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Abstract

The lac operon is a classic model system for bacterial gene regulation, and has been studied

extensively in E. coli, a classic model organism. However, not much is known about E. coli’s

ecology and life outside the laboratory, in particular in soil and water environments. The natural

diversity of the lac operon outside the laboratory, its role in the ecology of E. coli and the

selection pressures it is exposed to, are similarly unknown.

In Chapter Two of this thesis, I explore the genetic diversity, phylogenetic history and signa-

tures of selection of the lac operon across 20 natural isolates of E. coli and divergent clades of

Escherichia. I found that complete lac operons were present in all isolates examined, which in

all but one case were functional. The lac operon phylogeny conformed to the whole-genome

phylogeny of the divergent Escherichia clades, which excludes horizontal gene transfer as an

explanation for the presence of functional lac operons in these clades. All lac operon genes

showed a signature of purifying selection; this signature was strongest for the lacY gene. Lac

operon genes of human and environmental isolates showed similar signatures of selection, ex-

cept the lacZ gene, which showed a stronger signature of selection in environmental isolates.

In Chapter Three, I try to identify the natural genetic variation relevant for phenotype and

fitness in the lac operon, comparing growth rate on lactose and LacZ activity of the lac operons

of these wild isolates in a common genetic background. Sequence variation in the lac promoter

region, upstream of the -10 and -35 RNA polymerase binding motif, predicted variation in LacZ

activity at full induction, using a thermodynamic model of polymerase binding (Tugrul, 2016).

However, neither variation in LacZ activity, nor RNA polymerase binding predicted by the model

correlated with variation in growth rate. Lac operons of human and environmental isolates did

not differ systematically in either growth rate on lactose or LacZ protein activity, suggesting

that these lac operons have been exposed to similar selection pressures. We thus have no

evidence that the phenotypic variation we measured is relevant for fitness.

To start assessing the effect of genomic background on the growth phenotype conferred

by the lac operon, I compared growth on minimal medium with lactose between lac operon
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constructs and the corresponding original isolates, I found that maximal growth rate was de-

termined by genomic background, with almost all backgrounds conferring higher growth rates

than lab strain K12 MG1655. However, I found no evidence that the lactose concentration at

which growth was half maximal depended on genomic background.
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1 General Introduction

The discovery of the lac operon, in a series of experiments over half a century ago (Jacob

and Monod, 1961b) opened up the study of gene regulation. Since then, the lac operon has

become a classic model system.

The lac operon consists of three genes located next to each other on the chromosome,

encoding the proteins enabling lactose metabolism. The first gene, lacZ, encodes the protein

β-galactosidase, the enzyme that splits lactose into glucose and galactose. The second gene,

lacY, encodes the permease which transports lactose into the cell. The third gene, lacA, en-

codes galactoside acetyltransferase (thiogalactoside transacetylase), a protein which transfers

an acetyl group to galactosides. The exact benefit that this protein confers is not known; it has

been suggested to have a role in detoxification (Andrews and Lin, 1976; Roderick, 2005; Mar-

bach and Bettenbrock, 2012). Transcription of the lac operon genes is regulated by a repressor

protein, lacI, which is encoded directly upstream from the lac operon and its promoter region.

In the absence of lactose, the lac repressor binds to the operators in the lac promoter region,

preventing RNA polymerase from binding to the DNA and transcribing the genes of the operon

(Oehler et al., 1990; Gilbert and Müller-Hill, 1967). When lactose is present, its metabolite

allolactose binds to the repressor, rendering it unable to bind to the DNA (Jobe et al., 1972),

leading to expression of the lac operon (induction). Allolactose is itself produced from lactose

by beta-galactosidase, which means that a low level of basal or stochastic expression of the lac

operon is required to enable its induction with lactose.

Due to its status as a model system, the lac operon has been studied extensively from

many different angles: its complex regulation, its bistable response to lactose (Ozbudak et al.,

2004), the structure and function of its proteins (Jacobson et al., 1994; Juers et al., 2012; Lewis

et al., 1996; Abramson et al., 2003), its response to experimental evolution (Quan et al., 2012),

and the costs and benefits of its expression under different conditions (Dekel and Alon, 2005;

Stoebel et al., 2008; Eames and Kortemme, 2012), to name a few.

However, with some exceptions (see e.g. (Dean, 1995)) most studies have focused on the
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lac operon of standard laboratory strains of E. coli. Not much is known about the lac operon as

it exists in nature: its natural diversity, both on a genetic and phenotypic level, its phylogenetic

and evolutionary history, and the selection pressures that have shaped it to become the way it

is, are still largely unknown.

In this thesis, I try to put the lac operon as we know it into a context, investigating its nat-

ural diversity and phylogenetic history across wild isolates of E. coli and divergent clades of

Escherichia. In addition, I explore how this natural variation in the lac operon of these isolates

maps to phenotypic variation.

With this work, I have several aims. First of all, studying the natural diversity of the lac operon

can be taken as a proxy for studying the natural diversity of E. coli. In fact, about the life of E.

coli outside the laboratory about as little is known as about the lac operon in nature. Discov-

ered in the late 19th century by the German microbiologist Theodor Escherich (Blount, 2015),

E. coli ’s popularity took flight when strain K12, originally isolated in 1922 from a stool sample

of a diphtheria patient in Palo Alto, California (Neidhardt and Curtiss, 1996)1, was established

as a lab model organism early in the 20th century. Since then, a lot has been discovered about

its physiology, and E. coli has been the focus of numerous experimental evolution studies (see

e.g. (Travisano and Lenski, 1996; Barrick et al., 2009)). The study of the ecology of E. coli,

however, has understandably been driven mainly by the motivation to understand pathogenic

varieties, and recently also by the emerging interest in the human microbiome. In comparison,

very little is known about the life of non-pathogenic strains of E. coli outside the human gut.

Strains of E. coli have on occasion been isolated from soil and water environments (see e.g.

(Ishii and Sadowsky, 2008)). Yet, it is not known whether these isolates represent strains that

are adapted to grow in soil and water environments, or whether all E. coli have the gut as their

principal habitat, and pass through the environment only in transit from one gut to another, with-

out reproducing outside the gut. Studying the natural diversity of E. coli outside the human gut

will yield a more complete picture of the ecology of E. coli as a species, potentially enhancing

understanding of its pathogenic side as well.

For one who wants to acquire a broader understanding of the ecology and evolution of E.

coli, the lac operon is a good place to start. Since lactose only occurs in mammalian milk

(Savageau, 1983) it is a substance typical for the mammal, especially human gut, and rare in

soil and water environments. Thus, adaptation to growth on lactose can be taken as a proxy

for adaptation to the mammalian gut. Studying the conservation and genetic and phenotypic

1as quoted in https://www.genome.wisc.edu/resources/strains.htm



3

diversity of the lac operon across natural isolates of E. coli then can address the question to

what extent environmentally isolated strains of E. coli still cycle through the mammal gut.

Another question I address in this work is where in the lac operon the genetic basis for nat-

ural phenotypic variation lies. In particular, I try to track whether natural variation in growth on

lactose is caused primarily by variation in coding, or rather by variation in one of its several

regulatory regions, and if the latter, whether cis- or trans- variation is more important. The lac

operon is a suitable model system to investigate this, since it is a complete genetic module

of manageable size, and therefore comparatively easy to work with in the lab and to design

specific phenotypic measurements. In addition, the phenotypes encoded by the lac operon are

relevant for fitness in a well defined environment. Thus, it is possible to get an idea whether

the phenotypic variation we find may have been under selection in the wild, or is evolutionarily

neutral. In addition, I tried to get a first insight into the role of genetic background in shaping

the phenotype of growth on lactose.

Finally, a question in the background of this work is that of the origin and evolutionary his-

tory of the lac operon. While studying the natural diversity of the lac operon will not yield a

definitive answer to this question, it may still contribute some perspective on this subject.

The question of the origin of the lac operon has two components. In the first place, one may

ask how the lac operon as we know it ended up in E. coli. Answers to this question might involve

horizontal transfer events, as was argued by e.g. (Ochman et al., 2000) but not supported by

work by (Stoebel, 2005). Indeed, whether E. coli obtained its lac operon by horizontal transfer

from another species is currently not known. In addition, there is the question of the ’ultimate’

origin of the lac operon. Irrespective of the species in which it originated, one may ask how its

genes became part of this co-regulated genetic module. In addition, more generally, one may

ask what events and selection pressures explain the prevalence of operons in bacteria.

Tracing the signatures of selection on the genes of the lac operon will tell us something

about the selection pressures the lac operon is exposed to in its natural environment. This in

turn might give us an idea of the selection pressures that have once shaped the lac operon. In

addition, getting to know the phylogenetic history of the lac operon and its prevalence across

naturally occurring strains of E. coli gives a view on the recent evolutionary history of the lac

operon, and the extent of horizontal gene transfer and gene loss it has been exposed to. Al-

though it is hard to draw unequivocal conclusions from such distribution patterns, knowing more

about them could be useful to fuel speculations about the origin of the lac operon.
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In Chapter Two, I study the phylogenetic history and diversity of the lac operon across nat-

ural isolates of E. coli and divergent clades of Escherichia. I compared the phylogeny of the lac

operon with the whole-genome phylogeny of the divergent Escherichia clades, to detect if hori-

zontal transfer of complete lac operons has occurred, and performed a phylogenetic bootstrap

test to confirm a signature of homologous recombination of part of the lac operon between Es-

cherichia clades. I also estimated the ratios of non-synonymous to synonymous substitutions

for the different genes of the lac operon, comparing the signatures of selection between human

and environmental lineages.

In Chapter Three, I investigate the genetic basis of natural phenotypic variation in the lac

operon. To this end, I compared phenotypes conferred by the lac operons of human and

environmental isolates of E. coli and divergent clades of Escherichia in a common genetic

background. Hoping to find the variation that is relevant for fitness, I looked for systematic

differences between lac operons of strains of human and environmental origin. In addition, I

tried to get a first view on the effect of genetic background on the growth phenotype, comparing

growth on lactose of lac operon constructs with that of the same operons in their original genetic

backgrounds.
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2 Chapter Two: Recent history, diversity and selection pressures

Introduction

The lac operon in E. coli is the classic model system for the study of bacterial gene regulation.

Yet, little is known about its phylogenetic history, and the selection pressures it is exposed to in

nature.

The lac operon was discovered in E. coli and has been extensively investigated in that

species (Pardee et al., 1959; Müller-Hill, 1996), and lactose metabolism is used as one of the

defining characteristics of E. coli in some phenotypic tests. However, the lac operon is present,

completely or partially, in other Enterobacteriaceae as well. Complete lac operons have been

found in E. coli /Shigella and some strains of Citrobacter, Salmonella and Klebsiella (see Ap-

pendix 1, Table A.1 for an overview of lac operon genes which can be found on Genbank). In

yet other species of Enterobacteriaceae, less complete versions of the lac operon have been

found, often consisting of the beta-galactosidase gene in combination with the repressor and/or

the permease (see (Stoebel, 2005) and Table A.1). In addition, the lacZ and lacY genes have

been found on plasmids (Guiso and Ullmann, 1976; Cornelis, 1981).

Apart from the classification bias introduced by phenotypic tests for lactose metabolism,

the conservation of the lac operon across strains of E. coli should depend on the selection

pressures these strains are exposed to across habitats. Yet, surprisingly many open questions

still remain about the ecology of E. coli (Blount, 2015).

E. coli is best known as a member of the gut microbiome of humans as well as other

vertebrates. Originally, it was postulated that the colon of warm-blooded animals constitutes

the main habitat of E. coli, and that E. coli cycles between hosts through periods of survival

without reproduction in water and soil (Savageau, 1983). However, in more recent years, the

isolation of “naturalized” E. coli from soil and water has been reported (Ishii et al., 2006), and

the assumption that E. coli does not replicate in the outside environment has been challenged

(Ishii et al., 2006; Ishii and Sadowsky, 2008).
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Yet, while there is evidence suggesting that strains of E. coli subsist in the environment

across seasons and years (Ishii et al., 2006), it is not known to what extent these strains repli-

cate in soil in the wild. Under laboratory conditions, environmental isolates of E. coli have

been shown to replicate in soil at temperatures above 30◦C, and to survive without replicating

in soil at temperatures below 30◦C at varying water contents (Ishii et al., 2006). Since tem-

perate soils rarely reach temperatures over 30◦C in nature, this suggests that E. coli subsists

rather than grows in these environments. However, these results are based on data from only

three strains; moreover, no results were reported on growth in surface water, leaving it an open

question whether some strains of E. coli do reproduce in temperate soils and surface water.

In addition to natural isolates of E. coli, genetically more divergent clades of Escherichia

have been isolated from different environments across the world, which form distinct genetic

clusters in multilocus sequence typing (MLST) analysis (Walk et al., 2009). The level of genetic

divergence of these clades from E. coli is high, with the common ancestor of these clades and

E. coli being estimated to have lived between 48 and 75 million years ago, and the younger

lineages (E. coli, CI, CIII and CIV) sharing their last common ancestor between 19 and 31

million years ago (Walk et al., 2009). For this reason, these clades have not been designated

E. coli, even though phenotypic profiles were found to be highly similar to indistinguishable to

those of E. coli (Walk et al., 2009).

Based on their locations of isolation, several of these divergent Escherichia clades appear

to be overrepresented in water and soil (Walk et al., 2009). Comparing the genomes of these

environmental clades to other natural isolates, a large set of genes was found to be specific to

or highly overrepresented in the environmental group. A similarly large set of genes was found

to be specific to or highly overrepresented in human isolates (Luo et al., 2011), suggesting

that the two groups are to some extent specialized to the different niches. While the putative

environmental clades score for the most part identical to E. coli on standard phenotypic tests

(Walk et al., 2009), they have been shown to form biofilms more readily, and to replicate at

lower temperatures than regular E. coli (Ingle et al., 2011). Yet, their optimal temperature for

growth is the same as that of E. coli, suggesting they still cycle regularly through the human or

animal gut (Ingle et al., 2011). This being said, very little is known about what constitutes the

main habitat of these clades, and how often they cycle through other habitats.

The lac operon is typically assumed to have its main function in the metabolism of lactose,

a substance occurring only in mammalian milk (Savageau, 1983). If this is true, the lac operon

would experience selection only in the mammalian gut. For this reason, we studied the diversity,

conservation and phylogeny of the lac operon across naturally occurring strains of Escherichia.
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With this, we aimed to find clues about the habitats these strains cycle through, and thus to

raise insight into the ecology of E. coli and the genus Escherichia. In addition, we aimed to gain

insight into the recent evolutionary history of the lac operon and the selection pressures that

are acting on it in the wild, and to get some clues about its origin and the selection pressures

that may have shaped it.

With regard to the ’proximate’ question of how E. coli acquired its lac operon, it has been

argued that E. coli acquired the lac operon through horizontal transfer from another bacterial

species (Lawrence and Ochman, 1998), based on the atypical GC-content of the lac operon

compared to the rest of the E. coli genome. However, a later study, comparing phylogenies

of lac operon genes in 14 Enterobacteriaceae to those of two housekeeping genes, failed to

find statistical support for such a transfer into E. coli, although transfer events between other

species were detected (Stoebel, 2005).

In addition, one may ask what are the selection pressures that have led to the formation of

the lac operon, and more generally, that have made operons a prevalent mode of gene orga-

nization. With respect to the latter question, several hypotheses have been brought forward;

most notably, the co-regulation hypothesis (Jacob and Monod, 1961b) and the selfish operon

hypothesis (Lawrence and Roth, 1996; Lawrence, 1999). The co-regulation hypothesis states

that the operon structure is selected for because it enables genes of which the products are

needed under the same conditions to be regulated by the same regulatory element. The selfish

operon hypothesis, on the other hand, postulates that physical proximity of functionally related

genes is selected for, because it increases the probability of these genes to be horizontally

transferred together.

The selfish operon predicts that especially genes encoding non-essential metabolic func-

tions will be often found in operons, since these are likely to be lost or lose fitness by drift during

periods of no selection, after which replacement by horizontal transfer can become beneficial

once the substance in question is encountered again. If this metabolic function is encoded

by multiple genes, which each individually do not confer a benefit, then horizontal transfer of

the genes in question only confers a fitness benefit when all necessary genes are transferred

together. Assuming that genes in closer proximity are more likely to be transferred together,

this would result in a selection pressure for operon structure, since this would maximize prox-

imity and thus the likelihood of successful transfer events. The co-regulation hypothesis on

the other hand predicts that essential genes are found in operons more often, simply because

co-regulation of essential genes would be expected to be more crucial than for non-essential

genes, which would result in stronger selection pressure on co-regulation of essential genes.
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Bioinformatic results appear to favor the co-regulation hypothesis over the selfish operon

hypothesis. For example, a larger percentage of essential E. coli genes was found in operons

than of non-essential genes (Pal and Hurst, 2004), and functionally related essential genes

have been found to cluster closer together on the chromosome than functionally related non-

essential genes (Pal and Hurst, 2004). Moreover, horizontally transferred genes were not par-

ticularly likely to be in operons or in newly formed operons (Price and Arkin, 2005). Yet, multiple

factors may contribute to selection for operon organization, and not all factors must have played

a role for every single operon. Therefore, since the lac operon does encode what could be a

peripheral metabolic function (since many mammals are likely exposed to lactose only for a

short period after birth), it is imaginable that a scenario such as the one described in the selfish

operon hypothesis did play a role in its formation.

We explored the diversity and phylogeny of the lac operon across 20 natural isolates of E.

coli and divergent Escherichia clades. In particular, we investigated whether the lac operon

structure and function are conserved across natural isolates of E. coli and Escherichia spp.;

whether the lac operon has undergone horizontal transfer across isolates, either partially or in

its entirety; and finally, whether selection pressures have been different for the different genes

of the lac operon, as well as between isolates from different habitats.

Results and Discussion

Prevalence of functional lac operons across isolates

We compared the lac operons of 20 isolates of Escherichia, comprising human and environ-

mental strains of E. coli and divergent clades of Escherichia (Table 2.1). All isolates in our

study were found to possess a complete lac operon. With the exception of one infant strain

(M5) carrying a frameshift mutation, LacZ and LacY of all these operons were functional, as

verified experimentally by a phenol red assay (see Table 2.1) (Shuman and Silhavy, 2003). In

addition, the adjacency, order and presence of the main regulatory elements of the genes of

the operon were conserved in all isolates examined.

The lacA gene was found in all E. coli and Escherichia spp. under study. In the two Es-

cherichia clade III strains we examined, TW09276 and TW09231, the sequence of this gene

differs from the other strains at all positions from residue 197 onwards. These two strains con-

tain a stop codon at residue 207, instead of at residue 204 like the other strains. In addition, the

clade V strain, TW09308, has its stop codon in lacA two codons earlier than the other strains
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Table 2.1: Overview of the strains used in this study.

Strain Species Origin Location of Lactose ferm Lactose ferm lac operon

isolation w/acid w/gas sequence

similarity to K12 (%)

K12 MG1655 E. coli Human USA + +

M1 E. coli Human Mexico + - 98.7

M2 E. coli Human Mexico + + 97.4

M3 E. coli Human Mexico + - 99.1

M4 E. coli Human Mexico + + 97.6

M5 E. coli Human Mexico - - 99.7

M6 E. coli Human Mexico + + 98.8

M7 E. coli Human Mexico + + 98.9

SC1 A5 E. coli Watershed soil USA + + 98.8

SC1 F10 E. coli Watershed soil USA + + 98.3

SC1 G8 E. coli Watershed soil USA + + 97.8

SC1 G10 E. coli Watershed soil USA + + 98.4

SC1 H3 E. coli Watershed soil USA + + 98.6

TW10509 Escherichia clade I Human Guinea Bissau + + 94.6

TW15838 Escherichia clade I Freshwater sediment Australia + + 95.1

TW09231 Escherichia clade III Freshwater beach USA + + 91.6

TW09276 Escherichia clade III Freshwater beach USA + + 91.8

TW11588 Escherichia clade IV Soil Puerto Rico + + 92.8

TW14182 Escherichia clade IV Freshwater beach USA + + 92.7

TW15844 Escherichia clade IV Human Australia + + 92.7

TW09308 Escherichia clade V Freshwater beach USA + + 90.3

in our set. To our knowledge, to what extent these differences affect the functioning of the pro-

tein has not been investigated. Whether lacA is functionally fully conserved across our set of

lac-positive strains is thus not clear; however, it is unclear how essential this gene is for lactose

metabolism (Roderick, 2005; Marbach and Bettenbrock, 2012).

The fact that all but one of the isolates we examined possessed a complete and functional

lac operon stands in contrast to other Enterobacteriaceae and even E. albertii, where partial

or complete deletions of the operon are common and presence of individual lac operon genes

differs across isolates (Appendix 1, table A.1). This pattern is however explained by the fact

that beta-galactosidase activity is sometimes used as a criterion for classification as E. coli in

phenotypic tests for bacterial species classification. The Escherichia spp. clades in this study

were collected as part of different previous studies, and were reported to be phenotypically

similar to E. coli based on their profiles on classification systems, some of which test for beta-

galactosidase activity (Walk et al., 2009; Luo et al., 2011). Thus, it should come as no surprise

that they resemble E. coli in their ability to metabolize lactose.
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While a classification bias thus could explain why the environmental strains I examined

were identified as E. coli or Escherichia spp., it does not explain how these strains obtained or

retained their functional lac operons.

To account for the presence of functional lac operons in these environmental isolates, one

may invoke several hypotheses. First of all, the lac operon may have been under regular selec-

tion in these isolates, either because these strains still cycle regularly through the mammalian

gut, or alternatively, because the lac operon is under selection in soil and/or water environ-

ments.

Alternatively, the functional lac operons of these strains could have been horizontally trans-

ferred from gut adapted strains of E. coli. To test whether this is the case, we compared the lac

operon phylogeny of the 8 divergent Escherichia spp. strains to their published whole genome

phylogenies (Luo et al., 2011). The two phylogenies were identical (Figure 2.1); thus, there

is no evidence that the lac operons of these strains have been horizontally transferred in their

entirety. This suggests that the functional lac operons of these strains are the original lac oper-

ons of these clades, and are thus likely to have been under regular selection in the genetic

background of these divergent clades.

bootstrap
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Figure 2.1: ML trees for nucleotide alignments of the lac operon in comparison to genomic data. (a)

Nucleotide alignment of genomic data, of those strains for which these are available, with E. albertii strain TW08933

used as an outgroup; (b) Nucleotide alignment of lac operon sequences, of those strains for which genomic data

are available. In (b), strain TW08933 is not present because it does not have a lac operon. Colors correspond to

bootstrap support of branches, the percentage of times the nodes clustered together in 1000 repeated runs of the

algorithm. Green indicates maximal, red minimal bootstrap support. At values over 50%, exact values are displayed.

The scale bar indicates the expected number of substitutions per site per unit length.
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There are two main ways this selection pressure on the divergent environmental Escherichia

clades to retain a functional lac operon could be explained. First, assuming that the most com-

mon selection pressure on the lac operon occurs in the mammalian gut, our data suggest that

all isolates under study, including environmental isolates and Escherichia clades I, III, IV and

V, regularly pass through the mammalian gut environment. This is in line with previous results,

showing that while clades I to V can grow at lower temperatures than E. coli, the optimal growth

temperature of all these clades is still slightly higher than that of the human body (Ingle et al.,

2011). Similarly, it is conceivable that growth in soil conditions in the wild is very slow, render-

ing the number of replication cycles in the gut environment very high relative to those in soil

environments, even for environmental strains. If this would be the case, the major part of the

selection on the lac operon would occur in the gut, for all strains under consideration. Observa-

tions of these strains in a lab environment , however, suggest that environmental clades grow

under relatively stringent conditions (e.g. at low temperatures) (Erik van Nimwegen, personal

communication). This suggests that the first variant of this scenario is the more likely.

Alternatively, it is conceivable that in these clades, the main function of the lac operon does

not lay in the metabolism of lactose, but of chemically similar sugars occurring outside the

human gut. It has been suggested that the original substrate of the lac operon is not lactose

but galactosyl-glycerol, a sugar which is released upon digestion of plant material in the guts

of plant-eating animals (Egel, 1979; Boos, 1982; Egel, 1988). Natural isolates of E. coli have

been shown to grow on galactosyl-glycerol, with a higher maximum growth rate and lower

Michaelis constant than on lactose (Dean, 1995), suggesting that this sugar may indeed be

a better substrate for the lac operon. In addition, galactosyl-glycerol is a natural inducer of

the lac operon, unlike lactose, which needs to be converted to allolactose first (Boos, 1982).

Since there are many more plant-eating animals than mammals, and except for humans, only

infant mammals consume milk, galactosyl-glycerol might be a more prevalent substrate than

lactose outside the human gut. Yet, to our knowledge, no data exist on the prevalence of

galactosyl-glycerol or other lactose-like compounds in the natural environment. Galactosyl-

glycerol does not rely exclusively on the lactose permease, since it can also be transported

by a different galactose transport system encoded by the mgl genes (Boos, 1982). However,

when BLASTing this transport system among the environmental clades, it appears not to be

conserved, which might explain the conservation of lacY in these lineages.

While the environmental isolates of both E. coli and divergent clades of Escherichia spp.

under study all have a functional lac operon, in published genomes of pathogenic E. coli and

Shigella partial and full deletions of the lac operon can be found (Table A.1). Similarly, in E.
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albertii and E. fergusonii, which are sister species to E. coli and have been reported to be

frequently pathogenic (Ooka et al., 2012), (Farmer et al., 1985; Mahapatra A et al., 2005), full

or partial deletions of the lac operon are common. Here, the previously mentioned classification

effect is likely to play a role: strains which do not ferment lactose and are pathogenic might be

more likely to be classified as E. albertii or E. fergusonii (in fact, inability to ferment lactose has

been reported to be a typical feature of E. albertii (Ooka et al., 2012) as well as E. fergusonii

(Farmer et al., 1985)). In addition, given that pathogenicity comes with the ability to colonize

new niches in the human body (Kaper, 2005), it is conceivable that pathogenicity tends to

decrease the selection pressure to metabolize lactose, which would not be found outside the

intestine. This would predict a negative correlation between the presence of a functional lac

operon and pathogenicity. To ascertain whether such a correlation exists, more systematic

data would be needed. While Escherichia clades I-V do exhibit some features associated with

virulence, they were avirulent in a mouse model of septicemia and were rarely isolated from

extraintestinal sites in humans. For these reasons, they have been hypothesized to be only

opportunistic pathogens (Ingle et al., 2011). The conservation of their ability to use lactose

may thus indicate that their niche in host species is indeed primarily the commensal one.

Intra-operon recombination

While we did not find evidence for horizontal transfer of the lac operon in its entirety across the

divergent clades, this does not exclude the possibility that parts of the operon have undergone

horizontal transfer. To address this, we screened our alignment for recombination breakpoints

using GARD (see Material and Methods). This analysis identified multiple breakpoints. To test

whether there is statistical support for any intra-operon recombination having taken place, we

performed a phylogenetic parametric bootstrap analysis on the first breakpoint identified by the

GARD analysis, which was located 291 bp from the 5’ end of lacY gene (Figure 2.2). This

test was highly significant showing that estimating tree topologies independently for the two

partitions of the alignment provided a significantly better model fit than when tree topology was

constrained to be the same for the entire alignment (see Methods; Figure 2.3). This supports

the hypothesis that the two parts of the operon sequence have different phylogenetic histories,

suggesting that part of the lac operon sequence has undergone homologous recombination

between different strains of Escherichia.

The tree topologies estimated for the alignment upstream and downstream of the breakpoint

are shown in Figure 2.4. The phylogeny of the alignment upstream of the breakpoint, covering

the lac repressor gene, lacZ, and part of lacY, conforms to the published phylogeny for the
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bp1

Figure 2.2: The lac operon and its repressor gene lacI. lacZ, β-galactosidase; lacY, galactoside permease;

lacA, thiogalactoside transacetylase. Gene lengths are drawn to scale. The triangle indicates the main recombina-

tion breakpoint, see Results.
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Figure 2.3: Parametric bootstrap test for recombination. A parametric bootstrap assesses to what extent a

model with two independent tree topologies explains the sequence alignment better than a model assuming a single

common tree topology. The log likelihood of our alignment of lac operon sequences was lower under a common tree

topology estimated for the entire sequence, than under two independently estimated tree topologies on either side

of the breakpoint. The difference between these likelihoods was much larger for the true sequence data (red dashed

line) than for 1000 sequence alignments simulated under a common tree topology, with the remaining parameters

set to the values estimated independently for either sub alignment. This suggests that differences in evolutionary

rates (as manifested in the two independently estimated sets of branch lengths) are not enough to explain the

apparent differences in phylogenetic history on either side of the breakpoint.

clade I to V strains. The phylogeny of the alignment downstream of the breakpoint, covering

the remainder of lacY and lacA, differs in the placement of clade IV, suggesting that these

genes have been horizontally transferred between clades. The horizontal transfer of part of

the lac operon is congruent with previous work, showing that displacement of individual genes

or arrays of genes within operons by horizontally transferred orthologs is not uncommon in

bacteria (Omelchenko et al., 2003).
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Figure 2.4: ML trees for nucleotide alignments of the lac operon, upstream and downstream from identi-

fied recombination breakpoint. (a) ML tree for alignment upstream from breakpoint (lacI, lacZ and part of lacY )

(b) ML tree for alignment downstream from breakpoint (lacY and lacA). Colors correspond to bootstrap support of

branches, the percentage of times the nodes clustered together in 1000 repeated runs of the algorithm. Green

indicates maximal, red minimal bootstrap support. At values over 50%, exact values are displayed. The scale bar

indicates the expected number of substitutions per site per unit length.

Signatures of selection

Since the lac operons in our study set appear to have diverse evolutionary histories, they might

have been exposed to different selection pressures.

To address whether this is the case, we analyzed our alignment for signatures of selection,

using the program PAML (Yang, 2007). This program estimates dN/dS ratios, which is the ratio

of non-synonymous to synonymous substitutions, corrected for their probability of occurrence.

Synonymous substitutions do not affect protein sequence, while non-synonymous substitutions

do; thus, a dN/dS ratio below 1 implies that a smaller than expected proportion of substitutions

affects protein sequence, which indicates purifying selection. A dN/dS ratio of 1 implies that

ratios of synonymous and non-synonymous substitutions conform to their physical probability

of occurrence, and thus indicates the absence of selection, whereas a dN/dS ratio significantly

above 1 indicates diversifying selection.

The overall dN/dS ratio or set of dN/dS ratios for an alignment is estimated by the program

using a maximum likelihood method. In this method, every observation (codon) has a certain

likelihood under a model of a given dN/dS ratio or set of dN/dS ratios, at a given phylogeny.

The complete sequence then has a likelihood under this model, which is the product of the

likelihood of each individual column under that model; this is equivalent to the sum of the log

likelihoods of all columns. The program thus searches for the dN/dS ratio(s) under which the
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sequence data have the highest likelihood.

Since branch lengths of amino acid phylogenies differ markedly between genes of the

operon (Figure 2.6), we analyzed each of the operon genes separately, using the amino acid

phylogeny for that particular gene.

In addition to estimating one overall ratio of non-synonymous to synonymous substitutions

(dN/dS ratio), we fitted two classes of models, site models and branch models (see Methods). In

site models, different dN/dS ratios are estimated for the different sites (codons) in our alignment,

but each site is assumed to have a single dN/dS ratio across strains. Models are specified

based on the total number of distinct dN/dS ratios per alignment, and optionally, whether some

dN/dS ratios are constrained to be at or above a certain value; the specific dN/dS ratios, and

which sites would fall under which dN/dS ratio are estimated by maximum likelihood. In branch

models, different dN/dS ratios are fit to different branches in the phylogeny, while all sites in

the alignment are assumed to have the same dN/dS ratio within a branch. Here, models are

specified using a branch labelling on the phylogeny.

Models are compared using a likelihood ratio test (see Methods), which can compare only

models which are nested in one another. A model is nested in another, more complex model

if it contains only a subset of the free parameters (in this case, dN/dS ratios) used in the more

complex model. The other parameters are set to a defined value in the simpler model, which

lies within the range from which they are estimated in the more complex model. In our case, this

means that a lower number of distinct dN/dS ratios is estimated for a given phylogeny. Branch

models are nested if no branches are labeled differently in the simpler model which are labeled

the same in the more complex model, while the opposite can occur.

Selection pressures by environment

To assess whether whether selection has been acting differently on human and environmental

strains, we estimated branch models fitting different dN/dS ratios to human and environmental

branches in the phylogeny, first of all assigning the internal branches as human or environ-

mental based on parsimony criteria (Figure 2.5 (a) and (b)). In these models, all sites in the

alignment are assumed to have the same dN/dS ratio within a branch.

We found that for lacY, lacI, and lacA, branch models did not describe the data better than

the null model, which assumes a uniform dN/dS ratio across sites in the sequence and branches

in the phylogeny (data not shown). This suggests a uniform dN/dS ratio across branches.
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For lacZ, branch models fitting different dN/dS ratios to different branches in the lacZ phy-

logeny did describe the data better than a model fitting a uniformly low dN/dS ratio across sites

(Table 2.2). Whether this difference was significant depended on which internal branches in the

tree were labeled as human and which as environmental. Since E. coli strains cycle between

the gut and the environment, if strain habitat is taken as a trait, frequent trait reversions on the

tree are likely. This leaves little confidence in the assignment of this trait to inner branches. For

this reason we added a third category for ambiguous internal branches. Models including these

three categories fit the data significantly better than the one-ratio model, as well as most of the

two-ratio models (see Table 2.2, Figure 2.5 (c) and (d)).

Contrary to our expectations, the dN/dS ratio estimated for environmental branches was

lower than of human branches. While this is a surprising result, results by Rocha et al. (Rocha

et al., 2006) suggest that caution is needed in the interpretation of dN/dS ratios: for closely

related bacterial sequences, dN/dS ratios can be inflated due to selection not having had suf-

ficient time to remove weakly deleterious nonsynonymous mutations. Since our phylogeny is

composed of relatively closely related strains, particularly those of human origin, our dN/dS

estimates might be inflated. In addition, the different levels of divergence between strains may

be a factor confounding the dN/dS scores of the different branches in our phylogeny.

To get an idea whether this phenomenon might be playing a role in our data, we fit a free-

ratios branch model to our data, estimating a separate dN/dS ratio for every single branch in

the tree, and correlated the estimated values with the lengths of the corresponding branches.

As predicted by Rocha et al. (Rocha et al., 2006), a negative correlation between branch length

and dN/dS ratio was found. However, this correlation was weak (rho=-0.14) and nonsignificant.

As an additional test, we repeated our analyses without the strains which are closely related

to at least one other one in the dataset (the seven human infant strains, the five SC1 strains

and strain TW11588), using the three category coloring (human, environmental and ambiguous

inner branches, Figure 2.5(c) and (d)) as described above. Without the closely related strains,

the results were still significant, although p-values were higher (data not shown).

A related issue pointed out by Rocha et al. (Rocha et al., 2006) is that for bacterial isolates,

it is often not possible to distinguish standing polymorphisms, where there is variability at a

locus within a species, from substitutions, where all individuals of one species have one variant

of a locus, and all individuals in another species have another variant. This is caused by the

lack of a straightforward way to demarcate bacterial species, as well as by the fact that bacterial

strains isolated from the wild are typically represented by a single sequenced clone, such that

there is no picture of the variability within a species. In the latter case, a variant site might
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simply be a recent mutation, specific to that clone, which might be purged by selection in a few

generations. Thus, there would be more non-synonymous polymorphisms than expected in an

alignment, causing an inflated dN/dS ratio.

If using single clones did cause an additional inflation of the dN/dS ratio in our data, leaves

(outer branches) in our tree should have a higher dN/dS ratio than inner branches. Indeed,

a model in which separate dN/dS ratios were estimated for inner and outer branches (Figure

2.5(e)) explained the data significantly better than a model estimating a uniform dN/dS ratio

for all branches (p<0.001), and this ratio was estimated to be lower for inner than for outer

branches (outer branches, dN/dS = 0.20, inner branches dN/dS = 0.12); see Table 2.2. When

outer branches then were differentiated according to human or environmental origin of the

isolates, an additional improvement in fit was achieved (p=0.05). In this case, still, for human

branches the highest dN/dS ratios were estimated (human leaves, dN/dS = 0.25; environmental

leaves, dN/dS = 0.17; inner branches, dN/dS = 0.12). Thus, correcting for the inflation of dN/dS

ratios due to the use of single bacterial clones improved the model fit, but retained the stronger

signature of selection for environmental isolates.

In addition to the potential distortion of dN/dS ratios of human and environmental branches

due to the different levels of relatedness of the strains in the dataset, the higher dN/dS ratios on

human leaves may be a result of the population bottleneck lineages undergo upon colonizing

the gut of a new individual. The resulting drop in population size would increase drift, leading

to higher dN/dS ratios, since weakly deleterious mutations are removed less efficiently.

We are not aware of studies reporting on the extent of bottleneck effects in gut colonization

of E. coli. However, phylogenetic signatures of a population bottleneck have been reported for

Bacterioides in the gut flora of an infant (Vaishampayan et al., 2010), making it plausible that

similar effects exist in E. coli. In addition, it has been pointed out previously, based on mostly

theoretical considerations, that periodic selection may also be acting as a bottleneck for E. coli

(Levin, 1981).

Infant guts are sterile before birth (Palmer et al., 2007). Aerobic species of bacteria, which

include E. coli, tend to be among the first colonizers of the gut, with anearobic species following

later (Palmer et al., 2007; Favier et al., 2002; Vaishampayan et al., 2010); time of appearance

of E. coli varied between studies. Total numbers of bacteria one day after birth, regardless of

species, have been estimated to range from 104 to 1010 based on real-time PCR data (Palmer

et al., 2007). In an older study (Mata and Urrutia, 1971), E. coli was detected in half of 89

Native American infants on the first day after birth, and in all these infants on the second. In

that study, total counts of E. coli alone were estimated to range between 108 to 1011 on the
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Figure 2.5: Branch labeling as used for the different branch models on the lacZ gene sequence. a) and b)

Branch models 1a and 1b: 2 ω’s are estimated, one for human, one for environmental branches.

c) and d) Branch models 2a and 2b: 3 ω’s are estimated, one for human, one for environmental, one for internal

branches of ambiguous classification.

e) Branch model 1c: 2 ω’s are estimated, one for internal, one for outer branches.

f) Branch model 2c: 3 ω’s are estimated, one for all internal branches, one for human outer branches, one for

environmental outer branches.
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Table 2.2: Branch model results on the lacZ gene sequence.

Model code #p df l Test statistic p Parameter estimates

M0 1 -10657.43 ω=0.16

B1a 2 -10656.67 ω(h)=0.17, ω(e)=0.15

B1b 2 -10651.65 ω(h)=0.23, ω(e)=0.14

B1c 2 -10650.56 ω(outer)=20, ω(inner)=0.12

B1a - M0 1 1.52 p=0.2

B1b - M0 1 11.56 p<0.001

B1c - M0 1 13.75 p<0.001

B2a 3 -10650.46 ω(h)=0.23, ω(e)=0.15, ω(amb)=0.11

B2b 3 -10647.27 ω(h)=0.23, ω(e)=0.17, ω(amb)=0.11

B2c 3 -10648.67 ω(h)=0.25, ω(e)=0.17, ω(inner)=0.12

B2a - M0 2 13.94 p<0.0001

B2a - B1a 1 12.42 p<0.001

B2a - B1b 1 2.38 p<0.1

B2b - M0 2 20.33 p<0.0001

B2b - B1b 1 8.76 p<0.01

B2c - M0 2 17.53 p<0.001

B2c - B1c 1 3.79 p=0.05
M0: null model, uniform ω for all sites on all branches.

B1a, B1b: 2 w’s are estimated, one for human, one for environmental branches; see figs. 2.5 (a) and 2.5 (b).

B1c: 2 w’s are estimated, one for inner, one for outer branches; fig. 2.5 (e).

B2a, B2b: 3 w’s are estimated, one for human, one for environmental, one for internal branches of ambiguous

classification; figs. 2.5 (c) and 2.5(d).

B2c: 3 w’s are estimated, one for all internal branches, one for human outer branches, one for environmental outer

branches; fig 2.5(f).

first, between 105 to 1011 on the second day, based on culturing. Yet, these data do not provide

direct information on population sizes in the initial inoculum of particular species.

Selection pressures per gene

To be able to distinguish selection pressures across sites in the alignment, we fit different site

models to the different genes of the operon, of which the amino acid trees are shown in Figure

2.6. In site models, different dN/dS ratios are estimated for the different sites in our alignment,

while each site is assumed to have a single dN/dS ratio across strains.

For the permease gene (lacY ), no site models fit the data better than the null model. The

estimated dN/dS ratio was 0.046, implying that all sites in the lacY sequence are under purifying
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Figure 2.6: ML trees for amino acid alignments per gene. ML trees for amino acid alignment of (a) lac

repressor lacI, (b) lacZ, (c) lacY, (d) lacA. Colors correspond to bootstrap support of branches, the percentage of

times the nodes clustered together in 1000 repeated runs of the algorithm. Green indicates maximal, red minimal

bootstrap support. At values over 50%, exact percentages are displayed. The scale bar indicates the expected

number of substitutions per site per unit length.

selection (Table 2.3). This is a relatively, but not extremely strong level of conservation, taking

into account that reportedly, for bacterial sequences that differ at around 2% of nucleotides and

are assumed to be under stabilizing selection, dN/dS values of 0.04 to 0.2 are common (Rocha

et al., 2006).
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Table 2.3: lacY tests for selection. Results of site-based tests for selection for the lactose permease gene.

Model code #p df l Test statistic p Parameter estimates

M0 1 -2986.34 ω=0.046

M1a 2 -2985.16

M3 5 -2984.54

M1a-M0 1 2.36 p<0.1

M3-M0 4 3.6 p<0.1
Model code indicates the code used to identify the different site models in the program codeml, see Methods. #p

indicates the number of free parameters in the respective site models. df represents the degrees of freedom of

model comparisons, obtained by subtracting the number of free parameters of the nested model from the number

of free parameters of the more complex model. l represents the log likelihood of the alignment under the respective

site models. The test statistic given is that of the likelihood ratio test, comparing the likelihood of the alignment

under a more complex site model and under a simpler, nested model, see Methods. Parameter estimates are given

only for those models which significantly improved the likelihood of the data with respect to the corresponding

simpler model.

Model M0 fits a uniform dN/dS ratio (ω) to all sites in the sequence. In model M1a, a variable proportion of sites

in the sequence is assumed to be evolutionarily neutral and thus have ω = 1; for the rest of the sites, the dN/dS

ratio is estimated. Model M2a also assumes a proportion of neutral sites, and in addition, a proportion of sites for

which ω>1 (positively selected sites). In model M3, three values for ω and their proportions are estimated like in

M2; however, the values of these ratios are not constrained in any way.

For the repressor gene (lacI), as well as the lacA gene, site models including a proportion

of neutrally evolving sites did describe the data significantly better than the null model for both

these genes (p<0.0001; Table 2.4 and 2.5). This indicates that not all sites in the sequences

of these genes are under strong purifying selection. More complex site models, assuming a

proportion of positively selected sites, or three freely varying dN/dS rates, did not constitute

an additional improvement in fit (Table 2.4 and 2.5). Thus, there is no evidence for positive

selection on the lacI and lacA genes within this set of isolates. The estimated dN/dS ratio

for the non-neutrally evolving sites was 0.043 for lacI; 95% of sites were estimated to fall into

this class, with the rest evolving neutrally. For lacA, the dN/dS ratio for sites under purifying

selection was estimated to be 0.042, and these were estimated to constitute 90% of all sites.

For the β-galactosidase gene, lacZ, site models assuming a proportion of positively se-

lected sites in addition to sites under neutral and purifying selection, fit the data significantly

better than models assuming only neutral and conserved sites (p<0.0001), which in turn fit

the data better than the null model postulating a uniform dN/dS rate across sites (p<0.0001;

Table 2.6). For the model estimating varying proportions of sites under positive (dN/dS >1),
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Table 2.4: lacI tests for selection.

Model #p df l Test statistic p Parameter estimates

M0 1 -3014.22 ω=0.0842

M1a 2 -2997.81 ω0=0.0432, p0=0.949

M3 5 -2997.77 ω1=ω2=0.045, ω3=1.12

M2a 4 -2997.77

M7 2 -2999.47

M8 4 -2997.79

M1a-M0 1 32.81 p<0.0001

M3-M0 4 32.89 p<0.0001

M2a-M1a 2 0.08 p>0.95

M8-M7 2 3.35 p>0.1
Results of site-based tests for selection for the lac repressor gene. See caption of Table 2.3 for details on models

M0 to M3. Model M7 assumes that the value of ω for each site is drawn from a discrete beta distribution with 10

categories; this distribution is specified by two free parameters p and q, which are the only free parameters of this

model. Model M7 is nested in model M8, which also estimates a beta distribution, but in addition assumes that a

variable proportion of sites has ω ≥ 1.

Table 2.5: lacA tests for selection.

Model code #p df l Test statistic p Parameter estimates

M0 1 -1818.53 ω=0.120

M1a 2 -1805.75 ω0=0.0418, (ω1=1), p0=0.896

M2a 4 -1805.75

M3 5 -1804.85

M1a-M0 1 25.56 p<0.0001

M2a-M1a 2 0 p=1

M3-M1a 3 0.36 p<=0.95
Results of site-based tests for selection for the lacA gene; see caption of Table 2.3 for details.

neutral (dN/dS =1) and purifying (dN/dS <1) selection, estimated dN/dS ratios were 0.044 for

sites under purifying selection (90%) of sites), and 3.39 for sites under positive selection (1.9%

of sites). Six sites were identified as being under positive selection (Table 2.6; Figure 2.7).

Variability in these sites did not correlate with strain origin. Moreover, these sites had not pre-

viously been reported as important for protein function, specificity, or di- or tetramerization; all

sites previously reported to be essential (Juers et al., 2012) did not show any variation in the
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sequences we investigated. However, variation in truly essential sites is likely to result in non-

functional proteins, against which one would expect strong selection in all cases except those

in which the proteins are not expressed or not conferring any benefit or disadvantage.

Table 2.6: lacZ tests for selection.

Model code #p df l Test statistic p Parameter estimates Positively selected sites

M0 1 -10657.43 ω=0.160

M1a 2 -10421.5 ω0=0.0375,

(ω1=1),

p0=0.892

M2a 4 -10400.81 ω0=0.0437, p0=0.899, 59R, 85V, 116T,

(ω1=1, p1=0.0813), 129V, 299K, 530T

ω2=3.39 p2=0.0191

M3 5 -10400.80 ω1=0.0417,

ω2=0.895,

ω3=3.17

M1a-M0 1 471.92 p<0.0001

M2a-M1a 2 41.32 p<0.0001

M3a-M1a 3 41.37 p<0.0001
Results of site-based tests for selection for the beta-galactosidase gene of the lac operon; see caption of Table 2.3

for details. Selected sites reported were identified by Bayes’ Empirical Bayes analysis; normal font indicates >95%

posterior probability, boldface indicates >99% posterior probability.

It must be noted that at the sites identified to be under positive selection, often more than

two different amino acids were found at a single site. This would suggest to me that these are

evolutionary neutral sites, rather than sites under selection, since it seems to me unlikely that

directional selection would be operating in multiple different directions at a single site (however,

opinions differ on this, and different amino acids can have comparable chemical properties).

From the results of the site models it can be concluded that while all three operon genes as

well as the repressor protein show some divergence, the level of divergence is strikingly differ-

ent between the different genes. In particular, the permease has been much more conserved

than the other three genes, as is apparent when comparing amino acid alignments (see Fig-

ure 2.6). This suggests that the permease has been under stronger purifying selection than

the other genes. This is in line with with previous work on natural variants of the lac operon,

reporting that variation in permease activity has a larger impact on fitness than variation in beta-

galactosidase activity in a chemostat environment (Dykhuizen et al., 1987; Dean, 1989). The

permease was inferred to be the limiting step in the flux of lactose metabolism, with small re-

ductions in its activity leading to a lower growth rate, while the beta-galactosidase was inferred
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Figure 2.7: The LacZ protein (one monomer), with the 6 residues identified to be under positive se-

lection drawn as spheres. Colors indicate the different domains of the protein, following the color scheme of

figure 3 of (Juers et al., 2012). Blue: domain 1; green: domain 2; yellow: domain 3; cyan: domain 4; red: do-

main 5. The active loop is colored purple. Image created using Swiss-pdb Viewer (Guex and Peitsch, 1997),

http://www.expasy.org/spdbv/

to be present in excess and therefore operating on a fitness plateau.1 In addition, expression of

a functional permease has been identified as the main cost of the lac operon in environments

containing lactose, likely due to a reduction in the proton motive force across the membrane

caused by its proton-lactose symport activity (Eames and Kortemme, 2012). This implies that

not only a reduction, but also an increase in the activity of the permease might lead to lower

fitness; irrespective of whether this increase is brought about by higher activity per molecule, or

by an increase in expression level. This might have led to a narrow range of optimal transport

activity, and thus a strong purifying selection on the permease.

1Permease activity in this study was inferred indirectly from total lactose flux, after correction for directly mea-

sured differences in LacZ activity; variation in this value could thus represent variation in expression as well as in

molecular activity of both LacY and LacA in the investigated natural isolates.
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2.0.1 Origin of the lac operon structure in E. coli

From the distribution of lac operon genes across E. coli, Escherichia and other Enterobacteriae,

we can try to speculatively infer some clues about the origin of the lac operon structure in E.

coli. Since the lac operon confers a metabolic function which is likely to not be continuously

under selection, it might be an example of an operon for which the ’selfish operon’ hypothesis

holds true.

First of all, we found the lac operon genes in non-adjacent positions only in combination with

traces of insertion sequences (see Table A.1). Thus, if separate locations on the chromosome

were the ancestral state for the lac operon genes, and these genes gradually were selected to

be in greater proximity to one another, there are no surviving intermediate forms to testify this.

Second, in other Enterobacteriaceae, frequently only a subset of the lac operon genes

is found, and the lac operon is more patchily distributed (often being entirely absent) in other

Enterobacterial species than within E. coli and Escherichia clades. This pattern does not match

the prediction of the selfish operon hypothesis that operon genes only confer an advantage

together. Yet, we did find operons with similar sequence to the E. coli lac operon, with a

deletion at the same position in lacA, in several Enterobacterial species, which does suggest

the lac operon is occasionally horizontally transferred across species. In addition, the signature

of partial homologous recombination we found one may speculatively imagine to be a trace of

the lacY of a strain losing fitness during a period without selection, after which the recombinant

variant was fitter during a selection episode. Such gene displacement in situ was shown by

(Omelchenko et al., 2003) to be relatively common in operons, making it imaginable that such a

rescue could happen more often in operons, and that operon organization might promote such

events. However, at present this remains a speculation.

Conclusions

The presence of structurally and functionally conserved, but genetically divergent lac operons

across environmental isolates of E. coli as well as divergent clades I, III, IV and V of Escherichia

suggests that the lac operon is regularly under selection in all these lineages. Assuming that

the main selection pressure on the lac operon occurs in the mammal gut, this corroborates the

hypothesis that although overrepresented in the environment, divergent clades of Escherichia

still regularly pass through the gut of humans or other mammals. However, we cannot exclude

the alternative hypothesis that the lac operon confers a different advantage in the outside en-
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vironment, e.g. metabolizing another substrate such as galactosyl-glycerol. Since very little is

known about population sizes and replication times of E. coli and Escherichia sp. across differ-

ent natural environments, it is not possible to estimate the time scale at which cycling through

the mammal gut, or exposure to lactose-like substrates in the environment, would have to occur

to maintain the lac operon by selection.

The phylogeny of the lac operon as a whole was similar to the phylogeny of the whole

genome for the divergent Escherichia clades, confirming that the lac operons were not horizon-

tally transferred into these clades from other E. coli strains. We did find evidence for a horizontal

transfer event involving part of the lac operon. Taken together, our results thus suggest that

homologous recombination happens, albeit infrequently, between Escherichia clades.

In their entirety, all genes of the lac operon were found to be under purifying selection, in all

isolates examined. The signature of selection was strongest for the permease gene, of which

all sites were found to be under purifying selection. Six sites in the β-galactosidase gene, lacZ,

appeared to show a signature of positive selection. However, we suspect these sites to rather

have been under relaxed selection.

Surprisingly, environmental isolates showed a signature of stronger purifying selection on

the lacZ gene than strains of human origin. In addition to limitations of the method of comparing

synonymous and non-synonymous substitutions in relatively closely related bacterial strains,

this difference might reflect population bottlenecks occurring upon gut colonization.

Materials and Methods

Strains

Strains SC1 A5, SC1 F10, SC1 G8, SC1 G10, and SC1 H3, originally described in (Ishii et al.,

2006) were isolated from Lake Superior, Michigan, and kindly shared by Olin Silander. Strains

M1, M2, M3, M4, M5, M6 and M7 were originally isolated from 6 month old infants in Morelos,

Mexico, as part of a field study (Cravioto et al., 1990) and kindly shared by Armando Navarro

and Marjon de Vos. Isolation of these strains took place two weeks before the infants changed

diet to solid food. The strains were classified as E. coli using the Vitek automated bacterial

identification system from BioMérieux (Walk et al., 2009). Escherichia sp. strains TW09231,

TW09276, TW09308, TW10509, TW11588, TW14182, TW15838, and TW15844 were origi-

nally described in a study reporting the existence of divergent clades of the genus Escherichia

(Walk et al., 2009), isolated previously from different sources and locations. These strains were



27

ordered from the STEC Centre of the University of Michigan. An overview of the used strains,

their origin and location of isolation can be found in Table 2.1.

Lactose fermentation test

To detect ability to ferment lactose, a Phenol Red Durham assay was used. Phenol Red

medium was prepared consisting of proteose peptone 10 g/l, NaCl 5 g/l, lactose 5 g/l, beef

extract 1 g/l, and phenol red 0.018 g/l (Atlas, 2010). This medium was distributed in glass

tubes with inverted Durham tubes, and autoclaved for 15 minutes at 121◦C. These tubes were

inoculated with the strains to be tested from frozen stocks and grown overnight at 37◦C. Lactose

fermenting strains lower the pH of the Phenol Red broth, causing the medium to turn yellow;

non-fermenters of lactose instead increase the pH, causing the broth to turn pink. In addition,

gas production is assessed by the inverted glass tubes, in which produced gas bubbles are

trapped.

Lac operon sequences

Of strains SC1 A5, SC1 F10, SC1 G8, SC1 G10, SC1 H3, and M1 to M5, DNA was extracted

using a MasterPure Gram Positive DNA Purification kit (Epicentre, Madison, WI USA) and the

lac operon region was amplified by PCR using GoTaq Long PCR Master Mix (Promega Corpo-

ration, Madison, WI USA) with the primers CTGGTATCAAACACTCGCCT and ACAACGGGTAG-

CAAAACAGA, which anneal in the genes cynX and mhpR, flanking the lac operon in strain K12

MG1655. The PCR products were Sanger sequenced by LGC Genomics (see supplement for

a list of primers used); both strands were sequenced. Sequences were edited by eye using

the Sequencher software (Sequencher version 5.1 sequence analysis software, Gene Codes

Corporation, Ann Arbor, MI USA).

Lac operon sequences of TW10509 and TW15844 (H605) were downloaded from the antibiotic

resistance database of the Broad institute (Escherichia coli Antibiotic Resistance Sequencing

Project, Broad Institute of Harvard and MIT, http://www.broadinstitute.org/). Lac

operon sequences of TW09231, TW09276, TW09308, TW11588, TW14182, and TW15838

were downloaded from NCBI.

All lac operon sequences were aligned with the lac operon sequence of strain K12 MG1655

using the Sequencher software (Sequencher version 5.1 sequence analysis software, Gene

Codes Corporation, Ann Arbor, MI USA). Alignments were verified and adjusted by eye. LacI,

lacZ, and lacY gene lengths were identical for all strains; in strains TW09276 and TW09231,
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the intergenic region between lacY and lacA was only 29 bp long, while in all other strains it

had a length of 65 bp. Gap placements were adjusted manually to favor longer consecutive

gaps over frequent short gaps. After this manual adjustment, all gaps remaining were located

in intergenic sequences, and gene boundaries were aligned. For lacA, which has a stop codon

2 bp upstream from the other strains in TW09308 and for which the last six amino acids differ

from all other strains in TW09276 and TW09231, the gene length of the other strains was kept.

Thus, six nucleotides following the stop codon were included in the sequence of TW09308, and

the sequence of lacA in TW09276 and TW09231 does not contain a stop codon.

Amino acid sequence alignments were generated based upon the nucleotide sequence align-

ments using the Geneious software version 7.0.3 created by Biomatters.

Phylogenetic tree estimation

Phylogenetic analyses were performed using the development version of PhyML 3.0 released

on October 16, 2013 (Guindon et al., 2010). As a substitution model, HKY85+G (Hasegawa

et al., 1985) was used. Tree topology was optimized starting from a BioNJ tree (Gascuel, 1997),

which was then stepwise refined using the SPR (subtree pruning and regrafting) search strategy

(Guindon et al., 2010). Bootstrap support was calculated for all trees using 1000 replicates.

Phylogenies of the translated alignments of the individual genes of the operon were estimated

using PhyML version 3.0 released on April 12, 2012 (Guindon et al., 2010) using the same

parameters as for the nucleotide analysis and the LG model for amino acid substitution (Le and

Gascuel, 2008). Trees were drawn using the program FigTree v1.4.2

( http://tree.bio.ed.ac.uk/software/figtree/).

Whole genome phylogeny

Genome data of E. coli strain K12 MG1655 and Escherichia spp. strains TW09231, TW09276,

TW09308, TW10509, TW11588, TW14182, and TW15838, as well as E. albertii strains TW08933

and TW15818 were downloaded from NCBI.

The alignment of the genome data was made using the online tool REALPHY 1.10 (Bertels

et al., 2014), using the genomes of E. coli strain K12 MG1655 and Escherichia spp. strains

TW10509, TW11588 and TW09308 as references. The whole genome alignment thus pro-

duced had a length of 1275218 nucleotides. This alignment was run in PhyML version 3.0

released on April 12, 2012 (Guindon et al., 2010) using the same parameters as for the lac
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operon analysis, to produce the whole-genome phylogeny including bootstrap support values

for the tree branches.

Recombination tests

To probe whether the lac operon is likely to have been involved in horizontal gene transfer

events, we compared whether a model including recombination explained our alignment better

than a model without recombination. To this end, we first screened the sequence alignment

of the operon and repressor gene for potential recombination breakpoints, using the GARD

(Genetic Algorithm for Recombination Detection) analysis on the online server available at

www.datamonkey.org (Kosakovsky Pond et al., 2006). We used the most highly supported

recombination breakpoint identified by this screen to partition the alignment into two subalign-

ments, which were then used for a phylogenetic parametric bootstrap.

The aim of the parametric bootstrap test is to assess whether a model with two independent

tree topologies (alternative model) explains the data significantly better than the null model as-

suming a single tree topology. In both the null and the alternative model, all parameters (branch

lengths, gamma shape parameter, transition/transversion ratio, and equilibrium base frequen-

cies) were estimated independently for either side of the breakpoint. Thus a partition model is

applied in the case of the null model. The test statistic indicates how much better the alternative

model explains the data, and is calculated as two times the difference between the log likeli-

hoods of the data under the alternative model and the null model, respectively, as described

in (Goldman, 1993). How to quantify the degrees of freedom of this comparison is not known

(Goldman, 1993; Huelsenbeck and Rannala, 1997) and thus it is not possible to directly assign

a significance level to this test statistic. The parametric bootstrap is a method to nevertheless

assign a significance level, by estimating from a large number of simulated sequences how

likely the observed data would be under the null model of no recombination (Goldman, 1993).

Using custom software written by J.P.B, 1000 new sequence alignments were simulated using

the tree topology and parameters estimated under the null model. These simulated align-

ments were then subjected to the same maximum likelihood phylogenetic analysis as the orig-

inal alignment, once under the null model of no recombination and once under the alternative

model. The differences between the log likelihoods of each dataset under the null and alterna-

tive model together form a distribution of test statistics that are expected if the null model was

true. The observed test statistic was compared to this distribution to assess the likelihood that

both parts of the observed alignment have the same phylogenetic history.
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Estimates of selection per gene

We used PAML version 4.9a (Yang, 2007),

(http://abacus.gene.ucl.ac.uk/software/paml.html) and its GUI PamlX to esti-

mate selection on the different proteins of the lac operon with site-based maximum likelihood

methods. Different site models were fit to the nucleotide alignments of the lacI, lacZ, lacY and

lacA genes, with stop codons deleted and alternative start codons, which occur in lacI and lacA,

changed into the regular ATG. For lacA, the last 3 codons of the alignment were deleted since

clade V strain TW09308 has a stop codon two codons before the other strains. As phylogenies,

the amino acid phylogenies of each of the respective lac operon genes were used.

We compared site models M0 (Goldman and Yang, 1994; Yang and Nielsen, 1998), M1a

(Nielsen and Yang, 1998; Yang et al., 2005), M2a (Nielsen and Yang, 1998; Yang et al., 2005),

and M3 (Yang et al., 2000), and M7 (Yang et al., 2000) and M8 (Yang et al., 2000). Model M0

fits a uniform dN/dS ratio (ω) to all sites in the sequence, and thus contains only one parameter.

In model M1a, a variable proportion of sites in the sequence is assumed to be evolutionarily

neutral and thus have ω = 1; for the rest of the sites, the dN/dS ratio is estimated. This model

thus contains two free parameters: the proportion of neutral sites, and the dN/dS ratio for the

non-neutral sites. Model M2a also assumes a proportion of neutral sites, and in addition, a

proportion of sites for which ω>1 (positively selected sites). This model contains four free pa-

rameters: the proportions of neutral and positively selected sites, the value of ω<1, and the

value of ω>1 . Model M0 is nested in model M1a, which in turn is nested in model M2a. In

model M3, three values for ω and their proportions are estimated like in M2; however, the values

of these ratios are not constrained in any way. This model therefore contains five free parame-

ters (the three values of ω = 1, and the proportions of two of them) and models M2a, M1a and

M0 are nested in it.

Model M7 assumes that the value of ω for each site is drawn from a discrete beta distribution

with 10 categories; this distribution is specified by two free parameters p and q, which are the

only free parameters of this model. Model M7 is nested in model M8, which also estimates a

beta distribution, but in addition assumes that a variable proportion of sites has ω ≥ 1.

Model fits of nested models were compared using the likelihood ratio test, as described in

(Goldman, 1993; Yang et al., 2000). The test statistic for this test is calculated as two times

the difference between the log likelihoods of the data under the simpler model and the more

complex model, respectively. Test statistics were compared to the reference values in a χ2

table, where the number of degrees of freedom is given by the difference in number of free

parameters of the two models.
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The comparison of models M7 and M8 and of M1a and M2a are alternative ways of performing

a likelihood ratio test of positive selection. The M2-M1a comparison is more conservative than

M8-M7 (see PAML documentation). Since our results were always qualitatively similar for both

model comparisons, we only report the M2a-M1a values.

In addition to site models, branch models were fit to our alignment. For these models, different

ω values are fit to different branches in the alignment. In branch models, different dN/dS ratios

are fit to different branches in the phylogeny, while all sites in the alignment are assumed to

have the same dN/dS ratio within a branch (strain). Branch models are specified in PAML by

labelling branches in the tree file. We distinguished human and environmental branches, and

compared several alternative labelings of inner branches (see for more details the results and

discussion, Figure 2.7 and Table 2.6).
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3 Chapter Three: A natural genotype-phenotype map

3.1 Introduction

Evolution by natural selection depends upon the presence of heritable phenotypic variation in

nature. If there is no phenotypic variation, there is nothing for natural selection to select; and

species can change over generations as a result of selection, only if the selected properties are

heritable. This idea has been one of the fundamental components of the theory of evolution,

ever since this theory was formulated by Darwin. Yet, Darwin formulated his theory without

knowing how the information about heritable traits that is passed on to the next generation is

encoded.

After discovery of proteins as the mediators of most fundamental processes in cell, and

the gene as the basic unit of information encoding a protein, researchers initially focused on

differences in protein coding sequence as the heritable basis of phenotypic variation that natural

selection acts on. However, after the discovery of gene regulation by Jacob and Monod in the

mid-20th century, this has changed (Jacob and Monod, 1961a). A few years later, Britten

and Davidson proposed the theory (Britten and Davidson, 1969, 1971) that major evolutionary

changes from simpler to more complex life forms are brought about by changes in the regulation

of the expression of conserved genes, rather than by changes in the genes themselves. This

idea became more widespread with the finding that human and chimpanzees differed only by

1% in their protein sequences. In an influential paper, King and Wilson (King and Wilson,

1975) suggested that this is too low a number to explain the (in their view) more substantial

difference in phenotype between the two species. To explain this finding, they proposed that

the differences between these species in morphology/physiology are driven by differences in

gene regulation, rather than by differences in coding sequence.

Some authors have argued that in particular change in cis-regulatory elements is what un-

derlies most evolution, as opposed to trans-regulatory elements or coding sequence (Carroll,

2000; Stern, 2000). The term ’trans’ is used to denote the sequence of transcription factors,
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proteins which bind to the DNA and regulate the expression of genes encoding other proteins.

Cis variation, on the other hand, denotes variation in the regions directly surrounding (or even

within) genes that affect their expression, without encoding intermediary agents such as tran-

scription factors (Stern and Orgogozo 2008); typically, these are sequences such as promoter

and operator sequences, to which RNA polymerase and/or transcription factors can bind. Vari-

ation in these sequences affects the binding properties of RNA polymerase or transcription

factors, thereby affecting gene expression.

While gene regulation was discovered in bacteria and initially studied in bacteria and bacte-

riophages, the question of the relative importance of changes in coding sequence and in gene

expression/regulation, and more specifically cis- and trans- regulatory variation, in evolution

has been studied mostly in eukaryotes. Most of the arguments have focused on morphological

and developmental changes, which are specific to multicellular eukaryotes (see e.g. (Hoekstra

and Coyne, 2007; Stern and Orgogozo, 2008)). In bacteria, the question of the relative im-

portance of coding and regulatory changes in evolution is still more open. Since many of the

arguments pertaining to development of morphological structures obviously do not apply, does

this mean that (cis-)regulatory changes are less important in bacterial evolution?

The lac operon is a good model system to explore this question, first of all because it is a

relatively independent genetic module, coding for what can be considered a single trait (lactose

metabolism/ growth on lactose) which is relevant for fitness under defined conditions. Due

to its modular structure, the lac operon contains both coding and regulatory sequences. Its

regulatory sequences are of a rich variety, containing both cis (RNA polymerase binding site,

operators, CRP binding site) and trans regulatory sequences (the repressor protein sequence).

In addition, the lac operon was the first gene regulatory system to be discovered (Jacob and

Monod, 1961a) and has been a beloved model system of bacterial genetics for more than

half a century. For this reason, a wealth of literature is available about the lac operon and its

components, which have been studied from molecular, biophysical and experimental evolution

angles, to name a few (see e.g. (Juers et al., 2012; Ozbudak et al., 2004; Quan et al., 2012)).

For these reasons, we decided to explore the natural diversity of the lac operon, on a genetic

as well as a phenotypic level, across a set of natural isolates of E. coli and Escherichia. Com-

paring genetic and phenotypic variation of lac operons of E. coli and Escherichia clade I, III,

IV and V isolates from different environments, we tried to find the genetic basis for phenotypic

variation in the lac operon.

Finding genetic variation that underlies phenotypic variation, in itself, does not imply that this

variation is the result of selection. First of all, the phenotypic variation could be evolutionarily
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neutral, and not represent variation in fitness. Moreover, even if this genetic variation would

correspond to differences in fitness under laboratory conditions, this does not imply that these

fitness differences are relevant in nature: they could be too slight to outweigh the role of genetic

drift, or they could be limited to specific conditions in the laboratory. In addition, variation

in fitness that is relevant in the wild could be caused by neutral processes, such as relaxed

selection and genetic drift.

Yet, one can get an idea which phenotypically relevant genetic variation is a result of se-

lection by looking for variation that correlates with environment of isolation. If genetic variation

correlates with environment of isolation, this is likely to be a result of differing selection pres-

sures across environments. To look specifically for variation that is the result of selection, we

compared lac operons of isolates of human and environmental origin, hypothesizing that these

might have undergone systematically different selection pressures in the past.

We expected that environmental isolates, if they represent strains adapted to a lifestyle

outside the human gut, might have had less exposure to lactose and thus experienced a re-

duced selection pressure on the lac operon. Alternatively, environmental strains could have

been exposed to selection pressures of a different nature (e.g. to grow better at lower con-

centrations of lactose). If we would find systematic differences in phenotype between human

and environmental lac operons, we could then try to trace back these differences to particular

polymorphisms in the lac operon sequence.

Whether environmental isolates of E. coli and of divergent clades of Escherichia do typically

represent strains adapted to an environmental lifestyle, is unclear. As discussed in the first

chapter of this thesis, the extent of cycling of E. coli and of divergent clades of Escherichia

through the environment is not known, nor are growth rates and population sizes of E. coli in

the environment (see e.g. (Ishii et al., 2006; Luo et al., 2011)).

This is not a result of laziness or disinterest among researchers; in fact, it is not trivial to get

an unbiased and complete overview of what bacteria are present in soil, and what substances

they live on. To find out what bacterial species are present in soil, there are two main meth-

ods: culturing, and metagenomics approaches. Estimates are that only 0.1 to 1% of bacterial

species are culturable using traditional methods (Daniel, 2005). Thus, culturing only gives a

very limited picture of the species present in soil.

For this reason, many researches have turned to metagenomics approaches, which circum-

vent the culturing step and explore natural diversity on the DNA sequence level. Metagenomics

can be applied to search for specific genes or functions, irrespective of what species these

genes came from, or alternatively, to get an impression of the species diversity of a commu-



36

nity. However, these methods often do not give definitive information as to whether a particular

species is present, rare or absent in a certain community, since it is hard to access the ’rare

biosphere’ (Lombard et al., 2011); it has been estimated that to achieve substantial represen-

tation of the rarer (less than 1%) species in a soil, on the order of a hundred billion clones

would be required (Daniel, 2005). In addition, screening for genes does not tell much about the

species these genes came from, since genes can be exchanged between bacterial species by

horizontal gene transfer, which plays an important role in gene acquisition in E. coli (Ishii and

Sadowsky, 2008). Moreover, soil is a structured environment, so where and how is sampled

determines which species are found, and the species composition of soil communities can be

very different between sampling sites, as well as across time (Lombard et al., 2011).

In this chapter, I aim to elucidate the genetic basis of natural variation in phenotype in the

lac operon of E. coli. I compared growth rates and protein activities conferred by the lac oper-

ons of human and environmental isolates of E. coli and divergent clades of Escherichia in a

common genetic background. To achieve this, lac operons of the strains under study were each

cloned into a low copy number plasmid and introduced into a K12 MG1655 strain with a deleted

lac operon (see Methods).

With this work I had three main aims:

First of all, I tried to trace the sources of genetic variation that underlie natural variation in

growth rate on lactose and LacZ protein activity. In particular, I investigated the effect of natural

sequence variation in the lac promoter region on LacZ protein expression and on growth rate

on lactose as a sole carbon source, as well as the amount of covariation between the latter two

phenotypes.

In addition, I compared phenotypes across lac operons, to assess whether lac operons of

human and environmental origin differ in fitness. Finding out to what extent the lac operons of

E. coli from different environments differ in phenotype could shed light on the ecology of E. coli

and Escherichia spp. in nature.

Finally, I tried to assess the influence of genomic background on growth on lactose. To

this end, I compared growth rates conferred by natural variants of the lac operon in a common

genetic background to growth rates conferred by the same lac operons in their original genetic

backgrounds.
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3.2 Results

3.2.1 Natural sequence variation in the lac promoter region predicts variation

in LacZ activity

While the canonical RNA polymerase binding region (the -10 and -35 elements of the lac pro-

moter) was conserved across natural isolates, other positions in this region varied (Figure

3.1). I analyzed this variation using a thermodynamic model (Tugrul, 2016). This model uses

the binding energy matrix inferred by (Kinney et al., 2010), and in addition assumes that RNA

polymerase can bind with some probability to not only its canonical binding site, but also with

a lower affinity to other sites along a promoter region. The total binding probability is calcu-

lated as the sum of all binding probabilities along a region of interest, using a sliding window

approach (Tugrul, 2016).

The predictions of RNA polymerase binding affinity of this thermodynamic model, based on

sequence variation in the lac promoter region, correlated with LacZ protein activity measured by

a beta-galactosidase assay at high inducer concentration (Figure 3.2). Additional predictions

were generated for the CRP binding affinity of this promoter sequence and RNA polymerase

binding affinity of the lacI promoter region. Neither of these correlated with variation in LacZ

activity or growth rate; indeed, the single variable site in the CRP binding site was not predicted

to affect affinity (Tugrul, 2016).

The beta-galactose assay was done by growing the cells overnight in LB medium with the

chosen inducer concentration, and after two dilution steps in the following morning, when a

desired OD is reached, halting growth and lysing the cells; subsequently, the compound ONPG

was added, which turns yellow when broken down by the LacZ protein. The absorbance at the

wavelength corresponding to this yellow color was then measured in the plate reader for the

duration of one hour, and a straight line was fit to this increase in absorbance. The slope of this

line corresponds to the total activity of all the LacZ molecules in the well; dividing by the initial

OD and the volume of culture added corrects for the amount of cells added to the culture, so

that one is left with a measure of the total ONPG metabolizing capacity of LacZ per cell. This

capacity is influenced both by the amount of LacZ molecules, as well as by the activity of each

individual molecule; thus, the LacZ assay reflects gene expression as well as molecular activity

of the LacZ protein.

Since the variability of the data generated with this assay was very high, I repeated the

assay at its highest inducer concentration (0.5 mM IPTG) as well as at an additional higher in-

ducer concentration (1 mM) and without inducer, to test whether the model fit was reproducible
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Figure 3.1: Variation in lac promoter region and corresponding LacZ activity scores. Figure by Murat Tugrul,

Figure 3.2 from (Tugrul, 2016), shading added by me. This figure depicts the entire intergenic region between the

coding sequences of the lacI and lacZ genes. Note that the numbering of positions in this figure counts back from

the start codon, so the -10 and -35 positions in this figure have different numbers. Grey shading demarcates the -10

and -35 binding sites of the RNA polymerase, which as can be seen are conserved among the isolates I studied.

Blue shading indicates operator O1 and part of operator O3 (the rest of this operator overlaps with the LacI coding

sequence and is not shown in the figure). Green shading demarcates the CRP binding site. As can be seen, the

CRP binding site contains one variable site among the operons I studied, which however was not predicted to affect

CRP binding affinity (Tugrul, 2016), see text. Operator O1, the main operator of the lac operon, contains no variable

sites among my set of isolates, while operator O3 contains three variable sites in total, two of which overlap with the

LacI coding sequence. Operator O2 overlaps with the lacZ coding sequence and is not shown in this figure (this

operator contains one variable site among the isolates I studied; see Appendix 2, Table B.1).

and perhaps even better at higher concentrations of inducer (Figure 3.3 (b) and (d), 3.4 (e), (f)

and (g)). This reproduced the observed correlation at high inducer concentrations, increasing

our confidence that this correlation is a result of genetic variation.

The log transformed LacZ activity data of both these runs of the experiment were analyzed

together using a linear mixed effect model with IPTG concentration, strain origin (human or en-

vironmental) and predicted gene expression as fixed factors, and construct identity and whether

the experiment was part of the first or second set of experiments as random factors. All factors

except strain origin were found to be significant in this model (p<0.001 for predicted gene ex-

pression, p<0.0001 for the other factors, comparing models with and without each factor using

an ANOVA).
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Figure 3.2: RNA polymerase binding as predicted by a thermodynamic model (Tugrul, 2016) correlated

with mean LacZ activity at full induction (0.5 and 1 mM IPTG), measured in a beta-galactosidase assay.

Model predictions (arbitrary units) are plotted on the x-axis; values on the y-axis represent log LacZ activity (log

Miller units). Values in this figure represent pooled data of the first and second series of experiments (see text).

Blue names denote lac operons of human isolates, red of environmental isolates. The dotted line represents the

line of best fit of a linear regression of log LacZ activity at the depicted inducer concentrations on predicted gene

expression, for illustrative purposes; predicted gene expression was significant as a fixed factor in a linear model

including inducer concentration as another fixed factor, and first resp. second series of experiments and construct

identity as random factors (see text).
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Figure 3.3: (a) First round of LacZ activity assays. (b) Second round of LacZ activity assays. Each dot

represents one replicate assay. Gray dots represent assays performed without inducer. It can be seen that even

though a higher IPTG concentration (1 mM) was included in the second series of experiments, on average lower

values were measured at high inducer concentrations in the second, than in the first series of experiments. (c) First

round of LacZ activity assays. (d) Second round of LacZ activity assays. Same data as in (a) and (b), depicted

as box plots. Note the difference in scale between the two figures.
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Figure 3.4: LacZ activity for the lac operon constructs. Each plot depicts LacZ at a different inducer concen-

tration. These figures show the data of Figure 3.2 in separate plots.
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3.2.2 Natural variation in LacZ activity does not predict variation in growth rate

Growth rate data of the lac operon constructs (Figure 3.5; see also Figure 3.11) were analyzed

in a linear mixed model with construct identity as a random factor, and lactose concentration,

strain origin and gene expression predicted by Murat Tugrul’s thermodynamic model (Tugrul,

2016), resp. mean LacZ activity at full induction (in the first resp. second series of LacZ

assays), as fixed factors.

Even though as discussed in the previous section, sequence variation in the lac promoter

region predicted LacZ activity, neither gene expression predicted by the thermodynamic model,

nor LacZ activity at high levels of induction predicted growth rates on lactose medium (see

Figure 3.6 and 3.7), neither as a main effect nor in interaction with lactose concentration.

Removing strain origin and predicted gene expression resp. mean LacZ activity as factors from

these models did not significantly change model fit (according to model comparison using an

ANOVA) and lowered the AIC, indicating that the simpler model is to be preferred. However,

note that standard deviations of growth rate as well as LacZ activity measurements were high,

precluding the detection of subtle effects.

Correlating growth rate with LacZ activity separately across different concentrations of lac-

tose resp. inducer, LacZ activity at some lower concentrations of inducer was found to correlate

with growth rate on low lactose concentrations. This appeared to suggest that the lac operons

we studied differed from each other in the level of repression they conferred. However, after

removing the two extreme data points (M4 and TW09308), which represent two lac operons

with reduced growth rate and LacZ activity, these correlations disappeared, suggesting this is

not a general effect. I analyzed these data together in a linear mixed effect model with mean

LacZ activity at low (<0.2 mM), mid (0.2 mM) and high ≥0.5 mM) IPTG concentration as fixed

factors, together with lactose concentration, strain origin and predicted gene expression as

fixed factors, and strain identity as a random factor. In this model, no factors except lactose

concentration and strain identity were significant. Sequentially removing the non-significant

predictors with highest p-values from the model resulted in a reduced model in which lactose

concentration and LacZ activity at mid and high IPTG concentrations were significant predictors

of growth rate, along with the random factor of strain identity. However, when considering the

data without strain M4, mean LacZ activities were no longer significant factors.
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Figure 3.5: Growth rates for the lac operon constructs, in a common genetic background, in M9 medium

with lactose as sole carbon source. Each plot depicts growth rates at a different lactose concentration. These

figures show the data of Figure 3.5 in separate plots.
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Figure 3.6: Mean LacZ activity and mean growth rate on lactose medium of the different constructs, at

different concentrations of lactose (for the growth rates) resp. inducer (IPTG, for the LacZ activity assays).

While a correlation between these values was observed at some concentrations of lactose and IPTG (middle pan-

els), these correlations did not persist after removing the two most extreme data points of M4 and TW09308. Red

dots denote operons of human isolates, black of environmental isolates. Note that the same values appear across

multiple plots: each row of plots contains the mean growth rate values for one particular lactose concentration,

each column the mean LacZ activity values for one particular IPTG concentration. Error bars represent standard

deviations.
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Figure 3.7: Mean LacZ activity and mean growth rate on higher concentrations of lactose (for the growth

rates), and different concentrations of inducer (IPTG, for the LacZ activity assays). Red dots denote operons

of human isolates, black of environmental isolates. Note that the same values appear across multiple plots: each

row of plots contains the mean growth rate values for one particular lactose concentration, each column the mean

LacZ activity values for one particular IPTG concentration. Error bars represent standard deviations.
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3.2.3 Repression levels and growth rate

The level of repression can be calculated by dividing gene expression at full induction by unin-

duced levels of gene expression Razo-Mejia et al. (2014). When using the log transformed

LacZ data, this corresponds to the difference between log LacZ activity at full induction resp.

at zero induction. Growth rates at different levels of lactose are plotted against these repres-

sion values in Figure 3.8. While for some concentrations of lactose, a significant correlation

between repression level and growth rate was found (panel (a)), this correlation was no longer

significant upon removal of the data for construct M4 (panel (b)).

Correspondingly, when analyzing growth rate data in a linear mixed effect model with re-

pression, origin, predicted gene expression, predicted repressor expression and lactose con-

centration as fixed factors and strain identity as a random factor, only repression and lactose

concentration were significant predictors of growth rate (p<0.0001 and p=0.005, respectively),

and strain identity was a significant random factor. In the simpler model with only lactose con-

centration and repression as fixed factors, repression was marginally nonsignificant (p=0.068).

However, repression was no longer close to a significant predictor of growth rate upon removal

of strain M4 from the dataset (e.g. p=0.44 in the simple model).

The thermodynamic model of Tugrul (2016) was also used to generate predictions for the

expression of the repressor, which is constitutively expressed from a very weak promoter. This

predicted repressor expression was no significant predictor of growth rate in any model I tested.

Neither did calculated repression level correlate with this prediction (data not shown), although

interestingly, construct TW09308 had the lowest predicted repressor expression as well as the

lowest calculated repression level.

3.2.4 No systematic differences in phenotype between lac operons of human

and environmental isolates

Throughout all figures, it can be noted that there are no systematic differences between pheno-

types of lac operons of environmental isolates, as compared to those of human isolates. This is

summarized in Figures 3.9 and 3.10. As mentioned at the end of Section 3.2.1 and in Section

3.2.2, strain origin was not a significant predictor in linear mixed models of log LacZ activity, nor

of growth rate.

Both for the models for growth rate and LacZ activity data discussed in the previous sections,

removing strain origin as a factor did not result in a significantly worse fit and lowered the AIC.
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Figure 3.8: (a) Mean growth rates per construct, at different concentrations of lactose, plotted against

repression levels as calculated from the LacZ activity assays, by subtracting log LacZ activity at zero induction

from log LacZ activity at full induction (see text). (b) Same data as in (a), but without the data point of construct

M4. Without the data for this construct, there are no significant correlations between repression level and growth

rate at any lactose concentration.
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Thus, there is no reason to believe that that lac operons of human isolates confer systematically

different LacZ activities or growth rates compared to those of environmental isolates.

What can be noted in Figure 3.4 is that all constructs of the divergent Escherichia clades

(strain names starting with TW) have a lower predicted gene expression, and measured LacZ

activity values that fall in the lower part of the range. Among these divergent clades, however,

there are also two human isolates, which do not stand out from the other ones with regard to

predicted gene expression or measured LacZ activity.

It can also be noted in Figure 3.2 that the three constructs with highest LacZ activity scores

are in fact human isolates (canonical lab strain K12, and infant strains M2 and M3). Whether

this is a coincidence or part of a pattern, I do not have enough data points to assess.

3.2.5 Effect of genomic background

To assess whether genomic background affects growth rate on lactose, in addition to or in

interaction with the effect of the lac operon, we compared the growth rate parameters of our

lac operon constructs with those of the original isolates from which these lac operons were

obtained. All lac operon constructs were maintained in the same genomic background; for

each of the original isolates, the genomic background was different.

As can be seen in Figure 3.11, wild isolates tended to grow faster in minimal medium with

lactose. (Note that the K12 construct and original isolate grow very similarly, suggesting that

this does not have to do with the antibiotic in the medium to maintain constructs, nor with

plasmid copy numbers.)

To quantify the pattern of growth on lactose beyond maximum growth rate, we fit Monod’s

model to our growth rate data.

The performance of a lac operon on different concentrations of carbon source can be de-

scribed, broadly, by the maximal growth rate it confers on abundant levels of carbon source, its

ability to grow on small trace amounts of carbon source, and the shape of the relation between

carbon source concentration and growth rate. Monod’s model describes growth on different

lactose concentrations using only two parameters, according to the formula µ = µmax
S

Ks+S .

Here, µmax represents maximal growth rate attained at non-limiting substrate concentrations,

and Ks represents the substrate concentration at which half maximal growth is reached (see

Figure 3.12).

To describe differences in growth rate between the different natural lac operons, we fitted the

Monod equation to our growth rate data for different values of S up until 0.5 mM, independently
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Figure 3.9: LacZ activity by lac operon origin (human or environmental). (a) First series of experiments.

(b) First series of experiments, log transformed data. (c) Second series of experiments. (d) Second series of

experiments, log transformed data.

estimating the µmax and Ks parameters per construct. At higher concentrations of lactose,

the Monod relation broke down as growth rates decreased slightly with increasing substrate

concentration, a phenomenon which has been described before for growth on substrates that

become toxic at high concentrations (Andrews, 1968). For this reason, we did not include

growth rates for lactose concentrations over 0.5 mM in our model fitting 1.

1Andrews (Andrews, 1968) published a formula incorporating the drop in growth at higher substrate concentra-

tions; however, this formula contained three parameters, which was too many to fit it on to the number of independent
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Figure 3.10: Growth rate by lac operon origin (human or environmental). (a) Growth rate data of lac operon

constructs. (b) Growth rate data for the corresponding original isolates (i.e. the same lac operons, in their original

genomic backgrounds).

Fitting Monod’s model to my growth rate data yielded strongly correlated estimates of the

µmax and Ks parameters. While initially seen as a reason for excitement and thought to reflect a

trade-off between growth on high and low substrate concentrations, this correlation was shown

by Georg Rieckh to be an artefact of the model fitting. This was caused by a lack of parameter

identifiability, meaning that unique estimates of the parameters could not be obtained due to

nature of the function being fitted (see (Grady et al., 1996; Robinson and Tiedje, 1983; Robin-

son, 1985)). This happens when the best fitting value for one parameter depends upon the

value estimated for another parameter to be fitted, leading to correlated parameter estimates

and fit errors. Following Georg Rieckh’s suggestion, we tried to improve parameter identifiability

by using a modified Monod model which included a Hill coefficient, n: µ = µmax
Sn

(Ks)n+Sn . The

remainder of this part of the project was done in collaboration with Srdjan Sarikas.

This three parameter model proved too complex compared to the number of independent

measurements in my data set, making a direct fit impossible. To get around this, we assumed

that the optimal Hill coefficient n would be the same for all constructs. Setting n to this optimal

value would leave the model with two free parameters to fit again. To obtain this optimal value

for n, I fit the model with different values of n, hoping to find a value for n for which the cross

correlation between the two fit parameters µmax and Ks (the off-diagonal element in the 2x2

correlation matrix) would be minimal (see Figure 3.13). By minimizing this cross correlation, we

data points I had.
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Figure 3.11: (a) Growth rates for the lac operon constructs, in a common genetic background, in M9

medium with lactose as sole carbon source. (b) Growth rate in the same medium (minus antibiotic) for

these same lac operons in their original genomic backgrounds.
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Figure 3.12: Monod’s relation between substrate concentration and growth rate. Figure by A. Cunningham,

Center for Biofilm Engineering, Montana State Univeristy, Bozeman, MT.

aimed to minimize the interdependence of the values for best fitting parameters. However, the

correlation of fit parameters decreased monotonically with increasing Hill coefficient (Figure

3.14). Thus, aiming for a minimal cross correlation alone did not suffice as a criterion for

choosing a Hill coefficient.

To find the optimal value for the Hill coefficient, we then calculated the sum of squared

differences between predicted and measured values, χ2, of the fits (
∑n

i=1
(µmeasured

i −µpredicted
i )2

τmeasured
i

,

where µmeasured
i is the measured growth rate at substrate concentration i, µpredicted

i is the growth

rate at that substrate concentration predicted by the model, and τi is the standard deviation of

the measured growth rates at that particular substrate concentration) for a range of different

Hill coefficients. Average χ2 across strains and constructs was minimal for a Hill coefficient of

2, meaning this value minimized the error of the fits. For this reason, we decided to use a Hill

coefficient of 2 for all our subsequent Monod model fitting.

Growth rate parameter estimates for the Monod model with the optimal Hill coefficient of

2 are plotted in Figure 3.15 for constructs together with those of the corresponding original

isolates, surrounded by error clouds representing 95% confidence intervals. Estimates of each

of the µmax and Ks parameters separately, corresponding to projections of the points and their

error clouds on the respective axes, are plotted in the flanking panels.

In these plots, several things become apparent. First of all, parameter estimates for con-

struct K12 in the genomic background of K12 ∆lac overlapped with parameter estimates for

the unmodified K12 strain, both for the µmax and Ks parameters. This is important as a sanity

check, assuring us that parameter estimates are reproducible, and that any differences in copy

number of the lac operon between constructs and original isolates are not large enough to skew

our results.

Secondly, it can be noted that estimates for µmax are almost universally higher for our lac

operons in their original genomic backgrounds. Exceptions are infant E. coli strain M1, which
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Figure 3.13: Fit parameters for constructs (plotted in red) and original isolates (plotted in blue), with error

clouds, for increasing values of the Hill coefficient (top left panel: Hill coefficient of 1; top right: Hill=2, second

left from the top: Hill=3, and so on). Fit parameter values for µmax are plotted on the x axes, fit parameter values for

Ks on the y axes. As can be seen, parameter identifiability is very low at a Hill coefficient of 1, which corresponds

to the original Monod model, and improves with increasing values of the Hill coefficient. We chose a Hill coefficient

of 2 to fit our growth rate data, because this minimized the fitting error (see Methods). Figure by Srdjan Sarikas.

did not grow in the minimal medium we used for our experiments, and Escherichia clade V

strain TW09308, for which growth rate of the original isolate was on average lower than of its

corresponding construct, although confidence intervals overlapped.
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Figure 3.14: Cross correlation of fit parameters for increasing values of the Hill coefficient, for growth

rate data of lac operon constructs (panel a) and original isolates (panel b). Gaps in the figure correspond to

Hill coefficients for which the fitting did not converge (nonlinear least squares fitting using R).



55

Figure 3.15: Estimates of µmax and Ks for a Monod model with Hill coefficient equal to 2, flanked by

projections of the estimates for the µmax and K parameters and their confidence intervals on their respective

axes. Figure by Srdjan Sarikas.
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3.3 Discussion

3.3.1 Where in the lac operon does the natural variation relevant for phenotype

lie?

Phenotypic variation in lactose metabolism could have different genetic sources, which can be

broadly divided into coding and regulatory sources of variation. Here I explore the genetic basis

of phenotypic variation among E. coli and Escherichia in nature, focusing on the phenotype of

growth rate on minimal medium with lactose as sole carbon source. While this phenotype does

not directly correspond to the situation E. coli find themselves in in nature, I use it as a first

proxy for the more complex phenotypes related to lactose metabolism that are expected to

contribute to fitness in the wild.

In addition, as a step in between DNA sequence and growth rate, I performed LacZ activity

assays. This protein activity assay is a combined measure of gene expression (which affects

the quantity of β-galactosidase (LacZ) molecules produced) and molecular activity of individual

LacZ molecules. In addition to these two sets of data I collected, I have used a set of predictions

generated by (Tugrul, 2016) of gene expression of the lac operon, based on thermodynamic

model predictions of RNA polymerase binding probability to the lac promoter region.

Together, these gene expression predictions, protein activity values and growth rates pro-

vide information on three ’stops’ on the path from genotype to phenotype on lactose. My first

aim in this chapter is to explore what information I can extract from these data, about the rela-

tive contribution of particular regulatory and coding sources of variation on natural variation in

phenotype on lactose.

The coding regions that might contribute to variation in growth on lactose are the three

lac operon genes, lacZ, lacY, and lacA. Potential cis-regulatory sources of variation in the lac

operon are located in the lac promoter region, which lies directly upstream of the three genes

of the lac operon. This region can be divided into several subregions: the RNA polymerase

binding site, the CRP binding site, and the operator regions, which are the binding site for the

lac repressor. The lac repressor itself is another potential source of regulatory variation. Its

coding sequence determines (together with the operator sequence it binds to) how strongly it

can bind to the operator regions (trans-regulatory variation). In addition, the lac repressor gene

has its own cis-regulatory region, the RNA polymerase binding site, which ensures a very weak

constitutive expression of the repressor protein. The sequence of this region determines the

number of repressor molecules that are on average present in a cell.
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Natural sequence variation in lac promoter region predicts variation in LacZ activity

Correlating the thermodynamic model predictions of RNA polymerase binding probability with

the LacZ activity data, we found that natural variation in the lac promoter sequence, upstream

of the canonical -10 and -35 RNA polymerase binding site, predicted natural variation in LacZ

protein activity measured by a beta-galactosidase assay at full induction.

The correlation of thermodynamic model predictions with the scores on this assay suggests

that variation in these positions in the sequence causes variation in gene expression, and that

the assay is sensitive to these differences in gene expression. Alternative explanations of this

correlation are that it reflects coincidental correlation of genotypes with protein expression, or

that it is an artifact of measurement variability. However, the fact that the correlation found again

when the experiments were repeated suggests that it is not an artifact of noisy measurements.

The other alternative explanation, that the correlation is caused by other differences in the

genotypes which happen to co-occur with the variation in their promoter sequences, could be

addressed by creating a separate set of lac operon constructs which vary only in their lac

promoter sequence, and repeating our measurements with those. This is something we are

considering to do in the future.

The positions in the lac promoter region that did vary among the set of lac operons I stud-

ied, and that predicted variation in gene expression, corresponded to a previously reported

alternative RNAP binding site in the lac promoter ((Xiong et al., 1991); see (Tugrul, 2016)).

The hypothesis proposed by (Tugrul, 2016) is that RNA polymerase may bind to non-canonical

binding sites in the vicinity of the canonical RNA polymerase binding site, and that binding to

these non-canonical sites affects the overall binding probability of RNA polymerase to a pro-

moter region, and with that gene expression. Whether the variation among these sites in the

natural variants of the lac operon I studied is adaptive and reflects differences in past selection,

or whether this variation represents neutral variation that is not accessible to selection because

its effects on fitness are too slight, is a question the present work cannot answer. Since vari-

ation in phenotype did not correlate with environment of isolation, we have no positive clues

that indicate that this variation is relevant for fitness. However, phenotypic variation and en-

vironment of isolation may well be uncorrelated due to extensive environmental cycling of all

strains. If this is the case, then variations in phenotype would not correlate with environment of

isolation, even if they do differ in fitness.

The fact that construct identity was a significant random factor predicting variation in LacZ

activity in addition to predicted gene expression indicates that not all the differences in LacZ
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activities between constructs are explained by differences in their predicted lac operon expres-

sion. This either could mean that the thermodynamic model does not capture the full variation

in gene expression across promoter regions, or that in addition to gene expression, other fac-

tors such as differences in sequence of the LacZ protein underlie the different LacZ activity

scores of the constructs. Note that these two explanations are not mutually exclusive.

Natural variation in LacZ activity does not predict variation in growth rate

Having shown that natural variation in the lac promoter sequence predicts natural variation

in LacZ protein activity, the next step is to ask to what extent this variation in LacZ activity

predicts growth rate. Assuming that the operon is fully induced when growing at the highest

lactose concentrations of 0.5 to 1 mM, at which growth rate is (close to) maximal, finding a

significant correlation between LacZ activity at the highest inducer concentrations and growth

rate, at least at the highest lactose concentrations would indicate that variation RNA polymerase

binding and/or molecular activity of the LacZ protein would underlie natural variation in growth

on lactose. At lower concentrations of inducer and lactose, the lac operon is expected to be

partially repressed, and thus variation in repression is an additional potential source of variation.

Mean LacZ activity at full induction did not predict growth rate at different lactose concen-

trations in a linear mixed effects model, neither as a main effect nor in interaction with lactose

concentration. This suggests that neither molecular variation in LacZ, nor variation in poly-

merase binding underlies natural variation in growth rate. Depending on the combination of

factors in the reduced model, LacZ activity at mid and high induction were significant predictors

of growth rate; however, these effects vanished when strain M4 was removed from the dataset,

which suggests they do not reflect a general trend in the data.

What can be said about the role of the repressor?

If variation in some aspect of repression, either the abundance of the repressor, or the affinity of

the repressor molecule to the operator region, would be apparent in our phenotypic measures,

one would expect LacZ activities at lower levels of induction to correlate with growth rate at

lower concentrations of lactose. At low lactose concentrations, the repressor should be partly

active and bound to the operator region, resulting in sub-maximal operon expression. However,

at no combination of inducer and carbon source concentrations did LacZ activity correlate with

growth rate; that is, not after removing the data points of constructs M4 and TW09308, two
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lac operons with reduced growth rate and LacZ activity, which might have been under relaxed

selection.

In addition, repression can be quantified as the difference between log LacZ activity at full

induction (≥ 0.5 mM IPTG) and log LacZ activity without inducer. While repression was a

significant predictor of growth rate in a linear mixed effect model, again this was no longer the

case upon removal of construct M4 from the dataset.

Thus, it appears that variation in repression does not underlie variation in growth rate for

the whole set of constructs, but might do so for constructs M4 and Tw09308. The behavior of

these two operons was idiosyncratic (TW09308 showing strongly reduced LacZ activity under

all conditions together with a consistent but less pronounced reduction in growth rate, while

M4 showed extremely reduced growth rates, with LacZ activity only being reduced at lower

IPTG concentrations). Thus, there seems to be no systematic pattern of variation in repression

underlying variation in growth rate at low lactose concentrations.

The thermodynamic model of [Tugrul, 2016] was also used to generate predictions for the

expression of the repressor, which is constitutively expressed from a very weak promoter.

These predictions did not predict growth rate in any model I tested. Thus, variation in re-

pressor abundance does not seem to underlie variation in growth rate. Model predictions of

repressor expression did not explain the variation in repression, although interestingly, con-

struct TW09308 had the lowest predicted repressor expression as well as the lowest calculated

repression level, suggesting this operon might indeed have a reduced repression level.

Future work could try to correlate variable sites in the operator regions with variation in

repression. This would answer the question of whether variation in repressor binding sites

affects its binding affinity, and with that gene regulation. In addition, using more sequences one

could attempt, while correcting for the phylogeny, to investigate whether variable sites in the

operator regions covary with variable sites in the repressor sequence. If they do, this could be

an example of compensatory mutations if repression would not covary in turn, or of co-evolution

if they would. However, given that I have found no clear indication that natural variation in

repression is relevant for growth rate, such a line of work would not be too promising to yield

interesting results.
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Molecular variation in LacY might provide the ’missing link’ explaining variation in growth

rate on lactose

Excluding natural variation in RNA polymerase binding, in LacZ molecular activity and in re-

pression as predictors for natural variation in our growth rate measurements, we hypothesize

that the genetic basis for the natural variation in growth rate on lactose medium we found could

mainly reflect variation in molecular activity of the lactose permease.

In Chapter 2 of this thesis, I have shown that the lactose permease gene is the most con-

served lac operon gene among the isolates I studied. The variation that does exist in this

protein, however (21 variable sites out of 416 sites in total, one to ten variable sites per pair-

wise comparison, see Appendix 2, Table B.3), might have a relatively large impact on fitness.

Dykhuizen et al. (Dykhuizen et al., 1987) have shown that variation in LacY activity has a much

larger impact on lactose flux, and with that, on fitness in a lactose-limited environment, than

variation in the activity of LacZ. It could thus be the case that LacY is under selection to retain

a precisely controlled level of activity, and that the low amount of variation in this protein is a

consequence of this selection pressure.

In their experiments, Dykhuizen et al. (Dykhuizen et al., 1987) showed the wildtype variant

of LacY to be at an intermediate level between high and low expression and activity.2 Since

fitness in the lactose-limited chemostat environment is directly proportional to lactose flux, this

allele is of an intermediate fitness level in that environment. As shown by (Dykhuizen et al.,

1987), wildtype LacY is ’on the shoulder of the fitness surface’: small (positive or negative)

changes in the expression or activity of the protein have a large (positive resp. negative) impact

on lactose flux, and with that on fitness. Changes in permease activity have been shown to

have a much larger effect on lactose flux than changes in beta-galactosidase activity, since

permease activity is the rate limiting step in the flux.3

If the permease activity were also the rate limiting step in nature (and we have no reason

to assume otherwise), this would mean that in nature, too, small changes in permease activity

have large effects on lactose flux. However, in the natural environment, fitness is not always

2As in my experiments, Dykhuizen et al. (Dykhuizen et al., 1987) did not distinguish between molecular activity of

the protein, and operon expression. Instead, they estimated the activity of LacY by using different levels of inducer

and comparing relative fitness levels to a wildtype induction level; the relative contribution of LacY they inferred from

comparing the impact of mutations in LacZ, affecting only beta-galactosidase activity, to that of changes in inducer

level, which affect both LacY and LacZ concentration.
3One can imagine this as follows: as long as the permease is the rate limiting step, making the beta-galactosidase

work faster will not have a large impact on the total flux of lactose, since the additional free beta-galactosidase

molecules would mainly be ’waiting for’ the permease to deliver them more lactose molecules to process.
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directly proportional to flux. For example, at sudden pulses of abundant lactose, pumping in

too much lactose in a short time can cause cell death (Dykhuizen and Hartl, 1978). In addition,

in less extreme situations, it has been shown that the main energetic cost of expressing the lac

operon in the presence of lactose is linked to permease activity (Eames and Kortemme, 2012).

This is due to dissipation of the membrane potential that is used to drive the transport of lactose

across the cell membrane . Thus, too high activity of LacY could be costly.

One might speculate that if under some conditions, increasing the flux of lactose can be

harmful to cells, while at low concentrations of lactose, fitness is directly proportional to lactose

flux, the LacY protein could be under strong selection to remain at an intermediate level of ac-

tivity. The high level of conservation of the LacY protein, and the lack of systematic differences

between strains from different environments (although there are too few variable sites, and too

few divergent human isolates in my batch to say much about this), would then suggest that

this optimal level of activity has been similar across the strains I studied. This in turn could

imply that these strains, although isolated from different environments, have experienced sim-

ilar conditions with regard to lactose availability in their recent selective history, which would

speak in favor of extensive cycling through different environments. However, more data would

be needed to support this interpretation.

Indeed, it should be noted that the genetic component of growth rate variation under our

measuring conditions is very large for most constructs, as can be seen from Figure 3.5. While

the operon of clade V strain TW09308 and infant isolate M4 showed systematically lower growth

rates and LacZ activities, other constructs did not stand out so obviously. This also has to do

with random variation in the growth rate and LacZ activity data, which remained relatively large

in both types of measurements. Finally, it is conceivable that there is not one common factor

underlying the variation across constructs, but rather that mutations in different regions affected

the growth rate of individual operons in different ways.

While two operons mentioned above appeared to have lost fitness, perhaps due to relaxed

selection or drift, our data suggest that the rest of the lac operons we studied are of roughly

equivalent fitness, in so far as this can be determined without direct competition. This would

support the hypothesis that they have quite similar selective histories, as suggested above.

3.3.2 No systematic differences in phenotype between lac operons of human

and environmental isolates

If environmental isolates typically would represent strains that cycle less than average through

the mammal gut, we would expect them to have been exposed to lactose less frequently than
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human isolates. This we would have expected to result in relaxed selection on the lac operon.

However, lac operons of environmental isolates did not perform systematically different from

those of human isolates, neither w.r.t. growth rate on lactose medium nor w.r.t LacZ protein

activity.

We thus have found no evidence that the lac operons of environmental isolates have been

exposed to systematically different selection pressures than those of human isolates, either

with regard to the strength, or the direction of selection.

As mentioned in Chapter 2, the presence of lactose-like compounds, such as galactosyl-

glycerol, in the environment or the herbivore gut might result in selection pressure on the lac

operon, even in the absence of extensive cycling through the mammalian gut (Egel, 1979;

Boos, 1982; Egel, 1988). Naively, however, I would still expect this to result in a distinguishable

phenotype on lactose. Yet, this would depend on the chemical similarity of these substances

to lactose, and their prevalence in the environment. In future work, we could address this issue

by measuring growth rates of our constructs on galactosyl-glycerol. In addition, our constructs

might differ from each other along phenotypic dimensions which were not measured by our

growth rate assays. Growth on combinations of different carbon sources or rapidly alternating

carbon sources are obvious examples, which is another possible line of future work.

Alternatively, it could be the case that most E. coli and Escherichia clade I-V strains do

in fact cycle regularly through the mammal gut environment. This was already hypothesized

about the Escherichia clade I-V strains based on their optimal growth temperature (Ingle et al.,

2011), which is similar to human isolates of E. coli.

It may also well be possible that growth in temperate soil and water environments is so

slow that there has not been enough time for systematic phenotypic differences to arise by

selection, or for fitness to drop due to the absence of selection. In fact, as I mentioned in Chap-

ter 2, environmental E. coli do not grow, but only survive, in soil at temperatures below 30◦C

(Ishii et al., 2006). For the divergent Escherichia clades, it has been shown that in laboratory

medium (phenol red broth), they can grow at lower temperatures than E. coli (minimum growth

temperature 5◦C, compared to 11◦C for E. coli). Given the large difference in minimal growth

temperature in soil and culture medium, it is not unlikely that divergent Escherichia clades, too,

do not grow much if at all in soil in temperate regions. In surface water, however, things may

again be different. While selection also can act on survival, and strains which survive only a

more limited range of environmental conditions would have less of a chance for future repli-

cation in the mammal gut, it is hard to see how differences in the lac operon could affect this

survival rate.
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As I reported in Chapter 2, lacZ genes of environmental isolates showed a stronger sig-

nature of purifying selection than those of human isolates. As a possible explanation for this

difference, I hypothesized that population bottlenecks may occur upon gut colonization, which

might lead to genetic drift. This could explain why human isolate operons do not have a sys-

tematically higher fitness than those of environmental isolates. However, based on this result,

one would expect lac operons of human isolates to show a reduced fitness, compared to lac

operons of environmental isolates. The fact that this prediction is also not supported by my

data might be a result of the above mentioned low control coefficient and flat fitness surface of

the LacZ protein. This might also explain why genetic drift would have occurred more readily in

the lacZ gene than in the other lac operon genes.

Finally, it is imaginable that several of the above mentioned factors are at play for E. coli

and Escherichia clade I-V in the wild. Occasional population bottlenecks followed by selection

in the human gut, interspersed with periods of slower growth or subsistence in the environment,

during which there may or may not be selection on the lac operon, might interact in ways that

are difficult to predict.

3.3.3 Effect of genomic background

Variation in growth rate on lactose medium is expected to be caused by two different factors:

variation in the lac operon sequence, and variation in the genomic backgrounds of the different

strains. It is not known to what extent genomic background influences growth rate on lactose,

which aspects of growth rate it influences if any, and whether it exerts its effects independently

from the lac operon, or in interaction. To address these questions, we compared growth rate

data of our lac operon constructs with those of the corresponding original isolates. All lac

operon constructs were maintained in the same genomic background; for each of the original

isolates, genomic background was different.

Naively, since genomic background is expected to have an influence on overall growth rate,

one would expect µmax, maximal growth rate on abundant lactose, to be determined by both the

lac operon sequence and genomic background. Ks, on the other hand, which represents the

sensitivity to low concentrations of lactose, we would expect to depend only on the lac operon

sequence.

Comparing growth rate parameters of lac operons of natural E. coli isolates on plasmids and

in their original backgrounds, we found that for all but one of the strains, maximal growth rate

on unlimited lactose (µmax) was higher in the original background than in the K12 background
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(not counting one infant strain which did not grow on minimal medium). The most simple and

parsimonious explanation for this advantage of the original backgrounds is that lab strain K12

has a reduced fitness on minimal medium compared to most natural strains of E. coli and

Escherichia clade I, III and IV. Such a reduced fitness on K12 on minimal medium might be

due to adaptation to a high nutrient environment, which might have occurred over its almost

century-long lab propagation. An alternative possibility is that this strain happened to grow

relatively poorly on minimal medium to begin with.

Alternatively, one might hypothesize that maximal growth rate is higher for the original iso-

lates because they have the lac operon on the chromosome, instead of on a plasmid. It is

conceivable that due to e.g. copy number effects, strains with the lac operon on a plasmid

would differ systematically in growth rate from strains with the lac operon on the chromosome.

However, if this were the reason, the same difference should exist between the wildtype K12

strain and the K12 ∆ lac strain with the lac operon on a plasmid. This is not the case.

For all constructs, µmax estimates overlap with those of K12, suggesting that all compared

lac operons are equivalent with regard to the maximal growth rate they can confer. If maximal

growth rate on lactose medium would depend on interactions between the lac operon with the

genomic background, such that operons in their non-native background are at a disadvantage

compared to operons in their original background, we would expect µmax estimates for the

constructs to be more variable (since not all constructs would be lacking the same things with

regard to their original backgrounds). In addition, if this were the only reason for the disad-

vantage of constructs with regard to the original isolates, this disadvantage should not exist for

construct K12.

While our data do not give reason to believe that this is the case, since the µmax estimate

for K12 is not higher than for the other constructs, we cannot exclude that interactions with

the genomic background occur in principle. Although less parsimonious, it is conceivable that

in addition to the K12 background conferring a low maximal growth rate, lac operons are de-

pendent on their own genomic background to reach their maximal µmax. To assess whether

this is the case, I would need to measure growth rates of my constructs each in multiple ge-

nomic backgrounds other than K12 (each carrying a similar small deletion of the lac operon on

the chromosome). In addition, to find out whether the pattern of maximal growth conferred by

the original backgrounds is specific to lactose medium, growth rate on minimal medium with a

different carbon source would be informative.

Ks estimates overlapped between constructs and the corresponding original isolates. There

is thus no reason to assume that genomic background has any influence on the lactose concen-
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tration at which growth is half maximal. This corresponds to our initial expectations; however,

as rightly noted by (Tryon, 2001), ’absence of positive evidence for statistical difference does

not constitute presence of positive evidence for statistical equivalence’. In other words, while

our not finding a statistically significant different between Ks of constructs and original isolates

matches our expectations, we cannot conclude from this that there is no effect of genomic back-

ground on Ks. Indeed, in spite of attempts to optimize growth curve fitting, the variability of my

data is quite high, and there might be a relevant effect hidden in the spread of our parameter

estimates (although we have no biological reason to expect this). Finally, it can be noted that

the spread of both the µmax and the Ks parameter are larger for the original isolates than for

the lac operon constructs. I think the reason for this is that these strains tended to clump more

in the wells, leading to less reliable growth curve fitting.

3.3.4 Conclusions

We showed that natural phenotypic variation in the lac promoter region, upstream of the canoni-

cal -10 RNA polymerase binding site, predicts natural variation in gene expression as measured

in a LacZ activity assay. However, this variation in LacZ activity does not predict growth rate on

different concentrations of lactose. This suggested that neither natural variation in lac operon

expression, nor molecular activity of the LacZ protein, is an important determinant of variation

in growth rate. Instead, variation in the molecular sequence of the lactose permease might

underlie natural variation in growth rate on lactose; alternatively, growth rate variation might not

have a strong common genetic component.

Lac operons of human isolates were not systematically different in phenotype from lac oper-

ons of environmental isolates of E. coli and divergent Escherichia clades. We thus have found

no support for the hypothesis that these isolates represent strains adapted to different lifestyles.

It may, however, be the case that the lac operons of the isolates I compared differ systematically

from each other on dimensions we did not investigate, such as growth on a different substrate

such as galactosyl-glycerol, combinations of lactose and other sugars, or brief pulses of avail-

able lactose. If there really is no systematic difference between phenotypes of human and

environmental isolates of E. coli and divergent Escherichia clades, this could have several rea-

sons, such as regular cycling of E. coli and Escherichia clade I-V strains through the mammal

gut environment, the presence of chemically similar compounds to lactose in temperate soil

and water environments, slow growth in temperate soil and water environments, or population

bottlenecks upon gut colonization.
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The maximal growth rate on unlimited lactose across natural variants of the lac operon was

similar to that of K12 when these lac operons were in a K12 background, but almost universally

higher than K12 in their original genomic backgrounds. This suggests that genomic background

affects maximal growth rate on minimal medium and/or on lactose, and that the K12 background

is compromised relative to the genomic background of natural E. coli and Escherichia isolates

on minimal medium with lactose as sole carbon source.

While my data do not give reason to expect an interaction between the lac operon and

its genomic background w.r.t. maximal growth rate on lactose, unfortunately my experimental

design does not permit me to exclude that this is the case. I found that the lactose concentration

at which growth is half maximal is similar across constructs, as well as between lac operons

on plasmids and the strains they were isolated from. There thus is no reason to assume that

genomic background has any influence on this parameter, although we cannot formally exclude

this.

3.4 Methods

3.4.1 Strains

The same strains were used as described in Chapter 2. See the Methods section of Chapter 2

and Table 2.1 for an overview of these strains, their origin and location of isolation.

3.4.2 Plasmid construction

All enzymes were obtained from New England Biolabs (Ipswich, MA) except where stated oth-

erwise. Plasmids were constructed from a pZs* backbone (Lutz and Bujard, 1997) carrying a

kanamycin resistance gene and the Venus fluorescence gene. The backbone was isolated from

overnight liquid bacterial culture using an Invitrogen PureLink HiPure Midiprep plasmid purifi-

cation kit. The Venus gene was excised from the plasmid backbone by restriction with HindIII

and XhoI restriction enzymes, and replaced by the PCR amplified lac operons of the wild iso-

lates. PCRs were carried out using Phusion polymerase (ThermoFisher Scientific, Waltham,

MA). PCR primers were designed with an overhang containing HindIII and XhoI restriction sites

and supplied by Sigma Aldrich (St. Louis, MO); after amplification, the PCR products were

restricted with these enzymes and ligated together with the restricted plasmid backbone. PCR

primers annealed in the genes flanking the lac operon, which are cynX and mphR in strain

K12 MG1655. In several of the more divergent wild isolates, the lac operon is flanked by
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other genes; for these strains, alternative primer sets were used (see supplement for primer

sequences).

PCR products were gel purified before restriction using a Zymoclean Gel DNA Recovery kit

and column purified after restriction using a Zymo Clean&Concentrator kit (Zymo Research,

Irvine, CA). Restrictions were carried out for 3 hours at 37◦C. The plasmid backbone was de-

phosphorylated after restriction by adding shrimp alkaline phosphatase (rSAP) to the mixture

and incubating for one hour at 37◦C. Enzymes were deactivated for 20 minutes at 80◦C. Sub-

sequently, the restricted backbone was gel purified as described above. Ligations were carried

out for 1 hour at room temperature or overnight at 16◦C, using T4 DNA ligase, using a 1:6

backbone:insert volume ratio when possible, except when DNA concentrations were low; in

the latter case, added volumes were maximised. Ligation mixtures were column purified as

described above and eluted in 20 ml nuclease-free water. 5 µl of column purified ligation mix-

ture was electroporated at 1800 mV, path length 2 mm, into 70 µl electrocompetent cells of

cloning strain DH5α and incubated for around 1.5 hours in 700 µl SOC medium. This entire

mixture was then spread on MacConkey agar plates with lactose (powder from VWR, Radnor,

PA) containing 25 µg/ml kanamycin, and incubated for one to two days at 37◦C. Constructs

containing a functional lac operon were recognisable as dark red colonies. From these red

colonies, overnight cultures were inoculated in LB medium with 25 µg/ml kanamycin. The next

morning, plasmids were prepped from 2 ml of each overnight culture, using a Zyppy plasmid

isolation kit (Zymo Research, Irvine, CA), eluting with 20 µl nuclease-free water. Of each of the

the thus purified plasmids, 2 µl was electroporated into strain HG105, which is K12 MG1655

with a small deletion of the lac operon, kindly shared by Rob Philips (Garcia and Phillips, 2011).

3.4.3 Frozen stock plates

Growth rate measurements and β-galactosidase activity assays for the different lac operon

constructs were started from overnight precultures, which had been inoculated by pinning from

a 96 well ’master’ plate containing 4 replicate frozen stocks of each of the 21 constructs. To

prepare these frozen stock plates, the original frozen stocks of the construct-bearing HG105

strains were streaked out on MacConkey agar plates with kanamycin. From each of these

streaks , 4 separate colonies were selected to inoculate 4 separate overnight cultures in 5 ml

LB with 25 µg/ml kanamycin. The following morning, cultures were put on ice and of each

culture, 140 µl was then added to one well of the aforementioned 96 well plates, which were

kept on ice; 4 replicate frozen stock plates were made. The order of the constructs on the plate

was randomised using R, with the constraint that each construct should occur at least once in
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one of the outermost wells; five constructs occurred twice. The wells were then filled up with

60 µl of 50% glycerol solution. Plates were frozen at -80 ◦C.

3.4.4 Growth rate measurements

Growth rate measurements were started by pinning from precultures grown in a 96 well plate.

Precultures for growth rate measurements were inoculated by pinning from a frozen stock plate,

which had been thawed on ice for 75 minutes at 4◦C. Precultures were grown for 24 hours in M9

medium with 1mM MgSO4, 0.1 mM CaCl2, 0.3% glycerol, and for strains bearing constructs,

25 µg/ml kanamycin, at 37 ◦C, on a 96 well-plate shaker, shaking at 900 rpm.

Growth rate measurements were carried out in M9 medium with 1mM MgSO4, 0.1 mM CaCl2,

0.001% TritonX, and lactose at the specified concentrations, in a Biotek plate reader at 37 ◦C,

under fast double orbital shaking, with optical density being measured at 600 nm every 10 min-

utes for 20 hours, or until optical density had stopped increasing.

Growth rates were calculated as the slope of a linear function fit to ln (OD − reference) for a

defined time window, starting from the first time point from which OD values remained consis-

tently at a value of 0.0015 or more above reference. The reference OD value was calculated as

the average of the first 10 OD values measured during that experiment in the respective well.

The length of the time window was chosen such that the number of time points included was

maximized, while only time points in the exponential phase were included; a fixed time window

was used per replicate run. To correct for that fact that due to the logarithmic transformation,

measurement errors have a larger impact at lower OD values , measurements within the time

window were weighted according to the formula (OD−reference
0.0005 )24, where 0.0005 is the limit of

the resolution of the plate reader.

3.4.5 Lactose metabolism assays

The activity of beta-galactosidase was quantified by an ONPG assay modified from (Dodd

et al., 2001), following a protocol kindly shared by Adam Palmer. In preparation for this assay,

overnight cultures were started by pinning from the frozen stock plate described above, after

it had been thawed on ice for 75 minutes at 4◦C. Overnight precultures were carried out on

a plate shaker at 37 ◦Cin LB with 25 µg/ml kanamycin and 0.05, 0.1, 0.2 or 0.5 mM of the

inducer IPTG, with any one preculture plate containing two different IPTG concentrations across

different wells. The following morning, 2 µl from each well of the overnight preculture plate was

4thanks to Bor Kavcic for pointing out this problem, as well as its solution.
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transferred to a 96 well plate containing fresh medium and shaken at 37 ◦Cfor 90 minutes.

Subsequently, this dilution step was repeated and the cultures were once more grown for 90

minutes, after which the lid was replaced and the plate was transferred to the plate reader, and

growth was continued until optical density values as measured at 600 nm were mostly over

0.2, and effects of condensation on OD readings had worn off. At this point, the plate was

placed on top of a metal cooling block in an ice bucket for 5 minutes, after which 10 µl per

well was transferred to a plate containing prewarmed lysis buffer, and shaken for 30 minutes

on a plate shaker at 37 ◦C. Lysis buffer consisted of 100 mM Tris-HCl (pH 8), 1 mM MgSO4, 10

mM KCl, 126.7 mg/l polymyxin B, and 12.67 ml/l β-mercaptoethanol. After 30 minutes of lysis,

40 µl of 4 mg/ml ONPG solution, containing Tris-HCl, MgSO4, and KCl at equal molarities to

the lysis buffer, was added to each well, and the plate was transferred to a plate reader where

absorbance at 414 nm was measured every minute for 2 hours. To the thus obtained sequence

of increasing values, a linear function was fit. β-galactosidase activity was then calculated from

the slope s of this function, volume v of culture added, and final OD of the respective well after

pregrowth, using the formula s∗200000
OD∗v .

Since the variance of these measurements scaled with the mean, data were transformed

by taking the natural logarithm before the analysis, which removed this heteroscedasticity and

rendered them normally distributed. The log transformed data were analyzed with a linear

mixed effect model, starting with IPTG concentration, strain origin (human or environmental)

and predicted gene expression as fixed factors, and construct identity and run (whether the

experiment was part of the first or second set of experiments) as random factors, using the

lme4 and lmerTest packages in R. Models were compared using ANOVA; in addition, for each

model the AIC score was calculated.
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4 Conclusions

In this work, we tried first of all to get a view on the distribution and fitness of the lac operon

across 20 natural isolates of E. coli and divergent clades of Escherichia. With this, we aimed to

get insight into the ecology of E. coli and Escherichia in the wild. We found that the lac operon

has been conserved across natural isolates of E. coli and divergent clades of Escherichia, with

respect to its organization as well as its function. With the exception of one lac operon that

lost its function due to a frameshift mutation, and two lac operons conferring lower growth rates

on lactose and lower LacZ activity, all lac operons we studied appeared to be of equivalent

fitness as far as our methods could distinguish. Correspondingly, dN/dS ratios were the same

for human and environmental branches in the phylogeny for all genes except the lacZ gene. For

the lacZ gene, environmental branches even had a lower dN/dS ratio than human branches;

however, our phenotypic data did not show a corresponding difference. Lac operons of human

isolates did not differ systematically from those of environmental isolates with respect to growth

rate conferred on lactose medium or LacZ activity.

If lactose, as is commonly assumed, is a substrate typical for the mammal gut, but very rare

in other environments, the question is what explains the presence of these conserved lac oper-

ons in environmental isolates. While tests for lactose metabolism are part of some phenotypic

tests for E. coli, likely causing an isolation bias for strains with functional lac operons, this does

not explain how these lac operons would have retained their function and fitness over extended

periods of time in the absence of any other form of selection.

Three possible reasons can be envisaged for the presence of conserved lac operons across

environmental isolates. First of all, one might imagine that these lac operons were acquired by

horizontal transfer from gut-adapted E. coli. In combination with the isolation bias mentioned

above, this could explain why almost only strains with lac operons very similar to gut E. coli are

isolated from soil and water environments. Secondly, environmental E. coli and Escherichia

strains might all still regularly cycle through the mammal gut. If growth rates in the environment

are sufficiently low, a substantial part of the selection on growth of these strains might take
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place in the gut, and generation time in temperate soil and water might be long enough to

render loss of fitness by mutation accumulation very slow. Finally, the lac operon might have a

different function in the environment, such as the metabolism of other lactose-like compounds.

The first hypothesis of horizontal transfer of functional lac operons from gut E. coli is dis-

proved by our finding that the phylogeny of lac operons of divergent environmental clades of

Escherichia is the same as the whole-genome phylogeny of these strains. We did find evidence

for a homologous recombination event of part of the lac operon between Escherichia clades.

This event involved most of the lacY gene, which was the gene with the strongest signature of

purifying selection, which might be most relevant for fitness of the operon. One might specu-

late that this recombinant was indeed selected for because it restored lac operon fitness. While

our results thus suggest that there has been a limited amount of homologous recombination,

the data suggest too few horizontal gene transfer events to explain the overall presence of

functional lac operons in environmental E. coli and Escherichia strains and clades.

Thus, our results suggest that either these strains and clades cycle regularly through the

human gut, or are regularly exposed to a lactose-like compound in the environment. Unfor-

tunately, our data do not enable us to distinguish between these two hypotheses; future work

could try to disentangle these by testing for growth rate on galactosyl-glycerol, a lac operon

substrate which occurs in the gut of plant-eating animals, and might thus be more widespread

than lactose. If lac operons of environmental clades would systematically differ in growth on this

substrate, either in maximal growth rate or in substrate concentration of half maximal growth,

this would indicate that these clades cycle less through the mammal gut, and that the selection

pressure maintaining their lac operons may well be caused by this substrate.

The second main question I tried to address in this work is where in the lac operon lies the

genetic variation underlying variation in phenotype, and potentially variation in fitness.

We found variation in the lac promoter region to predict LacZ activity, using a thermodynamic

model of (Tugrul, 2016) which is based on the RNA polymerase binding probability matrix in-

ferred by (Kinney et al., 2010) and sums the probability of polymerase binding across the sites

in the promoter region. While all lac operons were identical in the canonical -10 and -35 bind-

ing locations, the model predicted variation in LacZ activity scores of lac constructs based on

sequence variation upstream of these sites.

However, this variation in LacZ activity, a combined measure of gene expression and molec-

ular activity, did not predict variation in growth rate on lactose medium. Thus, we have no ev-

idence that the variation in gene expression or molecular activity of LacZ across the natural
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variants of the lac operon we studied is relevant for fitness; although it might be important for

aspects of fitness we did not measure, such as carbon source switching. Variation in growth

rate across constructs might be most strongly determined by variation in LacY, the protein which

was found in previous work to have the highest control coefficient and steepest fitness surface

w.r.t. growth on lactose, and which we correspondingly found to be most conserved across iso-

lates. Alternatively, the lac of correlation between LacZ activity and growth rate might be due to

the lac operons under study being mostly equivalent with respect to growth rate; in that case,

the growth rate variation on lactose we measured would not have a strong genetic component.

If the variation in growth rate we found would have correlated with environment of isolation,

this would indicate that it is a result of differences in selection pressure, which would imply

a genetic basis. As it is, this variation may or may not be a result of unknown differences in

selective history between the strains we studied.

Future work could try to correlate variation in the LacY protein sequence with variation in

growth rate or growth rate parameters. In addition, one might try to assess LacY activity directly

by measuring the remaining lactose concentration in the medium. If either of these measures

would predict variation in growth rate, this would indicate that variation in LacY underlies natural

variation in growth rate on lactose.

Finally, I tried to get a view on the effect of genomic background on phenotypic variation

in growth on lactose. Fitting a Monod model with Hill coefficient to growth rate on lactose of

constructs and the corresponding isolates with their original genomic backgrounds, I found that

genomic background affects maximal growth rate at unlimited lactose, but found no evidence

that it affects the substrate concentration at which growth is half maximal. This is in line with

expectation, since doubling time is affected by many more factors than metabolism alone. How-

ever, my setup did not enable me to infer whether the lac operon interacts with the genomic

background in shaping the phenotype of growth on lactose.

It is surprising that after more than half a decade of research, the lac operon still poses so

many mysteries. While I have asked more questions than I have answered, I hope to have

contributed a wider perspective on the place of the lac operon, and more broadly, of E. coli and

Escherichia, in nature.
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A Appendix 1

Table A.1: Occurrances of the lac operon in other Enterobacteriae, as well as published genomes of

pathogenic E. coli. This is not intended to be an exhaustive list, but rather an illustration of the variety of forms

in which the lac operon can be found across Enterobacteriae. No attempt was made to systematically cover all

available genomes of Enterobacteriae. Rather, the lac operon sequence was used to guide targeted BLAST queries

in different Enterobacteric genomes, attempting to span a variety of different species. While strains without a lac

operon have been included occasionally for illustrative purposes, the ratio of their representation in this table should

not be taken to reflect their relative abundance in nature. In addition, it should be kept in mind that available genome

data reflect sequencing and publishing biases at least as much as the underlying natural diversity.

Species Subspecies Strain Accession Lac genes Adjacent? Similarity to E. coli K12 Remarks

E. coli O157:H7 EDL933 AE005174.2 all y 98%

E. coli O104:H4 AFOB02000005.1 all y 99%

E. coli O104:H21 CFSAN002236 AUQC01000006.1 I,Z,Y y 99%

E. coli O121:H19 2011C-3609 JASV01000004.1 -

E. coli O145:H28 RM13516 CP006262.1 all y 98%

E. coli NC101 AEFA01000004.1 all y 97%

E. coli 53638 AAKB02000001.1 I,Z y 99% Flanked by insertion sequence, transposase orfA

E. coli APEC O1 CP000468.1 all y 97%

E. coli O83:H1 CP001855.1 all y 97%

Shigella sp. PAMC 28760 CP014768.1 all y 99%

Shigella flexneri 2a str. 2457T AE014073.1 -

Escherichia fergusonii ATCC 35469 CU928158.2 Z 76%

Escherichia albertii
TW08933; AEJU00000000.1;

-
TW15818 AEJY00000000.1

Salmonella enterica arizonae
serovar 62:z4,z23; CP000880.1;

all y 74%
serovar 62:z36 str. RKS2983 CP006693.1

Salmonella enterica diarizonae

11-01854; CP011292.1;

all y 74%11-01853; CP011289.1;

11-01855 CP011288.1

Salmonella enterica enterica
serovar Typhimurium str. DT2; HG326213.1;

-
serovar Montevideo str. USDA-ARS-USMARC-1903 CP007222.1

Salmonella bongori

N268-08;

CP006608.1, FR877557.1, CP006692.1 I, Z n 75% 2000 bp in betweenNCTC 12419;

serovar 48:z41 str. RKS3044

Citrobacter sp. FDAARGOS 156 CP014030.1 I,Z y 76%

Citrobacter amalonaticus FDAARGOS 122 CP014015.1 all y 76%

Citrobacter freundii P10159 CP012554.1 I,Z,Y y 80%

Citrobacter freundii
CAV1321; CP011612.1;

all y 77%
CAV1741 CP011657.1

Serratia sp. S4 NZ KB661120.1 Z,Y n Z 65%; Y 62%

Serratia odorifera DSM 4582 NZ GG753567.1 Z,Y n Z: 52% Y: 65%

Serratia marcescens CAV1492 CP011642.1 Z 65%

Klebsiella sp. T17-2 KU505145.1 all y 76%

Yersinia pestis CO92 AL590842.1 Z, (Y) n 63% Y pseudogene, disrupted by insertion sequence, lacking 19 aa at N-terminal end

Yersinia pestis KIM10+ AE009952.1 Z, Y n Z 62%, Y 67% Y flanked by insertion element

Pantoea sp. PSNIH2 CP009866.1 I,Z,Y y 97% Flanked by IS1 transposase disrupting lacA - missing 473 bp

Pantoea ananatis AJ13355, LMG 20103, R100, LMG 5342 AP012032.2, CP001875.2, CP014207.1, HE617160.1 Z,Y y Z 74%, Y 80%

Pantoea vagans B1 CP002206.1 Z 68%

Cronobacter sakazakii ATCC BAA-894 CP000783.1 Z,Y y 66%

Cronobacter sakazakii SP291 CP004091.1 I,Z,Y y 97% Flanked by IS1 transposase disrupting lacA - missing 473 bp

Cronobacter malonaticus CMCC45402 CP006731.1 I,Z,Y y 97% Flanked by IS1 transposase disrupting lacA - missing last 473 bp.

Raoultella ornithinolytica Yangling I2 CP013338.1 I,Z,Y y 97% Mobile elements disrupting lacA, missing last 473 bp.

Raoultella ornithinolytica S12 CP010557.1 I,Z,Y y 73%
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B Appendix 2

Table B.1: Variability of the lac operon across the isolates used in this study. Numbers and percentages

apply to the lac operon region as counted from the start codon of lacI until the stop codon of lacA. ’Promoter region’

denotes the complete intergenic region between lacI and lacZ, which includes the RNA polymerase binding site,

the CRP binding site, operator O1 and part of O3.

length (nt) variable sites (nt) pairwise identity (nt) length (aa) variable sites (aa)

LacI 1080 227 (21%) 93.8% 360 42 (11.7%)

LacZ 3069 669 (21.8%) 94.3% 1023 176 (17.2%)

LacY 1248 171 (13.6%) 96.9% 416 21 (5%)

LacA 612 114 (18.6%) 95.1% 202 33 (16.3%)

promoter region 122 19 (15.6%) 95.6%

operator O1 21 0

operator O2 21 1 (4.8%)

operator O3 21 3 (14.3%)

CRP binding site 22 1 (4.5%)

total lac operon 6262 1241 (19.8%) 95%

Table B.2: Percentages of pairwise nucleotide differences for the entire lac operon sequence

K12 SC1 A5 SC1 F10 SC1 G8 SC1 G10 SC1 H3 M1 M2 M3 M4 M5 M6 M7 TW10509 TW15838 TW11588 TW14182 TW15844 TW09276 TW09231 TW09308

K12 98.8 98.3 97.8 98.4 98.6 98.7 97.4 99.1 97.6 99.7 98.8 98.9 94.6 95 92.7 92.8 92.7 91.7 91.5 90.3

SC1 A5 98.8 98.6 98 98.6 98.5 98.1 97.5 98.3 97.7 98.7 98.7 98.4 94.7 95.2 92.8 92.9 92.8 91.9 91.6 90.3

SC1 F10 98.3 98.6 98 98 98.1 97.6 97.3 97.8 97.7 98.2 97.9 97.9 94.6 95.2 92.6 92.6 92.6 91.8 91.5 90.4

SC1 G8 97.8 98 98 97.8 97.9 97.4 97.4 97.3 98.8 97.8 97.8 97.3 94.8 95.2 92.9 92.9 92.9 91.9 91.8 90.5

SC1 G10 98.4 98.6 98 97.8 98.3 98 97.8 98.3 97.9 98.4 98.2 97.9 94.8 95.1 92.9 92.9 92.8 92.1 91.8 90.5

SC1 H3 98.6 98.5 98.1 97.9 98.3 98.3 97.7 98.3 98 98.7 98.9 97.9 94.8 95.4 92.8 92.8 92.8 92 91.7 90.3

M1 98.7 98.1 97.6 97.4 98 98.3 97.3 98 97.4 98.7 98.3 98.6 94.7 95.1 92.8 92.9 92.9 91.8 91.6 90.2

M2 97.4 97.5 97.3 97.4 97.8 97.7 97.3 97.2 97.5 97.5 97.5 96.9 94.8 95.3 92.7 92.8 92.7 92.1 91.8 90.6

M3 99.1 98.3 97.8 97.3 98.3 98.3 98 97.2 97.5 98.9 98.5 98.3 94.6 95.1 92.5 92.6 92.5 91.7 91.5 90.1

M4 97.6 97.7 97.7 98.8 97.9 98 97.4 97.5 97.5 97.7 97.6 97.2 94.6 95.2 92.6 92.6 92.6 91.8 91.6 90.4

M5 99.7 98.7 98.2 97.8 98.4 98.7 98.7 97.5 98.9 97.7 98.9 98.6 94.7 95.1 92.7 92.8 92.7 91.7 91.5 90.2

M6 98.8 98.7 97.9 97.8 98.2 98.9 98.3 97.5 98.5 97.6 98.9 98.2 94.7 95.1 92.8 92.9 92.8 91.9 91.6 90.2

M7 98.9 98.4 97.9 97.3 97.9 97.9 98.6 96.9 98.3 97.2 98.6 98.2 94.5 95 92.6 92.7 92.7 91.6 91.4 90.3

TW10509 94.6 94.7 94.6 94.8 94.8 94.8 94.7 94.8 94.6 94.6 94.7 94.7 94.5 98.2 91.8 91.9 91.7 91.4 91.3 89.4

TW15838 95 95.2 95.2 95.2 95.1 95.4 95.1 95.3 95.1 95.2 95.1 95.1 95 98.2 92 92 91.9 91.3 91.2 89.7

TW14182 92.7 92.8 92.6 92.9 92.9 92.8 92.8 92.7 92.5 92.6 92.7 92.8 92.6 91.8 92 99.4 99.4 94.8 95 90.6

TW11588 92.8 92.9 92.6 92.9 92.9 92.8 92.9 92.8 92.6 92.6 92.8 92.9 92.7 91.9 92 99.4 99.3 94.6 94.7 90.4

TW15844 92.7 92.8 92.6 92.9 92.8 92.8 92.9 92.7 92.5 92.6 92.7 92.8 92.7 91.7 91.9 99.4 99.3 94.7 94.9 90.7

TW09231 91.7 91.9 91.8 91.9 92.1 92 91.8 92.1 91.7 91.8 91.7 91.9 91.6 91.4 91.3 94.8 94.6 94.7 98.8 90.1

TW09276 91.5 91.6 91.5 91.8 91.8 91.7 91.6 91.8 91.5 91.6 91.5 91.6 91.4 91.3 91.2 95 94.7 94.9 98.8 90.1

TW09308 90.3 90.3 90.4 90.5 90.5 90.3 90.2 90.6 90.1 90.4 90.2 90.2 90.3 89.4 89.7 90.6 90.4 90.7 90.1 90.1
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Table B.3: # of pairwise amino acid differences in LacI

K12 SC1 A5 SC1 F10 SC1 G8 SC1 G10 SC1 H3 M1 M2 M3 M4 M5 M6 M7 TW10509 TW15838 TW11588 TW14182 TW15844 TW09276 TW09231 TW09308

K12 2 3 3 1 0 1 3 0 5 0 0 2 10 11 20 20 19 19 19 28

SC1 A5 2 3 5 1 2 1 3 2 7 2 2 0 10 11 21 21 20 20 20 29

SC1 F10 3 3 2 2 3 2 2 3 4 3 3 3 7 8 18 18 17 17 17 26

SC1 G8 3 5 2 4 3 4 4 3 2 3 3 5 7 8 19 19 18 18 18 27

SC1 G10 1 1 2 4 1 0 2 1 6 1 1 1 9 10 20 20 19 19 19 28

SC1 H3 0 2 3 3 1 1 3 0 5 0 0 2 10 11 20 20 19 19 19 28

M1 1 1 2 4 0 1 2 1 6 1 1 1 9 10 20 20 19 19 19 28

M2 3 3 2 4 2 3 2 3 6 3 3 3 9 10 20 20 19 19 19 27

M3 0 2 3 3 1 0 1 3 5 0 0 2 10 11 20 20 19 19 19 28

M4 5 7 4 2 6 5 6 6 5 5 5 7 9 9 21 21 20 20 20 29

M5 0 2 3 3 1 0 1 3 0 5 0 2 10 11 20 20 19 19 19 28

M6 0 2 3 3 1 0 1 3 0 5 0 2 10 11 20 20 19 19 19 28

M7 2 0 3 5 1 2 1 3 2 7 2 2 10 11 21 21 20 20 20 29

TW10509 10 10 7 7 9 10 9 9 10 9 10 10 10 1 20 20 21 21 21 28

TW15838 11 11 8 8 10 11 10 10 11 9 11 11 11 1 21 21 22 22 22 29

TW11588 20 21 18 19 20 20 20 20 20 21 20 20 21 20 21 0 1 3 3 25

TW14182 20 21 18 19 20 20 20 20 20 21 20 20 21 20 21 0 1 3 3 25

TW15844 19 20 17 18 19 19 19 19 19 20 19 19 20 21 22 1 1 2 2 24

TW09276 19 20 17 18 19 19 19 19 19 20 19 19 20 21 22 3 3 2 2 24

TW09231 19 20 17 18 19 19 19 19 19 20 19 19 20 21 22 3 3 2 2 24

TW09308 28 29 26 27 28 28 28 27 28 29 28 28 29 28 29 25 25 24 24 24

Table B.4: # of pairwise amino acid differences in LacZ

K12 SC1 A5 SC1 F10 SC1 G8 SC1 G10 SC1 H3 M1 M2 M3 M4 M5 M6 M7 TW10509 TW15838 TW11588 TW14182 TW15844 TW09276 TW09231 TW09308

K12 15 13 18 20 12 19 25 16 23 1 14 18 47 43 52 55 52 59 57 72

SC1 A5 15 18 19 23 13 24 28 27 29 16 13 25 52 49 53 55 53 63 57 74

SC1 F10 13 18 20 27 13 24 30 27 27 14 22 26 48 44 56 57 54 61 58 73

SC1 G8 18 19 20 26 20 29 26 30 18 19 22 28 50 46 53 54 51 60 58 74

SC1 G10 20 23 27 26 24 27 26 16 26 22 23 26 53 49 53 55 53 61 58 74

SC1 H3 12 13 13 20 24 27 29 24 25 13 12 28 51 46 57 58 55 63 58 73

M1 19 24 24 29 27 27 30 27 32 20 25 17 51 48 52 55 51 60 58 69

M2 25 28 30 26 26 29 30 30 29 26 30 29 49 45 54 56 53 59 60 68

M3 16 27 27 30 16 24 27 30 25 17 24 24 46 44 51 54 51 56 53 73

M4 23 29 27 18 26 25 32 29 25 24 28 28 49 45 53 54 51 58 55 68

M5 1 16 14 19 22 13 20 26 17 24 15 19 48 44 53 56 53 60 58 73

M6 14 13 22 22 23 12 25 30 24 28 15 24 52 50 53 56 53 63 58 75

M7 18 25 26 28 26 28 17 29 24 28 19 24 45 42 48 51 47 54 52 66

TW10509 47 52 48 50 53 51 51 49 46 49 48 52 45 22 58 61 58 63 61 77

TW15838 43 49 44 46 49 46 48 45 44 45 44 50 42 22 61 61 58 63 61 73

TW11588 52 53 56 53 53 57 52 54 51 53 53 53 48 58 61 11 8 40 47 77

TW14182 55 55 57 54 55 58 55 56 54 54 56 56 51 61 61 11 5 39 45 75

TW15844 52 53 54 51 53 55 51 53 51 51 53 53 47 58 58 8 5 34 41 72

TW09276 59 63 61 60 61 63 60 59 56 58 60 63 54 63 63 40 39 34 23 75

TW09231 57 57 58 58 58 58 58 60 53 55 58 58 52 61 61 47 45 41 23 73

TW09308 72 74 73 74 74 73 69 68 73 68 73 75 66 77 73 77 75 72 75 73



87

Table B.5: # of pairwise amino acid differences in LacY

K12 SC1 A5 SC1 F10 SC1 G8 SC1 G10 SC1 H3 M1 M2 M3 M4 M5 M6 M7 TW10509 TW15838 TW11588 TW14182 TW15844 TW09276 TW09231 TW09308

K12 1 1 0 0 0 1 0 0 3 2 0 0 3 2 3 3 3 3 3 8

SC1 A5 1 2 1 1 1 2 1 1 4 3 1 1 4 3 4 4 4 4 4 9

SC1 F10 1 2 1 1 1 2 1 1 4 3 1 1 4 3 4 4 4 4 4 9

SC1 G8 0 1 1 0 0 1 0 0 3 2 0 0 3 2 3 3 3 3 3 8

SC1 G10 0 1 1 0 0 1 0 0 3 2 0 0 3 2 3 3 3 3 3 8

SC1 H3 0 1 1 0 0 1 0 0 3 2 0 0 3 2 3 3 3 3 3 8

M1 1 2 2 1 1 1 1 1 4 3 1 1 4 3 4 4 4 4 4 9

M2 0 1 1 0 0 0 1 0 3 2 0 0 3 2 3 3 3 3 3 8

M3 0 1 1 0 0 0 1 0 3 2 0 0 3 2 3 3 3 3 3 8

M4 3 4 4 3 3 3 4 3 3 5 3 3 6 5 6 6 6 6 6 11

M5 2 3 3 2 2 2 3 2 2 5 2 2 5 4 5 5 5 5 5 10

M6 0 1 1 0 0 0 1 0 0 3 2 0 3 2 3 3 3 3 3 8

M7 0 1 1 0 0 0 1 0 0 3 2 0 3 2 3 3 3 3 3 8

TW10509 3 4 4 3 3 3 4 3 3 6 5 3 3 1 6 6 6 6 6 11

TW15838 2 3 3 2 2 2 3 2 2 5 4 2 2 1 5 5 5 5 5 10

TW11588 3 4 4 3 3 3 4 3 3 6 5 3 3 6 5 0 0 2 2 7

TW14182 3 4 4 3 3 3 4 3 3 6 5 3 3 6 5 0 0 2 2 7

TW15844 3 4 4 3 3 3 4 3 3 6 5 3 3 6 5 0 0 2 2 7

TW09276 3 4 4 3 3 3 4 3 3 6 5 3 3 6 5 2 2 2 0 9

TW09231 3 4 4 3 3 3 4 3 3 6 5 3 3 6 5 2 2 2 0 9

TW09308 8 9 9 8 8 8 9 8 8 11 10 8 8 11 10 7 7 7 9 9

Table B.6: # of pairwise amino acid differences in LacA

K12 SC1 A5 SC1 F10 SC1 G8 SC1 G10 SC1 H3 M1 M2 M3 M4 M5 M6 M7 TW10509 TW15838 TW11588 TW14182 TW15844 TW09276 TW09231 TW09308

K12 0 0 5 2 6 7 6 0 5 1 5 0 10 9 9 9 9 15 14 13

SC1 A5 0 0 5 2 6 7 6 0 5 1 5 0 10 9 9 9 9 15 14 13

SC1 F10 0 0 5 2 6 7 6 0 5 1 5 0 10 9 9 9 9 15 14 13

SC1 G8 5 5 5 5 5 6 7 5 0 4 8 5 11 10 10 10 10 15 14 12

SC1 G10 2 2 2 5 4 5 4 2 5 1 3 2 8 7 7 7 7 13 12 11

SC1 H3 6 6 6 5 4 1 4 6 5 5 5 6 8 7 5 5 5 11 10 11

M1 7 7 7 6 5 1 5 7 6 6 6 7 9 8 6 6 6 12 11 12

M2 6 6 6 7 4 4 5 6 7 5 5 6 6 5 7 7 7 13 12 13

M3 0 0 0 5 2 6 7 6 5 1 5 0 10 9 9 9 9 15 14 13

M4 5 5 5 0 5 5 6 7 5 4 8 5 11 10 10 10 10 15 14 12

M5 1 1 1 4 1 5 6 5 1 4 4 1 9 8 8 8 8 14 13 12

M6 5 5 5 8 3 5 6 5 5 8 4 5 8 5 6 6 8 14 13 14

M7 0 0 0 5 2 6 7 6 0 5 1 5 10 9 9 9 9 15 14 13

TW10509 10 10 10 11 8 8 9 6 10 11 9 8 10 7 9 9 9 13 12 17

TW15838 9 9 9 10 7 7 8 5 9 10 8 5 9 7 8 8 10 15 14 15

TW11588 9 9 9 10 7 5 6 7 9 10 8 6 9 9 8 0 2 12 11 14

TW14182 9 9 9 10 7 5 6 7 9 10 8 6 9 9 8 0 2 12 11 14

TW15844 9 9 9 10 7 5 6 7 9 10 8 8 9 9 10 2 2 12 11 14

TW09276 15 15 15 15 13 11 12 13 15 15 14 14 15 13 15 12 12 12 1 16

TW09231 14 14 14 14 12 10 11 12 14 14 13 13 14 12 14 11 11 11 1 15

TW09308 13 13 13 12 11 11 12 13 13 12 12 14 13 17 15 14 14 14 16 15
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