and for triplets of elements α1 = (a1, b1, c1), α2 = (a2, b2, c2) ∈ I, define the operations

1. min(α1, α2) = αi with i = argminj∈{1,2} aj

2. α1 + α2 = (a1 + a2, b, c), where c = max(c1, a1 + c2) and b = b1 if c = c1 else b = b2.

In words, if f is a weight function, then gf (u, v) selects the weight of the edge (u, v), and its

highest-energy node (i.e., u if f(u, v) < 0, and v otherwise, except when v = z), together with

the weight to reach that highest energy node node from u. Recall that algorithm MinCycle from

Section 8.3 traverses a tree-decomposition bottom-up, and for each encountered bag B stores a

map LDB such that LDB(u, v) is upper bounded by the weight of the shortest U-shaped simple
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Figure 8.3: Illustration of the α1 + α2 operation, corresponding to concatenating paths P1 and

P2. The path P i
j denotes the i-th prefix of Pj . We have P = P1 ◦ P2, and the corresponding

tripplet α = (a, b, c) denotes the weight a of P , its highest-energy node b, and the weight c of a

highest-energy prefix.

path u⇝ v (or simple cycle, if u = v). Our algorithm ZeroEnergyNodesTW for determining all

0-energy nodes is similar, only that now LDB stores triplets (a, b, c) where a is the weight of a

U-shaped path P , b is a highest-energy node of P , and c the weight of a highest-energy prefix

of P . For two triplets α1 = (a1, b1, c1), α2 = (a2, b2, c2) ∈ I corresponding to U-shaped paths

P1 and P2, min(α1, α2) selects the path with the smallest weight, and α1 + α2 determines the

weight, a highest-energy node, and the weight of a highest-energy prefix of the path P1 ◦ P2 (see

Fig. 8.3).

Algorithm ZeroEnergyNodesTW. The algorithm ZeroEnergyNodesTW for computing the set

of 0-energy nodes in constant-treewidth graphs follows the same principle as ZeroEnergyNodes

for general graphs. It stores a map of edge weights wt : E2 → Z ∪ {∞}, and initially

wt(u, v) = wt2(u, v) for each (u, v) ∈ E2. The algorithm performs a bottom-up pass, and

computes in each bag the local distance map LDB : B ×B → I that captures U-shaped u⇝ v

paths, together with their highest-energy nodes. When a non-positive cycle C is found in some

bag B, the method KillCycle is called to modify the edges of a highest-energy node w of C and

its incoming neighbors by updating the map wt . These updates generally affect the distances

between the rest of the nodes in the graph, hence some local distance maps LDB need to be

corrected. However, each such edge modification only affects the local distance map of bags that

appear in a path from a bag B′ to some ancestor B′′ of B′. Instead of restarting the computation

as in ZeroEnergyNodes, the method Update is called to correct those local distance maps along

the path B′ ⇝ B′′.
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Algorithm 27: ZeroEnergyNodesTW
Input: A weighted graph G2 = (V2, E2,wt2) and a nicely rooted, binary tree-decomposition

Tree(G2)

Output: The set {v ∈ V2 \ {z} : E(v) = 0}

// Initialization

1 Assign X ← ∅

2 foreach u, v ∈ V2 do

3 if (u, v) ∈ E2 then

4 Assign wt(u, v)← wt2(u, v)

5 else

6 Assign wt(u, v)←∞

7 end

8 end

// Computation

9 Apply a post-order traversal on Tree(G), and examine each bag B with children B1, B2

10 begin

11 foreach u, v ∈ B do

12 Assign LDB(u, v)←min(LDB1(u, v), LDB2(u, v), gwt (u, v))

13 end

14 if B is the root bag of a node x then

15 foreach u, v ∈ B do

16 Assign LD′
B(u, v)←min(LDB(u, v), LDB(u, x)+ LDB(x, v))

17 end

18 Assign LDB ← LD′
B

19 if ∃u ∈ B with LDB(u, u) = (a, b, c) where a ⩽ 0 then

20 Assign X ← X ∪ {b}

21 Execute KillCycle on b and B

22 end

23 return X
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Algorithm 28: KillCycle
Input: A 0-energy node w and a bag B of Tree(G2)

Output: Updates the local distance function LDB

1 foreach edge (x,w) ∈ E2 do

2 Assign wt(x, z)← min(wt2(x,w),wt(x, z))

3 Assign wt(x,w)←∞

4 Assign y ← argmaxu∈{x,w} Lv(u)

5 Let B′ be the smallest-level ancestor of By examined by ZeroEnergyNodesTW so far

6 Execute Update on By and its ancestor B′

7 end

8 return LDB

Algorithm 29: Update
Input: A bag B′ and an ancestor B′′

Output: The local distances LDB along the path B′ ⇝ B′′

1 Traverse the path B′ ⇝ B′′ bottom-up, and examine each bag B with children B1, B2

2 begin

3 foreach u, v ∈ B do

4 Assign LDB(u, v)←min(LDB1(u, v), LDB2(u, v), gwt (u, v))

5 end

6 if B is the root bag of a node x then

7 foreach u, v ∈ B do

8 Assign LD′
B(u, v)←min(LDB(u, v), LDB(u, x)+ LDB(x, v))

9 end

10 Assign LDB ← LD′
B

11 if ∃u ∈ B with LDB(u, u) = (a, b, c) where a ⩽ 0 then

12 Assign X ← X ∪ {b}

13 Execute KillCycle on b and B

14 end
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The following lemma establishes the correctness of ZeroEnergyNodesTW. Similarly as for

Lemmas 8.13 and 8.14 we denote by Gk the graph obtained by considering the edges (u, v) for

which wt(u, v) <∞ when |X| = k.

Lemma 8.16. For every v ∈ V \ {z} we have v ∈ X iff E(v) = 0.

Proof. We only need to argue that ZeroEnergyNodesTW correctly computes the non-positive

cycles in every Gk, as then the correctness follows from the correctness Lemmas 8.13 and 8.14 of

ZeroEnergyNodes. Since by Remark 8.1 every cycle is a U-shaped path in some bag, it suffices

to argue that whenever ZeroEnergyNodesTW examines a bag B (either directly, or through

Update), every U-shaped simple cycle in B has been considered by the algorithm. This is true if

no calls to KillCycle are made (if block in Line 19), as then ZeroEnergyNodesTW is the same as

MinCycle, and hence it follows from Lemma 8.1.

Now consider that KillCycle is called and B′ is the smallest-level bag examined by

ZeroEnergyNodesTW so far. Let w be the 0-energy node, x an incoming neighbor of w, and

y = argmaxu∈{x,w} Lv(u) (as in Line 4 of KillCycle). By the definition of U-shaped paths, the

edge (x,w) appears only in paths that are U-shaped in bags along the path By ⇝ B′. Hence,

after setting wt(x,w) =∞ (Line 3 of KillCycle), it suffices to update the local distance maps of

these bags. Similarly, after setting wt(x, z) ← min(wt2(x,w),wt(x, z)) (Line 2 of KillCycle),

since Bz is the root of Tree(G2), it suffices to update the local distance maps in the bags along

the path Bx ⇝ B′. Either x = y, or, by the properties of tree-decompositions, Bx is an ancestor

of By. Hence in either case Bx ⇝ B′ is a subpath of By ⇝ B′, and both edge modifications

in Lines 2 and 3 are handled correctly by calling Update on By and its ancestor B′. The result

follows.

Lemma 8.17. Algorithm ZeroEnergyNodesTW runs in O(n · log n) time and O(n) space.

Proof. Let h = O(log n) be the height of Tree(G2).

1. The method Update performs a constant number of operations to each bag in the path

B′ ⇝ B′′ where B′′ is ancestor of B′, hence each call to Update requires O(h) time.

2. The method KillCycle performs a constant number of operations locally and one call to

Update for each incoming edge of w. Hence if w has kw incoming edges, KillCycle requires
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O(h · kw) time. Since KillCycle sets wt(x,w) =∞ for all incoming edges of w, the node

w will not appear in non-positive cycles thereafter.

3. The algorithm ZeroEnergyNodesTW is similar to MinCycle which runs in O(n) time and

space (Lemma 8.4). The difference is in the additional if block in Line 19. Since KillCycle

is called when a non-positive cycle is detected, it will be called at most once for each node

u ∈ V2 \ {z} (from either ZeroEnergyNodesTW or Update). It follows that the total time

of ZeroEnergyNodesTW is

O

(
n+

∑
u

(h · ku)

)
= O(n+ h · |E2|) = O(n · log n)

where ku is the number of incoming edges of node u. Since KillCycle stores constant size

of information in each bag of Tree(G2), the O(n) space bound follows.

After the set X of 0-energy nodes has been computed, it remains to execute one instance of

the single-source shortest path problem on the graph G |X| (similarly as for our solution on

general graphs). Since single-source distances on tree-decompositions of constant width can be

computed in O(n) time [Chaudhuri and Zaroliagis, 1995], we obtain the following theorem.

Theorem 8.6. Let G = (V,E,wt) be a weighted graph of n nodes with constant treewidth. The

minimum initial credit value problem for G can be solved in O(n · log n) time and O(n) space.

8.6 Experimental Results

In the current section we report on preliminary experimental evaluation of our algorithms, and

compare them to existing methods. Our algorithm for the minimum mean cycle problem provides

improvement for constant-treewidth graphs, and has thus been evaluated on low-treewidth graphs

obtained from the control-flow graphs of programs. For the minimum initial credit problem, we

have implemented our algorithm for arbitrary graphs, thus the benchmarks used in this case are

general graphs (i.e., not constant-treewidth graphs).
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8.6.1 Minimum Mean Cycle

We have implemented our approximation algorithm for the minimum mean cycle problem, and

we let the algorithm run for as many iterations until a minimum mean cycle was discovered,

instead of terminating after O(log(n
ϵ
)) iterations required by Theorem 8.3. We have tested its

performance in running time and space against six other minimum mean cycle algorithms from

Table 8.3 in control-flow graphs of programs. The algorithms of Burns and Lawler solve the more

general ratio cycle problem, and have been adapted to the mean cycle problem as in [Dasdan

et al., 1998].

[Madani, 2002] [Burns, 1991] [Lawler, 1976] [Dasdan and Gupta, 1998] [Hartmann and Orlin, 1993] [Karp, 1978]

Time O(n2) O(n3) O(n2 · log(n ·W )) O(n2) O(n2) O(n2)

Space O(n) O(n) O(n) O(n2) O(n2) O(n2)

Table 8.3: Asymptotic complexity of compared minimum mean cycle algorithms.

Setup. The algorithms were executed on control-flow graphs of methods of programs from

the DaCapo benchmark suit [Blackburn, 2006], obtained using the Soot framework [Vallée-Rai

et al., 1999]. For each benchmark we focused on graphs of at least 500 nodes. This supplied

a set of medium sized graphs (between 500 and 1300 nodes), in which integer weights were

assigned uniformly at random in the range {−103, . . . , 103}. Memory usage was measured with

[Brosius].

Results. Fig. 8.4 shows the average time and space performance of the examined algorithms

(bars that exceeded the maximum value in the y-axis have been truncated). Our algorithm has

much smaller running time than each other algorithm, in almost all cases. In terms of space,

our algorithm significantly outperforms all others, except for the algorithms of Lawler, Burns,

and Madani. Both ours and these three algorithms have linear space complexity, but ours also

suffers some constant factor overhead from the tree-decomposition (i.e., the same node generally

appears in multiple bags). Note that the strong performance of these three algorithms in space is

followed by poor performance in running time.
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Figure 8.4: Average performance of minimum mean cycle algorithms.

8.6.2 Minimum Initial Credit

We have implemented our algorithm for the minimum initial credit problem on general graphs

and experimentally evaluated its performance on a subset of benchmark weighted graphs from the

DIMACS implementation challenges [dim]. Our algorithm was tested against the existing method

of [Bouyer et al., 2008]. The direct implementation of the algorithm of [Bouyer et al., 2008]

performed poorly, and for this we also implemented an optimized version (using techniques such

as caching of intermediate results and early loop termination). Note that we compare algorithms

for general graphs, without the low-treewidth restriction.

Setup. For each input graph we first computed its minimum mean value µ∗ using Karp’s

algorithm, and then subtracted µ∗ from the weight of each edge to ensure that at least one

non-positive cycle exists (thus the energies are finite).

Results. Fig. 8.5 depicts the running time of the algorithm of [Bouyer et al., 2008] (with and

without optimizations) vs our algorithm. A timeout was forced at 1010µs. Our algorithm is

orders of magnitude faster, and scales better than the existing method.
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Madani Burns Lawler Dasdan-Gupta Hartmann-Orlin Karp Ours

antlr 55814 61571 165789 284996 21893 7824 18402

bloat 138416 188356 350302 105145 144171 89949 22391

chart 216962 137112 573767 154062 107229 90717 40890

eclipse 216859 242323 667869 172792 148523 107864 23486

fop 83080 147384 406371 59176 121742 31557 19306

hsqldb 131041 153232 208328 86840 228632 40486 19957

javac 58443 110149 122996 179647 14719 34188 20874

jflex 214297 524822 554093 116820 133323 53329 23860

jython 139106 200922 503766 94052 75569 34864 28760

luindex 199650 217980 1240411 274319 228856 92379 22142

lusearch 433211 447280 1180051 263467 333297 101584 55652

pmd 180551 155118 585315 118578 155682 48326 21978

xalan 120897 156111 394458 81103 96873 47996 14493

Table 8.4: The time performance of Fig. 8.4 (in µs).

Figure 8.5: Comparison of running times for the minimum initial credit problem.
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Madani Burns Lawler Dasdan-Gupta Hartmann-Orlin Karp Ours

antlr 16805 21018 11144 486435 489176 322384 168648

bloat 29723 24500 19458 1245272 1249444 826645 306026

chart 27130 30567 18172 2025448 2029294 1347048 278586

eclipse 24215 26488 16293 965063 968595 640720 254393

fop 16845 17975 11052 576174 578646 382338 169738

hsqldb 16798 19309 11144 486435 489096 322384 168648

javac 14681 17047 9664 372697 375453 247019 144721

jflex 24561 26946 16322 1244495 1248036 826743 251549

jython 22518 23337 14899 1059291 1062570 703581 228207

luindex 39309 40223 25604 3521607 3526792 2342833 399076

lusearch 41488 33350 26991 3387914 3393343 2253403 422679

pmd 32204 24481 21021 1391551 1395786 923975 326137

xalan 16798 17763 11144 486435 489102 322384 168648

Table 8.5: The space performance of Fig. 8.4 (in KB).
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n Existing Existing Optimized Ours

50 9453565 1680924 48635

58 39744129 3394193 121774

66 55766874 6201044 267825

74 180080064 12833610 136239

82 267993314 13563936 116518

90 342779026 25453589 383292

98 74622910 12648395 501365

106 791441986 60294150 385799

114 1133055323 80584700 432290

122 1004898322 67982455 564838

130 2354354250 165193753 348112

138 881117317 114743182 636481

146 7050113907 311146051 501314

162 5179877563 324877384 1154447

178 Timeout 589873640 635155

194 3799301931 391240954 2672127

218 Timeout 2596083382 866213

242 Timeout 2774469734 1779512

266 Timeout 2839496222 7676638

290 Timeout 6526762301 1332403

322 Timeout 5929433611 1282258

Table 8.6: The time performance of Fig. 8.5 in µs.
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9 Data-centric Dynamic Partial Order

Reduction

9.1 Introduction

In this chapter we focus on the stateless model checking of concurrent programs. The

standard partial-order reduction enumerative methods rely on the Mazurkiewicz equiva-

lence [Mazurkiewicz, 1987] between traces, and attempt to explore as few representative

traces as possible from each Mazurkiewicz class. There exists a rich body of dynamic

partial-order reduction (DPOR) techniques for the enumerative exploration of the trace space

based on the Mazurkiewicz equivalence [Flanagan and Godefroid, 2005; Godefroid, 2005;

Musuvathi et al., 2008; Abdulla et al., 2014; Abdulla et al., 2015; Zhang et al., 2015]. A basic

and fundamental question is whether coarser equivalence classes than the Mazurkiewicz equiva-

lence can be applied to the stateless model checking and whether some DPOR-like approach

can be developed based on such coarser equivalences. Here we give a positive answer to this

question. We present a new, data-centric dynamic partial-order reduction (DC-DPOR) which

explores a coarser partitioning of the trace space than the Mazurkiewicz partitioning, and does

so by spending polynomial time per class.

9.1.1 Our contributions

In this chapter our contributions are as follows.

Observation equivalence. We introduce the new notion of observation equivalence (Sec-
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tion 9.3.1), which is intuitively as follows: An observation function of a trace maps every read

event to the write event it observes under sequentially consistent semantics. In contrast to

every possible ordering of dependent control locations of the Mazurkiewicz equivalence, in the

observation equivalence two traces are equivalent if they have the same observation function.

The observation equivalence has the following properties.

1. Soundness. The observation equivalence is sufficient for exploring all local states of each

process, and is thus sufficient for model checking wrt to local properties (similar to the

Mazurkiewicz equivalence).

2. Coarser. Second, the observation equivalence is coarser than Mazurkiewicz equivalence,

i.e., if two traces are Mazurkiewicz equivalent, then they are also observation equivalent

(Section 9.3.1).

3. Exponentially coarser. Third, the observation equivalence can be exponentially more

succinct than Mazurkiewicz equivalence, i.e., we present examples where the ratio of

the number of equivalence classes between observation and Mazurkiewicz equivalence is

exponentially small (Section 9.3.2).

In summary, the observation equivalence allows for a sound exploration method of the trace

space which is always coarser, and in cases, strictly coarser than the fundamental Mazurkiewicz

equivalence.

Principal difference. The principal difference between the Mazurkiewicz and our new obser-

vation equivalence is that while the Mazurkiewicz equivalence is control-centric, observation

equivalence is data-centric. The data-centric approach takes into account read-write and mem-

ory consistency restrictions as opposed to the event-dependency relation of the Mazurkiewicz

equivalence.

Data-centric DPOR. We devise a DPOR exploration of the trace space, called data-centric

DPOR, based on the observation equivalence. Our DPOR algorithm is based on a notion of

annotations, which are intended observation functions (see Section 9.4). The basic computational

problem is, given an annotation, decide whether there exists a trace which realizes the annotation.

We show that the computational problem is NP-complete in general, but for the important special

case of acyclic architectures we present a polynomial-time (cubic-time) algorithm based on
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reduction to 2-SAT (details in Section 9.4). Based our polynomial-time solution of the annotation

problem, we present an algorithm for the stateless exploration of the trace space, which has the

following properties.

1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative

trace from each observation equivalence class, while spending polynomial time per class.

Hence, our algorithm is optimal wrt the observation equivalence, and in several cases ex-

plores exponentially fewer traces than any enumerative method based on the Mazurkiewicz

equivalence (details in Section 9.5).

2. For cyclic architectures, we consider an equivalence between traces which is finer than the

observation equivalence; but coarser than the Mazurkiewicz equivalence, and in many cases

is exponentially coarser. For this equivalence on traces, we again present an algorithm for

DPOR that explore exactly one representative trace from each observation class, while

spending polynomial time per class. Thus again our data-centric DPOR algorithm remains

optimal under this trace equivalence for cyclic architectures (details in Section 9.6).

Experimental results. Finally, we perform a basic experimental comparison between the

existing Mazurkiewicz-based DPOR and our data-centric DPOR on a set of academic benchmarks.

Our results show a significant reduction in both running time and the number of explored traces.

Comparison with most relevant existing work. In the past, there have been attempts to devise

enumerative explorations of the trace space. with respect to trace equivalences which are coarser

than the Mazurkiewicz equivalence. We list here some of these works.

1. In [Wang et al., 2008] the authors introduce the Peephole Partial-order Reduction, in which

various transitions can be considered independent in some, but not all traces of the system.

However, their approach utilizes a SAT/SMT solver to prune away redundant interleavings.

2. The work of [Huang, 2015] builds upon the theoretical model of maximal causality

of [Şerbănuţă et al., 2013] to provide an enumerative exploration where every explored

trace corresponds to a distinct maximal causal model which captures the largest possible

set of causally equivalent executions. The construction of each such trace queries an SMT

solver with Integer Difference Logic (IDL) constraints, which requires exponential time

in the worst case. In contrast, our algorithm has polynomial worst-case complexity per
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trace. Even though SMT solvers scale well in practice, the important theoretical question

of coarsening the trace space with polynomial worst-case guarantees had remained open.

The experimental section of [Huang, 2015] also reports that the running time on larger

instances is dominated by the time spent in the SMT procedure.

3. In [Rodríguez et al., 2015] the authors introduce the unfolding-based Partial-order Reduc-

tion, which relies on state caching and cutoff events to further prune the trace space, and is

thus stateful.

Organization The rest of this chapter is organized as follows.

1. In Section 9.2 we define the concurrent model, instances of which are used as inputs to

our data-centric partial order reduction algorithm. We also introduce several definitions

that help with the exposition of the ideas in this chapter.

2. In Section 9.3 we introduce our new, observation equivalence, and compare it with the

standard Mazurkiewicz equivalence. In high level, two traces are observation equivalent if

they contain the same events, and every read event observes the same write event in both

traces.

3. In Section 9.4 we introduce the concept of annotations, which are used in guiding our

enumerative exploration. Intuitively, annotations specify the intended relationship between

read and write events of a trace. We also establish some complexity results regarding the

problem of generating system traces that agree with a given annotation.

4. In Section 9.5 we present our DC-DPOR algorithm for the enumerative exploration of

the classes of the observation equivalence of a concurrent system that comprises an

acyclic architecture topology. Our algorithm is optimal, in the sense that it explore each

observation class once, and spends only polynomial time for each class.

5. In Section 9.6 we extend DC-DPOR to cyclic architectures. In this case, the algorithm

explores a partitioning of the state space that is finer that the observation equivalence,

but remains coarser than the Mazurkiewicz equivalence, and can be even exponentially

coarser.

6. In Section 9.7 we present a preliminary experimental evaluation of our DC-DPOR algo-
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rithm on some academic benchmarks.

9.2 Preliminaries

In this section we introduce a simple model for concurrent programs that will be used for stating

rigorously the key ideas of our data-centric DPOR. Similar (but syntactically richer) models have

been used in [Flanagan and Godefroid, 2005; Abdulla et al., 2014]. In Section 9.2.3 we discuss

our various modeling choices and possible extensions.

Informal model. We consider a concurrent system of k processes under sequential consistency

semantics. For the ease of presentation, we do not allow dynamic thread creation, i.e., k is fixed

during any execution of the system. Each process is defined over a set of local variables specific

to the process, and a set of global variables, which is common for all processes. Each process is

represented as an acyclic control-flow graph, which results from unrolling the body of the process.

A process consists of statements over the local and global variables, which we call events. The

precise kind of such events is immaterial to our model, as we are only interested in the variables

involved. In particular, in any such event we identify the local and global variables it involves,

and distinguish between the variables that the event reads from and at most one variable that the

event writes to. Such an event is visible if it involves global variables, and invisible otherwise.

We consider that processes are deterministic, meaning that at any given time there is at most one

event that each process can execute. Given the current state of the system, a scheduler chooses

one process to execute a sequence of events that is invisibly maximal, that is, the sequence does

not end while an invisible event from that process can be taken. The processes communicate

by writing to and reading from the global variables. The system can exhibit nondeterministic

behavior which is solely attributed to the scheduler, by choosing nondeterministically the next

process to take an invisibly maximal sequence of events from any given state. We consider locks

as the only synchronization primitive, with the available operations being acquiring a lock and

releasing a lock. Since richer synchronization primitives are typically built using locks, this

consideration is not restrictive, and helps with keeping the exposition of the key ideas simple.



278

9.2.1 Concurrent Computation Model

Here we present our model formally. Relevant notation is summarized in Table 9.1.

Relations and equivalence classes. A binary relation∼ on a set X is an equivalence relation iff

∼ is reflexive, symmetric and transitive. Given an equivalence ∼R and some x ∈ X , we denote

by [x]R the equivalence class of x under ∼R, i.e.,

[x]R = {y ∈ X : x ∼R y}

The quotient set X/ ∼R:= {[x]R | x ∈ X} of X under ∼R is the set of all equivalence classes

of X under ∼R.

Notation on functions. We write f : X ↦→ Y to denote that f is a partial function from X

to Y . Given a (partial) function f , we denote by dom(f) and img(f) the domain and image

set of f , respectively. For technical convenience, we think of a (partial) function f as a set of

pairs {(xi, yi)}i, meaning that f(xi) = yi for all i, and use the shorthand notation (x, y) ∈ f

to indicate that x ∈ dom(f) and f(x) = y. Given (partial) functions f and g, we write f ⊆ g

if dom(f) ⊆ dom(g) and for all x ∈ dom(f) we have f(x) = g(x), and f = g if f ⊆ g and

g ⊆ f . Finally, we write f ⊂ g if f ⊆ g and f ̸= g.

Model syntax. We consider a concurrent architecture P that consists of a fixed number of

processes p1, . . . , pk, i.e., there is no dynamic thread creation. Each process pi is defined over a

set of ni local variables Vi, and a set of global variables G, which is common for all processes.

We distinguish a set of lock variables L ⊆ G which are used for process synchronization.

All variables are assumed to range over a finite domain D. Every process pi is represented

as an acyclic control-flow graph CFGi which results from unrolling all loops in the body of

pi. Every edge of CFGi is labeled, and called an event. In particular, the architecture P is

associated with a set of events E , a set of read events (or reads)R ⊆ E , a set of write events (or

writes)W ⊆ E . Furthermore, locks are manipulated by a set of lock-acquire events LA ⊆ R

and a set of lock-release events LR ⊆ W , which are considered read events and write events

respectively. The control-flow graph CFGi of process pi consists of events of the following types

(where Vi = {v1, . . . , vni
}, g ∈ G, l ∈ L, fi : Dni → D is a function on ni arguments, and

b : Vni
i → {True,False} is a boolean function on ni arguments).

1. e : v ← read g, in which case e ∈ R,
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Vi = {v1, . . . , vni
} g ∈ G l ∈ L

x y
e : v ← read g

e ∈ R

x y
e : g ← write f(v1, . . . , vni)

e ∈ W

x y
e : acquire l

e ∈ LA

x ye : release l
e ∈ LR

x
y

z

e1 : b1(v1, . . . , vni
)

em : bm(v1, . . . , vni)

...

Figure 9.1: The control-flow graph CFGi is a sequential composition of these five atomic graphs.

2. e : g ← write f(v1, . . . , vni
), in which case e ∈ W ,

3. e : acquire l, in which case e ∈ R,

4. e : release l, in which case e ∈ W ,

5. e1 : b(v1, . . . , vni
).

Each CFGi is a directed acyclic graph with a distinguished root node ri, such that there is a path

ri ⇝ x to every other node x of CFGi. Each node x of CFGi has either

1. zero outgoing edges, or

2. one outgoing edge (x, y) labeled with an event of a type listed in Item 1-Item 4, or

3. m ⩾ 2 outgoing edges (x, y1), . . . , (x, ym) labeled with events ej : bj(v1, . . . , vni
)

of Item 5, and such that for all values of v1, . . . , vni
, we have bj(v1, . . . , vn) =⇒

¬bl(v1, . . . , vni
) for all j ̸= l.In this case, we call x a branching node.

For simplicity, we require that if x is a branching node, then for each edge (x, y) in CFGi, the

node y is not branching. Indeed, such edges can be easily contracted in a preprocessing phase.

Fig. 9.1 provides a summary of the model syntax. We let Ei ⊆ E be the set of events that appear

in CFGi of process pi, and similarlyRi ⊆ R andWi ⊆ W the sets of read and write events of pi.

Additionally, we require that Ei∩Ej = ∅ for all i ̸= j i.e., all Ei are pairwise disjoint, and denote

by proc(e) the process of event e. The location of an event loc(e) is the unique global variable it

involves. Given two events e, e′ ∈ Ei for some pi, we write PS(e, e′) if there is a path e⇝ e′ in
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CFGi (i.e., we write PS(e, e′) to denote that e is ordered before e′ in the program structure).

We distinguish a set of initialization eventsWI ⊆ W with |WI | = |G| which are attributed to

process p1, and are used to initialize all the global variables to some fixed values. For every

initialization write event wI and for any event e ∈ Ei of process pi, we define that PS(wI , e) (i.e.,

the initialization events occur before any event of each process). Fig. 9.2 illustrates the above

definitions on the typical bank account example.

Method: bool withdraw(int amount)

Globals : int balance, lock l

Locals : bool success, int v

// 1. Try withdraw

1 success← False

2 acquire(l)

3 v ← balance

4 if v − amount ⩾ 0 then

5 balance← v − amount

6 success← True

7 release(l)

8 print(success)

// 2. Print balance

9 v ← balance

10 print(v)

x1

x2

x3

x4

x5

x6

x7

e1 : acquire l

e2 : v ← read balance

e3 : b(v, amount)

e4 : balance← write f(v, amount, success)

e5 : release l

e7 : ¬b(v, amount)

e6 : v ← read balance

Ei = {e1, . . . , e7}

Ri = {e1, e2, e6}

Wi = {e4, e5}

LA
i = {e1}
LR

i = {e5}

Figure 9.2: (Left): A method withdraw executed whenever some amount is to be extracted from

the balance of a bank account. (Right): Representation of withdraw in our concurrent model.

The root node is x1. The program structure orders PS(e2, e4). We have loc(e1) = loc(e5) and

loc(e2) = loc(e4) = loc(e6).

Model semantics. A local state of a process pi is a pair si = (xi, vali) where xi is a node of

CFGi (i.e., the program counter) and vali is a valuation on the local variables Vi. A global state

of P is a tuple s = (val, s1, . . . , sk), where val is a valuation on the global variables G and si

is a local state of process pi. An event e along an edge (x, y) of a process pi is enabled in s if

si = (x, vali) (i.e., the program counter is on node x) and additionally,
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1. if e : acquire l, then val(l) = False, and

2. if e : bj(v1, . . . , vni
), then bj(vali(v1), . . . , vali(vni

)) = True.

In words, if e acquires a lock l, then e is enabled iff l is free in s, and if x is a branching node,

then e is enabled iff it respects the condition of the branch in s. Given a state s, we denote by

enabled(s) ⊆ E the set of enabled events in s, and observe that there is at most one enabled event

in each state s from each process. The execution of an enabled event e along an edge (x, y) of pi

in state s = (val, s1, . . . , sk) results in a state s′ = (val′, s1, . . . , s
′
i, . . . , sk), where s′i = (y, val′i).

That is, the program counter of pi has progressed to y, and the valuation functions val′ and val′i

have been modified according to standard semantics, as follows:

1. e : v ← read g then val′i(v) = val(g),

2. e : g ← write f(v1, . . . , vni
) then val′(g) = f(vali(v1), . . . , vali(vni

)),

3. e : acquire l then val′(l) = True,

4. e : release l then val′(l) = False.

Moreover, val agrees with val′ and vali agrees with val′i on all other variables. We write s
e−→ s′

to denote that the execution of event e in s results in state s′. Let SP be the finite set (since

variables range over a finite domain) of states of P . The semantics of P are defined in terms

of a transition system AP = (SP ,∆, s0), where s0 is the initial state, and ∆ ⊆ SP × SP is the

transition relation such that

(s, s′) ∈ AP iff ∃e ∈ enabled(s) : s
e−→ s′

and either e is an initialization event, or the program counter of p1 has passed all initialization

edges of p1. We write s
e1,...en−−−−→ s′ if there exists a sequence of states {si}1⩽i<n such that

s
e1−→ s1

e2−→ . . . sn−1 en−→ s′

The initial state s0 = (val, s01, . . . , s
0
k) is such that the value val(g) of each global variable g

comes from the unique initialization write event w with loc(w) = g, and for each s0i = (xi, vali)

we have that xi = ri (i.e., the program counter of process pi points to the root node of CFGi).

For simplicity we restrict SP to states s that are reachable from the initial state s0 by a sequence

of events s0
e1,...,en−−−−→ s. We focus our attention on state spaces SP that are acyclic.
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Architecture topologies. The architecture P induces a labeled undirected communication graph

GP = (VP , EP ,wtP) where VP = {pi}i. There is an edge (pi, pj) if processes pi, pj access a

common global variable or a common lock. The label wt(pi, pj) is the set of all such global

variables and locks. We call P acyclic if GP does not contain cycles. The class of acyclic

architectures includes, among others, all architectures with two processes, star architectures,

pipelines, tree-like and hierarchical architectures.

Notation Interpretation

P = (pi)
k
i=1 the concurrent architecture of k processes

G,V ,L the global, local and lock variables

E ,W ,R,LA,

LR,WI

the set of events, write, read, lock-acquire

lock-release and initialization events

vali, val valuations of local, global variables

enabled(s) ⊆ E the set of enabled events in s

s
e1,...,en−−−−→ s′ sequence of events from s to s′

proc(e), loc(e) the process, the global variable of event e

CFGi, PS ⊆ E × E
the control-flow graph of process pi,

and the program structure relation

GP = (VP , EP ,wtP) the communication graph of P

Table 9.1: Notation on the concurrent architecture.

9.2.2 Traces

In this section we develop various helpful definitions on traces. Relevant notation is summarized

in Table 9.2.

Notation on traces. A (concrete, concurrent) trace is a sequence of events t = e1, . . . , ej such

that for all 1 ⩽ i < j, we have si−1 ei−→ si, where si ∈ SP and s0 is the initial state of P . In

such a case, we write succinctly s0
t−→ sj . We fix the first |G| events e1, . . . , e|G| of each trace

t to be initialization events that write the initial values to the global variables. That is, for all

1 ⩽ i ⩽ |G| we have ei ∈ W , and hence every trace t starts with an initialization trace tI as a
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prefix. Given a trace t, we denote by E(t) the set of events that appear in t, withR(t) = E(t)∩R

the read events in t, and withW(t) = E(t) ∩W the write events in t, and let |t| = |E(t)| be the

length of t. For an event e ∈ E(t), we write It(e) ∈ N+ to denote the index of e in t. Given

some ℓ ∈ N, we denote by t[ℓ] the prefix of t up to position ℓ, and we say that t is an extension

of t[ℓ]. We let enabled(t) denote the set of enabled events in the state at the end of t, and call t

maximal if enabled(t) = ∅. We write TP for the set of all maximal traces of P . We denote by

s(t) the unique state of P such that s0 t−→ s(t), and given an event e ∈ R(t) ∪W(t), denote by

valt(e) ∈ D the value that the unique global variable of e has in s(t[It(e)]). We call a maximal

trace t lock-free if the value of every lock variable in s(t) is False (i.e., all locks have been

released at the end of t). An event e is inevitable in a trace t if every every lock-free maximal

extension of t contains e. Given a set of events A, we denote by t|A the projection of t on A,

which is the unique subsequence of t that contains all events of A ∩ E(t), and only those. A

sequence of events t′ is called the global projection of another sequence t if t′ = t|(R∪W).

Sequential traces. Given a process pi, a sequential trace τi is a sequence of events that

correspond to a path in CFGi, starting from the root node ri. Note that a sequential trace is only

wrt CFGi, and is not necessarily a trace of the system. The notation on traces is extended naturally

to sequential traces (e.g., E(τi) and R(τi) denote the events and read events of the sequential

trace τi, respectively). Given k sequential traces τ1, τ2, . . . , τk, so that each τi is wrt pi, we denote

by τ1 ∗ τ2 ∗ . . . ∗ τk the (possibly empty) set of all traces t such that E(t) =
⋃

1⩽i⩽k E(τi).

Conflicting events, dependent events and happens-before relations. Two events e1, e2 ∈

R ∪W are said to conflict, written Confl(e1, e2) if loc(e1) = loc(e2) and at least one is a write

event. The events are said to be in read-write conflict if e1 ∈ R, e2 ∈ W and Confl(e1, e2). Two

events e1, e2 are said to be independent [Godefroid, 1996; Flanagan and Godefroid, 2005] if

p(e1) ̸= p(e2) and

1. for each i ∈ {1, 2} and pair of states s1, s2 such that s1
ei−→ s2, we have that e3−i ∈

enabled(s1) iff e3−i ∈ enabled(s2), and

2. for any pair of states s1, s2 such that e1, e2 ∈ enabled(s1), we have that s1
e1,e2−−→ s2 iff

s1
e2,e1−−→ s2,

and dependent otherwise. Following the standard approach in the literature, we will consider two

conflicting events to be always dependent [Godefroid, 1997, Chapter 3] (e.g., two conflicting
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write events are dependent, even if they write the same value). A sequence of events t induces a

happens-before relation→t ⊆ E(t)× E(t), which is the smallest transitive relation on E(t) such

that

e1→te2 if It(e1) ⩽ It(e2) and e1 and e2 are dependent.

Observe that→t orders all pairwise conflicting events, as well as all the events of any process.

Notation Interpretation

t, τi a trace and a sequential trace

Confl(e1, e2) conflicting events

t[ℓ], |t| the prefix up to index ℓ, and length of t

E(t),W(t),R(t) the events, write and read events of trace t

It(e), valt(e) the index and value of event e in trace t

t|X projection of trace t on event set X

enabled(t) the enabled events in the state reached by t

→t the happens-before relation on t

Ot the observation function of t

Table 9.2: Notation on traces.

9.2.3 Discussion and Remarks

The concurrent model we consider here is minimalistic, to allow for a clear exposition of the

ideas used in our data-centric DPOR. Here we discuss some of the simplifications we have

adopted to keep the presentation simple.

Global variables. First, note that the location loc(e) of every event e ∈ R ∪W is taken to be

fixed in each CFGi. The dynamic access of a static, global data structure g based on the value

of a local variable v (e.g., accessing the element g[v] of a global array g) can be modeled by

using a different global variable gi to encode the i-th location of g, and a sequence of branching

nodes that determine which gi should be accessed based on the value of v. Our framework can
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be strengthened to allow use of global arrays directly, and our algorithms apply straightforwardly

to this richer framework. However, this would complicate the presentation, and is thus omitted

in the theoretical exposition of the paper. A brief discussion on how arrays are handled directly

is provided in Section 9.7.1 where we discuss how static arrays are handled in the benchmarks of

the experiments.

Invisible computations. Each process pi is deterministic, and the only source of nondeterminism

in the executions of the system comes from a nondeterministic scheduler that chooses an enabled

event to be executed from a given state. The model uses the functions f and b on events

e : g ← write f(v1, . . . , vj) and e : b(v1, . . . , bn) respectively to collapse deterministic invisible

computations of each process, and only consider the value that f writes on a global variable (in

addition to the side-effects that f has on local the variables of process pi). This is a standard

approach in modeling concurrent systems, as interleaving invisible events does not change the

set of reachable local states of the processes.

Locks and synchronization mechanisms. We treat lock-acquire events as reads and lock-

release events as writes. In a trace t, a lock-acquire event e is considered to read the value of the

last lock-release event e′ on the same lock l (or some initialization event Init if e is the first lock

event on l in t). Our approach can be extended to richer communication (e.g., message passing)

and synchronization primitives (e.g. semaphores, wait-notify), which are often implemented

using some low-level locking mechanism.

Maximal lock-free traces. We also assume that in every maximal trace of the system, every lock-

acquire is followed by a corresponding lock-release. Traces without this property are typically

considered erroneous, and some modern programming languages even force this restriction

syntactically.

9.3 Observation Trace Equivalence

In this section we introduce the observation equivalence ∼O on traces, upon which in the later

sections we develop our data-centric DPOR. We explore the relationship between the control-

centric Mazurkiewicz equivalence ∼M and the observation equivalence. In particular, we show

that ∼O refines ∼M , that is, every two traces that are equivalent under observations are also
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equivalent under reordering of independent events. We conclude by showing that ∼O can be

exponentially more succinct, both in the number of processes, and the size of each process.

9.3.1 Mazurkiewicz and Observation Equivalence

In this section we introduce our notion of observation equivalence. We start with the classic

definition of Mazurkiewicz equivalence and then the notion of observation functions.

Mazurkiewicz trace equivalence. Two traces t1, t2 ∈ TP are called Mazurkiewicz equivalent

if one can be obtained from the other by swapping adjacent, independent events. Formally, we

write ∼M for the Mazurkiewicz equivalence on TP , and we have t1 ∼M t2 iff

1. E(t1) = E(t2), and

2. for every pair of events e1, e2 ∈ E(t1) we have that e1→t1e2 iff e1→t2e2.

Observation functions. The concurrent model introduced in Section 9.2.1 follows sequential

consistency [Lamport, 1979], i.e., all processes observe the same order of events, and a read

event of some variable will observe the value written by the last write event to that variable

in this order. Throughout the paper, an observation function is going to be a partial function

O : R ↦→ W . A trace t induces a total observation function Ot : R(t) → W(t) following the

sequential consistency axioms. That is, Ot(r) = w iff

1. It(w) < It(r), and

2. for all w′ ∈ W(t) such that Confl(r, w′) we have that It(w′) < It(w) or It(w′) > It(r).

We say that t is compatible with an observation function O if O ⊆ Ot, and that t realizes O if

O = Ot.

Observation equivalence. We define the observation equivalence ∼O on the trace space TP
as follows. For t1, t2 ∈ TP we have t1 ∼O t2 iff E(t1) = E(t2) and Ot1 = Ot2 , i.e., the two

observation functions coincide.

We start with the following crucial lemma. In words, it states that if two traces agree on their

observation functions, then they also agree on the values seen by their common read events.
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Lemma 9.1. Consider two traces t1, t2 such that Ot1 ⊆ Ot2 . Then

• for all read events r ∈ R(t1) we have that valt1(r) = valt2(r), and

• for all write events w ∈ W(t1) ∩W(t2) we have that valt1(w) = valt2(w).

Proof. The proof is by induction on the prefixes of t1. We show inductively that for every

0 ⩽ ℓ ⩽ |t1|, for all events e ∈ E(t1[ℓ]) we have that if e ∈ E(t2) then valt1(r) = valt2(r). Note

that in the case where e = r is a read event, then r ∈ E(t2) follows directly from Ot1 ⊆ Ot2 . The

claim is true for ℓ = 0, since in that case t1[ℓ] = ε and no event appears in t1[ℓ]. Now assume

that the claim holds for all prefixes t1[j] for 0 ⩽ j ⩽ ℓ, and let

e = arg min
e′∈E(t1)\E(t1[ℓ])

It1(e′)

be the next global event in t1. We distinguish two cases based on the type of e.

• e = w ∈ W is a write event of the form g ← write f(v1, . . . , vni
), such that pi = proc(w).

Then the value of each local variable vj equals some αj = valt1(rj), with It1(rj) ⩽ ℓ, and

by the induction hypothesis we have rj ∈ E(t2) and valt1(rj) = valt2(rj) = αj . Since pi

is deterministic, it easily follows that if w ∈ E(t2) then

valt2(w) = f(valt1(r1), . . . , valt1(rni
))

= f(α1, . . . , αni
) = f(valt2(r1), . . . , valt2(rni

))

= valt1(w)

• e = r ∈ R is a read event, and let w = Ot1(r). Let pi = proc(w), and since pi is

deterministic, it easily follows from the induction hypothesis that r ∈ E(t2), and moreover

that valt1(w) = valt2(w). Since Ot2(r) = w, we have that

valt2(r) = valt2(w) = valt1(w) = valt1(r)

The desired result follows.

The following is an easy consequence of Lemma 9.1.
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Lemma 9.2. Consider two traces t1, t2 such that Ot1 ⊆ Ot2 and t2 is maximal. Then (i) E(t1) ⊆

E(t2), and (ii) for all events e ∈ R(t1) ∪W(t1) we have that valt1(e) = valt2(e).

Soundness. Lemma 9.2 implies that two maximal traces which agree on their observation

function have the same observable behavior, i.e., each global event has the same value in the

two traces. Since all local states of each process can be explored by exploring maximal traces, it

suffices to explore all the (maximal) observation functions of P .

The Mazurkiewicz trace equivalence is control-centric, i.e., equivalent traces share the same

order between the dependent control locations of the program. In contrast, the observation trace

equivalence is data-centric, as it is based on which write events are observed by the read events

of each trace. Note that two conflicting events are dependent, and thus must be ordered in the

same way by two Mazurkiewicz-equivalent traces.

x1

x2

x3

x4

x6

x5

x7

e1 : acquire l

e2 : v ← read balance

e3 : b(v, amount)

e4 : balance← write f(v, amount, success)

e5 : release l

e6 : v ← read balance

p1
e1

e2

e3

e4

e5

e6

p2
e1

e2

e3

e4

e5

e6

Mazurkiewizc-based

e′2 : balance← 4

e′1 : release l

p1
e1

e2

e3

e4

e5

e6

p2
e1

e2

e3

e4

e5

e6

Observation-based

e′2 : balance← 4

e′1 : release l

Figure 9.3: Trace exploration on the system of Fig. 9.2 with two processes, where initially

balance← 4 and both withdrawals succeed.

Example 9.1 (Observation vs Mazurkiewicz equivalence). Fig. 9.3 illustrates the difference

between the Mazurkiewicz and observation trace equivalence on the example of Fig. 9.2. Every

execution of the system starts with an initialization trace tI that initializes the lock l to False, and

the initial value desposit = 4. Consider that p1 is executed with parameter amount = 1 and p2 is

executed with parameter amount = 2, (hence both withdrawals succeed). The primed events

e′1, e
′
2 represent the system initialization.

• (Left): The sequential trace of p1, p2.
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• (Center): Trace exploration using the Mazurkiewicz equivalence∼M . Solid lines represent

the happens-before relation enforced by the program structure. Dashed lines represent

potential happens-before relations between dependent events. A control-centric DPOR

based on ∼M will resolve scheduling choices by exploring all possible realizable sets of

the happens-before edges.

• (Right): Trace exploration using the observation equivalence ∼O. Solid lines represent

the happens-before relation enforced by the program structure. This time, dashed lines

represent potential observation functions. Our data-centric DPOR based on∼O will resolve

scheduling choices by exploring all possible realizable sets of the observation edges.

Both methods are guaranteed to visit all local states of each process. However, the data-centric

DPOR achieves this by exploring potentially fewer scheduling choices.

The formal relationship between the two equivalences is established in the following theorem.

Theorem 9.1. For any two traces t1, t2 ∈ TP , if t1 ∼M t2 then t1 ∼O t2.

Proof. Consider any read event r ∈ R(t1) and assume towards contradiction that Ot1(r) ̸=

Ot2(r). Let w1 = Ot1(r) and w2 = Ot2(r). Since t1 ∼M t2, we have that w1 ∈ E(t2) and

w2 ∈ E(t1). Then w1→t1r and w2→t2r, and one of the following holds.

1. r→t1w2, and since w2→t2r then t1 ̸=∼M t2, a contradiction.

2. w2→t1w1, and since t1 ∼M t2 we have that w2→t2w1, and thus r→t2w1. Since w1→t1r,

we have t1 ̸=∼M t2, a contradiction.

The desired result follows.

9.3.2 Exponential succinctness

As we have already seen in the example of Fig. 1.3, Theorem 9.1 does not hold in the other

direction, i.e., ∼O can be strictly coarser than ∼M . Here we provide two simple examples in

which ∼O is exponentially more succinct than ∼M . Traditional enumerative model checking

methods of concurrent systems are based on exploring at least one trace from every partition

of the Mazurkiewicz equivalence using POR techniques that prune away equivalent traces (e.g.
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Process p1 :

1. write x

2. write x

. . .

n+ 1. read x

Process p2 :

1. write x

2. write x

. . .

n+ 1. read x

Figure 9.4: An architecture of two processes with n+ 1 events each.

sleep sets [Godefroid, 1996], persistent sets [Flanagan and Godefroid, 2005], source sets and

wakeup trees [Abdulla et al., 2014]). Such a search is optimal if it explores at most one trace

from each class. Any optimal enumerative exploration based on the observation equivalence

is guaranteed by Theorem 9.1 to examine no more traces than any enumerative exploration

based on the Mazurkiewicz equivalence. The two examples show ∼O can offer exponential

improvements wrt two parameters: (i) the number of processes, and (ii) the size of each process.

Example 9.2 (Two processes of large size). Consider the system P of k = 2 processes of

Fig. 9.4, and for i ∈ {1, . . . , n}, j ∈ {1, 2}, denote by wj
i (resp. rj) the i-th write event (resp. the

read event) of pj . In any maximal trace, there are two ways to order the read events r1, r2, i.e., rj

occurs before r3−j for the two choices of j ∈ {1, 2}. In any such ordering, r3−j can only observe

either w3−j
n−1 or wj

n−1, whereas there are at most n + 1 possible write events for rj to observe

(either wj
n or one of the w3−j

i ). Hence TP/ ∼O has size O(n). In contrast, TP/ ∼M has size

Ω(
(
2·n
n

)
) = Ω(2n), as there are (2 · n)! ways to order the 2 · n write events of the two processes,

but n! · n! orderings are invalid as they violate the program structure. Hence, even for only two

processes, the observation equivalence reduces the number of partitions from exponential to

linear.

Example 9.3 (Many processes of small size). We now turn our attention to a system P of k

identical processes p1, . . . , pk with two events each, in Fig. 9.5. There is only one global variable

x, and each process performs a read and then a write to x. There are O(kk) realizable observation

functions, by choosing for each one among k read events, one among k write events it can

observe. Hence TP/ ∼O has size O(kk). In contrast, the size of TP/ ∼M is Ω((k!)2). This holds

as there are k! ways to order the k write events, and for each such permutation there are k! ways

to assign each of the k read events to the write event that it observes. To see this second part,
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Process p1 :

1. write x

2. read x

. . . Process pk :

1. write x

2. read x

Figure 9.5: An architecture of k processes with two events each.

let w1, . . . , wk be any permutation of the write events, and let ri be the read event in the same

process as wi. Then ri can be placed right after any wj with i ⩽ j. Observe that TP/ ∼O is

exponentially more succinct than TP/ ∼M , as

Ω((k!)2)

O(kk)
= Ω

⎛⎝∏k
i=1 i · ⌈

k
i
⌉

kk
·

k−1∏
i=⌈ k

2
⌉+1

i

⎞⎠ = Ω(2k).

9.3.3 Solution Overview

Traditional DPOR algorithms exploit the Mazurkiewicz equivalence, and use various techniques

such as persistent sets and sleep sets to explore each Mazurkiewicz class by few representative

traces. Our goal is to develop an analogous DPOR that utilizes the observation equivalence,

which by Theorem 9.1 is more succinct. In high level, our approach consists of the following

steps.

1. In Section 9.4 we introduce the concept of annotations. An annotation is a function from

read to write events, and serves as an intended observation function. Given an annotation,

the goal is to obtain a trace whose observation function coincides with the annotation. We

restrict our attention to a certain class of well-formed annotations, and show that although

the problem is NP-complete in general, it admits a polynomial time (in fact, cubic in the

size of the trace) solution in acyclic architectures.

2. In Section 9.5 we present our data-centric DPOR. Section 9.5.1 introduces the notion

of causal past cones in a trace. The concept is similar to Lamport’s happens-before

relation [Lamport, 1978], and is used to identify past events that may causally affect

a current event in a trace. We note that this concept is different from the happens-

before relation used in the Mazurkiewicz equivalence. We use the notions of annotations
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and causal cones to develop our algorithm, and prove its correctness and optimality (in

Section 9.5.2).

3. In Section 9.6 we extend our algorithm to cyclic architectures.

Table 9.1 and Table 9.2 summarize relevant notation in the proofs.

9.4 Annotations

In this section we introduce the notion of annotations, which are intended constraints on the

observation functions that traces discovered by our data-centric DPOR (DC-DPOR) are required

to meet.

Annotations. An annotation pair A = (A+,A−) is a pair of

1. a positive annotation A+ : R ↦→ W , and

2. a negative annotation A− : R ↦→ 2W

such that for all read events r, if A+(r) = w, then we have Confl(r, w) and it is not the case that

PS(r, w). We will use annotations to guide the recursive calls of DC-DPOR towards traces that

belong to different equivalence classes than the ones explored already, or will be explored by

other branches of the algorithm. A positive annotation A+ forces DC-DPOR to explore traces

that are compatible with A+ (or abort the search if no such trace can be generated). Since a

positive annotation is an “intended” observation function, we say that a trace t realizes A+ if

Ot = A+, in which case A+ is called realizable. A negative annotation A− prevents DC-DPOR

from exploring traces t in which a read event observes a write event that belongs to its negative

annotation set (i.e., Ot(r) ∈ A−(r)). In the remaining section we focus on positive annotations,

and the problem of deciding whether a positive annotation is realizable.

The value function valA+ . Given a positive annotation A+, we define the relation <A+⊆

img(A+)× dom(A+) such that w <A+ r iff (r, w) ∈ A+. The positive annotation A+ is acyclic

if the relation PS∪ <A+ is a strict partial order (i.e., it contains no cycles). The value function

valA+ : dom(A+) ∪ img(A+)→ D of an acyclic positive annotation A+ is the unique function

defined inductively, as follows.
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1. For each w ∈ img(A+) of the form w : g ← write f(v1, . . . , vni
), we have valA+(w) =

f(α1, . . . , αni
), where for each αj we have

(a) αj = valA+(r) if there exists a read event r ∈ dom(A+) such that (i) r is of the form

r : vj ← read g′ and (ii) PS(r, w) and (iii) there exists no other r′ ∈ dom(A+) with

PS(r, r′) and which satisfies conditions (i) and (ii).

(b) αj equals the initial value of vi otherwise.

2. For each r ∈ dom(A+) we have valA+(r) = valA+(A+(r)).

Note that valA+ is well-defined, as for any read event r that is used to define the value of a

write event w we have PS(r, w), and thus by the acyclicity of A+, valA+(r) does not depend on

valA+(w).

Remark 9.1. If A+ is realizable then it is acyclic, and for any trace t that realizes A+ we have

that valt = valA+ .

Well-formed annotations and basis of annotations. A positive annotation A+ is called well-

formed if the following conditions hold:

1. A+ is acyclic.

2. For every lock-release event ea ∈ img(A+) ∩ LA there is at most one lock-acquire event

er ∩ LR such that A+(ea) = er.

3. There exist sequential traces (τi)i, one for each process pi, such that each τi ends in a

global event, and the following conditions hold.

(a) for every pair of lock-acquire events e1a, e
2
a ∈ E(τi) ∩ LA such that Iτi(e1a) < Iτi(e2a)

and loc(e1a) = loc(e2a) there exists a lock release event er ∈ E(τi) ∩ LR such that

Iτi(e1a) < Iτi(er) < Iτi(e2a) and loc(er) = loc(e1a) = loc(e2a).

(b)
⋃

iR(τi) = dom(A+) and img(A+) ⊆
⋃

iW(τi), i.e., (τi)i contains precisely the

read events of A+ and a superset of the write events.

(c) Each τi corresponds to a deterministic computation of process pi, where the value of

every global event e during the computation is taken to be valA+(e).
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The sequential traces (τi)i are called a basis of A+ if every τi is minimal in length. The following

lemma establishes properties of well-formedness and basis.

Lemma 9.3. Let X = dom(A+) ∪ img(A+) be the set of events that appear in a positive

annotation A+, and Xi = X ∩ Ei the subset of events of X from process pi. The following

assertions hold:

1. If A+ is well-formed, then it has a unique basis (τi)i.

2. Computing the basis of A+ (or concluding that A+ is not well-formed) can be done in

O(n) time, where n =
∑

i(|τi|) if A+ is well-formed, otherwise n =
∑

i ℓi, where ℓi is the

length of the longest path from the root ri of CFGi to an event e ∈ Xi.

3. For every trace t that realizes A+ we have that A+ is well-formed and t ∈ τ1 ∗ . . . ∗ τk.

Proof. 1. Assume that A+ has two distinct bases (τi)i and (τ ′i)i. Since each sequential trace

corresponds to a deterministic computation of the corresponding process using valA+ as

the value function of global events, we have that each τi and τ ′i share a prefix relationship

(i.e., one is prefix of the other). Since the two basis are distinct, for some j we have that

one of τj and τ ′j is a proper prefix of the other. Assume w.l.o.g. that τ ′j is a strict prefix

of τj . Then replacing τi with τ ′i in (τi)i yields another basis, thus τi is not minimal, a

contradiction.

2. First, testing the conditions of Item 1 and Item 2 of well-formedness can be done in O(|A+|)

time. We now outline the process of constructing the basis (τi)i. As a preprocessing step,

we compute for each process pi the unique event ei ∈ Xi which is maximal wrt the program

structure PS. Note that if ei is not unique for each process, then A+ is not well-formed.

This requires O(|A+|) time for all processes pi, simply by iterating over all events in X .

Then, the unique basis (τi)i can be constructed by executing each process locally, and using

the value function valA+ for assigning values to global events. The execution stops when

ei is reached, and the constructed sequential trace τi is returned. Finally, (τi)i constitute a

basis of A+ if the conditions (a) and (b) of Item 3 of well-formedness are met, which can

be done in O(n) time.

3. It follows easily from Remark 9.1 and the above construction that if t realizes A+, then A+

must be well-formed and t ∈ τ1 ∗ . . . ∗ τk.
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9.4.1 The Hardness of Realizing Positive Annotations

A core step in our data-centric DPOR algorithm is constructing a trace that realizes a positive

annotation. That is, given a positive annotation A+, the goal is to obtain a trace t (if one exists)

such that Ot = A+, i.e., t contains precisely the read events of A+, and every read event in t

observes the write event specified by A+. Here, we show that the problem is NP-complete in the

general case. Membership in NP is trivial, since, given a trace t, it is straightforward to verify

that Ot = A+ in O(|t|) time. Hence our focus will be on establishing NP-hardness. For doing

so, we introduce a new graph problem, namely ACYCLIC EDGE ADDITION, which is closely

related to the problem of realizing a positive annotation under sequential consistency semantics.

We first show that ACYCLIC EDGE ADDITION is NP-hard, and afterwards that the problem is

polynomial-time reducible to realizing a positive annotation.

The problem ACYCLIC EDGE ADDITION. The input to the problem is a pair (G,H) where

G = (V,E) is a directed acyclic graph, and H = {(xi, yi, zi)}i is a set of triplets of distinct

nodes such that

1. xi, yi, zi ∈ V , (yi, zi) ∈ E and (xi, yi), (zi, xi) ̸∈ E, and

2. each node xi and yi appears only once in H .

An edge addition set X = {ei}|H|
i=1 for (G,H) is a set of edges ei ∈ E such that for each ei we

have either ei = (xi, yi) or ei = (zi, xi). The problem ACYCLIC EDGE ADDITION asks whether

there exists an edge addition set X for (G,H) such that the graph GX = (V,E ∪X) remains

acyclic.

Lemma 9.4. ACYCLIC EDGE ADDITION is NP-hard.

Proof. The proof is by reduction from MONOTONTE ONE-IN-THREE SAT [Garey and Johnson,

1979, LO4]. In MONOTONTE ONE-IN-THREE SAT, the input is a propositional 3CNF formula

ϕ in which every literal is positive, and the goal is to decide whether there exists a satisfying

assignment for ϕ that assigns exactly one literal per clause to True.



296

The reduction proceeds as follows. In the following, we let C and D range over the clauses

and xi over the variables of ϕ. We assume w.l.o.g. that no variable repeats in the same clause.

For every variable xi, we introduce a node w′
i ∈ V . For every clause C = (xC1 ∨ xC2 ∨ xC3),

we introduce a pair of nodes wC
Cj
, rCCj

∈ V and an edge (wC
Cj
, rCCj

) ∈ E, where j ∈ {1, 2, 3}.

Additionally, we introduce an edge (wC
Cj
, w′

Cl
) ∈ E for every pair j, l ∈ {1, 2, 3} such that j ̸= l,

and an edge (w′
Cj
, rCCl

) for each j ∈ {1, 2, 3}, where l = (j + 1) mod 3 + 1. Finally, for every

pair of clauses C,D and l1, l2 ∈ {1, 2, 3} such that Cl1 = Dl2 = ℓ (i.e., C and D share the same

variable xℓ in positions l1 and l2), we add edges (wC
ℓ , r

D
ℓ ), (w

D
ℓ , r

C
ℓ ) ∈ E. The set H consists

of triplets of nodes (w′
Cj
, wC

Cj
, rCCj

) for every clause C and j ∈ {1, 2, 3}. Fig. 9.6 illustrates the

above construction.

Let X be an edge addition set that solves ACYCLIC EDGE ADDITION on input (G,H) and

note that for every pair of triplets (w′
i, w

C
i , r

C
i ), (w

′
i, w

D
i , r

D
i ) ∈ H , we have that (w′

i, w
C
i ) ∈ X

iff (w′
i, w

D
i ) ∈ X , i.e., for every node w′

i, the set X contains either only all incoming, or only

all outgoing edges of w′
i specified by H . To see this, observe that if there exists such a pair of

triplets with (w′
i, w

C
i ), (r

D
i , w

′
i) ∈ H , then GX = (V,E ∪X) would contain the cycle

w′
i → wC

i → rDi → w′
i

which contradicts that X is a solution to the problem. Given such an edge addition set X ,

we obtain an assignment on the variables of ϕ by setting xi = True iff X contains an edge

(w′
Cj
, wC

Cj
) for some clause C and j ∈ {1, 2, 3}. By the previous remark, the assignment of

values to variables of ϕ is well-defined.

It is easy to verify that the construction takes polynomial time in the size of ϕ. In the following,

we argue that the answer to MONOTONTE ONE-IN-THREE SAT is true iff the answer to ACYCLIC

EDGE ADDITION is also true.

(⇒). Let X be a solution to ACYCLIC EDGE ADDITION on (G,H), and we argue that every

clause C of ϕ contains exactly one variable set to True. Indeed, C contains at least one such

variable, otherwise GX would contain a cycle

rCC1
→ w′

C1
→ rCC2

→ w′
C2
→ rCC3

→ w′
C3
→ rCC1

Similarly, C contains at most one variable of C set to True, as two such variables xi, xj would

imply that GX contains a cycle

w′
i → wC

i → w′
j → wC

j → w′
i
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(⇐). Consider any satisfying assignment of ϕ, and construct an edge addition set X = {ei}i
such that for each triplet (w′

i, w
C
i , r

C
i ) ∈ H we have

ei =

⎧⎨⎩ (w′
i, w

C
i ), if xi = True

(rCi , w
′
i), if xi = False

Given a clause C, we denote by VC =
⋃3

i=1{w′
Ci
, wC

Ci
, rCCi
}, and by GX [VC ] the subgraph of GX

restricted to nodes in VC . We now argue that GX does not contain a cycle. Assume towards

contradiction otherwise, and let C be such a cycle.

1. If C contains a node of the form wC
Cj

for some j ∈ {1, 2, 3} then C traverses the edge

(w′
Cj
, wC

Cj
), and thus xℓ is assigned True, where ℓ = Cj Since GX contains no edge of

the form (rDℓ , w
′
ℓ) for any clause D, C must traverse an edge (wD

Di
, w′

ℓ) for some clause D.

Hence there is a first node wD
Di

traversed by C after wC
ℓ , for some clause D and i ∈ {1, 2, 3}

and thus GX contains an edge (w′
Di
, wD

Di
), and hence xl is assigned True, where l = Di.

By our choice of wD
Di

, the node w′
Di

can only be reached via the edge (rDDi
, w′

Di
), which

requires that xl is assigned False, a contradiction.

2. If C contains no node of the form wC
Cj

, then it must be a cycle in G[VC ], for some clause C.

The only such cycle that traverses no wC
Cj

can be

rCC1
→ w′

C1
→ rCC2

→ w′
C2
→ rCC3

→ w′
C3
→ rCC1

which requires that all xCi
are assigned False, for each i ∈ {1, 2, 3}, which contradicts

that C has a variable assigned True.

The desired result follows.

From ACYCLIC EDGE ADDITION to annotations. Finally, we argue that ACYCLIC EDGE

ADDITION is polynomial-time reducible to realizing a positive annotation. Given an instance

(G,H) of ACYCLIC EDGE ADDITION, with G = (V,E), we construct an architecture P of

k = 2 · |H| processes (pi)i, and a positive annotation A+. We assume, w.l.o.g., that the set of

nodes V is precisely the set of nodes that appear in the triplets of H . Indeed, any other nodes

can be removed while maintaining the connectivity between the nodes in the triplets of H , and

any edge addition set X solves the problem in the original graph iff it does so in the reduced

graph. The construction proceeds in two steps.
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rC3
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4

rD4
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w′
4 w′
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ϕ = (x1 ∨ x2 ∨ x3)  
C

∧ (x1 ∨ x4 ∨ x5)  
D

Figure 9.6: The reduction of 3SAT over ϕ to ACYCLIC EDGE ADDITION over (G,H). The

nodes and solid edges represent the graph G. The dashed edges represent the triplets in H .

1. For every triplet (xi, yi, zi) ∈ H , we create two events wi ∈ W , ri ∈ R in pi such

that PS(wi, ri), and an event w′
i in process p|H|+i. For all three events we set loc(ri) =

loc(wi) = loc(w′
i) = gi, where gi ∈ G is some fresh global variable of P . Finally, we

introduce (ri, wi) ∈ A+. Given any node u ∈ V , let e(u) denote the event associated with

u.

2. For every edge (u, v) we introduce a new global variable g ∈ G, and two events wu,v ∈ W ,

ru,v ∈ R such that loc(wu,v) = loc(ru,v) = g. We make wu,v an event of the same process

as e(u), and ru,v an event of the same process as e(v), and additionally PS(e(u), wu,v) and

PS(ru,v, e(v)). Finally, we introduce (ru,v, wu,v) ∈ A+.

Observe that the above construction is linear in the size of (G,H). The following lemma states

the correctness of the reduction.

Lemma 9.5. The decision problem of ACYCLIC EDGE ADDITION on input (G = (V,E), H)

admits a positive answer iff the positive annotation A+ is realizable in P .

Proof. We present both directions of the proof.

• (⇒). Let t be any trace that realizes A+. Observe that for any edge (u, v) ∈ E we

have It(e(u)) < It(e(v)), since PS(e(u), wu,v) and PS(ru,v, e(v)) and A+(ru,v) = wu,v.

Additionally, t satisfies that either It(w′
i) < wt(wi), or It(ri) < wt(w

′
i). In the former

case we an edge (xi, yi), and in the latter case we add (zi, xi) in an edge set X . Since t
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induces a total order on the vertices of G, GX is acyclic, and thus X is an edge addition

set for (G,H).

• (⇐). If X is an edge addition set for (G,H) then GX is acyclic and any topological order

of the vertices of GX = (V,E ∪X) induces a trace that realizes A+.

The desired result follows.

9.4.2 Realizing Positive Annotations in Acyclic Architectures

We now turn our attention to a tractable fragment of the positive annotation problem. Here we

show that if P is an acyclic architecture, then the problem admits a polynomial-time solution (in

fact, cubic in the size of the constructed trace).

Procedure Realize. Let P be an acyclic architecture, and A+ a positive annotation over P . We

describe a procedure Realize(A+) which returns a trace t that realizes A+, or ⊥ if A+ is not

realizable. The procedure works in two phases. In the first phase, Realize(A+) uses Lemma 9.3

to extract a basis (τi)i of A+. In the second phase, Realize(A+) determines whether the events of⋃
i E(τi) can be linearized in a trace t such that Ot = A+. Informally, the second phase consists

of constructing a 2SAT instance over variables xe1,e2 , where e1, e2 ∈
⋃

i E(τi). Setting xe1,e2 to

True corresponds to making e1 happen before e2 in the witness trace t. The clauses of the 2SAT

instance capture four properties that each such ordering needs to meet, namely that

1. the resulting assignment produces a total order (totality, antisymmetry and transitivity)

between all of the events that appear in adjacent processes in the communication graph

GP ,

2. the produced total order respects the positive annotation, i.e., every write event w′ that

conflicts with an annotated read/write pair (r, w) ∈ A+ must either happen before w or

after r, and

3. the produced total order respects the partial order induced by the program structure PS

and the positive annotation A+.

The formal description of the second phase is given in Algorithm 31.
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Algorithm 31: Realize(A+)

Input: A positive annotation A+ with basis (τi)i

Output: A trace t that realizes A+ or ⊥ if A+ is not realizable

1 Construct a directed graph G = (V,E) where

2 V =
⋃

i E(τi) and E = {(e1, e2) : (e2, e1) ∈ A+ or PS(e1, e2)}

3 G∗ = (V,E∗)← the transitive closure of G

// A set C of 2SAT clauses over variables VC

4 C ← ∅

5 VC ← {xe1,e2 : e1, e2 ∈ V , and e1 ̸= e2, and proc(e1) = proc(e2) or (proc(e1), proc(e2)) ∈ EP}

// 1. Antisymmetry clauses

6 foreach xe1,e2 ∈ VC do

7 C ← C ∪ {(xe1,e2 ⇒ ¬xe2,e1), (¬xe2,e1 ⇒ xe1,e2)}

8 end

// 2. Transitivity clauses

9 foreach xe1,e2 ∈ VC do

10 foreach (e2, e3) ∈ E∗ do

11 C ← C ∪ {(xe1,e2 ⇒ xe1,e3)}

12 end

13 foreach (e3, e1) ∈ E∗ do

14 C ← C ∪ {(xe1,e2 ⇒ xe3,e2)}

15 end

16 end

// 3. Annotation clauses

17 foreach (r, w) ∈ A+ and w′ ∈ V ∩W s.t. Confl(r, w′) do

18 C ← C ∪ {(xw′,r ⇒ xw′,w)}

19 end

// 4. Fact clauses

20 foreach (e1, e2) ∈ E∗ with e1 ̸= e2 do

21 C ← C ∪ {(xe1,e2)}

22 end

23 Compute a satisfying assignment f : VC → {False,True}|VC | of the 2SAT over C, or return ⊥ if C

is unsatisfiable

24 Let G′ = (V,E′) where E′ ← E ∪ {(e1, e2) : f(xe1,e2) = True}

25 return a trace t by topologically sorting the nodes of G′
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Lemma 9.6. Given a well-formed positive annotation A+ over a basis (τi)i, Realize constructs a

trace t that realizes A+ (or concludes that A+ is not realizable) and requires O(n3) time, where

n =
∑

i |τi|.

Proof. We present the correctness proof and complexity analysis.

Correctness. We first argue about correctness.

1. If Realize returns a sequence of events t (Line 25) then clearly t is a trace since t respects

the program structure PS (Line 20), and by the definition of the well-formed annotation,

lock semantics are respected (i.e., critical regions protected by locks do not overlap).

Additionally, t realizes A+, as the sequential consistency axioms are satisfied because of

Line 17 and Line 20.

2. If A+ is realizable by a trace t, then t is a linearization of E∗, thus for every pair of distinct

conflicting events (e1, e2) ∈ E∗ we have It(e1) < It(e2) (Line 20). By the sequential

consistency axioms, for every pair (r, w) ∈ A+ and w′ ̸= w with Confl(r, w′) we have

either It(w′) < It(w) or It(r) < It(w′) (Line 17). Finally, since t induces a total order

on V , it is clearly transitive (Line 9) and antisymmetric (Line 6). Hence the set of 2SAT

clauses C is satisfiable. It suffices to argue that G′ = (V ′, E ′) (Line 24) is acyclic, as

then any topological order of G′ will satisfy the sequential consistency axioms (Line 17).

Assume towards contradiction otherwise. If G∗ has a cycle, then A+ is not realizable, as t

must linearize E∗. Hence G∗ must be acyclic, Thus, any cycle C in G′ traverses an edge

(e1, e2) ∈ E ′ \ E∗, hence f(xe1,e2) = True. We distinguish the following cases.

(a) If there exists a cycle C which traverses a single edge (e1, e2) ∈ E ′ \E∗, then there is

a path e2 ⇝ e1 traversing only edges of E∗. Since E∗ is transitively closed, we have

that (e2, e1) ∈ E∗ and hence f(xe2,e1) = True (Line 20). Thus, by antisymmetry,

f(xe1,e2) = False (Line 6), a contradiction.

(b) Otherwise, let C be a simple cycle in G∗ that traverses the fewest number of edges in

E ′ \E∗, and C must traverse at least two edges (e1, e2), (e3, e4) ∈ E ′ \E∗. Observe

that proc(e1) ̸= proc(e2) and proc(e3) ̸= proc(e4) as otherwise we would have

(e2, e1) ∈ E∗ or (e4, e3) ∈ E∗, and there would exist a cycle that traverses a single

edge from E ′ \E∗ (namely, e1 → e2 → e1 or e3 → e4 → e3). Since P is acyclic, by
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construction (Line 5) |{proc(e1), proc(e2), proc(e3), proc(e4)}| = 2, i.e., there exist

two processes pi, pj such that

e1 ∈ Ei and e2 ∈ Ej and e3, e4 ∈ Ei ∪ Ej and e3, e4 ̸∈ Ei ∩ Ej

Then C traverses an edge (e′3, e
′
4) such that either e′3 = e1 or PS(e′3, e1), and either

e2 = e′4 or PS(e2, e′4). In all cases, we have (e′3, e1), (e2, e
′
4) ∈ E∗. Since (e′3, e

′
4) ∈

E ′ we have f(xe′3,e
′
4
) = True, and by transitivity (Line 9), we have that f(xe2,e1) =

True, a contradiction.

Complexity. The transitive closure requires O(n3) time, since |V | = n. The set VC (Line 5) has

O(n2) variables and each of the loops for constructing clauses iterates over triplets of nodes,

hence the 2SAT instance is constructed in O(n3) time. Computing a satisfying assignment for C

(or concluding that none exists) requires linear time in |C| [Aspvall et al., 1979], hence this step

costs O(n3). Finally, constructing G′ and computing a topological sorting of its vertices requires

O(n2) time in total. The desired result follows.

The following theorem summarizes the results of this section.

Theorem 9.2. Consider any architecture P = (p)i and let A+ be any well-formed positive

annotation over a basis (τ)i. Deciding whether A+ is realizable is NP-complete. If P is acyclic,

the problem can be solved in O(n3) time, where n =
∑

i |τi|.

9.5 Data-centric Dynamic Partial Order Reduction

In this section we develop our data-centric DPOR algorithm called DC-DPOR and prove its

correctness and compactness, namely that the algorithm explores each observation equivalence

class of TP once. We start with the notion of causal past cones, which will help in proving the

properties of our algorithm.

9.5.1 Causal Cones

Intuitively, the causal past cone of an event e appearing in a trace t is the set of events that

precede e in t and may be responsible for enabling e in t.
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Causal cones. Given a trace t and some event e ∈ E(t), the causal past cone Pastt(e) of e in t

is the smallest set that contains the following events:

1. if there is an event e′ ∈ E(t) with PS(e′, e), then e′ ∈ Pastt(e),

2. if e1 ∈ Pastt(e), for every event e2 ∈ E(t) such that PS(e2, e1), we have that e2 ∈ Pastt(e),

and

3. if there exists a read r ∈ Pastt(e) ∩R, we have that Ot(r) ∈ Pastt(e).

In words, the causal past cone of e in t is the set of events e′ that precede e in t and may causally

affect the enabling of e in t. Note that for every event e′ ∈ Pastt(e) we have that e′→te, i.e.,

every event in the causal past cone of e also happens before e in t. However, the inverse is not

true in general, as e.g. for some read r we have Ot(r)→tr but possibly Ot(r) ̸∈ Pastt(r).

Remark 9.2. If e′ ∈ Pastt(e), then e′→te and Pastt(e
′) ⊆ Pastt(e).

Remark 9.3. For every trace t and event e ∈ E(t) we have that t|(Pastt(e) ∪ e) is a valid trace.

The following lemma states the main property of causal past cones used throughout the paper.

Intuitively, if the causal past of an event e in some trace t1 also appears in another trace t2, and

the read events in the causal past observe the same write events in both traces, then e is inevitable

in t2, i.e., every maximal extension of t2 will contain e.

Lemma 9.7. Consider two traces t1, t2 and an event e ∈ E(t1) such that for every read r ∈

Pastt1(e) we have r ∈ E(t2) and Ot1(r) = Ot2(r). Then e is inevitable in t2.

Proof. We argue that every event e′ ∈ Pastt1(e) ∪ {e} is inevitable in t2. Let t′2 be any lock-free

maximal extension of t2. Assume towards contradiction that (Pastt1(e) ∪ {e}) \ E(t′2) ̸= ∅, and

let

em = arg min
e′∈(Pastt1 (e)∪{e})\E(t

′
2)
It1(e′)

be the first such event in t1, and let pi = proc(em) be the process of em. By Remark 9.2, for every

event e′ ∈ Pastt1(em) we have e′ ∈ Pastt1(e), and since It1(e′) < It1(em), we have e′ ∈ E(t′2).

Let (x, y) be the edge of CFGi labeled with em. Since e′ ∈ E(t′2), the program counter of pi

becomes x at some point in t′2. We examine the number of outgoing edges from node x.

1. If x has one outgoing edge, we distinguish whether em is a lock-acquire event or not.
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(a) If em is not a lock-acquire event, then em is always enabled after e′ in t′2, hence t′2 is

not maximal, a contradiction.

(b) If em : acquire l, since t′2 is a lock-free trace, l is released in s(t′2), hence em ∈

enabled(t′2) and t′2 is not maximal, a contradiction.

2. If x has at least two outgoing edges then em is of the form em : bj(v1, . . . , vni
), where

vi ∈ Vi are local variables of pi. Let tem = t′2|Pastt′1(em). Since for every read r ∈

Pastt1(e) we have r ∈ E(t2) and Ot1(r) = Ot2(r), by Remark 9.2, the same holds

for reads r ∈ Pastt1(em), i.e., for every read r ∈ Pastt1(em) we have r ∈ E(t2) and

Ot1(r) = Ot2(r). It is easy to see that additionally r ∈ E(tem) and Ot1(r) = Otem (r).

Thus, we have Otem ⊆ Ot1 . By Lemma 9.1, we have valtem (r) = valt1(r) for every read r,

and since pi is deterministic, the value of v on x is a function of those reads, and thus each

vi has the same value when the program counter of pi reaches node x in t1 and t′2. Since em

appears in t1, em is always enabled after e′ in t′2, hence t′2 is not maximal, a contradiction.

The desired result follows.

9.5.2 Data-centric Dynamic Partial Order Reduction

Algorithm DC-DPOR. We now present our data-centric DPOR algorithm. The algorithm

receives as input a maximal trace t and annotation pair A = (A+,A−), where t is compatible

with A+. The algorithm scans t to detect conflicting read-write pairs of events that are not

annotated, i.e, a read event r ∈ R(t) and a write event w ∈ W(t) such that r ̸∈ dom(A+) and

ConflRW(r, w). If w ̸∈ A−(r), then DC-DPOR will try to mutate r to w, i.e., the algorithm will

push (r, w) in the positive annotation A+ and call Realize to obtain a trace that realizes the new

positive annotation. If the recursive call succeeds, then the algorithm will push w to the negative

annotation of r, i.e., will insert w to A−(r). This will prevent recursive calls from pushing (r, w)

into their positive annotation. Algorithm 32 provides a formal description of DC-DPOR. Initially

DC-DPOR is executed on input (t,A) where t is some arbitrary maximal trace, and A = (∅,∅)

is a pair of empty annotations.

We say that DC-DPOR explores a class of TP/ ∼O when it is called on some annotation input

A = (A+,A−), where A+ is realized by some (and hence, every) trace in that class. The
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Algorithm 32: DC-DPOR(t,A)
Input: A maximal trace t, an annotation pair A = (A+,A−)

// Iterate over reads not yet mutated

1 foreach r ∈ E(t) \ dom(A+) in increasing index It(r) do

// Find conflicting writes allowed by A−

2 foreach w ∈ E(t) s.t. Confl(r, w) and w ̸∈ A−(r) do

3 A+
r,w ← A+ ∪ {(r, w)}

// Attempt mutation and update A−

4 Let t′ ← Realize(A+
r,w)

5 if t′ ̸= ⊥ then

6 t′′ ← a maximal extension of t′

7 A−(r)← A−(r) ∪ {w}

8 Ar,w ← (A+
r,w,A

−)

9 Call DC-DPOR(t′′,Ar,w)

10 end

11 end

representative trace is then the trace t′ returned by Realize. The following two lemmas show

the optimality of DC-DPOR, namely that the algorithm explores every such class at most once

(compactness) and at least once (completeness). They both rely on the use of annotations, and

the correctness of the procedure Realize (Lemma 9.6). We first state the compactness property,

which follows by the use of negative annotations.

Lemma 9.8 (Compactness). Consider any two executions of DC-DPOR on inputs (t1,A1) and

(t2,A2). Then A+
1 ̸= A+

2 .

Proof. Examine the recursion tree T generated by DC-DPOR, where every node u is labeled

with the trace tu and annotation input Au = (A+
u ,A

−
u ) given to DC-DPOR. Let x and y be the

nodes that correspond to inputs (t1,A1) and (t1,A2) respectively, and we argue that Ax ̸= Ay. If

x is an ancestor of y, then when DC-DPOR was executed on input (tx,Ax), a read r created A+
r,w

in Line 3 on the branch from x to the direction of y in T , with the property that r ̸∈ dom(A+
x ).

Since the algorithm never removes pairs (r, w) from the positive annotations, we have that

(r, w) ∈ Ay, hence Ax ̸= Ay. A similar argument holds if y is an ancestor of x. Now consider the

case that x and y do not have an ancestor-descendant relationship. Let z be the lowest common
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ancestor of x and y in T , and zx (resp. zy) the child of z in the direction of x (resp. y). Let rx

(resp. ry) be the read on Line 3 that generated A+
zx (resp. A+

zy ), i.e.,

A+
zx = A+

z ∪ {(rx, wx)} and A+
zy = A+

z ∪ {(ry, wy)}

If rx = ry = r then wx ̸= wy, thus A+
zx(r) ̸= A+

zy , and since the algorithm never removes pairs

(r, w) from positive annotations we have that Ax ̸= Ay. Now assume that rx ̸= ry, and w.l.o.g.

that Itj(rx) < Itj(ry). Then, before DC-DPOR(Azy) is executed, Line 7 adds wx ∈ A−(rx).

Since the algorithm never removes entries from the negative annotation, by Line 3, we have that

(rx, wx) ̸∈ A+
y . In all cases we have Ax ̸= Ay, as desired.

We now turn our attention to completeness, namely that every realizable observation function

is realized by a trace explored by DC-DPOR. The proof shows inductively that if t is a trace

that realizes an observation function O, then DC-DPOR will explore a trace ti that agrees with t

on the first few read events. Then, Lemma 9.7 guarantees that the first read event r on which

the two traces disagree appears in ti, and so does the write event w that r observes in O. Hence

DC-DPOR either will mutate r → w (if w ̸∈ A−(r)), or it has already done so in some earlier

steps of the recursion (if w ∈ A−(r)).

Lemma 9.9 (Completeness). For every realizable observation function O, DC-DPOR generates

a trace t that realizes O.

Proof. Let T be the recursion tree of DC-DPOR. Given a node u of T , we denote by tu and

Au = (A+
u ,A

−
u ) the input of DC-DPOR on u. Since tu is always a maximal extension of a trace

returned by procedure Realize on input A+
u , by Lemma 9.6 we have that tu is compatible with

A+
u , thus it suffices to show that DC-DPOR is called with a positive annotation being equal to O.

We define a traversal on T with the following properties:

1. If u is the current node of the traversal, then A+
u ⊆ O.

2. If A+
u ⊂ O, then the traversal proceeds either

(a) to a node v of T with A+
u ⊂ A+

v ,

(b) to some other node of T ,

and Item 2b happens a finite number of times.
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Observe that every time the traversal executes Item 2a, O agrees with A+
v on more reads than A+

u .

Since Item 2b is executed a finite number of times, any such traversal is guaranteed to reach a

node w with Aw = O.

The traversal starts from u being the root of T , and Item 1 holds as then A+
u = ∅ ⊆ O. Now

consider that the traversal is on any node u that satisfies Item 1. Since tu is a maximal extension

of a trace returned by procedure Realize on input A+
u , Lemma 9.6 guarantees that tu is a maximal

trace that realizes A+
u . Let t∗ be a trace that realizes O, and r be the first read of t∗ not in A+

u , i.e.,

r = arg min
r′∈E(t∗)\dom(A+

u )
It∗(r′)

and w = Ot∗(r). Then for every r′ ∈ Pastt∗(r), we have It∗(r′) < It∗(r′) and thus r′ ∈ E(tu)

and Ot∗(r
′) = Otu(r

′). By Lemma 9.7, we have r ∈ E(tu). Since It∗(w) < It∗(r), a similar

argument yields that w ∈ E(tu). We now distinguish two cases, based on whether w ∈ A−
u (r) or

not.

1. If w ̸∈ A−
u (r), then in Line 4 the algorithm will generate a trace t′ that is compatible with

the strengthened annotation A+
u ∪ (r, w), and call itself recursively on some child v of u

with A+
v = A+

u ∪ (r, w). The traversal proceeds to v and Item 1 holds, as desired.

2. If w ∈ A−
u (r), then there exists a highest ancestor x of u in T where DC-DPOR was called

with (r, w) ∈ A−
x . Following Line 7, this can only have happened if x has a sibling v

in T with (r, w) ∈ A+
v . Let z be the parent of x, v, and we have A+

z ⊂ A+
u ⊂ O, and

A+
v = A+

z ∪ (r, w) ⊆ O. Thus, the traversal proceeds to v and Item 1 holds, as desired. In

this case, we say that the traversal backtracks to x through z.

Finally, we argue that Item 2b will only occur a finite number of times in the traversal. Since T is

finite, it suffices to argue that the traversal backtracks through any node z a finite number of times.

Indeed, fix such a node z and let x1, x2, . . . be the sequence of (not necessarily distinct) children

of z that the traversal backtracks to, through z. Let ri be the unique read in dom(A+
xi
) \ dom(A+

z ).

By Line 1, we have that Itz(ri+1) < Itz(ri), hence no node repeats in the sequence (xi)i, and

thus the traversal backtracks through z a finite number of times. The desired result follows.

We thus arrive to the following theorem.
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Theorem 9.3. Consider a concurrent acyclic architecture P of processes on an acyclic state

space, and n = maxt∈TP |t| the maximum length of a trace of P . The algorithm DC-DPOR

explores each class of TP/ ∼O exactly once, and requires O (|TP/ ∼O | · n5) time.

Proof. Lemma 9.8 and Lemma 9.9 guarantee the optimality of DC-DPOR, i.e., that DC-DPOR

explores each class of TP/ ∼O exactly once. The time spent in each class is the time for

attempting all possible mutations on the witness trace t which is the trace used by the algorithm

to explore the corresponding observation function. There are at most n2 such mutations, and

according to Theorem 9.2, each such mutation requires O(n3) time to be applied (or conclude

that t cannot be mutated in the attempted way). The desired result follows.

We note that our main goal is to explore the exponentially large TP/ ∼O by spending polynomial

time in each class. The n5 factor in the bound comes from a crude complexity analysis.

9.6 Beyond Acyclic Architectures

In the current section we turn our attention to cyclic architectures. Recall that according to

Theorem 9.2, procedure Realize is guaranteed to find a trace that realizes a positive annotation

A+, provided that the underlying architecture is acyclic.

Architecture acyclic reduction. Consider a cyclic architecture P , and the corresponding

communication graph GP = (VP , EP ,wtP). We call a set of edges X ⊆ EP an all-but-two cycle

set of GP if every cycle of GP contains at most two edges outside of X . Given an all-but-two

cycle set, X ⊆ EP we construct a second architecture PX , called the acyclic reduction of P

over X , by means of the following process.

1. Let Y =
⋃

(pi,pj)∈X wtP(pi, pj) be the set of variables that appear in edges of the set X .

We introduce a set of new locks LO in PX such that we have exactly one new lock lg ∈ LO

for each variable g ∈ Y .

2. For every process pi, every write event w ∈ Wi with loc(w) ∈ Y is surrounded by an

acquire/release pair on the new lock variable lloc(w).
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Observation equivalence refined by an edge set. Consider a cyclic architecture P and X an

edge set of the underlying communication graph GP . We define a new equivalence on the trace

space TP as follows. Two traces t1, t2 ∈ TP are observationally equivalent refined by X , denoted

by ∼X
O , if the following hold:

1. t1 ∼O t2, and

2. for every edge (pi, pj) ∈ X , for every pair of distinct write events w1, w2 ∈ W(t1)∩(Wi∪

Wj) with loc(w1) = loc(w2) = g and g ∈ wtP(pi, pj), we have that It1(w1) < It1(w2) iff

It2(w1) < It2(w2)

Clearly, ∼X
O refines the observation equivalence ∼O. The following lemma captures that the

Mazurkiewicz equivalence refines the observation equivalence refined by an edge set X .

Lemma 9.10. For any two traces t1, t2 ∈ TP , if t1 ∼M t2 then t1 ∼X
O t2.

Proof. By Theorem 9.2, we have t1 ∼O t2. Consider any pair of distinct write events w1, w2 ∈

W(t1) ∩ (Wi ∪ Wj) with loc(w1) = loc(w2) = g and g ∈ wtP(pi, pj), and observe that w1

and w2 are dependent. Hence, we have w1→t1w2 iff w1→t2w2, and thus It1(w1) < It1(w2) iff

It2(w1) < It2(w2), as desired.

Exponential succinctness. Similar to ∼O, we present an instance of an cyclic architectures

where the equivalence ∼X
O is exponentially more succinct than ∼M , since in general it considers

fewer reorderings of events that access variables of the edges of EP \X , than the Mazurkiewicz

reorderings on those events. Consider the architecture P in Fig. 9.7, which consists of three

processes and two single global variables x and y. We choose an edge set as X = {(p1, p2)},

and X is an all-but-two cycle set of GP . We argue that ∼X
O is exponentially more succinct than

∼M by showing exponentially many traces which are pairwise equivalence under ∼X
O but not

under ∼M . Indeed, consider the set T which consists of all traces such that the following hold

1. All traces start with p1 executing to completion, then p2 executing its first statement, and

p3 executing its first statement.

2. All traces end with the last three events of p2 followed by the last two events of p3.

Note that |T | =
(
2·n
n

)
as there are (2 · n)! ways to order the 2 · n write y events of the two

processes, but n! · n! orderings are invalid as they violate the program structure. All traces in T
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Process p1 :

1. write x

2. read x

Process p2 :

1. write x

2. write y

. . .

n+ 2. write y

n+ 3. read y

n+ 4. read x

Process p3 :

1. write x

2. write y

. . .

n+ 2. write y

n+ 3. read y

n+ 4. read x

Figure 9.7: A cyclic architecture of three processes.

have the same observation function, yet they are inequivalent under ∼M since every pair of them

orders two write y events differently. Finally, TP/ ∼X
O is only exponentially large, and since

|(TP/ ∼M) \ (TP/ ∼x
O)| ⩾ |T | − 1

we have that ∼X
O is exponentially more succinct than ∼M .

Data-centric DPOR on a cyclic architecture. We are now ready to outline the steps of the data-

centric DPOR algorithm on a cyclic architecture P , called DC-DPOR-Cyclic. First, we determine

an all-but-two cycle set X of the underlying communication graph GP = (VP , EP ,wtP), and

construct the acyclic reduction PX of P over X . The set X can be chosen arbitrarily, e.g. by

letting |X| = |EP | − 2 (i.e., adding in X all the edges of GP except for two). Then, we execute

DC-DPOR on PX , with the following two modifications on the procedure Realize.

1. Consider the graph G = (V,E) constructed in Line 1 of Realize (Algorithm 31). For every

pair of write events w,w′ protected by some of the new locks ℓ ∈ LO, for every read event

r such that A+(r) = w, if (w,w′) ∈ E then we add an edge (r, w) in E, and if (w′, r) ∈ E,

then we add an edge (w′, w) in E.

2. If at the end of Item 1 G has a cycle, Realize returns ⊥.

3. In Line 5 we use the edge set EPX \X . Hence for every variable xe1,e2 used in the 2SAT

reduction, we have either proc(e1) = proc(e2) or (proc(e1), proc(e2)) ∈ EPX \X .
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Lemma 9.11. Given a well-formed positive annotation A+ over a basis (τi)i, and the modified

communication graph G′
PX = (VPX , EPX \X,wtPX ), Realize constructs a trace t that realizes

A+ (or concludes that A+ is not realizable) and requires O(n3) time, where n =
∑

i |τi|.

(Sketch). First, note that due to the new locks LO, A+ already induces a total order on the

lock-acquire and lock-release events that access the same lock lg ∈ LO. Hence A+ already

induces a total order between the write events that are protected by the same lock lg ∈ LO. Thus,

given the basis (τi)i, A+ is realizable iff that total order respects A+, and there is a way to order

the remaining pairwise dependent events between pairs of processes (pi, pj) ̸∈ X , such that the

ordering respects the sequential consistency axioms. The crucial property is that since X is an

all-but-two cycle set of GP , the transitivity (Line 9) and antisymmetry (Line 6) clauses ensure

that a satisfying assignment preserves acyclicity of the graph G′ constructed in Line 24. The

complexity analysis is similar to Lemma 9.6.

We arrive at the following theorem.

Theorem 9.4. Consider a concurrent architecture P of processes on an acyclic state space, and

n = maxt∈TP |t| the maximum length of a trace of P . Let X be an all-but-two cycle set of the

communication graph GP . The algorithm DC-DPOR-Cyclic explores each class of TP/ ∼X
O

exactly once, and requires O
(
|TP/ ∼X

O | · n5
)

time.

Proof. We argue that DC-DPOR-Cyclic is then optimal for the cyclic architecture P wrt the

equivalence ∼X
O .

1. (Compactness). For any two distinct positive annotations A+
1 , A+

2 examined by DC-DPOR

when exploring the trace space of PX , Lemma 9.8 guarantees that A+
1 ̸= A+

2 . Let t1 and t2

be the traces returned by Realize on inputs A+
1 and A+

2 respectively. Assume that t1 is not a

prefix of t2 (the argument is similar if t2 is not a prefix of t1, and since A+
1 ̸= A+

2 , it is not

the case that each is a prefix of the other). This implies that at least one of the following

holds.

(a) There is a read event r ∈ E(t1) such that (r,Ot1(r)) ̸∈ Ot2 , in which case two

different classes of ∼O are explored. Since ∼X
O refines ∼O it follows that two

different classes of ∼ OX are explored.



312

(b) There is a lock-acquire event ea ∈ E(t1) such that (ea,Ot1(ea)) ̸∈ Ot2 . In this case,

the write event w protected by the lock-acquire event ea either does not appear t2 or

there exists a conflicting write event w′ in t1 such that t1 and t2 are ordered differently

in t1 and t2. Hence the two annotations A+
1 and A+

2 are used to explore different

classes of ∼X
O .

2. (Completeness). Lemma 9.11 together with the completeness statement of Lemma 9.9

guarantees that for every observation function O of the trace space of PX , there is an

annotation function A+ used by DC-DPOR such that O = A+. Since the lock-acquire

and lock-release events are read and write events respectively, any two traces which have

a different order on a pair of write events w, w′ such that w and w′ are protected by

observable locks, will also be explored.

Finally, the maximum size of a trace in P is asymptotically equal to the maximum size of a trace

in PX , from which the complexity bound follows.

9.7 Experiments

Here we report on the implementation and experimental evaluation of our data-centric DPOR

algorithm.

9.7.1 Implementation Details

Implementation. We have implemented our data-centric DPOR in C++, by extending the tool

Nidhugg1. Nidhugg is a powerful tool that utilizes the LLVM compiler infrastructure, and hence

our treatment of programs is in the level of LLVM’s intermediate representation (IR). Concurrent

architectures are supported via POSIX threads.

Handling static arrays. The challenge in handling arrays (and other data structures) lies in

the difficulty of determining whether two global events access the same location of the array

(and thus are in conflict) or not. Indeed, this is not evident from the CFG of each process, but

1https://github.com/nidhugg/nidhugg

https://github.com/nidhugg/nidhugg
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p1 p2

p3p4
→

p1

p2p3 p4

Figure 9.8: Converting a cyclic architecture to a star architecture which is acyclic. On the star,

solid edges correspond to observation equivalence interleavings, and dashed edges correspond to

Mazurkiewicz equivalence interleavings.

depends on the values of indexing variables (e.g. the value of local variable i in an access

to table[i]). DPOR methods offer increased precision, as during the exploration of the trace

space, backtracking points are computed dynamically, given a trace, where the value of indexing

variables is known. In our case, the value of indexing variables is also needed when procedure

Realize is invoked to construct a trace which realizes a positive annotation A+. Observe that

the values of all such variables are determined by the value function valA+ , and thus in every

sequential trace τi of the basis (τi)i of A+ these values are also known. Hence, arrays are handled

naturally by the dynamic flavor of the exploration.

Handling cyclic architectures. In order to effectively handle cyclic architectures, we followed

the following process. Wlog, we considered that the input architecture always has the most

difficult topology, namely it is a clique. First, the cyclic architecture is converted to a star

architecture, by choosing some distinguished process p1 as the root of the star, and the remaining

processes p2, . . . pk are the leaves. Recall that a a positive annotation yields a sequential trace for

each process. We use the Mazurkiewicz equivalence to generate all possible Mazurkiewicz-based

interleavings between traces of the leaf processes, and our observation equivalence to generate

all possible observation-based interleavings between the root and every leaf process. Hence the

observation equivalence is wrt the star sub-architecture, which is acyclic, and thus our techniques

from Theorem 9.3 are applicable. We note that since the Mazurkiewicz interleavings always

have to be generated among sequential traces (i.e., straight-line programs), we are generating

them optimally (i.e., obtaining exactly one trace per Mazurkiewicz class) easily, using vector

clocks [Mattern, 1989]. See Figure 9.8 for an illustration.

Optimizations. Since our focus is on demonstrating a new, data-centric principle of DPOR,

we focused on a basic implementation and avoided engineering optimizations. We outline two

straightforward algorithmic optimizations which were simple and useful.
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1. (Burst mutations). Instead of performing one mutation at a time, the algorithm performs

a sequence of several mutations at once. In particular, given a trace t, any time we

want to add a pair (r, w) to the positive annotation, we also add (r′,Ot(r
′)), where

r′ ∈ Pastt(r) ∪ Pastt(w) ranges over all read events in the causal past of r and w in

t. This makes the recursion tree shallower, as now we do not need to apply any mutation

(r, w), where w = Ot(r), individually.

2. (Cycle detection). As a preprocessing step, before executing procedure Realize on some

positive annotation A+ input, we test whether the graph G (in Line 1) already contains

a cycle. The existence of a cycle is a proof that A+ is not realizable, and requires linear

instead of cubic time, as the graph is sparse.

9.7.2 Experimental Results

We now turn our attention to the experimental results. Our comparison is with the Source-DPOR

algorithm from [Abdulla et al., 2014] and the tool Nidhugg that implements it [Abdulla et al.,

2015]. To our knowledge, Source-DPOR is the latest and state-of-the-art DPOR which has

implemented for C programs.

Experimental setup. In our experiments, we have compared our data-centric DPOR, with the

Mazurkiewicz-based Source-DPOR introduced recently in [Abdulla et al., 2014] as an important

improvement over the traditional DPOR [Flanagan and Godefroid, 2005]. Our benchmark set

consists of synthetic benchmarks, as well as benchmarks obtained from the TACAS Competition

on Software Verification (SV-COMP). Most of the benchmarks have tunable size, by specifying

a loop-unroll bound, or the number of threads running in parallel. In all cases, we compared th

running time and number of traces explored by DC-DPOR and Source-DPOR. We have set a

timeout of 1 hour. All benchmarks were executed on an Ubuntu-based virtual machine, given

4GB of memory and one 2GHz CPU.

Two synthetic benchmarks. First we analyze the two synthetic benchmarks lastzero and

opt_lock found in Table 9.3a and Table 9.3b, respectively. The benchmark lastzero was introduced

in [Abdulla et al., 2014] to demonstrate the superiority of Source-DPOR over the traditional

DPOR from [Flanagan and Godefroid, 2005]. It consists of n threads writing to an array, and 1
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Benchmark Traces Time (s)

DC-DPOR S-DPOR DC-DPOR S-DPOR

lastzero(4) 38 2,118 0.21 0.84

lastzero(5) 113 53,172 0.34 19.29

lastzero(6) 316 1,765,876 0.63 856

lastzero(7) 937 - 1.8 -
lastzero(8) 3,151 - 9.32 -
lastzero(9) 12,190 - 47.97 -
lastzero(10) 52,841 - 383.12 -

(a) Experiments on lastzero(n), for n + 1 threads.

’-’ indicates a timeout after 1 hour.

Benchmark Traces Time (s)

DC-DPOR S-DPOR DC-DPOR S-DPOR

opt_lock(12) 141 785,674 0.35 252.64

opt_lock(13) 153 2,056,918 0.36 703.90

opt_lock(14) 165 5,385,078 0.43 1,880.12

opt_lock(15) 177 - 0.46 -
opt_lock(50) 597 - 5.91 -
opt_lock(100) 1,197 - 43.82 -
opt_lock(200) 2,397 - 450.99 -

(b) Experiments on opt_lock(n), where n is the

number of attempts to optimistically lock. ’-’ in-

dicates a timeout after 1 hour.

Table 9.3: Experimental results on two synthetic benchmarks.

thread reading from it (pseudocode in Algorithm 33). We observe that our DC-DPOR explores

exponentially fewer traces than Source-DPOR. In fact, the number of traces explored by our

data-centric approach scales polynomially, whereas the number explored by the Mazurkiewicz-

based approach grows exponentially with the number of threads. Consequently, our DC-DPOR

runs much faster, and manages to scale on larger input sizes. We note that the number of traces

explored from Source-DPOR differs from the number reported in [Abdulla et al., 2014]. This is

natural as the implementation of [Abdulla et al., 2014] handles programs written in Erlang, a

functional language with concurrency mechanisms much different from C.

The benchmark opt_lock mimics an optimistic locking scheme of 2 threads (pseudocode in

Algorithm 34). Each thread tries to update some variable, and afterwards checks if it was

interrupted. If not, it terminates, otherwise it tries again, up to a total n number of attempts.

Again, we see that the number of explored traces by DC-DPOR grows polynomially, whereas

the number explored by Source-DPOR grows exponentially. Hence, our algorithm manages

to handle much larger input sizes than the Mazurkiewicz-based Source-DPOR. Recall that, as

Theorem 9.3 states, this exponential reduction in the explored traces comes with polynomial-time

guarantees per trace.

Benchmarks from SV-COMP. We now turn our attention to benchmarks from SV-COMP,

namely fib_bench, pthread_demo, sigma_false and parker, which are found in Table 9.4a,

Table 9.4b, Table 9.4c and Table 9.4d, respectively. Similarly to our findings on the synthetic

benchmarks, the data-centric DC-DPOR manages to explore fewer traces than the Mazurkiewicz-
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Benchmark Traces Time (s)

DC-DPOR S-DPOR DC-DPOR S-DPOR

fib_bench(4) 1,233 19,605 0.93 3.03

fib_bench(5) 8,897 218,243 7.41 37.82

fib_bench(6) 70,765 2,364,418 85.71 463.52

(a) Experiments on fib_bench(n), where n is the

loop-unroll bound.

Benchmark Traces Time (s)

DC-DPOR S-DPOR DC-DPOR S-DPOR

pthread_demo(8) 256 12,870 0.37 3.17

pthread_demo(10) 1,024 184,756 1.23 49.51

pthread_demo(12) 4,096 2,704,156 5.30 884.99

(b) Experiments on pthread_demo(n), where n is

the loop-unroll bound.

Benchmark Traces Time (s)

DC-DPOR S-DPOR DC-DPOR S-DPOR

sigma_false(6) 16 10,395 0.22 2.57

sigma_false(7) 22 135,135 0.26 38.41

sigma_false(8) 29 2,027,025 0.28 658.27

sigma_false(9) 37 - 0.38 -

sigma_false(10) 46 - 0.44 -

(c) Experiments on sigma_false(n), where n is the

loop-unroll bound. ’-’ indicates a timeout after 1

hour.

Benchmark Traces Time (s)

DC-DPOR S-DPOR DC-DPOR S-DPOR

parker(8) 1,254 3,343 1.52 1.33

parker(10) 2,411 6,212 5.03 3.96

parker(12) 4,132 10,361 8.09 5.62

parker(14) 6,529 16,022 11.96 6.86

parker(16) 9,714 23,427 19.89 10.85

(d) Experiments on parker(n), where n is the

loop-unroll bound.

Table 9.4: Experimental results on four benchmarks from SV-COMP.

based Source-DPOR. In almost all cases, our algorithm run much faster, offering exponential

gains in terms of time. One exception is the benchmark parker, where our DC-DPOR is slower.

Although the number of traces explored is less than that of Source-DPOR, the latter method

managed to spend less time in discovering each trace, which led to a smaller overall time. We

note, however, that the improvement of Source-DPOR over DC-DPOR appears to grow only

as a small polynomial wrt the input size. Recall that new traces are discovered by DC-DPOR

using the procedure Realize, which can take cubic time in the worst case (Theorem 9.2). Hence,

we identify optimizations to Realize as an important challenge that will contribute further to the

scalability of our approach.
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Algorithm 33: lastzero(n), for n+1 pro-

cesses
Globals : int array[n+ 1]

// ------ Process j = 0 ------

Locals :int i

1 i← n

2 while array[i] ̸= 0 do

3 i← i− 1

4 end

// ------ Process 1 < j ⩽ n

------

5 array[j]← array[j − 1] + 1

Algorithm 34: opt_lock(n), for 2 pro-

cesses and n attempts
Globals : int last_id, x

// ------ Process 0 < j < 2

------

Locals :int i

1 i← 0

2 while i < n do

3 i← i+ 1

4 last_id← j

5 x← get_message(j)

6 if last_id = j then

7 return x

8 end

9 return-1
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10 Automated Competitive Analysis in

Real-time Scheduling with Graphs

and Games

10.1 Introduction

In this chapter we study the well-known problem of scheduling a sequence of dynamically

arriving real-time task instances with firm deadlines on a single processor by using graph games.

In firm-deadline scheduling, a task instance (a job) that is completed by its deadline contributes a

positive utility value to the system; a job that does not meet its deadline does not harm, but does

not add any utility. The goal of the scheduling algorithm is to maximize the cumulated utility.

Problems considered. Since the taskset arising in a particular application is usually known,

the present work focuses on the competitive analysis problem for given tasksets: Rather than

from all possible tasksets as in [Baruah et al., 1992], the task releases used for determining

the competitive ratio are chosen from a taskset given as an input. We study the two relevant

problems for the automated competitive analysis for given tasksets:

(1) The competitive analysis question asks to compute the competitive ratio of a given on-line

algorithm.

(2) The competitive synthesis question asks to construct an on-line algorithm with optimal

competitive ratio.

Both question are relevant in online-scheduling settings where the taskset is known in advance.
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The competitive analysis problem can determine the performance of existing schedulers, and

help with choosing the one that is best in the given setting. The competitive synthesis problem

can provide a scheduler which is optimal by construction in the given setting.

Organization. The rest of this chapter is organized as follows.

Competitive Analysis. Given a taskset T and an on-line scheduling algorithm A, the competitive

analysis question asks to determine the competitive ratio ofAwhen the arriving jobs are instances

of tasks from T . Our respective results are provided in the following sections:

1. In Section 10.2, we formally define our real-time scheduling problem.

2. In Section 10.3, we provide a formalism for on-line and clairvoyant scheduling algorithms

as labeled transitions systems. We also show how automata on infinite words can be used

to express natural constraints on the set of released job sequences (such as sporadicity and

workload constraints).

3. In Sections 2.3.1 and 10.4.2, we define graph objectives on weighted multi-graphs and

provide algorithms for solving those objectives.

4. In Section 10.4.3, we present a formal reduction of the competitive analysis problem

to solving a multi-objective graph problem. Section 10.4.4 describes both general and

implementation-specific optimizations for the above reduction, which considerably reduce

the size of the obtained graph and thus make our approach feasible in practice.

5. In Section 10.4.5, we present a comparative study of the competitive ratio of several

existing firm-deadline real-time scheduling algorithms. Our results show that the com-

petitive ratio of any algorithm varies highly when varying tasksets, which highlights the

usefulness of an automated competitive analysis framework: Our framework allows to

replace human ingenuity (required for finding worst-case scenarios) by computing power,

as the application designer can analyze different scheduling algorithms for the specific

taskset arising in some application and compare their competitive ratio.

Competitive Synthesis. Given a taskset T , the competitive synthesis question asks to construct

an on-line scheduling algorithm A with optimal competitive ratio for T . The competitive ratio
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of A for T is at least as large as the competitive ratio of any other on-line scheduling algorithm

for T . Our respective results are presented in Section 10.5:

1. In Section 10.5.1, we consider a game model (a partial-observation game with memoryless

strategies for Player 1 with mean-payoff and ratio objectives) that is suitable for the

competitive synthesis of real-time scheduling algorithms. The mean-payoff (resp. ratio)

objective allows to compute the cumulated utility (resp. competitive ratio) of the best

on-line algorithm under the worst-case task sequence.

2. In Section 10.5.2, we establish that the relevant decision problems for the underlying game

are NP-complete in the size of the game graph.

3. In Section 10.5.3, we use the game of Section 10.5.1 to tackle two relevant synthesis

problems for a given taskset T . First, we show that constructing an on-line scheduling

algorithm with optimal worst-case average utility for T is in NP ∩ CONP in general, and

polynomial in the size of the underlying game graph for reasonable choices of task utility

values. Second, we show that constructing an on-line scheduling algorithm with optimal

competitive ratio for T is in NP. These complexities are wrt the size of the constructed

algorithm, represented explicitly as a labeled transition system. As a function of the input

taskset T given in binary, all polynomial upper bounds become exponential upper bounds

in the worst case.

10.2 Problem Definition

We consider a finite set of tasks T = {τ1, . . . , τN}, to be executed on a single processor. We

assume a discrete notion of real-time t = kε, k ⩾ 1, where ε > 0 is both the unit time

and the smallest unit of preemption (called a slot). Since both task releases and scheduling

activities occur at slot boundaries only, all timing values are specified as positive integers. Every

task τi releases countably many task instances (called jobs) Ji,j := (τi, j) ∈ T × N+ (where

N+ is the set of positive integers) over time (i.e., Ji,j denotes that a job of task i is released

at time j). All jobs, of all tasks, are independent of each other and can be preempted and

resumed during execution without any overhead. Every task τi, for 1 ⩽ i ⩽ N , is characterized

by a 3-tuple τi = (Ci, Di, Vi) consisting of its non-zero worst-case execution time Ci ∈ N+
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(slots), its non-zero relative deadline Di ∈ N+ (slots) and its non-zero utility value Vi ∈ N+

(rational utility values V1, . . . , VN can be mapped to integers by proper scaling). We denote by

Dmax = max1⩽i⩽N Di the maximum relative deadline in T . Every job Ji,j needs the processor

for Ci (not necessarily consecutive) slots exclusively to execute to completion. All tasks have

firm deadlines: only a job Ji,j that completes within Di slots, as measured from its release time,

provides utility Vi to the system. A job that misses its deadline does not harm but provides zero

utility. The goal of a real-time scheduling algorithm in this model is to maximize the cumulated

utility, which is the sum of Vi times the number of jobs Ji,j that can be completed by their

deadlines, in a sequence of job releases generated by the adversary.

Notation on sequences. Let X be a finite set. For an infinite sequence x = (xℓ)ℓ⩾1 =

(x1, x2, . . .) of elements in X , we denote by xℓ the element in the ℓ-th position of x, and

denote by x(ℓ) = (x1, x2, . . . , xℓ) the finite prefix of x up to position ℓ. We denote by X∞ the

set of all infinite sequences of elements from X . Given a function f : X → Z (where Z is the

set of integers) and a sequence x ∈ X∞, we denote by f(x, k) =
∑k

ℓ=1 f(x
ℓ) the sum of the

images of the first k sequence elements under f .

Job sequences. The released jobs form a discrete sequence, where at each time point the

adversary releases at most one new job from every task. Formally, the adversary generates an

infinite job sequence σ = (σℓ)ℓ⩾1 ∈ Σ∞, where Σ = 2T . The release of one job of task τi in

time ℓ, for some ℓ ∈ N+, is denoted by having τi ∈ σℓ,. Then, a (single) new job Ji,j of task τi

is released at the beginning of slot ℓ: j = ℓ denotes the release time of Ji,j , which is also the

earliest time that the job Ji,j can be executed, and di,j = j +Di denotes its absolute deadline.

Admissible job sequences. We present a flexible framework, where the set of admissible

job sequences that the adversary can generate may be restricted. The set J of admissible

job sequences from Σ∞ can be obtained by imposing one or more of the following (optional)

admissibility restrictions:

(S) Safety constraints, which are restrictions that have to hold in every finite prefix of an

admissible job sequence; e.g., they can be used to enforce job release constraints such as

periodicity or sporadicity, and to impose temporal workload restrictions.

(L) Liveness restrictions, which assert infinite repetition of certain job releases in a job
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sequence; e.g., they can be used to force the adversary to release a certain task infinitely

often.

(W) Limit-average constraints, which restrict the long run average behavior of a job sequence;

e.g., they can be used to enforce that the average load in the job sequences does not exceed

a threshold.

These three types of constraints will be made precise in the next section where we formally state

the problem definition.

Schedule. Given an admissible job sequence σ ∈ J , the schedule π = (πℓ)ℓ⩾1 ∈ Π∞, where

Π = ((T × {0, . . . , Dmax − 1}) ∪∅), computed by a real-time scheduling algorithm for σ, is a

function that assigns at most one job for execution to every slot ℓ ⩾ 1: πℓ is either ∅ (i.e., no

job is executed) or else (τi, j) (i.e., the job Ji,ℓ−j of task τi released j slots ago is executed). The

latter must satisfy the following constraints:

1. τi ∈ σℓ−j (the job has been released),

2. j < Di (the job’s deadline has not passed),

3. |{k : k > 0 and πℓ−k = (τi, j
′) and k + j′ = j}| < Ci (the job released in slot ℓ − j has

not been completed).

Note that our definition of schedules uses relative indexing in the scheduling algorithms: At

time point ℓ, the algorithm for schedule πℓ uses index j to refer to slot ℓ− j. Recall that π(k)

denotes the prefix of length k ⩾ 1 of π. We define γi(π, k) to be the number of jobs of task τi

that are completed by their deadlines in π(k). The cumulated utility V (π, k) (also called utility

for brevity) achieved in π(k) is defined as V (π, k) =
∑N

i=1 γi(π, k) · Vi.

Competitive ratio. We are interested in evaluating the performance of deterministic on-line

scheduling algorithms A, which, at time ℓ, do not know any of the σk for k > ℓ when running

on σ ∈ J . In order to assess the performance of A, we will compare the cumulated utility

achieved in the schedule πA to the cumulated utility achieved in the schedule πC provided by an

optimal off-line scheduling algorithm, called a clairvoyant algorithm C, working on the same job

sequence. Formally, given a taskset T , let J ⊆ Σ∞ be the set of all admissible job sequences of

T that satisfy given (optional) safety, liveness, and limit-average constraints. For every σ ∈ J ,
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we denote by πσ
A (resp. πσ

C ) the schedule produced by A (resp. C) under σ. The competitive ratio

of the on-line algorithm A for the taskset T under the admissible job sequence set J is defined

as

CRJ (A) = inf
σ∈J

lim inf
k→∞

1 + V (πσ
A, k)

1 + V (πσ
C , k)

(10.1)

that is, the worst-case ratio of the cumulated utility of the on-line algorithm versus the clairvoyant

algorithm, under all admissible job sequences. Note that adding 1 in numerator and denominator

simply avoids division by zero issues.

Remark 10.1. Since, according to the definition of the competitive ratio CRJ in Eq. (10.1), we

focus on worst-case analysis, we do not consider randomized algorithms (such as Locke’s best-

effort policy [Locke, 1986]). Generally, for worst-case analysis, randomization can be handled

by additional choices for the adversary. For the same reason, we do not consider scheduling

algorithms that can use the unbounded history of job releases to predict the future (e.g., to capture

correlations).

10.3 Modeling Formalisms in Our Framework

In this section, we present the definitions of several types of labeled transition systems (LTSs).

We use LTSs as the modeling formalism for on-line and clairvoyant scheduling algorithms, as

well as for modeling optional constraints on the released job sequences.

10.3.1 Labeled Transition Systems

We will consider both on-line and off-line scheduling algorithms that are formally modeled as

labeled transition systems (LTSs): Every deterministic finite-state on-line scheduling algorithm

can be represented as a deterministic LTS, such that every input job sequence generates a unique

run that determines the corresponding schedule. On the other hand, an off-line algorithm can be

represented as a non-deterministic LTS, which uses the non-determinism to guess the appropriate

job to schedule.

Labeled transitions systems (LTSs). Formally, a labeled transition system (LTS) is a tuple

L = (S, s1,Σ,Π,∆), where S is a finite set of states, s1 ∈ S is the initial state, Σ is a finite set
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of input actions, Π is a finite set of output actions, and ∆ ⊆ S × Σ × S × Π is the transition

relation. Intuitively, (s, x, s′, y) ∈ ∆ if, given the current state s and input x, the LTS outputs y

and makes a transition to state s′. If the LTS is deterministic, then there is always a unique output

and next state, i.e., ∆ is a function ∆ : S × Σ→ S × Π. Given an input sequence σ ∈ Σ∞, a

run of L on σ is a sequence ρA = (pℓ, σℓ, qℓ, πℓ)ℓ⩾1 ∈ ∆∞ such that p1 = s1 and for all ℓ ⩾ 2,

we have pℓ = qℓ−1. For a deterministic LTS, for each input sequence, there is a unique run.

Deterministic LTS for an on-line algorithm. For our analysis, on-line scheduling algorithms

are represented as deterministic LTSs. Recall the definition of the sets Σ = 2T , and Π =

((T × {0, . . . , Dmax − 1}) ∪∅). Every deterministic on-line algorithm A that uses finite state

space (for all job sequences) can be represented as a deterministic LTS LA = (SA, sA,Σ,Π,∆A),

where the states SA correspond to the state space of A, and ∆A correspond to the execution of

A for one slot. Note that, due to relative indexing, for every current slot ℓ, the schedule πℓ of A

contains elements from the set Π, and (τi, j) ∈ πℓ uniquely determines the job Ji,ℓ−j . Finally,

we associate with LA a reward function rA : ∆A → N such that rA(δ) = Vi if the transition

δ completes a job of task τi, and rA(δ) = 0 otherwise. Given the unique run ρσA = (δℓ)ℓ⩾1 of

LA for the job sequence σ, where δℓ denotes the transition taken at the beginning of slot ℓ, the

cumulated utility in the prefix of the first k transitions in ρσA is V (ρσA, k) =
∑k

ℓ=1 rA(δ
ℓ).

Most scheduling algorithms (such as EDF, FIFO, DOVER [Koren and Shasha, 1995],

TD1 [Baruah et al., 1992]) can be represented as a deterministic LTS. An illustration for

EDF is given in the following example.

Example 10.1 (EDF as an LTS). Consider the taskset T = {τ1, τ2}, with D1 = 3, D2 = 2 and

C1 = C2 = 2. Fig. 10.1 represents the EDF (Earliest Deadline First) scheduling policy as a

deterministic LTS for T . Each state is represented by a matrix M , such that M [i, j], 1 ⩽ i ⩽ N ,

1 ⩽ j ⩽ Dmax − 1, denotes the remaining execution time of the job of task τi released j slots

ago. Every transition is labeled with a set T ∈ Σ of released tasks as well as with (τi, j) ∈ Π,

which denotes the unique job Ji,ℓ−j to be scheduled in the current slot ℓ. Released jobs with no

chance of being scheduled are not included in the state space. For example, while being in the

topmost state, the release of τ1 makes the LTS take the transition to the leftmost state, where

1 unit of work is scheduled for the released task, and 1 unit remains, encoded by writing 1 in

position (1, 1) of the matrix M . In the next round, a new release of τ2 will take the LTS to the

middle state, with 2 units of workload in position (1, 1). This is because the 2nd workload of the
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Figure 10.1: EDF for T = {τ1, τ2} with D1 = 3, D2 = 2 and C1 = C2 = 2, represented as a

deterministic LTS.

first job is scheduled (thus the first job is scheduled to completion), and the newly released job

is not scheduled in the current slot. Thus all 2 units of workload of the currently released job

remain.

All scheduling algorithms considered here have been encoded similarly to EDF using the matrix

M . Some more involved schedulers, such as DOVER, require some extra bits of information

stored in the state.

The non-deterministic LTS. The clairvoyant algorithm C is formally a non-deterministic LTS

LC = (SC, sC,Σ,Π,∆C), where each state in SC is a N × (Dmax − 1) matrix M . For each time

slot ℓ, the entry M [i, j], 1 ⩽ i ⩽ N , 1 ⩽ j ⩽ Dmax − 1, denotes the remaining execution time

of the job Ji,ℓ−j (i.e., the job of task i released j slots ago). For matrices M , M ′, subset T ∈ Σ

of newly released tasks, and scheduled job P = (τi, j) ∈ Π, we have (M,T,M ′, P ) ∈ ∆C iff

M [i, j] > 0 and M ′ is obtained from M by

1. inserting all τi ∈ T into M ,

2. decrementing the value at position M [i, j], and

3. shifting the contents of M by one column to the right.
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That is, M ′ corresponds to M after inserting all released tasks in the current state, executing a

pending task for one unit of time, and reducing the relative deadlines of all tasks currently in

the system. The initial state sC is represented by the zero N × (Dmax − 1) matrix, and SC is

the smallest ∆C-closed set of states that contains sC (i.e., if M ∈ SC and (M,T,M ′, P ) ∈ ∆C

for some T , M ′ and P , we have M ′ ∈ SC). Finally, we associate with LC a reward function

rC : ∆C → N such that rC(δ) = Vi if the transition δ completes a task τi, and rC(δ) = 0

otherwise.

Remark 10.2. Note that the size of the above LTSs is the size of the state space of the corre-

sponding scheduling algorithm. If the input consists of a succinct description of these algorithms

(e.g., as a circuit [Galperin and Wigderson, 1983]), then the size of the corresponding LTS is,

in general, exponential in the size of the input. This state-space explosion is generally unavoid-

able [Clarke et al., 1999a]. In the complexity analysis of our algorithms, we consider the input

schedulers to be in the explicit form of LTSs. When appropriate, we will state what the obtained

results imply for the case where the input is succinct.

10.3.2 Admissible Job Sequences

Our framework allows to restrict the adversary to generate admissible job sequences J ⊆ Σ∞,

which can be specified via different constraints. Since a constraint on job sequences can be

interpreted as a language (which is a subset of infinite words Σ∞ here), we will use automata

as acceptors of such languages. Since an automaton is a deterministic LTS with no output, all

our constraints will be described as LTSs with an empty set of output actions. We allow the

following types of constraints:

(S) Safety constraints are defined by a deterministic LTS LS = (SS , sS ,Σ,∅,∆S), with a

distinguished absorbing reject state sr ∈ SS . An absorbing state is a state that has outgoing

transitions only to itself. Every job sequence σ defines a unique run ρσS in LS , such that

either no transition to sr appears in ρσS , or every such transition is followed solely by

self-transitions to sr. A job sequence σ is admissible to LS , if ρσS does not contain a

transition to sr. To obtain a safety LTS that does not restrict J at all, we simply use a

trivial deterministic LS with no transition to sr.

Safety constraints restrict the adversary to release job sequences, where every finite prefix
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{}

{τ1}, {τ2}

{}, {τ1}, {τ2}, {τ1, τ2}

{τ1}, {τ2}

{τ1, τ2}

{}

{τ1, τ2}

{}
{τ1}, {τ2}, {τ1, τ2}

Figure 10.2: Example of a safety LTS LS that restricts the adversary to release at most 2 units of

workload in the last 2 slots. In state 0 no workload has been released in the last 2 slots, and thus

all task releases are allowed for the next time slot. In state 1 there has been 1 unit of workload

released in the last 2 slots, and thus in the next round only one task can be released. If no task

is released in the next slot, then we transition back to state 0, to indicate that in the next time

slot any combination of task releases is allowed. In state 2, there have been 2 units of workload

released in the last 2 slots, and thus no task release is allowed in the next round. If no tasks are

released, then the LTS transitions back to state 0, as in the next time slot any combination of

task releases is allowed. If any of the above rules is violated, the safety LTS transitions to the

absorbing state sr, and remains there forever to indicate that the workload restriction has been

violated.

satisfies some property (as they lead to the absorbing reject state sr of LS otherwise).

Some well-known examples of safety constraints are (i) periodicity and/or sporadicity

constraints, where there are fixed and/or a minimum time between the release of any two

consecutive jobs of a given task, and (ii) absolute workload constraints [Golestani, 1991;

Cruz, 1991], where the total workload released in the last k slots, for some fixed k, is not

allowed to exceed a threshold λ. For example, in the case of absolute workload constraints,

LS simply encodes the workload in the last k slots in its state, and makes a transition to sr

whenever the workload exceeds λ. Fig. 10.2 shows an example of a constraint LTS for

the taskset T = {τ1, τ2} with C1 = C2 = 1 that restricts the adversary to release at most 2

units of workload in the last 2 slots.

(L) Liveness constraints are modeled as a deterministic LTS LL = (SL, sL,Σ,∅,∆L) with a

distinguished accept state sa ∈ SL. A job sequence σ is admissible to the liveness LTS LL
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sa

{}, {τ1} {τ2}, {τ1, τ2}
{τ2}, {τ1, τ2}

{}, {τ1}

Figure 10.3: Example of a liveness LTS LL that forces τ2 to be released infinitely often. Each

time the τ2 is released, the LTS transitions to the accepting state sa to indicate the release of the

desired task. Recall that the accepting condition of LL is that sa needs to be appear infinitely

often in an accepting path, meaning that the task τ2 appears infinitely often.

if ρσL contains infinitely many transitions to sa. For the case where there are no liveness

constraint in J , we use a LTS LL consisting of state sa only.

Liveness constraints force the adversary to release job sequences that satisfy some property

infinitely often. For example, they could be used to guarantee that the release of some

particular task τi does not eventually stall; the constraint is specified by a two-state LTS

LL that visits sa whenever the current job set includes τi. A liveness constraint can also be

used to prohibit infinitely long periods of overload [Baruah et al., 1992], by choosing sa as

the idle state. Fig. 10.3 shows an example of a constraint LTS for the taskset T = {τ1, τ2}

that forces the adversary to release τ2 infinitely often.

(W) Limit-average constraints are defined by a deterministic weighted LTS LW =

(SW , sW ,Σ,∅,∆W) equipped with a weight function wt : ∆W → Zd that assigns a

vector of weights to every transition δW ∈ ∆W . Given a threshold vector λ⃗ ∈ Qd, where Q

denotes the set of all rational numbers, a job sequence σ and the corresponding run ρσW =

(δℓW)ℓ⩾1 of LW , the job sequence is admissible to LW if lim infk→∞
1
k
· wt(ρσW , k) ⩽ λ⃗

with wt(ρσW , k) =
∑k

i=1 wt(δ
ℓ
W).

Consider a relaxed notion of workload constraints, where the adversary is restricted to

generate job sequences whose average workload does not exceed a threshold λ. Since

this constraint still allows “busy” intervals where the workload temporarily exceeds λ, it

cannot be expressed as a safety constraint. To support such interesting average constraints

of admissible job sequences, where the adversary is more relaxed than under absolute

constraints, our framework explicitly supports limit-average constraints. Therefore, it is

possible to express the average workload assumptions commonly used in the analysis of
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{}, w = 0

{τ1, τ2}, w = 2

{τ1}, w = 1{τ2}, w = 1

Figure 10.4: Example of a limit-average LTS LW that tracks the average workload of jobs

released by the adversary. This is achieved by having the weight function indicate the total

workload released in each time slot. In this case we have C1 = C2 = 1, and the total workload

equals the number of released tasks.

aperiodic task scheduling in soft-real-time systems [Abeni and Buttazzo, 1998; Haritsa

et al., 1990]. Other interesting cases of limit-average constraints include restricting the

average sporadicity, and, in particular, average energy: ensuring that the limit-average of

the energy consumption is below a certain threshold is an important concern in modern

real-time systems [Aydin et al., 2004]. Fig. 10.4 shows an example of a constraint LTS

for the taskset T = {τ1, τ2} with C1 = C2 = 1, which can be used to restrict the average

workload the adversary is allowed to release in the long run.

Remark 10.3. While, in general, such constraints are encoded as independent automata, it is often

possible to encode certain constraints directly in the non-deterministic LTS of the clairvoyant

scheduler instead. In particular, this is possible for restricting the limit-average workload,

generating finite intervals of overload, and releasing a particular job infinitely often.

Synchronous product of LTSs. The synchronous product of two LTSs L1 = (S1, s1,Σ,Π,∆1)

and L2 = (S2, s2,Σ,Π,∆2) is an LTS L = (S, s,Σ,Π′,∆) such that:

1. S ⊆ S1 × S2,

2. s = (s1, s2),

3. Π′ = Π× Π, and

4. ∆ ⊆ S ×Σ× S ×Π′ such that ((q1, q2), T, (q′1, q
′
2), (P1, P2)) ∈ ∆ iff (q1, T, q′1, P1) ∈ ∆1

and (q2, T, q
′
2, P2) ∈ ∆2.

The set of states S is the smallest ∆-closed subset of S1 × S2 that contains s (i.e., s ∈ S, and

for each q ∈ S, if there exist q′ ∈ S1 × S2, T ∈ Σ and P ∈ Π′ such that (q, T, q′, P ) ∈ ∆, then
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q′ ∈ S). That is, the synchronous product of L1 with L2 captures the joint behavior of L1 and L2

in every input sequence σ ∈ Σ∞ (L1 and L2 synchronize on input actions). Note that if both L1

and L2 are deterministic, so is their synchronous product. The synchronous product of k > 2

LTSs L1, . . . , Lk is defined iteratively as the synchronous product of L1 with the synchronous

product of L2, . . . , Lk.

Overall approach for computing CR. Our goal is to determine the worst-case competitive

ratio CRJ (A) for a given on-line algorithm A. The inputs to the problem are the given taskset

T , an on-line algorithm A specified as a deterministic LTS LA, and the safety, liveness, and

limit-average constraints specified as deterministic LTSs LS , LL and LW , respectively, which

constrain the admissible job sequences J . Our approach uses a reduction to a multi-objective

graph problem, which consists of the following steps:

1. Construct a non-deterministic LTS LC corresponding to the clairvoyant off-line algorithm

C. Note that since LC is non-deterministic, for every admissible job sequence σ, there are

many possible runs in LC , of course also including the runs with maximum cumulative

utility.

2. Take the synchronous product LTS LA × LC × LS × LL × LW . By doing so, a path in

the product graph corresponds to identically labeled paths in the LTSs, and thus ensures

that they agree on the same job sequence σ. This product can be represented by a multi-

objective graph (as introduced in Section 2.3.1).

3. Determine CRJ (A) by reducing the computation of the ratio given in Eq. (10.1) to solving

a multi-objective problem on the product graph.

4. Employ several optimizations in order to reduce the size of product graph (see Sec-

tions 10.4.3 and 10.4.4.

10.4 Competitive Analysis of On-line Scheduling Algorithms

In this section, we address the competitive analysis problem: Given a taskset, a LTS LA for

the on-line scheduling algorithm, and optional constraint automata LS , LL, LW for the set of

admissible job sequences J , our algorithms compute the competitive ratio CRJ (A) of A in J .
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Our presentation is organized as follows: In Section 10.4.1, we define qualitative and quantitative

objectives on multi-graphs. In Section 10.4.2, we provide algorithms for solving these graph

objectives. In Section 10.4.3, we establish a formal reduction of computing the competitive

ratio CRJ (A) of an on-line scheduling algorithm A to solving for graph objectives on a suitable

multi-graph. In Section 10.4.4, we describe several generic optimizations for this reduction

that make the reduction practical. In Section 10.4.5, we provide the results of an automatic

competitive analysis of a wide range of classic on-line scheduling algorithms, using a prototype

implementation of our framework.

10.4.1 Graphs with Multiple Objectives

In this subsection, we define various objectives on graphs and outline the algorithms for solving

them. We later show how the competitive analysis of on-line schedulers reduces to the solution

algorithms of this section.

Multi-graphs. A multi-graph G = (V,E), hereinafter called simply a graph, consists of a finite

set V of n nodes, and a finite set of m directed multiple edges E ⊂ V × V × N+. For brevity,

we will refer to an edge (u, v, i) as (u, v), when i is not relevant. We consider graphs in which

for all u ∈ V , we have (u, v) ∈ E for some v ∈ V , i.e., every node has at least one outgoing

edge. An infinite path ρ of G is an infinite sequence of edges e1, e2, . . . such that, for all i ⩾ 1

with ei = (ui, vi), we have vi = ui+1. Every such path ρ induces a sequence of nodes (ui)i⩾1,

which we will also call a path when the distinction is clear from the context, where ρi refers to

ui instead of ei. Finally, we denote by Ω the set of all paths of G.

Objectives. Given a graph G, an objective Φ is a subset of Ω that defines the desired set of paths.

We will consider safety, liveness, mean-payoff (limit-average), and ratio objectives, and their

conjunction for multiple objectives.

Safety and liveness objectives: We consider safety and liveness objectives, both defined with

respect to some subset of nodes X, Y ⊆ V . Given X ⊆ V , the safety objective, defined

as Safe(X) = {ρ ∈ Ω : ∀i ⩾ 1, ρi ̸∈ X}, represents the set of all paths that never visit

the set X . The liveness objective defined as Live(Y ) = {ρ ∈ Ω : ∀j∃i > j s.t. ρi ∈ Y }

represents the set of all paths that visit Y infinitely often.



332

Mean-payoff and ratio objectives: We consider the mean-payoff and ratio objectives, defined

with respect to a weight function and a threshold. A weight function wt : E → Zd assigns

to each edge of G a vector of d integers. A weight function naturally extends to paths, with

wt(ρ, k) =
∑k

i=1 wt(ρ
i). The mean-payoff (or limit-average) of a path ρ is defined as:

MP(wt, ρ) = lim inf
k→∞

1

k
· wt(ρ, k);

i.e., it is the long-run average of the weights of the path. Given a weight function wt and a

threshold vector ν⃗ ∈ Qd, the corresponding objective is given as:

MP(wt, ν⃗) = {ρ ∈ Ω : MP(wt, ρ) ⩽ ν⃗};

that is, the set of all paths such that the mean-payoff of their weights is at most ν⃗ (where

we consider pointwise comparison for vectors). For weight functions wt1, wt2 : E → Nd,

the ratio of a path ρ is defined as:

Ratio(wt1,wt2, ρ) = lim inf
k→∞

1⃗+ wt1(ρ, k)

1⃗+ wt2(ρ, k)
,

which denotes the limit infimum of the coordinate-wise ratio of the sum of weights of the

two functions; 1⃗ denotes the d-dimensional all-1 vector. Given weight functions wt1, wt2

and a threshold vector ν⃗ ∈ Qd, the ratio objective is given as:

Ratio(wt1,wt2, ν⃗) = {ρ ∈ Ω : Ratio(wt1,wt2, ρ) ⩽ ν⃗}

that is, the set of all paths such that the ratio of cumulative rewards w.r.t wt1 and wt2 is at

most ν⃗.

Example 10.2 (Multi-graph). Consider the multi-graph shown in Fig. 10.5, with a weight

function of dimension d = 2. Note that there are two edges from node 3 to node 5 (represented

as edges (3, 5, 1) and (3, 5, 2)). In the graph we have a weight function with dimension 2. Note

that the two edges from node 3 to node 5 have incomparable weight vectors.

Decision problem. The decision problem we consider is as follows: Given the graph G, an

initial node s ∈ V , and an objective Φ (which can be a conjunction of several objectives),

determine whether there exists a path ρ that starts from s and belongs to Φ, i.e., ρ ∈ Φ. For

simplicity of presentation, we assume that every u ∈ V is reachable from s (unreachable nodes

can be discarded by preprocessing G in O(m) time). We first present algorithms for each of

safety, liveness, mean-payoff, and ratio objectives separately, and then for their conjunction.
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Figure 10.5: An example of a multi-graph G.

10.4.2 Algorithms for Solving Graphs with Multiple Objectives

We now describe the algorithms for solving the graph objectives introduced in the last subsection.

Algorithms for safety and liveness objectives. The algorithm for the objective Safe(X) is

straightforward. We first remove the set X of nodes and then perform an SCC (maximal strongly

connected component) decomposition of G. Then, we perform a single graph traversal to identify

the set of nodes VX which can reach an SCC that contains at least one edge (i.e., it contains

either a single node with a self-loop, or more than one nodes). In the end, we obtain a graph

G = (VX , EX) such that EX = E ∩ VX × VX . Thus, the objective Safe(X) is satisfied in the

resulting graph, and the algorithm answers yes iff s ∈ VX . Using the algorithm of [Tarjan, 1972]

for performing the SCC decomposition, this algorithm requires O(m) time.

To solve for the objective Live(Y ), initially perform an SCC decomposition of G. We call an

SCC VSCC live, if (i) either |VSCC| > 1, or VSCC = {u} and (u, u) ∈ E; and (ii) VSCC ∩ Y ̸= ∅.

Then Live(Y ) is satisfied in G iff there exists a live SCC VSCC that is reachable from s. This is

because every node u in VSCC can reach every node in VSCC, and thus there is a path u⇝ u in

VSCC. Since VSCC is a live SCC, the same holds for nodes u ∈ VSCC ∩ Y . Then a witness path

can be constructed which first reaches some node u ∈ VSCC ∩ Y , and then keeps repeating the

path u⇝ u. Using the algorithm of [Tarjan, 1972] for performing the SCC decomposition, this

algorithm also requires O(m) time.

Algorithms for mean-payoff objectives. We distinguish between the case when the weight

function has a single dimension (d = 1) versus the case when the weight function has multiple

dimensions (d > 1).

Single dimension: In the case of a single-dimensional weight function, a single weight is

assigned to every edge, and the decision problem of the mean-payoff objective reduces to
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determining the mean weight of a minimum-weight simple cycle in G, as the latter also

determines the mean-weight by infinite repetition. Using the algorithms of [Karp, 1978;

Madani, 2002], this process requires O(n ·m) time. When the objective is satisfied, the

process also returns a simple cycle C, as a witness to the objective. From C, a path

ρ ∈ MP(wt, ν⃗) is constructed by infinite repetitions of C.

Multiple dimensions: When d > 1, the mean-payoff objective reduces to determining the

feasibility of a linear program (LP). For u ∈ V , let IN(u) be the set of incoming, and

OUT(u) the set of outgoing edges of u. As shown in [Velner et al., 2015a], G satisfies

MP(wt, ν⃗) iff the following set of constraints on x⃗ = (xe)e∈ESCC with xe ∈ Q is satisfied

simultaneously on some SCC VSCC of G with induced edges ESCC ⊆ E.

xe ⩾ 0 e ∈ ESCC∑
e∈IN(u)

xe =
∑

e∈OUT(u)

xe u ∈ VSCC (10.2)

∑
e∈ESCC

xe · wt(e) ⩽ ν⃗

∑
e∈ESCC

xe ⩾ 1

The quantities xe are intuitively interpreted as “flows”. The first constraint specifies

that the flow of each edge is non-negative. The second constraint is a flow-conservation

constraint. The third constraint specifies that the objective is satisfied if we consider the

relative contribution of the weight of each edge, according to the flow of the edge. The last

constraint asks that the preceding constraints are satisfied by a non-trivial (positive) flow.

Hence, when d > 1, the decision problem reduces to solving a LP, and the time complexity

is polynomial [Khachiyan, 1979].

The witness path construction from a feasible solution consists of two steps:

1. Construction of a multi-cycle from the feasible solution; and

2. Construction of an infinite witness path from the multi-cycle.

We describe the two steps in detail. Formally, a multi-cycle is a finite set of cycles with

multiplicityMC = {(C1,m1), (C2,m2), . . . , (Ck,mk)}, such that every Ci is a simple

cycle and mi is its multiplicity. The construction of a multi-cycle from a feasible solution
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x⃗ is as follows. Let E = {e : xe > 0}. By scaling each edge flow xe by a common factor

z, we construct the set X = {(e, z · xe) : e ∈ E}, with X ⊂ ESCC × N+. Then, we start

withMC = ∅ and apply iteratively the following procedure until X = ∅:

(i) find a pair (ei,mi) = argmin(ej ,mj)∈X mj ,

(ii) form a cycle Ci that contains ei and only edges that appear in X (because of

Eq. (10.2), this is always possible),

(iii) add the pair (Ci,mi) in the multi-cycleMC,

(iv) subtract mi from all elements (ej,mj) of X such that the edge ej appears in Ci,

(v) remove from X all (ej, 0) pairs, and repeat.

Since VSCC is an SCC, there is a path Ci ⇝ Cj for all Ci, Cj inMC. Given the multi-cycle

MC, the infinite path that achieves the weight at most ν⃗ is not periodic, but generated

by Algorithm 35. Note that Line 9 is used so that the effects of the intermediate paths

C1 ⇝ C2 and C2 ⇝ C1 diminish by staying in each C1, C2 for increasingly large ℓ.

Algorithm 35: Multi-objective witness
Input: A graph G = (V,E), and a multi-cycleMC = {(C1,m1), (C2,m2), . . . , (Ck,mk)}

Output: An infinite path ρ ∈ MP(wt, ν⃗)

1 ℓ← 1

2 while True do

3 Repeat C1 for ℓ ·m1 times

4 C1 ⇝ C2

5 Repeat C2 for ℓ ·m2 times

6 . . .

7 Repeat Ck for ℓ ·mk times

8 Ck ⇝ C1

9 ℓ← ℓ+ 1

10 end

Algorithm for ratio objectives. We now consider ratio objectives, and present a reduction

to mean-payoff objectives. Consider the weight functions wt1, wt2 and the threshold vector

ν⃗ = p⃗
q⃗

as the component-wise division of vectors p⃗, q⃗ ∈ Nd. We define a new weight function
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wt : E → Zd such that, for all e ∈ E, we have wt(e) = q⃗ · wt1(e)− p⃗ · wt2(e) (where · denotes

component-wise multiplication). It is easy to verify that Ratio(wt1,wt2, ν⃗) = MP(wt, 0⃗), and

thus we solve the ratio objective by solving the new mean-payoff objective, as described above.

Algorithms for conjunctions of objectives. Finally, we consider the conjunction of a safety,

a liveness, and a mean-payoff objective (note that we have already described a reduction of

ratio objectives to mean-payoff objectives). More specifically, given a weight function wt, a

threshold vector ν⃗ ∈ Q, and sets X, Y ⊆ V , we consider the decision problem for the objective

Φ = Safe(X) ∩ Live(Y ) ∩MP(wt, ν⃗). The procedure is as follows:

1. Initially compute GX from G as in the case of a single safety objective.

2. Then, perform an SCC decomposition on GX .

3. For every live SCC VSCC that is reachable from s, solve for the mean-payoff objective in

VSCC. Return yes, if MP(wt, ν⃗) is satisfied in any such VSCC.

If the answer to the decision problem is yes, then the witness consists of a live SCC VSCC, along

with a multi-cycle (resp. a cycle for d = 1). The witness infinite path is constructed as in

Algorithm 35, with the only difference that at the end of each while loop a live node from Y

in the SCC VSCC is additionally visited. The time required for the conjunction of objectives is

dominated by the time required to solve for the mean-payoff objective. Theorem 10.1 summarizes

the results of this section.

Theorem 10.1. Let G = (V,E) be a graph, s ∈ V , X, Y ⊆ V , wt : E → Zd, wt1, wt2:

E → Nd weight functions, and ν⃗ ∈ Qd. Let Φ1 = Safe(X) ∩ Live(Y ) ∩ MP(wt, ν⃗) and

Φ2 = Safe(X) ∩ Live(Y ) ∩ Ratio(wt1,wt2, ν⃗). The decision problem of whether G satisfies the

objective Φ1 (resp. Φ2) from s requires

1. O(n ·m) time, if d = 1.

2. Polynomial time, if d > 1.

If the objective Φ1 (resp. Φ2) is satisfied in G from s, then a finite witness (an SCC and a cycle

for single dimension, and an SCC and a multi-cycle for multiple dimensions) exists and can be

constructed in polynomial time.
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Example 10.3 (Mean-payoff objective with one dimensional weight functions). Consider

the graph in Fig. 10.5. Starting from node 1, the mean-payoff-objective MP(wt, 0⃗) is satisfied by

the multi-cycleMC = {(C1, 1), (C2, 2)}, with C1 = ((1, 2), (2, 1)) and C2 = ((3, 5), (5, 3)). A

solution to the corresponding LP is x(1,2) = x(2,1) =
1
3

and x(3,5) = x(5,3) =
2
3
, and xe = 0 for

all other e ∈ E. Algorithm 35 then generates a witness path for the objective. The objective

is also satisfied in conjunction with Safe({4}) or Live({4}). In the latter case, a witness path

additionally traverses the edges (3, 4) and (4, 5) before transitioning from C1 to C2.

Example 10.4 (Mean-payoff objective with two dimensional weight function). Consider the

same graph of Fig. 10.5, where now instead of a single weight function of two dimensions,

we have two weight functions wt1,wt2 : E → Z, of a single dimension each. The first (resp.

second) weight of each edge is wrt to the weight function wt1 (resp. wt2). The ratio objective

Ratio(wt1,wt2,−4) is satisfied by traversing the cycle C = ((3, 5), (5, 3)) repeatedly.

10.4.3 Reduction of Competitive Analysis to Graphs with Multiple Objec-

tives

We present a formal reduction of the computation of the competitive ratio of an on-line scheduling

algorithm with constraints on job sequences to the multi-objective graph problem. The input

consists of the taskset, a deterministic LTS for the on-line algorithm, a non-deterministic LTS for

the clairvoyant algorithm, and optional deterministic LTSs for the constraints. We first describe

the process of computing the competitive ratio CRJ (A), where J is a set of job sequences only

subject to safety and liveness constraints. We later show how to handle limit-average constraints.

Reduction for Safety and Liveness Constraints. Given the deterministic and non-deterministic

LTS LA and LC with reward functions rA and rC , respectively, and optionally safety and liveness

LTS LS and LL, let L = LA × LC × LS × LL be their synchronous product. Hence, L is a

non-deterministic LTS (S, s1,Σ,Π,∆), and every job sequence σ yields a set of runs R in L,

such that each ρ ∈ R captures the joint behavior ofA and C under σ. Note that for each such ρ the

behavior of A is unchanged, but the behavior of C generally varies due to its non-determinism.

Let G = (V,E) be the multi-graph induced by L, that is, V = S and (M,M ′, j) ∈ E for

all 1 ⩽ j ⩽ i iff there are i transitions (M,T,M ′, P ) ∈ ∆. Let wtA and wtC be the weight

functions that assign to each edge of G the reward that the respective algorithm obtains from the
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corresponding transition in L. Let X be the set of states in G whose LS component is sr, and

Y the set of states in G whose LL component is sa. It follows that for all ν ∈ Q, we have that

CRJ (A) ⩽ ν iff the objective Φν = Safe(X) ∩ Live(Y ) ∩ Ratio(wtA,wtC, ν) is satisfied in G

from the state s1. As the dimension in the ratio objective is one, Case 1 of Theorem 10.1 applies,

and we obtain the following:

Lemma 10.1. Given the product graph G = (V,E) of n nodes and m edges, a rational ν ∈ Q,

and a set of job sequences J admissible for safety and liveness LTSs, determining whether

CRJ (A) ⩽ ν requires O(n ·m) time.

Since 0 ⩽ CRJ (A) ⩽ 1, the problem of determining the competitive ratio reduces to finding

v = sup{ν ∈ Q : Φν is satisfied in G}. Because this value corresponds to the ratio of the

corresponding rewards obtained in a simple cycle in G, it follows that v is the maximum of a

finite set, and can be determined exactly by an adaptive binary search.

Reduction for Limit-Average Constraints. Finally, we turn our attention to limit-average

constraints and the LTS LW . We follow a similar approach as above, but this time including LW

in the synchronous product, i.e., L = LA × LC × LS × LL × LW . Let wtA and wtC be weight

functions that assign to each edge e ∈ E in the corresponding multi-graph a vector of d + 1

weights as follows. In the first dimension, wtA and wtC are defined as before, assigning to each

edge of G the corresponding rewards of A and C. In the remaining d dimensions, wtC is always

1, whereas wtA equals the value of the weight function wt of LW on the corresponding transition.

Let λ⃗ be the threshold vector of LW . It follows that for all ν ∈ Q, we have that CRJ (A) ⩽ ν iff

the objective Φν = Safe(X) ∩ Live(Y ) ∩ Ratio(wtA,wtC, (ν, λ⃗)) is satisfied in G from the state

s that corresponds to the initial state of each LTS, where (ν, λ⃗) is a d+ 1-dimension vector, with

ν in the first dimension, followed by the d-dimension vector λ⃗. As the dimension in the ratio

objective is greater than one, Case 2 of Theorem 10.1 applies, and we obtain the following:

Lemma 10.2. Given the product graph G = (V,E) of n nodes and m edges, a rational ν ∈ Q,

and a set of job sequences J admissible for safety, liveness, and limit average LTSs, determining

whether CRJ (A) ⩽ ν requires polynomial time.

Again, since 0 ⩽ CRJ (A) ⩽ 1, the competitive ratio is determined by an adaptive binary search.

However, this time CRJ (A) is not guaranteed to be realized by a simple cycle (the witness

path in G is not necessarily periodic, see Algorithm 35), and is only approximated within some
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desired error threshold ϵ > 0.

Adaptive Binary Search. We employ an adaptive binary search for the competitive ratio in the

interval [0, 1], as follows. The algorithm maintains an interval [ℓ, r] such that ℓ ⩽ CRJ (A) ⩽ r

at all times, and exploits the nature of the problem for refining the interval as follows: First, if the

current objective ν ∈ [ℓ, r] (typically, ν = (ℓ+ r)/2) is satisfied in G, i.e., Lemma 10.1 answers

“yes” and provides the current minimum cycle C as a witness, the value r is updated to the ratio

ν ′ of the on-line and off-line rewards in C, which is typically less than ν. This allows to reduce

the current interval for the next iteration from [ℓ, r] to [ℓ, ν ′], with ν ′ ⩽ ν, rather than [ℓ, ν] (as a

simple binary search would do). Second, since CRJ (A) corresponds to the ratio of rewards on a

simple cycle in G, if the current objective ν ∈ [ℓ, r] is not satisfied in G, the algorithm assumes

that CRJ (A) = r (i.e, the competitive ratio equals the right endpoint of the current interval), and

tries ν = r in the next iteration. Hence, as opposed to a naive binary search, the adaptive version

has the advantages of (i) returning the exact value of CRJ (A) (rather than an approximation),

and (ii) being faster in practice.

Algorithm 36: AdaptiveBinarySearch
Input: Graph G = (V,E) and weight functions wtA, wtC

Output: minC∈G
wtA(C)
wtC(C)

1 ℓ← 0, r ← 1, ν ← (ℓ+r)
2

2 while True do

3 Solve G for objective Φν and find min simple cycle C

4 ν1 ← wtA(C), ν2 ← wtC(C)

5 if ν = v1
v2

then

6 return ν

7 else

8 if ν > v1
v2

then

9 r ← ν1
ν2

, ν ← (ℓ+r)
2

10 else

11 ℓ← ν, r ← min
(
ν1
ν2
, r
)

, ν ← r

12 end

13 end

14 end
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Remark 10.4. Lemmas 10.1 and 10.2 give polynomial upper bounds for the complexity of

determining the competitive ratio of an online scheduling algorithm A given as a LTS LA. If,

instead, A is given in some succinct form using a description which is polylogarithmic in the

number of states (e.g., as a circuit [Galperin and Wigderson, 1983]), then the corresponding

upper bounds become exponential in the size of the description of A.

10.4.4 Optimized Reduction

In Section 10.4.3, we established a formal reduction from determining the competitive ratio of

an on-line scheduling algorithm in a constrained adversarial environment to solving multiple

objectives on graphs. In this section, we present several optimizations for this reduction that

significantly reduce the size of the generated LTSs.

Clairvoyant LTS reduction. Recall the clairvoyant LTS LC with reward function rC from

Section 10.3, which non-deterministically models a scheduler. For our optimization, we encode

the off-line algorithm as a non-deterministic LTS L′
C = (S ′

C, s
′
C,Σ,∅,∆′

C) with reward function

r′C that lacks the property of being a scheduler, as information about released and scheduled jobs

is lost. However, it preserves the property that, given a job sequence σ, there exists a run ρσC in

LC iff there exists a run ρ̂σC in L′
C with V (ρσA, k) = V (ρ̂σA, k) for all k ∈ N+. That is, there is a

bisimulation between LC and L′
C that preserves rewards.

Intuitively, the clairvoyant algorithm need not partially schedule a job, i.e., it will either discard

it immediately, or schedule it to completion. Hence, in every release of a set of tasks T , L′
C

non-deterministically chooses a subset T ′ ⊆ T to be scheduled, as well as allocates the future

slots for their execution. Once these slots are allocated, L′
C is not allowed to preempt those in

favor of a subsequent job. For the reward, we use r′C =
∑

τi∈T ′ Vi.

The state space S ′
C of L′

C consists of binary strings of length Dmax. For a binary string B ∈ S ′
C ,

we have B[i] = 1 iff the i-th slot in the future is allocated to some released job, and s′C = 0⃗.

Informally, the transition relation ∆′
C is such that, given a current subset T ⊆ Σ of newly

released jobs, there exists a transition δ from B to B′ only if B′ can be obtained from B by

non-deterministically choosing a subset T ′ ⊆ T , and for each task τi ∈ T ′ allocating non-

deterministically Ci free slots in B.
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By definition, |S ′
C| ⩽ 2Dmax . In laxity-restricted tasksets, however, we can obtain an even

tighter bound: Let Lmax = maxτi∈T (Di − Ci) be the maximum laxity in T , and I : S ′
C →

{⊥, 1, . . . , Dmax−1}Lmax+1 denote a function such that I(B) = (i1, . . . , iLmax+1) are the indexes

of the first Lmax+1 zeros in B. That is, ij = k iff B[k] is the j-th zero location in B, and ij = ⊥

if there are less than j free slots in B.

Claim 10.1. The function I is bijective.

Proof. Fix a tuple (i1, . . . , iLmax+1) with ij ∈ {⊥, 1, . . . , Dmax−1}, and let B ∈ S ′
C be any state

such that I(B) = (i1, . . . , iLmax+1). We consider two cases.

1. If iLmax+1 = ⊥, there are less than Lmax + 1 empty slots in B, all uniquely determined by

(i1, . . . , ik), for some k ⩽ Lmax.

2. If iLmax+1 ̸= ⊥, then all ij ̸= ⊥, and thus any job to the right of iLmax+1 would have been

stalled for more than Lmax positions. Hence, all slots to the right of iLmax+1 are free in B,

and B is also unique.

Hence, I(B) always uniquely determines B, as desired.

For x, k ∈ N+, denote by Perm(x, k) = x · (x− 1) . . . (x− k+1) the number of k-permutations

on a set of size x. Claim 10.1 immediately implies the following Lemma 10.3:

Lemma 10.3. Let T be a taskset with maximum deadline Dmax, and Lmax = maxτi∈T (Di − Ci)

be the maximum laxity. Then, |S ′
C| ⩽ min(2Dmax ,Perm(Dmax, Lmax + 1)).

Hence, for zero and small laxity environments [Baruah et al., 1992], as they typically arise in

high-speed network switches [Englert and Westermann, 2007] and in NoCs [Lu and Jantsch,

2007], S ′
C has polynomial size in Dmax. This affect the parameter n in Lemmas 10.1 and 10.2.

Clairvoyant LTS generation. We now turn our attention to efficiently generating the clairvoyant

LTS L′
C as described in the previous paragraph. There is non-determinism in two steps: Both

in choosing the subset T ′ ⊆ T of the currently released tasks for execution, and in allocating

slots for executing all tasks in T ′. Given a current state B and T , this non-determinism leads

to several identical transitions δ to a state B′. We have developed a recursive algorithm called

ClairvoyantSuccessor (Algorithm 37) that generates each such transition δ exactly once.
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Algorithm 37: ClairvoyantSuccessor
Input: A set T ⊆ T , state B, index 1 ⩽ k ⩽ Dmax

Output: A set B of successor states of B

1 if T = ∅ then return {B};

2 τ ← argminτi∈T Di, C ← execution time of τ

3 T ′ ← T \ {τ}

// Case 1: τ is not scheduled

4 B ← ClairvoyantSuccessor(T ′, B, k)

// Case 2: τ is scheduled

5 F ← set of free slots in B greater than k

6 foreach F ⊆ F with |F | = C do

7 B′ ← Allocate F in B

8 k′ ← rightmost slot in F

9 B′ ← ClairvoyantSuccessor(T ′, B′, k′)

// Keep only non-redundant states

10 foreach B′′ ∈ B′ do

11 if B′′[1] = 1 and knapsack(B′′, T ) then

12 B ← B ∪ {B′′}

13 end

14 end

15 end

16 return B

The intuition behind ClairvoyantSuccessor is as follows: It is well-known that the earliest deadline

first (EDF) policy is optimal for scheduling job sequences where every released task can be

completed [Dertouzos, 1974]. By construction, given a job sequence σ1, L′
C non-deterministically

chooses a job sequence σ2, such that for all ℓ, we have σℓ
2 ⊆ σℓ

1, and all jobs in σ2 are scheduled

to completion by L′
C . Therefore, it suffices to consider a transition relation ∆′

C that allows at least

all possible choices that admit a feasible EDF schedule on every possible σ2, for any generated

job sequence σ1.

In more detail, ClairvoyantSuccessor is called with a current state B, a subset of released tasks

T and an index k, and returns the set B of all possible successors of B that schedule a subset

T ′ ⊆ T , where every job of T ′ is executed later than k slots in the future. This is done by
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extracting from T the task τ with the earliest deadline, and proceeding as follows: The set B is

obtained by constructing a state B′ that considers all the possible ways to schedule τ to the right

of k (including the possibility of not scheduling τ at all), and recursively finding all the ways to

schedule T \ {τ} in B′, to the right of the rightmost slot allocated for task τ .

Finally, we exploit the following two observations to further reduce the state space of L′
C . First,

we note that as long as there are some unfinished jobs in the state of L′
C (i.e., at least one bit of B

is one), the clairvoyant algorithm gains no benefit by not executing any job in the current slot.

Hence, besides the zero state 0⃗, every state B must have B[1] = 1. In most cases, this restriction

reduces the state space by at least 50%.

Second, observe that for every two scheduled jobs J and J ′, the clairvoyant scheduler will never

have to preempt J for J ′ and vice versa. Given a state B, we call a contiguous segment of zeros

in B which is surrounded by ones a gap. We call a gap between positions [i1, i2] of B admissible

if there exists a multiset X of tasks from T such that
∑

τi∈X Ci = i2 − i1 + 1. Observe that

if state B contains a gap which is not admissible, then the clairvoyant scheduler produces a

schedule in which either

1. no job is scheduled in some round, while there is some already released job J which will

be scheduled in the future, or

2. two jobs J and J ′ are such that each one preempts the other.

It is straightforward that in both cases, the clairvoyant scheduler can obtain the same utility by

producing another schedule in which none of the above cases occur. Hence, a state can be safely

discarded if it contains a non-admissible gap. This reduces to solving a knapsack problem [Karp,

1972], where the size of the knapsack is the length of the gap, and the set of items is the whole

taskset T (with multiplicities). We note that the problem has to be solved on identical inputs

a large number of times, and techniques such as memoization are employed to avoid multiple

evaluations of the same input.

These two improvements were found to reduce the state space by a factor up to 90% in all

examined cases (see Section 10.4.5 and Table 10.5). In fact, despite the non-determinism, in all

reported cases the generation of LC was done in less than a second.

On-line LTS reduction. Typically, simple on-line scheduling algorithms do “lazy dropping”
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of unsuccessful jobs, where such a job is dropped only when its deadline passes. An obvious

improvement for reducing the size of the state space of the LTS is to implement some early

dropping: Store only those jobs that could be scheduled, at least partially, under some sequence

of future task releases. We do so by first creating the LTS naively, and then iterating through its

states. For each state s and job Ji,j in s with relative deadline Di, we perform a depth-limited

search originating in s for Di steps, looking for a state s′ reached by a transition that schedules

Ji,j . If no such state is found, we merge state s to s′′, where s′′ is identical to s without job Ji,j .

10.4.5 Experimental Results

We have implemented a prototype of our automated competitive ratio analysis framework, and

applied it in a comparative case study.

Our implementation has been done in Python 2.7 and C, and uses the lp_solve [Berkelaar et al.]

package for linear programming solutions. All experiments were run on a standard desktop

computer with a 3.2GHz CPU and 4GB of RAM running Debian Linux.

In our case study, five well-known scheduling policies, namely, EDF (Earliest Deadline First),

LLF (Least Laxity First), SRT (Shortest Remaining Time), SP (Static Priorities), and FIFO

(First-in First-out), as well as some more elaborate algorithms that provide non-trivial perfor-

mance guarantees, in particular, DSTAR [Baruah et al., 1991], TD1 [Baruah et al., 1992], and

DOVER [Koren and Shasha, 1995], were analyzed under a variety of tasksets (with and without

additional constraints on the adversary). In addition, for TD1, we constructed a series of task sets

according to the recurrence relation given in [Baruah et al., 1992], which confirms its worst-case

competitive ratio of 1/4. All our on-line scheduler implementations use the same tie-breaking

rules, namely, (i) favor lower-indexed tasks (in T ) over higher-indexed ones, and (ii) favor

smaller deadlines over larger ones (and (i) has higher precedence over (ii)).

Varying tasksets without constraints. The algorithm DOVER was proved in [Koren and

Shasha, 1995] to have optimal competitive factor, i.e., optimal competitive ratio under the

worst-case taskset. However, our experiments reveal that this performance guarantee is not

universal, in the sense that DOVER is outperformed by other schedulers for specific tasksets.

Interestingly, this observation applies to all on-line algorithms examined: As shown in Fig. 10.6,
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Figure 10.6: The competitive ratio of the examined algorithms in various tasksets under no

constraints. Every examined algorithm is optimal in some taskset, among all others.

A1 A2 A3 A4 A5 A6 A7

(k = 6) (k = 5) (k = 4) (k = 3) (k = 2) (k = 4) (k = 5)

τ1 τ2 τ3 τ4 τ1 τ2 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

Ci 1 4 1 3 2 2 2 1 1 1 2 1 2 1 1 2 6 1 1 2 1

Di 2 6 3 4 3 2 2 5 5 2 3 6 3 1 3 2 6 1 5 2 1

Vi 3 2 3 3 5 1 1 2 2 3 2 1 9 6 3 1 10 2 5 4 1

Table 10.1: The tasksets used to generate Fig. 10.6.

even without constraints on the adversary, there are tasksets in which every chosen scheduling

algorithm outperforms all others, by achieving the highest competitive ratio for the particular

taskset. This sensitivity of the optimally performing on-line algorithm on the given taskset makes

our automated analysis framework a very interesting tool for the application designer.

Table 10.1 lists the tasksets A1-A7 used for Fig. 10.6. The task indices, hence their order in

Table 10.1, reflect their static priorities (with τ1 having highest priority); they are used by the SP

scheduler, as well as for tie breaking by other schedulers. Along with each taskset, its importance

ratio k =
maxτi∈T {Vi/Ci}
minτi∈T {Vi/Ci} is shown [Baruah et al., 1992].

Fixed taskset with varying constraints. We also analyzed fixed tasksets under various con-

straints (such as sporadicity or workload restrictions) for admissible job sequences. Fig. 10.7

shows some experimental results for workload safety constraints, which again reveal that, de-

pending on particular workload constraints, we can have different optimal schedulers. The same

was observed for limit-average constraints: As Table 10.2 shows, the optimal scheduler can vary
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Figure 10.7: Restricting the absolute workload generated by the adversary typically increases

the competitive ratio, and can vary the optimal scheduler. On the left, the performance of each

scheduler is evaluated without restrictions: FIFO, SP behave best. When restricting the adversary

to at most 2 units of workload in the last 3 rounds, FIFO and SP become suboptimal, and are

outperformed by other schedulers.

1.5 1 0.8 0.6 0.4 0.3 0.1 0.078 0.05

FIFO ✓ ✓ ✓ ✓ ✓ ✓

SP ✓ ✓ ✓

SRT ✓ ✓ ✓ ✓ ✓ ✓

Table 10.2: Columns show the mean workload restriction. The check-marks indicate that the

corresponding scheduler is optimal for that mean workload restriction, among the six schedulers

we examined. We see that the optimal scheduler can vary as the restrictions are tighter, and in a

non-monotonic way. LLF, EDF, DSTAR and DOVER were not optimal in any case and hence

not mentioned.

highly and non-monotonically with stronger limit-average workload restrictions. The tasksets

for both experiments are shown in Table 10.3.

Competitive Ratio of TD1. We also analyzed the performance of the on-line scheduler TD1

for zero laxity tasksets with uniform value-density k = 1 (i.e., Ci = Di = Vi for each task

τi). Following [Baruah et al., 1992], we constructed a series of tasksets parametrized by some

positive real η < 4, which guarantee that the competitive ratio of every on-line scheduler is upper

bounded by 1
η
. Given η, each taskset consists of tasks τi such that Ci is given by the following

recurrence, as long as Ci+1 > Ci.
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τ1 τ2 τ3

Ci 1 1 1

Di 1 2 1

Vi 3 3 1

τ1 τ2 τ3

Ci 2 5 5

Di 7 5 6

Vi 3 2 1

Table 10.3: Taskset of Fig. 10.7 (left) and Table 10.2 (right).

Taskset η Taskset Comp. Ratio

C1 2 {1, 1} 1

C2 3 {1, 2, 3} 1
2

C3 3.1 {1, 3, 7, 13, 19} 7
25

C4 3.2 {1, 3, 7, 13, 20, 23} 1
4

C5 3.3 {1, 3, 7, 14, 24, 33} 1
4

C6 3.4 {1, 3, 7, 14, 24, 34} 1
4

Table 10.4: Competitive ratio of TD1.

(i) C0 = 1 (ii) Ci+1 = η · Ci −
i∑

j=0

Cj

In [Baruah et al., 1992], TD1 was shown to have competitive factor 1
4
, and hence a competitive

ratio that approaches 1
4

from above, as η → 4 in the above series of tasksets. Table 10.4 shows

the competitive ratio of TD1 in our constructed series of tasksets. Each taskset is represented as

a set {Ci : 1 ⩽ i ⩽ n}, where each Ci is given by the above recurrence, rounded up to the next

integer. We indeed see that the competitive ratio drops until it stabilizes to 1
4
. Note that, thanks to

our optimizations, the zero-laxity restriction allowed us to process tasksets where Dmax is much

higher than for the tasksets reported in Table 10.5: The results of Table 10.4 were produced in

less than a minute overall.

Running Times. Table 10.5 summarizes some key parameters of our various tasksets, and gives

some statistical data on the observed running times in our respective experiments. Even though

the considered tasksets are small, the very short running times of our prototype implementation

reveal the principal feasibility of our approach. We believe that further application-specific
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Taskset N Dmax

Size (nodes) Time (s)

Clairv. Product Mean Max

B01 2 7 19 823 0.04 0.05

B02 2 8 26 1997 0.39 0.58

B03 2 9 34 4918 10.02 15.21

B04 3 7 19 1064 0.14 0.40

B05 3 8 26 1653 0.66 2.05

B06 3 9 34 7705 51.04 136.62

B07 4 7 19 1711 2.13 6.34

B08 4 8 26 3707 13.88 34.12

B09 4 9 44 10040 131.83 311.94

B10 5 7 19 2195 5.73 16.42

B11 5 8 32 9105 142.55 364.92

B12 5 9 44 16817 558.04 1342.59

Table 10.5: Scalability of our approach for tasksets of various sizes N and Dmax. For each

taskset, the size of the state space of the clairvoyant scheduler is shown, along with the mean size

of the product LTS, and the mean and maximum time to solve one instance of the corresponding

ratio objective.

optimizations, augmented by abstraction and symmetry reduction techniques, will allow to scale

to larger applications.

10.5 Competitive Synthesis of On-line Scheduling Algo-

rithms

In this section, we show how the powerful framework of graph games [Martin, 1975; Shapley,

1953] can be utilized for the synthesis of optimal real-time scheduling algorithms. As opposed

to the the analysis problem considered in the previous sections (which can be viewed as a

1-player game of the adversary against a given scheduling algorithm), we now have to consider a

two-player game between the (sought) optimal on-line algorithm (Player 1) and the adversary

(Player 2). Our presentation is organized as follows:
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• In Section 10.5.1, we introduce a suitable two-player partial-information game with mean-

payoff and ratio objectives. Player 1 will represent the online algorithm, whereas Player 2

will represent both the adversary (which chooses the job sequence) and the clairvoyant

algorithm (which knows the job sequence in advance). We use a partial-information setting

to model that Player 1 is oblivious to the scheduling choices of Player 2, but Player 2

knows the scheduling choices of Player 1 for deciding which future jobs to release. The

mean-payoff and ratio objectives model directly the worst-case utility and competitive

ratio problems, respectively.

• In Section 10.5.2, we establish that the relevant decision problems for our game are

NP-complete in the size of the game graph.

• In Section 10.5.3, we study the decision problems relevant for two particular synthesis

questions: In synthesis for worst-case average utility, the goal is to automatically construct

an on-line scheduling algorithm with the largest possible worst-case average utility for a

given taskset. In competitive synthesis, we construct an on-line scheduling algorithm with

the largest possible competitive ratio for the given taskset. The complexity results for our

graph game reveal that the former problem is in NP∩CONP, whereas the latter is in NP.

These complexities are wrt the size of the constructed algorithm, represented explicitly

as a labeled transition system. As a function of the input taskset T given in binary, all

polynomial upper bounds become exponential upper bounds in the worst case.

10.5.1 Partial-Information Mean-Payoff and Ratio Games

We first introduce a two-player partial-information game on graphs with mean-payoff and ratio

objectives.

Notation on Graph Games. A partial-observation game (or simply a game) is a tuple G =

⟨S,Σ1,Σ2, δ,OS,OΣ⟩ with the following components:

State space: The set S is a finite set of states.

Actions: Σi (i = 1, 2) is a finite set of actions for Player i.
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Transition function: Given the current state s ∈ S, an action α1 ∈ Σ1 for Player 1, and an

action α2 ∈ Σ2 for Player 2, the transition function δ : S × Σ1 × Σ2 → S gives the next

(or successor) state s′ = δ(s, α1, α2). A shorter form to denote a transition is to write the

tuple (s, α2, α1, s
′); note that α2 is listed before α1 to stress that fact that Player 2 chooses

its action before Player 1.

Observations: The set OS ⊆ 2S is a finite set of observations for Player 1 that partition the state

space S. This partition uniquely defines a function obsS : S → OS , which maps each state

to its observation obsS(s) in a way that ensures s ∈ obsS(s) for all s ∈ S. In other words,

the observation partitions the state space according to equivalence classes. Similarly, OΣ

is a finite set of observations for Player 1 that partitions the action set Σ2, and analogously

defines the function obsΣ. Intuitively, Player 1 will have partial observation, and can only

obtain the current observation of the state (not the precise state but only the equivalence

class the state belongs to) and current observation of the action of Player 2 (but not the

precise action of Player 2) to make her choice of action.

Plays. In a game, in each turn, first Player 2 chooses an action, then Player 1 chooses an

action, and given the current state and the joint actions, we obtain the next state according to the

transition function δ.

A play in G is an infinite sequence of states and actions P = s1, α1
2, α

1
1, s2, α2

2, α
2
1, s3, α3

2, α
3
1,

s4 . . . such that, for all j ⩾ 1, we have δ(sj, αj
1, α

j
2) = sj+1. The prefix up to sn of the play P is

denoted by P(n) and corresponds to the starting state of the n-th turn. The set of plays in G is

denoted by P∞, and the set of corresponding finite prefixes is denoted by Prefs(P∞).

Strategies. A strategy for a player is a recipe that specifies how to extend finite prefixes of

plays. We will consider memoryless deterministic strategies for Player 1 (where its next action

depends only on the current state, but not on the entire history) and general history-dependent

deterministic strategies for Player 2. A strategy for Player 1 is a function π : OS×OΣ → Σ1 that,

given the current observation of the state and the current observation on the action of Player 2,

selects the next action. A strategy for Player 2 is a function σ : Prefs(P∞)→ Σ2 that, given the

current prefix of the play, chooses an action. Observe that the strategies for Player 1 are both

observation-based and memoryless; i.e., depend only on the current observations (rather than

the whole history), whereas the strategies for Player 2 depend on the history. A memoryless
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strategy for Player 2 only depends on the last state of a prefix. We denote by ΠM
G , ΣG , ΣM

G the

set of all observation-based memoryless Player 1 strategies, the set of all Player 2 strategies, and

the set of all memoryless Player 2 strategies, respectively. In sequel, when we write “strategy

for Player 1”, we consider only observation-based memoryless strategies. Given a strategy

π and a strategy σ for Player 1 and Player 2, and an initial state s1, we obtain a unique play

P(s1, π, σ) = s1, α1
2, α

1
1, s

2, α2
2, α

2
1, s

3, . . . such that, for all n ⩾ 1, we have σ(P(n)) = αn
2 and

π(obsS(s
n), obsΣ(α

n
2 )) = αn

1 .

Objectives. Recall that, for the graphs with multiple objectives from Section 2.3.1, an objective

is a set of paths. Here we extend this notion to games: An objective of a game G is a set of plays

that satisfy some desired properties. For the sake of completeness, we present here the relevant

definitions for mean payoff and ratio objectives with 1-dimensional weight functions.

For mean-payoff objectives, we will consider a reward function wt : S × Σ1 × Σ2 × S → Z

that maps every transition to an integer reward. The reward function naturally extends to

plays: For k ⩾ 1, the sum of the rewards in the prefix P(k + 1) is defined as wt(P, k) =∑k
i=1 wt(s

i, αi
2, α

i
1, s

′i). The mean-payoff of a play P is then

MP(wt,P) = lim inf
k→∞

1

k
· wt(P, k).

In the case of ratio objectives, we will consider two reward functions wt1 : S×Σ1×Σ2×S → N

and wt2 : S × Σ1 × Σ2 × S → N that map every transition to a non-negative valued reward.

Using the same extension of reward functions to plays as before, the ratio of a play P is defined

as:

Ratio(wt1,wt2,P) = lim inf
k→∞

1⃗+ wt1(P, k)

1⃗+ wt2(P, k)
.

Decision problems. Analogous to Section 2.3.1, we define the relevant decision problems

on games. Formally, given a game G , a starting state s1, reward functions wt,wt1,wt2 and a

threshold ν ∈ N, the decision problem for the mean payoff objective is to decide whether

sup
π∈ΠM

G

inf
σ∈ΣG

MP(wt,P(s1, π, σ)) ⩾ ν.

Similarly, the decision problem for the ratio objective is to decide whether

sup
π∈ΠM

G

inf
σ∈ΣG

Ratio(wt1,wt2,P(s1, π, σ)) ⩾ ν.
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Remark 10.5. Note that the decision problems of the graph game problem are defined over the

supπ∈ΠM
G

, taking all possible memoryless strategies into account. This corresponds to all possible

on-line scheduling strategies, whereas the multi-graph problem arising in the competitive analysis

problem considered in the previous sections explicitly used the fixed deterministic strategy for

the on-line scheduler only.

Perfect-information Games. Games of complete-observation (or perfect-information games)

are a special case of partial-observation games where OS = {{s} | s ∈ S} and OΣ = {{α2} |

α2 ∈ Σ2}, i.e., every individual state and action is fully visible to Player 1, and thus she has

perfect information. For perfect-information games, for the sake of simplicity, we will omit the

corresponding observation sets from the description of the game. The following theorem for

perfect-information games with mean-payoff objectives follows from the results of [Ehrenfeucht

and Mycielski, 1979; Zwick and Paterson, 1996; Brim et al., 2011; Karp, 1978].

Theorem 10.2 (Complexity of perfect-information mean-payoff games [Ehrenfeucht and

Mycielski, 1979; Zwick and Paterson, 1996; Brim et al., 2011; Karp, 1978]). The following

assertions hold for perfect-information games with initial state s1 and reward function wt :

S × Σ1 × Σ2 × S → Z:

1. (Determinacy). We have

supπ∈ΠM
G
infσ∈ΣG

MP(wt,P(s1, π, σ))

= infσ∈ΣG
supπ∈ΠM

G
MP(,wt,P(s1, π, σ))

= infσ∈ΣM
G
supπ∈ΠM

G
MP(wt,P(s1, π, σ)).

2. Whether supπ∈ΠM
G
infσ∈ΣG

MP(wt,P(s1, π, σ)) ⩾ ν can be decided in NP ∩ CONP, for

a rational threshold ν.

3. The computation of the optimal value v∗ = supπ∈ΠM
G
infσ∈ΣG

MP(wt,P(s1, π, σ)) and

an optimal memoryless strategy π∗ ∈ ΠM
G such that v∗ = infσ∈ΣG

MP(wt,P(s1, π∗, σ))

can be done in time O(n ·m ·W ), where n is the number of states, m is the number of

transitions, and W is the maximum value of all the rewards (i.e., the algorithm runs in

pseudo-polynomial time, and if the maximum value W of rewards is polynomial in the size

of the game, then the algorithm is polynomial).
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Sketch of the Algorithm. The complexity of Item 3 of Theorem 10.2 is obtained in [Brim et al.,

2011]. Here we outline a simple algorithm for solving the same problem in time O(n4 ·m ·

log(n/m) ·W ), as found in [Zwick and Paterson, 1996]. The algorithm operates in two steps.

First, we compute for every node u ∈ S the maximum mean payoff v(u) that Player 1 can ensure

in any play that starts from u. This is achieved by the standard value-iteration procedure executed

for Θ(n2 ·W ) iterations. Hence, the time required for this step is O(n2 ·m ·W ). Note that at this

point v(s1) gives the mean payoff achieved by an optimal strategy π∗ ∈ ΠM
G , but not the strategy

itself. Since an optimal memoryless strategy is guaranteed to exist, this strategy can be computed

by a binary search on the actions of Player 1. Given a node u ∈ S, we denote by Σ1(u) the set of

actions available to Player 1 on u. In the second step, we iteratively pick a node u ∈ S which

has more than one available actions for Player 1, and a set X ⊂ Σ1(u) which contains half of the

actions of Player 1 on u. We let G ′ be the modified game where the actions for Player 1 on node

u is the set X , and recompute the value v′(u) in G ′. If v′(u) = v(u), we repeat the process on

G ′. Otherwise, we construct a new game G ′′ which is identical to G , but such that the available

actions for Player 1 on node u is the set Σ1(u) \X . We repeat the process on G ′′.

10.5.2 Complexity Results

In this section, we establish the complexity of the decision problems arising in partial-observation

games with mean-payoff and ratio objectives. In particular, we will show that for partial-

observation games with memoryless strategies for Player 1 all the decision problems are NP-

complete.

Transformation. We start with a simple transformation that will allow us to technically simplify

our proof. In our definition of games, every action was available for the players in every state

for simplicity. We will now consider restricted games where, in certain states, some actions

are not allowed for a player. The transformation of such restricted games to games where all

actions are allowed is as follows: We add two absorbing dummy states (with only a self-loop),

one for Player 1 and the other for Player 2, and assign rewards in a way such that the objectives

are violated for the respective player. For example, for mean-payoff objectives with threshold

ν > 0, we assign reward 0 for the only out-going (self-loop) transition of the Player 1 dummy

state, and a reward strictly greater than ν for the self-loop of the Player 2 dummy state; in the
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case of ratio-objectives we assign the reward pairs similarly. Given a state s, if Player 1 plays an

action that is not allowed at s, we go to the dummy Player 1 state; and if Player 2 plays an action

that is not allowed, we go to the Player 2 dummy state. Obviously, this is a simple linear time

transformation. Hence, for technical convenience, we can assume in the sequel that different

states have different sets of available actions for the players. We first start with the hardness

result.

Lemma 10.4. The decision problems for partial-observation games with mean-payoff objectives

and ratio objectives, i.e., whether supπ∈ΠM
G
infσ∈ΣG

MP(wt,P(s1, π, σ)) ⩾ ν (respectively

supπ∈ΠM
G
infσ∈ΣG

Ratio(wt1,wt2,P(s1, π, σ)) ⩾ ν), are NP-hard in the strong sense.

Proof. We present a reduction from the 3-SAT problem, which is NP-hard in the strong sense [Pa-

padimitriou, 1993]. Let Ψ be a 3-SAT formula over n variables x1, x2, . . . , xn in conjunctive

normal form, with m clauses c1, c2, . . . , cm consisting of a disjunction of 3 literals (a variable xk

or its negation xk) each. We will construct a game graph GΨ as follows:

State space: S = {sinit} ∪ {si,j | 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ 3} ∪ {dead}; i.e., there is an initial state

sinit, a dead state dead, and there is a state si,j for every clause ci and literal j of ci.

Actions: The set of actions applicable for Player 1 is {true, false,⊥}, the possible actions for

Player 2 are {1, 2, . . . ,m} ∪ {⊥}.

Transitions: In the initial state sinit, Player 1 has only one action ⊥ available, Player 2 has

actions {1, 2, . . . ,m} available, and given action 1 ⩽ i ⩽ m, the next state is si,1. In

all other states, Player 2 has only one action ⊥ available. In states si,j , Player 1 has two

actions available, namely, true and false. The transitions are as follows:

• If the action of Player 1 is true in si,j , then (i) if the j-th literal in ci is xk, then we

have a transition back to the initial state; and (ii) if the j-th literal in ci is xk (negation

of xk), then we have a transition to si,j+1 if j ∈ {1, 2}, and if j = 3, we have a

transition to dead.

• If the action of Player 1 is false in si,j , then (i) if the j-th literal in ci is xk (negation

of xk), then we have a transition back to the initial state; and (ii) if the j-th literal

in ci is xk, then we have a transition to si,j+1 if j ∈ {1, 2}, and if j = 3, we have a

transition to dead.
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Ψ = (x3 ∨ x4 ∨ x5)
c1

∧ · · · ∧ (x1 ∨ x4 ∨ x6)
cm

Player 1

Player 2

...

c1

cm

obsS(·) = 4 sinit

x3x4x5

x1x4x6

dead

true

false

false

true

false

true

true

false

true

false

false

true

Figure 10.8: Illustration of the construction of a game from a 3-SAT formula.

In state dead both players have only one available action ⊥, and dead is a state with only a

self-loop (transition only to itself).

Observations: First, Player 1 does not observe the actions of Player 2 (i.e., Player 1 does

not know which action is played by Player 2). The observation mapping for the state

space for Player 1 is as follows: The set of observations is {0, 1, . . . , n} and we have

obsS(sinit) = obsS(dead) = 0 and obsS(si,j) = k if the j-th variable of ci is either xk or

its negation xk, i.e., the observation for Player 1 corresponds to the variables.

A pictorial description is shown in Fig. 10.8. The intuition for the above construction is as follows:

Player 2 chooses a clause from the initial state sinit, and an observation-based memoryless strategy

for Player 1 corresponds to a non-conflicting assignment to the variables. Note that Player 1

strategies are observation-based memoryless; hence, for every observation (i.e., a variable), it

chooses a unique action (i.e., an assignment) and thus non-conflicting assignments are ensured.

We consider GΨ with reward functions wt,wt1,wt2 as follows: wt2 assigns reward 1 to all

transitions; wt and wt1 assigns reward 1 to all transitions other than the self-loop at state dead,

which is assigned reward 0. We ask the decision questions with ν = 1. Observe that the answer

to the decision problems for both mean-payoff and ratio objectives is “Yes” iff the state dead can

be avoided by Player 1 (because if dead is reached, then the game stays in dead forever, violating

both the mean-payoff as well as the ratio objective). We now present the two directions of the

proof.
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Satisfiable implies dead is not reached. We show that if Ψ is satisfiable, then Player 1 has

an observation-based memoryless strategy π∗ to ensure that dead is never reached. Consider

a satisfying assignment A for Ψ, then the strategy π∗ for Player 1 is as follows: Given an

observation k, if A assigns true to variable xk, then the strategy π∗ chooses action true for

observation k, otherwise it chooses action false. Since the assignment A satisfies all clauses,

it follows that for every 1 ⩽ i ⩽ m, there exists si,j such that the strategy π∗ for Player 1

ensures that the transition to sinit is chosen. Hence the state dead is never reached, and both the

mean-payoff and ratio objectives are satisfied.

If dead is not reached, then Ψ is satisfiable. Consider an observation-based memoryless

strategy π∗ for Player 1 that ensures that dead is never reached. From the strategy π∗ we

obtain an assignment A as follows: if for observation k, the strategy π∗ chooses true, then the

assignment A chooses true for variable xk, otherwise it chooses false. Since π∗ ensures that dead

is not reached, it means for every 1 ⩽ i ⩽ m, that there exists si,j such that the transition to sinit

is chosen (which ensures that ci is satisfied by A). Thus since π∗ ensures dead is not reached, the

assignment A is a satisfying assignment for Ψ.

Thus, it follows that the answers to the decision problems are “Yes” iff Ψ is satisfiable, and this

establishes the NP-hardness result.

The NP upper bounds. We now present the NP upper bounds for our decision problems. Recall

that according to our definitions of strategies, the polynomial witness for the decision problem is

a memoryless strategy (i.e., if the answer to the decision problem is “Yes”, then there is a witness

memoryless strategy π for Player 1). Such a strategy π can be guessed in polynomial time. Once

the memoryless strategy is guessed and fixed, we need to show that there is a polynomial-time

verification procedure:

Mean-payoff objectives: Once the memoryless strategy for Player 1 is fixed, the game problem

reduces to a 1-player game where there is only Player 2. The verification problem hence

reduces to the path problem in directed graphs analyzed and shown to be solvable in

polynomial time by Theorem 10.1 in Section 10.4.1.

Ratio objectives: Again, once the memoryless strategy for Player 1 is fixed, the game problem

reduces to a decision problem on directed graphs. The same reduction from ratio objectives
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to mean-payoff objectives introduced in Section 2.3.1 can be applied. Theorem 10.1 hence

gives a polynomial-time verification algorithm for our ratio objectives.

We summarize the result in the following theorem.

Theorem 10.3. The decision problems for partial-observation games with mean-payoff objec-

tives and ratio objectives, i.e., whether supπ∈ΠM
G
infσ∈ΣG

MP(wt,P(s1, π, σ)) ⩾ ν respectively

supπ∈ΠM
G
infσ∈ΣG

Ratio(wt1,wt2,P(s1, π, σ)) ⩾ ν, are NP-complete.

Remark 10.6. The NP-completeness of Theorem 10.3 also holds with the following extensions

on objectives:

1. The reward functions wt, wt1, wt2 map to d-dimensional vectors of rewards, and the

decision problems are with respect to a threshold vector ν⃗.

2. Player 2 must also satisfy a conjunction of Safe(X) and Live(Y ) objectives (see Sec-

tion 2.3.1).

The result holds, as the NP-hardness follows from the proof of Theorem 10.3 by taking d = 1,

X = ∅ and Y = S. The NP-membership follows similarly to that used in the proof of

Theorem 10.3, by guessing a memoryless strategy for Player 1. The problem reduces to satisfying

a conjunction of objectives in a multi-graph here, and Item 2 of Theorem 10.1 provides the

required polynomial time bound.

10.5.3 Reduction of Competitive Synthesis to a Graph Game

We now turn our attention to competitive synthesis problems in the real-time scheduling context.

More specifically, given a taskset T , we consider two particular synthesis questions:

1. In synthesis for the worst-case average utility, the goal is to construct an on-line scheduling

algorithm that has the largest worst-case average utility possible. Recall the notation

V (ρσA, k) for the cumulative utility in the first k time slots of an on-line scheduling

algorithm A with schedule ρσA under the released job sequence σ. Formally, the task is to

construct an on-line scheduling algorithmA such that, for any online scheduling algorithm

A′,

inf
σ∈J

lim inf
k→∞

1

k
V (ρσA, k) ⩾ inf

σ∈J
lim inf
k→∞

1

k
V (ρσA′ , k),
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where J is the set of admissible job sequences.

2. In competitive synthesis, the task is to construct an on-line scheduling algorithm with the

largest possible competitive ratio. That is, we are looking for an on-line algorithm A

such that, for any on-line algorithm A′, we have CRJ (A) ⩾ CRJ (A′), where CRJ (A)

is the competitive ratio of algorithm A under the set J of admissible job sequences (see

Eq. (10.1)) in Section 10.2 for the definition of CRJ ).

As in the competitive analysis case of Section 10.4, it suffices to consider only on-line scheduling

algorithms encoded as LTSs (see Remark 10.1). In the following, we consider that J = Σω,

that is, there are no restrictions on the released job sequences. In Remark 10.7 below, we

outline how the results can be extended to additional safety, liveness, and limit-average automata

constraining J (see also Section 10.3.2). Finally, we conclude with a note on the worst-case

utility ratio, namely the worst-case limiting average utility of the best online algorithm over the

worst-case limiting average utility achievable by a clairvoyant algorithm (for possibly different

job sequences).

Synthesis for worst-case average utility. Given a taskset, we can compute the worst-case

average utility that can be achieved by any on-line scheduling algorithm. For this, we construct a

non-deterministic finite-state LTS LG = (SG , sG ,Σ,Π,∆G ) with an associated reward function

rG that can simulate all possible on-line algorithms. Such an LTS has already been introduced in

Section 10.3 for the clairvoyant algorithm. Note that the latter implements memoryless strategies,

as all required history information is encoded in the state.

We can interpret such a non-deterministic LTS as a perfect-information graph game G =

⟨SG ,Σ1,Σ2, δ⟩, where Σ1 (the actions of Player 1) correspond to the output actions Π in LG ,

and Σ2 (the actions of Player 2) correspond to the input actions Σ in LG . That is, Player 2 (the

adversary) chooses the released tasks, while Player 1 chooses the actual transitions in δ actually

taken.

Thus, we indeed have a perfect-information game, and every memoryless strategy for Player 1

corresponds to a scheduling algorithm and vice-versa (i.e., every scheduling algorithm is a

memoryless strategy of Player 1 in the game G ). The weight function w for the mean-payoff

objective of G is identical to the reward function rG , and the start state s1 is the initial state sG of

LG . The worst-case utility of a given on-line algorithm, corresponding to a memoryless strategy
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π ∈ ΠM
G , is hence

inf
σ∈ΣG

MP(wt,P(s1, π, σ))

and the worst-case utility of the optimal on-line algorithm is given by

sup
π∈ΠM

G

inf
σ∈ΣG

MP(wt,P(s1, π, σ)). (10.3)

Using the results of Theorem 10.2, we obtain the following theorem.

Theorem 10.4. The following assertions hold:

1. Whether there exists an on-line algorithm with worst-case average utility at least ν can

be decided in NP ∩ CONP in general; and if Vmax is bounded by the size of the non-

deterministic LTS, then the decision problem can be solved in polynomial time.

2. An on-line algorithm with optimal worst-case average utility can be constructed in time

O(|SG | ·m · Vmax), where |SG | (resp. m) is the number of states (resp. transitions) of the

non-deterministic LTS LG .

Competitive Synthesis. Given a taskset and a rational ν ∈ Q, the competitive synthesis problem

asks to determine whether there exists an on-line scheduling algorithm that achieves a competitive

ratio of at least ν, and to determine the optimal competitive ratio ν∗. Recall the non-deterministic

LTS LG = (SG , sG ,Σ,Π,∆G ) and reward function rG in the synthesis for the worst-case average

utility. For solving the competitive synthesis problem, we construct a partial-observation game

GCR as follows: GCR = ⟨SG × SG ,Σ1,Σ2 × Σ1, δ,OS,OΣ⟩, where Σ1 = Π and Σ2 = Σ.

Intuitively, we construct a product game with two components, where Player 1 only observes the

first component (the on-line algorithm) and makes the choice of the transition α1 ∈ Σ1 there;

Player 2 is in charge of choosing the input α2 ∈ Σ2 and also the transition α′
1 ∈ Σ1 in the second

component (the clairvoyant algorithm). However, due to partial observation, Player 1 does not

observe the choice of the transitions of the clairvoyant algorithm.

Formally, the appropriate transition and the observation mapping are defined as follows:

(i) Transition function δ : (SG × SG )× Σ1 × (Σ2 × Σ1)→ (SG × SG ) with

δ((s1, s2), α1, (α2, α
′
1)) = (δ(s1, α1, α2), δ(s2, α

′
1, α2)).
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(ii) The observation for states for Player 1 maps every state to the first component, i.e.,

obsS((s1, s2)) = s1, and the observation for actions for Player 1 maps every action

(α2, α
′
1) of Player 2 to its first component α2 as well (i.e., the input from Player 2), i.e.,

obsΣ((α2, α
′
1)) = α2.

The two reward functions needed for solving the ratio objective in the game are defined as

follows: The reward function wt1 gives reward according to rG applied to the transitions of the

first component. The reward function wt2 assigns the reward according to rG applied to the

transitions of the second component. Note that this construction ensures that we compare the

utility of an on-line algorithm (transitions of the first component chosen by Player 1) and an

off-line algorithm (chosen by Player 2 using the second component) that operate on the same

input sequence.

It follows that an on-line algorithm with competitive-ratio at least ν exists iff

supπ∈ΠM
G
infσ∈ΣG

Ratio(wt1,wt2,P(s1, π, σ)) ⩾ ν, where s1 = (sG , sG ) is the start state de-

rived from the LTS LG . By Theorem 10.3, the decision problem is in NP in the size of the game

GCR. Since the strategy of Player 1 can directly be translated to an on-line scheduling algorithm,

the solution of the synthesis problem follows from the witness strategy for Player 1. We hence

obtain the following theorem.

Theorem 10.5. For the class of scheduling problems defined in Section 10.2, the decision

problem of whether there exists an on-line scheduler with a competitive ratio at least a rational

number ν is in NP in the size of the LTS constructed from the scheduling problem.

Finally, finding the optimal competitive ratio ν∗ (and a scheduling algorithm ensuring it) is

possible by searching for sup{ν ∈ Q : the answer to the decision problem is yes}.

Remark 10.7. Using the reduction of Theorem 10.5 together with Remark 10.6, we obtain

that the competitive synthesis problem in the presence of safety, liveness, and limit-average

constraints specified as constrained automata is in NP in the size of the synchronous product of

the corresponding LTSs.

Synthesis for worst-case utility ratio. We conclude our considerations regarding synthesis with

the worst-case utility ratio problem, namely, determining the worst-case limiting average utility

of the best online algorithm over the worst-case limiting average achievable by a clairvoyant

algorithm. In sharp contrast to the competitive ratio, the job sequences used by the on-line and
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off-line algorithm for computing this utility ratio may be different. Formally, we are interested in

determining an online scheduling algorithm A that maximizes the following expression:

UR = lim inf
k→∞

infσ∈J V (ρσA, k)

infσ∈J V (ρσC , k)
. (10.4)

The numerator of UR corresponds to the synthesis for the worst case average utility problem,

whose solution is given by Eq. (10.3) in the respective game. Similarly, the denominator is given

by the following objective in the same game:

inf
σ∈ΠG

sup
π∈ΣG

MP(wt,P(s1, π, σ)). (10.5)

Herein, the input sequence is fixed (by choosing a strategy for Player 1) before the job sequence

is fixed (by choosing a strategy for Player 2, possibly non-memoryless). According to the

determinacy guaranteed by Theorem 10.2, Eq. (10.3) and Eq. (10.5) are equal, hence UR = 1:

The worst case average utility of the optimal online and the clairvoyant algorithm coincide.

Remark 10.8 (Complexity with respect to the taskset). Theorem 10.4 and Theorem 10.5 establish

complexity upper bounds for the synthesis for worst-case utility, and competitive synthesis

problems as a function of the size of the non-deterministic LTS LG . In general, the size of LG

is exponential in the bit representation of the taskset T . Hence, if the input to our algorithms

is the taskset T , the polynomial upper bounds of Theorem 10.4 and Theorem 10.5 translate to

exponential upper bounds in the size of T .
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