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Abstract

Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise
flat triangular meshes with a given number of vertices on the surface that are optimal with
respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely
proportional with the number of vertices of the approximating mesh if the surface is con-
vex. He also claims that this Hausdorff distance is inversely proportional to the square
of the number of vertices for a specific non-convex surface, namely a one-sheeted hyper-
boloid of revolution bounded by two congruent circles. We refute this claim, and show
that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for
convex surfaces.

1. Introduction

In [3] Fejes Tóth introduced inscribed triangulations approximating con-
vex surfaces in R3 optimally and the approximation parameter A2 (Approx-
imierbarkeit). By a triangulation we shall mean a geometric realization of a
simplicial complex in Euclidean space homeomorphic to the surface, that is
piecewise linear in ambient space. From now on we take a simplicial complex
to mean the geometric realization.
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Optimal triangulations with m vertices are triangulations which mini-
mize the Hausdorff distance between the surface and the simplicial complex
when this simplicial complex ranges over the space of triangulations with m
vertices. We always assume that the vertices lie on the surface.

The Hausdorff distance between two subsets X and Y in Euclidean space
is defined as:

dH(X,Y ) = max{sup
x∈X

inf
y∈Y
|x− y|, sup

y∈Y
inf
x∈X
|x− y|},

where |x− y| denotes the standard Euclidean distance of x and y. The one-
sided Hausdorff distance from X to Y is given by

doH(X,Y ) = sup
x∈X

inf
y∈Y
|x− y|.

The inverse of the asymptotic value of the product of the number of
vertices and the Hausdorff distance is referred to as the approximation pa-
rameter (Approximierbarkeit) A2.

Fejes Tóth [3] gave the expression

(1)
1

A2
= lim

m→∞
dH(Σ, Tm)m ≥ 1√

27

∫ √
KdA,

where K is the Gaussian curvature, for the approximation parameter for
convex surfaces in three dimensional Euclidean space. We refer to [1,4,5] for
an introduction to geometry including the Gaussian curvature.

Fejes Tóth also claimed that the approximation of ruled surfaces embed-
ded in three dimensional Euclidean space would be entirely different from
the approximation of convex surfaces. In Section 12 of Chapter 5 of [3] he
states the following:

Let Σ be the one-sheeted hyperboloid bounded by two congruent
circles A and B. We inscribe A and B by regular m-polygons
A1 . . . Am and B1 . . . Bm respectively, so that A1B1, . . . , AmBm
lie on the hyperboloid. The polyhedron-like surface T2m is best
described by its faces

A1A2B1, . . . , AmA1Bm and B1B2A2, . . . , BmB1A1.

The deviation dH(T2m,Σ) is determined by the deviation of the
m-polygon A1 . . . Am from the circle A, this implies that the or-
der of magnitude of the deviation is 1/m2 and not 1/m.

Unfortunately this is incorrect. In fact we shall show that the order of
magnitude of dH(Σ, Tm) is 1/m, like in the convex case. Moreover in this
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Fig. 1. Fejes Tóth’s triangulation of the one-sheeted hyperboloid.

particular case we can explicitly calculate dH(Σ, Tm) and easily show that
this triangulation is not optimal.

All calculations were performed by hand and verified using Mathematica,
while producing the figures.

2. The triangulation of the hyperboloid

We prove that for the triangulation of the one-sheeted hyperboloid (with
two circles of equal size as boundary) suggested by Fejes Tóth we have
dH(Tm,Σ) ∼ 1/m.

We parametrize the hyperboloid (one sheet of the surface determined by
the equation x2 + y2 − z2 = 1) by

σ(u, t) =
u√
2

(− sin t
cos t

1

)
+

(
cos t
sin t

0

)
.

The surface consists of a one-parameter family of rulings, one for each t,
given by u 7→ σ(u, t). We shall assume that u ∈ [−umax, umax], so that the

two circles that form the boundary lie at a distance umax/
√

2 above and
below the xy-plane. In our parametrization we take t ∈ [0, 2π].

The vertices of the triangulation discussed by Fejes Tóth are equally dis-
tributed along the lower and upper boundary and placed such that for every
vertex on the lower boundary there is a vertex on the upper boundary that
lies on the same ruling as the vertex on the lower boundary. Fejes Tóth as-
sumes that m is even. The triangulation is characterized by the fact that
these rulings connecting the vertices are edges of the triangulation.

The edges of the triangles in the triangulation fall into three different
categories:

• rulings that lie on the surface,
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Fig. 2. The one-sheeted hyperboloid as wire model with the edges of the
triangulation added.

Fig. 3. The one-sheeted hyperboloid with two of the triangles of the triangulation
inserted.

• edges of a regular m/2-gon approximating the upper or lower bound-
ary,

• edges that connect ‘neighbouring’ vertices on the upper and lower
boundary.

Up to a rotation around the z-axis edges from the last category can be
parametrized by

(2) λσ(umax, 0) + (1− λ)σ(−umax, s),

with s = 4π/m.
We now prove a lemma that refutes Fejes Tóth’s claim that dH(Tm,Σ) ∼

1/m2 for the triangulations described above:

Lemma 2.1. For the sequence of triangulations Tm of the one-sheeted
hyperboloid Σ bounded by two congruent circles suggested by Fejes Tóth, as
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described above, we have

lim
m→∞

dH(Σ, Tm)m =
√

2πumax.

Proof. To determine dH(Σ, Tm) we first give an upper bound. This
bound is found by considering the triangulation and the surface restricted
to horizontal planes. The hyperboloid restricted to a horizontal plane is
a circle. The restriction of the triangulation is a (somewhat complicated)
polygon, see Figure 4. The vertices of this polygon lie on the circle or are the
restriction of an edge like (2), that is the intersection of a horizontal plane
and the edge. For each horizontal plane we can determine the Hausdorff
distance between the polygon and circle. This is straightforward because it
is attained in the restriction of an edge like (2), due to the negative curvature
of the surface. The maximum of all these pseudo-distances, defined below,
bounds the Hausdorff distance between the hyperboloid and Fejes Tóth’s
triangulation. This maximum is attained for z = 0, where the normal to the
hyperboloid is horizontal so that here this pseudo-distance coincides with the
Hausdorff distance between the hyperboloid and Fejes Tóth’s triangulation.

Fig. 4. A typical restriction of Tm to a horizontal plane.

To find the Hausdorff distance between the polygon and circle, it is con-
venient to introduce the pseudometric

dhor(v, w) =
√

(v1 − w1)2 + (v2 − w2)2,

where v = (v1, v2, v3) ∈ R3 and w = (w1, w2, w3) ∈ R3. The difference be-
tween a metric space and a pseudometric space is that in case of the latter
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d(x, y) = 0 does not imply x = y. Note that dhor(v,w) ≤ |v−w|, where | · · · |
denotes the Euclidean norm. We are now able to calculate

(3)

dhor(λσ(umax, 0) + (1− λ)σ(−umax, s), o)

=

√
2 + (1− 2λ)2u2

max√
2

− 2λ(λ− 1)umax√
2 + (1− 2λ)2u2

max

s+O(s2),

where o = (0, 0, 0). Note that s = 4π/m and we are interested in the limit
of m tending to infinity. On the other hand the z-coordinate of the edge
parametrized by (2) is

(2λ− 1)umax√
2

,

so the hyperboloid restricted to the plane characterized by the coordinate is
a circle with radius √

2 + (1− 2λ)2u2
max√

2
,

this radius is exactly the constant term in (3). This implies that the supre-
mum of remaining terms in (3) is an upper bound on the Hausdorff distance

(4) sup
λ∈[0,1]

∣∣∣∣∣ 2λ(λ− 1)umax√
2 + (1− 2λ)2u2

max

s

∣∣∣∣∣+O(s2) =
umax

2
√

2
s+O(s2).

The supremum of the expression on the left hand side of (4) is attained at

λ = 1
2 , this can be seen by inspecting the nominator and denominator indi-

vidually. At λ = 1
2 , we have that z = 0 and the normal to the hyperboloid

is horizontal for z = 0. This means that the point p where the supremum is
attained and the point p′ on the surface that is closest to p both lie in the
z = 0 plane, by [2, Theorem 4.8.12]. This in turn implies that the right hand
side of (4) equals the Hausdorff distance. We therefore find that

lim
m→∞

dH(Σ, Tm)m =
√

2πumax. �

Lemma 2.1 contradicts the assertion of Fejes Tóth.
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