
Refinement for
Structured Concurrent Programs

Bernhard Kragl1(B) , Shaz Qadeer2, and Thomas A. Henzinger1

1 IST Austria, Klosterneuburg, Austria
{bkragl,tah}@ist.ac.at

2 Novi, Seattle, USA
shaz@fb.com

Abstract. This paper presents a foundation for refining concurrent pro-
grams with structured control flow. The verification problem is decom-
posed into subproblems that aid interactive program development, proof
reuse, and automation. The formalization in this paper is the basis of a
new design and implementation of the Civl verifier.

1 Introduction

We present a solution to the problem of proving that no execution of a concurrent
program leads to a failure. This problem is equivalent to proving an arbitrary
safety property on the program. In deductive verification, a proof system decom-
poses this verification problem into a set of proof obligations (or verification
conditions), and discharging these obligations implies the correctness of the pro-
gram. At its core, any proof system depends on inductive invariants, and, in
general, these have to be supplied manually. Inventing an inductive invariant is
especially challenging for concurrent programs, since it has to capture compli-
cated relationships over the entire program state, across all concurrent compu-
tations. Thus, the main practical obstacle to deductive verification is a suitable
interaction mode for the programmer to invent and supply the necessary proof
hints. This paper develops and implements a systematic conceptual framework
for supplying these proof hints on a structured representation of the concurrent
program, specifically eliminating the need to write complex invariants on the
low-level encoding of the program as a flat transition system.

The Civl verifier [18,25] addresses the aforementioned challenge by advo-
cating layered refinement over structured concurrent programs. Instead of the
monolithic approach that requires the programmer to prove the safety of a pro-
gram P directly, Civl allows the programmer to specify a chain of increasingly
simpler programs P = P0,P1, . . . ,Pn = P ′ such that the safety of Pi implies the
safety of Pi−1 for all i ∈ [1, n], thus transferring the safety obligation on P to P ′.
The overall correctness of the program is established piecemeal by focusing on
the invariant required for each refinement step separately. While the program-
mer does the creative work of specifying the chain of programs and the inductive

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 275–298, 2020.
https://doi.org/10.1007/978-3-030-53288-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_14&domain=pdf
http://orcid.org/0000-0001-7745-9117
http://orcid.org/0000-0002-2985-7724
https://doi.org/10.1007/978-3-030-53288-8_14

276 B. Kragl et al.

invariant justifying each link in the chain, the tool automatically constructs the
verification conditions underlying each refinement step.

The core principle of a layered refinement proof in Civl is iterative program
simplification through two kinds of creative reasoning. First, the programmer
must think about the primitive atomic actions used to specify a particular pro-
gram Pi in the chain of programs. These atomic actions must be chosen to have
useful commutativity properties which allow the tool to provably eliminate pre-
emptions at many control locations in Pi, thus creating large preemption-free
execution fragments. Second, the programmer must think about the justification
for the transformation of Pi into the next program Pi+1. This transformation
may be complex because (1) some of the variables in Pi may become irrelevant,
(2) new variables may be needed for the primitive atomic actions in Pi+1, and
(3) the transformation may simplify complex control flow (branching, procedure
calls, recursion, etc.) into a single step that executes an atomic action. This
paper focuses on the necessary foundation and tool support for this second kind
of creative reasoning.

We present our technique on an idealized yet general language RefPL, suit-
able for expressing structured parallelism, asynchronous computation, atomic
actions of arbitrary granularity, and dynamically-scoped preemption-free code
fragments. Using the design of RefPL and the formalization of its operational
semantics, we present two technical contributions.

Our first contribution is a general proof rule for soundly abstracting a recur-
sive RefPL program P into another RefPL program P ′ that hides subsets of global
variables, local variables, procedures, and atomic actions in P. Our proof rule
goes beyond Civl in two ways. First, it provides the capability to hide local
variables of procedures, specifically parameters, in addition to global variables.
This capability allows us to replace a procedure with an atomic action with a
smaller interface by hiding the extra parameters. Refinement proofs are sim-
plified because it becomes easy to introduce local snapshots of global variables
needed for specifications, pass these snapshots around as parameters to proce-
dures, and finally recover the original interface by hiding these extra parameters.
Second, unlike Civl our proof rule is capable of performing refinement proofs
on arbitrarily recursive programs. Since hiding low-level details is the core prin-
ciple of the layered refinement methodology, our proof rule contributes towards
increasing the expressiveness of refinement proofs compared to Civl.

Our proof rule depends on invariants that constrain the reachable states of the
program. Our second contribution, an aid to our refinement rule but also inde-
pendently useful, is a new specification idiom called yield invariants—named,
parameterized, and interference-free invariants that can be called in parallel
with ordinary procedures to soundly constrain the interference possible at yields
within the called procedure. Since a yield invariant is named, its definition is
separate from its invocation, thereby allowing proofs of interference-freedom to
be performed once and reused for each call site. Since it is parameterized, it can
be specialized to the needs of a call site by passing suitable input parameters.

Refinement for Structured Concurrent Programs 277

Reasoning with yield invariants becomes difficult in concurrent programs
when the absence of interference must be justified using facts referring to local
variables of different procedures executing in different threads. The alternative
of using global ghost variables that have the same information as local variables
is theoretically possible but impossibly tedious. We observe that local proofs for
many of these programming patterns can be achieved by exploiting permissions
that are redistributed by atomic actions and otherwise passed around the pro-
gram without duplication via input and output parameters of procedures. To
track permissions, we enhance the interface of yield invariants, procedures, and
atomic actions with annotations that satisfy a discipline enforced by a combi-
nation of linear typing [38] over procedure bodies and logical reasoning over the
transitions of atomic actions.

The formalization in this paper is the basis of a new design and implemen-
tation of the Civl verifier. We hope that Civl will serve researchers as a viable
platform for experimenting with optimizations and implementation decisions.

To summarize, this paper makes the following contributions:

– It presents a core language RefPL for expressing modular proofs of refine-
ment over structured concurrent programs. The formulation of refinement for
RefPL is general and allows the user to encode verification of an arbitrary
safety property as refinement verification. Furthermore, RefPL enables the
construction of layered proofs [25] of safety via iterated refinement.

– A refinement proof for RefPL is modular and decomposed along program syn-
tax through the use of yield invariants. The interfaces to procedures, actions,
and yield invariants exploit a linear typing discipline [38] that enhances local
verification through the use of permissions.

– Finally, we present a robust implementation of the refinement rule and yield
invariants in the Civl verifier.

1.1 Related Work

Formal verification techniques based on stepwise refinement have long been advo-
cated, in theory, for construction of verified programs (e.g., [5,35,36]). This paper
takes its inspiration from TLA [28] and Event-B [3,4] which popularized refine-
ment as an approach for reasoning about a concurrent program modeled as a
transition system. Recent efforts [10,16,17] have developed support for develop-
ment of verified programs atop the foundation of refinement over transition sys-
tems. Our work develops a foundation and tool support for refinement over struc-
tured concurrent programs rather than flat transition systems. We are encour-
aged by broad interest in the use of automatic program simplification [12,15] to
reduce the complexity of reasoning about concurrent programs.

The technique of yield invariants is inspired by interference-free location
invariants in the work of Owicki and Gries [34] and the rely specification in rely-
guarantee reasoning [21]. Yield invariants attempt to import the reuse of rely
specifications to location invariants. We introduce linear interfaces to encode

278 B. Kragl et al.

permissions to address the practical concern of unwieldy ghost state. While per-
missions have been used before for encoding ownership in heap-manipulating
programs [32], our encoding of permissions is different, applicable to any shared
resource, and targeted specifically at noninterference reasoning.

There are other efforts to build practical verifiers for concurrent programs.
Some verifiers focus on automation and target specific programming models and
languages [7,11,20,29]. Our verifier is just as automated but capable of targeting
a variety of programming models because of the foundation of atomic actions
in RefPL. Other verifiers share our focus on expressiveness by providing general
and certified metatheory [22] but are less automated; our verifier attempts to
increase expressiveness without sacrificing automation. None of these aforemen-
tioned verifiers focus on refinement and layered proofs.

Our work bears a superficial resemblance to proof methods [8,23,37] for
linearizability [19]. Our work targets the general problem of safety verification.
Linearizability is a specific safety property to which our method is applicable.

2 Overview

In this section, we illustrate our contributions on a set of example programs.
Section 2.1 presents yield invariants, Sect. 2.2 presents refinement, and Sect. 2.3
presents linear interfaces.

2.1 Yield Invariants

Figure 1 shows a simple RefPL program. The first column shows a global counter
x, a procedure incr x that increments x twice, and a yield invariant yield x that
characterizes the interference from other threads while a thread is executing
incr x. The increments of x on lines 4 and 6 are separated by a call to the yield
invariant yield x. RefPL provides a single call statement for calling any number
(including zero) of procedures and yield invariants in parallel. The preserves spec-
ification on line 3 indicates that yield x is both a precondition (usually indicated
by requires) and a postcondition (usually indicated by ensures). In RefPL, each
precondition of a procedure is a call to a yield invariant; all preconditions are
called in parallel at procedure entry. Similarly, each postcondition is a call to a
yield invariant; all postconditions are called in parallel at procedure exit.

This paper focuses on reasoning about cooperative semantics in which pre-
emptions occur only at entry into a procedure, at a call during its execution,
and at exit. The RefPL verifier proves the correctness of yield x and incr x mod-
ularly on these cooperative semantics. Specifically, the yield invariant yield x is
proved interference-free since the only operations in the program that modify x
increment it. The procedure incr x is proved by using the precondition of incr x
to establish the yield invariant at line 5 and then using the yield invariant to
prove the postcondition at exit. This proof of incr x depends on the observation
that the input parameter x of incr x is passed as the argument to the three calls
to yield x: in the precondition, on line 5, and in the postcondition. The second

Refinement for Structured Concurrent Programs 279

1 var x: int // ≥ 0

2 procedure incr x(x: int)
3 preserves yield x(x)
4 x := x + 1
5 call yield x(x)
6 x := x + 1

7 invariant yield x(x: int)
8 x ≤ x

9 var y: int // ≥ 0

10 procedure incr y(y: int)
11 preserves yield y(y)
12 y := y + 1
13 call yield y(y)
14 y := y + 1

15 invariant yield y(y: int)
16 y ≤ y

17 procedure incr x y()
18 requires yield x(0)
19 requires yield y(0)
20 if (∗)
21 async incr x y()
22 call incr x(0) || yield y(0)
23 call incr y(0) || yield x(0)
24 assert 0 ≤ x ∧ 0 ≤ y

Fig. 1. Incrementing two separate counters to illustrate yield invariants.

column shows code similar to what we just discussed, except on global variable
y, procedure incr y, and yield invariant yield y.

The third column show a procedure incr x y which uses recursion to create an
unbounded number of concurrent threads. incr x y nondeterministically spawns
a copy of itself on lines 20–21, calls procedures to increment x and y on lines 22–
23, and asserts a safety property about x and y on line 24. Our verification goal
is to prove that if a single instance of incr x y starts in a state that satisfies the
initial constraints on x and y, indicated on lines 1 and 9 respectively, then the
assertion on line 24 holds in every copy of incr x y.

The proof of procedure incr x y shows the modularity of yield invariants.
First, notice that no new yield invariants are needed; the entire proof of incr x y
is achieved by reusing yield x and yield y. Specifically, yield x and yield y are
called in parallel with each other at entry, yield y is called in parallel with incr x
at line 22, and yield x is called in parallel with incr y at line 23. Second, the
arguments to yield x and yield y are specialized to match the constraints in the
initial state and the assertions.

2.2 Refining Atomic Actions

Figure 2 shows a spin lock implementation and a client that uses the spin lock to
atomically increment a shared counter. Procedure Acquire (lines 22–28) acquires
the lock and procedure Release (lines 29–34) releases the lock. Both procedures
use a primitive atomic action CAS (compare-and-swap) defined on lines 10–
14 with two parameters—old b and new b. This action compares the value of a
global variable b to old b. If they are equal, b is set to new b and true is returned,
otherwise, b is not modified and false is returned. Acquire attempts to set b from
false to true repeatedly via recursive call to itself (line 28) until it succeeds.
Release sets b back to false from true.

Procedure Incr (lines 16–21) atomically increments the global variable count
by acquiring the lock, reading count into a local variable t by calling Read
(lines 35–39), writing t+1 back to count by calling Write (lines 40–43), and
finally releasing the lock. We prove that Incr implements an atomic increment
via a sequence of two refinement steps.

The first step abstracts the procedures Acquire, Release, Read, and Write into
atomic actions AcquireSpec, ReleaseSpec, ReadSpec, and WriteSpec, respectively.

280 B. Kragl et al.

1 // Concrete global variables
2 var b: bool // false
3 var count: int

4 // Abstract global variable
5 var l: Option〈Tid〉 // None

6 // Supporting invariant
7 invariant LockInv()
8 b ⇐⇒ (l
= None)

9 // Primitive actions
10 action CAS(old b, new b: bool)
11 returns (success: bool)
12 success := b = old b
13 if (success)
14 b := new b

15 // Atomic increment
16 procedure Incr(linear tid: Tid)
17 preserves LockInv()
18 call Acquire(tid)
19 call t := Read(tid) || LockInv()
20 call Write(tid, t+1) || LockInv()
21 call Release(tid)

22 procedure Acquire(
23 linear tid: Tid)
24 refines AcquireSpec
25 preserves LockInv()
26 exec t := CAS(false, true)
27 if (t) l := Some(tid)
28 else call Acquire(tid)

29 procedure Release(
30 linear tid: Tid)
31 refines ReleaseSpec
32 preserves LockInv()
33 exec CAS(true, false)
34 l := None

35 procedure Read(
36 linear tid: Tid)
37 returns (v: int)
38 refines ReadSpec
39 v := count;

40 procedure Write(
41 linear tid: Tid, v: int)
42 refines WriteSpec
43 count := v;

44 action AcquireSpec(
45 linear tid: Tid)
46 assume l = None
47 l := Some(tid)

48 action ReleaseSpec(
49 linear tid: Tid)
50 assert l = Some(tid)
51 l := None

52 action ReadSpec(
53 linear tid: Tid)
54 returns (v: int)
55 assert l = Some(tid)
56 v := count

57 action WriteSpec(
58 linear tid: Tid, v: int)
59 assert l = Some(tid)
60 count := v

Fig. 2. Spin lock to illustrate refinement of atomic actions.

These atomic actions, defined in the third column of Fig. 2, provide an explicit
specification of the locking protocol for accessing the shared variable count. The
specification of these actions requires the introduction of (1) a local parameter
tid containing the unique id of the thread executing the code, and (2) a global
variable l whose value is either None when the lock is not held or Some(tid)
when the lock is held by thread tid. The second step uses these atomic actions
to abstract Incr to an atomic action that increments count by 1.

There are two challenges in the first refinement proof. First, the lock imple-
mentation is defined using the concrete Boolean variable b, whereas the lock
specification is defined using the logical lock variable l. Second, the implemen-
tation of Acquire is recursive, which is technically challenging for refinement
reasoning. The solution to the first problem is to introduce l and hide b during
the refinement proof. To introduce l into the concrete program, it is updated
appropriately when Acquire (line 27) and Release (line 34) complete successfully.
Furthermore, the relationship between the variables b and l is captured by the
yield invariant LockInv (lines 7–8) which is used in the precondition and postcon-
dition of Acquire and Release. The solution to the second problem is a powerful
rule for refinement reasoning, described in Sect. 4, which allows the recursive call
to Acquire on line 28 to be replaced by a call to the specification AcquireSpec
while modularly proving that the body of Acquire refines AcquireSpec.

procedure Incr(linear tid: Tid)
refines IncrSpec
exec AcquireSpec(tid)
exec t := ReadSpec(tid)
exec WriteSpec(tid, t+1)
exec ReleaseSpec(tid)

action IncrSpec()
count := count + 1

To set up the second refinement proof, the procedure
calls in the body of Incr are replaced by invocations of
the corresponding abstract atomic actions (as shown on
the right here). The rewritten body of Incr is preemption-
free; a yield may occur only at the beginning or the end.
This assumption is justified by a commutativity analy-

Refinement for Structured Concurrent Programs 281

sis based on the observation that AcquireSpec is a right mover, ReleaseSpec is
a left mover, and ReadSpec and WriteSpec are both movers [14]. Proving these
mover types requires that the tid input parameters of two concurrent actions
are distinct, which is specified by the linear annotation. In addition to encoding
distinctness of values, linear variables can be used for encoding disjointness of
permissions associated with values. We present an example illustrating permis-
sions in Sect. 2.3 and a detailed technical description in Sect. 4.

For the prove that procedure Incr refines the action IncrSpec, which incre-
ments count atomically, we do not need the invariant LockInv anymore; in fact
we do not need any invariant. Furthermore, the local parameter tid and the global
variable l are no longer needed in the program and can be hidden. Hiding local
variables is a novel feature of the refinement method described in this paper. The
capability to introduce and subsequently hide global and local variables allows
us to chain a sequence of refinement steps, localizing the use of variables to the
parts of the proof that need them.

2.3 Linear Interfaces

Figure 3 shows a synchronization protocol extracted from a verified concurrent
garbage collector [18]. There are N mutator threads (procedure Mutator on
line 28) numbered from 1 to N, and one collector thread (procedure Collector
on line 38) with ID 0. The protocol ensures that no mutator accesses memory
(line 37) concurrently while the collector is doing a root scan (line 44) using
barrier synchronization. Before the collector runs, it sets the Boolean variable
barrierOn to true (line 40) and waits until the integer variable barrierCounter gets
0 (line 42). Before a mutator accesses memory, it reads barrierOn (line 31). If false,
the mutator goes ahead. Otherwise, it signals to the collector by decrementing
barrierCounter (line 34) and waits for barrierOn to be reset to false (line 36).

This example declares both global and local linear variables (specified by
linear, linear in, linear out). Every linear variable—or more precisely, its current
value—is assigned a set of permissions of type Perm according to the collector
functions C1, C2, and C3. A linear integer i holds both Left(i) and Right(i), a
set of integers holds the corresponding Left permissions, and a Perm value holds
itself. Note that Perm is not special; any value can be a permission. For every
program location we can compute the set of available linear variables. For exam-
ple, when a mutator enters the barrier (line 34), i becomes unavailable because
the permission Left(i) is transferred to the ghost variable mutatorsInBarrier. Then
i becomes available again after exiting the barrier (line 36). Global linear vari-
ables (mutatorsInBarrier here) are always available. Parameterized by the linear
collectors, our linearity framework establishes the generic invariant that all per-
missions across all available linear variables are disjoint. Now suppose that some
mutator i is at line 37, where it holds both of its permissions and in particular
Left(i), while the collector is at line 45, where mutatorsInBarrier holds all Left per-
missions and in particular Left(i). This situation is impossible, since the linearity
feature of RefPL ensures that a duplication of permissions is impossible.

282 B. Kragl et al.

1 datatype Perm = Left(int) | Right(int)
2 function linear C1(i: int) = {Left(i), Right(i)}
3 function linear C2(ids: Set〈int〉) = {Left(i) | i ∈ ids}
4 function linear C3(p: Perm) = {p}
5 const N: int // positive
6 var barrierOn: bool // false
7 var barrierCounter: int // N
8 var linear mutatorsInBarrier: Set〈int〉 // ∅

9 // Primitive actions
10 action IsBarrierOn() returns (b: bool)
11 b := barrierOn

12 action EnterBarrier(linear in i: int)
13 returns (linear out p: Perm)
14 assert i ∈ [1..N]
15 mutatorsInBarrier := mutatorsInBarrier + {i}
16 barrierCounter := barrierCounter − 1
17 p := Right(i)

18 action WaitForBarrierRelease
19 (linear in p: Perm, linear out i: int)
20 assert p = Right(i) ∧ i ∈ mutatorsInBarrier
21 assume ¬barrierOn
22 mutatorsInBarrier := mutatorsInBarrier − {i}
23 barrierCounter := barrierCounter + 1

24 action SetBarrier(b: bool)
25 barrierOn := b

26 action WaitBarrier()
27 assume barrierCounter = 0

28 procedure Mutator(linear i: int)
29 requires i ∈ [1..N] preserves BarrierInv()
30 var b: bool, p: Perm
31 exec b := IsBarrierOn()
32 if (b)
33 call BarrierInv()
34 exec p := EnterBarrier(i)
35 call BarrierInv() || MutatorInv(p, i)
36 exec WaitForBarrierRelease(p, i)
37 // access memory here

38 procedure Collector(linear i: int)
39 requires i = 0 preserves BarrierInv()
40 exec SetBarrier(true)
41 call BarrierInv() || CollectorInv(i, false)
42 exec WaitBarrier()
43 call BarrierInv() || CollectorInv(i, true)
44 // do root scan here
45 assert mutatorsInBarrier = [1..N]
46 exec SetBarrier(false)

47 // Supporting invariants
48 invariant BarrierInv()
49 mutatorsInBarrier ⊆ [1..N] ∧
50 size(mutatorsInBarrier) + barrierCounter = N

51 invariant MutatorInv(linear p: Perm, i: int)
52 p = Right(i) ∧ i ∈ mutatorsInBarrier

53 invariant CollectorInv(linear i: int, done: bool)
54 i = 0 ∧ barrierOn ∧
55 (done =⇒ mutatorsInBarrier = [1..N])

Fig. 3. Barrier synchronization to illustrate linear interfaces.

The strength of linearity, which leads to a less tedious verification task, is
that its invariant connects variables from different scopes, without the need to
explicitly state (and prove) this invariant. The programmer only provides a lin-
earity specification which is checked automatically (see Sect. 4). The resulting
guarantees can then be assumed “for free”. In contrast, even stating a corre-
sponding invariant requires the introduction of auxiliary global variables and
helper invariants to connect them to local variables.

3 RefPL: Syntax and Semantics

In this section we present RefPL, a core programming language which is carefully
designed to be (1) a minimal yet general modeling language to express concurrent
programs, (2) able to express invariants over program executions, and (3) suit-
able for expressing (refinement-based) program transformations. RefPL focuses
on interfaces for modular verification, while abstracting from detailed expression
syntax and types.

Syntax. Figure 4 (top panel) summarizes the syntax of RefPL. We assume sets
of names which we use to name actions (A), procedures (P,Q), yield invariants
(Y), and statement labels (λ). A set of variables is partitioned into global and
local variables, and a store σ is a partial map from variables to values. We write
σ′ ⊆ σ if σ is an extension of σ′, σ|V for the restriction of σ to V , σ[σ′] for the

Refinement for Structured Concurrent Programs 283

store that is like σ′ on dom(σ′) and otherwise like σ, and g·� for the combination
of a global and local store. A program consists of a finite set of global variables
gs, a partial map as from action names to actions, and a partial map ps from
procedure names to procedures. Both actions and procedures have an interface
of input variables I and output variables O, and procedures have additional local
variables L. A (gated atomic) action [13,26] consists of a gate ρ and a transition
relation τ . The gate is a set of stores (i.e., a predicate) over gs∪I. Executing the
action in a state that does not satisfy the gate fails the execution. Otherwise,
every transition (σ, σ′, Ω) in τ describes a possible atomic state transition from σ
(over gs ∪ I) to σ′ (over gs ∪O), together with the creation of new asynchronous
threads according to a set of pending asyncs Ω; every pending async (�, P) ∈ Ω
is turned into a new thread that executes procedure P with input store �. A
procedure consists of a statement s that is composed of standard control-flow
commands and two call commands: exec to invoke actions and call for the
parallel invocation of multiple procedures. Every entry in the invocation sequence
of a call is called an arm of the call, and the label λ is used to attach specification
information to the call. Parameter passing is expressed using an input map ι from
the callee’s formals I to the caller’s actuals I ∪ O ∪ L, and an injective output
map o from the callee’s formals O to the caller’s actuals O ∪ L. Input variables
are immutable, since they are not mapped to by output maps and the variables
of a procedure are not modified anywhere else. Output and local variables of a
procedure are initialized to the default value h. In RefPL, loops are modeled
using recursion, and conditional statements are modeled using nondeterministic
branching (∗) and actions that assume the branching condition.

Type Checking. For a program we require that (1) the action name in an exec
statement is in dom(as), (2) the procedure names in a call statement are in
dom(ps), and the actual outputs of all arms are disjoint from each other and all
actual inputs, and (3) for every pending async (�, P) in the transition relation
of an action in img(as), P ∈ dom(ps) and dom(�) contains all inputs of P .

Semantics. Figure 4 (bottom panel) presents the operational semantics of
RefPL, a transition relation ⇒ over configurations that consist of a global store
over gs and a finite multiset of threads. Each thread is a tree (which generalizes
a call stack); a call statement creates new leaf nodes (Lf) and blocks the caller
in an internal node (Nd) until all arms of the parallel call finish. Each tree node
contains a frame (P, �, s) that represents the current state of a procedure P dur-
ing execution: � is the procedure’s current local store and s is a statement that
remains to be executed. In the definition of ⇒ we use several evaluation contexts
that have a unique hole •; filling the hole is denoted by ·[·]. In particular, SC [s]
is a statement with s in evaluation position, and PC [t] is a multiset of thread
trees where t is a subtree in one of these trees. The operator ◦ means function
or relation composition.

Atomic actions (invoked through the exec command) execute directly in the
context of the caller; inline, if you will. If the current store does not satisfy the
gate of an executed action, the execution stops in the failure configuration �. It
is important to appreciate the generality of atomic actions. First, they can rep-

284 B. Kragl et al.

A ∈ ActionName P, Q ∈ ProcName Y ∈ InvName λ ∈ Label

Val �
v ∈ Var = GVar ∪ LVar
g ∈ GStore = GVar ⇀ Val
� ∈ LStore = LVar ⇀ Val
σ ∈ Store = Var ⇀ Val
ρ ∈ Gate = 2Store

τ ∈ Trans = 2Store×Store×PASet

Ω ∈ PASet = 2LStore×ProcName

ι, o ∈ IOMap = LVar ⇀ LVar

s ∈ Stmt ::= | skip | s ; s | s ∗ s

| callλ (P, ι, o) | exec (A, ι, o)
I, O, L ∈ 2LVar

Action ::= (I, O, ρ, τ)
Proc ::= (I, O, L, s)

gs ∈ 2GVar

as ∈ ActionName ⇀ Action
ps ∈ ProcName ⇀ Proc

P ∈ Prog ::= (gs, as, ps)

Inv ::= (I, ρ)
InvCall ::= (Y, ι)

ys ∈ InvName ⇀ Inv
pre, post ∈ ProcName ⇀ 2InvCall

inv ∈ Label ⇀ 2InvCall

Y ::= (ys, pre, post , inv)

lg ∈ 2GVar

li ∈ (ActionName ∪ ProcName ∪ InvName)
× {�, �} ⇀ 2LVar

lo ∈ (ActionName ∪ ProcName) ⇀ 2LVar

lc ∈ Val → 2Val

L ::= (lg , li , lo, lc)

ref ∈ ProcName ⇀ ActionName
mark ∈ Label ⇀ {�, �} ∪ N

R ::= (ref ,mark)

f ::= (P, �, s)

t ::= Lf f | Nd f t

T ::= {t, . . . , t}
c ::= (g, T) |

SC ::= •s | SC ; s

TC ::= •t | Nd f tTC t

PC ::= {TC} � T
LC ::= PC [Lf (P, •�,SC)]

for ps(Q) = (I, O, L, s) let

init(Q, �) = (Q, �|I ∪ [v �→]v∈O∪L, s)

(call) (g,PC [Lf (P, �,SC [callλ (Qi, ιi, oi)])]) ⇒
(g,PC [Nd (P, �,SC [callλ (Qi, ιi, oi)]) Lf init(Qi, � ◦ ιi)])

(return) (g,PC [Nd (P, �,SC [callλ (Qi, ιi, oi)]) Lf (Qi, �i, skip)]) ⇒
(g,PC [Lf (P, �[�i ◦ o−1

i],SC [skip])])

(exec) as(A) = (, , ρ, τ) g̃ ⊆ g (g̃·(� ◦ ι), ĝ·�̂, Ω) ∈ ρ ◦ τ

g′ = g[ĝ] �′ = �[�̂ ◦ o−1] T ′ = {Lf init(Q, �′′) | (�′′, Q) ∈ Ω}
(g,PC [Lf (P, �,SC [exec (A, ι, o)])]) ⇒ (g′,PC [Lf (P, �′,SC [skip])] � T ′)

(fail) as(A) = (, , ρ,) ¬∃g̃ ⊆ g : g̃·(� ◦ ι) ∈ ρ

(g,LC [�][exec (A, ι, o)]) ⇒
(choice) s′ ∈ {s1, s2}
(g,LC [�][s1 ∗ s2]) ⇒ (g,LC [�][s′])

(skip) (g,LC [�][skip ; s]) ⇒ (g,LC [�][s]) (stop) (g, {Lf (, skip)} � T) ⇒ (g, T)

Fig. 4. The programming language RefPL: syntax (top panel), proof annotations (mid-
dle panel), and operational semantics (bottom panel).

Refinement for Structured Concurrent Programs 285

resent atomic operations at an arbitrary level of granularity, from fine-grained
low-level operations (e.g., as implemented in hardware) to coarse-grained sum-
maries (e.g., obtained as part of a layered proof). Second, the notion of pending
asyncs subsumes the need for a dedicated asynchronous call statement, and
enables advanced proof techniques for asynchronous programs [24,26]. Finally,
all accesses to global variables are confined to atomic actions.

We distinguish between the preemptive semantics and the cooperative seman-
tics of a program. The preemptive semantics ⇒ defines the standard fine-grained
behaviors of a concurrent program, where a context switch can happen at any
time. A program should be proved correct under its preemptive semantics. How-
ever, for reasoning purposes we consider a cooperative semantics, where context
switches only happen at procedure calls and returns. We call these locations
yields. The justification for reducing reasoning about preemptive semantics to
cooperative semantics is outside the scope of this paper (Civl uses commuta-
tivity reasoning and a reduction argument).

A leaf node Lf(P, , s) is yielding, if it denotes the entry or exit of procedure P ,
i.e., if ps(P) = (, , , s) or s = skip. A configuration is yielding if all leaves are
yielding, and cooperative if at most one leaf is not yielding. Then the cooperative
semantics is given by restricting ⇒ to cooperative configurations. Notice that
the configuration after an exec might be non-yielding. Thus, under cooperative
semantics the pending asyncs created by exec can only start executing once the
caller reaches the next yield. We note that arbitrary yields can be modeled with
“empty” parallel calls (i.e., a call with no arms).

A yield-to-yield fragment {P |κ1} e {κ2} of a procedure P is any sequence
of exec statements e that forms a path in P from κ1 to κ2, where κ1 and κ2

are either call statements, ⊥, or 	 (κ1 = ⊥ for procedure entries; κ2 = 	 for
procedure exits). For example, procedure Acquire in Fig. 2 has three yield-to-
yield fragments: (A1) entry/successful CAS/then branch/exit, (A2) entry/failed
CAS/call in the else branch, and (A3) call in the else branch/exit (i.e., an “empty”
fragment). Let Gate(e) be the set of stores from which executing e cannot fail,
and let Trans(e) be the set of tuples (σ, σ′, Ω) where executing e from store
σ can result in σ′ with all created pending asyncs collected in Ω. We define a
reduced transition relation � over yielding configurations, such that c � c′ if
and only if there are cooperative but non-yielding configurations (ci)1≤i≤n∧n≥0

with c ⇒ c1 ⇒ . . . ⇒ cn ⇒ c′. Thus, every step in � corresponds to the
execution of a yield-to-yield fragment under cooperative semantics.

4 Abstracting RefPL Programs

This section presents a proof rule for transforming a concurrent program P into
a concurrent program P ′ such that there is a simulation between the cooperative
executions of P and P ′. The transformation comprises variable hiding (P ′ has
fewer global and local variables than P) and procedure abstraction (procedures
in P are summarized to atomic actions in P ′). Our proof rule takes as input a
yield specification Y, a linearity specification L, and a refinement specification

286 B. Kragl et al.

R (see Fig. 4), and decomposes the refinement verification problem as follows.

Linearity(P,Y,L) Safety(P,Y,L) Refinement(P,Y,L,R,P ′)
Y,L,R
 P � P ′

The yield specification declares yield invariants and attaches them to pro-
gram locations, and the linearity specification declares linear interfaces and
sets up a permission discipline (Sect. 4.1). The Linearity judgment (Sect. 4.2)
ensures that the linear interfaces of procedures, actions, and invariants in P
are valid, which establishes a linear disjointness property. The Safety judgment
(Sect. 4.3) ensures that preconditions, postconditions, and invariants in P are
valid and interference-free, which captures reachability information in P. Note
that Linearity and Safety interact, as yield invariants can have a linear interface
and safety checking assumes the guarantees of linearity checking. In our proof
rule, the guarantees of Linearity (Lemma 1) and Safety (Lemma 2) establish
the context for refinement checking. However, we stress that these guarantees
are useful on their own, independent of refinement. The refinement specifica-
tion (Sect. 4.4) declares how P is converted to P ′, and the Refinement judgment
ensures that every execution of P is simulated by an execution of P ′ (Theorem
1). In Sect. 5 we show how all of our obligations are implemented in practice.

4.1 Yield Invariants and Linear Interfaces

RefPL supports yield invariants of the form (I, ρ), where I are input variables
and ρ is a gate over gs ∪ I. In a yield specification Y = (ys, pre, post , inv), the
map ys assigns invariant names to yield invariants, such that invariants can be
“invoked” by name—similar to actions and procedures—by supplying an input
map ι. We will write ϕ and ψ for sets of such invariant calls, and σ |= ϕ to denote
that store σ satisfies ϕ, i.e., g·� |= ϕ ⇐⇒ ∀(Y, ι) ∈ ϕ ∃ĝ ⊆ g : ĝ·(�◦ ι) ∈ ys(Y).ρ.
Then invariant calls are assigned to program locations as follows: pre(P) are
the preconditions that must hold on entry to procedure P , post(P) are the
postconditions that must hold on exit from procedure P , and inv(λ) are the
invariants that must hold at calls labeled with λ. These are the yield locations
in the cooperative semantics, under which we will show the invariants correct
and stable under interference.

RefPL supports linear permissions to enhance local reasoning. The core idea
of linearity is to identify a subset of (linear) available variables among all vari-
ables in all frames of a configuration. Every value stored in an available variable
is mapped to a set of values called permissions, with the desired property that the
values in available variables are mapped to disjoint permissions. This disjointness
property can then be used as free assumption in other verification conditions.

In a linearity specification L = (lg , li , lo, lc), the linear global variables lg
are a subset of gs, which are always available. For every action/procedure/in-
variant name X, li(X,�) and li(X,�) are subsets of its input variables called
linear-in and linear-out, respectively. The linear-ins expect to receive from an

Refinement for Structured Concurrent Programs 287

available actual parameter, while the linear-outs ensure that their actual param-
eter will be available upon return. An input variable can be both linear-in and
linear-out (which we assume for all invariants). For every action/procedure name
X, its linear outputs lo(X) are a subset of its output variables, such that the
receiving actual return parameters become available when X returns. For exam-
ple, in Fig. 3 the global variable mutatorsInBarrier is linear, procedure Mutator
and yield invariant CollectorInv have a linear (linear-in and linear-out) input
i, action EnterBarrier has linear-in input i and linear output p, and WaitFor-
BarrierRelease has a linear-in input p and linear-out input i. The permissions
assigned to an available variable are determined by a linear collector function lc,
which is a flexible mechanism to encode various permission disciplines. For con-
venience, we lift lc to collect all permissions of a set of variables V in store σ, i.e.,
lc(σ, V) =

⊎
v∈V lc(σ(v)). A simple example of a collector function that expresses

unique identifiers (as needed in Fig. 2) would return the singleton set {tid} for a
thread identifier variable tid. Figure 3 shows a more advanced usage, where the
definition of lc is split across the functions C1, C2, and C3 (see Sect. 2.3).

4.2 Linearity

Let us assign to every (sub)statement s in P a linear type in
out , written as s : in

out ,
where in/out is the set of local variables available directly before/after executing
s. Based on the linear interfaces in li and lo, the most general linear types can
be inferred, but for simplicity we assume all types to be given and define a type
checker below. Since linear types annotate each program location with available
variables, we can define the collection of linear permissions over a configuration
c = (g, T) as lc(c) = lc(g, lg) �

(⊎
(P,�,s:inout)

lc(�, in)
)
, where (P, �, s : in

out) ranges
over all frames in all nodes of T . Then the linear disjointness property for a
configuration c is IsSet(lc(c)), where IsSet(·) states that a multiset does not
contain duplicates. We call such a configuration L-valid. The Linearity(P,Y,L)
judgment comprises a semantic check on actions and a syntactic check on pro-
cedures, which ensures the preservation of the linear disjointness property as
follows.

Lemma 1. Let c be an L-valid configuration of P. If c ⇒ c′ then c′ is L-valid.
Essentially, an execution starts with a set of permissions and redistributes these
in every step. The permissions can stay the same or decrease, but never increase.

Linear Action Checking. All state updates (other than parameter passing)
are confined to atomic actions. We need to ensure that the outgoing permissions
of an action are always a subset of the incoming permissions. Thus, for every
A ∈ dom(as) with as(A) = (, , ρ, τ) we check

(g·�, g′·�′, Ω) ∈ ρ ◦ τ ∧ inPerm =
(
lc(g, lg) � lc(�, li(A, �))

) ∧ IsSet(inPerm) =⇒
(
lc(g′, lg) � lc(�, li(A, �)) � lc(�′, lo(A)) � (⊎

(�′′,P)∈Ω lc(�′′, li(P, �))
)) ⊆ inPerm.

Starting with a set of permissions in the linear globals and linear-in inputs, the
action can redistribute these permissions among the linear globals, its linear-out

288 B. Kragl et al.

out ⊆ in
skip : in

out

s1 : in
out s2 : out

out′

s1 ; s2 : in
out′

s1 : in
out1 s2 : in

out2

s1 ∗ s2 : in
out1∩out2

ι(li(A, �)) ⊆ in out ⊆ in \ ι(li(A, �))
) � ι(li(A, �)) � o(lo(A))

exec (A, ι, o) : in
out

⊎
i ιi(li(Pi, �))

) �
(⊎

(Y,ι)∈inv(λ) ι(li(Y, �))
)

⊆ in

out ⊆ in \ ⊎
i ιi(li(Pi, �))

) � ⊎
i ιi(li(Pi, �))

) � ⊎
i oi(lo(Pi))

)
callλ (Pi, ιi, oi) : in

out

Fig. 5. Linear type checking.

inputs and linear outputs, and the linear-ins of pending asyncs, but permis-
sions cannot appear out of thin air. Notice that this check depends on the user-
provided linear collector function lc. For example, consider action EnterBarrier
in Fig. 3. The linear-in input i holds the permissions Left(i) and Right(i) on entry
(cf. collector C1). By adding i to mutatorsInBarrier we hand over the permission
Left(i) (cf. collector C2), and by the assignment to the linear output p we hand
over the permission Right(i) (cf. collector C3). Thus, the set of permissions in
mutatorsInBarrier and i before is the same as the permissions in mutatorsInBarrier
and p after executing EnterBarrier.

Linear Type Checking. Now that we can trust the linear interfaces of actions,
we need to ensure that the linear types in procedures “add up” w.r.t. control
flow and parameter passing. For every P ∈ dom(ps) with body s : in

out we require
in = li(P,�), out = li(P,�)∪ lo(P), and a derivation of s : in

out according to the
rules in Fig. 5, where ι(V) means

⊎
v∈V ι(v). For example, in procedure Mutator

in Fig. 3 the linear input parameter i becomes unavailable at line 34, where it is
passed as linear-in. However, this call makes the local variable p available, such
that it can be passed as linear-in to the call on line 36. This call also passes i as
linear-out input, which makes i available again on line 37.

4.3 Safety

In a yielding configuration (g, T), every frame (P, �, s) in T is associated with a
set of invariant calls ϕ as follows: ϕ = pre(P) if s is the entry of P , ϕ = post(P)
if s is skip (the exit of P), or ϕ = inv(λ) if s is blocked at a call labeled with λ.
If g·� |= ϕ holds in every frame, then we call the configuration Y-valid. To show
that this property is preserved across the execution of a yield-to-yield fragment
(i.e, a step in �), the Safety(P,Y,L) judgment is decomposed into two kinds of
procedure-modular verification conditions: (1) a sequential check which ensures
that the next ϕ in the executing frame is established, and (2) a noninterference
check which ensures that the ϕ’s in all other frames are preserved. Both checks
weave in linearity to enhance local reasoning.

Refinement for Structured Concurrent Programs 289

Lemma 2. Let c be an L-valid, Y-valid configuration of P. If c � c′ then c′ is
Y-valid.

Floyd Packages. For convenience, let pre(κ) be the set of all invariants and
preconditions of a call statement κ (and post(κ) analogously):

pre(callλ (Qi, ιi, oi)) = inv(λ) ∪ (⋃
i{(Y, ιi ◦ ι) | (Y, ι) ∈ pre(Qi)}

)

post(callλ (Qi, ιi, oi)) = inv(λ) ∪ (⋃
i{(Y, (ιi ∪ oi) ◦ ι) | (Y, ι) ∈ post(Qi)}

)

For every yield-to-yield fragment {P |κ1} e {κ2} of P ∈ dom(ps) we define a
Floyd package {P |ϕ | ll} e {ψ}, which contains the invariants ϕ and linear avail-
able variables ll before, and the invariants ψ after the yield-to-yield fragment:

(ϕ, ll) =
{

(pre(P) , li(P,�)) if κ1 = ⊥
(post(κ1) , out(κ1)) if κ1 �= ⊥ ; ψ =

{
post(P) if κ2 = 	
pre(κ2) if κ2 �= 	 .

Sequential Checking. For every Floyd package {P |ϕ | ll} e {ψ} we check

⎛

⎝
① g·� |= ϕ
② (g·�, g′·�′, Ω) ∈ Trans(e)
③ IsSet(lc(g·�, lg ∪ ll))

⎞

⎠ =⇒
(

④ g′·�′ |= ψ
⑤ ∀(�′′, P) ∈ Ω : g′·�′′ |= pre(P)

)

.

After ② executing e from a store with ③ disjoint permissions that ① satisfies ϕ, it
must be the case that ④ ψ and ⑤ the preconditions of all created pending asyncs
hold. Notice that we can assume all gates of atomic actions when executing e.
This is the case because yield invariants are not supposed to be strong enough to
prove P safe. Their purpose is to establish the context for refinement checking.

Noninterference Checking. For every Floyd package {P |ϕ | ll} e {ψ} and
every yield invariant Y ∈ dom(ys) we check

⎛

⎝
① g·� |= ϕ ∧ g·�′ |= Y
② (g·�, g′· ,) ∈ Trans(e)
③ IsSet(lc(g·�, lg ∪ ll) � lc(�′, li(Y,�)))

⎞

⎠ =⇒ ④ g′·�′ |= Y.

After ② executing e from a store with ③ disjoint permissions that ① satisfies
both ϕ and Y , it must be the case that ④ Y still holds. A key ingredient that
makes our yield invariants powerful is the possibility to pass parameters to them
(�′ above, which is the same before and after executing e), together with the
possibility to give invariants a linear interface to include them in the disjointness
assumption ③. The reuse of named, parameterized invariants that are inductive
on their own facilitates ergonomic and modular proofs as well as a reduction in
the number of noninterference checks compared to location invariants.

The example in Fig. 3 uses three yield invariants. BarrierInv states a global
property on barrierCounter and mutatorsInBarrier, MutatorInv states a property of
mutators on line 35, and CollectorInv states a property of the collector at lines 41
and 43 (notice the difference in the Boolean parameter). The linear parameters

290 B. Kragl et al.

to both MutatorInv and CollectorInv are essential to prove their noninterference.
For example, linearity discharges all noninterference obligations of CollectorInv
w.r.t. yield-to-yield fragments in procedure Collector; there cannot be two differ-
ent available variables i both holding thread identifier 0. CollectorInv is also stable
across the yield-to-yield fragments in procedure Mutator: by linearity, we know
that EnterBarrier cannot execute if mutatorsInBarrier holds all mutator identi-
fiers, and WaitForBarrierRelease is blocked when barrierOn is true. As an exam-
ple of a sequential check, observe that the invariants at line 41 together with
barrierCounter = 0 from executing WaitBarrier imply the invariants at line 43, in
particular that mutatorsInBarrier holds all mutator identifiers.

4.4 Refinement

Recall that the goal of our proof rule is to transform a program P = (gs, as, ps)
into a program P ′ = (gs ′, as ′, ps ′). So far, we showed how the two judgments
Linearity(P,Y,L) and Safety(P,Y,L) establish properties on executions of P,
using a linearity specification L and yield specification Y. In the remainder of
this section we show how the Refinement(P,Y,L,R,P ′) judgment ties together
P and P ′ using a refinement specification R.

Consider an execution step c � c′ of P. We want to say that there is a rep-
resentative step ĉ � ĉ′ in P ′. Representative means that ĉ and ĉ′ are abstract
representations of c and c′, respectively. We capture this notion in an abstraction
mapping α, which maps every concrete configuration of P to an abstract config-
uration of P ′. Then the meaning of the judgment L,Y,R
 P � P ′ derived by
our proof rule is expressed in the following theorem.

Theorem 1. Let c be an L-valid, Y-valid configuration of P. (1) If c � � then
α(c) � �. (2) If c � c′ then either α(c) = α(c′), α(c) � α(c′), or α(c) � �.

The safety of P ′ should imply the safety of P. Thus, (1) states that any failure
in P is preserved in P ′. And (2) states that every step in P is matched with
a (potentially stuttering) step or failure in P ′. Hence, P ′ can fail “more often”
than P, but otherwise “behaves like” P.

Refinement Specification. In a refinement specification R = (ref ,mark), the
refinement mapping ref is a partial map from dom(ps) to dom(as ′). For every
procedure P ∈ dom(ref), we check that P is abstracted by action A = ref (P).
Since our refinement checks are procedure-modular, we require dom(ref) to be
closed under calls in ps (not including pending asyncs). In general, P executes
multiple yield-to-yield fragments and possibly calls other procedures, while A
executes in a single atomic step. Thus we need to ensure that exactly one yield-to-
yield fragment in P behaves like A, while all other fragments have no visible side
effect. We use a marking function mark to identify where A should happen in P .
For every call statement with label λ, mark(λ) is either � (“before”), � (“after”),
or the index i ∈ N of some arm of the call. This means that we are still before A
when the call returns, that we are already after A when reaching the call, or that
arm i establishes A, respectively. Naturally, procedure entry and exit are marked

Refinement for Structured Concurrent Programs 291

with � and �, respectively. Then the marks along every path of P must match
the regular expression �+

N
?�+, which distinguishes two cases. (M1) No call is

marked with an index i ∈ N. Then some yield-to-yield fragment switches from �
to �, which we will check to behave like A. All other yield-to-yield fragments and
calls on the path must have no side effect. (M2) Some call is marked with index
i ∈ N. We will check that arm i of this call behaves like A, while all other calls
and yield-to-yield fragments on the path must have no side effect. Since we check
mark per path, there are in general multiple occurrences of (M1) and (M2).

In Fig. 2, the ref mapping is specified using the refines keyword. For example,
procedure Acquire refines the atomic action AcquireSpec. The mark mapping is
not explicitly specified, but we consider the call on line 28 to be marked with 1
(the index of its only arm). Then one path through Acquire is marked with ��
and the other one with � 1�, both matching the regular expression above.

Program Rewriting. The program P = (gs, as , ps) is rewritten into P ′ =
(gs ′, as ′, ps ′) as follows. First, global variables can be hidden, such that gs ′ ⊆ gs.
Second, new atomic actions can be added (for new abstractions of procedures)
and unreferenced ones removed, but for A ∈ dom(as) ∩ dom(as ′) we require
as ′(A) = as(A). Recall that an action can execute in any program that con-
tains the referenced global variables and procedures. Third, dom(ps ′) = dom(ps)
and we rewrite every ps(P) = (I,O, L, s) into ps ′(P) = (I ′, O′, L′, s′) as fol-
lows. Local variables can be hidden, such that I ′ ⊆ I ∧ O′ ⊆ O′ ∧ L′ ⊆ L. If
P �∈ dom(ref), then s′ is like s, except that call arms (Q, ι, o) with ps ′(Q) =
(IQ, OQ, ,) turn into (Q, ι|IQ , o|OQ

), with the requirement img(o)∩ (O′ ∪L′) =
img(o|OQ

) that formal and actual outputs can only be hidden together. We
denote this rewriting of a statement by α(s). If P ∈ dom(ref), then s′ =
exec(ref (P), id(I ′), id(O′)), where id(·) is the identity mapping on a given set of
variables. We denote this exec statement by α(P). Thus, procedures in dom(ref)
remain in P ′, but with their bodies rewritten to a single exec to their abstrac-
tion. Clearly, the action interface as ′ ◦ ref (P) = (I ′, O′, ,) must match the
procedure, and L′ = ∅. Overall, P ′ must still typecheck, which ensures, e.g.,
that the remaining actuals in input/output maps were not hidden.

In the first refinement step of Sect. 2.2, where the procedures in the second
column of Fig. 2 are abstracted to the atomic actions in the third column, the
global variable b is hidden. In the second refinement step, where procedure Incr
is abstracted to action IncrSpec, the input parameter tid and the global variable
l are hidden. Notice that, in order to chain together these two refinement steps,
we performed an auxiliary rewriting step in procedure Incr that converted call
statements to exec statements. Civl automatically performs this transformation
as part of a refinement step, justified by a commutativity argument we explained
in Sect. 2.2. However, this rewriting is not formalized as part of our refinement
rule in this paper.

Skip Action. In the following we assume a special action Skip that has no
inputs and outputs, does not modify global variables, and creates no pending
asyncs. Formally, as(Skip) = (∅, ∅, {ε}, {(ε, ε, ∅)}), where ε is the empty store.
Observe that safety verification (i.e., showing that the failure configuration � is

292 B. Kragl et al.

unreachable) is a special case of refinement, where all global and local variables
are hidden, and all procedures are abstracted to Skip.

Abstraction Mapping. Figure 6 defines the abstraction
mapping α. In a given yielding configuration, we restrict the
global store to gs ′ and drop all trees rooted in a node that
refines Skip. The remaining nodes are traversed recursively,
where frames with P �∈ dom(ref) (nodes • on the right) are
rewritten as expected. The interesting case is for nodes with
P ∈ dom(ref), like node ❶ on the right. In this case, ❶ is turned into a leave
(cutting off the remaining subtree) whose statement is either α(P) (the single
exec of ref (P)) or skip. Intuitively, to match the concrete steps of P (in ❶
and its subnodes), the abstract configuration first stutters at α(P), then tran-
sitions to skip when the effect of ref (P) happens, and then stutters at skip
until the return from ❶. The delicate part is to determine if ref (P) happened
and to compute the local store for the abstract configuration. This is done by
the early-return function r. The function recurses on the unique path of marked
arms in calls, ❶ ❷ ❸ in our example, and either returns � (when “before
ref (P)”) or a local store � (when “after ref (P)”). Suppose that ❶,❷,❸ have
local stores �1, �2, �3, and that r(❸) = �3. Then r(❷) equals �2 updated with the
return parameters from �3, say �′

2, and similarly r(❶) equals �1 updated with
the return parameters from �′

2, say �′
1, which is the local store for the abstract

configuration. Thus, r performs “early” return parameter passing, even though
we are still in the middle of executing procedures. To prove Theorem 1, our ver-
ification conditions below have to ensure that throughout subsequent concrete
execution steps, r(❶) remains �′

1.

Refinement Packages. In a procedure P ∈ dom(ref), the effect of the abstract
action ref (P) can happen either in a yield-to-yield fragment directly in P , or
nested inside another called procedure. To handle (potentially recursive) proce-
dure calls during refinement, we decompose the problem into procedure-modular
checks. Recall that the marking function mark identifies yield-to-yield fragments
and call arms in P that should behave like the abstract action ref (P). Conversely,
all other yield-to-yield fragments and call arms should have no side effect, which
is to say that they should behave like Skip. Hence we have a refinement obliga-
tion for every yield-to-yield fragment and every call arm in P , where refinement
is either checked against ref (P) or Skip. We capture all these refinement obliga-
tions uniformly in refinement packages of the form {P |ϕ | ll} e {A}, where P is
the procedure we check refinement for, ϕ is a set of invariant calls and ll a set
of available variables we can assume, e is an exec sequence denoting the effect
we check refinement for, and A is the action we check refinement against.
(R1) Refinement Packages for Yield-to-Yield Fragments. For every procedure
P ∈ dom(ref) and yield-to-yield fragment {P |κ1} e {κ2} of P we define the
refinement package {P |ϕ | ll} e {A} where ϕ and ll are defined the same as
for Floyd packages, and A = ref (P) if mark(κ1) = � and mark(κ2) = �, or
A = Skip otherwise. This case is rather straightforward. We proved the validity

Refinement for Structured Concurrent Programs 293

Abstraction of configuration

α((g, T)) = (g|gs′ , {α(t) | t ∈ T ∧ root(t) = P ∧ ref (P) �= Skip})
Abstraction of thread tree

For the definitions of α(s) and α(P), see program rewriting.

�|P = �|I∪O∪L if ps ′(P) = (I, O, L,)

α(Lf (P, �, s)) = Lf (P, �|P , α(s)) if P �∈ dom(ref)

α(Nd (P, �, s) t) = Nd (P, �|P , α(s)) α(t) if P �∈ dom(ref)

α(Lf (P, �, s)) = Lf (P, �|P , s′) s′ =
{

α(P) if s �= skip

skip if s = skip
if P ∈ dom(ref)

α(Nd (P, �,)︸ ︷︷ ︸
t

) = Lf (P, �′|P , s′) s′, �′ =
{

α(P), � if r(t) = �
skip , r(t) if r(t) �= � if P ∈ dom(ref)

Early-return computation

r(Lf (P, �, s)) =
{

if s �= skip

� if s = skip

r(Nd (P, �,SC [callλ (Q, ι, o)]) t) =

⎧⎪⎪⎨
⎪⎪⎩

if mark(λ) =
� if mark(λ) =

if mark(λ) = i ∧ r(ti) =
�[r(ti) ◦ o−1

i] if mark(λ) = i ∧ r(ti) �=

Fig. 6. Abstraction mapping from configurations of P to configurations of P ′.

of ϕ and ll before the fragment, and need to check that the code e in the fragment
behaves either like ref (P) or skip.
(R2) Refinement Packages for Call Arms. For every procedure P ∈ dom(ref) and
callλ (Qi, ιi, oi) : in

out in P , let ϕ = inv(λ) and ll = in \
⋃

i ιi(li(Qi,�)). At a call
we know the validity of the invariants attached to the call and the availability
of in minus the linear variables passed into the callees. Then for every arm
(Qi, ιi, oi), let Ai = ref (P) if mark(λ) = i or Ai = Skip otherwise. Now the final
missing ingredient for a refinement package {P |ϕ | ll} e {Ai} for every arm i is
the effect e for which we check refinement against Ai. To obtain a modular check,
our solution is to use the abstract action specification of the callee Qi. Formally,
e = exec (Bi, ιi|I , oi|O) for Bi = ref (Qi) with as ′(Bi) = (I,O, ,). Recall that
this is well-defined, since dom(ref) is closed under calls. Notice that using the
specification of a callee while checking the specification of a caller is akin to
reasoning with procedure pre- and postconditions, where circular dependencies
are resolved via induction on the nesting depth.

Recall (from the end of Sect. 3) that procedure Acquire in Fig. 2 has three
yield-to-yield fragments: (A1), (A2), (A3). Each fragment induces an (R1)-type
refinement package, where (A1) is checked against AcquireSpec, while both (A2)

294 B. Kragl et al.

and (A3) are checked against Skip. Furthermore, the call on line 28 induces an
(R2)-type refinement package against AcquireSpec.

Refinement Checking. The Refinement(P,Y,L,R,P ′) judgment requires
every refinement package {P |ϕ | ll} e {A} to be discharged as follows. Let
e = exec (A, id(I), id(O)) for as ′(A) = (I,O, ,) be the abstract effect we
check refinement against, let V = gs ′ ∪ I ′ ∪ O′ for as ′ ◦ ref (P) = (I ′, O′, ,) be
the non-hidden variables in the scope of the refinement package, and check

(
① g·� |= ϕ
② IsSet(lc(g·�, lg ∪ ll))

)

=⇒

⎛

⎜
⎜
⎝

③ g·� ∈ Gate(e) =⇒ g·� ∈ Gate(e)
④ (g·�, g′·�′, Ω) ∈ Gate(e) ◦ Trans(e) =⇒

∃g·�̂, ĝ′·�̂′ : (ĝ·�̂, ĝ′·�̂′, Ω|ref) ∈ Trans(e)
∧ g·�|V = ĝ·�̂|V ∧ g′·�′|V = ĝ′·�̂′|V

⎞

⎟
⎟
⎠

where Ω|ref = {(�,Q) ∈ Ω | ref (Q) �= Skip}.

We assume a store g·� that satisfies ① invariants and ② linear disjointness accord-
ing to the refinement package. Then refinement consists of two parts, failure
preservation and behavior preservation. First, ③ if e can fail in the concrete
then e must also fail in the abstract. Second, ④ if e cannot fail in the abstract
and e can transition to store g′·�′ while creating pending asyncs Ω in the concrete,
then there must be a matching transition of e in the abstract. Here matching
means that e starts in a store ĝ·�̂ that agrees with g·� on the non-hidden variables
V , ends in a store ĝ′·�̂′ that agrees with g′·�′ on V , and creates the same pending
asyncs except the ones to procedures abstracted to Skip.

5 Implementation

Civl is a refinement-based verifier for concurrent programs built on top of the
widely-used Boogie intermediate verification language. The Boogie [6] verifier
provides infrastructure for compiling annotated sequential procedures into log-
ical verification conditions whose validity is checked by a satisfiability-modulo-
theories solver. Civl is implemented as an extension of Boogie, which takes
as input an annotated layered concurrent program [25] (in a language whose
core is RefPL), performs concurrency-specific type checking and static analyses,
and then encodes all the verification conditions of its proof rule into a standard
sequential Boogie program. Thus, Civl can be understood as a compiler that
eliminates concurrency in a RefPL program by translating it down to a collection
of sequential procedures, thus reusing the rest of the Boogie pipeline unchanged.

The open-source Civl verifier is a stable tool which is part of the master
branch [2] and public release [1] of Boogie. Civl has over 100 regression tests
comprising both realistic programs and microbenchmarks. There are many pub-
lished papers [9,26,27,33,39] that describe nontrivial examples verified using
Civl, most written by researchers other than the developers of Civl. The code
in Civl is extensible; entirely new tactics for rewriting concurrent programs have
been added to it [24,26]. Finally, Civl is designed for interactive program devel-
opment. It is fast and provides several command-line flags to focus verification

Refinement for Structured Concurrent Programs 295

on parts of the program. Civl has fine-grained error reporting including error
traces, which attributes a verification failure to a particular check, local to a
small part of the program. This helps the programmer to debug and iteratively
improve both implementation and specification.

An early version of the Civl verifier was reported by Hawblitzel et al. [18].
The implementation of the techniques described in this paper has been done as
part of the new design and implementation of Civl based on the framework of
layered concurrent programs [25]. In the rest of this section, we will continue to
use Civl to refer to our new implementation. We now present an overview of
the different parts of the verifier.

Type Checking. In addition to the standard type checking of a Boogie program,
the Civl type checker performs several extra checks. First, it checks that the
layer specifications [25] on program elements such as global and local variables,
atomic actions, and procedures are correct. Second, it checks using a dataflow
analysis that it is sufficient to reason about the safety of cooperative semantics.
This analysis exploits mover type [14] annotations on atomic actions to rea-
son that yield-to-yield code fragments satisfy the requirements of Lipton reduc-
tion [30]. It also generates logical verification conditions whose validity guarantee
the correctness of the mover annotations on atomic actions.

Linearity Checking. The Civl linearity checker implements the method
described in Sect. 4.2 in two parts. First, it creates for each atomic action a
sequential procedure which verifies that the multiset of outgoing permissions is
a subset of the multiset of incoming permissions. We use the generalized array
theory [31] to encode multisets, and the IsSet constraint in particular. Second, it
type checks each procedure to compute the set of available variables at each con-
trol location and to verify that linear interfaces of called procedures and atomic
actions are used appropriately.

Safety Checking. The Civl safety checker implements the method described
in Sect. 4.3. Unlike the formal description which enumerates yield-to-yield code
fragments, the implementation is efficient, encodes all code fragments in a RefPL
procedure into a single sequential procedure with maximal sharing, and adds
the safety checks by injecting instrumentation code and assertions into a cloned
copy of the original procedure. To express the noninterference check, we add
instrumentation variables that take snapshots of global and output variables at
every yield. Furthermore, the generalized array theory is used here as well to
record the pending asyncs created in a yield-to-yield code fragment, such that
their preconditions can be checked.

Refinement Checking. The Civl refinement checker implements the method
described in Sect. 4.4. Similar to safety checking, the refinement checks are added
as instrumentation to procedure copies. At every yield, snapshot variables (sim-
ilar as for noninterference) are used to refer to the state at the previous yield
when asserting the appropriate transition relation. Civl computes a representa-
tion of the transition relation of an atomic actions as a logical formula from the
user-provided representation as imperative code.

296 B. Kragl et al.

6 Conclusions

In this paper, we provide a foundation for refining structured concurrent pro-
grams and an implementation in the Civl verifier. The contribution of this
paper, and that of Civl in general, is the capability to express new proofs with
significant advantages for the programmer in terms of proof structuring, anno-
tation effort, and tool performance.

Acknowledgments. Bernhard Kragl and Thomas A. Henzinger were supported by
the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award).

References

1. Boogie (release). https://www.nuget.org/packages/Boogie
2. Boogie (source code). https://github.com/boogie-org/boogie
3. Abrial, J.: The B-Book: Assigning Programs to Meanings (1996). https://doi.org/

10.1017/CBO9780511624162
4. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6) (2010). https://doi.org/10.1007/s10009-010-0145-y

5. Back, R., von Wright, J.: Refinement calculus: a systematic introduction. Graduate
Texts Comput. Sci. (1998). https://doi.org/10.1007/978-1-4612-1674-2

6. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a mod-
ular reusable verifier for object-oriented programs. In: FMCO (2005). https://doi.
org/10.1007/11804192 17

7. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: IFM (2017). https://doi.org/10.1007/978-
3-319-66845-1 7

8. Bouajjani, A., Emmi, M., Enea, C., Mutluergil, S.O.: Proving linearizability using
forward simulations. In: CAV (2017). https://doi.org/10.1007/978-3-319-63390-
9 28

9. Bouajjani, A., Enea, C., Mutluergil, S.O., Tasiran, S.: Reasoning about TSO pro-
grams using reduction and abstraction. In: CAV (2018). https://doi.org/10.1007/
978-3-319-96142-2 21

10. Chajed, T., Kaashoek, M.F., Lampson, B.W., Zeldovich, N.: Verifying concur-
rent software using movers in CSPEC. In: OSDI (2018). https://www.usenix.org/
conference/osdi18/presentation/chajed

11. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: TPHOLs
(2009). https://doi.org/10.1007/978-3-642-03359-9 2

12. Damian, A., Dragoi, C., Militaru, A., Widder, J.: Communication-closed asyn-
chronous protocols. In: CAV (2019). https://doi.org/10.1007/978-3-030-25543-
5 20

13. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL (2009).
https://doi.org/10.1145/1480881.1480885

14. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI (2003).
https://doi.org/10.1145/781131.781169

15. von Gleissenthall, K., Kici, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend syn-
chrony: synchronous verification of asynchronous distributed programs. In: POPL
(2019). https://doi.org/10.1145/3290372

https://www.nuget.org/packages/Boogie
https://github.com/boogie-org/boogie
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1007/978-3-319-96142-2_21
https://doi.org/10.1007/978-3-319-96142-2_21
https://www.usenix.org/conference/osdi18/presentation/chajed
https://www.usenix.org/conference/osdi18/presentation/chajed
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-030-25543-5_20
https://doi.org/10.1007/978-3-030-25543-5_20
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/781131.781169
https://doi.org/10.1145/3290372

Refinement for Structured Concurrent Programs 297

16. Gu, R., et al.: Certified concurrent abstraction layers. In: PLDI (2018). https://
doi.org/10.1145/3192366.3192381

17. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
SOSP (2015). https://doi.org/10.1145/2815400.2815428

18. Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular refine-
ment reasoning for concurrent programs. In: CAV (2015). https://doi.org/10.1007/
978-3-319-21668-3 26

19. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3) (1990). https://doi.org/10.1145/
78969.78972

20. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: NFM
(2011). https://doi.org/10.1007/978-3-642-20398-5 4

21. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress
(1983)

22. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Irisfrom
the ground up: a modular foundation for higher-order concurrentseparation logic.
J. Funct. Program. 28 (2018).https://doi.org/10.1017/S0956796818000151

23. Khyzha, A., Dodds, M., Gotsman, A., Parkinson, M.J.: Proving linearizability
using partial orders. In: ESOP (2017). https://doi.org/10.1007/978-3-662-54434-
1 24

24. Kragl, B., Enea, C., Henzinger, T.A., Mutluergil, S.O., Qadeer, S.: Inductive
sequentialization of asynchronous programs. In: PLDI (2020). https://doi.org/10.
1145/3385412.3385980

25. Kragl, B., Qadeer, S.: Layered concurrent programs. In: CAV (2018). https://doi.
org/10.1007/978-3-319-96145-3 5

26. Kragl, B., Qadeer, S., Henzinger, T.A.: Synchronizing the asynchronous. In: CON-
CUR (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.21

27. Krishna, S., Emmi, M., Enea, C., Jovanovic, D.: Verifying visibility-based weak
consistency. In: ESOP (2020). https://doi.org/10.1007/978-3-030-44914-8 11

28. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers (2002)

29. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
Chalice. In: FOSAD (2009). https://doi.org/10.1007/978-3-642-03829-7 7

30. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12) (1975). https://doi.org/10.1145/361227.361234

31. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
FMCAD (2009). https://doi.org/10.1109/FMCAD.2009.5351142

32. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: VMCAI (2016). https://doi.org/10.1007/978-3-
662-49122-5 2

33. Mutluergil, S.O., Tasiran, S.: A mechanized refinement proof of the Chase–Lev
deque using a proof system. Computing 101(1), 59–74 (2018). https://doi.org/10.
1007/s00607-018-0635-4

34. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: an axiomatic
approach. Commun. ACM 19(5) (1976). https://doi.org/10.1145/360051.360224

35. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y.,
Poel,M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge Tracts in Theoretical Computer Science,
vol. 54 (2001)

https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.1007/978-3-030-44914-8_11
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1145/361227.361234
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/s00607-018-0635-4
https://doi.org/10.1007/s00607-018-0635-4
https://doi.org/10.1145/360051.360224

298 B. Kragl et al.

36. Schneider, F.B.: On concurrent programming. Graduate Texts Comput. Sci.
(1997). https://doi.org/10.1007/978-1-4612-1830-2

37. Vafeiadis, V.: Automatically proving linearizability. In: CAV (2010). https://doi.
org/10.1007/978-3-642-14295-6 40

38. Walker, D.: Substructural type systems. In: Pierce, B.C. (ed.) Advanced Topics in
Types and Programming Languages, pp. 3–44. The MIT Press (2004). https://doi.
org/10.7551/mitpress/1104.003.0003

39. Wilcox, J.R., Flanagan, C., Freund, S.N.: VerifiedFT: a verified, high-performance
precise dynamic race detector. In: PPoPP (2018). https://doi.org/10.1145/
3178487.3178514

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-1-4612-1830-2
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.7551/mitpress/1104.003.0003
https://doi.org/10.7551/mitpress/1104.003.0003
https://doi.org/10.1145/3178487.3178514
https://doi.org/10.1145/3178487.3178514
http://creativecommons.org/licenses/by/4.0/

	Refinement for Structured Concurrent Programs
	1 Introduction
	1.1 Related Work

	2 Overview
	2.1 Yield Invariants
	2.2 Refining Atomic Actions
	2.3 Linear Interfaces

	3 RefPL: Syntax and Semantics
	4 Abstracting RefPL Programs
	4.1 Yield Invariants and Linear Interfaces
	4.2 Linearity
	4.3 Safety
	4.4 Refinement

	5 Implementation
	6 Conclusions
	References

