
Gene regulation across scales – how
biophysical constraints shape

evolution
by

Rok Grah
July, 2020

A thesis presented to the
Graduate School

of the
Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy





The thesis of Rok Grah, titled Gene regulation across scales – how biophysical con-

straints shape evolution, is approved by:

Supervisor: Prof. Călin Guet, IST Austria, Klosterneuburg, Austria

Signature:

Supervisor: Prof. Gašper Tkačik, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Prof. Nick Barton , IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Prof. John Marko, Northwestern, Chicago, USA

Signature:

Defense Chair: Prof. Christopher Wojtan, IST Austria, Klosterneuburg, Austria

Signature:

signed page is on file





© by Rok Grah, July, 2020

All Rights Reserved

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other

people’s work without this being so stated; this thesis does not contain my previous

work without this being stated, and the bibliography contains all the literature that

I used in writing the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee, and that this thesis has not been submitted for a

higher degree to any other university or institution.

I certify that any republication of materials presented in this thesis has been ap-

proved by the relevant publishers and co–authors.

Signature:

Rok Grah

July, 2020

signed page is on file





v

Abstract

In the thesis we focus on the interplay of the biophysics and evolution of gene

regulation. We start by addressing how the type of prokaryotic gene regulation

– activation and repression – affects spurious binding to DNA, also known as

transcriptional crosstalk. We propose that regulatory interference caused by excess

regulatory proteins in the dense cellular medium – global crosstalk – could be a factor

in determining which type of gene regulatory network is evolutionarily preferred.

Next,we use a normative approach in eukaryotic gene regulation to describe minimal

non-equilibrium enhancer models that optimize so-called regulatory phenotypes.

We find a class of models that differ from standard thermodynamic equilibrium

models by a single parameter that notably increases the regulatory performance.

Next chapter addresses the question of genotype-phenotype-fitness maps of higher

dimensional phenotypes. We show that our biophysically realistic approach allows

us to understand how the mechanisms of promoter function constrain genotype-

phenotype maps, and how they affect the evolutionary trajectories of promoters.

In the last chapter we ask whether the intrinsic instability of gene duplication and

amplification provides a generic alternative to canonical gene regulation. Using

mathematical modeling, we show that amplifications can tune gene expression in

many environments, including those where transcription factor-based schemes are

hard to evolve or maintain.
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1 Introduction

I would like to start the thesis with an anecdote. In my first year at IST, at a course on

systems biology that was taught by my future supervisor Călin, we were discussing

a paper on the repressilator [Elowitz and Leibler, 2000]. This is a genetic regulatory

network, consisting of feedback loops between genes, each gene expressing a protein

that represses the next gene. Learning about such an elegant system and solutions

used in the paper, made me question why such systems were not explored earlier.

This question goes very well in hand with other important results in science that

seem completely obvious − why were not they thought of sooner? Călin’s answer

marked my future scientific path as it strongly influenced my decision to move

towards biophysical sciences and to join his lab. Călin’s answer to my question was

that besides the obvious technical reasons why such systems weren’t made earlier,

it is that many things that seem obvious to us now, weren’t so obvious back then. In other

words, I believe that Călin was trying to tell me that in science best results are those

that, in retrospect, seem obvious and trivial. Four years later, I now strongly believe

thatgoodscience is aboutasking the rightquestions leading to a differentperspective.

The work presented in this thesis focuses on modeling approaches for gene

regulation and how these can give wider and more mechanistic understanding

of the evolutionary consequences. Gene regulation, also known as regulation of

gene expression, is a process of controlling production of gene products such as

protein or RNA. As it allows a system to respond to an environmental change, it is

a crucial process in all life. Therefore, understanding gene regulation, and with it

gene expression, lies at the heart of understanding life.

The goal of modeling such processes is not to replace experiments but to offer
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support where experimental approaches are difficult. Furthermore, one of the most

important functions of modeling is to give rise to new questions, leading to different

insights and perspective. It is then the experiments that tells us what is real. As prof.

Kerševan from my undergraduate studies said, ’papir prenese vse’1.

As a physicist coming to the world of quantitative biology and biophysics from

a rather theoretical background, I believe that my time at IST was spent connecting

different research areas together, all in the spirit of IST’s interdisciplinarity.

As any transition to a new environment, it takes time to adapt and familiarize oneself

with it2. Fully diving in the world of biophysics at the begining of my PhD, the work

of Bintu et al [Bintu et al., 2005a; Bintu et al., 2005b] connected with the physicist

in me. This paper shows quantitative approach to transcriptional regulation using

thermodynamic models which are able to predict the expression of a gene from

the DNA sequence. From my physics background I was already familiar with these

type of models but had never applied them in biological context before. Why are

the thermodynamic models of gene regulation important? First, they provide a

highly quantitative mapping from promoter sequences to gene expression levels

that is compatible with biophysical measurements. No other model is able to so

accurately describe how individual nucleotides within binding sites affect gene

expression. Second, thermodynamic models are based on biophysically realistic

assumptions. They assume that we can use statistical mechanics to describe equilib-

rium probabilities of different molecules binding to the sequence of interest, and

using these to describe the expression of the gene of interest. This main assumption,

very basic in its core, directly leads to many biophysically realistic consequences.

It means that, without further assumptions, many qualitative properties directly

follow from the model itself. For example, it follows that the probability of binding

is a sigmoid function of the binding energy, a realistic but often ignored fact in other

models. Third, due to its realistic nature, the thermodynamic models can be used

to mechanistically explain concepts widely used in evolutionary biology, such as

1Rough translation would be ’Making a model doesn’t make it true’.
2see Chapter 5
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epistasis. It is this type of approach that I have followed in much of my research.

Due to these reasons, thermodynamic models are generally able to outperform

other models of gene regulation. For example, pictorial models of gene regulation

are able to give a simple understanding of the system, yet they lack quantitative

power. Bioinformatics can give quantitative predictions but these are often lacking

understanding of the model, or are limited by the data. Furthermore, machine

learning models of gene regulations can give accurate predictions but do not give

any insight and understanding of the process it is studying, thus failing one of the

main points of any model − to examine and understand the system.

However, which model is best depends on the question one is trying to answer. As

addressing biophysical constraints and mechanistic understanding constitutes a

large portion of the thesis, the thermodynamic models lie at the center of the work

presented here. Nonetheless, we also show how other models of gene regulation

can be used.

Broadly speaking, the thesis explores the extent to which models of gene regula-

tion explain cellular issues across scales, resulting from four projects, represented by

four chapters. Each chapter shows how biophysical constraints limit the evolution

of gene regulation and how understanding those limits can give insight into the

realm of ”possible” [Jacob, 1994]. Below we outline these four projects. We start

with a broader system-level problem, discussing transcriptional crosstalk and its

role in determining the regulatory network. We continue with the importance of

understanding mechanistic details and biophysical constraints for both knowing

what kind of systems can occur, and what can such systems do. We end with an

evolutionary aspect of gene regulation, showing a new population level alternative

to the canonical gene regulation which maintains most properties of gene regulation.

Chapter 2: The relation between crosstalk and gene regulation form revisited.

Due to the large assembly of genes and regulators in a cell, erroneous binding

and unbinding events called ”crosstalk” could occur. For example, a non-cognate
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transcription factor could bind to a promoter, wrongly activating gene expression.

Such crosstalk can interfere with the gene’s proper regulatory state (i.e., correct

amount of expression at appropriate times) and is generally considered to be se-

lected against. However, from an evolutionarily point of view, crosstalk can also

help promote gene regulatory network evolvability. This shows that knowing how

large number of regulatory proteins interact with various DNA targets is crucial in

fully understanding gene regulatory networks and their dynamics.

Experimental measurements of crosstalk are possible but often limited to certain

types of molecules that were priorly tagged by a fluorescent tag. Correctly estimating

crosstalk would entail measuring not only all proteins binding to the DNA but doing

so in a dynamical way. This means following the binding and unbinding dynamics

to understand how often and which part of DNA is bound which is currently

technologically very difficult. On the other hand, biophysically realistic models like

thermodynamic models discussed above allow us to theoretically explore these

systems. Such models were used to find that it is crucial to think of crosstalk as a

global − not local − quantity which leads to qualitatively different constraints than

considering crosstalk only at the level of individual gene regulatory elements.

In Chapter 2 we ask how the form of regulation, positive or negative, affects the

extent of regulatory crosstalk. In particular, both positive (a gene is activated by

the binding of its regulatory protein) and negative (a gene is active unless bound

by its regulatory protein) regulation can lead to the same activation of a gene in

response to an external signal. Due to this, researchers have pondered whether

additional considerations could favour the choice of one mechanism over the other,

or whether this choice is merely a coincidence ("evolutionary accident"). Different

studies proposed various arguments that all concentrated on a single gene with

a single regulator, regardless of the full regulatory network. Our study proposes

that additional costs, such as global crosstalk which takes into account the whole

network, could play a role in determining one form of regulation above the other. In

other words, our work addresses a typically overlooked cost of protein production:

that of regulatory interference caused by excess regulatory proteins in a dense

cellular medium. The core of our results is based on using the thermodynamic
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model which follows both correct and erroneous binding of regulatory proteins to

the whole network of genes, with some genes having positive and some negative

form of regulation.

Chapter 3: Normative models of enhancer function. In prokaryotes, thermody-

namic models of gene regulation provide a highly quantitative mapping from

promoter sequences to gene expression levels that is compatible with biophysical

measurements. In eukaryotes, however, such accurate predictions are still missing.

For example, in a set of eukaryotic promoter elements that increase transcriptional ef-

ficiency called enhancers, equilibrium models (like thermodynamic models) appear

not to be adequate in describing its regulation. On the other hand, non-equilibrium

models suffer from an exponential increase of complexity with increasing number

of parameters, making their use quite limited.

In Chapter 3, we aim to describe minimal non-equilibrium enhancer models using

the normative approach: finding such class of minimal models that optimizes

so-called regulatory phenotypes. Examples of these are low transcription factor

residence time, tunable cooperativity, and high specificity. The latter means de-

creasing transcriptional crosstalk by making transcription factor binding sites more

distinct, again showing that crosstalk plays an important role in understanding gene

regulatory networks. We find a class of models that differ from equilibrium models

by a single parameter that introduces kinetic-proofreading scheme, thereby notably

increasing the regulatory performance. Our solutions are the simplest generalization

of the classic equilibrium regulatory schemes to non-equilibrium processes, thus

still remaining simple enough to analyze and understand.

We further find that optimization of aforementioned regulatory phenotypes in our

non-equilibrium models is in a trade off with gene expression noise, predicting

bursty dynamics− an experimentally-observed hallmark of eukaryotic transcription.

The modeling approach used here differs from that used in other chapters: the top-

down normative approach based on optimization utilizes simple models without

focusing on data fitting to lead to new insight and understanding.
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Chapter 4: Evolving complex promoters for complex phenotypes. How genetic

mutations (genotype) alter one or more organismal traits (phenotype) is the central

problem of evolutionary biology. This genotype-phenotype (GP) mapping has been

extensively studied in a range of experimental and theoretical systems, most of

which indicate that the mapping is complex and non-linear. And yet, the wealth of

experimentally determined maps has not resulted in comprehensive or generalizable

understanding of the relationship between genotype and phenotype. In other words,

we lack the ability to predict how genotype maps onto phenotype for most biological

systems. One major area of focus for describing GP mapping has been the regulation

of gene expression, due to its central role in enabling organisms to respond to

environmental change and to coordinate inter-cellular processes. While offering

unprecedented insights into how gene regulatory networks evolve, a majority of

experimental work focused on a neighbourhood of only a handful of mutations

away, making these descriptions local. Furthermore, main focus of most studies

is the steady-state expression levels in cells. And yet, temporal dynamics of gene

expression play an important role in determining how a biological system functions.

For example, bistable behavior observed in various bacterial species is often enabled

by having different rates at which relevant genes are turned on or off. Therefore, it

is necessary to understand not only the steady state expression levels, but also how

the expression dynamics (how rapidly the steady state is reached) affect organismal

fitness.

In Chapter 4, we investigate complex promoters and complex phenotypes in realistic

setting. We go beyond the typically studied single phenotype of a constitutive

promoter and study how mutations in bacterial promoters alter gene expression

dynamics between different environments. To achieve this goal, we extended the

classical thermodynamic model that can accurately predict GP mapping for gene

expression dynamics in a regulated bacterial promoter. This biophysical model

allowed us to understand how the mechanisms of promoter function constrain GP

mapping, how those constraints changed depending on whether we considered
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only steady-state expression or the dynamics of expression, and how they affect the

evolutionary trajectories of promoters.

Using a biophysically realistic modeling approach, we were able to gain new

mechanistic insights into the function of a complex promoter, understanding not

only what mutations do but also why. This is critical for developing a more predictive

understanding of evolution, as it enables generalizing GP maps beyond a specific

system being studied to a range of other systems that share similar features (regulated

bacterial promoters).

Chapter 5: Gene amplification as a form of population-level gene expression reg-

ulation. Natural environments change periodically or stochastically with frequent

or very rare fluctuations and life crucially depends on the ability to respond to such

changes. Gene regulatory networks have evolved into an elaborate mechanism for

such adjustments as populations were repeatedly required to cope with specific

environmental changes. However, due to low single base-pair mutation rates, com-

plex promoters cannot easily evolve on ecological time scales.

In Chapter 5, we ask whether the intrinsic instability of gene duplication and

amplification provides a generic alternative to canonical gene regulation. By real-

time monitoring of gene copy number mutations in E. coli, we show that gene

duplications and amplifications enable adaptation to fluctuating environments by

rapidly generating copy number, and hence expression level, polymorphism. This

’amplification-mediated gene expression tuning’ occurs on timescales similar to

canonical gene regulation and can deal with rapid environmental changes. With

mathematical modeling, using population genetics, we show that amplifications also

tune gene expression in stochastic environments where transcription factor-based

schemes are hard to evolve or maintain. The fleeting nature of gene amplifications

gives rise to a generic population-level mechanism that relies on genetic heterogene-

ity to rapidly tune expression of any gene, without leaving any genomic signature.
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2 The relation between crosstalk and gene

regulation form revisited

Genes differ in the frequency at which they are expressed and in the form of regulation

used to control their activity. In particular, positive or negative regulation can lead to

activation of a gene in response to an external signal. Previous works proposed that the

form of regulation of a gene correlates with its frequency of usage: positive regulation

when the gene is frequently expressed and negative regulation when infrequently

expressed. Such network design means that, in the absence of their regulators, the

genes are found in their least required activity state, hence regulatory intervention

is often necessary. Due to the multitude of genes and regulators, spurious binding

and unbinding events, called ”crosstalk”, could occur. To determine how the form of

regulation affects the global crosstalk in the network, we used a mathematical model

that includes multiple regulators and multiple target genes. We found that crosstalk

depends non-monotonically on the availability of regulators. Our analysis showed that

excess use of regulation entailed by the formerly suggested network design caused

high crosstalk levels in a large part of the parameter space. We therefore considered the

opposite ’idle’ design, where the default unregulated state of genes is their frequently

required activity state. We found, that ’idle’ design minimized the use of regulation and

thus minimized crosstalk. In addition, we estimated global crosstalk of S. cerevisiae using

transcription factors binding data. We demonstrated that even partial network data

could suffice to estimate its global crosstalk, suggesting its applicability to additional

organisms. We found that S. cerevisiae estimated crosstalk is lower than that of a random

network, suggesting that natural selection reduces crosstalk. In summary, our study

highlights a new type of protein production cost which is typically overlooked: that

of regulatory interference caused by the presence of excess regulators in the cell. It

demonstrates the importance of whole-network descriptions, which could show effects
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missed by single-gene models.

Published as Grah R, Friedlander T. The relation between crosstalk and gene

regulation form revisited. PLOS Computational Biology. 16(2):1-24, 2020.

Some changes have been made to the text in order to integrate it into this thesis.
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2.1 Introduction

Gene regulatory networks can employ different architectures that seemingly realize

the same input-output relation. There is a basic dichotomy of gene regulation

into positive and negative control. A gene controlled by positive regulation is,

by default, not expressed and requires binding of an activator to its operator to

induce it. In contrast, a gene controlled by negative regulation, is expressed by

default, unless a repressor binds its operator and attenuates its activity. While

a gene can be regulated using either mode, researchers have pondered whether

additional considerations could favor the choice of one mechanism over the other, or

whether this choice is merely a coincidence ("evolutionary accident"). Throughout

the years, this question was addressed using different approaches. The seminal work

of Michael Savageau [Savageau, 1974; Savageau, 1977; Savageau, 1983] proposed

the so-called "Savageau demand rule", namely, that genes encoding frequently

needed products ("high-demand") are often regulated by activators. Conversely,

genes whose products are only needed sporadically ("low-demand"), tend to be

regulated by repressors. Savageau argued that the intensity of selection depends

on the extent to which the regulatory construct is used (later called the "use it

or lose it" principle [Gerland and Hwa, 2009]). When infrequently used (as in

activator regulating a low-demand or a repressor regulating a high-demand gene),

selection to preserve is weak, rendering it unlikely to survive [Savageau, 1998]. A

later evolutionary analysis mathematically formulated the problem as selection

in an alternating environment and found the exact conditions under which the

Savageau demand rule is expected to hold [Gerland and Hwa, 2009].

Recently, a comprehensive survey of regulatory topologies in E. coli and B.

subtilis, found agreement between the experimentally observed topologies and their

satisfaction of dynamic constraints, as verified in simulations. The authors found

exceptions to the Savageau demand rule and proposed that evolutionary processes

randomly pick a regulatory topology out of the many possible ones meeting the

organism physiological constraints [Kumar Prajapat et al., 2016].

An alternative reasoning for the observed correlation between a gene’s demand
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and its form of regulation was proposed using a biophysical, rather than evolutionary

argument [Shinar et al., 2006; Sasson et al., 2012]. If a high-demand gene is regulated

by an activator and a low-demand gene is regulated by a repressor, their regulatory

binding sites are mostly occupied and protected from spurious binding of foreign

regulators that could interfere with the gene’s regulatory state. However, if this

reasoning applies not just to one gene, but to many of them, it would also entail

extravagant use of regulators [Kumar Prajapat et al., 2016]. This would place

heavy demands on protein expression systems, associated with reduced growth

rate [Novick and Weiner, 1957; Koch, 1983; Kurland and Dong, 1996; Dekel and

Alon, 2005; Kafri et al., 2016].

While the above-mentioned studies examined the significance of regulatory

architectures from different perspectives, they all concentrated on a single gene with

a single regulator, regardless of the full regulatory network. It remains unanswered

whether the choice of positive or negative regulation for a gene with low- or high-

demand could have additional costs for the entire network. Specifically, transcription

factors are known to have limited specificity and bind a variety of DNA targets,

besides their cognate binding sites [Von Hippel et al., 1974; Johnson et al., 2005;

Maerkl and Quake, 2007; Wunderlich and Mirny, 2009; Rockel et al., 2012; Yona

et al., 2018]. The probability of such binding events naturally depends on their

concentrations [Gerland et al., 2002; Bintu et al., 2005a]. Here, we revisit the argument

that the Savageau demand rule minimizes transcriptional crosstalk, by accounting

for crosstalk of multiple genes simultaneously, rather than the single-gene crosstalk

considered earlier.

We use a mathematical global crosstalk model [Friedlander et al., 2016], which

was built upon the well-established thermodynamic model of gene regulation

to calculate transcription factor (TF)-DNA interactions [Shea and Ackers, 1985;

Von Hippel and Berg, 1986; Gerland et al., 2002; Bintu et al., 2005a; Kinney et al., 2010;

Lässig, 2007; Haldane et al., 2014]. We have previously shown that while crosstalk

affecting a particular gene can be reduced by different means, it always comes at the

cost of elevating crosstalk in other genes [Friedlander et al., 2016]. In contrast, the

global crosstalk cannot be reduced below a certain threshold. Here, we analyze global
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crosstalk levels under different regulatory strategies: either positive or negative

regulation. We compare two extreme designs: a ’busy’ one that implements the

Savageau demand rule, in which a high (low)-demand gene is always regulated by

an activator (repressor) and an opposite ’idle’ design, in which a high (low)-demand

gene is always regulated by a repressor (activator). We find that the ’busy’ design

maximizes regulator usage, whereas the ’idle’ one minimizes it. We analyze the

dependence of global crosstalk on the abundance of regulatory proteins in the

cellular environment and find the exact conditions under which either ’idle’ or ’busy’

design minimizes crosstalk. We conclude that under most biologically plausible

parameter values, the ’idle’ design should yield lower global transcriptional crosstalk.

This chapter begins with the introduction of a general symmetric model for

the analysis of transcriptional crosstalk in a many-TFs-many-genes setting, with

combination of positive and negative regulation. We show that global crosstalk

levels directly depend on the fraction of TFs in use and only indirectly on the choice

of activation or repression as the form of regulation. We then analyze TF usage and

crosstalk levels of the two extreme designs, i.e., ’busy’ and ’idle’ and then construct

numerical simulations of a more general asymmetric gene usage model, that are in

agreement with the analytical result. Lastly, we discuss the challenges in crosstalk

calculation for real gene regulatory networks, in particular, the possible effect of

data incompleteness, and show an example using S. cerevisiae TF data.

2.2 Results

2.2.1 A model of gene regulation using a combination of activators

and repressors

We begin by introducing and analyzing a basic model with a simple form of gene

regulation, assuming that each gene is regulated by a single transcription factor. We

also assume identical properties for all genes and all transcription factors. Later we

relax some of these simplifying assumptions and consider additional more complex

gene regulatory architectures. We summarize these model variants in the main



14

text, and their full descriptions can be found in Section 2.5.1. We consider a cell

that has a total of M genes, each of which is transcriptionally regulated to be either

active or inactive. We assume that each gene is regulated by a single unique TF

species - its cognate one. Each gene has a short DNA binding site to which its

cognate TF binds. A fraction 0 ≤ p ≤ 1 of the genes is regulated by activators and

the remaining 1 − p fraction of genes is regulated by repressors. When no activator

is bound, activator-regulated genes are inactive (or active at a low basal level)

and only become active once an activator TF binds their binding site. In contrast,

repressor-regulated genes are active, unless a repressor TF binds their binding

site and inhibits their activity (Fig 2.1A). We assume that different environmental

conditions require the activity of different subsets of the M genes. We assume

however that all these subsets include an equal q proportion of genes 0 ≤ q ≤ 1 that

is needed to be active. The remaining 1 − q proportion should be inactive. These

activity states are regulated by the binding and unbinding of the TFs specialized

for these genes. We assume that only a subset of TFs necessary to maintain the

desired regulatory pattern, is available to bind and regulate these genes. However,

TFs often have limited specificity to their DNA targets and can occasionally bind

slightly different sequences, albeit with lower probability [Maerkl and Quake, 2007;

Wunderlich and Mirny, 2009; Sarai and Takeda, 1989; Fordyce et al., 2010; Afek et al.,

2014; Yona et al., 2018].

We define ’crosstalk’ as the average fraction of genes found in any erroneous

regulatory state: a gene that should be activated (repressed) but is not, because its

cognate TF fails to bind or because its binding site which should remain unoccupied

is bound by a non-cognate TF and also events of activation (repression) in response

to a non-cognate signal (or in a wrong dynamic range) because a non-cognate

activator (repressor) binds instead of the cognate one - see summary in Fig 2.1C. To

quantitate the probability of these events, we use the thermodynamic model of gene

regulation [Shea and Ackers, 1985; Von Hippel and Berg, 1986; Gerland et al., 2002;

Bintu et al., 2005a; Landman et al., 2017]. Importantly, this model assumes that gene

activity is proportional to the equilibrium binding probability of its transcription

factor to its regulatory binding site. Hence, we use a quasi-static, rather than kinetic,
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Activity Regulated by Proportion of genes using

this regulatory strategy

active activator a, where a ≤ q , p

active repressor q − a

inactive activator p − a

inactive repressor (1 − p) − q + a

Table 2.1: We distinguish 4 sets of genes according to their state of activity (active/ inactive) and

form of regulation (activation/ repression).

description where we assume that the system switches between different states of

equilibrium. A mathematical model for crosstalk for the special case in which all TFs

are activators (p � 0) was derived and analyzed in our previous work [Friedlander

et al., 2016]. Here, we analyze a more general model with a combination of activators

and repressors. The reader can find the details of both models in Section 2.5.1.

Both activity and inactivity of genes can be attained by means of either activator

or repressor regulation. Accordingly, our model distinguishes between four sets of

genes (see Table 2.1 and Fig 2.1B):

The probability that a particular gene i is in the xbound or xunbound crosstalk states,

depends on the concentration of competing non-cognate TFs, C j , j , i and on the

number of mismatches, di j , between each competing TF j and the regulatory binding

site of gene i, where we assume equal energetic contributions of all positions in

the binding site. Consequently, the similarity between binding sites regulated by

distinct TFs is a major determinant of crosstalk. We introduce an average measure

of similarity between binding site i and all other binding sites j , i [Friedlander

et al., 2016]:

Si ≡ ⟨e−ϵdi j⟩P(d) �
1
C

∑
j,i

C je−ϵdi j �
1
T

∑
j,i

e−ϵdi j . (2.1)

As only a subset of the genes is regulated, the summation of only the corre-

sponding subset of TFs available to bind is taken. Si is defined as the average of

the Boltzmann factors, e−ϵdi j , taken over the distribution of mismatch values P(d)
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Figure 2.1: (Continued on the following page.)

between binding sites i and j, ∀ j. In the last equality in Eq 2.1, we assume that

all available TFs are found in equal concentrations C j � C/T, ∀ j, where C is the

total TF concentration and T is the number of distinct TF species available. Eq 2.1
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Figure 2.1: Gene regulation can employ different combinations of activators and repressors to

implement the same gene expression pattern. (A) A signal can cause gene activation by either

positive (first row) or negative (second row) control. (B) We consider a total of M genes in a cell,

of which a fraction 0 ≤ p ≤ 1 is regulated by activators, and the remaining 1 − p is regulated by

repressors. Assume that only a fraction q < 1 of these genes should be active under certain conditions

(black squares), while the remaining genes should be inactive (white squares). In general, a ≤ q , p of

this q proportion is activator-regulated and q − a is repressor-regulated. Here, we illustrate all four

cases of active/inactive genes regulated by activator/repressor and define all the variables. Gray

ellipses represent TFs (of either type) required to maintain the regulatory state of the genes. (C)

Different genes are regulated by different TF species, where TF specificity is determined by short

regulatory DNA sequences (binding sites) adjacent to the gene. Each such binding site can be at

different levels of energy depending on its occupancy. It is in the lowest E � 0 (most favorable) level

when bound by its cognate TF; it can be in a variety of higher energy levels if a non-cognate TF

binds or if the site remains unoccupied (lower panel). The upper panel shows the crosstalk-free

’desired state’ (first row), where each TF binds its cognate target. Below (second row), four different

possibilities in which binding of a TF to non-cognate binding sites or failure to bind lead to crosstalk.

An activator-regulated gene should ideally be regulated by its cognate activator (right-inclined

ellipse), in order to become active. If this cognate TF fails to bind when the gene should be active (1),

or if another TF binds when the gene should remain inactive (2), we consider this as crosstalk. For a

repressor-regulated gene, crosstalk states occur when a non-cognate repressor binds when the gene

should be active (3), or if the cognate repressor fails to bind when the gene should be inactive (4). We

present cognate TFs by dark gray and non-cognate ones by light gray. Activators are represented by

right-inclining and repressors by left-inclining ellipses. Crosstalk states are marked by red crosses.

can also be used for general TF concentrations, as observed in experiments. We

demonstrate this calculation in Section 2.5.8. We found that allowing different

concentrations for activators and repressors does not reduce crosstalk below this

equal concentration scheme (Section 2.5.1). We also assume full symmetry between

binding sites i, such that Si � S ∀i. A numerical analysis of a more general case with

non-uniform Si values can be found in Fig 2.6 in Section 2.5.1. The value of S can be

either estimated using binding site data (see below) or analytically calculated under

different assumptions on the pairwise mismatch distribution P(d). In the following,

we use rescaled variables: s � S · M for rescaled similarity between binding sites,

the fraction of available TFs (t � T/M) and the rescaled total TF concentration



18

(c � C/M).

We distinguish crosstalk states of genes whose desired state of activity requires

unoccupied binding sites (xunbound), and those requiring occupation by a cognate

regulator (xbound). xunbound crosstalk includes the cases of an activator-regulated gene

that should remain inactive as well as that of a repressor-regulated gene that should

be active, both requiring an unoccupied binding site. For these genes, the cognate TF

is not available to bind and any binding event by another (non-cognate) regulator is

considered crosstalk. xbound crosstalk includes both an activator-regulated gene that

should be active and a repressor-regulated one that should be inactive. For these,

crosstalk states occur either if the binding site remains unbound or if it is occupied

by a non-cognate regulator, in which case, the regulatory state is not guaranteed. For

illustration of all possible crosstalk states, see Fig 2.1C. Using equilibrium statistical

mechanics, these crosstalk probabilities for a single gene i are [Von Hippel and Berg,

1986; Gerland et al., 2002; Friedlander et al., 2016]:

xbound �
e−Ea +

∑
j,i C je−ϵdi j

Ci + e−Ea +
∑

j,i C je−ϵdi j
�

e−Ea + cs
c/t + e−Ea + cs

(2.2)

xunbound �

∑
j,i C je−ϵdi j

e−Ea +
∑

j,i C je−ϵdi j
�

cs
e−Ea + cs

. (2.3)

Ea is the energy difference between cognate bound and unbound states. The

expression
∑

j,i C je−ϵdi j captures the sum of all interactions of binding site i with

foreign regulators.

2.2.2 Global crosstalk depends on the use of regulators

We define the global crosstalk, X, of a cell as the average fraction of genes found in

any of the crosstalk states. For a given value of a, we average over different choices

of a active genes out of the p activator-regulated and over different choices of q − a

out of the (1 − p) repressor-regulated proportions. The weighted sum over these

four types of contributions provides the average total crosstalk, X, of the whole

system:
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X �

Contribution of
activator-regulated genes                                                    

a · xbound + (p − a) · xunbound +

Contribution of repressor-regulated genes                                                                                        
(q − a) · xunbound + (1 − p − q + a) · xbound (2.4)

� t · xbound + (1 − t) · xunbound.

As Eq 2.4 shows, X simply depends on the fraction of available TF species t �

1 − p − q + 2a, where t � T/M, regardless of their role as activators or repressors.

Importantly, global crosstalk does not directly depend on the fraction of active

genes q. This is a generalization of the result obtained in [Friedlander et al., 2016],

where the special cases of t � q (all TFs are activators) and t � 1 − q (all TFs are

repressors) were studied. To obtain a lower bound on crosstalk values for given

similarity, s, and fraction of available TFs, t, we substitute the expressions for xbound

and xunbound (Eq 2.2 and Eq 2.3 into Eq 2.4). We then minimize X with respect to the

total TF concentration, c. Such minimization is possible because global crosstalk

balances between some binding sites that should be bound and others that should

be unbound. For the former, higher c increases their chance to be bound by their

cognate TFs and thus reduces crosstalk. For the latter, their cognate TF is absent and

thus higher c increases their chance to be bound by foreign TFs, namely increases

crosstalk. We then obtain the expression for minimal crosstalk:

X∗(t , s) � t
(
−s(1 − t) + 2

√
s(1 − t)

)
. (2.5)

Hence, the lower bound on crosstalk X∗ only depends on two macroscopic variables:

s (similarity between binding sites) and t (fraction of available TFs). The higher

the similarity s, the larger the resulting crosstalk X∗, where to first order, X∗ ∼
√

s

(Fig 2.2A). The dependence on t is more complicated and non-monotonic: for low

t values, t < t∗(s) (we show in Section 2.5.1 that t∗(s) ≥ 2/3), X∗ increases with t.

Intuitively, the number of available TF species positively correlates with the number

of crosstalk opportunities. Contrary to this intuition, for high TF usage beyond the

threshold value t∗, we find the opposite trend, where X∗ decreases with increasing

TF usage, t. This non-monotonic dependence of X∗ on t comes about since the

optimal concentration c∗(s , t) is tailored specifically for each t value. That is because
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the relative weight of binding sites that should be bound vs. those that should

be unbound, shifts with t. High TF usage though always comes at the cost of an

exponential increase in the optimal TF concentration, c∗, (Eq. S4), where for high s

values, c∗ diverges to infinity c∗ → ∞ (see Fig 2.2B). We discuss below the biological

relevance of the high t regime. We derived this model for the simple regulatory

network shown in Fig 2.1C. Eqs 2.2-2.5 can be analogously derived for more complex

network architectures, as we demonstrate in Section 2.5.10.

2.2.3 Mode of regulation affects global crosstalk because it affects

TF usage

A particular gene activity pattern can be obtained by different combinations of

positive and negative regulation, yielding seemingly identical gene functionality.

One may then ask whether these various TF-gene associations differ in the resulting

global crosstalk. Following Eq 2.5, crosstalk only depends on the fraction of available

TF species, t, regardless of the underlying association of a gene with either activator

or repressor. It is thus sufficient to consider how different regulatory strategies affect

TF usage, rather than analyzing the whole network architecture, thereby significantly

simplifying the analysis. Using our model, we calculate the global crosstalk for any

combination of the fraction of active genes, q, with any mixture of activators and

repressors defined by p, thereby covering all possible gene-regulator associations

with either activators or repressors. While each point represents a fixed fraction of

active genes, this model can also be used to study a varying number of active genes,

by taking a distribution of points over the q-axis (see Section 2.5.7 for an example).

Specifically, we focus on the two extreme gene-regulator associations, which we call

the ’busy’ and ’idle’ network designs. The ’busy’ design means that gene regulation

is operative most of the time. It is implied by the "Savageau demand rule" [Savageau,

1977], because the gene’s default state of activity is not its commonly needed state.

Under the opposite ’idle’ design, the default state of each gene is its more commonly

needed regulatory state. Hence, regulation is inoperative most of the time (see

Fig 2.2C). Hybrids of these two extreme designs are also possible.
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To represent the ’busy’ design, we associate as much of the q active proportion

as possible with activators, and only if the total fraction of activators is smaller than
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Figure 2.2: Crosstalk depends on the fraction of available TFs, which varies between regulatory

designs. (A) We illustrate minimal crosstalk, X∗, vs. t, the fraction of available TFs, for different

values of similarity, s. In most of the parameter regime (for t < t∗, t∗ ≥ 2/3), minimal crosstalk, X∗,

increases with t. Black circles denote the maxima of the curves. Crosstalk monotonically increases

with similarity between binding sites. The anomalous regime where TF concentration needed to

minimize crosstalk mathematically diverges to infinity, is gray-shaded around the curves. (B) The

optimal TF concentration, c∗, needed to minimize crosstalk increases sharply with t. c∗ diverges to

infinity at the boundary with the anomalous regime, which for high similarity s, occurs already at

lower TF usage t. Circles represent the maximal X∗ values for each curve (as in (A)). (C) Different

genes are expressed to different extents, where here, we grossly classify them as either high- (more

than half of the time) or low-demand (less than half). If a high-demand gene is regulated by an

activator or if a low-demand gene is regulated by a repressor, demand for the regulator will be

high (’busy design’). Conversely, if the same high-demand gene is regulated by a repressor and the

low-demand gene is regulated by an activator, the regulator is only required for a small fraction of

the time (’idle design’). (D) Each of the q active genes and 1 − q inactive genes can be assigned either

positive or negative regulation. We illustrate the two extremes maximizing (minimizing) TF usage: in

the ’busy’ (’idle’) design, as many active genes as possible are assigned positive (negative) regulation

and as many inactive genes as possible are assigned negative (positive) regulation. The scheme

shows an example with the proportion of active genes q, the proportion of activator-regulated genes

p and the proportion of repressor-regulated genes (1 − p) such that q ≤ p , 1 − p. Other combinations

are shown in Fig 2.9 in Section 2.5.3.

the fraction of active genes (p < q), the remaining q − p proportion is regulated by

repressors. Thus the fraction of activator-regulated active genes is a � min (p , q).
Conversely, under the ’idle’ design, we associate as much of the q active proportion

as possible with repressors. Only if the fraction of repressors is smaller than the

proportion of active genes (1 − p < q), the remaining active genes pursue positive

regulation, hence a � q − min ((1 − p), q). The corresponding fractions of TFs in use

(including both activators and repressors) in these two extremes are then:

tbusy � 1 − |p − q |, (2.6)

tidle � |1 − p − q |. (2.7)
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In Fig 2.2D, we illustrate regulation following these two extreme designs. The TF

assignments defined in Eq 2.6 and Eq 2.7 are the two extremes in TF usage. Namely,

for any general regulatory scheme, the fraction of TFs needed to regulate a given

fraction of genes q is tidle ≤ t ≤ tbusy (see Section 2.5.2 for formal proof). In Fig 2.3A,

we illustrate the difference in the fraction of available TFs between the two extreme

designs ∆t � tbusy − tidle � 1 − |p − q | − |1 − p − q | > 0, demonstrating that the ’busy’

design always requires more regulators than the ’idle’ design (see Section 2.5.5).

Using Eq 2.5, we obtain exact expressions for X∗ under these extreme designs

(see Section 2.5.4). In Fig 2.3B, we show ∆X∗ � X∗
idle − X∗

busy, the difference in minimal

crosstalk X∗ between the two extreme designs, for all (p , q) combinations. We find

that the ’idle’ design yields less crosstalk in a large part of this parameter space.

The ’busy’ design still involves less crosstalk for parameter combinations centered

around the diagonal p � q, whereas the ’idle’ design always performs best on the

anti-diagonal 1 − p � q. This is due to the fact that on the diagonal, the fraction of

activators, p, equals exactly the fraction of genes that should be active q, resulting

in full usage of all existing TFs, t � 1. On the anti-diagonal 1 − p � q, the fraction of

genes that should be active, q, equals exactly the fraction of repressors 1 − p. Thus,

the default state of all genes is the desired regulatory state requiring no TF usage at

all, t � 0, which makes the ’idle’ design most advantageous.

In the region in which the ’busy’ design yields the lowest crosstalk, this comes at

the cost of using a larger fraction of existing TF species, as depicted in Fig 2.3C. The

’idle’ design, in contrast, requires a much smaller fraction of TF species. Furthermore,

the two designs differ not only in the fraction of TFs needed but also in their

concentrations. To achieve the lower bound, the ’busy’ design always requires a

higher total TF concentration, c∗ (Fig 2.3D).

The explanation for the alternating crosstalk advantage between the two extreme

designs lies in the non-monotonic dependence of crosstalk on TF usage, t (Fig 2.2A).

For t(p , q) < t∗(s), crosstalk increases and for t(p , q) > t∗(s), it decreases with t.

Thus, for (p , q) combinations for which tidle < tbusy < t∗, ’idle’ design will yield

lower crosstalk, whereas if t∗ < tidle < tbusy, ’busy’ will be more advantageous (see

Section 2.5.2 for more details). While ’idle’ and ’busy’ represent the two extremes, a
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continuum of regulatory designs interpolating between these two extremes can be

defined. We show, however, that minimal crosstalk is always obtained by one of the

two extremes, due to the concavity of X∗(t) (see Section 2.5.2).

We previously found that for some parameter combinations of similarity, s,

and fraction of active genes, q, the mathematical expression for X∗ (Eq 2.5) has no

biological relevance [Friedlander et al., 2016]. Specifically, for similarity between

binding sites which is too high s > 1
1−t , regulation is ineffective and the lower bound

on crosstalk X∗ is obtained with no regulation at all. Another biologically irrelevant

regime occurs for high TF usage t > tmax (see SI of [Friedlander et al., 2016]). Then

the concentration needed to obtain minimal crosstalk formally diverges to infinity

c∗ → ∞. These biologically implausible regimes put an upper bound to the total

number of genes that an organism can effectively regulate [Itzkovitz et al., 2006;

Friedlander et al., 2016]. The results shown in Fig 2.3 only refer to crosstalk values

obtained in the ’regulation regime’ where c∗ is finite and positive, 0 < c∗ < ∞.

Specifically, we find that when similarity, s, increases, parts of the parameter space

shown in Fig 2.3A indeed move into the anomalous regimes. In particular, the high

TF usage region around the diagonal p � q, where the ’busy’ design outperforms in

crosstalk reduction, vanishes due to this anomaly (see Fig 2.3E where anomalous

regions are blackened). For high similarity values s > 5, the ’idle’ design yields

lower crosstalk in the entire biologically relevant parameter space – see Section 2.5.6

and Fig 2.10.

2.2.4 The distribution of crosstalk in a stochastic gene activity

model

So far, we considered a deterministic model in which the numbers of active genes

and available TF species were fixed, resulting in a single crosstalk value per (p , q)
configuration. In reality, these numbers can temporally fluctuate, for example,

because of the bursty nature of gene expression [Golding et al., 2005; Wang et al.,

2009]. In the deterministic model, we also assumed uniform gene usage, such that

all genes are equally likely to be active. In reality, however, some genes are active
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more frequently than others.

To account for this, we study crosstalk in a probabilistic gene activity model.

We assume independence between activities of different genes, where each gene i,

i � 1...M, has demand (probability to be active) Di . We then numerically calculate

crosstalk for a set of genes. This approach enables us to incorporate a varying

number of active genes and a non-uniform gene demand and compare our results

to the deterministic model studied above. To comply with its demand Di , each

gene i is regulated with probability γi , where γi � Di if regulation is positive and

γi � 1 − Di if it is negative. We then obtain exact solutions for the distributions

of t and X∗ (Eq 2.26, Eq 2.27 and Section 2.5.7). In Fig 2.3F, we illustrate the X∗

distributions for two values of t, representative of the two extreme designs. We

find excellent agreement between this analytical solution and stochastic simulation

results. The distribution of X∗ is typically narrow, such that for practical purposes,

the distribution mean, calculated using the deterministic activation model, serves

as an excellent estimator of crosstalk values. For more details on this calculation

and for approximation of the distribution width, see Section 2.5.7.

2.2.5 Data-based crosstalk calculation

Similarity and crosstalk, considered in our analytical model, can be estimated from

bioinformatic data. As direct thorough measurements of TF binding preferences

are available for only a few TFs [Maerkl and Quake, 2007; Fordyce et al., 2010;

Afek et al., 2014], we use statistical estimates based on multiple binding sites to

which a particular TF binds (PCM) to determine its binding energetics to various

sequences. Specifically, we use data of 23 S. cerevisiae transcription factors collected

from the scerTF database [Gasch et al., 2000; Spivak and Stormo, 2012]. PCMs are

4 × L matrices that provide the total number of counts for each nucleotide at each

of the L binding site positions, taken over multiple binding sites of the particular

transcription factor. They allow us to compute the mismatch energy penalties for

every position and nucleotide in a given binding site sequence and then numerically

calculate crosstalk.
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Figure 2.3: ’Idle’ design yields lower crosstalk than the ’busy’ in a large part of the parameter

regime. (A) The ’busy’ design always requires more TFs compared to the ’idle’ design. Here we

illustrate ∆t, the difference in the fraction of TFs in use between the two designs for different values

of p and q (shown in color scale). (B) The difference in minimal total crosstalk (∆X � X∗
idle − X∗

busy)

between ’idle’ and ’busy’ designs, shown in color scale, as a function of p and q. In a large part of the

parameter regime (colored blue), lower crosstalk is achieved by the ’idle’ design. The ’busy’ design

is most beneficial on the diagonal p � q (red region), but this requires use of all TFs and comes at

the cost of an enormously high TF concentration. The ’idle’ design is most beneficial around the

anti-diagonal q � 1− p, where regulation can proceed with no TFs at all and crosstalk is close to zero.

(C) Fraction of TFs in use (shown in color scale) when the design providing minimal crosstalk (’idle’

or ’busy’ as in (B)) is used, as a function of p and q. Black dashed lines mark the borders between the

regions where ’busy’ or ’idle’ designs provide lower crosstalk. While ’idle’ design mostly requires a

minority (< 50%) of the TFs, the ’busy’ design always necessitates a majority (> 50%) of TFs to be in

use. s � 10−2 was used in (B)-(C). (D) Ratio between TF concentrations providing minimal crosstalk

in either design c∗busy/c∗idle. ’Busy’ design always requires higher TF concentrations. (E) For higher

similarity s between binding sites, parts of the parameter space fall into the anomalous regime

where the optimal TF concentration diverges to infinity. We plot here the difference in optimal

crosstalk ∆X � X∗
idle − X∗

busy between designs for s � 1. Black areas denote the anomalous regime.

Importantly, the region where the ’busy’ design was beneficial for low s (see (B)) falls into this

anomalous regime. (F) Analytical solution of the stochastic model for the distribution of crosstalk

values, is in excellent agreement with stochastic simulation results. The distributions obtained are

narrow, suggesting that their mean value is representative. Crosstalk values only depend on TF

usage, regardless of the exact underlying model. Parameter values: total number of genes M � 3000,

proportion of activator-regulated genes p �
1
3 , regulation probability γi � γ � 0.12 for ’idle’ design

and γi � γ � 0.92 for ’busy’ design, with 2 · 106 realizations.

In our theoretical model, we made several simplifying assumptions to allow for

an analytical solution. In particular, we assumed uniform properties for all binding

sites, assigned equal energetic contributions to all nucleotides in the sequence and

assumed that all TFs regulate an equal number of genes (a single gene per TF,

in the basic model). The availability of TF binding data allows us to relax these

assumptions, and consider variation in binding energies and promiscuity among

TFs, as well as the actual unequal energetic contributions of the different positions

in each binding site.

For simplicity, we still assume equal concentrations for all available TFs and
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calculate a lower bound on crosstalk if concentrations are optimized. In Section 2.5.8

we demonstrate how crosstalk calculation can be implemented for general TF

concentration values and show an example using experimentally measured concen-

trations [Ghaemmaghami et al., 2003]. Due to paucity of data on epistatic effects

between distinct binding site positions, we still assume additivity in the ener-

getic contributions of different positions in the sequence. The latter assumption is

considered reasonable for up to 3-4 bp substitutions [Maerkl and Quake, 2007].

Similarity values vary between genes even within the same organism. We begin

by numerically calculating the similarity si between consensus binding sequences of

different transcription factors (see Section 2.4). In Fig 2.4A, we show the distribution

of similarity values of genes associated with 23 S. cerevisiae transcription factors

(top). We find a broad distribution of si values spanning over 5 orders of magnitude,

where its median is around 10−4 − 10−3. This finding is in marked contrast to the

full symmetry and equal si values for all TFs assumed in our analytical solution.

While we find that si values are very variable, the largest contributions to global

crosstalk are made by the few most promiscuous TFs (those with high si values).

In the following, we fit an effective similarity value that would best capture the

numerically calculated crosstalk values, had all TFs had uniform si values, as in the

mathematical model (denoted by red arrow in Fig 2.4A). In this example, we find

that seffective is almost equal to the median si value (black arrow there).

Numerical crosstalk calculation: incorporation of a complex TF-gene interaction

network. In the analytical model, we assumed that each TF regulates only a

single unique gene. Yet, in real gene regulatory networks, the same TF species

often regulates multiple genes and some genes are regulated by a combination of

different TFs. To account for this, we expand (using SGD) our dataset to include

all the 2126 genes regulated by the 23 S. cerevisiae TFs for which we have PCMs

and considered all possible TF-gene interactions in this set. Notably, there is high

variability in the number of genes regulated by each TF. For different values of t

(proportion of available TFs), we randomly choose a subset of TFs to be available
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and accordingly compute the crosstalk probabilities for all genes, accounting for all

possible TF-binding site (BS) combinations. We repeat this procedure for 20 different

t values, with 100 independent draws of available TFs for each. In the crosstalk

calculation, we assume that all available TFs have equal concentrations. In contrast

to the analytical calculation, where we included crosstalk contributions from all

TFs, here, only binding states associated with transcription factors that are chosen

to be available, are considered. In the analytical model we assumed full symmetry

between all TFs and all binding sites. Hence a single similarity value s was sufficient.

In contrast, in a real network, we obtain a variety of similarity values (Fig 2.4A).

As each TF regulates multiple binding sites, we now calculate similarity between

the consensus sequences of the different TFs, and refer to similarity between TFs,

rather than similarity between binding sites. In order to compare similarity values

of different networks, we fit the numerically calculated crosstalk with the analytical

model, where a single seffective value is used for all TFs. Fig 2.4B shows both the

numerically calculated crosstalk and the analytically predicted one (using seffective) for

this more complex interaction network (solid and dashed lines, correspondingly).

The gray shading represents ±1 standard deviation around the mean value of the

numerically calculated crosstalk.

Data incompleteness could affect crosstalk estimates. Global crosstalk accounts

for the combined effects of all of the organism’s TFs and binding sites. Unfortunately,

data of TF binding preferences is incomplete. Moreover, the accuracy of PCMs

depends on the number of known binding sites associated with the TF of interest.

Due to these technical limitations, we focused on only 23 S. cerevisiae TFs for which

> 5 binding sites (per TF) are known. However, this small subset of TFs regulates

one third (!) of the yeast genes. Motivated by that, we ask how representative is a

crosstalk estimation of the entire network based on this small TF subset. In other

words, what fraction of the TFs (or genes they regulate) would suffice to reliably

estimate the global network crosstalk.

This crosstalk estimation problem is further complicated by the diversity of

si values we find among TFs. To generally address these questions, we simulate
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synthetic gene regulatory networks, each integrating 300 TFs. We simulate the

binding preferences of these TFs using the PCM statistics of the 23 yeast TFs. We

then sample subnetworks of different sizes from these full networks and numerically

calculate crosstalk for each subnetwork (see Section 2.4).

We sample the full networks in two manners: we either randomly choose a

subset of TFs ("random subnetworks") or deterministically select the TFs showing

the highest similarity with respect to the full network ("ordered subnetworks").

The latter choice is motivated by the prior information that the few yeast TFs for

which we have reliable data, are not a random subset, but rather the subset that

has the largest number of binding sites. This choice is then a worst-case estimate of

global crosstalk. To compare different networks on an equal basis, we estimate the

effective similarity seffective fitted for each subnetwork. Fig 2.4C shows the distributions

and medians of seffective values obtained, as a function of the subnetwork size. Each

distribution is based on independent draws of 100 full networks. From each full

network, we sample one random and one ordered subnetwork of each size.

We find, that small-size "ordered" subnetworks exhibit higher median seffective

values but narrower distributions than the "random" subnetworks, as expected.

Both "ordered" and "random" subnetworks converge to the same seffective value for

the full network (of size 300). The seffective distribution for the full size represents

variation between various full networks of same size, which is significantly smaller

than the variation due to limited sampling, observed for the smaller networks. As

the "ordered" subnetworks deliberately include the most promiscuous TFs, their

seffective is an over-estimate of the full network measure. In contrast, we find, that

seffective estimated for random subnetworks is an under-estimate of the full network

seffective. In our synthetic data, we allowed for binding site length variation among TFs

(the PCM dimension). Interestingly, we find positive correlation between the TF’s

promiscuity si and its consensus binding site length. An opposite effect is found for

the length of DNA binding sites (see Fig 2.15).

Considering the sufficiency of the sample size, for an "ordered" subnetwork, a

sample of ∼ 50 (out of 300) TFs provides variation close to the full network measure,

whereas for "random" subnetworks, a larger sample size of around ∼ 100 TFs (out of
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300) is needed. Either way, we conclude that a global crosstalk estimate is possible

with only a subset of the network TFs. We compare our calculated si values of

yeast data (red cross) to the estimated seffective distributions of this subnetwork size.

Interestingly, the yeast estimated crosstalk value falls below the median value for

both "random" and "ordered" sampling approaches. This may imply that selection

to reduce crosstalk is at work, yielding similarity values which are lower than what

one would expect at random [Qian and Kussell, 2016].
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Figure 2.4: Data-based crosstalk estimates. (A) Inter-TF similarity values of S. cerevisiae TFs (top),

and of synthetic data (middle and bottom) exhibit broad distributions spanning a few orders of

magnitude. The distribution median values are marked by black arrows. The red arrow in the yeast

data represents seffective of the yeast data, and nearly overlaps with the distribution median. Synthetic

data were created by randomly drawing PCMs representing all TFs of an artificial network. Then,

sub-networks of 23 TFs were sampled by either taking the 23 most promiscuous TFs (middle) or

randomly choosing them (bottom). The figures show similarity distributions amongst TFs in these

artificial networks, averaged over 100 repeated draws. si values here are with respect to all TFs in the

network, regardless of their (un)availability. (B) Numerical prediction of minimal global crosstalk

depending on TF availability t for S. cerevisiae (solid line) compared to an analytical prediction based

on a single seffective value common to all genes (dashed line). This effective similarity value was chosen

to provide the best fit to the numerical curve. The curves represent estimation of crosstalk for the

network of all 2126 S. cerevisiae downstream genes regulated by the 23 TFs, for which we have PCMs.

The numerical curve represents the mean over 103 realizations for each t value, where the exact

subset of available TFs was randomly drawn. The surrounding gray shadings show ±1 standard

deviation around the mean. The discrepancy between numerical and analytical calculations is

attributed to the broad distribution of si values for the numerical calculation, whereas the analytical

calculation assumes a uniform si value for all TFs. (C) Violin plots of seffective for different subnetwork

sizes for ordered and random subnetworks. Ordered subnetworks are the subsets of TFs having highest

similarity si with respect to the whole network. Random subnetworks include a random subset of

the full network TFs. For each subnetwork, we numerically calculated crosstalk and fitted the seffective

which would best capture the crosstalk function if all TFs had a uniform s value. The violin plots

represent distributions of effective similarity values from 100 different randomly drawn subnetworks,

each coming from an independently drawn full network of 300 TFs. The red x represents the seffective

value of the 23 yeast TFs (same value as the red arrow in A). For details on the numerical calculations

of similarities and crosstalk, see Section 2.4. All violin plots exhibit broad seffective distributions which

are broadest for the smallest subnetworks, as expected. For "ordered" subnetworks, the median

seffective value is high for the small subnetworks (which were chosen to contain the most promiscuous

TFs) and then slightly decreases for bigger subnetworks. For random subnetworks, the trend is

opposite.

2.3 Discussion

We studied the susceptibility of different gene regulatory networks to transcriptional

crosstalk. We found a lower bound on crosstalk X∗ � X∗(t , s), which is fully

determined by two macroscopic "thermodynamic-like" variables, regardless of other
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microscopic details of the network. These are the fraction of available TF species, t,

and the average similarity between distinct binding site sequences, s. This emergent

simplification enabled us to analyze crosstalk for classes of gene regulatory networks,

regardless of other network details. We showed that different network designs may

vary in t, the TF usage they require, and hence differ in the crosstalk levels they

incur, even if they have the same gene activity pattern. We analyzed two extremes:

a ’busy’ design, which maximizes the use of regulators and is equivalent to the

previously proposed Savageau demand rule [Savageau, 1974] and the opposite ’idle’

design, that minimizes the use of regulators. Interestingly, crosstalk is minimized by

either of these extremes, and not by any hybrid design. We found that, in a large part

of the parameter regime, crosstalk increased with t, and consequently minimized

by the ’idle’ design. In the remaining part, crosstalk was minimized by the ’busy’

design, but came at a cost of a much higher TF concentration requirement. Our basic

analysis refers to a simple network architecture. We exemplify in Section 2.5.10 how

the crosstalk expressions Eqs 2.2-2.5 can be generalized to describe more complex

regulatory architectures. We also studied a stochastic gene activation variant of

the model, where the number of active genes can fluctuate. We found that it is

well-approximated by the deterministic activation model, because the distributions

of TF availability and minimal crosstalk are typically very narrow and centered

around their mean value.

Where are real organisms located in the (t , s) parameter space? Reports of

the number of co-expressed genes greatly vary between organisms and depend

on growth conditions. For example: ∼ 10,000 different genes were reported to be

co-expressed in a mouse cell (< 50% of total) [Carter et al., 2005; Islam et al., 2014],

10,000-12,000 (< 50%) genes were estimated to be co-expressed in human HeLa

cells [Nagaraj et al., 2011], 3300-3500 out of 4290 genes (76%-82%) were co-expressed

in E. coli during exponential growth [Tao et al., 1999; Wei et al., 2001] and 75%-

80% of the genes were co-expressed in S. cerevisiae [Ghaemmaghami et al., 2003;

Lewin, 2007].

Values of similarity between distinct TF binding sites, vary not only between

organisms, but also between modules and distinct genes within the same organism
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(see Fig 2.4). We estimated si and the resultant minimal crosstalk values for 23

S. cerevisiae TFs using PCM data. We found an extremely broad distribution of

single-TF si values spanning > 5 orders of magnitude, with a median between

10−4 − 10−3. Global crosstalk, however, is determined by the few high-similarity TFs.

To bridge the gap between the high diversity of si in real networks and our uniform

s analytical solution, we fitted a single seffective value which would best capture the

numerically calculated network crosstalk. For the yeast data, we found that this

seffective is very close to the distribution median. Using our estimates for s and t, we

estimated minimal crosstalk X∗ for this subnetwork of S. cerevisiae to be in the range

0.03-0.04 (see Fig 2.4B), if 30%-80% of the TFs are present. Our analysis showed that,

for relatively low s values, as we found for yeast, there was a regime in the parameter

space in which ’busy’ yields the lowest crosstalk. The choice of network design that

minimizes crosstalk (’busy’/’idle’) depends on the proportion of co-activated genes

and on the proportion of activators. For organisms with high s values, the regime in

which ’busy’ is beneficial is actually anomalous, and hence biologically irrelevant.

Such higher s is expected for organisms with shorter binding sites.

Binding site data is often incomplete. To assess the validity of whole-network

crosstalk estimation based on a small subset of TFs, we constructed synthetic

gene regulatory networks, sampled some subnetworks and then compared the s

estimation of full and partial networks. In the S. cerevisiae case, we found that a full

network crosstalk estimate is possible with binding information of only 16%-33% of

the TFs.

Here, we used a symmetric and admittedly simplified gene regulatory network

model. Our analysis determined a lower bound for crosstalk, assuming that TF

concentrations are accurately tuned. In reality, TFs are not necessarily expressed and

degradedata precise time [Price et al.,2013] andcrosstalk is thus expected to be higher.

In Section 2.5.8 we demonstrate crosstalk calculation with general TF concentrations,

obtained in experiments. Relaxation of other simplifying assumptions made in our

analytical model opens new research avenues for future work. Most importantly, we

assumed uniform similarity values of all TFs and all BS, whereas S. cerevisiae data

analysis showed diversity in TF properties. In principle, a distribution of s values
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can be incorporated into the model, but would significantly complicate averaging

over different sets of active genes (but see a simple example in Section 2.5.1. Other

simplifications include the averaging over gene sets of same-size as representatives

of different environmental conditions, whereas, in reality, the number of expressed

genes could vary between environments (e.g., growth media [Tao et al., 1999]). We

averaged over all possible choices of active genes, although only some of these activity

combinations occur naturally. We also assumed that every gene has a regulator, and

vice versa, although this is not always the case. Hershberg and co-workers found an

imbalance between genes and regulators, where orphan repressors with no genes

and orphan genes with no activators, transiently exist, and could also contribute to

crosstalk [Hershberg and Margalit, 2006]. Relaxation of these assumptions would

require a more comprehensive characterization of gene regulatory networks and

co-expression patterns than is known to date.

Our study addressed a typically overlooked cost of protein production: that of

regulatory interference caused by excess regulatory proteins in the dense cellular

medium. This cost is distinct from the energetic burden of unnecessary protein

production, which was found to delay growth [Koch, 1983; Kurland and Dong, 1996;

Dekel and Alon, 2005; Shachrai et al., 2010].

It was previously shown that transcriptional error for a single gene is minimized

when its binding site is occupied [Shinar et al., 2006] - a regulatory strategy equivalent

to the Savageau demand rule. However, single-gene models neglected the increase

in erroneous interactions that can occur following network augmentation beyond

the single gene. The regulatory cost increases super-linearly with the number of

molecular species and regulatory interactions and can therefore only be determined

when the network is considered as whole. This would result in a different mathe-

matical solution to minimize global crosstalk, compared to the single-gene case. For

comparison between single-gene and global crosstalk models see Section 2.5.9.

Selection to reduce global regulatory crosstalk [Hahn et al., 2003; Qian and

Kussell, 2016], was reported in previous bioinformatic studies. Our finding that

effective similarity obtained for the S. cerevisiae gene regulatory network is lower

than the median effective similarity obtained in random networks with similar
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parameters, corroborated these reports (Fig 2.4C). Yet, crosstalk is not fully eliminated

by selection. Despite the functional interference it causes in the short run, crosstalk

is thought to promote evolvability in both gene regulatory and signalling networks

in the long run [Shultzaberger et al., 2012; Payne and Wagner, 2014; Aakre et al., 2015;

Friedlander et al., 2017; Rowland et al., 2017]. However, the interplay between these

two opposing effects of crosstalk, is still poorly understood.

Crosstalk reduction is one of several functional considerations shaping the evolu-

tion of gene regulatory networks. Other considerations include the network dynam-

ical properties [Alon, 2007] and protein production requirements [Kumar Prajapat

et al., 2016]. Above all, evolution is a random process and certain network designs

become fixed and continue propagating [Wagner, 2008; Fontana and Buss, 1994;

Friedlander et al., 2013; Martin et al., 2016]. For example, new transcription factors of-

ten evolve by duplication of an existing TF followed by sub- or neo-functionalization,

thereby preserving the form of regulation of the ancestral TF [Nguyen and Saier,

1995]. Taken together, a generalized model for network evolution, which would

incorporate the effects of crosstalk on different time scales, alongside traditional

selection on the network to achieve a certain input-output goal, remains to be

formulated.
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2.4 Methods

Distribution of t is approximated by a Gaussian distribution. Given that the

cognate TF of gene i is present with a probability γi (i ∈ (1,M), where M is the total

number of genes), the distribution of available transcription factor species in the

system follows Poisson-binomial distribution. This is the probability distribution of

a sum of independent Bernoulli trials with probabilities γi , that are not necessarily

identically distributed. Its mean and variance are:

⟨t⟩ � 1
M

M∑
i�1
γi � ⟨γi⟩, (2.8)

var(t) � 1
M

M∑
i�1
γi(1 − γi) � ⟨γi(1 − γi)⟩. (2.9)

As this distribution is difficult to compute for large values of M, we follow the

central limit theorem and approximate it by a Gaussian distribution with the same

mean and variance.

Exact solution of the probability distribution of X∗. For a function X∗(t), where

t is a random variable with probability distribution ft(t), the probability distribution

of X∗, fX∗(X∗) is:

fX∗(X∗) �
∑

i

ft(g−1
i (X∗))

�����dg−1
i (X∗)
dX∗

����� , (2.10)

where g−1
i (X∗) � ti represents the inverse function of the i−th branch. In our case it

has two branches:

fX∗(X∗) � ft(g−1
1 (X∗))

�����dg−1
1 (X∗)
dX∗

����� + ft(g−1
2 (X∗))

�����dg−1
2 (X∗)
dX∗

����� . (2.11)

The solutions for g−1
i (X∗) and their derivatives exist for crosstalk X∗(t) and can

be analytically computed. Therefore, there is a known analytical solution for the

distribution of minimal crosstalk fX∗(X∗).
For regime I, the lower limit on crosstalk is X∗(t) � t. Its inverse is g−1(X∗) � t(X∗) �
X∗, while the derivative dg−1(X∗)/dX∗ � 1. Similarly, in regime II, the lower limit
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on crosstalk equals X∗(t) � 1 − t/(1 + αt), the inverse function g−1(X∗) � t(X∗) �
(1 − X∗)/(1 − α + αX∗), and its derivative dg−1(X∗)/dX∗ � −(1 − α − αX∗)−2. The

analytical solution for regime III was computed using Mathematica and the solution

can be found in S3 Appendix.

Using these values, one can compute fX∗(X∗) for X∗ in all three regimes.

Stochastic semi-analytical solution of crosstalk for a random number of present

TFs. For each gene i, we randomly draw, with probability γi , whether its cognate

TF is available. We then obtain the proportion t of available TFs. As this process is

stochastic, the proportion t differs between different realizations. Next, we compute

the lower limit on crosstalk X∗(t) for this t value using the analytical solution in the

relevant regime (I, II or III). Using multiple realizations (=106) of t, we numerically

obtain the distribution of crosstalk values for values of t ∈ (0, 1).

Obtaining the energy matrices from position count matrices (PCMs). Position

count matrices (PCMs) document the summary statistics of TF binding site sequences.

Each element ci j designates the number of known TF binding site sequences with

nucleotide i in position j. We obtained the PCMs from the scerTF database for

S. cerevisiae. Given these, we calculated the energy matrices which are needed to

compute the similarity measure, in the following way: for a position j and nucleotide

i ∈ {A, C,G, T}, we computed the energy mismatch value as ϵi j � log ( cm j
ci j

), where

cm j � maxi ci j is the maximal count at position j. To avoid divergence of the energy

ϵi j in case of zero counts, ci j � 0, we added a constant pseudocount δ � 0.1 to all

matrix entries.

Some technicalities and concerns regarding PCM usage. When computing the

energy matrices using PCMs, certain issues arise that could strongly bias the results

if not properly addressed:

• Inequality of total counts between positions in PCM data. The sum of counts

over all 4 nucleotides in a given PCM should be equal for all positions, but

occasionally, positions with different total counts are found. As they bias our
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occurrence statistics (and hence our energy calculation), we used only PCMs

in which the total count was equal throughout.

• Zero counts in the PCMs. Many PCMs include zero counts for certain nu-

cleotides at specific positions, rendering that element of the energy matrix

undefined. Here, we applied a commonly used practice of adding a pseudo-

count δ to all PCM entries. Following a previous work [Friedlander et al., 2016],

where various δ values were compared to an information method (where

pseudocount is not needed), we set δ � 0.1.

• Count number sufficiency. To achieve a reliable estimation of energies in the

energy matrix, we only used PCMs with at least pcounts � 5 counts per position.

In total, we found 196 TF PCMs, but due to the above concerns, we considered only

23 of them in our calculations.

Numerical computation of similarity measure using PCMs. To compute the

similarity measure between binding site k and a transcription factor l, we first

substituted the sequence of BS k by the consensus sequence of its cognate TF k. The

consensus sequence is obtained by taking the most common nucleotide in each

position j. As the given binding site and TF consensus sequence are not necessarily

of the same length, we distinguished between the following cases:

• If the TF consensus sequence l was shorter than the binding site sequence k,

we computed the energies for all possible overlaps of the shorter sequence

with respect to the longer one. We took the minimal value to be the binding

energy.

• If the TF consensus sequence l was longer than the binding site sequence

k, the TF energy matrix was again slid along the binding site and energies

were calculated again for every relative positioning of the two sequences.

The only difference from the previous case was that energetic contributions

from positions where the TF binds outside the binding site, were taken into

account by averaging energies over all four nucleotides. The total binding
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energy E � E1+E2 is the sum of contributions from nucleotides inside (E1) and

outside (E2) the binding site. The energy contribution of positions j outside

the BS equals E2 �
∑

j E2 j , with E2 j �
∑4

i�1 ϵi j/4 being the average binding

energy at position j. Here too, we computed the binding energy for all possible

overlaps between the BS and TF and took the lowest value as the binding

energy Ekl .

This provides the matrix of binding energies Ekl between every binding site k

and every TF l. Importantly, this binding energy is asymmetric, namely Ekl , Elk .

The similarity measure between binding site k and all other binding sites was

computed as the average Boltzmann weight, taken over all non-cognate TF binding

to binding site k:

Sk �
1
T

M∑
l�1, l,k

Cl e−Ekl
, (2.12)

with Cl being the concentration of TF species l, and T the number of present TF

species.

Numerical computation of crosstalk given PCMs. For the numerical computation

of crosstalk, we used the matrix of binding energies Ekl between binding site k and

TF l, using the following algorithm:

1. randomly choose a subset of genes that should be regulated by their cognate TF.

At each realization, a different subset is chosen. All subsets form a proportion

t of the genes.

2. For gene k, obtain the similarity measure Sk �
1
T
∑

l,k Cl e−Ekl . Set the concen-

tration of the absent TFs to zero, and set equal concentrations (Cl � C) to all

present TFs, as in the analytical calculation.

3. Compute the probabilities that a crosstalk state occurs at any given gene, using

the thermodynamic model. Other parameters include the energy difference

between unbound and cognate state Ea which does not affect the final crosstalk

result, and the concentration of the transcription factors, C.
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4. Obtain the total crosstalk X by summing over the contributions of all individual

genes.

5. Average over a large number of realizations (we used several hundred realiza-

tions for which the average crosstalk had already converged).

6. Repeat this procedure (each with multiple realizations) using a different

concentration value C each time. Then, pick the one that yields the lowest

crosstalk value to be X∗(t).

Numerical computation of crosstalk where a gene could be regulated by multiple

TFs. In an actual gene regulatory network, many TFs regulate multiple genes

and many genes are regulated by multiple TFs rather than the one-to-one TF-gene

association we considered so far. Specifically, in our data, around 96% of the TFs

regulate more than one gene. To account for that, we obtained the list of genes that

are regulated by the given S. cerevisiae transcription factors (from SGD). Numerical

crosstalk calculation for this network closely followed the previous procedure. The

only difference was the computation of the similarity measure of genes regulated

by multiple cognate TFs. Such genes have multiple binding site sequences (one

for each cognate TF) and consequently, multiple binding energies and similarity

measures. We then calculated a unified similarity measure per gene as follows:

1. For a given gene k, find all the TFs that regulate it.

2. Obtain the consensus sequences of these TFs.

3. Assume each such consensus sequence represents a potential binding site

sequence of gene k (same as in the case of only one TF regulating each gene).

4. Compute the similarity measure Sk i between each potential binding site

sequence i of gene k and all other TFs; this is done in the same way as for one

TF regulating one gene using Eq. 2.12.

5. Use the mean of the computed Sk i similarity measures taken over the various

binding sites of gene k as the unified similarity of that gene.



42

Simulating synthetic data. To simulate synthetic data of TF binding preferences,

we constructed artificial PCMs, using the data of the 23 yeast energy matrices, as

follows. We first created the nucleotide abundance distribution of the yeast TFs

consensus sequence and then drew random realizations from this distribution

to obtain a consensus sequence for each synthetic TF. This distribution was non-

uniform and biased towards excess of A and T nucleotides. We allowed for a variety

of consensus sequence lengths, using the same length distribution as in the yeast

data. Similarly, we created the distribution of the non-consensus energy values of

the 23 TFs energy matrices and drew random realizations from this distribution to

construct the energy matrices for the synthetic TFs.

Computing the subnetworks of synthetic data and their crosstalk. To construct

a full network, we fabricated data for 300 TFs, as described above. We then computed

the network’s matrix of binding energies Ekl
full network of the l-th TF to the k-th binding

site, where the each binding site sequence was taken as the consensus sequence

of its cognate TF, as in the yeast data. We next formed subnetworks of this full

network, by choosing a subset of TFs and taking the corresponding subset of binding

energy entries, to obtain Ekl
subnetwork. We used either randomly chosen subsets of

TFs ("random networks") or deterministically picked the subset of TFs having the

highest similarity measure Sfull network
i with respect to the full network. We then

numerically computed minimal crosstalk X∗ for each subnetwork, following the

same procedure as for the yeast data. We repeated this procedure for 100 randomly

drawn full networks.

Comparison of the numerical results to the analytical expression. We fit the

analytical expression for X∗(t) to the numerically calculated crosstalk. The main

difference between the two approaches is that the analytical expression assumes

uniform Sk values for all TFs, whereas the numerical approach allows for diverse

Sk values. We assumed a single representative seffective value that would best fit the

numerical result. For this, we minimized the sum of squared differences over various

values of t to find the best seffective. Distributions of seffective values were based on
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100 randomly drawn full networks from which subnetworks were sampled. For

each subnetwork size, we sampled each of the full networks just once, to avoid

correlations between the random subnetworks.
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2.5 Supporting Information

2.5.1 Model description

We consider a cell that has a total of M transciptionally regulated genes, which can

be either active or inactive. We assume that each gene is regulated by a single unique

transcription factor (TF) - its cognate TF. Each gene has a short DNA binding site to

which a TF can bind to affect its regulatory state. A fraction 0 ≤ p ≤ 1 of the genes is

regulated by activators and the remaining (1−p)M genes are regulated by repressors.

When no activator is bound, activator-regulated genes are inactive (or active at a

low basal level) and only become active once an activator TF binds their binding

site. In contrast, repressor-regulated genes are by default active, unless a repressor

TF binds their binding site and inhibits their activity. We assume that different

environmental conditions require the activity of different subsets of proportion

0 ≤ q ≤ 1 of these genes, while the remaining fraction 1 − q should be inactive. As

both activity and inactivity of genes can be attained by means of either activator

or repressor regulation, our model distinguishes between four sets of genes: (i)

a ≤ q , p activator-regulated genes which are active, (ii) q − a repressor-regulated

genes which are active, (iii) p − a activator-regulated genes which are inactive, and

(iv) (1 − p) − q + a repressor-regulated genes which are inactive.

The special cases in which all the genes have the same form of regulation,

either repression or activation (namely p � 0 or p � 1), were studied in a previous

work [Friedlander et al., 2016].

We assume the system is generally at steady state, such that the required gene

expression pattern does not change in time and all molecular concentrations are

fixed. We then consider the average crosstalk over different gene sets of the same size.

This represents a series of different gene expression patterns required in different

external conditions. We assume that the system only seldom shifts from one steady

state to another, such that the transient time needed for gene regulation to equilibrate

following each transition is negligible. We do not consider any form of feedback

exerted by the products of these genes. Rather, we assume an idealized situation in
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which all necessary regulators are present exactly at the time and quantity needed.

Any deviation from these conditions is expected to increase crosstalk levels. Hence,

our analysis refers to a lower bound of crosstalk levels.

Each gene is associated with a short regulatory DNA sequence (binding-site), to

which its specialized cognate TF preferentially binds to affect its regulatory state,

either positively or negatively. Although the regulatory sequences of different genes

differ from each other and we assume that each TF is specific to the regulation

of only one unique gene, TFs are known to have limited specificity to their DNA

targets and can occasionally bind slightly different sequences, albeit with lower

probability [Maerkl and Quake, 2007]. We define cases when a TF binds a non-

cognate binding site or when a binding site that should have been bound remains

unoccupied,as ’crosstalk’,potentially leading to an undesired regulatory outcome. To

quantitate the probability of these events, we use the thermodynamic model of gene

regulation [Shea and Ackers, 1985; Von Hippel and Berg, 1986; Gerland et al., 2002;

Bintu et al., 2005a], which asserts that the occupancy of regulatory binding sites

by TFs determines the expression level of the genes associated with these binding

sites. The probability of this occupancy depends on the copy number of active TF

molecules available to bind and on the binding energy between the binding site and

TF. This binding energy is determined by the number of mismatches between the

particular binding site sequence and the consensus sequence of that TF. We assume

full symmetry in the biophysical properties of the binding sites associated with

different genes: all have the same sequence length and equal binding energy to their

cognate TFs, and all genes have the same dynamic range of expression. Each binding

site can occupy different energy levels, depending on its binding state. It is in its

lowest energy level E � 0 if it is bound by its cognate TF. Higher energy levels are

obtained if it is bound by a non-cognate TF, such that there is a mismatch between

the consensus sequence of the TF and the DNA sequence of the binding site. We

assume additive and equal energetic contributions of size ϵ to all nucleotides in

the binding site, such that the binding energy of a TF to a sequence which differs

in d positions from the consensus sequence equals ϵ · d. Under constant external

conditions, only a subset of TFs (activators and repressors) are available to bind.
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These TFs are needed to maintain the activity of the q proportion that should be

active and, simultaneously, the inactivity of the remaining 1 − q. Unavailability

means either that the TF molecules are physically absent from the cell at that time,

because they were degraded, or that they are present in an inactive state and only

become active in response to an external signal (e.g., via phosphorylation or other

modifications). The probability that a particular gene i is in either of the crosstalk

states depends on the copy number of competing non-cognate TFs, C j , j , i and on

the number of mismatches, di j between each competing TF j and the regulatory

binding site of gene i. We distinguish crosstalk states of genes whose desired state of

activity requires that their binding site remains unoccupied and those for which it

should be occupied by a cognate regulator. The binding site of an activator-regulated

gene that should remain inactive as well as that of a repressor-regulated gene that

should be active, must all remain unoccupied. For these genes, the cognate TF is

not available to bind and any binding event by another (non-cognate) regulator is

considered crosstalk. For genes whose binding sites should be occupied by their

cognate regulator (an activator-regulated gene that should be active and a repressor-

regulated gene that should be inactive), crosstalk states occur either if the binding

site remains unbound or if it is occupied by a non-cognate regulator, in which case,

the regulatory state is not guaranteed. Using equilibrium statistical mechanics,

the crosstalk probabilities for a single gene i are [Von Hippel and Berg, 1986;

Gerland et al., 2002; Friedlander et al., 2016]:

xbound �
e−Ea +

∑
j,i C je−ϵdi j

Ci + e−Ea +
∑

j,i C je−ϵdi j
(2.13a)

xunbound �

∑
j,i C je−ϵdi j

e−Ea +
∑

j,i C je−ϵdi j
(2.13b)

xbound refers to crosstalk when the binding site should be bound (by either

activator or repressor) but is either unbound or bound by a non-cognate molecule.

xunbound refers to crosstalk when the binding site should remain unbound and no

cognate binder is available, but is still bound by some non-cognate molecule. Ea is

the energy difference between cognate bound and unbound states. The expression∑
j,i C j e−ϵdi j then captures the sum of all interactions with foreign regulators that
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binding site i might receive.

To account for the sum of all non-cognate interactions received by a particular

binding site in a model of multiple TF species, we define an average measure of

similarity between binding site i and all other binding sites j , i [Friedlander et al.,

2016]:

Si ≡ ⟨e−ϵdi j⟩P(d) �
1
T

∑
j,i

e−ϵdi j �
1
C

∑
j,i

C je−ϵdi j . (2.14)

Si is defined as the average of the Boltzmann factors taken over the distribution of

mismatch values P(d) between binding sites i and j, ∀ j. In the last equality in (2.14),

we assume that all available TFs are found in equal concentrations C j � C/T, ∀ j,

where C is the total TF concentration and T is the total number of available TF

species. We assume full symmetry between binding sites i, such that each binding

site i has the same distribution of mismatches di j with respect to all the other genes,

hence Si � S ∀i. The value of S can either be estimated using binding site data (see

example in Fig 2.4) or analytically calculated under different assumptions on the

pairwise mismatch distribution P(d). Following our symmetry assumptions, the

crosstalk probabilities in (2.13) are independent of the gene identity i, such that

we only need to distinguish between the four different regulatory states. In the

following, we use rescaled similarity defined as s � S · M, which represents a sum

of all non-cognate interactions at a binding site.

For which TF usage t∗ is crosstalk maximized?

For a fixed s X∗(t , s) has a maximum at a certain t value, which we denote t∗ (marked

with a black circle on Fig 2.2A). We find that t∗ � t∗(s) and its value monotonically

increases with s. For low similarity values (s → 0), it asymptotically approaches the

value of 2/3, with the limit

lim
s→0

t∗ � 2/3. (2.15)

For s > 0, t∗ > 2/3 and approaches t → 1 for high s. See Fig 2.5 for illustration.

See S1 Appendix for more formal formulation.
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Figure 2.5: Fraction of TFs used which maximizes crosstalk X∗, increases with similarity s. t∗

- the fraction of TFs used which maximizes crosstalk X∗, increases with similarity s. For s → 0,

it asymptotically approaches the value of 2/3. For large s, it approaches 1, such that X∗(t) is an

increasing function of t for all but very high t values.

Optimal TF concentrations in the two strategies

The optimal concentration which minimizes crosstalk is c∗ � 0 in regime I, c∗ � ∞
in regime II, and

c∗ �
C∗

M
�

te−Ea

(
s (st − t(st + 2)) −

√
s(1 − t)

)
s (−(st + 1)2 + st2(st + 3) + t) (2.16)

in regime III. The concentration in each strategy is obtained by choosing the

corresponding value of t, i.e., tbusy � (1 − p) + 2 min (p , q) − q and tidle � (1 − p) −
2 min (1 − p , q) + q.

Relaxation of basic model assumptions

Unequal TF concentrations So far, our model assumed equal concentrations for

all present TFs. What happens if we introduce different concentrations for activators

and repressors? We expanded the model to allow for two concentrations, one for

activators and one for repressors, while keeping the total concentrations constant.

This means:

A · C1 + (T − A) · C1 � C, (2.17)
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where C1 and C2 are the per species concentration of activators/repressors, A

and (T − A) the number of activator/repressor regulated genes, and C the total

concentration of TFs as used in the main calculation of our model. We numerically

tested which combination of concentrations C1 and C2 leads to lowest X∗ value.

Surprisingly, we found that minimal crosstalk is achieved by equal concentrations

for all transcription factors, activators and repressors, i.e., C1 � C2. In other words,

adding an additional degree of freedom of second concentration can only increase

the crosstalk values.

The intuitive explanation is that it only matters if a gene is regulated or not, but

not which type of regulation it employs. This is in similarity to our previous result,

where minimal crosstalk only depends on the number of available TFs, such that

regulation by activators crosstalk is a mirror image of regulation by repressors

alone [Friedlander et al., 2016].

Non-uniform similarity values In the basic model,we assumeduniform similarity

values si � s forall genes,which allowed us to obtain analytical solutions for crosstalk.

As data show (see Fig 2.4), similarity values vary between genes even within the

same organism. Here, we relax this simplifying assumption to test its significance.

We analyze a special case with two subsets of genes, each with a different similarity

value. The two subsets are of relative size r1 and r2 (r1 + r2 � 1), and similarity

values s1 and s2, correspondingly. In each subset, there is a weighted proportion

of regulated genes, ti � ri t for i ∈ {1, 2}. We use fixed values for s1,2 and then

calculate s � r1s1 + r2s2 for each (r1, r2) combination. As before, the total crosstalk

X∗ is computed by summing crosstalk contributions of all individual genes and then

numerically minimizing X∗ with respect to the TF concentration. We still allow only

equal concentrations for all available TFs. In Fig 2.6, we plot X∗ vs. the proportion

r1 for different fractions of available TFs, t. We compare X∗ values obtained for

uniform and non-uniform s. We find that non-uniform s provides lower crosstalk

than uniform s. This is obtained, however, at the cost of higher TF concentration C∗

needed for the non-uniform similarity.
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Figure 2.6: Non-uniform similarity yields lower crosstalk than uniform similarity. We plot relative

change of crosstalk values (left) and concentration of TFs (right) between models of non-uniform and

uniform similarities as a function of subset size r1 and proportion of regulated TFs, t. The values of

X∗ for non-uniform s are up to 10% lower compared to uniform s. However, this strongly correlates

with the increase in concentration. Values used: s1 � 5 · 10−3, s2 � 5 · 10−4.

2.5.2 Achievement of minimal crosstalk

Minimal crosstalk is always obtained by one of the two extreme regulation

strategies

The ’busy’ and ’idle’ modes are the two extreme regulation strategies. Intermediate

strategies, where some genes follow the first strategy and others follow the second,

are possible. However, minimal crosstalk is always obtained by one of the two

extremes.

We denote the proportion of TF species following ’idle’ and ’busy’ modes by

t1 and t2, respectively (see Fig 2.7). A combination of the two modes would lead

to a linear combination of the fraction of TF species, tmixed � αt1 + (1 − α)t2, with

α ∈ [0, 1]. Since X∗(t) is a concave function of t with a single maximum, minimal

X∗ will always be obtained at the edges of the t domain, α � 1 or α � 0. Thus, any

mixed strategy would always bring about higher crosstalk than the extreme ones

X∗(tmixed) ≥ min (X∗(t1),X∗(t2)) (see Fig 2.7).
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Figure 2.7: Due to concavity of X∗(t), minimal crosstalk is always obtained by one of the two

extreme modes. Crosstalk of the mixed strategy (dashed red circle) equals X∗(tmixed), where tmixed

is the linear combination t1,2 - the proportions of TF species involved in the extreme strategies (red

solid circles).

Relation between t and the choice of regulatory strategy yielding lowest crosstalk

The non-monotonic dependence of crosstalk on TF usage, t, can explain the non-

trivial transition between the ’busy’ and ’idle’ modes in the (p , q) phase space, as

shown on Fig 2.3B. There we illustrate for each (p , q) which of the two modes yields

lower crosstalk. Recall that X∗(t) has a maximum at t � t∗(s), such that it is an

increasing function of t for t < t∗ and a decreasing function of t for t > t∗. The

relationship of tidle and tbusy in regards to t∗ determines which strategy is more

advantageous. As tidle < tbusy ∀t (see Eq 2.24 below), it follows that if X∗ is increasing

with t, idle mode is more advantageous (lower t → lower X∗(t)). Conversely, if X∗ is

decreasing function of t, busy mode leads to lower crosstalk X∗ (higher t → lower

X∗(t)). To address which mode is more advantageous, we examine tidle(p , q) and

tbusy(p , q) at each (p , q) value. We distinguish three cases:

1. For tidle, tbusy < t∗ ⇒ idle mode is the most advantageous strategy.

2. For t∗ < tidle, tbusy ⇒ busy mode is the most advantageous strategy.

3. For tidle < t∗ < tbusy ⇒ which strategy is optimal depends on exact values of

(p , q).

We summarize these results in Fig 2.8 where we show where the 3 cases lie in

the phase space. The first case, where idle mode is more advantageous, occurs in
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the top left and bottom right corner of the phase space (white area). Conversely,

t∗ < tidle, tbusy holds in the bottom left and top right corner where busy mode leads

to lower crosstalk (black area). The rest (gray area) belongs to the third case where it

cannot be easily determined which mode is more beneficial. The boundary between

idle and busy mode (red dashed line) lies entirely in the last case and can be obtained

analytically by solving the equation X∗(tidle, s) � X∗(tbusy, s) for (p , q). This result

also intuitively explains the expansion of the region where ’busy’ is advantageous

when s becomes smaller. Since t∗(s) is a decreasing function of s, for smaller s there

is a larger (p , q) region where both t∗ < tidle, tbusy.
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Figure 2.8: Relation between t and the choice of regulatory strategy yielding lowest crosstalk.

The three cases for all combinations between tidle(p , q), tbusy(p , q), and t∗(s) in the (p , q) space. Each

case is shown in different color. For tidle , tbusy < t∗ (white area), idle mode leads to lower crosstalk;

for t∗ < tidle , tbusy, busy mode is more advantageous; the third region, for which tidle < t∗ < tbusy, is

partitioned between the two strategies. The boundary between the optimal two modes is shown in

red dashed line. For this plot we used s � 0.01.

2.5.3 Maximization and minimization of TF usage: the four com-

binations

The numberof genes that can be associated withactivators and repressors is restricted

by the number of regulators of each type. When we require that a proportion q of
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the genes is active and a proportion p of the regulators are activators, we distinguish

four cases depending on the relative magnitudes of these variables:

• q < p and q < 1 − p,

• q > p and q < 1 − p,

• q < p and q > 1 − p,

• q > p and q > 1 − p.

In Fig 2.9, we illustrate how TF usage is maximized and minimized in each of

these cases (one of them appeared as Fig 2.2D).
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Figure 2.9: Minimization and maximization for four different combinations of active genes q and

activator regulated genes p.
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2.5.4 Crosstalk expression of the two strategies

Regime III

Crosstalk expression for ’busy’ strategy In the busy mode, the proportion of

active genes that are regulated by activators is a � min (p , q). The proportion of TFs

involved in the busy strategy equals:

tbusy � (1 − p) + 2 min (p , q) − q. (2.18)

To obtain the lower limit on crosstalk, we use tbusy in the equation for X∗(t) and

obtain:

X∗
busy �

(
1 − p + 2 min (p , q) − q

)
·
(
−s(p + q − 2 min (p , q)) + 2

√
s
(
p + q − 2 min (p , q)

) )
(2.19)

Crosstalk expression of ’idle’ strategy Similarly, in the ’idle’ mode, the proportion

ofactive genes that are regulatedby activators is a � q−min (1 − p , q). The proportion

of involved TFs is then:

tidle � (1 − p) − 2 min (1 − p , q) + q , (2.20)

and the lower bound on crosstalk in the idle mode equals:

X∗
idle �

(
1 − p − 2 min (1 − p , q) + q

)
·
(
−s(p − q + 2 min (1 − p , q)) + 2

√
s
(
p − 1 + 2 min (1 − p , q)

) )
.

(2.21)

Regimes I and II

Crosstalk expression of both strategies in regime I The lower limit on crosstalk

in regime I is described by X∗(t) � t and:

X∗
busy � (1 − p) + 2 min (p , q) − q , (2.22a)

X∗
idle � (1 − p) − 2 min (p , q) + q. (2.22b)
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Crosstalk expression of both strategies in regime II The lower limit on crosstalk

in regime II is described by X∗(t) � 1 − t/(1 + st) and:

X∗
busy � 1 −

(1 − p) + 2 min (p , q) − q

1 + s
[
(1 − p) + 2 min (p , q) − q

] , (2.23a)

X∗
idle � 1 −

(1 − p) − 2 min (p , q) + q

1 + s
[
(1 − p) − 2 min (p , q) + q

] . (2.23b)

2.5.5 Proportion of TFs is always higher in busy mode

The proportion of TFs in busy mode is always higher than in idle mode. This can be

easily shown by:

∆t � tbusy − tidle (2.24)

�
(
(1 − p) + 2 min (p , q) − q

)
−

(
(1 − p) − 2 min (1 − p , q) + q

)
� −2q + 2 min (1 − p , q) + 2 min (p , q),

We distinguish between four cases:

• q < p and q < 1 − p ⇒ ∆t � −2q + 2q + 2q � 2q ≥ 0,

• p < q and 1 − p < q ⇒ ∆t � −2q + 2(1 − p) + 2p � 2(1 − q) ≥ 0,

• p < q < 1 − p ⇒ ∆t � −2q + 2q + 2p � 2p ≥ 0,

• 1 − p < q < p ⇒ ∆t � −2q + 2(1 − p) + 2q � 2(1 − p) ≥ 0.

In all cases, the difference ∆t > 0, which shows that for any value of parameters,

the proportion of TFs is always larger (or equal in the extreme case of p ∈ {0, 1}) in

’busy’ mode compared to ’idle’.

Idle mode minimizes, busy mode maximizes the number of transcription factor

species t.

The busy and the idle mode maximize and minimize the fraction of TF species,

respectively. This can be shown by taking a system, where a proportion of p genes

is activator-regulated, while the rest (1 − p) is repressor-regulated. Within the

activator-regulated genes, k1 are active and k2 � p − k1 are inactive. Moreover,
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within (1 − p) repressor-regulated genes, k3 are active genes and k4 � (1 − p) − k3

inactive genes. Within these, several constraints exist:

• k1 + k2 � p → k2 � p − k1,

• k1 + k3 � q → k3 � q − k1,

• k3 + k4 � 1 − p → k4 � (1 − p) − k3 � (1 − p) − q + k1,

where q is the proportion of active genes. The total proportion of TF species is

t � k1 + k4 � 2k1 + (1− p) − q. Of course, due to the definition of the system, it holds:

• k1, k2 ≤ p,

• k1, k3 ≤ q,

• q − k1 ≤ 1 − p.

In attempt to see how the total proportion of TF species changes if we change

different parameters of the system (ki) with fixed q and p, we compute the derivative

of t:

∂t
∂k1

� 2. (2.25)

Therefore, the change of TFs with increasing k1 is linear and 4 different scenarios

exist. For each, the constraints described above must be met. Therefore:

1. if q < 1 − p and q > p:

• t is minimized by k1 → 0 ⇒ k2 � p , k3 � q , k4 � (1 − p) − q, which is the

idle mode,

• t is maximized by k1 → p ⇒ k2 � 0, k3 � q − p , k4 � 1 − q, which is the

busy mode.

2. if q < 1 − p and q < p:

• t is minimized by k1 → 0 ⇒ k2 � p , k3 � q , k4 � (1 − p) − q, which is the

idle mode,
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• t is maximized by k1 → q ⇒ k2 � p − q , k3 � 0, k4 � 1 − p, which is the

busy mode.

3. if q > 1 − p and q > p:

• t is minimized by k1 → q − (1− p) ⇒ k2 � 1− q , k3 � 1− p , k4 � 0, which

is the idle mode,

• t is maximized by k1 → p ⇒ k2 � 0, k3 � q − p , k4 � 1 − q, which is the

busy mode.

4. if q > 1 − p and q < p:

• t is minimized by k1 → q − (1− p) ⇒ k2 � 1− q , k3 � 1− p , k4 � 0, which

is the idle mode,

• t is maximized by k1 → q ⇒ k2 � p − q , k3 � 0, k4 � 1 − p, which is the

busy mode.

This formally proves what was graphically shown on Fig 2.9: minimization of TF

proportion is achieved in idle mode while the maximization is obtained in busy

mode.

2.5.6 For sufficiently high similarity measure, idle strategy always

leads to a lower crosstalk limit X∗

For some parameter combinations of similarity s and fraction of regulated genes

t, the mathematical result of the lower bound on crosstalk X∗ has no biological

relevance: (i) for sufficiently high similarity measure, regulation is ineffective and

the lower bound on crosstalk X∗ is obtained by no regulation (zero concentration of

TFs, C∗ � 0), and (ii) for high TF usage, the optimal concentration which minimizes

the lower bound on crosstalk X∗ diverges. Therefore, when only considering the

biologically relevant regime, where (0 < C∗ < ∞), the size of area where busy mode

leads to lower crosstalk limit (Fig 2.3B red area) decreases with increasing similarity

measure (Fig 2.3E).

In Fig 2.10, we plot the difference in optimal crosstalk ∆X∗ � X∗
idle − X∗

busy, where
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black areas denote the anomalous regime. With increasing similarity, the anomalous

regime grows and covers an increasingly larger portion of the phase space. For

sufficiently high similarity values, the idle strategy will always lead to the most

optimal crosstalk for any value of (p , q).
Fig 2.11 shows both the minimal (blue) and maximal (red) value of∆X∗ � X∗

idle−X∗
busy

over the whole space of p ∈ {0, 1} and q ∈ {0, 1} as a function of similarity s. Values

of ∆X∗ < 0 mean that the idle mode leads to a lower crosstalk limit and vice versa

for ∆X > 0. Therefore, when the busy mode completely vanishes and the idle mode

is the one that always yields lower crosstalk (∆X∗ < 0 for all (p , q) values), the

maximal value of ∆X∗ will be negative; when maxp ,q ∆X∗ � 0, the similarity value is

such that the busy mode completely vanishes. That happens at svanishing ≈ 5, which

is far above the values of real organisms − Fig 2.4A shows that similarity values of

S. cerevisiae range between s ≈ 10−5 − 100.

2.5.7 Probabilistic gene activity model

Probabilistic model description

So far, we considered a deterministic model in which the numbers of active genes

and available TF species were fixed, resulting in a single crosstalk value per (p , q)
configuration. In reality, these numbers can temporally fluctuate, for example,

because of the burst-like nature of gene expression [Golding et al., 2005; Wang et al.,

2009]. In the deterministic model, we also assumed uniform gene usage, such that all

genes are equally likely to be active. In reality, some genes are active more frequently

than others.

To account for this, we study the following crosstalk in a probabilistic gene

activity model. We assume independence between activities of different genes,

where each gene i has demand (probability to be active) Di . We then numerically

calculate crosstalk for a set of genes. This approach enables us to incorporate a

varying number of active genes and a non-uniform gene demand and compare our

results to the deterministic model studied above.

Assume that to comply with its demand Di , each gene i is regulated with
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Figure 2.10: The anomalous regions where crosstalk cannot be minimized, grow as the similarity

s increases. Difference in optimal crosstalk ∆X∗ � X∗
idle − X∗

busy, where black areas denote the

anomalous regime. Different values of rescaled similarity were used: (a) s � 0.1, (b) s � 0.5, (c)

s � 1.1, (d) s � 1.5.

probability γi , i � 1...M, where γi � Di if regulation is positive and γi � 1 − Di if it

is negative. We assume that the TF species needed for these genes are available in

the cell. The distribution ft(t) of the fraction of TF species follows Poisson-Binomial
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Figure 2.11: The differences between regulatory strategies depend on s. We plot the minimal (blue)

and maximal (red) value of ∆X∗ � X∗
idle − X∗

busy over the entire region of p ∈ {0, 1} and q ∈ {0, 1} as

a function of similarity, s. The point where the maximal value (red) becomes negative (at s ≈ 5), is

where the busy mode completely vanishes and idle mode leads to lowest crosstalk (for any (p , q)).

distribution [Rice, 2006] with mean and variance of:

⟨t⟩ � 1
M

M∑
i�1
γi (2.26a)

var(t) � 1
M

M∑
i�1
γi(1 − γi). (2.26b)

Assuming that the number of genes is large, M ≫ 1, the central limit theorem

applies here: we approximate the probability distribution of t, ft(t), by a Gaussian

distribution with the mean value and variance as given with Poisson-Binomial

distribution (mean value ⟨γi⟩i and standard deviation σt � ⟨γi(1 − γi)⟩i , with ⟨·⟩i

representing the average over all genes) [Rice, 2006].

Since minimal crosstalk X∗ is a function of t (Eq 2.5), X∗ becomes a random

variable and its distribution reads:

fX∗(X∗) �
∑

l

ft(g−1
l (X∗))

�����dg−1
l (X∗)
dX∗

����� , (2.27)

where g−1
l (X∗) � tl represents the l−th branch of the inverse function (for some X∗

values there exist two solutions tl that satisfy the inverse equation) [Rice, 2006].

The solutions for g−1
l (X∗) and its derivative exist and can be analytically computed,

which enables us to solve for the distribution of crosstalk fX∗(X∗):

1. Region I: f ∗X(X∗) � ft(X∗)
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2. Region II: f ∗X(X∗) � ft
(
1 − X∗

1−α+αX∗
)
· (α − 1 − αX∗)

3. Region III: see S2 Appendix,

where ft(t) is the distribution of TF usage values t.

As the exact calculation of the distribution fX∗(X∗) is difficult, we can often use the

following useful approximation. If the distribution is narrow enough, such that

σT/⟨T⟩ ≪ 1, we can approximate the expected value of crosstalk by the deterministic

value of crosstalk for an expected value of available TF fraction:

⟨X∗(t)⟩ ≈ X∗(⟨t⟩), (2.28)

where the computation of both ⟨t⟩ and X∗(⟨t⟩) is straightforward given γi . We discuss

below the conditions under which this approximation holds. The distribution of X∗

is typically narrow, such that for practical purposes the distribution mean provides

a very good estimator of crosstalk values.

Approximations

In our stochastic model, a gene i is regulated with probability γi , i � 1, . . . ,M.

Above, we stated (i) that the distribution of TFs in use, t, can be well approximated

by a Gaussian distribution. Furthermore, if (ii) in the regime where X∗ is linear

in t and
√

var(t)/⟨t⟩ ≪ 1, one can approximate the expected value of crosstalk by

the deterministic value of crosstalk for an expected value of total number of TF:

⟨X∗(t)⟩ ≈ X∗(⟨t⟩). The third claim is that if X∗ is linear in t (∂X∗/∂t ≈ const.), one

can also approximate well the distribution of crosstalk with a Gaussian distribution

having the same mean and variance as those of the t distribution, just rescaled and

translated by the slope and constant factor of the linear transformation of X∗(t).
The Gaussian approximation of distribution of t follows from the central limit

theorem. A numerical example is shown in Fig 2.12 (a) and (c).

The approximation (ii) uses linearity to show that ⟨X∗(t)⟩ ≈ X∗(⟨t⟩) holds:

If X∗(t) ≈ αt + β ⇒ ⟨X∗(t)⟩ � ⟨αt + β⟩ � α⟨t⟩ + β � X∗(⟨t⟩). (2.29)

The linearity assumption is fulfilled for t values that are much lower than t∗ (t∗

being the value at which X∗ reaches maximum). For visual example of linearity of
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X∗(t) for t < t∗, see Fig 2.2A. Moreover, by using the Taylor expansion of crosstalk

X∗(t) for a small deviation of t around its mean ⟨t⟩, we show that deviations around

the expected value are small and often negligible. Therefore, if
√

var(t)/⟨t⟩ ≪ 1

holds, one can look at a representative deviation from the mean value and write

(assuming the solution for X∗(t) is in biologically plausible regime III);

X∗(t) � X∗(⟨t⟩) + δX∗(t) ≈ X∗(⟨t⟩) + ∂X∗(⟨t⟩)
∂t

δt (2.30)

� X∗(⟨t⟩) +
[
2⟨t⟩s − s + 2

√
s(1 − ⟨t⟩) − s⟨t⟩√

s(1 − ⟨t⟩)

]
δt

� X∗(⟨t⟩) +
[

X∗(⟨t⟩)
⟨t⟩ − ⟨t⟩s

(
1√

s(1 − ⟨t⟩)
− 1

)]
δt                                                                                        

δX∗

Fig 2.13 shows the relative error δX∗(⟨t⟩)δt/X∗(⟨t⟩) of our approximation. We use a

representative values of M � 2500 and γi � 0.5, leading to the standard deviation of

t being
√

var(t) � 10−2. We take this number to also be a variation in the number of

TF species present: δt � 10−2. Any larger values of M or any other values of γi will

lead to lower error. The relative error is indeed very small. The exceptions are the

values close to t � 1, which fall out of regime III into anomalous regime II, and values

close to t0 � 0, which still take a small relative error of δX∗(⟨t⟩)δt/X∗(⟨t⟩) � 20% for

⟨t⟩ � 0.05. Furthermore, if the third claim of X∗(t) linearity with respect to t holds,

we can approximate the distribution of X∗(t) by a Gaussian. As the distribution

of t is Gaussian, to a good approximation, a linear transformation of a Gaussian

distribution also leads to a Gaussian distribution of X∗(t). Fig 2.12 (a-b) shows an

example of distribution of t and X∗. There, the probabilities γi give the average

proportion of TF species ⟨t⟩ � 0.5, which gives values of crosstalk that are far from

the maximum of X∗. The assumption of linearity is justified on the example shown

and Gaussian approximation for fX∗(X∗) gives good results. The expected values of

crosstalk ⟨X∗(T)⟩ and the crosstalk of the expected value of TF species X∗(⟨T⟩) have

a very small relative difference (in the order of 0.01%), which is the consequence of

small ratio
√

var(t)/⟨t⟩ � 2% ≪ 1.

On the other hand, Fig 2.12 (c-d) shows the distribution of t and X∗, where the
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probabilities γi give the average proportion of TF species ⟨t⟩ � 0.66 close to the

maximum of X∗ around t ≈ 2/3, where the linearity assumption does not hold. We

see that Gaussian approximation for fX∗(X∗) is not valid anymore. Even though

the linearity assumption does not hold, the expected value of crosstalk ⟨X∗⟩ and

the crosstalk of the expected value of the relative number of TF species X∗(⟨T⟩) are

again very close (relative difference of 0.03%).
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Figure 2.12: t distribution is always well-approximated by a Gaussian. If ⟨t⟩ is far apart from t∗,

X∗ distribution is also well approximated by a Gaussian. We plot the distributions of t ((a), (c))

and X∗(t) ((b), (d)) in two cases. The vertical lines in (b) and (d) (dotted and dash-dotted) represent

X∗(⟨t⟩) and ⟨X∗(t)⟩, correspondingly. We find an excellent match between their values, even in

the worst case scenario that X∗(t) is far from being Gaussian (d). Small discrepancies between

the analytical solution and numerical simulation is due to the finite number of iterations in the

simulation. Parameter values: s � 0.01, M � 3000, p � 1/3, in (a) and (b) γi � 0.66; in (c) and (d)

γi � 0.66.
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Figure 2.13: Relative error of our approximation of distribution of crosstalk. The relative error

δX∗(t0)δt/X∗(t0), shown in color, as a function of similarity, s, and the expected value of distribution

t, t0 � ⟨t⟩. Parameter values: M � 2500 and γi � 1/2, leading to δt � 10−2. All other values of γi

would lead to lower values of δt and therefore to lower values of the relative error.

The probabilistic gene activity model leads to a distribution of the number of

active genes - Example

In the probabilistic model, the fraction of active genes q becomes a random vari-

able, rather than being fixed, as we assumed before. We demonstrate this in an

example below. The crosstalk behavior in the probabilistic case can be obtained as a

superposition of the relevant deterministic cases taken with their corresponding

weights.

Assume we have 3 genes, active with probabilities p1 � 1/2 and p2 � p3 � 1/4,

correspondingly. We can then enumerate all active gene combinations and active

state probabilities:

• all genes inactive: p(all inactive) � 1
2
( 3

4
)2

� 9/32

• first gene active: p(gene 1 active, genes 2,3 inactive) � 1
2

3
4

3
3 � 9/32

• second gene active: p(gene 2 active, genes 1,3 inactive) � 1
2

1
4

3
4 � 3/32

• third gene active: p(gene 3 active, genes 1,2 inactive) � 1
2

3
4

1
4 � 3/32
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• first&second genes active: p(genes 1,2 active, gene 3 inactive) � 1
2

1
4

3
4 � 3/32

• first&third genes active: p(genes 1,3 active, gene 2 inactive) � 1
2

3
4

1
4 � 3/32

• second&third genes active: p(genes 2,3 active, gene 1 inactive) � 1
2

1
4

1
4 � 1/32

• all genes active: p(all active) � 1
2

1
4

1
4 � 1/32.

The mean number of active genes Q is then:

⟨Q⟩ � 0 × p(all inactive) + 1 × p(gene 1 active, genes 2,3 inactive) + · · · + 3 × p(all active) � 1.

(2.31)

Therefore, in this example, on average, one gene is active.

However, for ⟨Q⟩ � 1 and fixed p (fraction of activator among the existing regulators),

there are several possible q values (proportion of active genes). This explains why

we have a distribution of crosstalk values if genes are active with some probability.

2.5.8 Data-based crosstalk calculations

Distribution of similarity measures for S. cerevisiae genes is relatively wide

To obtain similarity and crosstalk values of real organisms, one needs to take several

aspects into consideration. First, the exact consensus sequences of different TFs are

not known and position count matrices (PCMs) are used to infer them. Second, the

length of binding sites and consensus sequences between different BSs and TFs can

differ. Third, in a more realistic case, each TF can be cognate for multiple genes. All

these concerns (and others, for more details, see Section 2.4) complicate a calculation

of lower bound on crosstalk in a real organism. However, there are ways to solve

these issues and obtain estimations to be compared with our analytical solutions.

We define similarity between a binding site k and transcription factor l as Skl �

exp (−Ekl), where Ekl represents the mismatch energy of binding of the transcription

factor on the binding site. The similarities between all pairs of consensus binding

sites for S. cerevisiae are shown in Fig 2.14. The results are not symmetric between

transcription factors and binding sites. A simple example with two transcription

factors and their cognate binding sites can be presented to understand this intuitively:
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imagine the first transcription factor with a shorter consensus sequence while the

consensus sequence of the second one is longer. Let us assume that a consensus of

the shorter TF is included in the consensus of the longer TF. The TF with the shorter

consensus sequence will bind easily to the binding site of the second TF. Therefore,

the similarity between the transcription factor with the shorter consensus sequence

and longer binding site will be high. However, the transcription factor with the

longer consensus sequence and a shorter binding site would have a lower similarity,

as it is less likely that the long transcription factor binds to the short binding site.

Indeed, the matrix of pairwise similarity values is asymmetric. Clearly, we observe

many vertical lines of similar value (TFs that easily bind many binding sites - yellow

strips, or that are very unique to only few binding sites - blue strips), but much

weaker signatures of rows (binding sites that are very similar or very dissimilar

to all others). This demonstrates that the similarity value between a transcription

factor and a binding site is dominated by the transcription factor properties, and

much less by the binding site’s. High similarity between a transcription factor and

other binding sites is highly correlated with short consensus sequences of that

transcription factor.
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Figure 2.14: Similarity values between all pairs of consensus binding sites and transcription

factors for S. cerevisiae. Columns represent TFs, rows represent binding sites.

The similarity measure of a gene i, Si , is determined as the contribution of all
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non-cognate transcription factors:

Si �
∑

j ≡ over all BSs, j , i

C j e−Ei j , (2.32)

with C j being the concentration of TF species j.

TFs that bind shorter DNA stretches are more promiscuous

TFs with shorter consensus BS can fit more binding sites. Subsequently, their

similarity value si is higher. This is indeed what we find in our yeast data − see

Fig. 2.15.
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Figure 2.15: TFs with shorter consensus BSs tend to have higher similarity values. The data points

show TF similarity values calculated for the S. cerevisiae dataset.

Alternative calculations of similarity values and crosstalk from data

Similarity values and crosstalk of S. cerevisiae and other organisms were esti-

mated [Friedlander et al., 2016] based on PCM data of the TFs in our previous work,

but using a different computational approach. The main difference between these

two calculations is that in the first approach, the similarity was calculated between

a consensus sequence of a particular TF and an ensemble of binding sequences

of the same length randomly drawn from a uniform distribution. It was shown

there analytically that the average similarity between random sequences of length L

and uniform energy mismatch per position ϵ is simply S �
(
1/4 + 3/4 exp (−ϵ)

)L,
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hence only this effective ϵ needs to be calculated. In contrast, in the current work,

we calculate similarity between actual pairs of TF and non-cognate binding sites.

Another major difference is the calculation of mismatch energy penalties. By

using the PCMs, we obtain an energy matrix which gives energy penalties for

every position and every nucleotide separately. In the previous work, only an

effective ϵ uniform for all positions was calculated using either of two approaches:

(i) information method [Wunderlich and Mirny, 2009] or, (ii) pseudo-count method

(also used here) [Schneider et al., 1986; Berg and von Hippel, 1987]. In the information

method, the total information of the motif was calculated and then an effective ϵeff

which evenly distributed this information between all L positions, was calculated.

The advantage of this method is the avoidance of pseudo-count usage, which

could bias the results. Its major drawback is the lack of position-specific energy

information which we need to calculate similarity between actual pairs of binding

sites. In the pseudo-count method, a pseudo-count is added to all positions in order

to avoid zero counts, which result in infinite energy penalty. While this method can

provide position-specific energy values ϵ j , in the previous work, only an average

of all positions ϵeff �
∑

j ϵ j was taken as the effective value for the similarity with

respect to random sequences. In the current work, the pseudo-count method was

used differently, computing the similarity measure of a gene j by directly following

the definition and summing the Boltzmann weights over all TFs (i.e., sum over

exponents of energies,
∑

i exp (−Ei j)). Since binding sites and TFs can have different

lengths, there could be different relative positions with respect to each other, which

could have different binding energies. Here, we chose the relative position with

highest match (lowest energy penalty) between the binding TF i and binding site j.

States with lower energy are energetically more favorable and therefore physically

more likely to occur.

This difference in estimating energy penalties leads to a different approach

for computing similarity measures. In our approach, we use energy matrices to

compute the energy of binding for every pair of TF-BS, i.e., Ei j .

The two distinct approaches lead to different, but similar, distributions of similar-

ity measures for a given gene j, s j − Fig 2.16. The main difference are long tails of the
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current approach. The median value of the similarity with the previous approach in

S. cerevisiae was median(sconsensus-random) � 0.8 · 10−4, while in the current approach,

we obtain median(sTF-BS) � 1.4 · 10−4.

Differences between s values obtained in these two approaches can emanate

from various sources:

• sequences of actual binding sites are not well captured by a uniform distribution

because of biases in favor of AT-content. For example in our S. cerevisiae dataset,

we have 31% of nucleotide A, 21% of C, 22% of G, and 26% of T.

• actual binding sites can vary in length; taking the relative position with

best match is clearly non-random. See in Fig 2.16 a comparison to s values

calculated when the relative position is randomly selected.

• equally partitioning the total energy of the motif between all its positions

consistently under-estimates the similarity.

• if actual TF-BS are considered, insufficient data can lead to biases in similarity

estimates.

Using real transcription factor copy numbers

So far, we assumed that all transcription factors are present in equal concentrations

(Eq 2.1), to simplify the calculations and enable the analytical derivation of the lower

bound on crosstalk. We then minimized crosstalk with respect to the TF concen-

trations, such that these concentrations and the energy gap Ea between cognate

bound and unbound states were all left out of the minimal crosstalk expression

(Eq 2.5). In general crosstalk does depend on the TF concentrations and can be

numerically calculated for general concentration values. Such calculations require

an extension of the crosstalk minimization procedure and additional parameter

values which were not necessary for the lower bound. In this section we demonstrate

this calculation using experimentally measured proteome data of S. cerevisiae. We

follow the model described in [Landman et al., 2017] for a single gene and generalize

it for our case.
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Figure 2.16: Comparison of similarity distribution between the different approaches; alternative

to previous work (top) versus the current work with best positioning (middle) and random positioning

(bottom). Random positioning takes a random binding location instead of the one with the highest

match (the distribution shown is from one representative realization). The median value (averaged

over many realizations) of median(sTF-BS-random) � 0.2 · 10−4.

We obtain the copy number values for all 23 of TFs measured in [Ghaemmaghami

et al., 2003]. Forproteins which were below the detection level of 50 molecules/cell,we

take half the detection level of 25 molecules/cell. Generally speaking, a transcription

factor molecule can be in one of three reservoirs: bound to its cognate site, bound to

any non-cognate site, free in the cytoplasm or bound non-specifically to the DNA.

Non-specific binding is independent of the DNA sequence and has no effect on

crosstalk, but only effectively reduces the TF availability. As until now, we focused

on minimal crosstalk assuming the TF availability is optimized we did not include

non-specific binding in our expressions. Now, in order to properly account for the

available TF copy numbers we add it to the expressions. We use the grand-canonical

ensemble formulation to estimate the fugacities, i.e., the available number of TF

molecules.
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We write down the mass balance equation for each of the 23 TF molecules (compare

to Eq 40 in [Landman et al., 2017]):

A j � NnsΘns
j +

∑
k, j

NkΘ
nc
jk + N jΘ j , (2.33)

where A j is the total number of molecules of the j-th TF, and Nns is the total number

of available non-specific binding sites, N j is the total number of cognate binding

sites for j-th TF and Nk is the total number of non-cognate binding sites (which are

cognate for the other TFs). Θns
j is the occupancy of non-specific binding site by the

j-th TF:

Θns
j �

λ je
−Ens

j

e−Ea +
∑

i λie−Ens
i
, (2.34)

where λ j represents the fugacity of j-th TF, Ens
j the binding energy of j-th TF to non-

specific site, Ea the energy of the unoccupied state, and the sum in the denominator

goes over all TFs. The product NnsΘns
j gives the total number of molecules of j-th

TF, bound to all non-specific sites.

The second term in Eq 2.33 represents the total number of j-th TF molecules that

are bound to non-cognate binding sites. These are cognate sites for all k , j-th TFs.

Each term in the sum represents the number of j-th TF molecules bound to cognate

binding sites of k-th TF. Similarly, Θnc
jk is the occupancy of one cognate binding site

of k-th TF by the j-th TF:

Θnc
jk �

λ je−E jk

e−Ea +
∑

i λie−Eik
, (2.35)

where E jk represents binding energy of j-th TF to cognate binding site of k-th TF.

E j j represents energy of cognate binding of j-th TF.

The last term in Eq 2.33 represents the number of j-th TF molecules bound to

one of its N j cognate sites. Again, the occupancy of a cognate site by the j-th TF

equals:

Θ j �
λ je−E j

e−Ea +
∑

i λie−Ei j
. (2.36)

This gives us a set of 23 coupled non-linear equations with 23 variables λ j (the

fugacity values of all TFs). To set the energy scale we define for every binding site
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that its energy level when bound by its cognate factor is zero. The parameters we

need to specify in to numerically solve these equations are:

• A j the total number of molecules of the j-th TF species per cell. We obtain

these values from [Ghaemmaghami et al., 2003].

• Ens
j the binding energy of the j-th TF to a non-specific site. We assume that

non-specific sites are random DNA sequences [Gerland et al., 2002]. Hence,

we calculate these energies by averaging energy contributions at each position

using the TF energy matrix and sum the individual contributions.

• Nns , the total number of non-specific sites. The yeast genome length is roughly

107 nucleotides, but we assume that only 10% of it is accessible [Wunderlich

and Mirny, 2009]. Hence we assume that 106 non-specific binding sites are

available.

• N j , the number of cognate binding sites of j-th TF. Here we simply take the

number of genes regulated by the j-th TF.

• E jk , the binding energy of the j-th TF to a cognate binding site of the k-th TF.

These values are used in calculation of similarity matrix Si j − see Fig. 2.14.

• Ea the energy gap of a binding site between its state when occupied by its

cognate factor (which we set as zero) and its unoccupied state. We assume

the same value for all TFs. Unfortunately, measurement of this parameter are

rare. We found estimates of this energy gap only for a few bacterial [Gerland

et al., 2002] and yeast [Maerkl and Quake, 2007] TFs. In the following we show

crosstalk calculations for several different values of this parameter.

The binding energy is usually sequence dependent. However, when the binding

becomes very unfavorable, other contributions come into play, thus effectively setting

a bound on the binding energy. Therefore, we have used this bound on all binding

energies Ens
j and E jk . Using all the details described above, we can numerically

obtain all fugacity values λ j , for all j and then calculate the total crosstalk.
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However, the solutions of crosstalk using the correct fugacities seem to be

relatively sensitive to the threshold values we set. Here we show solutions for a

range of realistic values (Fig 2.17 left).

Furthermore, as the energy of a non-occupied state (Ea) differs between different

TF, we investigated a range of realistic values to see their effect. As each individual

position contributes 1.5 − 3.5kBT [Wunderlich and Mirny, 2009] and the average

binding site size is between 6 to 10 bp, we estimate that Ea ∈ (10, 16). Fig. 2.17 right

shows that while results are robust for t < 1/2, they differ for values t ≈ 1.

All results using real concentrations exhibit higher crosstalk estimates compared

to our lower bound where optimal concentrations were used (Fig 2.17).
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Figure 2.17: Estimated crosstalk of S. cerevisiae 23 TFs using measured TF concentrations [Ghaem-

maghami et al., 2003] is higher than the minimal crosstalk calculated for optimal TF concentra-

tions. We illustrate crosstalk values as a function of the proportion of available TF species t, using

measured TF concentrations [Ghaemmaghami et al., 2003], for various energy thresholds (left) and

energies of unoccupied binding sites Ea (right). For comparison, optimal crosstalk curve is added

(black). We defined E � 0 as the state with of the binding site when a cognate TF is bound. In

the left figure we used Ea � 14, and in the right figure we used Ethreshold � 18. The gray dots at

t � 1 represent points where all measured TFs copies were included in the crosstalk calculation.

Otherwise, for each t < 1 we drew 300 times by random a subset of TFs to be present, such that only

t proportion of the genes are regulated. Fugacities of TFs that were not chosen were set to zero.
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2.5.9 Comparison of our global crosstalk model to single-gene

models

Previous models of regulatory crosstalk [Shinar et al., 2006; Sasson et al., 2012] studied

crosstalk at the single gene level and focused on the choice between activation and

repression as the leading mode of regulation. The main innovation of our model

is the consideration of multiple genes and multiple regulators simultaneously. As

we demonstrate in this section, this leads to a completely different optimum of the

system. For every single gene its crosstalk is minimized if its regulator is present

in the highest possible level, when it should be regulated. Yet, such high levels

of regulators increase crosstalk probability for all other genes - an effect which

is overlooked in single gene models. Alternatively, when the gene should not be

regulated (its binding site should be unoccupied), its crosstalk level is minimized

if the TF concentration is zero. Only a multiple-gene model can correctly account

for the trade-off between increasing TF concentration for the genes that should be

regulated, but simultaneously keeping total TF levels as low as possible to reduce

crosstalk of all other genes that should not be regulated at that time. Then, there is an

optimal intermediate TF concentration which is neither zero nor the maximal. This

optimal concentration does not necessarily minimize crosstalk for any one particular

gene, but rather minimizes the total crosstalk, of all genes together.

This section shows a comparison of our model which minimizes global crosstalk,

and a model that minimizes local crosstalk - it minimizes crosstalk of each individual

gene, disregarding the potential interactions between every TF and all other non-

cognate binding sites. If crosstalk were minimized with respect to concentration

for individual genes, the lower bound on crosstalk of individual genes would be

obtained for concentration c → ∞. Note that this represents concentration of TFs

that are regulating while by construction of our model, non-regulating TFs have

zero concentration. This result can be easily seen by looking at minimum of xbound
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of Eq 2.2. Using this concentration, the contributions of individual genes become

xbound �
ts

1 + ts
, (2.37)

xunbound � 1, (2.38)

where the limit c → ∞ was taken in Eq 2.13. The total crosstalk, namely the average

fraction of genes in any crosstalk state, is then

X � t xbound + (1 − t) xunbound �
t2s

1 + ts
+ (1 − t), (2.39)

which, for s ≪ 1, leads to X ≈ (1 − t), which is the proportion of non-regulated

genes. The large increase of crosstalk comes from optimization of crosstalk values

of individual genes. We minimize it for the case when gene is regulated (xbound),

obtaining large concentrations of all TFs that are required to regulate. This will

enforce that each of these individual genes will suffer barely any crosstalk when

it is being regulated. However, by doing this we overlook the inevitable large TF

concentrations needed that are likely to cause crosstalk to other genes that are not

being regulated. Therefore, the main contribution to crosstalk comes from genes

that should be unregulated (i.e., binding sites that should be unoccupied) but are

instead bound by the ample non-cognate TFs.

See Fig. 2.18, for a comparison with X∗ obtained by global minimization (Eq 2.5),

which exhibits significantly lower crosstalk values. As TF concentrations are lim-

ited by biophysical constraints such as cell volume and protein production costs,

concentrations are finite. It is also known experimentally, that large proportions of

genes can be left unregulated, rather than being constantly induced by non-cognate

binding of TFs. Hence, we conclude that single-gene crosstalk models present only a

partial picture and are inadequate to study gene regulatory networks. The following

table shows the main features of global vs. local minimization:

2.5.10 Complex regulatory architectures

We studied a simple regulatory architecture, where every gene is regulated by a

single TF, which is either an activator or a repressor. Here we analytically study two

more complex regulatory architectures and compare them to the basic model.
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Local minimization Global minimization

Minimization on individual genes all genes

Conc. (present TFs) c � ∞ c � c∗ (see Eq 2.16)

Conc. (absent TFs) c � 0 c � 0

Main contribution to

crosstalk

Nonregulated genes All genes

X∗(t , s) (1 − t) + t2s/(1 + ts) t
(
−s(1 − t) + 2

√
s(1 − t)

)
Monotonic in t? yes, decreasing no, has a maximum

X∗(t , s) for s ≪ 1 (1 − t)
√

4t2(1 − t)
√

s ∝
√

s

Table 2.2: Main features of local vs global minimization of crosstalk.

0 0.2 0.4 0.6 0.8 1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
*

Local minimization

Global minimization

Figure 2.18: Comparison of total crosstalk for minimization of individual genes (blue) and global

crosstalk minimization (red) as obtained in Eq 2.5. We find that local minimization requires extremely

high TF concentrations, which are likely to cause crosstalk to all genes that should be left unregulated.

Hence total crosstalk (local minimization) is approximately X ≈ 1 − t (the proportion of available TF

species). In contrast, global minimization does not optimize crosstalk for every individual genes, but

provides much lower total crosstalk values. Similarity s � 10−2.

A TF which is both an activator and a repressor

In this section we explore the case that every TF has a dual role: it serves as an

activator for one gene and as a repressor for another gene. This means that the genes
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are now organized in pairs, such that each pair of genes shares a common TF where

one of the genes is positively regulated and the other is negatively regulated by

that TF. The total number of TFs is then half of their number in the basic model, in

which every gene was regulated by a unique TF. That however, also constrains the

ability to individually determine the regulatory state of each gene, in contrast to the

basic model case. We begin by examining the two extreme scenarios:

1. If the two genes in every pair are always in opposite regulatory states, namely

when one needs to be active the other one needs to be inactive, both require

that the TF is present (absent) at the same time. We call this the non-conflict

scenario. Then the number of regulated genes is twice the number of TFs in

use in the basic model. The expressions for single-gene crosstalk and total

crosstalk probabilities (Eq 2.13, Eq 2.4) are then slightly modified:

xbound �
e−Ea + cs/2

c/t + e−Ea + cs/2
, (2.40)

xunbound �
cs/2

e−Ea + cs/2
, (2.41)

X � t · xbound + (1 − t) · xunbound, (2.42)

where the only difference with respect to Eq 2.13 is the factor two in cs/2. The

factor two is present as the rescaled similarity s is rescaled by half of the total

TF species compared to the basic model. We have already shown [Friedlander

et al., 2016] (SI, p. 12) that the case that each TF regulatesΘ genes is equivalent

to an effective similarity scaling s → s/Θ. As to first order in s, X∗ ∼
√

s

(Eq 2.5), this yields an effective reduction of crosstalk by a factor of
√

2.

2. Alternatively, if the two genes in each pair always need to be in the same

regulatory state, one of them should be regulated by its cognate TF and the

other should be left with unoccupied binding site. This means that only one

of the genes requires the TF to be present, but the other one favors its absence

to reduce crosstalk. Here we assume that if at least one gene requires the TF,

then the TF is present. We call this the conflict scenario.
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The single-gene and total crosstalk probabilities now read:

xbound �
e−Ea + cs/2

c/t + e−Ea + cs/2
, (2.43)

xunbound �
cs/2 + c/t

c/t + e−Ea + cs/2
, (2.44)

X �
t
2 · xbound + (1 − t

2) · xunbound. (2.45)

The change with respect to Eq 2.13 is the additional term c/t in the xunbound

expression as the cognate TF is present, even though it is not required. We

define binding of cognate TF when not required as crosstalk. Furthermore,

the weights in crosstalk X represent the proportion of regulated (unregulated)

genes, i.e., t/2 and (1 − t/2), respectively. As before, cs/2 is also adjusted.

As exactly one of the two genes should be regulated, for all pairs of genes, half

of the genes are regulated. That represent all TF speces, i.e., t � 1. We then

obtain that the lower bound on crosstalk in this scenario is X∗ � 0.5.

3. Taking any general combination of the two extreme scenarios, with p propor-

tion of conflict genes and 1 − p non-conflict genes the crosstalk probabilities

read:

xa
bound �

e−Ea + cs/2
c/t + e−Ea + cs/2

, (2.46)

xa
unbound �

cs/2
c/t + e−Ea + cs/2

, (2.47)

xb
bound �

e−Ea + cs/2
c/t + e−Ea + cs/2

, (2.48)

xb
unbound �

cs/2 + c/t
c/t + e−Ea + cs/2

, (2.49)

X � (1 − p) ·
(
tG · xa

bound + (1 − tG) · xa
unbound

)
(2.50)

+ p ·
(
tG · xb

bound + (1 − tG) · xb
unbound

)
where tG �

(
p/2 + (1 − p)t

)
is the proportion of genes that are regulated, and

a and b denote contributions of non-conflict and conflict genes, respectively. p

constrains the possible t values to be in the range t ∈ (p , 1). As mentioned,

in the limit of p � 1, all gene pairs are opposite in the regulation demand,
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leading to t � 1. In the opposite scenario, for p � 0, any value of 0 ≤ t ≤ 1 is

possible. For example, for p � 1/2, the system can explore values in the range

t ∈ (1/2, 1), as only half of the system is fully constrained.

Fig. 2.19 shows the total minimal crosstalk X∗ for various p values, and the basic

model as a reference. We find a decrease in crosstalk if all (or nearly all) genes are in

non-conflict pairs. However, for conflict pairs, there is a much higher crosstalk now

because of the presence of the cognate TF for genes that should be left unregulated.

0 0.2 0.4 0.6 0.8 1
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0

0.1

0.2

0.3

0.4

0.5

X
*

Basic model

1TF - 2 genes: non-conflict, p=0

1TF - 2 genes: conflict, p=1

1TF - 2 genes: combination, p=0.25

1TF - 2genes: combination, p=0.75

Figure 2.19: Minimal crosstalk when every TF regulates two genes: one as an activator and the

other as a repressor couples between the regulatory states of the genes sharing a common TF.

When both genes in all pairs require their TF to be either present or absent (non-conflict), crosstalk is

lowered (red curve) compared to the basic model where every TF regulates only one gene (blue). In

contrast, if all paired genes have opposite demands for the TF presence, crosstalk is considerably

larger (green dot). We also illustrate combinations of these two extremes (magenta for p=0.25 and

black for p=0.75), both still showing much higher crosstalk compared to the basic model. Similarity

s � 10−2.

Combinatorial regulation

So far we studied regulatory architectures in which each gene is regulated by a

single TF (although each TF could regulate multiple genes, as in the previous

section). There are however known cases in which a particular gene is regulated by

a combination of distinct TF species. We study a model for such an architecture in
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this section. We assume that every gene is regulated by two distinct and unique

TF species having separate and non-overlapping binding sites. Binding to one site

does not affect binding to the other in any way: neither inhibits it nor makes it more

favorable by any form of cooperativity. We assume an AND-gate logic, such that

only if both binding sites are bound by the cognate factors the gene is regulated, but

not if only one of them (or neither) is bound and the other is unoccupied or bound

by a non-cognate.

As opposed to the basic model where energy levels referred to a single binding

site, we now refer to the energy levels of a pair of binding sites regulating a common

gene. They can now be different binding states with the following statistical weights:

• w1 � e−2Ea if both binding sites are unoccupied,

• w2 � e−Ea · c · s if one binding site is unoccupied while the second one is

occupied by non-cognate TF.

• w3 � (c · s)2 if both binding sites are occupied by non-cognate TFs.

• w4 � e−Ea · c
t if one binding site is unoccupied while the second one is occupied

by the cognate TF.

• w5 �
( c

t

)2 if both binding sites are occupied by the cognate TFs.

• w6 �
( c

t

)
· (c · s) if both binding sites are occupied, one by the cognate and the

other by a non-cognate TF.

The single gene crosstalk probabilities now read:

xbound �
w1 + 2w2 + 2w4 + w3 + 2w6

w1 + 2w2 + 2w4 + w3 + w5 + 2w6
�

e−2Ea + 2e−Ea (cs + c/t) + (cs)2 + 2c2s/t
e−2Ea + 2e−Ea (cs + c/t) + (cs)2 + (c/t)2 + 2c2s/t

,

(2.51)

xunbound �
w3

w1 + 2w2 + w3
�

(cs)2
e−2Ea + 2e−Eacs + (cs)2 , (2.52)

X � t xbound + (1 − t) xunbound (2.53)

w2, w4, and w6 have the pre-factor 2 because they can apply to either of the two

binding sites.
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In Fig 2.20 we illustrate the minimal crosstalk in this case, compared to the basic

model. We find that the AND-gate configuration leads to lower minimal crosstalk

for low t, but higher crosstalk for high t, compared to the basic model. The difference

between these models comes from the double number of TFs used in the AND-gate,

which lead to higher crosstalk for high t, but also from the stricter definition of what

is considered crosstalk for genes that should be left unregulated. To demonstrate

this, we can define a more lenient definition of xunbound:

xlenient
unbound �

2w2 + w3
w1 + 2w2 + w3

�
(cs)2 + 2e−Eacs

e−2Ea + 2e−Eacs + (cs)2 , (2.54)

Xlenient
� t xbound + (1 − t) xlenient

unbound, (2.55)

where a state that should be unbound and is only partially occupied by one non-

cognate TF, is already considered crosstalk. This leads to an elevation of X∗ for all t,

compared to the basic model.
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Figure 2.20: Minimal crosstalk for combinatorial regulation, where each gene is regulated by an

AND-gate with 2 distinct TF species (red and yellow, stricter and more lenient definition of crosstalk,

respectively), compared to the basic model, where each gene is regulated by a single TF (blue).

Similarity s � 10−2.
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3 Normative models of enhancer function

In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative

mapping from promoter sequences to gene expression levels that is compatible with in

vivo and in vitro biophysical measurements. Such concordance has not been achieved

for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to

reconcile the reported short transcription factor (TF) residence times on the DNA with

the high specificity of regulation. In non-equilibrium models, progress is difficult due

to an explosion in the number of parameters. Here, we navigate this complexity by

looking for minimal non-equilibrium enhancer models that yield desired regulatory

phenotypes: low TF residence time, high specificity and tunable cooperativity. We find

that a single extra parameter, interpretable as the ”linking rate” by which bound TFs

interact with Mediator components, enables our models to escape equilibrium bounds

and access optimal regulatory phenotypes,while remaining consistent with the reported

phenomenology and simple enough to be inferred from upcoming experiments. We

further find that high specificity in non-equilibrium models is in a tradeoff with gene

expression noise, predicting bursty dynamics — an experimentally-observed hallmark

of eukaryotic transcription. By drastically reducing the vast parameter space to a much

smaller subspace that optimally realizes biological function prior to inference from

data, our normative approach holds promise for mathematical models in systems

biology.

Published as Grah R, Zoller B, Tkačik G. Normative models of enhancer function.

bioRxiv. 2020. doi: 10.1101/2020.04.08.029405.
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Contributions: Grah R has computed results on regulatory phenotypes, has done

stochastic simulations, and has computed analytical limits. B Zoller has done

calculations and derivations on residence time distributions, noise propagation,

correlation time, and helped with the optimization of the algorithm.

Some changes have been made to the text in order to integrate it into this thesis.
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3.1 Introduction

An essential step in the control of eukaryotic gene expression is the interaction

between transcription factors (TFs), various necessary co-factors, and TF binding

sites (BSs) on the regulatory segments of DNA known as enhancers [Coulon et al.,

2013]. While we are far from having either a complete parts list for this extraordinarily

complex regulatory machine or an insight into the dynamical interactions between

its components, experimental observations have established a number of constraints

on its operation: (i) TFs individually only recognize short, 6–10bp long binding site

motifs [Wunderlich and Mirny, 2009]; (ii) TF residence times on the cognate binding

sites can be as short as a few seconds and only 2–3 orders of magnitude longer

than residence times on non-specific DNA [Gebhardt et al., 2013; Chen et al., 2014;

Thomas et al., 2019]; (iii) the order of arrival of TFs to their binding sites can affect

gene activation [Chen et al., 2014]; (iv) TFs do not activate transcription by RNA

polymerase directly, but interact first with various co-activators, essential amongst

which is the Mediator complex; (v) binding of multiple TFs is typically required

within the same enhancer for its activation [Shlyueva et al., 2014], which can lead

to very precise downstream gene expression only in the presence of a specific

combination of TF concentrations [Petkova et al., 2019]; (vi) when activated, gene

expression can be highly stochastic and bursty [Nicolas et al., 2018; Molina et al., 2013;

Bartman et al., 2016]; (vii) gene induction curves show varying degrees of steepness,

suggesting tunable amounts of cooperativity among TFs [Park et al., 2019]. Here we

look for biophysical models of enhancer function consistent with these observations.

Mathematical modeling of gene regulation traces its origins to the paradigmatic

examples of the λ bacteriophage switch [Ptashne, 1986] and the lac operon [Kuhlman

et al., 2007]. In prokaryotes,biophysical models have proven very successful [Berg and

von Hippel, 1987; Kinney et al., 2010; Belliveau et al., 2018], assuming gene expression

to be proportional to the fraction of time RNA polymerase is bound to the promoter

in thermodynamic equilibrium; TFs modulate this fraction via steric or energetic

interactions with the polymerase. Crucially, these models are very compact: they are

fully specified by enumerating all bound configurations and energies of the TFs and
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the polymerase on the promoter. While some open questions remain [Garcia et al.,

2012; Hammar et al., 2014; Forcier et al., 2018], the thermodynamic framework has

provided a quantitative explanation for combinatorial regulation, cooperativity, and

regulation by DNA looping [Bintu et al., 2005a; Bintu et al., 2005b], while remaining

consistent with experiments that also probe the kinetic rates [Maerkl and Quake,2007;

Jones et al., 2014].

No such consensus framework exists for eukaryotic transcriptional control.

Limited specificity of individual TFs (i) is hard to reconcile with the high specificity

of regulation (v) and the suppression of regulatory crosstalk [Friedlander et al.,

2016], suggesting non-equilibrium kinetic-proofreading schemes [Cepeda-Humerez

et al., 2015]. Likewise, short TF residence times (ii) and the importance of TF arrival

ordering (iii) contradict the conceptual picture where stable enhanceosomes are

assembled in equilibrium [Chen et al., 2014]. Kinetic schemes may be required to

match the reported characteristics of bursty gene expression (vi) [Donovan et al.,

2019], or realize high cooperativity (vii) [Estrada et al., 2016]. Thermodynamic models

undisputedly have statistical power to predict expression from regulatory sequence

even in eukaryotes [Gertz et al., 2009], yet this does not resolve their biophysical

inconsistencies or rule out non-equilibrium models. Unfortunately, mechanistically

detailed non-equilibrium models entail an explosion in the complexity of the

corresponding reaction schemes and the number of associated parameters: on the

one hand, such models are intractable to infer from data, while on the other, it is

difficult to understand which details are essential for the emergence of regulatory

function.

To deal with this complexity, we systematically simplify the space of enhancer

models. We adopt the normative approach, commonly encountered in the applica-

tions of optimality ideas in neuroscience and elsewhere [Tkačik and Walczak, 2011;

Rieckh and Tkačik, 2014; Tkačik and Bialek, 2016]: we theoretically identify those

models for which various performance measures of gene regulation, which we

call “regulatory phenotypes”, are maximized. Such optimal model classes are our

candidates that could subsequently be refined for particular biological systems and

confronted with data. Thus, rather than inferring a single model from experimen-
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tal data or constructing a complex, molecularly-detailed model for some specific

enhancer, we find the simplest generalizations of the classic equilibrium regula-

tory schemes, such as Hill-type [Phillips et al., 2012] or Monod-Wyman-Changeux

regulation [Mirny, 2010; Walczak et al., 2010; Changeux, 2012], to non-equilibrium

processes, which drastically improves their regulatory performance while leaving

the models simple to analyze, simulate, and fit to data.

3.2 Results

Model. Multiple lines of evidence suggest that eukaryotic transcription is a two-

state process which switches between active (ON) and inactive (OFF) states, with

rates dependent on the transcription factor (TF) concentrations [Larson et al., 2013;

Senecal et al., 2014; Zoller et al., 2018]. We sought to generalize classic regulatory

schemes that can describe the balance between ON and OFF transcriptional states in

equilibrium: a Hill-like scheme of “thermodynamic models” (discussed in SI Section

1.3), and a Monod-Wyman-Changeux-like (MWC) scheme introduced below.

Figure 3.1A shows a schematic of the proposed functional enhancer model

(Section 3.4.1, see also Fig 3.10). A complex of transcriptional co-factors that we refer

to as a ”Mediator”1 can interact with TFs that bind and unbind from their DNA

binding sites with baseline rates k+ and k− (Fig 3.1B.i). Mediator – and thus the

whole enhancer – can switch between its functional ON/OFF states with baseline rates

κ+ and κ− (Fig 3.1B.ii). Enhancer ON state and TF bound state are both stabilized (by

a factor α relative to baseline rates) when a bound TF establishes a “link” with the

Mediator (Fig 3.1B.iii). The molecular identity of such links can remain unspecified:

it could, for example, correspond to an enzymatic creation of chemical marks (e.g.,

methylation, phosphorylation) on the TFs or Mediator proteins conditional on their

physical proximity or interaction. Crucially, the links can be established and removed

in processes that can break detailed balance and are thus out of equilibrium. Here,

we consider that a link is established at a rate klink between a bound TF and the

1Our nomenclature is simply a shorthand for all co-factors necessary for eukaryotic transcriptional

activation at an enhancer, which can include proteins not strictly a part of the Mediator family.
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Mediator complex; for simplicity, we assume that the links break when the TFs

dissociate or upon the switch into OFF state (this assumption can be relaxed, see

Fig 3.11).

An important thrust of our investigations will concern the role of limited

specificity of individual TFs to recognize their cognate sequences on the DNA. If

sequence specificity arises primarily through TF binding – a strong, but relatively

unchallenged assumption (that can also be relaxed within our framework, see

Fig 3.12) – then we should ask how likely it is for the Mediator complex to form

and activate at specific sites contained within functional enhancers (with low off-

rates characteristic of strong eukaryotic TF binding sites, kS
−) versus at random,

non-specific sites on the DNA (with ∼ 2 orders-of-magnitude higher individual TF

off-rates, kNS
− ) from which expression should not occur.

Given the number of TF binding sites (n) and the various rate parameters

(k+, kS/NS
− , κ+, κ−, α, klink) the full state of the system—i.e., the probability to observe

any number of bound and/or linked TFs jointly with the ON/OFF state of the

enhancer—evolves according to a Chemical Master Equation (SI Section 1.1) that

can be solved exactly [Sanchez and Kondev, 2008; Lestas et al., 2008; Walczak et al.,

2012] or simulated using the Stochastic Simulation Algorithm [Gillespie, 2007].

Importantly, we show analytically that our scheme reduces to the true equilibrium

MWC model in the limit klink → ∞: in this limit, there can be no distinction between

a bound TF and a TF that is both bound and linked, and one can define a free energy

F that governs the probability of enhancer being ON, which in our model is equal to

(a normalized) mean expression level, E � PON �
(
1 + exp(F)

)−1, with

F � n log 1 + c/K
1 + α · c/K

− L, (3.1)

where K � k−/k0
+, k+ � k0

+c (see also Fig 3.1 caption), and L � log (κ+/κ−). The klink

parameter thus interpolates between the equilibrium limit in Eq (3.1), corresponding

to a textbook MWC model, and various non-equilibrium (kinetic) schemes which

we will explore next. A similar generalization with an equilibrium limit exists for

thermodynamic Hill-type models, where, furthermore, α can be directly identified

with cooperativity between DNA-bound TFs (see SI Section 1.3); we will see that
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Figure 1: normative non-eq model of (enhancer) regulation 
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Figure 3.1: A non-equilibrium MWC-like model of enhancer function. (A) Schematic represen-

tation of transcription factors (TFs; tael circles) interacting with binding sites (BSs, here n � 3

orange slots) and the putative Mediator complex via links (red lines). The Mediator complex can

be in two conformational states (OFF or ON), with the ON state enabling productive transcription

of the regulated gene. Increasing TF concentration, c, facilitates TF binding and the switch into

ON state (left-to-right). (B) Key reactions and rates of the non-equilibrium model. TFs can bind

with concentration-dependent on rate (k+ � k0
+c) and unbind with basal rate k− that is in principle

sequence dependent (i). The Mediator state switches between the conformational states with basal

rates κ+ and κ− (ii). Linking and unlinking of TFs to Mediator (iii) can move the system out of

equilibrium: links are established with rate klink, and the link stabilizes both TF residence and the

ON state of the Mediator by a factor α per established link. (C) Regulatory phenotypes. Mean TF

residence time, TTF, on specific sites in functional enhancers (black) vs random site on the DNA (gray)

increases with concentration (top), as does mean expression, E (the fraction of time the Mediator is

ON; induction curve, middle, with sensitivity, H, defined at mid-point expression). Specificity, S, is

defined as the ratio of expression from the specific sites in the enhancer relative to the expression

from random piece of DNA.

this qualitative role of α will hold also for the MWC case.
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Phenotype Symbol Value Ref

TF residence time (specific BS) TTF ∼ 1 − 10 s [Gebhardt et al., 2013;

Morisaki et al., 2014]

Expression (fraction of time ON) E 0.01 − 0.9 [Zenklusen et al., 2008; Suter

et al., 2011; Zoller et al., 2018]

Sensitivity (apparent Hill coef.) H 1 − 10 [Park et al., 2019]

Specificity S — —

Noise (std / mean protein exp.) N ∼ 0.1 − 1 [Zoller et al., 2015]

Table 3.1: Regulatory phenotypes.

Regulatory phenotypes. How does the regulatory performance depend on the

enhancer parameters and, in particular, on moving away from the equilibrium

limit? To assess this question systematically, we define a number of “regulatory

phenotypes”, enumerated in Table 3.1 and illustrated in Fig 3.1C. As a function of

TF concentration, we compute: (i) individual TF residence time, TTF, on specific

sites in functional enhancers, as well as on random, non-specific DNA, because

these quantities have been experimentally reported in single-molecule experiments

and provide strong constraints on enhancer function; (ii) average expression, E, for

functional enhancers as well as random, non-specific DNA; we require E to be in the

middle (∼ 0.5) of the wide range reported for functional enhancers; (iii) sensitivity

of the induction curve at half-maximal induction, H, an observable quantity often

interpreted as a signature of cooperativity in equilibrium models; (iv) specificity, S,

as the ratio between expression E from functional enhancers vs from non-specific

DNA, which should be as high as possible to prevent deleterious crosstalk or

uncontrolled expression [Friedlander et al., 2016]; (v) expression noise, N , defined

more precisely later, originating in stochastic enhancer ON/OFF switching.2

Specificity, residence time, and expression. Figure 3.2A explores the relationship

between three regulatory phenotypes for a MWC-like enhancer scheme of Fig 3.1A:

the average TF residence time (TTF), specificity (S), and the average expression (E),

2Protein noise levels in Table 3.1 are estimated from reported mRNA noise levels.
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at fixed concentration c0 of the TFs. Each point in this “phase diagram” corresponds

to a particular enhancer model; points are accessible by varying α and klink (Fig 3.2B)

and fall into a compact region that is bounded by intuitive, analytically-derivable

limits to specificity and the residence time. As α tends to large values, S approaches 1,

as it must: once a TF-Mediator complex forms, large αwill ensure it never dissociates

and expression E will tend to 1 (see also Fig 3.2D) irrespective of whether this

occurred on a functional enhancer or a random piece of DNA – in this limit, all

sequence discrimination ability is lost, yielding undesirable regulatory phenotypes.

In contrast, the equilibrium (”EQ”) MWC limit as klink → ∞ (Eq 3.1) is functional

and, interestingly, corresponds to a non-monotonic curve in the phase diagram that

lower-bounds the specificity of non-equilibrium (”NEQ”) models accessible at finite

values of klink.

In a wide intermediate range of TF residence times, the full space of nonequilib-

rium MWC-like models—which we can exhaustively explore—offers large, orders-

of-magnitude improvements in specificity, essentially utilizing a stochastic variant

of Hopfield’s proofreading mechanism [Hopfield, 1974; Cepeda-Humerez et al.,

2015]. This observation is generic, even though the precise values of S depend

on parameters that we explore below, and S always remains bounded from above

by κ−/κ+ (in equilibrium, this is related to stochastic, thermal-fluctuation-driven

Mediator transitions to ON state even in absence of bound TFs). At the same average

TF residence time and TF concentration, the best non-equilibrium model (II in

Fig 3.2) will suppress expression from non-cognate DNA by almost two orders-

of-magnitude relative to the best equilibrium model (I). These findings remain

qualitatively unchanged for enhancers with larger number of binding sites (see

Fig 3.13).

A comparison of various enhanceroperating regimes is perhaps biologically more

relevantatfixedmean expression,allowing the TF concentration to adjust accordingly

under cells’ own control, as shown in Fig 3.2C for E � 0.5. As TF residence time

lengthens with increasing α, TFs and the Mediator establish more stable complexes

on the DNA and lower concentrations are needed for all models to reach the desired

expression E (see also Fig 3.2D). Nevertheless, the ability of α to increase the
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Figure 2: Achieving high speci�city without stable TF-DNA complexes
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Figure 3.2: (Continued on the following page.)

specificity in equilibrium models is limited and saturates at a value substantially

below the specificity reachable in nonequilibrium models at much smaller TF

residence times. The observations of Fig 3.2A, C underscore an important, yet often

overlooked, point: the ability to induce at low TF concentration (that is, high affinity)

achieved through “cooperative interactions” at high α either has a detrimental, or,

at best, a marginally beneficial effect for the ability to discriminate between cognate

and random DNA sites (that is, high specificity) in equilibrium [Friedlander et al.,

2016].
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Figure 3.2: Accessible space of regulatory phenotypes. (A) Specificity, S, mean TF residence time,

TTF (expressed in units in inverse off-rate for isolated TFs at their specific sites, T0 � 1/kS
−), and

average expression, E (color), for MWC-like models with n � 3 TF binding sites, obtained by varying

α and klink at fixed TF concentration, c0. Equilibrium models fall onto the red line; two models with

equal TF residence times, I (EQ) and II (NEQ), are marked for comparison. Dashed gray lines show

analytically-derived bounds. (B) Phase space of regulatory phenotypes is accessed by varying α at

fixed values of klink (grayscale; top) or varying klink at fixed values of α (grayscale; bottom). (C) As in

(A), but the TF concentration at each point in the phase space is adjusted to hold average expression

fixed at E � 0.5 (green color). Plotted is a smaller region of phase space of interest; nearly vertical thin

lines are equi-concentration contours (Fig 3.15). (D) All models in the phase diagrams in (A) and (C)

approximately collapse onto nearly one-dimensional manifolds (“fixed c”, left axis, for (A); “fixed E”,

right axis, for (C)) when plotted as a function of mean TF residence time, TTF, supporting the choice

of this variable as a biologically-relevant observable. Color on the manifold corresponds to mean

expression E using the colormap of (A). Vertical scales are chosen so that models I and II coincide.

(E) Induction curves of equilibrium model I and non-equilibrium model II for expression from

functional enhancer that contains specific sites (basal TF off-rate kS
−; black curves) versus expression

from random DNA containing non-specific sites (basal TF off-rate kNS
− � 102kS

− here; gray curves).

Figure 3.2E shows induction curves for expression from functional enhancers

containing specific sites and from random DNA sites, for equilibrium (I) and non-

equilibrium (II) models. Both yield essentially indistinguishable induction curves

for expression from a functional enhancer (which is true generically across our phase

diagram, see Fig 3.14), suggesting that it would be difficult to discriminate between

the models based on induction curve measurements. In sharp contrast, the behavior

of the two models is qualitatively different at non-specific DNA: with sufficiently

high TF concentration (e.g., in an over-expression experiment), the EQ model I

will fully induce even from random DNA as its binding sites get saturated by TFs;

on the contrary, the nonequilibrium (NEQ) model IIwill start inducing at much

higher c, and will never do so fully due to its proofreading capability. Thus, given

the relatively weak individual TF preference for cognate vs non-cognate DNA, one

should look at the collective response of the gene expression machinery to mutated

or random enhancer sequences for signatures of equilibrium vs non-equilibrium

proofreading behavior.
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Sensitivity. Intuitively, sensitivity H measures the “steepness” of the induction

curve. More precisely, H is proportional to the logarithmic derivative of the ex-

pression with log concentration at the point of half-maximal expression, so that for

Hill-like functions, E(c) � ch/(ch + Kh), it corresponds exactly to the Hill coefficient,

H � h. Figure 3.3A shows that H increases monotonically with TTF (and thus with

α, cf. Fig 3.2B), indicating that more stable TF-Mediator complexes indeed lead

to higher apparent cooperativity, which is always upper-bounded by the number

of TF binding sites in the enhancer, n. The highly-cooperative ”enhanceosome”

concept [Arnosti and Kulkarni, 2005] would, in our framework, correspond to an

equilibrium limit with very high α, and thus H ∼ n; yet the analysis above predicts

vanishingly small specificity increases as this limit is approached. In contrast, we

observe that the point at which the specificity advantage of nonequilibrium models

is maximized, i.e., where SNEQ/SEQ is largest, occurs far away from H � n, at much

lower H values (Fig 3.17). If high specificity is biologically favored, we should there-

fore not expect the “number of known binding sites” to equal the “measured Hill

coefficient of the induction curve” for well-functioning eukaryotic transcriptional

schemes, even on theoretical grounds.

Noise. Lastly, we turn our attention to gene expression noise. All stochastic two-

state models have a steady state binomial variance of σ2
E � E(1 − E) in enhancer

state, where E is the probability of the enhancer to be ON. When ON, transcripts are

made and subsequently translated into protein, which typically has a slow lifetime,

TP , on the order of at least a few hours. Random fluctuations in enhancer state will

cause random steady-state fluctuations in protein copy number around the average,

P; these fluctuations can be quantified by noise, N � σP/P. While there can be other

contributions to noise (e.g., birth-death fluctuations due to protein production and

degradation), we focus here solely on the effects of ON/OFF switching, since only

these effects depend on the enhancer architecture [Rieckh and Tkačik, 2014].

How is noise in gene expression, N , related to the binomial variance, σE? Based on

simple noise propagation arguments [Paulsson, 2004; Tkačik et al., 2008], fractional

variance in protein should be equal to fractional variance in enhancer state times
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Figure 3: Tradeo� between number of binding sites n
and single binding site speci�city
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Figure 3.3: Limits to sensitivity and specificity. (A) Sensitivity (apparent Hill coefficient) H of

enhancer models in the phase diagram of Fig 3.2C, at fixed mean expression, E � 0.5. All models

collapse onto the manifolds shown for different number of TF binding sites, n. (B) Phase diagram of

enhancer models for three different values of mean expression, E (columns), shows specificity S

and fraction of variance in enhancer switching propagated to expression noise (see text). Compact

blue region for each E shows all MWC-like models with n � 3 binding sites accessible by varying α

and klink; equilibrium model (“EQ”) with lowest noise is shown as a red dot. Increase in noise is

monotonically related to increase in enhancer correlation time, TE, marked with dashed vertical lines.

Largest specificity increases over EQ models occur at high TE and thus high noise (upper right corner

of the blue region). (C) Maximal gain in enhancer specificity for non-equilibrium vs equilibrium

models for different n (legend as in A), as a function of the intrinsic specificity of individual TF

binding sites, kS
−/kNS

− . Expression is fixed to E � 0.5 and mean TF residence time to TTF/T0 � 10.

Typical value kS
−/kNS

− � 10−2 used in Fig 3.2 and panels A,B is shown in vertical dashed line. (D)

Same as in (C), but with the comparison at fixed gene expression noise, N2 � 0.5.
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the noise filtering that depends on the timescales of enhancer switching, TE, and

protein lifetime, TP (here we assume TP � 10 hours), so that N2 � (σP/P)2 ∼
(σE/E)2 · TE/(TE + TP) (see SI Section 1.5 for exact derivation). Thus, if enhancer

switches much faster than the protein lifetime, TE ≪ TP , protein dynamics almost

entirely averages out the enhancer state fluctuations. Since all enhancer models

have the same binomial variance, the gene expression noise in various models will

be entirely determined by the mean expression, E, and the correlation time, TE,

both of which we can compute analytically for any combination of enhancer model

parameters in the phase diagram of Fig 3.2.

Figure 3.3B shows the phase diagram of accessible MWC-like regulatory pheno-

types for the specificity (S), mean expression (E) and fraction of enhancer switching

noise that propagates to gene expression, TE/(TE + TP), found by varying α and

klink. As in Fig 3.2, equilibrium models (“EQ”) have the lowest specificity S, but

also lowest correlation time TE and thus lowest noise, regardless of the average

expression, E. There exist NEQ models that achieve higher specificity at a small

increase in noise, but the highest specificity increases always come hand-in-hand

with a substantial lengthening of the correlation times in enhancer state fluctuations,

and thus with the inevitable increase in noise.

To better elucidate the tradeoffs and limits to specificity in non-equilibrium vs

equilibrium models, we next explore how enhancer specificity gains depend on the

ability of individual TFs to discriminate cognate binding sites from random DNA

in Fig 3.3C. If individual TFs permit very strong discrimination (kS
−/kNS

− < 10−4;

prokaryotic TF regime), NEQ models at fixed individual TF residence times, TTF,

do not offer appreciable specificity increases in the collective enhancer response; in

contrast, for the range around kS
−/kNS

− ∼ 10−2 typically reported for eukaryotic TFs,

the specificity increase ranges from ten to thousand-fold, with the peak depending

on the number of TF binding sites, n, as well as baseline Mediator specificity limit,

κ−/κ+ (as this increases, the peak specificity gain is higher and moves towards lower

kS
−/kNS

− , see Fig 3.18). If, instead of fixing kS
−/kNS

− � 10−2 as we have done until now,

we pick this ratio to maximize the specificity gain (SNEQ/SEQ) and again explore the

noise-specificity tradeoff as in Fig 3.3B, we find that the extreme specificity gains are
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only possible when correlation times, TE diverge (see Fig 3.19), implying high noise.

These observations are summarized in Fig 3.3D, showing the specificity gain

of NEQ models relative to EQ models, if the comparison is made at fixed noise

level rather than at fixed individual TF residence time as in Fig 3.3C. Specificity

gains are limited to roughly ten-fold even when, as we do here, we systematically

search for best NEQ models through the complete phase diagram in Fig 3.2C. The

specificity-noise tradeoff thus appears unavoidable.

Experimentally observable signatures of enhancer function. To illustrate how

the proposed nonequilibrium (NEQ) MWC-like scheme could function in practice,

we simulated it explicitly and compared it to an equilibrium (EQ) scheme with the

same mean TF residence time in Fig 3.4. The two enhancers, composed of n � 5

TF binding sites, respond to a simulated protocol where the TF concentration is

first switched from a minimal value that drives essentially no expression to a high

value giving rise to E � 0.5, and after a long stationary period, the concentration is

switched back to the low value. Figure 3.4A shows the occupancy of the binding sites

and the functional ON/OFF state of the enhancer. Even though the two models share

the same TF mean residence time and nearly indistinguishable induction curves

(with H ∼ 2.7), their collective behaviors are markedly different: the EQ scheme

appears to have significantly faster TF binding / unbinding as well as Mediator

switching dynamics, whereas NEQ scheme undergoes long, “bursty” periods of

sustained enhancer activation and TF binding that are punctuated by OFF periods.

If the typical residence time of an isolated TF on its specific site were T0 � 1 s, NEQ

enhancer could stay active even for hour-long periods (∼ 104 s), just somewhat

shorter than the protein lifetime (∼ 4 · 104 s). Such enhancer-associated stable

mediator clusters are consistent with recent experimental reports [Chen et al., 2018;

Cho et al., 2018].

The detailed steady-state behavior at high TF concentration is analyzed in Fig 3.4B.

Consistent with our theoretical expectations, the NEQ scheme enables ten-fold

higher specificity but at the cost of substantial noise in gene expression (N ∼ 0.42)

due to strong transcriptional bursting. High noise is a direct consequence of the
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Figure 3.4: High-specificity non-equilibrium schemes predict bursty gene expression. (A) Stochas-

tic simulation of an equilibrium (EQ) and a nonequilibrium (NEQ) enhancer model with n � 5 TF

binding sites, responding to a TF concentration step (bottom-most panel). Average TF residence

times are the matched between EQ and NEQ models at 2.1T0, T0 � 1/kS
− � 1 s, and both induction

curves (scaled for half-maximal concentration) are identical, with sensitivity H ≈ 2.7. When TF

concentration is high, expression is fixed at E � 0.5. Parameters for NEQ model: α � 127, klink � 2,

cmax � 0.065; for EQ model: klink → ∞, α � 19.8,cmax � 0.037. Rasters show the occupancy of

TF binding sites; orange line above shows the enhancer ON/OFF state; zoom-in for EQ model is

necessary due to its fast dynamics. (B) Regulatory phenotypes for EQ and NEQ models during

steady-state epoch (gray in A). Specificity (S) and enhancer state correlation time (TE) are higher for

the NEQ model; the Mediator mean ON residence time, TM , is the same between the models, but

the probability density function reveals a long tail in the NEQ scheme, and a nearly exponential

distribution for the EQ scheme. Last two panels show the TF occupancy histogram during high TF

concentration interval, conditional on the enhancer being OFF or ON. (C) Transient behavior of the

mean enhancer state (E), mean protein number (P; assuming deterministic production/degradation

protein dynamics given enhancer state), and gene expression noise, N � σP/P, for the NEQ and EQ

models, upon a TF concentration low-to-high switch (left column) and high-to-low switch (right

column). Traces shown are computed as averages over 1000 stochastic simulation replicates.

much longer correlation time of enhancer fluctuations, TE, for the NEQ scheme,

seen in Fig 3.4A. Interestingly, the mean residence time of the enhancer ON state, TM ,
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is nearly unchanged between the EQ and NEQ scheme at ∼ 100 s: but here, the mean

turns to be a highly misleading statistic, as revealed by an in-depth exploration of

the full probability density function. The NEQ scheme has a long tail of extended

ON events interspersed with an excess of extremely short OFF events (due to high κ−
rate necessary for high specificity) relative to the EQ scheme (which, itself, does

not deviate strongly from an exponential density function with a matched mean).

The behavior of such an enhancer is highly cooperative even though the sensitivity

(H) is not maximal: when the enhancer is ON, with very high probability all TFs

are bound, and when OFF, often 4 out of 5 TFs are bound – yet the enhancer is

not activated. In sum, a well-functioning non-equilibrium regulatory apparatus

with its Mediator complex makes many short-lived attempts to switch ON, but only

commits to a long, productive ON interval rarely and collectively, after insuring that

activation is happening due to a sequence of valid molecular recognition events

between several TFs and their cognate binding sites in a functional enhancer.

Transient behavior after a TF concentration change is analyzed in Fig 3.4C. The

mean response time of the two models to the concentration change is governed by

the correlation time of the enhancer state, TE, and is thus much slower for NEQ vs EQ

models; but since the protein lifetime is even longer, the mean protein levels adjust

equally quickly in the equilibrium and nonequilibrium cases. This suggests that

the dynamics of the mean protein level is unlikely to discriminate between EQ and

NEQ models. In contrast, live imaging of the nascent mRNA could put constraints

on TE [Coulon et al., 2013]. In that case, the filtering time scale is the elongation

time, typically on the order of a few minutes, while the reported transcriptional

response times—and thus estimates of TE—would range from minutes to 1 − 2

hours [Molina et al., 2013; Donovan et al., 2019].

Steady-state noise levels at high induction, as reported already, are considerably

higher for the NEQ model due to transcriptional bursting; an intriguing further

suggestion of our analyses is a long transient in the noise levels upon a high-to-low

TF concentration switch, which finally settles to a high fractional noise level (here,

N ∼ 1.6) even at very low induction, due to sporadic transcriptional bursts.
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3.3 Discussion

In this chapter,we took a normative approach to address the complexity of eukaryotic

gene regulatory schemes. We proposed a minimal extension to a well-known Monod-

Wyman-Changeux model that can be applied to the switching between the active

and inactive states of an enhancer. The one-parameter extension is kinetic and

accesses nonequilibrium system behaviors. We analyzed the parameter space of

the resulting model and visualized the phase diagram of “regulatory phenotypes”,

quantities that are either experimentally constrained (such as mean expression,

mean TF residence time, sensitivity), are likely to be optimized by evolutionary

pressures (such as noise and specificity), or both. This allowed us to recognize and

understand biophysical limits and trade-offs, and to identify the optimal operating

regime of the proposed enhancer model that is consistent with current observations,

as we summarize next.

Our analyses suggest the following: (i) individual TFs are limited in their ability

to discriminate specific from random sites, kS
−/kNS

− ∼ 10−2, so high specificity must

be a collective enhancer effect in the proofreading regime where klink ∼ kS
−; (ii)

mean TF residence times in an enhancer are not much higher than the typical TF

residence time at an isolated specific site, TTF/T0 ≲ 10, enabling rapid turnover

of bound TFs on the 1 − 10 s timescale; (iii) typical sensitivities are much lower

than the total number of TF binding sites, yielding a reasonable specificity/noise

balance at H ∼ n/2 (Fig 3.16, Fig 3.17); (iv) Mediator basal rates should maximize

κ−/κ+, i.e., mediator switches OFF essentially instantaneously if not stabilized by

linked TFs; (v) TF concentrations required to activate the enhancer in this regime

are substantially higher than expected for the equivalent but highly cooperative

enhanceosome (at higher α); (vi) optimal nonequilibrium models achieve order-of-

magnitude improvements in S relative to matched equilibrium models—thereby

avoiding crosstalk and spurious gene expression—by suppressing induction from

non-cognate (random) DNA, while induction curves from functional enhancers

bear no clear signatures of non-equilibrium operation; (vii) to permit large increases

in specificity S, enhancer state fluctuations will develop long timescale correlations,
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TE ≫ TTF (but still be bounded by the protein lifetime, TE ≲ TP to enable noise

averaging), leading to substantial observed noise levels; (viii) the enhancer ON

residence time distribution will be non-exponential, with excess probability for

very long-lived events, during which an enhancer could trigger a transcriptional

burst following an interaction with the promoter; (ix) in our model, long correlation

time, TE, in steady state also implies long (minutes to hours) response times when

TF concentration change, which would be observable with live imaging on the

transcriptional, but likely not protein-concentration, level.

We find it intriguing that a single-parameter extension of a classic equilibrium

model led to such richness of observed behaviors, and to a suggestion that the

optimal operating regime is very different from regulation at equilibrium. Central

to this qualitative change is the fact that long fluctuation and response timescales

of enhancer activation appear necessary to achieve high specificity of regulation

through proofreading. Such long timescales are not inconsistent with our current

knowledge. Indeed, some developmental enhancers form active clusters (super-

enhancers) that are rather long-lived (order of minute to hours), perhaps precisely

because developmental events need to be guided with extraordinary precision [Cho

et al., 2018; Sabari et al., 2018].

A strong objection to our model could be that it is too simple: after all, we

neglected many structural and molecular details, many of which we may not even

know yet. This is certainly true and was done, in part, on purpose, to permit

exhaustive analysis across the complete parameter space. Such understanding

would have been impossible if we explored much richer models or were concerned

with quantitative fitting to a particular dataset. These are clearly the next steps,

to which we contribute by highlighting the functional importance of breaking the

equilibrium link between TF binding and enhancer activation state. Since our model

is fully probabilistic, specializing it for a particular experimental setup, e.g., live

transcriptional imaging, and doing rigorous inference is technically tractable, but

beyond the scope of this chapter.

Perhaps a key simplification of our model is the link between enhancer / Mediator

ON state and transcriptional activity. We assumed that expression is proportional to
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the probability of enhancer state to be ON, yet the enhancer-promoter interaction itself

is a matter of vibrant current experimentation and modeling [Bartman et al., 2016;

Ren et al., 2017; Hnisz et al., 2017; Chen et al., 2018; Bialek et al., 2019]. For example,

long-lived activated enhancers that we predict could interact with promoters only

intermittently to trigger transcriptional bursts, as suggested by the “dynamic kissing

model” [Cho et al., 2018], which could substantially impact the experimentally-

observable quantitative noise signatures of enhancer function at the transcriptional

level. Whatever the true nature of enhancer-promoter interactions might be, however,

they are unlikely to be able to remove excess enhancer switching noise, due to its

slow timescale, suggesting that the tradeoffs that we identify should hold generically.

One could also question whether the importance we ascribed to high specificity

is really warranted. Evolutionarily, regulatory crosstalk due to lower specificity

helps networks evolve during transient bouts of adaptation, even though it could

be ultimately selected against [Friedlander et al., 2017]. Mechanistically, molecular

mechanisms such as chromatin modification or the regulated 3D structure of DNA

decrease the number of possible non-cognate targets that could trigger erroneous

gene expression [Adam et al., 2015; Klemm et al., 2019], and thus alleviate the

need for the high specificity of the transcriptional control. Empirically, there is

ample evidence for abortive or non-sensical transcriptional activity [Struhl, 2007;

Ehrensberger et al., 2013], whose products could be dealt with downstream or

simply ignored by the cell. Yet it is also clear that regulatory specificity must

be a collective effect, as individual TFs bind pervasively across DNA even in

non-regulatory regions [Biggin, 2011], and self-consistent arguments suggest that

in absence of non-equilibrium mechanisms, crosstalk could be overwhelming in

eukaryotes [Friedlander et al., 2016]. It is also possible that real enhancers are

very diverse with large variation along the specificity axis, thereby navigating

the noise-specificity tradeoff as appropriate given the biological context. Where

some erroneous induction can be tolerated, expression could be quicker, less noisy,

and closer to equilibrium. In contrast, where tight control is needed, enhancers

could take a substantial amount of time to commit to expression correctly, perhaps

benefitting additionally from extra time-averaging that could further reduce the
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Berg-Purcell-type noise intrinsic to TF concentration sensing [Berg and Purcell, 1977;

Bialek and Setayeshgar, 2005; Tkačik et al., 2008; Kaizu et al., 2014].

3.4 Supporting Information

3.4.1 Model

Model specification

We consider a class of toy models for transcriptional regulation that could plausibly

be employed by eukaryotic cells. Specifically, we look for models where transcription

factors (TFs) interact with special regulatory sequences on the DNA, known as

binding sites (BSs) in the enhancer, to control the expression of a given gene. The

emphasis here is not on devising a single scheme that has a direct molecular

interpretation, but rather to ask about possible schemes that simultaneously achieve

several properties which are desirable for efficient regulation and are consistent

with metazoan observations.

Our model, schematically displayed in Fig 3.10 for a single binding site for

simplicity, includes a large pool of TFs at a fixed concentration c of the same type

that can bind to n binding sites in the enhancer with a concentration-dependent

rate k+ � k0
+c and unbind with a concentration-independent rate k−. Additionally, a

complex of transcriptional co-factors that we refer to as a ”Mediator” can switch

between ON and OFF state with rates κ+ and κ−. Only when Mediator is found in an

ON state, can a so-called link between any bound TF and Mediator be established

with a rate klink. In principle, the link could be removed actively at a rate kunlink,

but here we assume for simplicity that kunlink � 0 (we later relax this assumption).

While the links are not removed actively, they are removed automatically when

the TFs dissociate or upon the Mediator switch into OFF state. Molecularly, the

link formation and removal could be catalyzed by dedicated enzymes, and when

coupled to an energy source, could be kept out-of-equilibrium. The formation of

any link increases the stability of the linked complex by decreasing the rate of

unbinding of the linked molecules (and the rate of Mediator switching OFF) by a
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constant multiplicative factor; in other words, the Mediator OFF switching rate falls

as a power in the number of links with TFs. We will see that this ansatz permits our

model to have a clear thermodynamic-equilibrium limit.

Parameters of the model. The parameters of the model are:

• n − number of specific binding sites in the enhancer.

• α − fold-reduction in the unbinding rate of a linked TF (k− → k−/α) or

Mediator OFF switching rate (κ− → κ−/αb , b ∈ {0, 1, . . . , n} is number of links

Mediator has with bound TFs). We focus on values α ≥ 1 which stabilize the

bound complexes.

• k+ − binding rate of TF to a BS. k+ � k0
+c, with k0

+ being the binding rate per

unit concentration and c is the free concentration of TFs.

• k− − unbinding rate of TF bound in the enhancer. Generally, the unbinding

rate of a TF depends on the presence of a link of the TF with the Mediator. If a

link is present, the unbinding rate becomes k−/α. Importantly, k− is the only

sequence dependent quantity in the model: k− � kS
− for an isolated unlinked

TF bound on the specific BS, and k− � kNS
− for an isolated unlinked TF bound

on a non-specific, random site.

• klink − rate of establishing new links between bound TF and the Mediator

in ON state. If the link-forming reaction were catalyzed by an enzyme with

own sequence specificity, we can achieve an even higher specificity of our

regulatory scheme (examined later in this document). To be conservative, we

set this rate to be constant and thus have no sequence specificity, i.e., once TF

is bound and Mediator is in ON state, the link can be created with the same

rate regardless of whether this happens in the enhancer or on a random piece

of genomic sequence.

• κ+ − switching rate into ON state of the Mediator.

• κ− − switching rate into OFF state of the Mediator. Generally, this rate depends

on the number of links a Mediator has established with TFs. Thus, this rate

takes a form κ−/αb , where b is the number of linked bound TFs.
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• kunlink − rate of active link removal. In our default model, we set this parameter

to kunlink � 0. Fig 3.11 analyzes the effects of this assumption.

In our analysis we will focus on the effects of klink, α, and n while taking

representative values of the other parameters; if not stated otherwise, we use

kunlink � 0, k+ � ck0
+, with c � c0 � 0.01 and k0

+ � 1, κ− � 104, κ+ � 10−2, kS
− � 10−2,

and kNS
− � 1. The latter also sets the timescale in our model, that is, we define

T0 � 1/kNS
− � 1, i.e., the typical time a TF in isolation is bound on a random,

non-specific site on the DNA, as our time unit. For exploration of the phase space

we use α ∈ (1, 1010) and klink ∈ (10−8, 108).

Dynamical variables and computation of the model. The dynamical variables

of our model are:

• si − an indicator variable in {0, 1} indicating if a TF is bound on the site

i � 1, . . . , n.

• bi − an indicator variable in {0, 1} indicating if TF at site i has a link with the

Mediator. It can take a value of 1 only if the TF at site i is bound, i.e., if si � 1.

• sM − an indicator variable in {0, 1} indicating if the Mediator is in ON state.

The behavior of the system in state space of {si , bi , sM} is a continuous-time Markov

chain, with the rates fixed by our parameters. Generally, we can write down our

system as a Master equation for the Markov chain:

dV
dt

� M̂V, (3.2)

with V being a vector whose components are the probabilities of the system to be in

any of the states at time t (and thus
∑m

j�1 Vj � 1, where the sum is taken over all m

components of the vector V) and M̂ the transition matrix between different states.

However, in practice the number of all possible microstates is large, making explicit

manipulation of the Master equation feasible only for smaller values of n.

Constructing the transition matrix M̂. In this paragraph we describe how to

construct the transition matrix M̂. First,we define a state vectorB � (sM , s1, . . . , sn , b1, . . . , bn).
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With the state vector B we can enumerate all possible states of sM ∈ {0, 1}, si ∈ {0, 1},
and bi ∈ {0, 1}. However, the bi values are constrained by the binding state of the

TFs (si) and cannot independently take on arbitrary values. For example, if si � 0

(i−th TF not bound), then there can never be any link, i.e., bi � 0. Only if si � 1, then

bi ∈ {0, 1}. If we take the three example from Fig 3.1A with n � 3 at increasing TF

concentrations, the corresponding state vectors would be: Slow c � (0, 1, 0, 0, 0, 0, 0),
Smedium c � (1, 1, 1, 0, 1, 0, 0), Shigh c � (1, 1, 1, 1, 1, 1, 1).
Altogether there are

m �

n∑
i�0

(
n
i

)
2i

+ 2n (3.3)

different states, where the sum goes over all possible combinations of i bound and

potentially linked TFs with the Mediator in ON state. The second part represents the

number of different states when Mediator is in OFF state, i.e., when sM � 0. Next, we

order the states such that states with sM � 1 come first, followed by states sM � 0.

We can write the transition matrix by accounting for all possible events, and then

finding states between which events cannot occur. Roughly, there are 3 types

of events: (i) binding and unbinding of TFs, (ii) linking and unlinking, and (iii)

switching the Mediator between ON and OFF (main text Fig 3.1B). In the following

procedure, we will go over the three different types of events, finding all possible

transitions between them, and assigning rates to those state-change events in the

transition matrix. Due to symmetries, directly finding only a subset of events is

enough. For example, starting at state j, let us assume that a linking event can lead

to state k. As the unlinking events are reciprocal to linking events, the unlinking of

the same TF (assuming states of all other TFs and Mediator did not change) would

lead from state k to state j. However, this is not entirely correct for binding and

unbinding events − the extra complication is that unbinding can also destroy a link

and reciprocity between binding and unbinding does not always exist. Therefore,

if unbinding of a TF leads from state j to state k, the state j can be reached from

state k only if the unbinding did not destroy a link. This means that there are more

unbinding transitions than there are binding transitions. Using this approach, we

will find all possible state transitions. The procedure to write down the elements in
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the transition matrix M̂ is:

For each possible state vector B (original state) do

1. First we locate all linking and unlinking transitions. Therefore, for each TF i in

order:

• If the i−th TF is not linked (i.e., B(i + n + 1) � 0), continue to the next TF.

• Otherwise, define a new state by removing the present link at i−th TF

from the original state. This new state has all elements the same as

original state with the exception of no link at TF i (Bnew(i + n + 1) � 0).

• Mark the unlinking transition withunlinking rate as M(new state, original state) �
kunlink.

• Mark linking transition as M(original state, new state) � klink.

2. Next, we locate all binding and unbinding transitions. As the two are not

always reciprocal, we have to follow if a link is broken when unbinding occurs.

For each TF i in order:

• If the i−th TF is not bound (B(i + 1) � 0), continue to the next TF.

• Otherwise, define a new state by removing the bound i−th TF from the

original state; further, remove the link of i−th TF (if it existed in the

original state).

• Count the number of removed links bi : 0 if the bound TF was not linked

and 1 if it was.

• Mark the unbinding transition withunbinding rate as M(new state, original state) �
k−/αb

i .

• If no link was removed (i.e., bi � 0), this means that binding from the

new to the original state can occur. Therefore, mark binding transition as

M(original state, new state) � k+.

3. Lastly, locate the states that are affected by Mediator switching:



108

• If the Mediator is OFF in the original state, continue to the next state

vector B and restart this processing at (1). If the Mediator is ON in the

original state, define a new state by switching the Mediator into OFF

state.

• If any links existed between the Mediatorand any otherTF in the original

state, remove them in the new state.

• Count the number of removed links b.

• Mark the transition into OFF state as: M(new state, original state) �
κ−/αb .

• If no links were removed (i.e., b � 0), mark the transition into ON state as:

M(original state, new state) � κ+.

At the end we set the diagonal values as minus sum of the columns.

Residence time distributions

Since all the individual processes involved in our enhancer models are Poisson

processes occurring either sequentially or in phase, the residence time distributions

of a given TF site or Mediator being ON are phase-type distributions. To compute

these distributions, we first need to define various subsets of states. The set Ib of

states correspond to a given TF site or Mediator being bound (ON). The set Iu of states

correspond to a given TF site or Mediator being unbound (OFF). The set Ibn of states

correspond to a given TF site or Mediator being bound (ON) with no link attached.

We can then define the following matrix from the original transition matrix M̂ (Eq.

3.2)

M̂w � ĴM̂ Ĵt, (3.4)

where Ĵ is a diagonal matrix whose entries Jii are equal to 1 if i ∈ Ib and zero

otherwise. We will also define a vector a describing the probability for the system

to have just settled in any of the bound states

ai �
ãi∑n

i�1 ãi
with ãi �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
j∈Iu

M̂i jV j for i ∈ Ibn

0 otherwise
, (3.5)
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where V is the vector of steady state occupancies that is computed from Eq. 3.32.

The probability density function for the residence time of a given TF site or Mediator

being bound is then given by

f (T) � −It exp (M̂wT)M̂wa, (3.6)

where I is a vector whose entries are all equal to one. Of note, the exponential here

is the matrix exponential. The mean residence time µT and the variance of the

distribution σ2
T are then given by

µT � −ItM̂−1
w a (3.7)

σ2
T � 2ItM̂−2

w a − µ2
T .

Equilibrium limits

Our model is a generalization of an equilibrium MWC model. In the following

section, we first show that our model reduces to the MWC model in the equilibrium

limit, and we then derive the different regulatory phenotypes in this limit. At the

end we also address the Hill-type models.

MWC model. As a thermodynamic equilibrium model, one can fully specify the

MWC model by means of a partition function Z that enumerates all the possible

states of the system. The partition function of the MWC model with n TF binding

sites can be written as

Z �

∑
{σM ,σi}

exp

[
LσM + (ϵ + log c + δσM)

n∑
i�1
σi

]
, (3.8)

where σM ∈ {0, 1} and σi ∈ {0, 1} are the occupancy variables for Mediator and

the TF binding sites i. The different energy contributions in our model are L, ϵ and

δ, which represent the energy difference between the Mediator ON and OFF state,

between an empty and occupied TF binding site, and the energy benefit due to

the established link. Their Boltzmann states can be respectively written as eL, eδ,

and ceϵ where c represents the concentration of TFs. For example, the energy and

Bolztmann weight of a state with Mediator in ON state and two bound and linked

TFs would read L + 2ϵ + 2δ and ceL+2ϵ+2δ, respectively.
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MWC is an equilibrium limit of our model. It turns out that our proposed

model collapses into an equilibrium MWC model when taking the limit klink → ∞.

This can be shown without loss of generality, by examining the simplest case of

our model with n � 1. In that case, the single irreversible step dictating the non-

equilibrium nature of our model occurs between the two following states: i) the TF

is bound and Mediator ON but no link is present, and ii) a link is established between

Mediator and the TF (Fig 3.5). When increasing klink, such that klink ≫ k−, κ−, the

transition between these two states becomes very fast, and the dwell time in the

first state becomes negligible. Thus, in the limit of klink → ∞, the two states with a

bound TF and Mediator ON collapse into a single state where a link is always present

(Fig 3.5). The resulting kinetic scheme exactly corresponds to an equilibrium MWC

model.

OFF

OFF ON

ON

ON

k+

k- ϰ-

ϰ+

ϰ-

ϰ+ k+

k-

klink

ϰ- / α k- / α

OFF

OFF ON

ON

k+

k- ϰ-

ϰ+

ϰ+ k+

ϰ- / α k- / α

klink ∞

Figure 3.5: Our model is a generalization of MWC model. A comparison between schemes for our

non-equilibrium model (left) and MWC model (right) for n � 1. When taking the limit klink → ∞,

our model converges into MWC model.

To make the correspondence clear, we connect the equilibrium energies defined

in the MWC partition function (Eq. 3.8) with the kinetic rates of our model. Due to

equilibrium, all processes follow detailed balance:

πiWi j � π jW ji , (3.9)

where Wi j is the transition rate from state i to state j, and πi and π j are the

equilibrium probabilities of being in states i and j, respectively.

First, we compare two states devoid of bound TFs where Mediator is OFF and ON
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respectively. Transitioning between these two states only involves the Mediator

kinetic rates κ+ and κ−. Applying detailed balance gives 1
Zκ+ �

eL

Z κ−, where 1/Z

and eL/Z are the equilibrium probabilities π of the ON and OFF state, respectively. It

follows from this condition that eL �
κ+
κ−

.

Similarly, we compare transitions between an empty state and a state with one

bound TF. Following detailed balance we obtain 1
Z k+ �

ceϵ
Z k−, where 1/Z and ceϵ

Z are

the equilibrium probabilities π of the TF unbound and bound state. The transition

rates k+ and k− are the rates of TF binding and unbinding, respectively. It thus

follows that ceϵ � k+
k−

.

Lastly, we compare the two following states; i) Mediator is ONwithout any TF bound,

and ii) Mediator is ON and a TF is bound. In the equilibrium limit, both Mediator

and the TF are linked when present together. The equilibrium probabilities π of the

two states are ceL/Z and ceL+ϵ+δ/Z, respectively. The transition rates between these

states are k+ and k−/α. By applying the detailed balance condition, ceL

Z k+ �
ceL+ϵ+δ

Z
k−
α ,

we obtain eδ � α. This demonstrates a one-to-one correspondence between the

“cooperative energy of binding” in thermodynamic models of gene regulation, and

the parameter α of the non-equilibrium model.

Expression. In our model, we defined expression as the occupancy of Mediator

in the ON state. To calculate the expected expression in the MWC model, we first

separate the partition function (Eq. 3.8) in two sub-partitions ZON and ZOFF such

that Z � ZON + ZOFF. Here, ZON and ZOFF correspond to the sum over all the states

with Mediator ON and OFF respectively. These sums can be calculated as follows:

ZON �eL
∑
{σi}

exp

[
(ϵ + log c + δ)

n∑
i�1
σi

]
�eL

∑
{σi}

n∏
i�1

ceϵeδeσi

�eL
n∑

k�0

(
n
k

)
(ceϵeδ)k · 1n−k

�eL(1 + ceϵeδ)n . (3.10)
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Similarly, we obtain ZOFF � (1 + ceϵ)n . The probabilities to find the Mediator in the

ON and OFF states can then be expressed as

PON �
ZON

Z
�

1
Z

eL
(
1 + ceϵeδ

)n

POFF �
ZOFF

Z
�

1
Z
(1 + ceϵ)n . (3.11)

We can thus write the occupancy of Mediator in the ON state, which corresponds to

our definition of expression:

E �
PON

PON + POFF
�

eL (
1 + ceϵeδ

)n

eL (1 + ceϵeδ)n
+ (1 + ceϵ)n �

[
1 + e−L

(
1 + ceϵ

1 + ceϵeδ

)n]−1

. (3.12)

As in the main text, all the bounds derived and reported below come from varying

klink and α, while keeping other parameters constant. The only exception is concen-

tration c which is either kept constant or adjusted to achieve fixed expression E.

As per definition of occupancy, expression is bounded from above by E � 1; that

occurs when Mediator is always in ON state. The lower bound, min E, occurs when

binding sites are almost never occupied. In that case, the expression is solely de-

termined by the intrinsic Mediator ON probability, thus E � κ+/(κ+ + κ−), which

reduces to E � κ+/κ− when κ− ≫ κ+, as we assumed. Therefore, expression is

limited to E ∈ (κ+κ− , 1).
When fixing specific expression to ES � E0, concentration must vary to meet that

requirement. By equating E0 �
PON

PON+POFF
, and solving for c, we obtain:

c �
k−
k0
+

x − 1
1 − xα

with x �

(
κ+(1 − E0)
κ−E0

)1/n

. (3.13)

Since concentration must be positive, α must satisfy α ≥ 1
x . From this inequality we

obtain a lower bound for α

αmin �

(
κ−E0

κ+(1 − E0)

)1/n

. (3.14)

.
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Specificity. We define specificity as the ratio of expression from a functional

enhancer, ES, and expression from a random piece of sequence, ENS. Therefore:

S �
ES

ENS . (3.15)

By definition of specific binding site, ES ≥ ENS, leading to min S � 1.

Furthermore, a general upper bound of specificity is given by the ratio of Mediator

switching rates, max S � κ−/κ+. This upper bound is attained when specific

expression is maximal, ES � 1, while non-specific expression is minimal ENS �
κ+
κ−

.

Thus, S ∈ (1, κ−/κ+). However, if a system has a fixed specific expression E , 1 (as in

Fig 3.2C), the upper bound is adjusted by a factor of E. Indeed, the specific expression

takes value ES � E by construction while minimal non-specific expression is again

ENS � κ+/κ−. Taking their ratio we thus obtain max Sfixed E � Eκ−/κ+.

Residence time. We defined TF residence time as the average time a TF spends

bound to its specific binding site. To calculate the TF residence time, we assumed

that changes in the Mediator state do not happen while the TF is bound, which

means that the residence time of TFs is either much shorter or longer than the time

Mediator spends in ON state. This is a valid assumption in our model, since the

Mediator ON state is either very short lived due to high OFF rate in absence of any

link, or very long lived due to very small OFF rate in presence of stabilizing links.

Based on the assumption above, we can calculate the residence time as the weighted

average of the average time spent in the two following configurations: a TF resides

on a binding site with a link (Mediator ON), and without any link (Mediator OFF).

These average times are given by the inverse of the escape rate, namely the inverse

TF unbinding rate eδ/k− with a link and 1/k− without a link. To obtain the mean

residence time, one needs to properly average the two durations above. The weights

to perform the average are given by the probabilities AON and AOFF that the system

has just settled in these configurations. The residence time of a single TF being

bound is then given by

TTF �
eδ

k−
AON +

1
k−

AOFF. (3.16)
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The probabilities AON and AOFF are proportional to the product of i) the probability

W to find the system with a given binding site unoccupied, and ii) the rate of TF

binding k+. The probabilities W for a given binding site being unoccupied can

be calculated from the partition function Z for n binding sites (Eq. 3.8). After

partitioning the states into Mediator ON and OFF, the resulting probabilities are

proportional to the sum over all configurations of a n − 1 system (Eq. 3.10):

WON �
1
Z

eL
(
1 + ceϵeδ

)n−1

WOFF �
1
Z
(1 + ceϵ)n−1 (3.17)

We can then express AON and AOFF as

AON � k+WON/A

AOFF � k+WOFF/A, (3.18)

where A is normalization constant that ensures AON + AOFF � 1. It follows that

AON � WON/(WON + WOFF) and AOFF � WOFF/(WON + WOFF). Finally, by plugging

these expressions into Eq. 3.16, we find that the residence time of a single TF on a

binding site is given by

TTF �
1
k−

WONeδ + WOFF
WON + WOFF

. (3.19)

Numerical results show that our assumption about time-scale separation in this

model is a valid approximation (Fig 3.2A,C).

Using the expression for the residence time above, we derive the lowest achievable

TTF in different scenarios. Since TTF increases with the stability of complexes (i.e., by

increasing α � eδ), we can calculate the lower bound on TTF by using the smallest

possible α, namely α � 1 at fixed concentration and α � αmin (Eq. 3.14) at fixed

expression E0. We thus obtain the following min TTF:

min TTF �
1
kS−
, for fixed c , (3.20)

min TTF � min TTF �
1
kS−

· 1
1 + E0(α−1

min − 1)
, for fixed E. (3.21)
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Hill-type models. As the number of possible equilibrium models for enhancer

regulation is unlimited, let us consider at least one alternative to MWC models:

Hill-type models. In these models, the presence of Mediator is not required to

mediate the stabilization of TFs through links. Only the description of the TF

interactions with DNA and the TF interaction with each other is necessary. In that

scenario, linking could occur between neighbouring bound TFs (1D chain), between

any pair of bound TFs, or via some other intermediate interaction scenario. As in

the MWC model we considered, the creation of a link would lead to a multiplicative

decrease in unbinding rate of TF by a factor of α.

Since in Hill-type models we no longer have a two-state Mediator that naturally

dictates what “active” enhancer (and thus expression) means, we need to revise

our definition of expression. There are multiple possible definitions specifying

the TF binding / linking configurations that lead to productive expression, i.e.,

are considered as effective ON states. The only constraint in order to preserve the

proof-reading mechanisms and the high specificity advantage is that expression has

to occur from states in which TFs are not only bound but also linked. For example,

it could be i) all states that have at least one link, ii) only the state where all possible

links are established, or iii) some other similar combination.

Let us show an example of non-equilibrium extension of a Hill-type model. We

considera 1D chain model where links can be established only between neighbouring

bound TFs. In the non-equilibrium version of this model, links are not immediately

created but are established with finite rate klink. As in our MWC model extension,

in the limit of klink → ∞, the states that differ only in the presence or absence

of a link collapse into a single state. This occurs because as klink increases, the

transitions from unlinked to linked state become much faster, until the two states

are indistinguishable. Fig 3.6 shows an example for n � 2 binding sites. In the

equilibrium limit at large klink, assuming expression occurs only from the linked TF

state, it is straightforward to write down the partition function, show that it predicts

a Hill function with n � 2 for the induction curve, and that parameter α is directly

related to the cooperative energy of interaction carried by the “link”.



116

k- / αk- / α

k+

k-

klink ∞

k+

k-

k+

k-

k+

k-

klink
k- / αk- / α

k+

k-

k+

k-

k+ k+

Figure 3.6: Non-equilibrium model extension of a Hill-type model. A comparison between schemes

of non-equilibrium extension (left) and equilibrium (right) Hill-type model for n � 2. When klink → ∞,

the two models collapse. In the example of this model, links can be established only between two

neighbouring bound TFs (red line).
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Regulatory phenotypes

Expression E is the normalized expression level of a gene expressed under the

control of the modeled enhancer. We compute expression as the fraction of time the

Mediator is in ON state, that is E � ⟨sM⟩. The average is taken over the stationary

distribution of the master equation (except where we study transient effects, as

in main text Fig 3.4). In practice, this means that we first compute the stationary

solution V of Eq. 3.2: dV/dt � M̂V � 0. We then marginalize V to obtain E �∑m
j�1 VjI(sM � 1), where the sum is taken over all the states of the Markov chain and

I(sM � 1) is the indicator function which is 1 if the Mediator is ON in state indexed

with j and zero otherwise. As in the equilibrium limit, the expression is bounded:

E ∈ ( k+
κ−
, 1).

We expect that functional enhancers lead to high expression when TF concentration

is high, which, in our model, should correlate with high occupancy of TFs on the

specific BSs in the enhancer. We thus require the Mediator to be ON with high

probability (typically E ∼ 0.5, although we also consider in the main chapter

scenarios where E can be smaller).

Specificity S is the ratio between the level of expression from a functional enhancer

(i.e., enhancer that contains n specific BSs), and expression from a random piece of

sequence, S � ES/ENS. High specificity of regulation (S > 1) is generally realized

as a collective state of many bound TFs interacting with the Mediator. As in the

equilibrium limit, specificity is bounded S ∈ (1, κ−/κ+). In addition, when the

specific expression is fixed E , 1 (as in Fig 3.2C), the upper bound is adjusted by a

factor of E, such that max Sfixed E � Eκ−/κ+.

In our model, we estimate specificity by independently computing the expression E

for specific and non-specific site (i.e., for two different values for the unbinding rate,

kS
− and kNS

− ), then taking their ratio.

We expect specificity to be as high as possible. Indeed, high specificity allows for

accurate binding and control: first, it ensures that most of the TFs are not sequestered

stably on random sequences; second, this further ensures that non-specific binding

of TFs to non-cognate regulatory regions in the genome does not lead to erroneous
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gene expression, also known as transcriptional crosstalk. Given the high relative

excess of possible non-specific binding configurations in the genome that outnumber

binding configuration in the cognate regulatory region by thousands or millions,

specificity should numerically be as high as possible.

Residence time TTF is the average time that a TF spends bound to its specific BS.

As in the equilibrium limit, the shortest TF residence time is obtained in absence of

any stabilizing links, i.e.,

min TTF �
1
kS−
. (3.22)

In other words, the minimal TF residence time is determined by the unbinding rate

of an isolated TF. Furthermore, when we consider the enhancer at a fixed specific

expression ES � E0 (as in Fig 3.2C), this value gets adjusted to

min TTF �
1
kS−

· 1
1 + E0(α−1

min − 1)
, (3.23)

with αmin �

(
κ−
κ+

E0
1−E0

)1/n
. This bound is obtained from the EQ model given the

constraint for ES � E0 (see Chapter 3.4.1). In our model, we computed the mean

TF residence time directly from transition matrix M̂ of the system (Eq. 3.2). More

details about the residence time distributions and the moments can be found in

Section 3.4.1.

Overall, we expect TF residence time to be small. Indeed, small residence time

should provide better responsiveness to regulatory elements and lower the noise

in gene expression. Furthermore, small residence time is consistent with recent

single-molecule measurements. Since residence time is expected to increase with

increasing stability of complexes (i.e., by increasing α and klink), there should be

some trade off residence time and specificity.

Sensitivity H refers to the effective steepness of the steady-state input/output

curve that maps out the gene expression level as a function of the TF concentration.

We compute sensitivity H as the slope of the induction curve (expression E vs

concentration of TFs c on functional enhancers containing specific BSs with off-rate
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kS
−) at half maximum expression E, i.e., H � 4 c1/2

Emax
dE
dc |c�c1/2 , where dE

dc |c�c1/2 represents

the derivative of expression with respect to the concentration, taken at concentration

c1/2 where expression reaches half its maximum value Emax. The normalization

factor 4 c1/2
Emax

ensures that H is properly bounded between 1 and n. Indeed, for

Hill-like functions, E(c) � ch/(ch + Kh), the defined sensitivity corresponds exactly

to the Hill coefficient, H � h.

We construe sensitivity H broadly, in terms of its functional effect on the shape of the

induction curve regardless of the underlying molecular mechanism. Mechanisms

giving rise to high sensitivity could be very diverse, for example: additional energy

contribution due to a physical interaction of two TFs at the binding site, as in

thermodynamic models of regulation; or a collective effect of competition of TF

binding with nucleosomes, as in the MWC-like model proposed by Mirny et al.

PNAS 107 (2010); or as a result of positive auto-regulation of a transcribed gene; or

as a result of kinetic regulatory models out-of-equilibrium; or any other alternative

that can increase the steepness of the induction curve beyond H � 1.

Mean protein number P represents the amount of protein, assuming protein

dynamics is a deterministic consequence of the enhancer state. Its dynamics are

governed by:

dP
dt

� kPR(t) − P
TP
, (3.24)

where P represents the protein number, kP and 1/TP the protein production and

degradation rate, respectively, and R(t) the enhancer state: 1 for ON and 0 for OFF.

R(t) is a random variable whose stochastic realizations can be computed using

stochastic simulation. To this end, we evolve the system state using a propagator,

i.e., the formal solution of Eq. 3.2, which gives the conditional probability that the

system will be found in some state after time∆t, given its current state. The enhancer

state R(t) is updated after each ∆t by randomly drawing a binary random number

according to the probabilities computed using the propagator. Mathematically, the

vector of probabilities W to go from state j to any other state after time ∆t can be
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written as:

W(∆t) � exp(M̂∆t) I j , (3.25)

where M̂ is the transition matrix (see Eq. 3.2), I j a vector of zeros with value 1 at

j-th entry, representing the j-th state, and “exp” represents matrix exponential (see

the formalism in Section 3.4.1 for details). We compute R(t) at fixed ∆t time steps,

with ∆t ≪ TM and ∆t ≪ TTF, making sure that no representative ON state is missed.

After generating a stochastic realization R(t), we solve the Eq. 3.24 using standard

ODE solvers using kp � 1 and TP � 3.6 · 106. Assuming 1/kS
− � 1 s, then TP � 10 h.

Results in Fig 3.4C (middle- and bottom panel) represent the mean and standard

deviation over 1000 replicates for different stochastic realizations of the enhancer

state.

Noise in protein number N represents the variability in protein expression levels

due to random enhancer state switching. N is defined as σP/P, where P and σP

represent the mean and the standard deviation of protein number, respectively.

For calculation of dynamical trace of the noise in Fig 3.4C, we followed the same

procedure as for mean protein number (above).

Noise propagation

Telegraph model Here, we briefly review some general results regarding the

telegraph model or 2-state model that includes protein production and degradation

with constant rates kP and γP � 1/TP . The temporal evolution of the central moments

can be derived from the master equation. The mean protein number P and the mean

gene activity E satisfy the following equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt

P(t) � kPE(t) − γPP(t)
d
dt

E(t) � −(κ+ + κ−)E(t) + κ+.
(3.26)

At steady state ( d
dt P � 0 and d

dt E � 0), the mean protein number and the mean

activity is simply given by P � P0E with P0 � kP/γP and E � κ+/(κ++κ−). Similarly,
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the covariances satisfy the following set of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt
σ2

P(t) � −2γPσ
2
P(t) + 2kPσPE(t) + γPP(t) + kPE(t)

d
dt
σPE(t) � −(γP + κ+ + κ−)σPE(t) + kPσ

2
E(t),

(3.27)

where the gene state variance σ2
E(t) is directly determined from the evolution of the

mean E(t), i.e. σ2
E(t) � E(t)(1 − E(t)). This follows immediately from the fact that

one state being occupied (either the active or inactive one) necessarily implies that

the other is empty. Thus σ2
E must be the binomial variance at all time. Solving the

equations 3.27 at steady state leads to

σ2
P � P0E + P0σPE

σPE � P0
γP

γP + κ+ + κ−
σ2

E .

It follows that the protein variance is given by

σ2
P � P0E + P2

0E(1 − E)Φ(TP/TE) (3.28)

whereΦ(x) � 1/(1+x) ∈ [0, 1] is a noise averaging/filtering function that determines

the amount of propagated switching noise at the level of proteins by comparing

the two relevant time scales of the system, namely the mean protein life time

TP � 1/γP and the switching correlation time TE � 1/(κ+ + κ−). The first term P0E

in Eq. 3.28 corresponds to the Poisson variance resulting from the birth and death

of proteins, while the second term stems from the propagation of the switching

binomial variance(
dP
dE

)2

σ2
E · Φ(TP/TE) � P2

0 E(1 − E)      
binomial variance

Φ(Tp/Te). (3.29)

In the limit of fast and slow gene switching respectively, the noise filtering function

reduces to

TP ≫ TE lim
x→∞

Φ(x) � 0

TP ≪ TE lim
x→0
Φ(x) � 1.
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As we will see later, Eq. 3.28 remains valid for all the considered enhancer models,

although the functional form of Φ will now depends on the details of the kinetic

scheme considered. The protein noise at steady state is thus generally given by

N2
�
σ2

P

P2 �
1
P
+

1 − E
E
Φ(TP/TE) ≃

1 − E
E

TE

TE + TP
, (3.30)

where in the last equality we use the filtering function of the 2-state model and we

drop the Poisson noise term 1/P assuming large number of proteins. It turns out

that the last expression still provides an excellent approximation for the amount

of propagated noise in the case of sophisticated n-state model, provided we use a

good proxy for the switching correlation time TE, which we will address below.

General m-state enhancer model For any m-state model of gene activity3 where

protein production and degradation occur as Poisson processes with constant rates

kP and γP , the protein noise will satisfy the same functional form as the 2-state

model (Eq. 3.30). In this general context, the gene mean activity E is defined as

the total mean occupancies of all the gene states i allowing protein production,

namely E �
∑mp

i�1 vi , with 1 ≤ mp < m the number of producing states and vi the

mean occupancy of state i. It turns out that the switching noise can still be obtained

by propagation of the binomial variance σ2
E � E(1 − E) multiplied by some noise

filtering function Φm ∈ [0, 1] (Eq. 3.29). The only difference for a m-state model of

gene activity lies in the noise filtering function Φm that depends on the kinetic rates

and topology of the gene state transition network, i.e. the m × m state transition

matrix M of the model. Starting from the equations for the first and second moment

derived from the master equation (Eq. 3.2), we generalize the noise filtering function

obtained for the 2-state model (Eq. 3.28) to an arbitrary number of gene states and

transitions. The first moment equations are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt

P(t) � kPvt
pV(t) − γPP(t)

d
dt

V(t) � M̂rV(t) + f,
(3.31)

where V(t) � (v1(t), v2(t), ..., vm−1(t))t is the vector of mean occupancies, or equiva-

lently the probability to find the system in each individual gene state i ∈ {1, ..,m−1}.
3gene states described by a continuous time Markov process with linear propensity functions
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The vector vt
p � (1, ..., 1, 0, ..., 0)defines which gene states permit protein production,

such that E(t) � vt
pV(t). The operator M̂r is obtained by reduction of the original

transition matrix M̂

M̂r � A1M̂A0,

where A1 and A0 are the following (m − 1) × m and m × (m − 1) matrices

A1 �

©­­­­«
1 0
. . .

...

1 0

ª®®®®¬
A0 �

©­­­­­­­«

1
. . .

1

−1 . . . −1

ª®®®®®®®¬
.

The vector f is given by the first m − 1 terms of the last column of M. The reduction

above is necessary to later on invert the M̂r operator. Indeed, the transition matrix

M̂ is degenerate by construction and has a single zero eigenvalue corresponding

to the steady state solution (provided the system is ergodic), which follows from∑
i M̂i j � 0 ∀ j (that ensures conservation of probability). The occupancy of the last

state m is thus given by vm(t) � 1 − ∑m−1
i�1 vi(t). Assuming steady-state, the gene

state occupancies V are calculated from

M̂rV + f � 0 (3.32)

and the mean protein is given by P � kPvt
pV/γP � P0E as in the 2-state model.

Similarly, the time evolution of the covariances can be derived from the master

equation and are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dt
σ2

P(t) � −2γPσ
2
P(t) + 2kPvt

pσPV(t) + γPP(t) + kPvt
pV(t)

d
dt
σPV(t) � −(γP Î − M̂r)σPV(t) + kP Ŝ(t)vp,

(3.33)

where σPV(t) �
(
σP1(t), σP2(t), ..., σP(m−1)(t)

) t is the vector of covariances between

the protein and each gene state, Î the identity matrix, Ŝ(t) the covariance matrix

of the gene states. Here again, it is important to realize that each gene state can

only be occupied if all the others are empty. Thus, the covariance matrix Ŝ(t) is the

multinomial covariance for a single trial, which is fully determined by the mean



124

occupancies V(t) ∀t

Ŝi j(t) �
⎧⎪⎪⎨⎪⎪⎩

vi(t)(1 − v j(t)) for i � j

− vi(t)v j(t) for i , j.
(3.34)

Solving Eqs 3.33 at steady state, we find

σ2
P � P0E + P0vt

pσPV (3.35)

σPV � P0(Î − M̂r/γP)−1Ŝvp.

By rearranging the steady state solutions (Eq. 3.35), we recover an expression for the

protein variance σ2
P , which is similar to the one derived before for a simple switch

(cf. Eq. 3.28):

σ2
P � P0E + P2

0E(1 − E)Φm . (3.36)

The main difference is the filtering function Φm now given by

Φm �
1

E(1 − E)v
t
p(Î − TPM̂r)−1Ŝvp, (3.37)

with TP � 1/γP the mean protein lifetime as before. In Eq. 3.37, the binomial variance

σ2
E � E(1 − E) can be written as follows

E(1−E) �
mp∑
i�1

vi

(
1 −

mp∑
i�1

vi

)
�

mp∑
i�1

vi(1−vi)−2
∑

i< j≤mp

vi v j �

mp∑
i�1
σ2

i +2
∑

i< j≤mp

σi j � vt
pŜvp.

Plugging the above expression for the binomial variance back in Eq. 3.37, we finally

find the following expression for the filtering function

Φm �
vt

pF̂Ŝvp

vt
pŜvp

with F̂ � (Î − TP M̂r)−1. (3.38)

Of note, the F̂−1 operator is positive definite4, which follows from the positive

definiteness of −M̂r and TP ≥ 0. In addition, the spectrum of F̂−1 is bounded from

below, i.e. all its eigenvalues λi ≥ 1. Thus, vt
pF̂Ŝvp ≤ vt

pŜvp ∀TP and the resulting

4Although M̂r or F̂ are not necessarily symmetric, −xtM̂x > 0 ∀ non-zero vector x and all the

eigenvalues of −M̂r are positive. These properties follow from the structure of the master equation

transition matrix M̂.
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filtering function Φm satisfies all the desired conditions, namely Φm ∈ [0, 1] and

lim
TP→∞

Φm(TP) � 0

lim
TP→0

Φm(TP) � 1.

In addition, we recover the correct expression for the 2-state model, where M̂r �

−(κ+ + κ−) � −1/TE. Indeed, F̂ � (1 + TP/TE)−1 and thus Φ2 � TE/(TE + TP) as

expected.
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Figure 3.7: Effective correlation time determines propagated noise and relaxation time. (A) Prop-

agated noise fraction as a function of protein lifetime TP computed for parameters as model II in

Fig 3.2A,C (α � 1.75 · 104, klink � 6.5 · 10−2). The simple noise averaging function TE/(TE +TP), where

TE is the effective correlation time, provides an excellent approximation to the true propagated

noise Φ. Indeed, the relative error (inset) remains small for the whole range of TP . (B) Propagated

noise fraction as a function of TE computed by probing the whole parameter space α ∈ (1, 108)
and klink ∈ (10−5 , 105), at fixed TP . The approximation TE/(TE + TP) captures the true propagated

noise well over the full range of sampled models, as the relative error (inset) never exceeds 10%. (C)

Relaxation time Trelax as a function of effective correlation time TE for the whole parameter space as

in (B). We estimated Trelax from the temporal relaxation of the enhancer mean activity E(t) to its

steady state value E (inset). To this end, we first solve Eq. 3.31 with E(0) � 0 to obtain E(t) for each

model. We then estimated Trelax assuming E(t)/E relaxes as 1 − exp (−t/Trelax), which is exact for

the 2-state model. The resulting Trelax matches TE well over the full range of sampled models. Thus

our proposed effective correlation time TE is a good predictor of both propagated noise and mean

relaxation time. In all panels, we used n � 3 binding sites for the models.

Propagated noise and effective correlation time As we have shown above, all

the m-state models lead to the same functional form for the mean and variance
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(Eq. 3.36), differing only in the noise filtering function Φm . Although multiple time

scales, given by the inverse spectrum of −M̂r , are involved in the noise filtering, we

can define a single effective switching correlation time TE that preserves as well

as possible the amount of propagated noise of the n-state model. We aim for a

definition of TE that is independent of the value of TP , such that the resulting TE

characterizes the filtering for all TP well. One way of proceeding is to realize that

in the case of the 2-state model, TE � TP implies Φ � 1/2. We can thus use this

property to define TE such that Φm(TP � TE) � 1/2. Based on Eq. 3.38, we can then

solve the following equation to obtain an effective TE

1
2vt

pŜvp � vt
p(Î − TEM̂r)−1Ŝvp. (3.39)

With such an effective TE, the filtering function Φm is well approximated by

Φm(TP) ≃ Φ(TP/TE) �
TE

TE + TP
, (3.40)

which is exact when TP � TE and only slightly deviate from Φm(TP) when TP > TE

or TP < TE, (Fig 3.7A,B).

Consequently, for all the enhancer models the propagated noise N2 at the protein

level is well approximated by

N2
�

1 − E
E

TE

TE + TP
. (3.41)

In addition, the effective TE provides an excellent approximation for the mean

relaxation time-scale of the models (Fig 3.7C).

Effect of α and klink on regulatory phenotypes

To understand how varying α and klink affects regulatory phenotypes, we have a

look at the phenotypes in the phase space (α, klink).
Fig 3.8 shows the dependence of main regulatory phenotypes on (α, klink) for

fixed concentration (left column) and fixed expression (right column). For fixed

concentration, there exists only a narrow range that gives high specificity − around

the point where specific expression is already large enough (∼ 1) while non-specific

expression is still small (≪ 1). There, both residence time and sensitivity take
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relatively low values.

Meanwhile, for fixed expression, specificity increases with larger α and lower klink.

This is due to the fact that with increasing α, the concentration required to reach

fixed specific expression decreases, thus ensuring that non-specific expression stays

low.
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Figure 3.8: Phase space of all regulatory phenotypes. Expression from cognate enhancers containing

n � 3 specific sites, ES, and random DNA with nonspecific sites, ENS, the TF residence time TTF,

specificity S, and sensitivity H (in color) as a function of two parameters, α and klink. Left and right

column are showing regulatory phenotypes at fixed concentration c � c0 and at fixed expression

E � 0.5, respectively. For fixed expression, regions where E � 0.5 cannot be satisfied are colored

white. Due to numerics, area of sensitivity H where maximum expression (in the limit c → ∞) is

below E < 10−3, is also colored white.

Effect of the unbinding rate ratio kS
−/kNS

− on the specificity gain

In the main text we investigated how the maximum gain in specificity, SNEQ/SEQ,

varies with the ratio of specific and non-specific unbinding rate, kS
− and kNS

− , (Fig 3.3C).

We identified an optimal value of kS
−/kNS

− which maximizes this gain.

For smaller values of kS
−/kNS

− , NEQ model is at the bound of specificity, Smax, with EQ
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Figure 3.9: Specificity gain is effected by unbing rates. Specificity as a function of TF residence time

at fixed E � 0.5, showing how specificity gain (black arrow) changes for different values of kS
− with

fixed kNS
− � 1 at n � 3. EQ model solutions lie on the red line while the black/red envelope represents

the space of solutions for NEQ model. The reference time is T0 � 1/kS
− which varies between the

three figures. Dashed lines represent minimum residence time and maximum specificity.

model being close to it as well: see Fig 3.9 left. With increasing kS
−/kNS

− , the specificity

of EQ model decreases, leading to an increase in the specificity gain (Fig 3.9 middle).

The largest specificity gain is obtained when the maximum specificity in NEQ

model is not bounded anymore but very close to it. With further increasing kS
−/kNS

− ,

the difference in specificity between NEQ and EQ model starts to decrease (Fig 3.9

right).



129

3.4.2 SI Figures
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Figure 3.10: Kinetic scheme of the non-equilibrium MWC-like model. For simplicity, the scheme

is illustrated for a single binding site, n � 1. TFs can bind to the specific binding site and Mediator

can switch into ON state; when a TF is bound it can form a link only if a Mediator is found in ON state.

The link decreases the unbinding rate of both linked TF and Mediator by a factor of α. The link is

removed either when the Mediator switches OFF or when the linked TF unbinds. With increasing

number of binding sites n, the number of possible states exponentially increases.
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Figure 3.11: Specificity effect of the nonzero unlinking rate. The phase diagram of specificity, S,

and mean TF residence time, TTF, for n � 3 binding sites and fixed E � 0.5, demonstrating the effect

of unlinking rate. With increasing unlinking rate, the maximum specificity of the nonequilibrium

model decreases. Furthermore, for non-zero unlinking rate, kunlink > 0, at larger TF residence times,

the maximum specificity starts to decrease with TF residence time. This is qualitatively different than

in case of a zero unlinking rate where maximum specificity never decreases with TTF. Each black

envelope shows all solutions for varying α ∈ (1, 108) and klink ∈ (10−5 , 10−8). Red curve represents

equilibrium solutions at klink → ∞, which do not vary with kunlink. We used kS
− � 0.01 and kNS

− � 1.

See also Fig 3.18D.
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Figure 3.12: Specificity gain due to sequence-specific linking rate. The phase diagram of specificity,

S, and mean TF residence time, TTF, for n � 3 binding sites and fixed E � 0.5, demonstrating the

effect of different sequence-specific linking rates. We assume that the formation of link on a TF

bound to a specific site is faster, by the indicated factor, kS
link/kNS

link, relative to the link formation

when the TF is bound to a nonspecific site; this could happen, for instance, if the links are created by

dedicated enzymes with their own DNA sequence binding preference. Large specificity increases

are possible even at kS
link/kNS

link not much larger than 1. We used kS
− � 0.1 and kNS

− � 1 (instead of

the kS
− � 0.01 used elsewhere). The ratio of kS

link/kNS
link � 1 represents the case in the main chapter,

without any linking sequence specificity. Each black envelope shows all solutions for varying

α ∈ (1, 108) and klink ∈ (10−5 , 10−8). Red curve represents equilibrium solutions, which do not vary

with kS
link/kNS

link. Gray dashed lines show the analytically-derived bounds. The increase in S due to

linking specificity is seen only for ratios of kS
−/kNS

− that are smaller that the optimal value (the ratio

where SNEQ/SEQ reaches a maximum, see Fig 3.3C). The reason is that the linking rate specificity

affects only the nonequilibrium models, and for lower values of kS
−/kNS

− , the NEQ models already

reach the maximum possible specificity, κ−/κ+; see Fig 3.9. This means that for low values of kS
−/kNS

− ,

any additional linking specificity would not be able to increase NEQ enhancer specificity any further

as it is already saturated. Linking specificity does not qualitatively change the overall conclusions,

but can quantitatively boost specificity S.
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Figure 3.13: Accessible space of regulatory phenotypes is similar for different number of binding

sites. Specificity, S, mean TF residence time, TTF (expressed in units in inverse off-rate for isolated

TFs at their specific sites, T0 � 1/kS
−), and average expression, E (color), for MWC-like models with

n � 5 TF binding sites (main text Fig 3.2A showing n � 3), obtained by varying α and klink at fixed

TF concentration, c0. Equilibrium models fall onto the red line. As in the main text, two models

with equal TF residence times, I (EQ) and II (NEQ), are marked for comparison. Dashed gray

lines show analytically-derived bounds. The EQ model reaches higher specificity than for n � 3,

making the space of solutions for E < 1 smaller. NEQ model solutions become limited by specificity

ceiling, Smax � κ−/κ+, and S > 1 solutions only exist for TTF/T0 < 106 (for n � 3 this was true for

TTF/T0 < 108). Nevertheless, the accessible space of regulatory phenotype is qualitatively preserved

for n > 3.
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Figure 3.14: Different models lead to indistinguishable induction curves from functional en-

hancers. Induction curves for expression from functional enhancers (that contain specific binding

sites) at fixed TF residence times (as indicated in the plot titles of different plots), for n � 3 and

E � 0.5. In each plot with a given TF residence time, we find 20 different models with a range

of specificities S, including the equilibrium model, and overlay their induction curves in black.

Induction curves are nearly indistinguishable, with largest differences found for low residence times

at large concentrations. The minimal achievable TF residence time is min TTF � 1.98T0.
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Figure 3.15: Equi-concentration lines in enhancer phase diagrams at fixed expression are nearly

vertical. Lines of constant concentration (color) as a function of specificity and TF residence time

for n � 3 (A) and n � 5 (B). Since all NEQ and EQ models have almost identical induction curves

(Fig 3.2E and Fig 3.14), this implies that lines of constant concentration at fixed expression in the S vs

TTF space (Fig 3.2C), are nearly vertical. This assumption holds very well for smaller values of TTF.

With increasing residence time, lines of constant concentration start slightly tilting towards larger

residence times. Additionally, for large specificity (close to the maximum specificity κ−/κ+) lines of

constant concentration start to increase their curvature, especially at higher n.
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Figure 3.16: Sensitivity and propagated noise fraction are uncorrelated. Phase diagrams of sen-

sitivity H and propagated noise fraction, TE/(TE + TP) (see main text). Each envelope represents

different value of n (blue shade, legend); different models within each envelope are obtained by

varying α ∈ (1, 108) and klink ∈ (10−5 , 108), holding expression fixed at E � 0.5 by adjusting TF

concentration. Almost all combinations of sensitivity and noise fraction are possible, indicating that

these regulatory phenotypes are largely uncorrelated. The exception are highest possible sensitivities

that are accessible only at higher values of propagated noise fraction.
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Figure 3.17: Trade-off between optimal specificity and sensitivity. Phase diagrams show the space

of solutions of specificity gain, SNEQ/SEQ, and sensitivity, H. The envelopes were obtained by varying

α ∈ (1, 108) and klink ∈ (10−5 , 108) at fixed expression E � 0.5 and various number of binding sites n

(blue shade, legend). Specificity gain is highest at lower residence times where the sensitivity is the

lowest (Fig 3.3A). These results do not qualitatively vary with number of binding sites n, and show a

trade-off between optimal specificity and high sensitivity gain.
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Figure 3.18: Impact of kinetic and phenotypic parameters on optimal specificity gain. Maximum

gain in specificity as a function of a ratio of specific and non-specific unbinding rates, kS
−/kNS

− .

Different plots show effects of different parameters that were varied: (A) ratio of Mediator switching

rates κ−/κ+; (B) fixed expression E; (C) TF residence times at which the specificity is compared; and

(D) unlinking rate kunlink. The strongest dependence is on Mediator switching rates, which set the

upper bound for specificity, Smax; when that increases, the maximum specificity gain also increases.

Additionally, the value of fixed expression E has a visible impact, similar as varying κ−/κ+. The

residence time at which we compare specificity has a negligible role; for almost any value of the

residence time, specificity gain does not vary much. This is due to the fact that for TTF ≫ T0, both EQ

and maximum NEQ specificity do not significantly vary with TTF. Results show that for specificity

gains right of the peak (i.e., larger kS
−/kNS

− ), the ratio of Mediator switching rates κ−/κ+ does not

play a visible role. The same is true for fixed expression E, and the TF residence time at which we

compare specificity. When it is non-zero, kunlink can strongly affect the specificity gain. For optimal

gain, kunlink must be much smaller than all other rates in the system.
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Figure 3.19: Trade-off between optimal specificity and propagated noise. Phase diagram of en-

hancer models for three different values of mean expression, E (columns), shows specificity S and

fraction of variance in enhancer switching propagated to expression noise (TE/(TE + TP), see main

text). Compact blue region for each E shows all MWC-like models with n � 3 (A) and n � 4 (B)

binding sites accessible by varying α ∈ (1, 108) and klink ∈ (10−5 , 105); equilibrium model (“EQ”)

with lowest noise is shown as a red dot. We have picked the kS
−/kNS

− ratio to maximize the specificity

gain SNEQ/SEQ: kS
−/kNS

− ≈ 0.06, 0.12 for n � 3, 4, respectively (see Fig 3.3C). With these values, the

specificity can increase but only at a cost of a large increase in correlation time TE, implying high

noise.
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4 Evolving complex promoters for complex

phenotypes

Understanding how genotype determines phenotype has been a long-standing goal in

evolutionary biology. Although genotype-phenotype (GP) maps have been extensively

studied, current approaches suffer from some combination of three major shortcomings:

(i) a majority of experimental work focused on a neighbourhood of only a handful

of mutations away, making these descriptions local; (ii) they do not go beyond toy

models, to fit the data and give predictions; or (iii) they consider very simple and thus

unrealistic genotypes and phenotypes. While studies focused on at most two of these

points, no work includes a combination of all three. Therefore, biophysically realistic GP

maps that give global predictions describing complex promoters are still lacking. Here,

we investigate complex promoters and complex phenotypes in realistic setting. We go

beyond the typically studied single phenotype of a constitutive promoter and study

how mutations in bacterial promoters alter gene expression dynamics between different

environments. We developed a biophysically realistic and mechanistic model that

accurately predicts GP mapping for gene expression in a regulated bacterial promoter.

Using this model, we show how promoter architecture, molecule concentrations,

and transcription factor binding affinities constrain GP mapping and evolutionary

trajectories of promoters. Furthermore, we show the need to account for the biophysical

mechanisms that govern the GP mapping to correctly predict, and hence understand,

evolution.

Grah R, Lagator M, Guet CC, Tkačik G. Evolving complex promoters for complex

phenotypes. Manuscript in preparation.

Contributions: Grah R has constructed the model and has done all computations.

Lagator M has done all experimental measurements. Grah R and Lagator M have done

data interpretation.
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4.1 Introduction

Mutations are the raw materials of evolution. They can alter the fitness of an

organism, enabling selection to act on such changes in order to drive evolution.

Therefore, understanding and predicting evolution requires the ability to predict

how mutations alter organismal fitness, and doing so requires understanding how

mutations alter specific traits [Dean and Thornton, 2007]. The effects of genetic

mutations (genotype) on one or more organismal traits (phenotype) has been the

central problem of evolutionary biology ever since Mendel’s work questioned

Darwin’s notion of gradual evolution. By affecting what traits emerge in differ-

ent genetic backgrounds, Genotype-Phenotype (GP) mapping impacts organismal

development and function, influences the emergence of genetic disorders and dis-

eases, and shapes how populations evolve and respond to selection [Alberch, 1991;

Lehner, 2013; Houle et al., 2010]. GP mapping has been extensively studied in a

range of experimental and theoretical systems, most of which indicate that the

mapping is complex and non-linear [Kemble et al., 2019; de Visser and Krug, 2014;

Wagner and Zhang, 2011; Hansen, 2006]. And yet, the wealth of experimentally

determined maps has not resulted in comprehensive or generalizable understand-

ing of the relationship between genotype and phenotype. In other words, we lack

the ability to predict how genotype maps onto phenotype for most biological systems.

One major area of focus for describing GP mapping has been the regulation

of gene expression, due to its central role in enabling organisms to respond

to environmental change and to coordinate inter-cellular processes. Structures

of numerous gene regulatory networks (GRNs) have been empirically deter-

mined, enabling the development of empirical GP maps [Payne and Wagner, 2014;

Aguilar-Rodríguez et al., 2017]. These maps discovered some fundamental properties

of GP maps, at least as they apply to GRNs: the maps tend to be ’small world’ [Watts

and Strogatz, 1998] so that traversing a wide range of phenotypes is possible with

only a handful of mutations, even though genotypes with similar phenotypes tend

to be clustered closer together.
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While offering unprecedented insights into how GRNs evolve, the existing GP

maps have a fundamental limitation – they are largely based on experimental

studies that focused on measuring steady-state expression levels in cells [Kar-

lebach and Shamir, 2008; Kinney and McCandlish, 2019; Shultzaberger et al., 2012;

Kim et al., 2009]. And yet, temporal dynamics of gene expression play an important

role in determining how a biological system functions [Yosef and Regev, 2011;

López-Maury et al., 2008; Longo and Hasty, 2006]. For example, bistable behavior

observed in various bacterial species is often enabled by having different rates

at which relevant genes are turned on or off in response to a stimulus [Dubnau

and Losick, 2006]. Similarly, the stress response in S. cerevisiae involves a tempo-

rary alteration to the global gene expression patterns, during which genes are

rapidly turned on and off often without reaching steady-state expression lev-

els. Yeast cells alter their response depending on the source of stress in order to

optimize global gene expression dynamics, indicating that gene expression dy-

namics affect organismal fitness [Gasch et al., 2000]. Cascades of genes that are

critical for eukaryotic embryo development have highly optimized expression dy-

namics, and many transcription factors involved in embryo development never

reach steady state expression [Arbeitman, 2002]. These examples highlight that

not only the steady state expression levels, but also the expression dynamics (how

rapidly the steady state is reached) affect organismal fitness [Bar-Joseph et al., 2012;

Ueda et al., 2004]. In spite of this, understanding how mutations in gene regulatory

elements (promoters and transcription factors) alter gene expression dynamics has

received little attention.

Although previous work investigated GP mapping, they mostly addressed single

phenotypes in a single environment [Lagator et al., 2017b; Kinney and McCan-

dlish, 2019; Kim et al., 2009; Shultzaberger et al., 2012; Karlebach and Shamir, 2008].

Alternatively, description of temporal dynamics of gene regulation represents a

system which combines multiple environments (ON, OFF) and multiple phenotypes

(dynamical phenotypes). Additionally, exploring such a system in a biophysically
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realistic setting, allows for a connection between molecular mechanisms and key

evolutionary quantities, such as distribution of mutational effects or evolutionary

trajectories.

In this work, we set out to study how mutations in bacterial promoters alter

gene expression dynamics. To achieve this goal, we developed a mechanistic

model that can accurately predict GP mapping for gene expression dynamics in

a regulated bacterial promoter. The model allowed us to understand how the

mechanisms of promoter function constrain GP mapping, how those constraints

changed depending on whether we considered only steady-state expression or

the dynamics of expression, and how they affect the evolutionary trajectories of

promoters.

4.2 Results

4.2.1 Experimental system

In order to develop a mechanistic model that can predict GP mapping for gene

expression dynamics, we focused on the canonical model system in bacterial ge-

netics – the Lambda bacteriophage promoter PL [Ptashne, 1986]. We focused on

a relatively simple promoter, as such promoters make the fundamental building

blocks of GRNs and, hence, provide a relevant starting point for understanding

the forces that shape gene regulatory evolution. PL is a repressible promoter: in

the absence of the transcription factor CI, σ70-RNA polymerase complex (RNAP

for brevity) binds to the -10 and -35 sites with high affinity and leads to strong

expression; when CI is present in the system, it cooperatively binds to its two

operator binding sites, OR1 and OR2, preventing RNAP binding due to direct bind-

ing site competition and repressing the expression (Fig 4.1). In the experimental

synthetic system we used, we placed the cI gene under an inducible PTET promoter

on the same small copy number plasmid (pZS*, with only 2-3 copies) as the PL

promoter, enabling external control of CI concentrations. The PL promoter, which
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controlled the expression of a yellow fluorescence marker (yfp) in our system, was

also modified to exclude the OR3 site, and, with it, the PRM promoter that is typi-

cally present on the reverse complement. The plasmid was placed in the MG1655

K12 strain of Escherichia coli, modified only to express the tetracycline repressor, TetR.

In our experiments, this system could exist in two environments, represented

by two distinct states (Fig 4.1). In the ”ON” state, cI is not present and hence only

RNAP binding determines the expression levels of yfp. In the ”OFF” state, cI is

present at a high concentration, fully repressing the wild-type PL promoter. In order

to study the dynamics of gene expression in this system, we considered switching

in both directions: from ”ON→OFF” transition, and from ”OFF→ON” transition.

In other words, we would maintain the system under one condition (either ”ON”

or ”OFF”) for a sufficiently long time to ensure steady-state expression levels are

reached. Then we induce the other state by either stimulating (”ON→OFF”) or

stopping (”OFF→ON”) cI expression.

As temporal dynamics of gene expression represent a highly dimensional pheno-

type, a simpler representation of these trajectories is required. Since all trajectories

are sigmoidal, we summarized the dynamics of gene expression through six distinct

phenotypes (Fig 4.1): (i) steady state ”ON” expression level; (ii) steady state ”OFF”

expression level; (iii) the duration of the lag when the system is switching from

”ON→OFF”, defined as the time from induction of the system to the point when the

expression level is at half of the amplitude; (iv) lag when the system is switching

from ”OFF→ON”; (v) the slope at half amplitude when the system is switching

from ”ON→OFF”; (vi) the slope when the system is switching ”OFF→ON”. We

also sometimes considered the amplitude (the difference between ”ON” and ”OFF”

expression levels), but we did not treat it as a distinct phenotype. To avoid the

obvious effect of amplitude on the slope (twice the amplitude would mean twice the

slope), we rescaled the slope with the amplitude. This representation of temporal

dynamics is by no means unique. However, having steady state phenotypes as a

subset of all phenotypes allows us to directly compare steady state and dynamical
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picture within the same setup.
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Figure 4.1: Dynamics of gene expression are characterized with 6 phenotypes. Binding of RNAP

to -10 and -35 leads to expression of yfp (top) which we denote as "ON" state. When cI is induced,

CI dimers can bind cooperatively to OR1 and OR2, thus repressing the system, leading to "OFF"

state (botom). Expression trajectory from "ON" into "OFF" state is shown on the right side with 2

steady-state (ON and OFF expression) and two dynamical (slope and lag) phenotypes marked. Slope

is computed at half-amplitude expression, and lag time is defined as time between induction of cI

and half-amplitude expression. Lag and slope for OFF to ON dynamics are defined in the same

way. Steady-state expressions ON and OFF, together with lag and slope in both directions form 6

phenotypes which represent the dynamics of gene expression.

4.2.2 Combined model of gene expression dynamics

To describe the temporal dynamics of gene expression we combined two established

modeling approaches – the thermodynamic model of steady state expression and

the mass action kinetics (Fig 4.2A). First is the thermodynamic (TD) model, which

describes the mapping between the genotype and the steady state expression [Bintu

et al., 2005a; Bintu et al., 2005b; Shea and Ackers, 1985]. For a given promoter and

the molecules that bind and regulate it, the TD model calculates the probability

of finding the system in all possible states and then assumes that the steady state

expression levels are proportional to the probability of finding the system in a

productive state. By assumption, this is a state where RNAP is bound with mRNA

being expressed at a fixed rate. In the model system used in this study (Fig 4.1),

the system can be in four distinct states (Fig 4.2A): (i) no molecules bound to
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the promoter; (ii) RNAP bound; (iii) repressor bound; (iv) two repressors bound

cooperatively to both operators. From these four states, only (ii) is productive and

leads to transcription. To calculate the energy of binding for each molecule that

binds the PL promoter, the TD model uses the energy matrices (EM) of RNAP and CI,

as well as the strength of cooperative binding between two repressors (relevant only

in state v). The energy matrix contains the information about how every possible

point mutation in the DNA-binding site of a given molecule impacts its overall

binding energy [Kinney et al., 2010]. As such, each DNA-binding molecule has

a unique energy matrix associated with it, which can be thought of as a unique

representation of that molecule’s function, much like the amino acids sequence is a

two-dimensional representation of that molecules 3D structure.

The second approach, the mass action kinetics (MAK), uses standard ODEs to

describe the temporal dynamics of different molecules in the system. MAK accounts

for the changes in concentrations of the CI repressor and the measurable system

output, YFP. While we assume a constant and high concentration of RNAP, the

concentrations of CI and YFP change due to their variable production and dilution

rates. MAK uses the probability of binding from the TD model as the rate of

production of YFP (Fig 4.2A).

We obtained the energy matrices for RNAP and CI from published works [Lagator

et al., 2020]. To fit the other parameters in the TD model, and hence to predict

steady-state expression levels of PL promoter mutants, we used an existing Lambda

PL random mutant library [Lagator et al., 2020]. To fit the MAK parameters, and

hence to model the dynamics of the system, we only used measurements of the

wild-type PL system and did not rely on any promoter mutants (Section 4.4.2).

To validate the performance of this model, we created 9 PL promoter mutants,

predicted to affect the binding of RNAP and CI in different ways: (a) not to

significantly affect the binding of either; (b) primarily impair RNAP binding;

(c) primarily impair CI binding; (d) impair the binding of both, RNAP and CI.

We measured the temporal dynamics of these mutants when switching from

”ON→OF” and ”OFF→ON”, and found that our combined model predicted their

gene expression dynamics extremely well (Fig 4.2B).



146

[YFP]

“ON” state

“OFF” state

yfp

-10-35

OR1OR2cI

RNA Polymerase

yfp

-10-35

OR1OR2cI

Yfp

cell membrane

CI

PE

[RNAP]

A

Mass Action Kinetics Thermodynamic model

B

state energy Boltzmann 
weight

0 1

ER exp(-ER)

ECI exp(-ECI)

TGCTGACATAAA       ...         GCGGTTCTACTG
A
C
G
T

= ER

Delay in production rate of CI:

Due to induction of cI 

Due to remaining inducer in the cell

High energy

Low energy

High energy

Low energy

Spacer
2ECI - ε exp(-2ECI + ε)

cooperative 
binding energy ε

DilutionProduction rate

Data
Model

0

0.5

1

0 100 200 300

Time [min]

WT WT

0

0.5

1

0 100 200 300

Time [min]

E
xp

re
ss

io
n 

[a
.u

.]

WT WT

...

[CI]

dilution rate

( production rate )

Energy calculation:PE = 
[RNAP] exp(-ER)

1 + [RNAP] exp(-ER) + [CI] exp(-ECI) + [CI]2 exp(-2ECI + ε)

0

0.5

1

0 100 200 300

Time [min]

E
xp

re
ss

io
n 

(r
el

. t
o 

W
T

 O
N

)
E

xp
re

ss
io

n 
(r

el
. t

o 
W

T
 O

N
)

RNAP 
Energy Matrix

CI 
Energy Matrix

d d

cd b

bb b

b

a

Figure 4.2: (Continued on the following page.)



147

Figure 4.2: Combination of Thermodynamic and Mass action kinetics model gives accurate

predictions of gene expression dynamics. (A) Details of Mass Action Kinetics (left) and Thermo-

dynamic model (right), with the representation of parameters used in the two models (middle).

Mass Action Kinetics (MAK) model describes the change in CI and YFP concentration with a set

of two ODEs; while the production of CI is delayed due to induction of cI (ON to OFF dynamics)

or remaining inducer in the cell (OFF to ON dynamics), the production of YFP is determined via

the Thermodynamic (TD) model. TD model description includes the system architecture (i.e., the

possile binding states), their binding energies E and cooperativity ϵ between two CI dimers bound

on OR1 and OR2. The binding energies are determined using the energy matrix with binding energy

being a linear sum of individual contributions from single base-pairs. The probability of RNAP

bound, described by PE, determines the rate of production of YFP. Each part of RNAP energy matrix

consists of two parts, each 12bp long (see Section 4.4.1), with a spacer between them. (B) Comparison

between experimental data and model prediction of gene expression dynamics for a wild-type and 9

promoter mutants. Mutations in each of the 9 mutants (a) have no significant impact, (b) impact

RNAP binding, (c) impact CI binding, or (d) both. We mark the top right corner of each trajectories

with (a-d) to show how mutations affect it. The left half shows expression dynamics with high

agreement between data and model - Pearson correlation coefficient between data and prediction

is ρON→OFF � 0.92 (top) and ρOFF→ON � 0.84 (botom). Because some of these mutants had many

mutations away from the wild-type (some containing as many as 10 mutations), it is not surprising

that our predictions of steady-state expression levels are not ideal, as this is a known problem with

the TD model [Vilar, 2010]. When correcting for these known errors of the TD model by setting the

ON and OFF steady-state expression levels to 1 and 0, respectively, we find that our combined model

predicts the dynamics of the system extremely well – ρON→OFF � 0.98 (top) and ρOFF→ON � 0.96

(botom). The parameters for the model were obtained from independent calibration measurements,

making this prediction fit-free. See Section 4.4.1.

4.2.3 Constraints in Genotype-Phenotype mapping

Starting with the wild-type Lambda PL promoter, we used our model to exhaustively

explore the effect of all possible single and double mutants on all six dynamical

phenotypes (Fig 4.1). We were specifically interested in the constraints of different

traits, asking whether mutations alter the phenotypes independently of each other

or not. These constraints describe: (i) the size and shape of the accessible parameter

space; (ii) the part of that space that is accessible by mutations; and (iii) correlations

between pheontypes that detail how that space is covered by mutations. In other
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words, these constraints limit the possible states that the system can adopt through

mutation and define what phenotypes can be achieved through mutation, or, in

other words, the distribution of phenotypic effects of mutations. To get a more

complete picture of the constraints shaping GP mapping, we focused on double

mutants (Fig 4.3), as they explore the two-dimensional phenotypic space more fully

than the single mutants (Fig 4.9). While the constraints exist as a six-dimensional

interaction between all measured phenotypes,we represent them as two-dimensional

interactions between all possible pairs of phenotypes in order to better visualize

them.

The GP map of the PL promoter is heavily constrained, as double mutants explore

only a portion of the possible landscape (Fig 4.3). This observation does not imply

that the system is robust and that mutations cannot drastically alter one or more

phenotypes. In fact, many double mutants have a large effect on the phenotypes

(Fig 4.3). This finding goes against a common assumption of quantitative genetics

– that small genetic changes (i.e. individual mutations) lead to small phenotypic

changes [Milocco and Salazar-Ciudad, 2020]. While the observed constraints do

not imply that the system is robust, they do set a limit to the possible phenotypic

states that can be achieved. A more constrained system is less likely to lead to

evolutionary innovations [Ciliberti et al., 2007], as mutations result in a smaller set

of possible phenotypic states, limiting the extent to which the system can explore

the full, unconstrained phenotypic landscape. This is at least in part because the

observed constraints point towards canalization in bacterial promoters [Wagner

et al., 1997], where the same value of a given phenotype can be achieved by many

mutations that alter one or more other phenotypes. Because a more constrained

system can assume a reduced number of possible phenotypic states, evolution is

also more likely to be repeatable and to undergo the same pathways during the

adaptive process [de Visser and Krug, 2014].
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Figure 4.3: Phenotypic landscapes are highly constraint. (A) Phenotypic landscape of all double

mutants, each represented by a dot, of steady-state phenotypes. (B) Phenotypic landscape of all

phenotypes for ON to OFF dynamics (top) and OFF to ON dynamics (bottom, grayed). To keep the

possible number of landscapes low, we use amplitude(=ON-OFF) as a proxy for both steady-state

phenotypes (ON and OFF). As slope strongly depends on amplitude (twice the amplitude implies

twice the slope), we use rescaled slope (i.e., slope/amplitude) as a phenotype. Black envelope

represents the possible space that double mutants are theoretically able to explore, ignoring the

constraints in architecture (e.g., overlap between binding sites), protein structure (energy matrix

structure), or discrete space of genotypes. Different colors represent how steady-state phenotypes

were affected: blue - WT-like mutants, red - change in ON expression >0.05, yellow - change in

OFF expression >0.05, purple - change in both ON and OFF expressions > 0.05. All units are in

wild-type units, with the exception of OFF expression – the expression (ON and OFF) is in the units

of wild-type ON expression.
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4.2.4 Mechanistic origins of constraints in dynamical phenotypes

The combined model that we used to describe the constraints in GP mapping of a

bacterial promoter (Fig 4.3) also allowed us to understand the mechanistic origins

of those constraints. Understanding not only what mutations do but also why is

critical for developing a more predictive understanding of evolution, as it enables

generalizing GP maps beyond a specific system being studied (in our case, the PL

promoter) to a range of other systems that share similar features (regulated bacterial

promoters).

Looking at the combined model (Fig 4.2) identifies several key properties of the

system that might impact the nature of GP mapping: (i) the factors that impact the

concentrations of the relevant molecules in the system; (ii) the architecture of the

promoter; and (iii) the factors that impact the binding energies of RNAP and CI.

The factors that come from the MAK part of the model – (i) – are predominantly

responsible for setting the limit to the phenotypes that can be achieved (black

borders in Fig 4.3). The factors that influence the TD part of the model – (ii) and (iii)

– primarily affect how freely mutations explore that space.

To summarize, the mass action kinetics of the system define the maximum values of

phenotypes achievable through mutations, while the thermodynamics of binding

define how easily those values are reached. This implies that, if all we are interested

in is the maximum range of phenotypic values but not how easily those phenotypes

can be realized by mutations, it is sufficient to represent the major aspects of the

TD model (namely, the multi-variable energy matrices) through a small number of

summary variables. We return to this point later in Section 4.2.6.

Molecule concentrations

The concentration of the CI repressor in the PL system is affected by its production

and dilution rates. The production rate is determined by presence of the inducer,

while the dilution rate results from the combined effect of the cell division, trans-

membrane dilution, and protein degradation. In our model, the output of the system,

YFP, has the same dilution rate as CI. We assume that RNAP concentration is always
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Figure 4.4: (Continued on the following page.)
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Figure 4.4: Mechanistic understanding of the phenotypic constraints. (A) The effect of two im-

portant parameters in MAK model (dilution rate of CI and YFP, and CI production rate) on the

individual phenotypes that double mutants around wild-type can explore. Both arrows are shown

when an increase in a parameter leads to a significant increase in possible phenotype values in all

directions (see Fig 4.11). (B) Similarly as in A, but showing how boundaries of phenotypic landscapes

of double mutants change, showing the constraints between pairs of phenotypes more clearly. Full

and dashed black envelope represent phenotypic landscape of increased and decreased parameter,

respectively. For reference, red evelope shows the landscape with the original parameter value.

Results for ’lag vs amplitude’ look very similar to ’slope vs amplitude’ - see Fig 4.12. As dilution time

does not affect steady state dynamics, the ON vs OFF landscape is not affected and therefore not

shown. Slope was rescaled with amplitude, i.e., slope/amplitude. All units are in wild-type units,

with the exception of OFF expression – the expression (ON and OFF) is in the units of wild-type

ON expression. (C) Overlap between -10 RNAP binding site and OR1 positively correlates with

the size of phenotypic space of double mutants. The middle plot shows the sufrace area of ON

vs OFF landscape as a function of number of overlapping base pairs. The surface area units are

normalized to the wild-type (WT) overlap of 10bp. The energy matrix representation of RNAP also

includes flanks of -10 binding site, thus wild-type having 10bp overlap with OR1 (see Fig 4.2A). The

side plots shows comparison of ON vs OFF landscape for wild-type overlap of 10bp (right) and

no overlap (left), demonstrating that decreasing one constraints (lower overlap) leads to increase

of another constraints (lower space of possible phenotypes). (D) Surface area of all phenotypic

landscapes with removed with-in correlations and structure of the energy matrices which represent

protein structure. This is done by randomly shuffling the elements of the energy matrix, keeping

the consensus sequence intact. Legend shows which energy matrix was shuffled. Units of surface

area are normalized to the surface area of wild-type (non-shuffled) energy matrices - red dashed

line. Error bars represent s.t.d. of 500 replicates. Note that y-axis does not start at zero. Grayed area

shows results for dynamics OFF to ON. For details on surface area and overlap, see Section 4.4.1.

constant.

The CI production rate and the dilution rate impact most phenotypes individually

and, in most cases, in a monotonic fashion (Fig 4.4A, Fig 4.11). When considering

the constrains that emerge between pairs of phenotypes, the CI production rate and

the dilution rate alter the limits of phenotypic values that can be achieved, but have

a lesser impact on the specific nature of constraints (correlations) (Fig 4.4B). In other

words, the concentrations of molecules in the system primarily affect the maximum

range that each phenotype can achieve.
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Promoter architecture

Each bacterial promoter has a specific architecture, determined by the relative

position of RNAP and transcription factor binding sites in it. In the wild-type PL

promoter, there is one strong RNAP binding site consisting of the -10 and -35 feet,

and two operators for the CI repressor, OR1 and OR2. In the wild-type promoter, OR1

has a 10 base pair overlap with the -10 RNAP foot. This means that mutating those 10

positions in the promoter affects the binding of both, RNAP and CI simultaneously.

In order to more clearly understand the role that promoter architecture plays

in constraining the dynamical phenotypes, we considered a changing overlap of

operator OR1 with the -10 foot of RNAP (see Section 4.4.3). We assumed that a given

strength of CI binding is equally repressive, irrespective of the specific promoter

architecture.

The critical property that changes as the overlap between the binding sites of two

molecules changes is the number of positions that, when mutated, affect the binding

of both instead of just one molecule. In other words, less overlap means more

independent binding of each molecule in the system. We found that greater overlap

decreased the constraints (Fig 4.4C), meaning that promoter architectures with

more independent binding of RNAP and CI have a stronger correlation between

phenotypes and hence could explore a smaller portion of the total phenotypic

landscape surface area. This somewhat counter-intuitive finding stems from the fact

that, when more than a single mutation emerges in the system (and here, we present

all possible double mutant effects), greater overlap enables a higher possible number

of phenotypic states to be assumed by the system. In other words, when there is no

overlap, a point mutation can affect either the binding of CI or of RNAP, while with

overlap it can affect the binding of one, the other, or, critically, both simultaneously.

Binding energies

The fundamental summary of a transcription factor’s function is contained within

its energy matrix, which describes the effect of every possible point mutation in the

binding site on the energy of binding between the transcription factor and DNA.
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Each energy matrix has its internal structure – between positions, some have a

greater impact on binding than others; and within positions, some mutations alter

the binding energy more than others. The energy matrix structure therefore implies

a specific set of correlations between mutational effects..

We explored the extent to which the specific structure of RNAP and CI energy

matrices (Fig 4.8) affected the constraints in dynamical phenotypes. To do this, we

created 500 alternate energy matrices for both, RNAP and CI, in which we kept

the wild-type sequence intact but shuffled randomly the specific entries in the

matrix. Doing this altered the correlations between mutations that are inherent to

the wild-type RNAP and CI energy matrices.

For most pairs of phenotypes, shuffled RNAP energy matrices decreased, while

shuffled CI energy matrices increased the total surface area explored by mutations

(Fig 4.4D). In other words, the wild-type RNAP imposes fewer constraints than

one would predict based on randomized energy matrices, while the wild-type CI

imposes greater constraints. This finding suggests that the internal structure of the

energy matrices might have been selected for. RNAP is a molecule that requires

flexibility in its binding, because it regulates the expression of >70% of all E.coli

promoters [Salgado et al., 2013]. Our results suggest that this functional requirement

of RNAP is aided by the structure of its energy matrix, which can explore, and

hence function, in a wider range of phenotypic states. For CI, which is supposed

to bind only a few specific promoters, the energy matrix is more constrained than

predicted. Hence, CI is less likely to lead to spurious binding, which can introduce

fitness costs through binding to non-cognate promoters.

4.2.5 Evolution of regulated promoters

The mechanistic, predictive GP mapping for dynamical phenotypes provides the

starting point for understanding how repressible promoters evolve. In population

and quantitative genetics, evolution is typically described for a single, or, less fre-

quently, for a pair of correlated phenotypes. Given the ability to accurately predict

six phenotypes from a given genotype (Fig 4.1, Fig 4.2), we explore how evolution
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proceeds when selection acts on six phenotypic dimensions.

Specifically, using the combined model we can describe several fundamental prop-

erties that affect how repressible promoters evolve, especially focusing on: (i) the

distribution of phenotypic and fitness effects of the whole genotypic space and

evolving promoters; (ii) the evolutionary trajectories and dynamics of populations

that are evolving a repressible promoter; (iii) the outcomes of selection for repressible

promoter function; and (iv) emerging simplified fitness landscapes that nevertheless

correctly capture trait evolution.

Distribution of phenotypic and fitness effects of random sequences

Any random sequence can, in principle,act as a repressible promoter, if it binds RNAP

and a repressor. We examined how the phenotypic effects of random sequences were

distributed, in order to understand how likely a random sequence is to bind RNAP

and CI. To explore the phenotypic effects of random sequences, we sampled 2 · 109

random 80 base-pair long sequences. We found that for all six phenotypes, functional

sequences were very rare with most random sequences being non-functional

(Fig 4.5A), as previously observed for individual promoters [Kinney et al., 2010;

Maerkl and Quake, 2007] and proteins [Maerkl and Quake, 2009; Jacquier et al.,

2013].

We also wanted to describe the effects of random sequence on the fitness of the

organism. To describe the fitness of a given sequence, we adopted quadratic fitness

landscape – one of commonly used models in evolutionary biology.

Using this model, we assigned a fitness value to each of the 2 ·109 random sequences

in order to characterize the distribution of fitness effects (DFE) of the entire genotypic

space. Most random sequences had low fitness, as most random sequences had

neither any expression nor the ability to bind the repressor (Fig 4.5B). Functional

repressible promoters (those with phenotypes at least somewhat similar to the wild-

type PL promoter) were extremely rare, occurring with probabilities of 10−5 − 10−7.

Such a distribution of fitness effects were frequently observed [Jacquier et al., 2013;

Sanjuán et al., 2004; Duveau et al., 2017; Metzger et al., 2016], although typically the

observed distributions were smoother. This difference most likely arose from the fact
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Figure 4.5: (Continued on the following page.)

that we link genotype to fitness through six phenotypes, while most measured DFEs

either do not account for any phenotypic changes that alter fitness or, when they do,

they only do so for a single phenotype [Orr, 2003; Eyre-Walker and Keightley, 2007;

Bataillon and Bailey, 2014; Soskine and Tawfik, 2010].
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Figure 4.5: Higher dimensional phenotypes evolve faster. (A) Probability density function (PDF)

of phenotypes for 2 · 109 random sequence across the whole genotype space (black, gray, left y-axis)

and distribution of 2000 evolved sequences (red, right y-axis). Black and dark red line represents

phenotypes for ON to OFF dynamics, while gray and light red are phenotypes from OFF to ON

dynamics. All units are in wild-type units, with the exception of OFF expression – the expression

(ON and OFF) is in the units of wild-type ON expression. (B) Probability density function of effective

fitness for random (black, left y-axis) and evolved (red, right y-axis) sequences, showing that selection

strongly affects the distribution, leading to only very high fitness values. Solutions can be classified

in 4 groups, depending on the functionality of RNAP and CI binding sites. Effective fitness is

defined as 1 − 1
6
∑6

i�1(pi − popt
i ), where pi and popt

i are phenotype i and optimal value of phenotype

i, respectively. Fitness is computed from phenotypes in (A). Note that the fitness function used

in evolutionary model also depends on selection strength – Eq 4.17 and Section 4.4.4. (C) Time

trajectories of phenotypes, showing the order of how phenotypes evolve. As OFF expression is

selected for low values, we instead show repression which is the ratio of ON and OFF expression.

Each curve represents a median of 2000 individual trajectories. For a better comparison on the order

of how phenotypes evolve, we normalized phenotypes to start at 0 and end at 1. See Fig 4.13 for

non-normalized results. (D) Top: Evolving 2D phenotypes is almost two-fold slower compared to

6D phenotypes. Time units are inverse mutation rate. Below: Proportion of evolved sequences as a

function of fitness threshold which is a threshold above which sequence is considered evolved. With

higher required fitness, increasing proportion of sequences get trapped in a local minimum, leading

to lower proportion of evolved sequences. This effect is much more significant for 6D phenotypes. (E)

Time to evolve, shown in color, where lag and slope were substitute with ON and OFF correlation –

Eq 4.27 and Section 4.4.4. For CON � COFF � 0.5, the fitness function collapses to 2D phenotypes

case, marked by red x. With higher correlations, evolution becomes faster. Red curve approximately

marks the position where time to evolve equals that of 6D phenotypes. The time units are in 2D

wild-type evolution time.

Evolutionary trajectories and dynamics

Theoretical models of evolution ordinarily consider a single, or, occasionally, two

phenotypes that selection acts on. How evolution proceeds when multiple pheno-

types are selected on remains poorly understood. The distributions of phenotypic

and fitness effects of random mutations describe the potential starting points for

repressible promoter evolution. As a miniscule portion of random sequences act

as repressible promoters, selection must act on almost any random sequence in
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order for a promoter to evolve. To simulate such evolution, we started with 2000

randomly selected sequences, and used a Strong Selection Weak Mutation (SSWM)

model (adapted from [Tuğrul et al., 2015]) with total population size N and selection

strength of s to simulate evolution trajectories for each starting sequence. We selected

for wild-type PL function in terms of all six phenotypes, meaning that RNAP and

CI binding sites had to emerge in the evolving promoter.

First, we were interested in whether the six phenotypes were fixed in the population

in a specific order. While, unsurprisingly, ON expression always emerged first, there

was also an order in which other phenotypes emerged in the population (Fig 4.5C).

In other words, the evolutionary trajectories were not completely random, implying

that selection for multiple phenotypes might be more predictable than expected.

Furtermore, evolving some regulation on top of a weak constitutive promoter takes

ten times longer then evolving the weak promoter itself (Fig 4.5C).

Intuitively, selecting for an additional phenotype ought to slow down evolution,

because each phenotype needs to reach its own optimum. For example, resistance

to a single antibiotic or pesticide generally evolves more rapidly than resistance

to multiple ones [Durão et al., 2018; Neve, 2007]. The combined model allowed

us to compare the evolutionary trajectories and dynamics when selection acted

on all six phenotypes (6D) or only on two phenotypes (ON and OFF expression –

2D). Starting from same random sequences, we compared how rapidly populations

reached fitness comparable to that of the wild-type PL.

Surprisingly, selecting on all six phenotypes led to more rapid rates of evolution,

while being less precise (Fig 4.5D). Populations selected in 6D would more rapidly

approach the optimum, but were less likely to reach the exact fitness of the wild-type

PL, compared to the populations selected only for ON and OFF expression. This

effect becomes less significant with stronger selection (Fig 4.15), implying that

selection in evolutionary steady state is unable to keep all traits at the maximum.

The observed evolutionary dynamics stem from the constraints that shape the GP

landscape (Fig 4.3). The constrained nature of the GP landscape of the evolving

promoters means that a mutation that alters one phenotype is likely to alter other

phenotypes as well. As random sequences almost always have non-functional values
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for all phenotypes (Fig 4.5A), any change, if it were to occur, was more likely to

be positive. In fact, increasing the strength of the correlation between phenotypes

increases the rates of evolution (Fig 4.5E) – explaining why evolution along a

realistic constrained GP map is faster for six than for only two phenotypes. However,

selection on six phenotypes is less likely to actually reach the precise optimum

(Fig 4.5D bottom).

Distributions of mutational effects in evolving promoters

The distributions of phenotypic and fitness effects of random sequences (Fig 4.5A,B)

provide an insight into the structure of the entire genotypic landscape, and, as such,

inform about the potential starting points for de novo promoter evolution. Once

a given sequence is under selection for promoter function, its evolution proceeds

through individual mutations of that sequence. While many types of mutations

can occur in nature, we here focus on one of the most common – single and double

point mutations.

Distributions of phenotypic effects of point mutations (DME) summarize how point

mutations might alter the given phenotype(s). While normally DME refers to a

distribution of single point mutations, we also explored a DME for double mutants

to increase the statistics (see Fig 4.9 for DMEs of single mutants). In contrast to the

DME, distribution of fitness effects of point mutations (DFE) captures the fitness

effect without explicitly accounting for how the mutation alters the underlying

phenotypes. Numerous descriptions of DMEs and DFEs exist [Kemble et al., 2019;

Eyre-Walker and Keightley, 2007; Soskine and Tawfik, 2010], but their experimental

determinations almost exclusively focus on DMEs and DFEs at a given point in

evolutionary time. In other words, we lack any understanding of how DMEs and

DFEs change as a given sequence evolves from non-functional to its optimum.

The detailed GP map combined with an evolutionary model allowed us to track how

DMEs and DFEs of evolving sequences changed during the course of their evolution

towards PL-like function. The distribution of phenotypes of evolved promoters,

show narrow landscapes around the reached evolutionary end points (Fig 4.5A).

The range of phenotypic values that are reached after selection does not coincide
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with phenotype values that are selected for, implying that wild-type PL promoter

differs from evolved promoters. Indeed, due to modeling difficulties (Section 4.4.1)

our evolutionary model does not account for cooperativity between two CI dimers.

The DFEs of evolving promoters are fairly smooth (Fig 4.6A, Fig 4.14). As the

population moved towards its optimum, the frequency of deleterious mutations

increased, although with a sharp decline for highly adapted promoters (Fig 4.6B).

Furthermore, DFE characteristics depend only current fitness and not on the precise

genotype, hinting that detailed description of genotype is not fully required for

understanding DFEs (Fig 4.6A, Fig 4.6C top and middle). This puts these landscapes

into the class that were studied before, yet it does not seem it is one of the standard

thereotical landscapes [Kryazhimskiy et al., 2009]. Meanwhile, evolving genotypes

change their rate at which they travel through adaptive landscape (Fig 4.6C bottom).

Adaptive landscape, shown on Fig 4.6D, contains long ridges of comparable fitness,

suggesting abundant and potentially long neutral networks in which mutations

might alter genotype but not fitness [Wagner, 2005], as commonly observed in larger

gene regulator networks [Payne and Wagner, 2014].

DMEs and DFEs are not static properties but rather change, often dramatically,

during the course of evolution. The changes in the shape and structure of the DFE

can occur even after only one or two mutations, especially when the population is

well adapted (Fig 4.6C, Fig 4.14). Therefore, modeling evolution must account for

the changing nature of DMEs and especially DFEs, rather than assuming a fixed

DFE throughout the course of the evolution.

Evolved promoters

From a theoretical perspective, predicting how a population traverses a given fitness

landscape, or the dynamics of evolution, has received more attention than predicting

the outcomes of evolution. This is, in large part, due to the lack of detailed GP maps,

resulting in an advanced understanding of how selection operates but a relatively

poor description of the genotypes that actually evolve.

The dynamical GP map that we developed allowed us to not only understand how

repressible promoters evolve but also what genotypes were favored by selection.
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Figure 4.6: Selection gives rise to different architectures of binding sites. (A) Distribution of fitness

effects (DFE) for 30 different genotypes (gray) with the same effective fitness value (number writen

in each plot), and their average (black curve). Vertical black and dashed lines represent mean +-

std of the average distribution. (B) Proportion of neutral, deleterious, and beneficial mutations

as a function of effective fitness. Error bars represent s.t.d. over 30 different genotypes with the

same effective fitness. Deleterious and beneficial mutations are defined as mutations that decrease

and increase effective fitness by at least 0.02, respectively. The vertical dashed line shows effective

fitness 0.75 of non-functional sequences. (C) Top: the difference in mean of DFE and fitness of

starting genotype as a function of fitness. Negative values represent that majority of mutations are

deleterious. Effective fitness is defined in Fig 4.5B caption. Middle: Standard deviation of DFEs as a

function of fitness. Error bars in top and middle plot represent standard deviation of mean and s.t.d.

estimates over 30 replicates. Botom: Time spent within the fitness interval of ±0.1. The results are

the median over 2000 evolving sequences. The vertical dashed line shows effective fitness 0.25 of

non-functional sequences. (D) Representation of fitness landscape with the effective CI and RNAP

binding energy (see Section 4.4.1). Contours show the lines of equal fitnes. Underlined numbers 1-4

show the classifications in Fig 4.5B. Gray lines represent 6 examples of evolutionary trajectory: first

the RNAP binding site evolves (decreasing RNAP binding energy), reaching a ridge and starting to

evolve CI binding site. White area denotes where the amplitude of expression is < 10−15, reaching

computer precision limit. The third parameters, describing binding configurations with CI bound

upstream, does not have an effect on fitness landscape, it only changes the size of the white area

(Section 4.4.1). (E) Example of three classes of evolved architectures with marked binding RNAP

and CI binding sites. (F) Histogram of positions of strongest RNAP and CI binding sites. We mark

the three architectures described in E with the percentages of each of them. (G) The distribution of

number of significant CI binding sites between different architectures (top, middle, botom), together

with 2D and 6D comparison. Significant binding site is defined as contributing at least 10% to total

repression. Many of evolved sequences have more than one significant binding site. (H) Time to

evolve varies not only between 2D and 6D, but also between different architectures. The results

from D-H are from 2000 replicates with N � 106 and s � 1. (I) Using the data from RegulonDB, we

obtained the position of binding relative to RNAP binding site of over 700 repressors. These were

classified in one of the three architectures. A majority fall in architecture II which coincides with the

fact that this architecture evolves fastest in 6D evolution.

Specifically, we were interested in what promoter architectures were more likely to

emerge when random sequences evolved into repressible promoters. In addition to

CI sterically excluding RNAP binding, we also considered any CI binding down-

stream of RNAP binding to have repressor function, and observed the number of
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CI binding sites that evolved (see Section 4.4.1). We also observed the architecture

of the promoters that emerged, defined as the relative position of the strongest

(dominant) CI binding site relative to the RNAP binding site (Fig 4.6E).

The likelihood of emergence was not random for the three promoter architectures –

the dominant CI binding site was more likely to appear downstream of the RNAP

binding site (Fig 4.6F). The location of the strongest binding site (i.e. architecture)

also impacted the total number of CI binding sites that needed to evolve in order

to reach wild-type PL levels of repression (Fig 4.6G). The likelihood of a given

architecture emerging was related to its speed of evolution (Fig 4.6H), which was, at

least in part, affected by the constraints associated with that architecture (Fig 4.6E).

Furthermore, the RNAP binding site, which always evolves first (Fig 4.5C), intro-

duced further constrains on the emergence of CI binding site(s). For example, when

the dominant CI binding site evolved between the RNAP -10 and -35 binding site

(architecture II), it often required additional CI binding sites to reach the fitness

optimum (Fig 4.6G). This is because the dominant CI binding site in architecture II

has direct overlap with RNAP binding sites, limiting the range of mutations that

will increase CI binding without negatively affecting RNAP binding.

Selection acting only on two phenotypes (ON and OFF) predicts different evolution-

ary outcomes (promoter architectures and binding site numbers) to selection acting

on all six phenotypes, with 6D selection resulting more frequently in multiple CI

binding sites (Fig 4.6G). Furthermore, the predicted rates of evolution of the three

architectures were also different between selection for two versus all six phenotypes

(Fig 4.6H).

It remains completely unexplored whether selection in repressible promoters actu-

ally acts on dynamical (6D) or only on steady-state (2D) phenotypes. To indirectly

examine this question, we collected the information about all known promoters in

E.coli from RegulonDB [Salgado et al., 2013]. Specifically, we classified all known

repressible promoters into the three promoter architectures (shown in Fig 4.6E),

using the information about the known position of repressor binding sites relative

to RNAP binding sites. Interestingly, we found that the largest number of known

promoters had a repressor binding site between the -10 and -35 RNAP sites (archi-
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tecture II) (Fig 4.6I). Our model predicted this architecture to arise most rapidly

when selection acts on six phenotypes, but not when it acts on only two. Therefore,

while a multitude of factors likely contributed to architecture II being the most

common in the E.coli genome, one of them might be that selection more frequently

acts on dynamical rather than just steady-state phenotypes.

4.2.6 Generalizing beyond the studied system

In this work, we developed a comprehensive GP map capable of predicting how

mutations in a promoter alter six dynamical gene expression phenotypes, and then

used the model to understand how such promoters might evolve. To achieve this,

we focused on the Lambda PL promoter as a well understood model system in

molecular biology and gene regulation [Ptashne, 2011; Lagator et al., 2017a]. Now

we ask how can we apply the lessons learned from Lambda PL to other promoters

and gene regulatory networks in general?

To address this question, we focused on the fundamental evolutionary property

of any system under selection, the DFE, and explored its mechanistic origins. The

most important component of our combined model for linking genotypic mutations

to their effect on phenotype is the energy matrix (Fig 4.2A). Indeed, the constraints

that define GP mapping (Fig 4.3) are in no small part attributable to the structure of

the energy matrix (Fig 4.4D). And yet, while the energy matrix defines the specific

nature of those constraints, the total range of phenotypes that could possibly be

realized through mutations depends only on the range of values in the energy matrix

but not on its internal structure (Fig 4.3A – black lines). In fact, the generalizable

mechanisms (promoter architecture, concentrations of transcription factors, the total

range of energies in the energy matrix and, importantly, the biophysical laws that

are explicitly modeled) that determine how a transcription factor binds DNA set

the limits for achievable phenotypes, while the specific energy matrix structure

determines the correlations between phenotypes.

The question of how generalizable our findings are to other promoters becomes a

question of whether predicting DFEs and evolutionary dynamics without an explicit
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energy matrix is accurate. If the generalizable mechanisms of transcription factor-

DNA binding indeed define the limits of what phenotypes can possibly be realized,

then they ought to give sufficiently good predictions of DFEs and evolutionary

dynamics without accounting for the internal structure of the energy matrix. The

energy matrix is a multi-variable component of the model, connecting genotype to

binding energies of RNAP and CI. Here, we summarized the two energy matrices

and promoter architecture through three variables that capture the general range of

energy values present in the energy matrices but not its internal structure (Fig 4.7A

yellow rectangle, also Section 4.4.4). In this model, which we referred to as the

’geometric model on binding energies’, a mutation alters one or more of the energy

matrix summary variables (see Section 4.4.4). Importantly, mutational changes are

represented as additive changes for energies but multiplicative for the rates in the

model. Therefore, proper choice of effective variables is crucial and is informed by

the underlying model. This model predicted DFEs that were comparable to those

predicted by the combined model with the energy matrix (Fig 4.7B). This means that

summarizing the energy matrices and promoter architecture with only 3 parameters

resulted in consistent predictions of promoter evolution even though such a model

did not account for the specific relationship between genotypic mutations and

dynamical phenotypes. Therefore, the mechanisms that govern the GP mapping

cannot account for all details of the underlying GP mapping nor are they sufficient

to predict the phenotypic effects of specific mutations. However, they are sufficient

to understand general trends of promoter evolution.

When modeling evolution, typically the fitness effects of mutations are drawn from

an assumed distribution of phenotypes. That distribution is, most of the time, a

theoretical assumption rather than built on experimental measurements of DMEs

and DFEs. We implemented such an approach to model promoter evolution, where

each mutation directly altered one or more phenotypes – we refer to this model

the ’geometric model on phenotypes’. This model, which is in line with typical

population genetics models does not account for any aspects of GP mapping (Fig 4.7A

red rectangle, Fig 4.7B). The predictions of DFEs, and hence our understanding of

evolution, are dramatically different if we do not account for the underlying GP
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mapping or, at least, for the mechanisms that govern that mapping – questioning

the common approaches used in theoretical evolution – Fig 4.7A.

In principle, extending our model (Fig 4.2A) to other regulated promoters, or

even to more complex networks, is relatively straightforward. The fundamental

aspects of the MAK ought to be true for any dynamical molecular system. Similarly,

utilizing thermodynamics to predict steady-state gene expression levels is possible

for any promoter or a network of any size [Bintu et al., 2005a]. The major difficulty

in accurately mapping GP in other networks comes from the fact that the predictive

power of the TD model relies on having the relevant energy matrices [Kinney et al.,

2010; Lagator et al., 2020], and obtaining energy matrices is labor- and time-intensive.

And yet, our results suggest that for understanding evolution, using easy-to-derive

summary of energy matrices might be sufficient, providing a key insight into how

our model can be extended to other systems. This is why not only describing GP

mapping, but also understanding its mechanistic origins, ought to form a crucial

new direction in studying evolution – it provides a balance between detailed and

exhaustive experiments and using generalizable assumptions that, at least in the

case of promoters, often provide inaccurate understanding of evolution.
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summary parameters - independent of genotype - which describe the fitness landscape and DFEs

qualitatively accurate. (B) The comparison of DFE statistics for the original model (blue), including

all the details of genotype-phenotype-fitness mapping, or two types of geometric model: one where

mutations are represented as random effects on binding energies (yellow) represented by 3 summary

parameters, or random effects on phenotypes (red). Geometric model with phenotypes shows

independent change in DFE and decrease in DFE s.t.d with increasing fitness. This is in no agreement

with real DFEs. Meanwhile, geometric model on binding energies qualitatively predicts the correct

trends in DFE statistics, showing that understanding mechanisms governing GP mappings is needed

to understand DFEs. See Section 4.4.1 for details.

4.3 Discussion

In this work, we developed a modeling approach that can accurately predict how

mutations in a bacterial promoter alter the dynamics of gene expression. Doing so

allowed us to, for the first time, examine how promoters evolve if selection acts on

complex phenotypes determined by complex promoters, rather than only on simple
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single environment expression levels. Dynamics of gene expression are a critical

component of gene regulation, as the rate at which a gene is turned on or off can

alter molecular decision making and organismal development. For example, in the

system we studied, namely the Lambda PL promoter that acts as a genetic switch

between the phage lytic and lysogenic lifestyle, slowing down the expression of the

repressor can result in a higher proportion of phages incorporating into the host

genome [Ptashne, 2011]. On a broader genomic scale, it is plausible that selection

acted on dynamical phenotypes, rather than only on steady-state expression levels,

when shaping the architecture of E.coli promoters (Fig 4.6G,H). In spite of their

importance, the role of gene expression dynamics in shaping the structure of gene

regulatory networks remains poorly understood, as most studies focused on steady-

state expression to describe how networks function and how they evolved [Payne

and Wagner, 2014; Aguilar-Rodríguez et al., 2017; Igler et al., 2018; Taylor et al., 2015;

Babu and Teichmann, 2003]. The model we developed, which is extendable to most

regulated bacterial promoters, can form the foundation for exploring how dynamics

affect network structure and evolution in a more comprehensive manner.

Our model offers the prospect of improving the development of synthetic constructs

in bacterial species. Synthetic biology often requires the development of gene

regulatory cascades, when the expression of one component in the network triggers

the expression of subsequent one [Trosset and Carbonell, 2013]. The optimization

of promoters that constitute such synthetic networks can be critical for desired

functioning of the construct, as changes in the levels or the dynamics of gene ex-

pression levels can alter construct performance [Singh, 2014]. Predicting the effects

of mutations in silico, rather than having to experimentally create them in the lab,

can speed up the process of developing a synthetic microorganisms for industrial

purposes.

Describing, let alone predicting, how genotype maps onto phenotype has been a

long-standing goal in evolutionary biology. In gene regulation, GP maps have been

developed for entire gene regulatory networks [Payne and Wagner, 2014; Aguilar-

Rodríguez et al., 2018; Carter et al., 2013] or for individual promoters [Otwinowski

and Nemenman, 2013; Barnes et al., 2019; Kinney et al., 2010; Lagator et al., 2017a].
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However, all such maps consider only steady-state expression as the phenotype.

More broadly, predictive GP networks have been developed for only a hand-

ful of biological systems – RNA folding and metabolic networks. Predictive

RNA folding was the first biophysically-rooted GP map [Schuster et al., 1994;

Schuster, 2006], but the effects of altering RNA structure on fitness are difficult to

understand. Models of metabolic networks, on the other hand, have a clear link

between phenotypic changes and their effect on fitness, but can only account for large-

scale mutations like deletions and knock outs [Yi and Dean, 2019; Segré et al., 2000;

Szathmáry, 1993]. Our combined model extends the ability to predict GP mapping

to, plausibly, most bacterial promoters at the level of single point mutations, offering

unprecedented detailed insights into the forces that shape GP mapping.

Developing a predictive GP map that accounts for mutational effects on six pheno-

types allowed us to explore how biological systems evolve when selection acts on

more than a single or a couple of phenotypes. Typical theoretical models of evolution

focus on a single trait that is either controlled by a single or a large number of genes.

Similarly, most experimental approaches that measured the effects of mutations

either investigate how mutations directly alter fitness [Bataillon and Bailey, 2014;

Keightley, 2000; Kassen and Bataillon, 2006] or describe how they affect a single

phenotype of interest [Soskine and Tawfik, 2010; Lehner, 2013]. The detailed GP

mapping enabled by our model identified a potential difficulty with the existing

approaches to understanding mutational effects and evolution. Namely, the evolu-

tionary outcomes of selection acting on multiple rather than a single phenotype can

be drastically different (Fig 4.5, Fig 4.6).

Put together, our findings emphasize the need to improve our understanding of the

mechanism that underpin biological function, and to understand the evolutionary

consequences of those mechanisms [Yi and Dean, 2019]. Doing so allowed us not

only to develop a predictive GP map for a repressible bacterial promoter, but also

to understand how that promoter might evolve. Theoretical models of evolution

commonly assume how mutations alter fitness without accounting for how muta-

tions alter phenotypes that underpin fitness changes [Milocco and Salazar-Ciudad,

2020]. Doing so can result in misrepresentation of how a biological system evolved
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(Fig 4.7B). In contrast, developing mechanistic models that link back directly to exper-

imental observations offers promise of more accurate description and understanding

of evolutionary processes.
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4.4 Methods

4.4.1 Model

Thermodynamic model

The thermodynamic model is a well established model for gene regulation which

provides a highly quantitative mapping from promoter sequences to gene expres-

sion levels that is compatible with biophysical measurements [Bintu et al., 2005a;

Bintu et al., 2005b; Kinney et al., 2010; Lagator et al., 2020]. It assumes that we can

use statistical mechanics to describe equilibrium probabilities of different molecules

binding to the sequence of interest, and using these to describe the expression of

the gene of interest.

The thermodynamic model requires us to know i) all the possible binding configu-

rations, ii) binding energies (and interacting energies) of the binding configurations,

and iii) available concentrations of the binding molecules.

Binding configurations. Binding configurations are specific to each system – in

our system, the following binding states are possible (Fig 4.2A):

1. empty state, i.e., nothing is bound

2. RNAP bound to, e.g., PL promoter,

3. CI dimer bound to, e.g., OR1 or OR2,

4. two CI dimers cooperatively bound, e.g., on OR1 and OR2.

These are 4 major possible configurations – in each, different binding locations are

possible. For example, RNAP can bind to its strongest binding site at −35 and −10,

or at any other part of the sequence. Of course, binding to other random pieces

of sequence is often very unlikely and will contribute very little to total binding.

However, when there is no one clear strong binding site, binding to these weaker

binding sites becomes important [Lagator et al., 2020].

Technically, there are other possible configuration, such as RNAP and CI both binding

at the same time to different binding sites (without steric hindrance). Another

example would be 3 CI dimers simultaneously bound to the DNA. However, these
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other configurations are extremely unlikely and contribute negligible amount to

total binding. They would become significant (and important to include) only if

strong RNAP and CI binding sites would not overlap. We include some of them in

the evolutionary calculations – for details on that see the Section 4.4.4.

Binding energies. Each of the above mentioned configurations has an energy of

binding that is obtained using an energy matrix. The energy matrix (EM) contains

the information about how every possible point mutation in the DNA-binding

site of a given molecule impacts its overall binding energy [Lagator et al., 2020;

Kinney et al., 2010]. As such, each DNA-binding molecule has a unique EM associated

with it,which can be thought of as a unique representation of that molecule’s function,

much like the amino acids sequence is a two-dimensional representation of that

molecules 3D structure. Therefore, in our system we require two EMs, one for

description of RNAP and one for CI – see Fig 4.8.

Therefore, EM can be represented by 4 × L matrix (hence the name) whose elements

give the energy contribution of the given nucleotide (rows) at given position

(columns) to the total binding energy. The total binding energy is then the linear

sum of individual energies, each contributed from individual nucleotides (Fig 4.2A).

How do we obtain the energy of binding from the energy matrix? We align the

binding site sequence with the EM, then for each position taking the EM element

that corresponds to the correct nucleotide in the sequence. For an example see

Fig 4.2A.

RNAP energy matrix includes also flanking regions. RNAP EM is described

by two parts, one for each of -10 and -35 binding sites, with a spacer between them.

As flanking regions of the common ’TATAAT’ and ’TTGACA’ sites also significantly

contribute to binding [Lagator et al., 2020], they are included in the energy matrix,

making each part of RNAP energy matrix 12bp (not 6bp) long.

Flexiable spacer penalties As shown in [Lagator et al., 2020], flexiable spacer

has an impact on RNAP binding. In our model we use their published energy
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penalties: 1.38, 0.54, 0, 0.17, and 0.94 for spacer variability between −2 and 2. These

values are in the units of the largest element in the RNAP energy matrix – see Fig 4.8.

Therefore, to obtain energy values in kBT, these values must be multiplied with

energy scale α, obtained in Section 4.4.2.

For default spacer with no energy penalty, energy of RNAP binding to a given

position is ER. However, for binding to the same binding site with spacer i, energy

of binding should be modified to ER → ER + δi , where δi represents the energy

penalty due to spacer i.

By having five possible spacer configurations, the total number of possible RNAP

binding configurations increases by 5-fold.

Using the energy matrices shown in Fig 4.8, the default spacer with no energy

penalty is 8bp.

Expression and probability of expressing state. One of the main assumptions

of the thermodynamic model is that rate of expression – and thus steady state

expression value – is proportional to the probability that expressing state occurs.

What is an expressing state? That is each configuration of the system which leads to

expression. In our case these are the configurations with bound RNAP.

Therefore, we can write the probability of finding the system in the state with RNAP

bound as

PE �

∑
i[RNAP]e−ER

i

1 +
∑

i[RNAP]e−ER
i +

∑
i[CI2]e−ECI

i +
∑

i[CI2]2e−ECI
i −ECI

i+24+ϵ
. (4.1)

The numerator in the above equation is the Boltzmann weight of the RNAP bound

state, while the denominator represents the sum of Boltzmann weights of all possible

configurations. ER
i and EC

i represent binding energies of RNAP and CI, respectively,

to binding site i which represents different binding sites along the sequence. [RNAP]
and [CI2] represent the available RNAP and CI dimer concentration, respectively,

and ϵ > 0 the cooperativity energy between two CI dimers whose start of binding

sites are 24bp apart.

For the wild-type sequence, there is only one significant RNAP binding site, and

two CI binding sites (OR1 and OR2) on which CI can cooperatively bind.
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Furthermore, all energies must be in the units of kBT.

The relation between CI monomer and dimer concentration. As binding to

the CI binding site occurs by CI dimers (quantity required in thermodynamic

model) and not monomers (quantity obtained from mass action kinetics model),

we compute the relationship between the two. Let us denote the rate of two CI

monomers forming a CI dimer as k1 and the opposite dissociation rate as k2. To a

very good approximation, we can assume that the system is in chemical equilibrium,

meaning that the processes of dimerization and dissociation occur faster than the

changes in CI concentration. Therefore, we have the following chemical reaction:

2[CI] k1−−−⇀↽−−−
k2

[CI2]. Using the law of mass action in equilibrium, we can rewrite it as

k1[CI]2 � k2[CI2], and thus [CI2] � k1
k2
[CI]2.

This means that we can rewrite Eq 4.1 as

PE �

∑
i[RNAP]e−ER

i

1 +
∑

i[RNAP]e−ER
i +

∑
i ω1[CI]2e−ECI

i +
∑

i ω1[CI]4e−ECI
i −ECI

i+24+ϵ
, (4.2)

where ω1 �
k1
k2

contains the rates describing relation between CI monomers and

dimers.

Reference points of energies. The quantities appearing in Boltzmann weights

(Eq 4.2) are the binding energy of the state and available concentrations. As defined

above, the binding energies are relative to the unbound state. However, the energy

matrix produces only the change in binding energy, relative to some reference point.

In our case, we assign this reference point to be binding to wild-type sequence to PL

and OR1 for RNAP and CI energy matrix, respectively.

Assuming that the binding energies in Eq 4.2 are only changes relative to these

reference points, the binding energies of the reference points must be taken into

account:

PE �

∑
i g1[RNAP]e−ER

i

1 +
∑

i g1[RNAP]e−ER
i +

∑
i ω[CI]2e−ECI

i +
∑

i ω[CI]4e−ECI
i −ECI

i+24+ϵ
, (4.3)

where g1 � e−ER
WT represents the Boltzmann weight of RNAP binding to the wild-

type sequence of PL, and ω � ω1e−EWT
CI the combination of dimer/monomer rates
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(ω1) and CI Boltzmann weights of binding to the wild-type sequence of OR1.

As ER and ECI represent only the energies of mutational effects relative to the

reference points, it means that their values equal zero for binding to said reference

points.

Changes in CI concentration are much slower than the equilibration of the

system. The thermodynamic model described above gives the prediction of

expression where all quantities are assumed to be in equilibrium. However, in our

system, the concentration of repressor varies, potentially violating this assumption.

Yet, if the time scales on which CI concentration varies is much slower than the time

scale on which the equilibrium is established, the assumption of equilibrium would

still be satisfied. In our case, the time scale of varying CI concentration is hours,

much longer than the typical processes in the cell.

Mass action kinetics model

The second model is the mass action kinetics (MAS) model which follows the

concentration of repressor CI and fluorescence protein YFP. The concentration of

CI is used to model the probability of RNAP being bound and rate of expression

(Eq 4.3), while the YFP concentration is used as a proxy for gene expression.

We use two ODEs, one for each concentration. Both have two terms, one that

describes the production of the molecule, and the second with processes that lower

the concentration.

Concentration of CI. We model the total repressor concetration [CI] as

d[CI]
dt

� RCI fCI(t) −
[CI]
τCI
, (4.4)

where RCI represents the production rate of CI, fCI(t) the delay in production rate

and takes values between 0 and 1, and τCI describes the effects of dilution and

degradation.

Delay in production of CI for ON→OFF. When studying the dynamics of

going from ON to OFF expression state, PTET promoter is induced, leading to expres-
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sion and production of CI. However, there exist a delay between the introduction

of the inducer into the system and between the repressor being present and able

to bind. This delay is due to i) diffusion of inducer to its cognate binding site, ii)

transciption and folding of CI protein, and iii) diffusion of CI to its cognate binding

site. We do not discuss the details of these three contributions in details but lump

them into one delay, described by:

fCI(t) �
tn

tn + τn
1
, (4.5)

where τ1 is the effective time scale of delay, and n the effective Hill coefficient (or

sharpness) of delay. This makes sure that the production rate of CI for t ≪ τ1 is

zero, while for t ≫ τ1 production rate converges towards RCI.

Delay in production of CI for OFF→ON. Similarly as above, we now address

the production of CI for the dynamics of OFF→ON, where inducer of CI production

is removed from the system. However, there is a delay in stopping the production

of CI and CI is being partially produced even when new environment (without

inducer) occurs. This is due to the fact that in this new environment, some inducer

is still left inside the cell and is not completely removed. This leads to production

of CI also in the new environment where no inducer is present. We describe this

process by:

fCI(t) �
τ
β
2

tβ + τβ2
, (4.6)

where τ2 is the effective time scale, and β the effective Hill coefficient (or sharpness).

This makes sure that for t ≪ τ2 the production of CI is still RCI, then decreasing

towards zero when t ≫ τ2.

Concentration of YFP. Similarly as for repressor, we model concentration [YFP]

as

d[YFP]
dt

� RYFPPE(t) −
[YFP]
τYFP

, (4.7)

where RYFP represents the basal production rate of YFP, and PE(t) the probability

of RNAP being bound (leading to expression) from Eq 4.2. PE changes as a function
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of time as the concentration of CI (which appears in PE) also changes with time. PE

takes values between zero and one. Here we assume that the probability of RNAP

being bound is linearly proportional to the rate of expression. τYFP describes the

effects of dilution and degradation of the YFP protein.

4.4.2 Obtaining the parameters for the model

Each of the two models (MAK and TD) requires different set of parameters. TD

model includes the following parameters (see Eq 4.3): prefactor in the RNAP bound

state g1[RNAP] (which we can treat as one parameter), scaling factors that determine

the units of energy matrix elements α and ι for RNAP and CI energy matrices,

respectively, prefactor in CI bound states ω, and cooperativity ϵ between two CI

dimers bound at OR1 and OR2.

Alternatively, MAK model parameters include (Eq 4.4, 4.7): YFP and CI production

rates (RYFP and RCI, respectively), dilution and degradation times of YFP and

CI (τYFP and τCI, respectively), and parameters β, n, τ1, τ2 describing delay in

production of CI.

These model parameters were obtained from different independent data sets,

described below.

Thermodynamic model parameters

The parameters for the thermodynamic model are the parameters that describe

the steady state expression; in other words, the expression in ON and OFF state,

without any temporal dynamics between the two. To obtain these parameters

we use an existing Lambda PR random mutant library [Lagator et al., 2020]. This

library includes over 25,000 unique mutants of the lambda PR, each in two different

environments – with and without CI repressor present, equivalent to ON and OFF

environments. The distribution of mutational effects in each environment covers a

wide range of expression value – from low to high expression in both environments.

This means that the mutations have various effects, from impacting only RNAP or

CI binding sites, to affecting both binding sites.
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To fit the parameters of the TD model to this library, we separate the library into two

disjoint sets; first part with 15,000 mutants which is used to fit the data (fitting set),

and the remaining 10,000 mutants to test how good the fit is (evaluation set). Using

the fitting set, we fit the steady state ON expression without present CI repressor to

obtain g1[RNAP] � 3.27 and RNAP energy matrix scaling α � 4.85kBT. Next, we fit

the TD model to the fitting set in the OFF environment, keeping the g1[RNAP] and

α fixed. There, we obtained cooperativity ϵ � 3.22kBT, ω[CI]2steady state � 0.01, and

CI energy matrix scale ι � 3.00kBT.

To test how good the fit is, we used the evaluation set from library data (on which

the model was not fitted) and computed Pearson’s correlation coefficient between

predicted and measured data points. For ON expression (without repressor) we

obtained ρON � 0.92, and for OFF expression (with repressor) ρOFF � 0.82.

To fit these parameters, we minimized the sum of squared difference between model

prediction and data.

Additionally, the two EMs were obtained from [Lagator et al., 2020].

Mass action kinetics model parameters

The MAK model parameters are those that describe the temporal change in CI and

YFP concentration. First, let us explore the steady state value of CI:

d[CI]
dt

� RCI fCI(t) −
[CI]
τCI

� 0 (4.8)

[CI]steady state � RCI fCI(t)τCI �

⎧⎪⎪⎨⎪⎪⎩
0, in ON environment

RCI τCI, in OFF environment
(4.9)

Alternatively, the steady state values of YFP equals:

d[YFP]
dt

� RYFPPE(t) −
[YFP]
τYFP

� 0 (4.10)

[YFP]steady state � RYFPPEτYFP �

⎧⎪⎪⎨⎪⎪⎩
RYFP PON

E τYFP, in ON environment

RYFP POFF
E τYFP, in OFF environment

(4.11)

where PON
E and POFF

E represent PE in ON and OFF expression, respectively. In PE

the appropriate value of [CI]steady state is used.
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YFP production rate only determines units of YFP. We next show that YFP

production rate, RYFP, only determines the units of YFP concentration; in other

words, we show that this production rate only scales YFP concentration. If we

rewrite [YFP] � [yfp] · RYFP, and use this in Eq 4.7, we show that we obtain an ODE

with rescaled YFP concentration (marked by [yfp]) but where the production rate

doesn’t appear in the ODE:

RYFP
d[yfp]

dt
� RYFPPE(t) − RYFP

[yfp]
τYFP

→
d[yfp]

dt
� PE(t) −

[yfp]
τYFP

(4.12)

By demonstrating that YFP production rate isn’t present in the ODE, we follows

that it doesn’t determine the dynamics of YFP.

CI production rate is determined from steady state OFF expression. Similarly

as for YFP, CI production rate also determines only the units of CI concentration

and not its dynamics. As the maximum effective steady state concentration of CI

is already determined by the steady steady expression in the presence of CI, we

set RCI to be such that the constraint ω[CI]steady state � 0.01 is met. In practice, this

means we can set ω � 0.01 and [CI]steady state � 1, following that RCI � 1/τCI.

Normalization of YFP to wild-type ON expression. Due to experimental reasons,

YFP expression values in experimental data have arbitrary units. Therefore, we

decided to use intuitive units of expression YFP and normalize all YFP results by

wild-type ON expression. In other words, the wild-type ON expression is set to

have value 1.

The steady state concentration of YFP of the wild-type sequence in ON environment

is written as:

[YFP]ON
WT � RYFP τYFP PWT

E ([CI] � 0) (4.13)

� RYFP τYFP

∑
i g1[RNAP]e−ER

i ,WT

1 +
∑

i g1[RNAP]e−ER
i ,WT
. (4.14)

Effectively, we set RYFP � 1, and normalize all YFP results by [YFP]ON
WT. Alternatively,

one can think of it as constraining the YFP production rate RYFP such that wild-type

expression in ON environment equals to one.
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Determining the dynamical MAK parameters. The remaining parameters that

need to be determined are τCI and τYFP, which capture the dilution and degradation

rate of CI and YFP, respectively, and the four parameters that describe delay in CI

production (τ1, τ2, n, and β). We used two wild-type temporal expression curves,

from ON to OFF and OFF to ON, to fit the above mentioned parameters. We obtained

that τCI � τYFP � 60 min which corresponds to the dilution of both molecules due

to cell growth. This agrees with the fact that degradation of both YFP and CI is

much slower than the growth rate of 1h. Furthermore, we obtained τ1 � 70 min,

τ2 � 70 min, n � 2, and β � 5 which are all within expected range of values.

Model agreement with the data.

To validate the performance of the model, we created 9 PL promoter mutants, pre-

dicted to affect the binding of RNAP and CI in different ways: (a) not to significantly

affect the binding of either; (b) primarily impair RNAP binding; (c) primarily impair

CI binding; (d) impair the binding of both, RNAP and CI – see Fig 4.2B.

Importantly, all the parameters were obtained from either independent steady state

data sets, or from the expression dynamics of the wild-type PL system. This means

that the prediction of these mutants is parameter free as no parameter was fit on

this set of data.

To test the goodness of fit, we compute the Pearson correlation coefficient be-

tween all time points of the 9 predicted and measured temporal dynamics of gene

expression. We obtain that ρON→OFF � 0.90 and ρOFF→ON � 0.90, showing a very

high agreement.

Next, we test the predictive power of TD and MAK models independently. For the

TD model, we have already shown on the evalution sample of over 10,000 mutants

that the predictive power is high (Pearson correlation coefficient of ρON→OFF � 0.92

and ρOFF→ON � 0.82, see Section 4.4.2). Furthermore, to test only the goodness of

fit of the MAK model, we wanted to remove the potential error in determining

the steady state expressions. In other words, if the steady state values are wrong,
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this will results in the wrong prediction of the temporal dynamics. Therefore, we

normalized all the temporal dynamics curve of both model and experimental data

in such a way that they all shared the same starting and ending point. This way,

we compared if the model and data trajectories that now share the same steady

state points, also share the trajectories – see Fig 2B. The agreement between model

and data is very high with Pearson correlation coefficient ρON→OFF � 0.98 and

ρOFF→ON � 0.96.

This quantitatively confirms what is already seen on Fig 4.2B – that while TD

gives good prediction and represents the state-of-the-art modeling, the MAK model

gives almost perfect prediction of the dynamics with very little deviations from the

experimental data.

4.4.3 Calculation of phenotypic landscapes

To compute the phenotypic landscapes, we use all double mutants of the wild-type

sequence. The reason why we haven’t used single mutants is that for the sequence

of length L � 67bp, there are only 201 single mutants, most of them having little or

no effect on the phenotypes. Alternately, the total number of all double mutants

is ≈ 20, 000 which gives high enough sample to explore the properties of the

phenotypic landscapes.

See Fig 4.9 for phenotypic landscapes of single mutants.

Phenotypic landscapes with continuous energies

To obtain the binding energies to a given binding site, we use the energy matrix on

the binding site sequence. However, to disentangle the effects of the discreteness

of sequence and binding site architecture, we explore the phenotypic landscapes

where binding energies are not constraint by the sequence but can continuously take

any value. This would give us the limits to the phenotypic space that the system

can explore due to it’s biophysical constraints, excluding the effects coming from

the sequence (discrete energy and architecture of binding sites). Even though there

are potentially many binding sites for RNAP and CI, we take into account only
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bindings to the strongest binding sites: RNAP binding to it’s strongest binding site,

CI binding to OR1, and CI binding to OR1. In other words, we assume only these

three binding sites exist which is a valid approximation as binding to other positions

is much less likely. This gives us a three dimensional problem where three binding

energies are independently and continuously varied.

Furthermore, to fairly compare the double mutant phenotypic landscapes of contin-

uous energies with energies determined from the sequence, we limit the range of

continuous binding energies. The range of the three binding energies is determined

by the range that can be explored by double mutants in the original, sequence

dependent system. For example, for continuous RNAP binding energy, we find

(using the energy matrix) the highest and lowest energy of binding to PL for double

mutants. This range is is between −5.32kBT and 9.70kBT (where wild-type binding

energy is the reference point with energy zero). The range of binding energies for

OR1 and OR2 is (−0.75, 7.43)kBT and (−1.69, 7.43)kBT, respectively.

Varying overlap between OR1 and −10 region

To see the effect of overlap between RNAP and CI binding site, we varied the

overlap between OR1 and −10 region of the wild-type sequence. Given that the

representation of RNAP is in the energy matrix, we can adjust the RNAP energy

matrix in a such a way that −10 region is moved, changing the overlap with OR1. Our

procedure was the following. If the −10 position was moved by h bp downstream,

we increased the spacer between −35 and −10 by h. The spacer penalties were also

corrected, allowing now for h larger spacer.

By moving the −10 position, we have effectively changed the size of energy matrix

to 4 × (L + h). To keep the binding to wild-type sequence unaffected by this change,

we have to adjust the energy wild-type matrix elements. As per our definition, the

energy matrix elements representing wild-type sequence have value zero. This

means that in each energy matrix column, there is one element with zero energy

contribution, representing wild-type nucleotide. The three remaining elements have

non-zero value and represent mutational effects to other nucleotides. Therefore, each

column in the new energy matrix is adjusted, such that the element representing WT
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sequence is assigned zero value, while the remaining three elements in the column

are given the three non-zero values. In other words, the wild-type nucleotide in the

column is adjusted due to the movement of −10 region by h bp.

This ensures that expression of wild-type sequence would remain the same for both

in presence and absence of CI.

Shuffling the elements of the energy matrices

We randomly shuffled the elements of an energy matrix without repetitions. This

maintained the original distribution of elements in energy matrix but destroyed any

internal structure of the energy matrix. To have a common reference point between

different energy matrices, we fixed the elements in the energy matrix that represent

the wild-type sequence. This way, the expression of the wild-type sequence was not

affected by the shuffle.

Computing the surface area of phenotypic landscape.

A set of points in space doesn’t have a volume (or surface). Therefore, to compute the

surface area of a phenotypic landscape, we decided to assume that each mutant is

represented with a square of edge length a, which is centered around the point of the

mutant in phenotypic space. Assuming a square instead of a circle is computationally

easier to implement, as surface area of a set of non-disjoint circles is non-trivial task.

To compute the surface area of a set of mutants in the phenotypic space, we first

represent the phenotypic space with a grid. The size of each tile in the grid must be

much smaller than the size of mutant’s square a. Next, for each mutant we mark

which tiles of the grid are covered by this mutant’s square. Doing this for all mutants,

the surface area of mutants in the phenotypic space is proportional to the total

number of marked tiles.

We measured all phenotypes in their wild-type value (with the exception of OFF

expression which was in units of wild-type ON expression), meaning that the

relevant scale of phenotypic values was 1. Therefore, our square size for each

mutants was set of be a � 0.01, representing a small change in phenotypes which
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could potentially be explored by intrinsic noise. However, the surface areas of

various phenotypic landscapes do not qualitatively change with other values of a –

see Fig 4.10.

4.4.4 Evolutionary model

For the evolution of promoter, we use the commonly used Strong-Selection-Weak-

Mutation model with single point mutations being introduced into the system. The

model assumes that that single mutations are rare, such that at any given time only

a single mutation is competing to be fix.

As the average time scale is determined by the arrival of a new mutation, we use

the inverse mutation rate as the unit of time.

What configurations lead to expression?

For the wild-type system, there already exist a strong RNAP binding sites with

two CI binding sites overlapping it. However, when evolving a complex promoter

de-novo, it is not entirely clear which configurations are productive and lead to

expression. For example, it is clear that CI binding to OR1 stericaly excludes binding

of RNAP and therefore represses expression. Similarly, CI binding further upstream

of RNAP binding site, it is clear there is no interaction between CI and RNAP,

thus allowing RNAP to bind, leading to expression. However, what if CI is bound

downstream of RNAP binding site, far enough to allow RNAP to bind to its binding

site? Does this configuration – of both RNAP and CI bound – lead to expression? In

all results we have assumed that CI bound downstream of RNAP leads to repression.

Fitness function

To describe the fitness function closely around it’s global maximum/peak, we can

use Taylor expansion around it and write the quadratic term. However, as we would

like fitness not to be negative, we instead describe fitness as

F ≈ 1 − s
d

d∑
i�1

(
pi

p*
i

− popt
i

)2

, (4.15)
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where s represents the selection coefficient, the sum goes over different phenotypes i,

and p∗
i is the normalizing factor of phenotype pi that determines the units. p∗

i � pWT
i

for all phenotypes, except for OFF expression which is measured in units of ON

WT expression, i.e., pWT
ON, as by construction. popt

i is the optimal value of pi with

highest fitness, and equals popt
i � 1 for all phenotypes except for OFF expression

which has value of popt
i � 0.0012. In other words, we measure phenotypes in their

wild-type units (with the exception of OFF expression), and would like to evolve

them towards the optimal value which is their wild-type.

The sum inside the fitness function can be written as:

d∑
i�1

(
pi

p*
i

− popt
i

)2

�

2D

(ON − 1)2 + (OFF − 0.0012)2 +(
slopeON→OFF

slopeWT
ON→OFF

− 1

)2

+

(
slopeOFF→ON

slopeWT
OFF→ON

− 1

)2

+(
lagON→OFF

lagWT
ON→OFF

− 1

)2

+

(
lagOFF→ON

lagWT
OFF→ON

− 1

)2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
6D (4.16)

where ON and OFF are already, by construction, in the units of wild-type ON

expression. If evolving only steady state expression, only the first two parts of the

sum are taken (marked by brackets with 2D). Alternatively, evolving all 6 phenotypes

requires all six contributions, as marked by brackets with 6D.

This makes sure that the optimal value of fitness is F � 1, and is F < 1 for any other

non-optimal phenotypes.

However, the fitness function in Eq 4.15 is a quadratic form, approximating the

peak only around the neighbourhood of the peak. To ensure that fitness function is

limited between zero and one, we generalize the fitness function to

F � exp
⎡⎢⎢⎢⎢⎣−s

1
d

d∑
i�1

(
pi

p*
i

− popt
i

)2⎤⎥⎥⎥⎥⎦ , (4.17)

which can be approximated by a quadratic form for phenotypes close to the optimal

value.
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Fixation probability

The fixation probability is given by the Kimura fixation probability

pfix �
1 − e−2∆F

1 − e−2∆FN (4.18)

where N is the population size and ∆F �
Fnew
Fold

− 1 the relative change in fitness

between old and new allele. As typical bacterial population sizes are relatively large,

the denominator will mostly have a small contribution.

Thermodynamic model and different configurations

To compute the probability of expressing state, we must take into account also

those configurations that were highly unlikely before, when we were exploring the

neighbourhood of wild-type sequence. This means that we need to extend the set of

major configurations that we model: i) unbound state, ii) only RNAP bound, iii) only

CI bound, iv) CI bound upstream of RNAP, and v) CI bound downstream of RNAP.

As mentioned above, the productive states that lead to expression are ii) and iv).

We can write the probability of states ii) or iv) occurring as

pE �
w2 + w4

1 + w2 + w3 + w4 + w5
, (4.19)

w1 � 1 (4.20)

w2 ∝
M−LR+1∑

i�1
[RNAP]e−ER

i (4.21)

w3 ∝
M−LCI+1∑

i�1
[CI]2e−ECI

i (4.22)

w4 ∝
M−LCI−LR+1∑

i�1
[CI]2e−ECI

i

M−LR+1∑
i�1

[RNAP]e−ER
i (4.23)

w5 ∝
M−LR−LCI+1∑

i�1
[RNAP]e−ER

i

M−LCI+1∑
i�1

[CI]2e−ECI
i , (4.24)

where w1−5 represent Boltzmann weights for states described by i) to v). M, LR and

LCI are the total sequence length, RNAP binding site length, and CI binding site
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length, respectively.

All other procedures don’t change.

Computation and visualization of phenotypic and fitness landscape

If we re-write the Boltzmann weights as w3 � [CI]2w̄3, w4 � [CI]2w̄4, and w5 �

[CI]2w̄5, we can write the probability of expressing as:

pE �
w2 + [CI]2w̄4

1 + w2 + [CI]2 (w̄3 + w̄4 + w̄5)
(4.25)

which can be represented as

pE �
K1 + [CI]2K2

1 + K1 + [CI]2 (K2 + K3)
(4.26)

where K1 � w1 represents productive configurations with only RNAP bind, K2 � w̄4

configuration with CI bound upstream of RNAP, both leading to expression. K3 �

w̄3 + w̄5 then represents unproductive configurations, not leading to expression –

see Eq 4.19.

For a fixed value of (K1, K2, K3) all phenotypes are exactly determined via TD and

MAK models. Therefore, using these three parameters, we can characterize the

whole fitness landscape as is shown in Fig 4.5G.

Correlating expression with slope and lag

To test how evolution of 2D phenotypes compares with evolution with additional

correlations between phenotypes, we substituted lag and slope with an effective

correlation to ON and OFF expression. This way we could directly test what effect

do correlations have on evolution speed.

Fitness function was modified to:

F � exp
(
− s

6
[
(1 + 4CON)(ON − 1)2 + (1 + 4COFF)(OFF − 0.0012)2

] )
, (4.27)

where CON ∈ (0, 1) and COFF ∈ (0, 1) represent average correlation of expression

with other 4 phenotypes (lag and slope in both ON to OFF,and OFF to ON dynamics).

For values CON � COFF � 0.5, fitness function takes the form for 2D evolution:

F2D � exp
(
− s

2
[
(ON − 1)2 + (OFF − 0.0012)2

] )
. (4.28)
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Geometric model

To test how genotype affects the distribution of fitness effects (DFE), we used the

evolutionary geometric model to simulate a set of mutants, thus forming a new

DFE. We tested two different models: where each mutation had an effect either on

phenotypes or Boltzmann weights.

Geometric model on phenotypes. In the geometric model where each mutation

was represented by a random change in phenotypes, we varied all phenotypes in

the following way. Each mutation had a fixed effect size in the phenotypic space,

meaning that the mutant had a fixed Euclidean distance in the phenotypic space

from the initial point. This means that vector of changes in phenotypes was described

by ®dp �
∑

i dpi , where dpi is a change in phenotype i and | ®dp | is fixed. Therefore,

new value of phenotype i is pinitial + dpi , where pinitial is the initial value of this

phenotype.

To obtain ®dp, we randomly drew numbers in the range of (−1, 1) for all phenotypes,

and at the end normalizing the vector to the desired amplitude. We used | ®dp | � 0.3.

Geometric model on binding energies. As we can represent our phenotypic

landscape with 3 effective Boltzmann weights (Section 4.4.4), we also modeled each

mutation as an effective change in the sizes of Boltzmann weights. Similarly as

for phenotypes, mutations are represented by a vector ®dp �
∑

i dri of fixed size

in the Boltzmann weight space. However, as Boltzmann weights take values that

vary many orders of magnitude, we decided that the each mutation will have a

relative effect on each Boltzmann weight: Kmutant
i � Ki(1 + dri), where Ki represents

Boltzmann weight i. We constrain | ®dp | to be fixed: |dp | � 1.

Relative change in Boltzmann weights can be represented by an additive change in

effective binding energies of the 3 effective configurations of the system. We can write

each of the three Boltzmann weights as Ki � e−Ei , i ∈ {1, 2, 3}, with Ei representing

the effective binding energy of configuration i. Therefore, as each mutation leads to

a relative change in Boltzmann weights Ki , we can write Kmutant
i � Ki(1 + dri) and

−Emutant
i � log Kmutant

i � log (Ki(1 + dri)) � log Ki + log dri � −Ei + dri , if dri ≪ 1.
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Computing DFEs for the geometric model

To compute the DFEs of the two above mentioned model, we use the original model

(with genotypes) and randomly drew sequences (to avoid any bias), until we found

a genotypes with the desired fitness value.

Now, having this Boltzmann weights and phenotypes of this genotype, we compute

104 single mutants around it using Geometric model on either phenotypes or

effective Boltzmann weights. For each mutant, we randomly drew a vector of fixed

size ®dr which represents the change in either phenotypes or Boltzmann weights.

To compare DFE with the original model with a genotype, we have to compute

double mutants. We do this by applying the procedure described above twice; first

to obtain single mutants, and the second time to get double mutants. In other words,

first a random vector ®dr1 is applied on the original phenotypes/Boltzmann weights

to get a single mutation, and then a second random vector ®dr2 is applied on the

new phenotypes/Boltzmann weights of the single mutation. This gives us a double

mutant.

To compute the means and standard deviations of these DFEs, we used 30 sequence

with different genotypes for each given fitness value.

Obtaining the architecture of E.coli promoters.

Using the data from RegulonDB, we obtained sequences of 2000 promoters and

consensus of ≈ 3700 TF-BS from E.coli. To find the cognate binding sites for each TF,

we matched consensus sequences of each TF-BS to different promoters, connecting

promoters with TF whole consensus perfectly matches. To find -35 and -10 region of

each promoter, we used RNAP energy matrix – the position with highest likelihood

forRNAP to bind was considered as RNAP binding site. Furthermore, to be consistent

with out experimental system, we used only the data where TF was a repressor,

leading to 700 positions of TF-BS relative to RNAP binding site. These were then

classified in one of the three architectures. A majority fall in architecture II which

coincides with the fact that this architecture evolves fastest in 6D evolution.
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4.4.5 Experimental system and measurements

We used a synthetic system based on the Lambda phage switch, in which we

decoupled the cis- (promoter) and trans- (transcription factor) regulatory elements,

as previously described in Lagator et al. [Mato et al., 2017]. We removed cI and

substituted cro with venus-yfp [Nagai et al., 2002] under control of PL promoter,

followed by a T1 terminator sequence. The OR3 site was removed in order to remove

the PRM promoter. Separated by a terminator sequence and 500 random base

pairs, we placed cI under the control of PTET, an inducible promoter regulated

by TetR [Lutz and Bujard, 1997], followed by a TL17 terminator sequence. In this

way, concentration of CI transcription factor in the cell was under external control,

achieved by addition of the inducer anhydrotetracycline (aTc). The entire cassette

was inserted into a low-copy number plasmid backbone pZS* carrying a kanamycin

resistance gene [Lutz and Bujard, 1997].

We measured the ON→OFF dynamics of gene expression in the wild-type PL

system in the following manner. Six replicates were grown overnight in M9 media,

supplemented with 0.1% casamino acids, 0.2% glucose, and 50µg/ml kanamycin.

The absence of the inducer aTc indicates that these cells were grown in the ON

state overnight. Overnight cultures were diluted 100x, grown for 2h under the same

conditions, and then diluted again at 100x. At this point, each replicate population

was diluted into two conditions: same as the overnight growth (in this case, ON

state); different state to the overnight, in this case achieved by adding 10ng/ml aTc.

Fluorescence of growing replicate populations was measured every 15 minutes in

Bio-Tek Synergy H1 platereader. The measured fluorescence was always corrected

for the autofluorescence of the media. Populations were always grown at 37◦C. To

measure OFF→ON dynamics, we used the same protocol, but have grown overnight

cells in the presence of 10ng/ml aTc. These wild-type PL measurements served as

the basis to derive model parameters.
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Sequence

GATAAATATTTATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTGATACTGAGCACATCAGCAG

GATAAATATTTATATCTGGCGGTGTTGACATAAATACCACTGGCGGTGATACTGAGCACATCAGCAG

GATAAATATTTATCTCTGGCGGTGTTGACATAAATACCACTGACGCTGATACTGAGCACATCAGCAG

GATAAATATTTATCTCTGGCGGTGTTGACATAAATACCACTGACGCTGATACTGAGCACATCAGCAG

GATAAATATTTATCTCTGGCGATGTTGACATAAATACCACTGGCGGTCATACTGAGCACATCAGCAG

GATAAATATTTACCTCTGGCGGTGTTGACCTAAATACCACTGGCGGTGATACTGAGCACATCAGCAG

GATAAATATTTATCTCTGGCGGTGTTGTCATAAACACCACTGGCGGTGATACTGAGCACATCAGCAG

GATAAATATTTATCTCTGGCGGTGTTGACCTAAATACCACTGGCGGTGATACTGAGCACATCAGCAG

GATAAATATTTTTCTCTGGCGGTGTTGACATGAATACGACTGGCGGTGATTCTGAGCACATCAGCAG

GATAAATATTTATCTCTGGCGGTGTTGACATAAATACCGCTGGCCGTGACACTGAGCACATCAGCAG

Table 4.1: Oligo sequences. Top sequence is the wild-type and all mutations are shown in red.

4.4.6 Experimental validation of model predictions

To validate model prediction, we created 9 PL promoter mutants. To select the

mutations in these mutants, we wanted to impair either: (i) RNAP binding with

minimal disruption to CI binding; (ii) CI binding, with minimal disruption to

RNAP binding; (iii) the binding of both molecules – see Table 4.1. We ordered

oligonucleotides containing the desired mutants from Sigma Aldrich, and cloned

them into the wild-type PL system by restriction/digestion. We verified each cloned

mutant by Sanger sequencing. We measured the ON→OFF and OFF→ON dynamics

of six replicates of each mutant in the same manner as described for the wild-type

PL system.

4.5 Supporting Information
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Figure 4.8: Energy matrices of RNAP (top) and CI (bottom). As it was shown that flanking region

of −35 (left) and −10 (right) RNAP binding site significantly influences the prediction of binding, we

also include them in the RNAP energy matrix. We mark the wild-type sequence of the strongest

binding site with red ’o’ (PL RNAP binding sites, and OR2 CI binding site) and with red ’x’ (OR1

CI binding site). The unit scale is normalized to be between −1 and 1 which is determined by the

largest element in each matrix. The transforming factors to real energy units kBT for both RNAP and

CI EM, α and ι, are determined in section 4.4.2.
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Figure 4.9: Phenotypic landscapes of single mutants. Showing the same phenotypic landscape as

in Fig 4.3, with the difference that all single mutations are show. As seen, single mutations do not

explore a large portion of phenotypic space compared to double mutants in Fig 4.3. A Phenotypic

landscape of all double mutants, each represented by a dot, of steady-state phenotypes. B Phenotypic

landscape of all phenotypes for ON to OFF dynamics (top) and OFF to ON dynamics (bottom,

grayed). To keep the possible number of landscapes low, we use amplitude(=ON-OFF) as a proxy

for both steady-state phenotypes (ON and OFF). As slope strongly depends on amplitude (twice

the amplitude implies twice the slope), we use rescaled slope(=slope/amplitude), not slope, as a

phenotype. Color scheme is the same as in Fig 4.3. All units are in wild-type units, with the exception

of OFF expression - the expression (ON and OFF) is in the units of wild-type ON expression.
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Figure 4.10: Surface area of phenotypic landscape is independent of the details how it is calculated.

Comparison of surface area of phenotypic landscapes for different ’area of effect’ a for each mutant,

showing that qualitative results do not change with a – Section 4.4.3. For each value of a (each color),

results are qualitatively the same as in Fig 4.4D. Units of surface area are normalized to the surface

area of wild-type (un-shuffled) energy matrices - gray dashed line. Error bars represent s.t.d. of 500

replicates. Note that y-axis does not start at zero. Grayed area shows results for dynamics OFF to ON.
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Figure 4.11: Probability density function (PDF) of phenotypic values that all double mutants are

able to explore for various values of dilution rate (A), and for CI production rates (B). The summary

of this figure is shown in Fig 4.4A. As dilution rate doesn’t affect steady state expression, the effect

of varying dilution rate on them is not shown. Similarly, as CI production rate affects only OFF

expression, PDF of ON expression is not shown.
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landscapes of ’rescaled slope vs amplitude’ on Fig 4.4B. Full and dashed black envelope represent

phenotypic landscape of increased and decreased parameter, respectively. For reference, red envelope

shows the landscape with the original parameter value.
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Figure 4.13: Non-normalized time trajectories of all phenotypes. To better represent evolving

repressor binding site, we plot repression instead of OFF expression. While (A) focuses on majority of

phenotypes, (B) zooms out, showing how repression changes relative to other phenotypes. Resulting

trajectories are a median of 2000 replicates. Units of phenotypes are in their wild-type units, with the
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ON expression. Time units are inverse mutation rate µ. Normalized trajectories are shown on

Fig 4.3C.



198

10-4

10-2

100

102

0 0.5 1 0 0.5 1
Effective fitness

10-4

10-2

100

102

Effective fitness

0.85 0.75

0.55 0.35

A

C

10-2

100

102

0 0.5 1 0 0.5 1
Effective fitness

10-2

100

102

Effective fitness

0.85 0.75

0.55 0.35

10-1

100

101

0 0.5 1 0 0.5 1
Effective fitness Effective fitness

0.85 0.75

0.55 0.35

10-1

100

101

10-1

100

101

0 0.5 1 0 0.5 1
Effective fitness Effective fitness

0.85 0.75

0.55 0.35

10-1

100

101

B

D

Figure 4.14: DFE for original model and geometric model on binding energies of single and

double mutants. Distribution of fitness effects for full genotype-phenotype-fitness model (Fig 4.7)

for double (A) and single (C) mutations, and for geometric model on binding energies (Fig 4.7) for

double (B) and single (D) mutations. The value inside each plot represents the fitness value around

which DFE was calculated. (A) is identical to the plot on Fig 4.6A. Black line represents a mean over

30 replicate DFEs (shown in gray). Vertical black and dashed lines represent mean and s.t.d. of the

mean DFE.
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5 Gene amplification as a form of

population-level gene expression

regulation

Organisms cope with change by employing transcriptional regulators. However, when

faced with rare environments, the evolution of transcriptional regulators and their pro-

moters may be too slow. We ask whether the intrinsic instability of gene duplication and

amplification provides a generic alternative to canonical gene regulation. By real-time

monitoring of gene copy number mutations in E. coli, we show that gene duplications

and amplifications enable adaptation to fluctuating environments by rapidly generating

copy number, and hence expression level, polymorphism. This ’amplification-mediated

gene expression tuning’ occurs on timescales similar to canonical gene regulation

and can deal with rapid environmental changes. Mathematical modeling shows that

amplifications also tune gene expression in stochastic environments where transcrip-

tion factor-based schemes are hard to evolve or maintain. The fleeting nature of gene

amplifications gives rise to a generic population-level mechanism that relies on genetic

heterogeneity to rapidly tune expression of any gene, without leaving any genomic

signature.

Published as Tomanek I∗, Grah R∗, Lagator M, Andersson AMC, Bollback JP, Tkačik G,

Guet CC. Gene amplification as a form of population-level gene expression regulation.

Nature Ecology & Evolution. 4(4):612- 625, 2020.

∗ These authors contributed equally.

Contributions: Tomanek I has done all experimental measurements. Grah R has

constructed the model and has done model analysis. Andersson AMC has done single

cell analysis. Tomanek I and Grah R have done data analysis and interpretation.
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Some changes have been made to the text in order to integrate it into this thesis.
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5.1 Introduction

Natural environments change periodically or stochastically with frequent or very

rare fluctuations and life crucially depends on the ability to respond to such changes.

Gene regulatory networks have evolved into an elaborate mechanism for such

adjustments as populations were repeatedly required to cope with specific envi-

ronmental changes [Moxon et al., 1994; Savageau, 1974; Gerland and Hwa, 2009].

Gene regulation requires many dedicated components – transcription factors and

promoter sequences on the DNA – for information processing to occur. However,

due to low single base-pair mutation rates, complex promoters cannot easily evolve

on ecological time scales [Tuğrul et al., 2015; Berg et al., 2004].

Gene copy number mutations might provide a fundamentally different adaptation

strategy, which neither depends on existing regulation nor requires regulation

to evolve. Gene duplications arise by homologous or illegitimate recombination

between sister-chromosomes. Depending on the genomic locus, duplication rates

(kdup) can vary between 10−6 and 10−2 per cell per generation in bacteria [Anderson

and Roth, 1981; Reams et al., 2010; Pettersson et al., 2009; Sun et al., 2012]. This

means that a typical bacterial population will contain at any given time a large

fraction of cells with a duplication somewhere on the chromosome [Sun et al., 2012;

Roth et al., 1996]. Due to the long stretches of homology, duplications are highly un-

stable: at rates (krec) between 10−3 and 10−1 per cell per generation [Reams et al., 2010;

Pettersson et al., 2009] recA-dependent unequal crossover of the repeated sequence

leads to deletion of the second copy – restoring the ancestral state – or to further

amplification (Fig 5.1a). If a gene is under selection for increased expression [Nicoloff

et al., 2019; Bass and Field, 2011; Albertson, 2006], the process of gene duplication

and amplification (GDA) can dramatically increase organismal fitness by increasing

gene copy numbers. Due to their high rates of formation, amplifications provide

fast adaptation and facilitate the evolution of functional innovation [Andersson and

Hughes, 2009]. In contrast, their high rate of loss makes amplifications transient

and difficult to study [Andersson and Hughes, 2009]. Surprisingly, until recently

it has not been appreciated how this high loss rate impacts the distribution of
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copy numbers and associated expression levels in the population, a phenomenon

causing antibiotic heteroresistance [Nicoloff et al., 2019; Hjort et al., 2016]. Moreover,

amplifications have been studied only under constant selection for increased expres-

sion [Näsvall et al., 2012; Elde et al., 2012], while natural environments are rarely

ever constant. While a large body of work suggests that phenotypic heterogeneity

serves as an adaptation to fluctuating environments [Kussell and Laibler, 2005;

Veening et al., 2008], it is not known how the genetic heterogeneity resulting from

copy number mutations impacts survival in fluctuating environments.

Here, we ask whether the intrinsic genetic instability of gene amplifications allows

bacterial populations to tune gene expression in the absence of evolved regulatory

systems. To test this idea experimentally we devised a system of fluctuating environ-

mental selection, which selects for the regulation of a model gene. In this fluctuating

environment, we track, in real time, copy number mutations in populations as well

as single cells of Escherichia coli. Using this system, we test the ability of GDA to

effectively tune gene expression levels on ecological timescales, when environmental

perturbations occur at rates far too fast for transcriptional gene regulation to emerge

de novo.

5.2 Results

5.2.1 Amplification-mediated gene expression tuning (AMGET)

occurs in fluctuating environments

To test whether GDA can act as a form of gene regulation at the population level,

we experimentally introduced environmental fluctuations, such that a given level

of expression of a model gene is advantageous in one, but detrimental in another

environment. As the model gene, we used the dual selection marker galK, encoding

galactokinase. Expression of galK is necessary for growth on galactose, but deleteri-

ous in the presence of its chemical analogue, 2-deoxy-galactose (DOG) [Barkan et al.,

2011]. Using galK with an arabinose-inducible promoter, we mapped the relationship

between galK expression level and growth in (i) galactose, which selects for high galK
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expression levels and which we refer to as the ’high expression environment’; and

in (ii) DOG, which selects for low galK expression and which we refer to as the ’low

expression environment’ (Fig 5.1b). In order to establish a strong selective tradeoff

between high and low expression, we used 0.1% galactose for the high expression en-

vironment and 0.0001% DOG for the low expression environment in all experiments.

We then constructed a reporter gene cassette to monitor expression and copy

number changes of galK (Fig 5.1c) based on a previously described construct [Stein-

rueck and Guet, 2017]. In this construct, galK is not expressed from a promoter but

harbors p0, a randomized 188 bp nucleotide sequence matching the average GC

content ofÂăE. coli instead [Steinrueck and Guet, 2017]. This allowed for the selection

of increased expression of galK. The reporter cassette harbors two fluorophores that

allowed us to distinguish the two principal ways of increasing galK expression in

evolving populations: promoter mutations and copy number mutations (Fig 5.1c).

The promoterless galK gene is transcriptionally fused to a yellow fluorescence protein

(yfp) gene, which reports on galK expression. Directly downstream, but separated

by a strong terminator sequence, an independently transcribed cyan fluorescence

protein (cfp) gene provides an estimate of the copy number of the whole cassette

(Fig 5.6a). We inserted this cassette into the bacterial chromosome, close to the origin

of replication (oriC) – a location with an intermediate tendency for GDA [Steinrueck

and Guet, 2017]. However, our results also hold for a second locus, which is flanked

by two identical insertion sequence (IS) elements and has a much higher tendency

for GDA [Steinrueck and Guet, 2017] (Fig 5.9).

The ancestral strain carrying the promoterless galK construct does not visibly grow

in the high expression environment. After one week of cultivation at 37◦C, mutants

with increased galK expression appeared (Fig 5.6b). We randomly selected one

evolved clone with increased CFP fluorescence (’the amplified strain’) and analyzed

it in detail (see Section 5.4) to confirm its amplification. This amplified strain was

then used for further experiments in alternating environments (Fig 5.2a-c).

In all three alternating regimes, which change on a daily timescale, mean CFP levels

of 60 replicate populations of the amplified strain tracked the environments for the
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full duration of the experiments. The adaptive change in galK copy number (Fig 5.2b)

occurred within the imposed ecological timescale, rapidly enough to maintain

population growth given the daily dilution bottleneck under all three alternating

selection regimes (Fig 5.8a). We confirmed the observed changes in copy number

using whole genome sequencing (Fig 5.7b). To understand these population-level

observations, we monitored changes in expression of galK and cfp at the single cell

level for two consecutive environmental switches (Fig 5.2c). Expression of galK-yfp

(Fig 5.8b) was tightly correlated with the observed changes in gene copy number

(Fig 5.8c), indicating that gene expression was effectively tuned by GDA. We refer to

this phenomenon as amplification-mediated gene expression tuning (AMGET).
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Figure 5.1: An experimental system for monitoring gene copy number under fluctuating selection

in real time. (a), Gene duplication and amplification (GDA). Genomic loci duplicate at rate (kdup)

10−6 − 10−2 per cell per generation. The two gene copies oriented in tandem provide long stretches

of identical sequence allowing for homologous recombination at rate (krec) 10−4 − 10−1 per cell per

generation with recA-dependent unequal crossover leading to further duplication (amplification)

or deletion. Grey shading of cells symbolizes the amount of gene product made: increases in

copy number result in increased gene expression. (b), Schematic of chromosomal cassette used.

Expression of the selection marker, galK, is driven by an arabinose-inducible promoter (para). Growth

(as measured by end point OD600) in a 2D gradient of arabinose with galactose (high expression

environment) or DOG (low expression environment), respectively. Boxes mark concentrations of

0.1% galactose and 0.0001% DOG, which result in a strong selective tradeoff between high and low

expression and were used for further experiments. (c), Schematic showing galK reporter cassette

(p0 = random sequence/’non-promoter’, pR = strong constitutive lambda promoter, terminator

sequences downstream of yfp and cfp, respectively) and genetic changes of strains evolved in the

high expression environment with resulting phenotypes on MacConkey galactose agar. Both evolved

strains show increased galK-yfp expression over the ancestral strain (YFP) and the ability to grow on

galactose (BF = bright field image, white versus pink colonies). The amplified strain shows increased

CFP fluorescence (CFP) over the ancestral and the constitutive strain, indicating a gene copy number

increase.

5.2.2 AMGET depends on selection acting on a gene copy number

polymorphism

The rapid population dynamics observed during environmental switches (Fig 5.2c)

might simply be explained by selection acting on gene copy numbers with different

fitness (Fig 5.2d; Section 5.5.1). We therefore hypothesized that AMGET occurs

because of the intrinsic genetic instability of gene amplifications, which continuously

and rapidly generate copy number polymorphisms that selection can act on. Re-

streaking a single bacterial colony of the amplified strain resulted in colonies with

different CFP levels, sometimes with sectors of different CFP expression levels within

individual colonies (Fig 5.3a), demonstrating the intrinsic genetic instability of the

amplification. Importantly, this genetic instability is dependent on homologous

recombination, as a∆recA derivative of the amplified strain failed to show a decrease

in CFP fluorescence (and thus copy number) in response to increasing concentrations
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of DOG (Fig 5.8d). Similarly, ∆recA populations were not able to track fluctuating

environments as their recA wild-type counterparts did (Fig 5.8e).

To determine the rate at which copy number polymorphisms are generated in

an amplified population, we followed individual bacteria over ∼40 generations in

a mother-machine microfluidic device [Bergmiller et al., 2017; Wang et al., 2010]
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Figure 5.2: Amplification-mediated gene expression tuning (AMGET) occurs in fluctuating envi-

ronments. (a), Experimental design of alternating selection in 96-well plate batch cultures, with a

daily dilution of 1 : 133. A minimal duration of 24h per environmental condition (no shading = low

expression environment, grey shading = high expression environment) allows measuring OD600 and

fluorescence in populations that have reached stationary phase after dividing at least seven times

after their last dilution. (b), Alternating selection of 1 day - 1 day, 2 days - 1 day and 3 days - 1 day in

high and low expression environment, respectively. Normalized CFP fluorescence as proxy for gene

copy number of 60, 48 and 60 populations of the amplified strain. Error bars represent standard

deviation (SD) over all populations. (c), Flow cytometry histograms (one of six replicates from

two independent experiments; see d. for an overview of the full dataset) following the adaptation

of an amplified bacterial population to low and high expression environments. Positive controls

represent populations grown in respective environment for 5 days. (d), Fitness as a function of copy

number in the two environments. Growth rates relative to those of maximally adapted populations

(positive controls in c) as a proxy for fitness were calculated from the population’s shift in CFP

fluorescence over time (see Section 5.4). M denotes the maximum copy number, which we estimate

to be approximately 10 (see bulk measurements of M in Fig 5.6a and Fig 5.7a, and single cell-based

measurements in Fig 5.10b). Note that results do not depend on the precise value of M). Error bars

represent the standard deviation of six replicates from two independent experiments.

and monitored their CFP levels. Mutations in copy number were clearly visible

as changes in CFP fluorescence of the mother cell. In approximately 35% of cases,

these changes were accompanied by a reciprocal fold-change of fluorescence in the

daughter cell (Fig 5.3b) as expected from unequal crossover [Reams and Roth, 2015].

In order to quantify the combined rate of copy number gain and loss events by

homologous recombination, we analyzed the fluorescence time trace of 1089 mother

cells. 55% of traces exhibit constant levels of CFP fluorescence (Fig 5.3c – panel 1)

indicating stable inheritance of copy number. In about 7% of traces, the constant

level of CFP is interrupted by a sudden decrease or increase (Fig 5.3c – panel 2-3).

The corresponding fold-changes of fluorescence are consistent with gains or losses

of entire copies of cfp. We estimated the lower bound for the average number of

copy number mutations, krec, to be 2.710−3 per cell per generation, by automatically

selecting only clear step-wise transitions in fluorescence, which are indicative of

single copy-number mutation events (Section 5.4, Fig 5.10). Interestingly, 34% of all
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traces (Fig 5.10c) exhibit more complex behaviors (Fig 5.3c – panel 4) and cannot be

explained in terms of single step transitions.

Complex traces are expected to contain more than one duplication or deletion

event even under the expectation that copy number variations are independent

events (Fig 5.10d). In addition, it is conceivable that copy number mutations are not

independent, i.e., an increased probability exists for a second mutation after the first

copy number increase occurred. However, we cannot exclude the possibility that

most of the complex traces are due to expression noise of one or both fluorophores,

especially since CFP expression noise increases with copy number. Moreover,

microfluidics experiments showed transient growth defects visible as filamentation.

Given that the amplification includes the origin of replication (oriC), complex traces

might in part result from replication issues. Transiently stalled replication forks

could result in an overproduction of CFP relative to mCherry, which is located at

phage attachment site attP21, almost opposite on the E.coli chromosome. Thus using

only single clear step-wise transitions provides a very conservative lower bound for

the rate of copy number mutations.

5.2.3 AMGET requires continual generation of gene copy number

polymorphisms

Because the mechanism behind AMGET is selection acting on copy number poly-

morphism, we asked whether it differs from selection acting on single nucleotide

polymorphisms (SNPs). To do so, we artificially created a polymorphic population

comprised of an equal ratio of two strains – the ancestral strain with no detectable

galK-yfp expression and a strain with two SNPs in p0 (Fig 5.1c) resulting in constitu-

tive expression of galK (Fig 5.4a). Importantly, this ’co-culture’ contained standing

variation in galK expression, but because it is not due to amplification, variation is

not replenished at high rates. While the ’co-culture’ population tracked short-term

environmental fluctuations in a manner similar to the amplified population (Fig 5.4b),

the long-term dynamics of the two populations were crucially different. Despite

being grown from a single cell, the amplified population was able to respond to
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environmental change rapidly after being maintained in a constant high expression

environment for increasingly longer periods (Fig 5.4c). The ’co-culture’ population,

in stark contrast, progressively lost the ability to respond to sudden environmental

change (Fig 5.4d). While standing variation in the ’co-culture’ provided some ability

for a population to adapt in the short run, it is only replenished at the rate of point

mutations. Hence, this variation – as well as the ability to adapt – is depleted by

prolonged selection as the genotype with higher fitness goes to fixation in the

population.
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Figure 5.3: High-frequency deletion/duplication events in the amplified locus create gene copy

number polymorphism in populations. (a), Re-streaks of a single bacterial colony on nonselective

agar. Ancestral strain bearing a single copy of cfp (left), amplified strain (middle) colonies display

sectors of different CFP fluorescence (inset). Scale bars, 10 mm. Histogram of single-colony mean CFP

intensities obtained by resuspending and diluting five ancestral and amplified colonies, respectively

(right). (b), The amplified strain carrying a single copy of mCherry in a control locus (top) was grown

in a microfluidics device to allow tracking of cell lineages in the absence of selection. Overlay of

kymographs of CFP and mCherry fluorescence for one microfluidics growth channel (left). Two

recombination events are visible as pronounced changes in CFP relative to mCherry fluorescence

(white arrows). Time series images of CFP and mCherry fluorescence (right) of the same channel

during the second amplification event. An increase in CFP fluorescence of the mother cell (rightmost

position in the growth channel) occurs concomitantly with reciprocal loss of CFP fluorescence in its

first daughter cell. As mother and daughter cell divide again, their altered level of CFP fluorescence

is inherited by their respective daughter cells. mCherry fluorescence of the control locus stays

constant during the recombination event. Scale bars, 5µm. (c), Examples of single-cell time traces

(kymographs and CFP fluorescence sampled from the mother cell) for four representative behaviors:

constant expression, stepwise increase and decrease in expression, and complex expression changes.

Frequencies of each behavior across 1089 channels from three independent experiments are shown

in figure panels.

5.2.4 AMGET is a general and robust mechanism

The experimental results have qualitatively shown that both, gene copy number

polymorphism and selection acting on it, are necessary for AMGET to occur.

Using population genetics theory, we developed a generic mathematical model to

quantitatively predict the observed experimentally observed population dynamics

(Fig 5.2b). The model describes how gene copy number changes over time in a

population under selection. Each copy number is treated as a distinct state, and

these states differ with respect to growth rates in each of the two environments.

Duplication and amplification events are the only source of transition between states.

Importantly, all model parameters (the strength of selection and the rate at which

the copy-number polymorphism is introduced as shown in Fig 5.1a) are obtained

from independent measurements (Table 5.2). Thus, without specifically fitting any

parameters, the generic model fully captured the experimentally observed dynamics
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of AMGET (Fig 5.5a, Fig 5.11a). The good fit between model and experimental

data meant that we could use the model to expand the understanding of the basic

conditions under which AMGET can act as an efficient de facto mechanism of

population-level gene regulation.

Qualitatively, the model revealed that for a population to respond to environmental

change at all, two conditions must be met: (i) constant introduction of gene copy
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Figure 5.4: AMGET requires continual generation of gene copy number polymorphisms. (a),

Schematic of a co-culture composed of the ancestral strain without galK expression and a strain

with two SNPs in p0 (Fig 5.6C) resulting in high galK expression (left). Fluorescently labeling the

ancestor allows monitoring relative strain abundance (Section 5.4). A population consisting of a

single amplified strain (right) contains cells with different galK copy numbers and, accordingly,

expression levels. (b), Alternating selection following the scheme 1 day - 1 day, 2 days - 1 day and 3

days - 1 day in high and low expression environment, respectively. Constitutive strain abundance of

18 co-culture populations tracks environments, with the non-expressing strain being abundant in

the low expression environment and the constitutive strain being abundant in the high expression

environment. Error bars represent the SD of 18 replicates. (c-d), To estimate a populationÂťs ability

to respond to a change in the environment, periods of increasing length spent in the high expression

environment are followed by one day in the low expression environment. c, Copy number of amplified

populations as measured by CFP fluorescence is adjusted to the low expression environment (black

arrows) even after prolonged growth in the high expression environment. (d), In contrast, response

of the co-culture to the low expression environment after prolonged growth in the high expression

environment decreases with time spent in the high expression environment. The mean response on

day 16 (1.11 for co-culture, 4 for amplified) differs significantly (p < 10−3, two-sided t-test) between

populations of co-culture (d) and amplified (c) (see Section 5.4). Error bars represent the SD of 36

replicates.

number variation (i.e. non-zero duplication/recombination rate), and (ii) selection

acting on it. If either of these are not present, the population is not able to maintain

any long-term response to environmental change.

In order to more quantitatively examine the environmental conditions under which

a population can respond to environmental change through AMGET, we defined

the response R as the maximum fold change in gene expression before and after an

environmental change.

We used the model to expand the range of environmental durations beyond those

tested in experiment. In periodic environments,we finda sharp,switch-like transition

from no response to full response for environments that switch typically on a day or

longer timescale (Fig 5.5b). In stochastically fluctuating environments, the transition

is more gradual (Fig 5.5c), yet no less effective. Furthermore, AMGET maintains its

efficiency to tune gene expression in bacterial populations over order-of-magnitude

variations in the duplication and recombination rates, as well as for any fitness cost
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of expression (Fig 5.12).

5.2.5 AMGET tunes gene expression levels when transcription

factor-based schemes are hard to evolve or maintain

Canonical gene regulation is unlikely to evolve or be maintained when a population

is exposed to an almost constant environment that is sporadically interrupted by a

rare environmental perturbation [Gerland and Hwa, 2009]. We tested if AMGET

might provide a generic mechanism of regulating expression under such conditions,

by asking how long a population that is fully adapted to one environment needs

for responding to a step-like environmental change (Fig 5.5b top and side part of

heat map; Fig 5.11b). Our model results showed very rapid responses to step-like

environmental changes on the order of one to six days, for all biologically relevant

parameter values of amplification and duplication rates, as well as fitness cost of

expression (Fig 5.5d; Fig 5.11c-e). AMGET is also a viable mechanism for practically

any population size, especially for typical bacterial ones, although its efficiency

drops for small populations (Fig 5.11f). Therefore, AMGET efficiently tunes gene

expression levels across a wide range of environments where transcription factor-

mediated regulation would take prohibitively long to evolve [Tuğrul et al., 2015;

Berg et al., 2004].
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Figure 5.5: AMGET is a robust strategy for population level gene expression tuning across a

range of environments. (a), Comparison of model predictions (with all parameters derived from

independent calibration experiments; see Section 5.4) and experimental data for three different

environmental durations. Pearson correlation between data and model: 0.72 (top), 0.92 (middle),

0.87 (bottom). See Fig 5.11a for parameter sensitivity. Error bars represent standard deviation (SD)

over of 60, 48 and 60 bacterial populations, respectively. (b-c), Top: example of gene expression time

trace for deterministic (b) and stochastic (c) environment durations. Bottom: response R (maximum

expression fold change before and after the environmental change), shown in color, as a function

of the two environment durations. Red crosses in b mark environments shown in a. The gradual

increase in response in c occurs because of averaging across responses, which are deterministic for

each individual environmental transition (c top). (d), Variation of response time when uniformly

sampling sets of parameters (black circles) in the range of 10−4 − 5 · 10−2, 10−5 − 10−3, and 0.1 − 1 for

recombination rate, duplication rate, and fitness costs of expression, respectively (Fig 5.11c-e). The

plot shows the median (red line) with the 25th and 75th percentile (blue box). In all plots, when not

varied, we use recombination and duplication rates k0
rec � 1.34 · 10−2 and kdup � 10−4, respectively.

All rates have units of cell−1 generation−1. In our setup, one-day timescale is equivalent to between

10 and 23 generations (lower and upper bound, respectively; the bounds are estimated from the

minimum and maximum growth rate of the least and best adapted copy number types, Table 5.2,

Fig 5.2d).
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5.3 Discussion

Biology often relies on messy solutions, be it due to physical limitations or because

evolution proceeds by opportunistic tinkering [Tawfik, 2010; Jacob, 1977]. For organ-

isms living in constantly fluctuating environments even the crudest form of gene

regulation [Troein et al., 2007] or gene expression heterogeneity [Wolf et al., 2015]

increases fitness compared to not having any regulation at all. Here, we showed that

the intrinsic instability of gene amplifications, rapidly tunes gene expression levels

when gene regulation is required but no other molecular regulatory mechanism is

in place.

Despite resembling canonical gene regulation when observing populations as

a whole (Fig 5.2b), AMGET does not allow all single cells to change their gene

expression concurrently. Instead, only a fraction of the population grows after the

environment changes. Thus, AMGET may effectively work by allowing bacterial

populations to ’hedge their bets’ for expression levels that could be required in a fu-

ture environment. Unlike traditional descriptions of bet-hedging, where genetically

identical individuals show variability in their phenotypic states [Veening et al., 2008],

AMGET populations differ in their genotype due to the intrinsic instability of gene

amplifications, thus passing on the adaptive state with high probability. Moreover,

bet-hedging is typically characterized by switching between a small number of

alternative phenotypic states [Veening et al., 2008], while in an amplified locus,

expression can adopt a graded response due to a wide range of copy numbers.

Because AMGET enables rapid dynamics and at the same time graded responses, it

can be thought of as a form of primitive gene expression regulation at the population

level [Anderson and Roth, 1977]. Mechanistically, AMGET bears no resemblance to

canonical gene regulation, which employs sensory machinery to alter gene expres-

sion in the course of just a single generation. Yet, despite the mechanistic difference,

AMGET operates on the time scales of days and thus closer to those of canonical gene

regulation, compared to the process of transcriptional rewiring by point mutations,

which occur several orders of magnitude less frequently.

AMGET may be one of several ways by which populations can make use of variation
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in expression levels to rapidly adapt to environmental change. While point muta-

tions occur at lower rates, regulatory rewiring can be surprisingly fast [Taylor et al.,

2015], especially when there is pre-existing variation in the precise architecture of

regulatory networks. Moreover, noise propagation within gene regulatory networks

can create an abundance of different expression levels, which are – in principle –

tunable by selection [Wolf et al., 2015]. However, as the results of our co-culture

experiment (Fig 5.4) show, pre-existing variation can be easily depleted from a popu-

lation if under strong selection. While it was previously shown that variation can be

maintained in the form of multiple plasmid copies [Rodriguez-Beltran et al., 2018],

our results highlight that multiple copies of a genomic region actively regenerate

heterogeneity due to the high recombination rate. Due to this property, AMGET

provides a means of tuning expression to rare environmental fluctuations, where

canonical gene regulation cannot evolve or be maintained [Gerland and Hwa, 2009].

AMGET is fast in bacteria because their generation times are short and their popu-

lation sizes are usually large. However, our model results show that AMGET is in

principle applicable to any other organism, but would take much longer time in

relatively small populations (Fig 5.11f). A compelling example for the ’up-regulation’

of a gene on relatively short evolutionary time-scales is that of the salivary amylase

in humans, where variation in AMY1 copy number correlates with dietary starch

content of human populations [Perry et al., 2007].

Because any genomic region can be potentially amplified, AMGET can act on

essentially any bacterial gene, providing regulation when the promoter is lacking

altogether or when the existing promoter is not adequately regulated [Gil et al., 2006;

Latorre et al., 2005]. For instance, horizontally transferred genes tend to be poorly

regulated, as their integration into endogenous gene regulatory networks can take

millions of years [Lercher and Pál, 2008; Pál et al., 2005]. At the same time, they are

enriched in mobile genetic elements [Dobrindt et al., 2004; Juhas et al., 2009], provid-

ing repetitive sequences for duplication by homologous recombination [Andersson

and Hughes, 2009; Pettersson et al., 2005]. Indeed, genes with a recent history of

horizontal transfer are often amplified [Gusev et al., 2014; Hooper and Berg, 2003;

Eme et al., 2017].
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Similarly, gene amplifications can confer resistance to antibiotics and pesticides, but

they are often accompanied by a fitness cost in the absence of the compound [Nguyen

et al., 1989]. In fact, heteroresistance caused by copy number polymorphisms is

much more prevalent than previously thought and can lead to antibiotic treatment

failure [Nicoloff et al., 2019]. Repeated use of antibiotics or pesticides can therefore

create alternating selection regimes [Gladman et al., 2015], where AMGET might

play an important, yet previously overlooked, role in bacterial adaptation.

In spite of their ubiquity, GDA has been underappreciated [Andersson and Hughes,

2009; Elliott et al., 2013]. In principle,fixed amplifications can easily be detected in next

generation sequence data by an increase in coverage and mismatches corresponding

to the duplication junctions (Fig 5.7, Section 5.4). However, duplications revert to the

single copy state at high rate without leaving any traces in the genome (Fig 5.7a). This

implies that populations have to be kept under selection prior to sequencing, a condi-

tion that may not typically be met, especially not for environmental isolates [Eydallin

et al., 2014]. However, despite this challenge, there are many reports of cases where

amplified genes have been detected in the sequences of environmental strains and

were found associated with adaptation to environmental conditions [Gil et al., 2006;

Gusev et al., 2014; Greenblum et al., 2015].

The notion that GDA ”might be thought of as a rather crude regulatory mecha-

nism” [Anderson and Roth, 1977] is more than 40 years old. However, so far almost

all experimental work has focused on the benefits of amplification in constant, stable

environments, thereby selecting for increased expression only [Näsvall et al., 2012;

Dhar et al., 2014]. Here, we demonstrated how flexible GDA is in rapidly altering

gene expression levels of populations in response to a wide range of environmental

fluctuations. AMGET is thus a critical, and a critically underappreciated, mechanism

of bacterial survival.
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Regulation Amplification Adaptation
(rewiring via
point
mutations)

Bet-hedging strate-
gies

mechanism hard-wired
response of
individual cells

mutation mutation phenotypic differences
between genetically
identical cells

rate ON 1 10−6 − 10−2

cell−1

gen.−1 [Ander-
son and Roth,
1981;
Reams et al.,
2010;
Pettersson et al.,
2009;
Sun et al., 2012]

10−9 bp−1 cell−1

gen.−1 [Drake,
1991;
Elez et al., 2010]

> 10−5 variants per to-
tal cells [Bayliss, 2009]

rate OFF 1 10−3 − 10−1

cell−1

gen.−1 [Reams
et al., 2010;
Pettersson et al.,
2009]

10−9 bp−1 cell−1

gen.−1 [Drake,
1991;
Elez et al., 2010]

> 10−5 variants per to-
tal cells [Bayliss, 2009]

active sensing
machinery
required

yes no no no

can substitute
for regulation
on ecological
time scales

- yes no yes

expression state
genetically
heritable

no yes yes no

tuning (allows
graded
expression)

typically not yes yes, but very
long timescales

typically not

high
reversibility
(rate OFF > rate
ON)

yes yes no yes

suitable for rare
stresses

no yes probably not,
due to slow
reversibility

depends on cost and
rate

Table 5.1: Comparison of regulation, amplification, adaptation and bet-hedging strategies.
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5.4 Methods

5.4.1 Bacterial strain background construction

Except when noted otherwise, all changes to the E.coli chromosome were intro-

duced by pSIM6-mediated recombineering [Datta et al., 2006]. All recombinants

were selected on either 25µg/ml kanamycin or 10µg/ml chloramphenicol, to ensure

single-copy integration. All resistance markers introduced by recombineering were

flipped by transforming plasmid pCP20 and streaking transformants on LB at the

non-permissive temperature of 37◦C [Datsenko and Wanner, 2000]. We used strain

MG1655 for all experiments, except for testing galactose and DOG concentrations

(Fig 5.1c). For that purpose, we placed galK under control of the pBAD promoter

and used strain BW27784, which allows relatively linear induction of the pBAD

promoter over a 1000 fold range of arabinose concentration [Khlebnikov et al., 2001].

In both strain backgrounds the genes galK, mglBAC, and galP were altered in order

to allow galactose- and DOG-selection.

Endogenous galK was deleted by P1-transduction of galK::kan from the Keio-

collection [Baba et al., 2006]. The mglBAC operon was deleted to avoid selec-

tive import of galactose but not DOG [Nagelkerke and Postma, 1978]. To ex-

press galP for DOG to be imported in the absence of galactose, its endogenous

promoter was replaced by constitutive promoter J23100 [Zhou et al., 2017]. For

this, the fragment textttBBa_K292001 (available at the Registry of Biological Parts,

http://parts.igem.org/Part:BBa_K292001) was cloned into pKD13 [Datsenko and

Wanner, 2000] yielding plasmid pMS1 with FRT-kan-FRT upstream of J23100. The

cassette FRT-kan-FRT-J23100 was used for recombineering.

5.4.2 Assembly of the chromosomal gene cassettes

The chromosomal reporter gene cassette used for experimental evolution (p0-RBS-

galK-RBS-yfp-pR-cfp; Fig 5.1c) was assembled on plasmid pMS6∗ using standard

cloning techniques. Plasmid pMS6∗ is based on plasmid pMS7, which contains the

’evo-cassette’ (p0-RBS-tetA-yfp-pR-cfp) [Steinrueck and Guet, 2017]. To obtain pMS6*
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we replaced the translational fusion of tetA-yfp on pMS7 with galK from MG1655 in

a transcriptional fusion with yfp venus, originally derived from pZA21-yfp [Lutz

and Bujard, 1997]. In addition, XmaI and XhoI restriction sites were added directly

upstream and downstream of p0 by two consecutive inverse PCRs.

The chromosomal gene cassette for testing galactose and DOG concentrations

(pBAD-galK, Fig 5.1b) was assembled on plasmid pIT07, which was obtained by

cloning galK-yfp as well as a chloramphenicol resistance flanked by FRT sites from

pMS6* into pBAD24 [Guzman et al., 1995]. Gene cassettes were integrated into

chromosomal loci 1 and 2 (corresponding to locus D and E in Ref [Steinrueck and

Guet, 2017]) by recombineering [Datta et al., 2006] and checked by PCR with flanking

primers and sequencing of the full-length construct.

5.4.3 Strain modification for microfluidics

The amplification of locus 1 was moved from the evolved strain IT028-EE1-D8 to

the ancestral background (IT028) by P1 transduction to isolate it from the effect of

other potential mutations in the evolved background, including a sticky phenotype,

which clogged the microfluidic devices. In order to obtain a single copy control locus

pR-mCherry from our lab collection was introduced into the phage 21 attachment

site (attP21) by P1-transduction [Bergmiller et al., 2017].

5.4.4 RecA deletion in amplified strain locus 1 (Fig 5.8d,e)

RecA was deleted in the amplified strain by replacing it with the kanamycin cassette

from pKD13 [Datsenko and Wanner, 2000]. In order to maintain the amplified state,

recombinants were selected on M9 0.1% galactose medium supplemented with

25µg/ml kanamycin and verified by sequencing.

5.4.5 Culture conditions

All experiments were conducted in M9 medium supplementedwith2 mM MgSO4,0.1

mM CaCl2 and different carbon sources (all Sigma-Aldrich, St. Louis, Missouri). For

evolution experiments 0.1% galactose (high expression environment) or 1% glycerol
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combined with 0.0001% 2-deoxy-d-galactose (DOG) (low expression environment),

respectively, were added as carbon sources. For microfluidics experiments M9

medium was supplemented with 0.2% glucose and 1% casein hydrolysate and

0.01% Tween20 (Sigma-Aldrich, St. Louis, Missouri) was added as surfactant prior

to filtering the medium (0.22 µm).

All bacterial cultures were grown at 37◦C. Growth and fluorescence measurements

in liquid cultures were performed in clear flat-bottom 96-well plates using a Biotek

H1 platereader (Biotek, Vinooski, Vermont).

5.4.6 Mapping the relationship between galK expression level

and growth growth

For the 2D gradients of arabinose and galactose or DOG (Fig 5.1b), respectively, an

overnight culture of the test-cassette strain was diluted 1:200 into 96-well plates

containing 200 µl of M9 supplemented with carbon sources, DOG and the inducer

arabinose, as indicated in Fig 5.1b. Cultures were grown in the platereader with

continuous orbital shaking.

5.4.7 Evolution experiments

For all evolution experiments (1. experimental evolution of the amplified strains

in the high expression environment and 2. alternating selection experiments),

cultures were grown in 200µl liquid medium in 96-well plates and shaken in a

Titramax plateshaker (Heidolph, Schwabach, Germany, 750 rpm). Populations were

transferred to fresh plates using a VP407 pinner (V&P SCIENTIFIC, INC., San Diego,

California) resulting in a dilution of ∼1:133.

1. Evolution of the amplified strains in the high expression environment

To obtain the amplified strains of locus 1 and 2, respectively, an overnight culture

inoculated from a single colony of the ancestral strain carrying the reporter gene

cassette in the respective loci (IT028; Fig 5.6b-c) or 2 (IT030; Fig 5.9b) was started

in LB-medium. Cells were pelleted, washed twice and diluted 1:100 into M9 0.1%
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galactose (locus 1) or M9 0.1% galactose supplemented with 0.1% casamino acids

(locus 2). For locus 1, the timing of each dilution into fresh medium (∼1:133) was

chosen such as to maximize the number of rescued populations and to minimize

the amount of time spent in stationary phase for grown populations. The transfers

happened at days 10, 13, 15, 17, 18 and 19 (Fig 5.6c). The first signs of growth

were detected in several wells only after approximately one week of cultivation in

minimal galactose medium (Fig 5.6b). The evolving populations were monitored by

spotting them onto MacConkey galactose agar in 128 x 86mm omnitray plates prior

to transfer. For locus 2, the evolving populations were transferred daily (∼1:133,

corresponding to seven generations) and spotted on to LB plates supplemented

with 0.5% charcoal (Fig 5.9b) to improve fluorescence quantification. Colony fluo-

rescence of all experiments was recorded using a custom-made macroscope set-up

(https://openwetware.org/wiki/Macroscope) [Chait et al., 2010]. For the isolation

of clones, evolved populations were streaked twice for purification on LB agar

and grown in M9 galactose medium prior to freezing. For both locus 1 and 2,

respectively, all further experiments were started from the original freezer stock of

the amplified strain. This was done for two practical reasons: i) to save the time

needed for duplications (and higher order amplifications) to evolve (one week in M9

galactose medium used for locus 1 and one day in M9 medium supplemented with

casaminoacids used for locus 2), and more importantly, ii) to allow interpretation and

reproducibility of the fluorescence data of the alternating selection experiments. As

the reporter gene cassette allows selecting for increased galK expression but not for

amplification itself, it is necessary to screen mutants with increased galK expression

for increased CFP fluroescence. During amplification the initial duplication step is

rate-limiting and break-points differ between evolving populations. We therefore

limited ourselves to two amplified strains (locus 1 and 2), which we analyzed in

detail. Amplified populations were thus started from single colonies, which were

grown non-selectively on LB (Lennox) agar by streaking the original freezer stock.

Due to the high rate of recombination, any given streak of the original amplified

freezer stock contains colonies with a single copy of galK (Fig 5.3a, right panel). In

order to pick only amplified colonies, we examined CFP fluorescence using the
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macroscope.

We characterized evolved amplified strains by Sanger sequencing of the p0 region,

amplification junctions and the rho gene, which was found mutated in a previous

study using the same locus [Steinrueck and Guet, 2017]. For the strain amplified

in locus 1 (IT028-EE1-D8), increased galK expression is achieved by increased galK

copy number as evident from increased CFP fluorescence (Fig 5.1c), as well as

through a missense mutation in the termination factor rho (S265>A), allowing for

baseline-expression via transcriptional read-through from the upstream rsmG into

galK [Steinrueck and Guet, 2017]. The amplified region spans 16 kb from atpB at the

left replicore over the origin of replication to rbsD into the right replicore.

For the strain amplified in locus 2 (IT030-EE11-D4), galK expression comes solely

from the increase in copy number (no mutations in p0 were detected). In this case,

inverse PCR and sequencing confirmed that two identical IS elements (IS1B and

IS1C) form the junction of the amplified segment [Steinrueck and Guet, 2017]. Whole

genome sequencing of both amplified strains confirmed amplification junctions

and the rho mutation detected with PCR and Sanger sequencing and revealed two

additional single nucleotide changes in the amplified strain locus 1 (coaA, pos.

4174770, C>T, resulting in R>H; wcaF, pos. 2128737, C>A, resulting in G>V).

2. Alternating selection experiments

For the experiments in Fig 5.2b, a pre-culture of the amplified strain (IT028-EE1-D8)

was grown in M9 0.1% galactose overnight, which was then inoculated 1:200 into

the medium as indicated. For the experiment alternating two days in high and one

day in low expression environment (Fig 5.2b – middle panel), populations were first

subjected to a scheme of daily alternating selection for six days prior to switching to

the 2-1 scheme.

For the co-culture experiments (Fig 5.4), a pre-culture of the amplified strain

(IT028-EE1-D8) was grown in M9 0.1% galactose overnight. In parallel, the ancestral

strain carrying a single silent copy of galK in locus 1 (IT028) and a strain constitutively
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expressing galK in locus 1 (IT028-H5r), were grown overnight in M9 1% glycerol and

mixed in a 1:1 ratio. We labeled the ancestral strain by transduction of attP21::pR-

mCherry (IT034). The constitutive strain was obtained by oligo-recombineering

two point mutations into p0 of the ancestral strain and selecting recombinants on

M9 0.1% galactose agar. These two point mutations (-29 A>T and -37 G>T) have

initially evolved in parallel to the amplified strain and result in a similar level of

galK expression (Fig 5.1c). To quantify the relative abundance of the two strains

in the co-culture, we calculated the expression ratio of the two strains, using an

exchange rate between CFP and mCherry units from the ancestral strain expressing

both fluorophores (IT034).

5.4.8 Whole genome sequencing

We isolated gDNA from overnight cultures of single clones of i) the ancestral strains

ii) the amplified strains after initial selection in the high expression environment

(galactose) as well as iii) the amplified strains after overnight selection in the low

expression environment (DOG), for Locus 1 and Locus 2, respectively. In all cases

overnight cultures were inoculated from colonies grown non-selectively on LB

agar. For the overnight culture M9 1% glycerol was used for the ancestral and

DOG-selected clones, while M9 0.1% galactose was used for the galactose-selected

clones. A whole genome library was prepared and sequenced by Microsynth AG

(Balgach, Switzerland) on an Illumina Next.Seq (with a mean read length of 75 bp).

Fastq files were assembled to the MG1655 genome (Genbank accession number

U00096.3) using the Geneious alignment algorithm with default options of the

software Geneious Prime version 2019.2.1. SNPs were analyzed using the variant

finding tool of Genious.

5.4.9 Flow Cytometry

Three colonies of the amplified strain and the constitutive control strain, respectively,

were inoculated into culture tubes with 2ml M9 0.1% galactose (high expression

environment) and grown for three days with transfers every 24h. This population
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was inoculated into M9 + 1% glycerol + 0.0001% DOG (low expression environment).

OD600 was monitored to assure continuous exponential growth by regular dilutions.

Samples for flow cytometry were frozen at the indicated time points (Fig 5.2c).

After 24h in the low expression environment, the populations were transferred

back to the high expression environment with dilution and sampling occurring

in the same manner. In parallel, the positive controls were grown for five days

in both selection environments, respectively, with transfers occurring every 24h.

Fluorescence was measured using a BD FACSCantoTM II system (BD Biosciences,

San Jose, CA) equipped with FACSDiva software. Fluorescence from the Pacific

Blue channel (CFP) was collected through a 450/50nm band-pass filter using a

405nm laser. Fluorescence of the FITC channel (YFP) was collected through a 510/50

band-pass filter using a 488nm laser. The bacterial population was gated on the FSC

and SSC signal resulting in approximately 6000 events analyzed per sample, out of

10,000 recorded events.

5.4.10 Microfluidics experiments

For the microfluidics experiments, a single colony of the amplified strain was picked

and grown overnight in nonselective LB (Lennox) medium.

Microfluidics devices were prepared as described previously [Bergmiller et al.,

2017]. Briefly, devices had dimensions 23µm×1.3µm×1.3µm (l,w,h) for the growth

channels with 5µm spacing along a trench for growth medium. Devices were

fabricated by curing degassed polydimethylsiloxane (Sylgard 184, 1:10 catalyst:resin)

inside epoxy replicate master molds produced from primary wafer-molded devices.

Microscopy was performed on an inverted Nikon Ti-Eclipse microscope and with

a previously described set-up [Bergmiller et al., 2017]. Per experiment, multiple

positions of a single mother machine were imaged using a 60× 1.4 NA oil immersion

objective lens. To image constitutive mCherry, the green LED (549±15nm) was used

at a light intensity of 670µW and an exposure time of 170-200ms. To image CFP,

the cyan LED (475±28nm) at a light intensity of 270µW and an exposure time of

90-100ms was used.
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Analysis of microfluidics data

The mother machine allowed tracing of mother cells for ∼38 divisions, thereby

following the fate of arising copy number mutations in the absence of selection. In

three experiments, we analyzed 336, 369 and 384 mother cell lineages, respectively,

equaling a total of approximately 40.000 cell divisions (with a division time of 23.6 ±
1.5 min as determined by counting septation lines in growth channel kymographs).

Microfluidics data analysis was based on mother cell time traces (Fig 5.4c). To

this end, we used Fĳi/ImageJ to create kymographs, by laying a line through the

middle of mother cells perpendicular to the growth channel using the built-in

Multi-Kymograph tool with a pixel width of 9. Kymographs of CFP and mCherry

were then analyzed using MATLAB.Âă

Determining what data to include

To minimize the influence of three unknown factors (maturation rate and bleaching

of the two fluorophores, and the degree of bleedthrough between channels on the

microfluidic chip), we were restrictive with the colonies we included.

1. We excluded all fluorescence changes that occurred when the cells were dying.

Only colonies (mother cell lineages) that continuously grew until the end of

the experiment were included. Specifically, the last 10 frames of mean mCherry

fluorescence of mother cells needed to exceed the background threshold (68%,

76%, 82% of total colonies included, respectively, for the three experiments).

2. Some colonies exhibited a large variation in growth rate, due to temporary

slowdown and/or filamentation. In the kymographs this was seen as a

large variance in the constitutive mCherry channel. We excluded colonies

with a variance >1.5 times the mCherry experiment-wide variance (thus

including 96%, 96%, 96% of total colonies included for the three experiments,

respectively).

3. In some cases there was significant bleedthrough between adjacent colonies.

To avoid double counting transitions, the colony that was less bright was
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removed from the data set if two adjacent colonies had a correlation of 0.6 or

higher (99%, 98%, 98% of total colonies included, respectively, for the three

experiments).

For the identified colonies the maximum fluorescence value per time point was

extracted for both, mCherry and CFP channels. These were plotted against each

other and a rectangular area, bounded by a manually selected max and min for

each channel was chosen such as to include all but extreme outliers (Fig 5.10a).

Accordingly, 99% of data points were included in all three experiments.

Normalization

To correct for slow temporal drift in the signal of CFP and mCherry, a time average

over all colonies was taken and a 7th degree polynomial fitted. All time points were

divided by the corresponding polynomial estimates.

Furthermore, mCherry fluorescence was flat-field corrected based on the expectation

that mCherry is roughly constant across all colonies.ÂăTo do so, a line was fitted to

the coordinate to get an estimate of the background of each location. The data was

divided by the corresponding estimated value.

Probability density function

For the probability density function (PDF) in Fig 5.10b we normalized for differential

growth rate by dividing the CFP fluorescence by the constitutively expressed

mCherry fluorescence. To reduce noise, a median filter (MATLAB medfilt1) was

applied to the ratio of CFP and mCherry over 20 data points. To get an estimate

of the PDF of the CFP/mCherry single cell fluorescence, we used a kernel density

estimation (KDE) (MATLAB function ksdensity). To estimate a proxy for copy

numbers, we found points where the first and second derivative of the PDF is zero.

These points were set as initial conditions for a pairwise fitting of peak mean and

variance. All but the first and the last peak had two estimates for mean and variance.

For the mean, the average of the two was taken and for the variance the smaller

one was chosen. To assign boundaries for states, the estimated variance was halved.



231

For plotting, the height of each peak was set to match the peak height. No weight

was fitted. The mean inter-peak distance for each PDF was used as a proxy of copy

numbers for plotting in Fig 5.4c.

Estimation of nS2R2 for classification of single cell traces

We have classified the single cell traces using a normalized R squared, the proportion

of variance explained, which we call nS2R2. In this adjustment, each element in

both the residual and the total sum of squares is normalized by the predicted value:

nS2R2 � 1 − Snorm
res /Snorm

total (5.1)

where

Snorm
res �

∑
i

(yi − fi)2/ f 2
i , (5.2)

Snorm
res �

∑
i

(yi − y0)2/ f 2
i , (5.3)

where yi , fi , and y0 represent measurements, fitted/predicted values, and mean

of the measurements, respectively. This normalization takes into account that

the intrinsic noise increases with expression and thus penalizes it less. Next, the

algorithm fits one constant to the start and one constant to the end value of the

CFP/mCherry trace, and reports this estimation parameter (nS2R2) based on which

it classifies traces as shown in the pie charts of Fig 5.10c. Clear transitions exhibit

an nS2R2 score of>0.5 and were verified by eye analyzing microfluidics movies

in detail. The algorithm classifies no-events (”flat lines”) if the nS2R2 score lies

between 0 and 0.5. Traces, which cannot be classified unambiguously neither as

clear transition nor as a clear no-event, i.e. with nS2R2 below 0, are classified as

”complex traces”. This occurs if the start and end of CFP/mCherry trace values are

similar but vary significantly in between.

5.4.11 Quantitative PCR

For qPCR, DNA was isolated using Wizard Genomic DNA purification kit (Promega,

Madison, Wisconsin) from 50 µl of frozen samples from different time points
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(1,4,9,10,11, gal 10, single copy control, DOG 8, DOG 10) of one flow cytometry

experiment grown for 4-5 generations in LB. To quantify fluorescence, the same

cultures were patched onto LB agar supplemented with 0.5% charcoal and imaged

using the macroscope.

We performed qPCR using Promega qPCR 2x Mastermix (Promega, Madison,

Wisconsin) and a C1000 instrument (Bio-Rad, Hercules, California). To quantify the

copy number of samples of an evolving population, we designed one primer within

cfp (target) and used one primer within rbsB as a close reference, which lies outside

the amplified region. We compared the ratios of the target and the reference loci to

the ratio of the same two loci in the single copy control. Using dilution series of one

of the gDNA extracts as template, we calculated the efficiency of primer pairs to be

89.01% and 92.57%, for cfp and rbsB, respectively. We quantified the copy number

ofÂăcfp in each sample employing the Pfaffl method, which takes amplification

efficiency into account [Pfaffl, 2001]58. qPCR was done in three technical replicates.

5.4.12 Measurement of colony fluorescence (Fig 5.6c, Fig 5.9b,

Fig 5.3a)

Colonies were grown without selection and imaged using the macroscope set

up. To obtain mean colony CFP fluorescence intensity, a region of interest was

determined using the ImageJ plugin ’Analyze Particles’ (settings: 200px-infinity,

0.5-1.0 roundness) to identify colonies on 16-bit images with threshold adjusted

according to the default value. The region of interest including all colonies was then

used to measure intensity.

5.4.13 Mathematical model

A simple mathematical model recapitulates the change in galK copy number of the

amplified population (Fig 5.5a). Importantly, the parameters for the model were

estimated purely from calibration measurements (growth rates, fitness in the two

environments with respect to copy number (flow cytometry experiments), number

of generations spent in each environment, and recombination rate, krec) and the
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literature (kdup, [Andersson and Hughes, 2009]). Their values are listed in Table 5.2.

No parameter was fit to reproduce the measurements in Fig 5.5a.

The model describes the time evolution of a population where cells with different

gene copy numbers are represented by distinct states. The duplication and amplifi-

cation events are the only source of transition between states. The time evolution

proceeds iteratively, with discrete times representing synchronous cell divisions in

the population.

The size of subpopulation N j of cells with gene copy number j at time t + 1 equals:

N j(t + 1) �

daughter 1                            
(1 − krecs j)N j(t)+

daughter 2                                                        
(1 − krec − kdupδ j,1)s j N j(t)                                                                                                            

no duplication or amplification event

+

M∑
k�2

krecPk j sk Nk(t)                                
amplification event

+ kdups1N1(t)δ j,2                          
duplication event

(5.4)

where s j is the relative growth rate of the subpopulation with j gene copies in the

given environment (taken from Fig 5.2d), δ jk a Kronecker delta which equals 1 if

j � k and 0 otherwise. The equation for single and double gene copy numbers ( j � 1

or j � 2, respectively) has an additional term to reflect duplication events. As we

assume that the rate of recombination per copy is constant, the overall recombination

is proportional to the number of gene copies k; krec � kk0
rec (ref 8). Pk j represents

the transition probabilities given an amplification event and is computed in the

following way: assuming a homologous recombination between sister chromosomes

occurs somewhere in the gene, we computed all possible combinations of how

genes can be recombined to form different number of gene copies between the

two daughter cells. Pk j then represents the probability that, given a recombination

event, a daughter cell obtains j gene copies with its mother having k of them before

the event. For example, starting with three gene copies, there is 22% probability

to obtain four gene copies, or 22% probability to have one copy in the daughter

(Fig 5.11h). We have observed in microfluidics experiments that most (65%) copy

number changes happen only in the mother cell while the daughter cell remains

unchanged. Therefore, we do not model recombination as a reciprocal event.
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Based on platereader bulk experiments, observations indicated an upper limit for

the copy number a cell can have. Thus, in our model, a cell can have up to M gene

copies; if that number is exceeded, the cell stops dividing. This upper limit for gene

copy number was confirmed in microfluidics and qPCR experiments, indicating to

be between 6 and 12. Our single cell analysis showed that M � 10 is a good estimate

(Fig 5.10b, according to number of states in the probability density function, see

Analysis of the microfluidics data). However, the results of the mathematical model

do not depend on the precise value within the measured range, as all results remain

qualitatively the same for any value in the range of 6 and 12. Fig 5.11g shows that

relative growth rates, obtained from flow cytometry experiments, are independent

of M.

5.4.14 Measurements of model parameters (Table 5.2)

T1 & T2, generations per day in 96 well plates

In order to model the alternating selection experiment (Fig 5.5a), we needed to

know the maximal growth rate of the amplified strain (IT028-EE1-D8) in the

high and low expression environments, respectively. Because the exact details of

cultivation (such as culture volume, shaking speed and temperature fluctuations)

strongly affected growth rate, we were unable to measure growth curves while

keeping cultures under the conditions of the original experiment. Hence, we

estimated growth rate indirectly without perturbing the experiment, by determining

the maximal number of generations possible in 24h (number of generations =

24[h] · growth rate[1/h]/log(2)) from a dilution series experiment. Populations

pre-adapted to the respective environment were grown to carrying capacity of the

respective medium and diluted by a factor of approximately 2n (with n ranging

between 7 and 28). We sought the maximal dilution that could still be compensated

by growth (by requiring after 24h of growth the OD600 to reach the OD600 of the

stationary phase). All dilutions of equal to or less than 1:222 and 1:223 were able to

reach stationary phase in the high and low expression environment, respectively,

yielding model parameters T1 � 22 and T2 � 23 for the maximal possible number of
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generations.

T10 & T20, generations per day in culture tubes

Parameters T10 and T20 were necessary for obtaining the fitness landscape in

Fig 5.2d (and the resulting relative growth rates s j). T10 and T20 generations per day,

measured under the exact conditions of the flow cytometry experiment (Fig 5.2c),

namely exponential growth in culture tubes with 2ml volume of M9 0.1% galactose

or M9 1% glycerol + 0.0001% DOG, respectively. We measured OD600 with a WPA

Biowave spectrophotometer (Biochrom, UK).

Determining fitness landscape and relative growth rates s j

The relative growth rates for each genotype (copy number state) in the high and low

expression environments, respectively, were computed from flow cytometry time

series experiments assuming exponential growth with no duplication/amplification

event (kdup � 0, krec � 0). This is a valid approximation as long as the two rates

are small enough, such that the population structure consists of all copy number

types, i.e., that each subpopulation is much larger than the additional cells created

by a single amplification or duplication event. The flow cytometry measurements

of the distribution of CFP expression at different times were split in M equal-width

bins. The lowest and highest bins were set according to the equilibrium fluorescence

distribution in DOG and galactose, respectively. For the lowest bin, we took the

values of fluorescence < 85, while for the high bin we took the mode fluorescence

values of the measured distributions, corresponding to > 160 for the first, and > 245

for the second set of flow cytometry experiments. Each bin represents a given gene

copy number. The distributions between different times were then compared using

iterative exponential growth model:

N j(t2) � (1 + s j)(t2−t1)/t1/2 N j(t1), (5.5)

where N j is the population size with j gene copy number, t1/2 is the doubling

time, t1 and t2 are two measurement times, and s j represents the relative growth

of cells with j gene copies. The population distributions for all time points were
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obtained from the flow cytometry data given the binning described above. Using

this model, we obtained growth rates s j for each pair of consecutive distributions

at times ti and ti + 1 in the following way: given population distribution at time

i, we predicted the new distribution given Eq. 5.5. We found such s j values that

minimize the Euclidean difference between the predicted and observed population

distribution at time i + 1. We repeated this for all pairs of consecutive distributions

(at times ti and ti + 1) and different replicates to obtain a set of solutions for s j .

Using this approach, we acquired only relative growth rates, which still allowed

constants to be added to the growth rates. To tackle this, we added such constants

to each growth rates in order to i) minimize the χ2 of the differences between each

growth rate solution and the mean of all solutions, which optimally removes the

replicate-to-replicate variability (error bars in Fig 5.2D) on the inferred relative

growth rates but does not affect their mean value; and ii) force the average growth

rate of the adapted state to be 1 (i.e., for j � 1 in low expression environment and

j � M is high expression environment, s j � 1) by adding a term to the χ2 error

function of the form (adapted state expression − 1)2. Fixing s to be 1 in a reference

environment is a convention that mathematically will not affect any subsequent

results.

The absolute maximal growth rates in the two environments were measured in

populations grown in high and low expression environments for 120h, respectively.

Thus, they represent the growth rates of populations with the highest and lowest

possible copy number (Fig 5.2c, positive controls). The estimated fitness values for

both high expression environment (sHEE
j ) and low expression environment (sLEE

j )

can be found in Table 5.2.

Estimation of recombination rate krec from microfluidics data

We obtained a conservative estimate for the lower bound for the average number

of copy number mutations from single step transitions in the pie charts (Fig 5.10c).

Out of 72 mother cell time traces classified as clear transition events, we verified

67 by detailed analysis of microscopy images. We accordingly calculated the lower

bound for the mutation rate as 67 events/1089 lineages/22.7 generations yielding
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krec � 2.7 · 10−3(±0.74 · 10−3) per cell per generation.

To estimate the mean recombination rate to be used in the model, two corrections

have to be made: i) because our model assumes that the recombination rate is

proportional to the number of gene copies 8, we had to take into account that cells

with higher initial gene copy number are more likely to undergo a recombination

event; and ii) as our experimental setup only allowed us to see if there has been

a change in gene copy numbers or not, we had to take into account that there are

some recombination events that do not change the gene copy number.

To account for i), we first computed the probability distribution that a given number

of independent recombination events occur (Fig 5.10d): given the assumed indepen-

dence of recombination events, the probability of observing a certain number of

recombination events for a given cellular trace is approximately Poisson distributed,

with the parameter being the expected number of events per microfluidic experiment

duration (i.e., the effective recombination rate times the number of generations).

The total number of observed generations was: 37.7, 36.3, and 41.3 for the three

microfluidics experiments, respectively. Our approach is an approximation, namely

it assumes a constant effective recombination rate for each trace throughout the

experiment, which can be violated if more than one recombination event occurs.

For example, the first recombination event can change the gene copy number, which

in turn changes the probability of subsequent recombination events happening.

While it is in principle possible to take this into account, it substantially complicates

the inference of the recombination rate from data and makes it strongly model

dependent.

As per our model assumption, the effective recombination rate is equal to the initial

number of gene copies times the basal recombination rate. Therefore, we used

all single cell traces to estimate a starting gene copy distribution. To do this, we

averaged the normalized fluorescence (as a proxy for the starting effective gene

copy number, see Fig 5.3c) over the time points 20 through 50. Next, we computed a

Poisson probability distribution of obtaining k events (k � 0, 1, . . . ) in the time of the

experiment for each individual trace, with the basal recombination rate multiplied

with the starting gene copy number (Fig 5.10d). For example, if a single cell trace
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started with 4 gene copies, the expected number of events per experiment would

be 4 times the basal recombination rate times the number of generations. Next, we

averaged over all computed Poisson probability distributions, obtained from all

single cell traces. This effectively means obtaining a total probability distribution

for seeing 0, 1, or more recombination events over all recorded single-cell traces,

taking into account point i).

Next, we consider point ii), taking into account the effect of recombination events

that do not change the gene copy. We know from the Pkj matrix that the probability

of keeping the gene copy numbers is the reciprocal of the initial gene copy number.

Therefore, we took into account all events that would be seen as zero or single events

(but are not) and adjusted the probability distributions. For this, we defined two

probability distributions: the distribution of observed events, pobserved, which we

are trying to find; and the distribution of âĂĲactualâĂİ number of events, pactual,

which we computed as described above. For example, in the observed distribution

that is compared with experimental data, we classified as single events all double

events where one of the recombination events leaves the copy number unchanged,

all triple events where two events keep the copy numbers unchanged, etc. Therefore,

the probability of observed events also includes the actual probability from states

with k > 0 in which recombination did not change the copy number:

pobserved(k � 0) � pactual(k � 0) +
∑

j

pactual( j)/ϵ j
0, for all j > 0, (5.6)

with p( j) being the probability of having j recombination events, and ϵ0 being

the initial gene copy number in the given single cell trace (estimated from ex-

perimental single cell traces). The (1/ϵ0) j represents the probability of having j

consecutive recombination events, all of which leave the gene copy number un-

changed. Analogously, the observed probability for a single event (k � 1) to occur

is:

pobserved(k � 1) � pactual(k � 1) +
∑

j

( j − 1)pactual( j)/ϵ j−1
0 , for all j > 1. (5.7)

The prefactor ( j−1) comes from the number of different possibilities of having events

that keep the gene copy number unchanged. For example, having 3 recombination
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events, there are 3 different ways of having two events that keep the gene copy

number unchanged while one event changes it.

After taking both corrections into account, we obtain a probability distribution

of observing k recombination events (Fig 5.10d). The estimate of the basal recom-

bination rate, k0
rec, is based on the proportion of traces classified by our algorithm

as no mutation events. We looked for such a recombination rate that best matched

the number of no-events in the probability distribution (Fig 5.10c-d). We obtained

k0
rec � 0.01434 per cell per generation, which is approximately 5× larger than the

conservative lower bound.

5.4.15 Model comparison with experimental data

For comparison of the model with the experimental data (Fig 5.5a), we simulated

the full experimental protocol (for parameter values, see Table 5.2):

1. We exposed a single copy, ancestral population to a week of high expression

environment, driving the population structure close to equilibrium. This mim-

icked the evolution of the amplified strain in the high expression environment

such that both experimental and simulated population started with the same

degree of copy number polymorphism.

2. The population spent one day in the low environment (for details on procedure

in each day, see below).

3. For the experiment shown in Fig 5.5a top panel, the population was addi-

tionally exposed to three daily oscillations between high and low expression

environment.

4. The population was exposed to the environments indicated in Fig 5.5a.

5. For every experiment, bacterial culture was diluted by a factor of D � 133 every

day, thus limiting growth. This growth limitation was enforced by multiplying

all growth rates by g(c) � (1 − min(c/133, 0))0.01, with c being the number of
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cells, relative to the number of cells after each dilution. The exponent 0.01 was

chosen such that g(c) was smooth but nearly a step function.

6. To compare the units of experimental and simulated data, we obtained a

common reference point. We took this to be the expression value after one

week in the high expression environment, when the population has already

equilibrated. We aligned these two points to have the same expression value.

This value varies between different experiments.

The simulation of one day consisted of (for parameter values see Table 5.2):

1. Given the recombination rate and number of states M, we computed the

transition matrix Pk j (see Eq 5.4) in the following way: given k copy numbers,

the probability of going from k to j < k copy numbers equals j/k2, while prob-

ability for k to j >� k equals (2k − j)/k2 [Pettersson et al., 2009]. Furthermore,

we assumed that no transitions that increase copy numbers beyond M are

allowed. We implemented this by setting all probabilities that go over M gene

copies to zero.

2. Next, to update the current population structure following Eq 5.4, we used

the current population structure, N j , selection on the states (growth rates)

in the given environment, s j (Fig 5.2d), transition matrix, Pk j (probability of

having j copies given k copies), the duplication and recombination rate (kdup

and krec, respectively), and the dilution factor D. First, we computed the total

population growth since the last dilution, i.e., the ratio of population size of

current time point and the size after last dilution. Second, we computed g(c)
(taking into account the saturation of the population) and multiplied it with

each of the selection values s j in Eq 5.4. Then, we used these new values to

compute N j at the new time point.

3. We repeated the step 2 for 23 or 22 times for low orhigh expression environment,

respectively. These numbers represent the number of cell divisions per day

and were determined experimentally. Steps 2 − 3 represent time evolution of

the population over the period of one day.
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4. We diluted the population by a factor of D � 133.

5. We repeated the steps 2 − 4 according to the environment the population is

exposed at on the new day (selection different between the two environments).

With this step, we simulate different days, diluting after each (step 4).

6. For each time point, we computed expression as the average gene copy number:

E �
∑

j w j , where w j is the the proportion of cells with j gene copies and sum

goes over all gene copy numbers.

7. At the end, we returned the population distribution and expression at each

time point.

For simulation of the stochastic environmental durations, we followed the same

procedure as for the deterministic ones, except that the environment durations here

were randomly drawn from an exponential distribution.

5.4.16 Finite size population model

To compute the response times for a finite size population (Fig 5.11f), we used the

Wright-Fisher model where the population size is kept constant. The procedure

was:

1. Given all parameters of the system and using the infinite size population

model (Eq 5.4), we obtained the equilibrium distribution of the population in

the starting environment. We computed the equilibrium distribution of copy

numbers in the infinite population size limit by computing the eigenvector

corresponding to the largest eigenvalue of the transition matrix (obtained from

r.h.s. of Eq 5.4), and obtained the starting finite population as a multinomial

draw of N individuals from this equilibrium distribution.

2. After the environmental transition, we updated the distribution after each

division. The new distribution was computed using the Eq 5.4.

3. We computed the new population, as a multinomial draw of N individuals,

randomly drawn from the new population distribution.
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4. After each division, we computed the expression of the population.

5. We repeated steps 3−5 until response R � M/2 has been reached. The number

of generations until this point represents the time to response. We define

response as the ratio of mean copy numbers before and after the environmental

switch.

Fig 5.11f shows the response time as the average over 100 replicate simulations of

the algorithm above.

5.4.17 Quantification and Statistical Analysis

Statistical details of individual experiments, including number of replicate experi-

ments, mean values, and standard deviations, are described in the figure legends

and indicated in the figures. For the t-test in Fig 5.4c-d we computed the response

as the fold change between mean expression of days 1 − 15 in the high expression

environment and mean expression in the low expression environment on day 16

for amplified populations (Fig 5.4c). For the co-culture populations (Fig 5.4d), we

analogously computed the response as fold change between mean constitutive strain

abundance of days 1− 15 in the high expression environment and mean constitutive

strain abundance in the low expression environment on day 16. We used a two-sided

t-test (Matlab function ttest2) to compute the p-value (2.6 · 10−68) for the difference

in mean response between amplified (Fig 5.4c) and co-culture populations (Fig 5.4d).

For measuring the linear dependence between the experimental data and model

prediction in Fig 5.5a, we computed the Pearson correlation coefficient using the

inbuilt Matlab function corrcoef.
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5.5 Supporting Information

5.5.1 Supplementary Note. An upper limit for copy number exists

in locus 1.

CFP levels of the amplified strain stabilize in populations following prolonged expo-

sure to the high expression environment (Fig 5.7c, positive control), indicating that

there is a cost to increasing copy number above a certain point. Indeed, microfluidics

experiments revealed that increasing copy number beyond the maximum attainable

level of CFP fluorescence generally led to cell death, which lead to the exclusion of

all such lineages from our analysis (Section 5.4). Both, microfluidics experiments

(Fig 5.10b) and qPCR (Fig 5.6a), consistently estimate a maximum copy number

between six and ten. This upper limit to copy number might be due to the fact that

the origin of replication lies within the amplified segment (see Section 5.4) and

could thus be specific to the strain we are using. This is corroborated by the fact that

the copy number of the strain amplified in locus 2 is estimated to be 39 according to

read-depth (Fig 5.7b). If there is a strict limit to copy number in locus 2, it is much

higher than in locus 1.
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Figure 5.6: Experimental evolution of galK expression. (a), CFP fluorescence of bacterial colonies as

a proxy for copy number. Copy number relative to a single copy control strain as determined by qPCR

is plotted for eight populations with varying levels of CFP fluorescence. Error bars represent the

standard deviation of three and four replicates for copy number and CFP fluorescence, respectively.

Linear fit: Adjusted R2 � 0.9558, p-value=3.3510−6. (b), OD600 of 95 replicate populations of the

ancestral strain each evolving in 200µl minimal galactose medium (high expression environment).

Plot shows the initial continuous cultivation phase of the evolution experiment prior to the first

transfer to fresh medium. Blue line shows the population of the amplified strain. (c), MacConkey agar

pins (as shown in Fig 5.1b, – right part) of the 95 replicate populations shown in b during 21 days of

evolution in the high expression environment. Evolving populations were pinned onto MacConkey

agar at the beginning of the evolution experiment and prior to each transfer into fresh medium to

monitor their phenotypic changes: ability to grow on galactose (apparent from pH indicator color

shift to pink) - top panel, colony YFP fluorescence (as a proxy for galK expression) - middle panel

and colony CFP fluorescence (as a proxy for galK copy number) - bottom panel. Area shaded in red

corresponds to population median ±3σ of the ancestral population.
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Figure 5.7: (Continued on the following page.)
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Figure 5.7: Coverage plot of ancestral and evolved strains of locus 1 and locus 2. Read-depth is

shown for the whole genome of (a), Locus 1: (top) ancestral strain, (middle) amplified strain isolated

after evolution in the high expression environment (Fig 5.6c), (bottom) amplified strain after 24h

in the low expression environment (clone from experiment shown in Fig 5.7c). (b), Locus 2 (top)

ancestral strain, (middle) amplified strain isolated after evolution in the high expression environment

(Fig 5.9b), (bottom) amplified strain after 24h in the low expression environment. The number next

to the amplified region indicates the fold change in coverage as compared to the respective ancestral

strain. Additional regions with increased coverage (labeled in the middle panels of a) are caused

by sequence reads of the synthetic reporter cassette mapping to homologous sequences within the

E.coli genome: endogenous galK, terminators downstream of yfp and cfp ( 4.1 and 4.2 Mbp, resp.).

Prophage Rac is absent in the evolved strains of locus 1.ÂăFor locus 2, additional regions of increased

coverage (labeled in the middle panel of b) are caused by homologies with the amplified region,

especially insertion sequence (IS) element 1.
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Figure 5.8: (Continued on the following page.)
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Figure 5.8: Amplification-mediated gene expression tuning (AMGET) allows growth in alternat-

ing environments and is dependent on recA. (a), Growth of the amplified strain during alternating

selection (see also Fig 5.2b). OD600 is shown for alternating selection following the scheme of 1 day -

1 day, 2 days - 1 day and 3 days - 1 day in high and low expression environment, respectively. Error

bars represent the standard deviation (SD) of 60 populations. (b), Flow cytometry histogram (one of

six replicates from two independent experiments) following the adaptation of an amplified bacterial

population to low and high expression environments. Population was inoculated from a single

colony and selected for two days in the high expression environment prior to the two transitions

shown here. When switched from high to low expression environment, YFP fluorescence as a proxy

for galK expression is decreasing within 24h to reach the steady state level of the same population

after 5 days in the low environment (positive control). When shifted back to the high expression

environment, the amplified population increases in CFP fluorescence to the level reached by the same

population after 5 days in the high expression environment (positive control). (c), Plot shows CFP

fluorescence as a proxy for galK copy number and YFP fluorescence as a proxy for galK expression

of the evolving population (data from the experiment shown Fig 5.2c and Fig 5.8b, respectively).

(d), Mean steady state CFP fluorescence of amplified populations with (left) and without (right)

functional recA allele grown in 0%, 5 · 10−5% and 10−5% DOG. (e), During alternating selection,

CFP levels of the amplified strain tracks fluctuating environments. CFP levels of neither the recA-

derivative of the amplified strain nor a constitutive, single-copy derivative of the amplified strain

follows the environments. The constitutive strain evolved serendipitously in an overnight culture as

a clone that lost its amplification but gained a point mutation in p0 of the chromosomal cassette

allowing for galK expression in the absence of amplification.
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Figure 5.9: AMGET occurs at a different genomic locus. (a), E. coli chromosome map showing

positions of locus 1 (downstream of rsmG) and locus 2 (inside cryptic prophage CP4-6 and flanked by

two identical IS elements) relative to the origin of replication (oriC). (b), Amplifications readily evolve

in locus 2. Colony CFP fluorescence as a proxy for gene copy number of 95 replicate populations

pinned onto agar before and during evolution in the high expression environment. Red shaded area

represents the median ±3σ of the ancestral population. (c), Normalized CFP fluorescence of strains

with gene amplification in locus 2 (”A9”, ”D4”) tracks fluctuating environments like the strain with a

gene amplification in locus 1 (”D8”). Although absolute CFP levels are higher in locus 2 than locus 1

(top panel), fold change of CFP and YFP is similar between both loci (bottom panel).
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Figure 5.10: (Continued on the following page.)
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Figure 5.10: Microfluidics data analysis. (a), Scatter of fluorescence in mother cell for constitutive

mCherry and copy number marker CFP in three replicate experiments. Orange data points are

included in the further analysis, whereas blue points were manually excluded (for further details, see

Section 5.4). (b), Probability density function of orange data points in a are shown in black. Colored

lines represent gene copy number estimates that were calculated using a Gaussian mixture model

(for further details, see Section 5.4). (c), The time series of the amplification marker fluorescence

(growth normalized) for each mother cell was automatically classified into four categories. Green

- no transition. Light blue – transition, but the transition was too close to the start or end of the

experiment in order to determine if it was transient or not. Dark blue – transition considered to

be stable. This number was verified by inspecting microfluidics movies and used to calculate the

lower bound of the recombination rate. Yellow âĂŞ more complex behavior, multiple fast transitions,

oscillations. (d), Probability distribution of observing zero, one, or more independent recombination

events, which lead to a change in copy number (see Section 5.4).
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Figure 5.11: (Continued on the following page.)



253

Figure 5.11: Mathematical model is not very sensitive to experimentally measured parameters.

(a), Error of fitting for varying different parameters: gene amplification and duplication rate (left);

growth rates, shown as generations per day, in high- and low expression environment (high EE, low

EE) (middle), and in FACS tubes (right). When a set of two parameters is varied, all other parameters

remain fixed. Error of fit of two different experiments is shown in top and bottom. The error of fitting

is defined as the average squared difference between experimental and simulated data point. Values

that we measured in independent experiments and are used in our simulations are marked by a red

x. (b), An example of a rare environment where the preceding environment is long enough such that

the gene copy number distribution does not change. The time to response is defined as the time

needed by the population after environmental switch to achieve response R=M/2=5. (c-f), Time to

respond as a function of amplification- c, and duplication d, rate, fitness costs of expression e, and

population size f, for either switching from low to high expression environment (full line), or from

high to low expression environment (dashed line). (g), Relative growth rate for different choices

of maximum number of gene copies, M, for low expression environment (dashed lines), and high

expression environment (full line). (h), An example of all combinations of two sister chromosomes

undergoing homologous recombination and splitting six gene copies among themselves. In all plots,

unless stated otherwise, we use relative growth rates as shown in Fig 5.2d, and amplification and

duplication rates of k0
rec � 1.34 · 10−2 and kdup � 10−4 per cell per generation, respectively.
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Figure 5.12: Robustness of AMGET with respect to varying model parameters. (a), The response

R as the function of the two environment durations for three different expression costs (from left

to right: 0.8, 0.5, 0.2). With decreasing cost of expression, AMGET effectively slows down and

increases the environmental durations required to observe a visible response increase. This behavior

leads to a predictable outcome in the limit of vanishing expression cost, where the population

remains in the high expression state forever and thus no regulation via AMGET is needed. (b-c),

Population response generated by AMGET is robust to large variations in the recombination and

duplication rate. Maximal variation in response (color scale), defined as ∆R=max(R)-min(R), for

varying recombination rate b, and duplication rate c, for a set of environmental durations. We densely

sample the parameter ranges for basal recombination rate, k0
rec (see Section 5.4), in the range of

10−4 − 5 · 10−2 and duplication rate in the range of 10−5 − 10−3, and find the largest and smallest

response within this range to compute ∆R. The recombination rate mostly affects R around the

narrow range of environment durations near the switch from no response to full response. For shorter

environment durations, amplifications do not have enough time to sweep through a population and

hence no response is achieved for any realistic recombination rate. Conversely, for longer durations

enough time has passed in each environment that a response will always be maximal, except for

recombination rates above 10-2, which dampen the response as mutation decreases the efficacy of

selection. The duplication rate only affects the response for environmental durations close to the

switch from no response to full response, and for low expression environments of a long duration.

This is because the emergence of new duplications becomes rate-limiting after the low expression

environment switches back to the high expression environment. In all plots, unless stated otherwise,

we use recombination and duplication rates k0
rec � 1.34 · 10−2 and kdup � 10−4, respectively. All rates

have units per cell per generation. In our setup, one-day timescale is equivalent to between 10 and 23

generations (lower and upper bound, respectively; the bounds are estimated from the minimum and

maximum growth rate of the least and best adapted copy number types, Table 5.2, Fig 5.2d).



256

Parameter values Symbol Value Obtained from

Max number of copies M 10 qPCR & microfluidics (Section 5.4)

LEE FACS tubes gen. per day T20 10.4 growth rate in culture tube

HEE FACS tubes gen. per day T20 14.7 growth rate in culture tube

LEE gen. per day T2 23.0 dilution series in 96-well plates

HEE gen. per day T1 22.0 dilution series in 96-well plates

Recombination rate (cell−1 gen.−1) k0
rec 0.0134 microfluidics (Section 5.4)

Duplication rate (cell−1 gen.−1) kdup 10−4 [Anderson and Roth, 1981; Reams et al.,

2010; Pettersson et al., 2009; Sun et al.,

2012]

Relative growth rates in HEE sHEE
1 0.46 Flow cytometry experiment

sHEE
2 0.45 (fitness landscape; Fig 5.2d)

sHEE
3 0.51 in combination with growth

sHEE
4 0.57 rate measurement of

sHEE
5 0.62 the fittest copy number (sHEE

10 )

sHEE
6 0.68 (Section 5.4)

sHEE
7 0.74

sHEE
8 0.78

sHEE
9 0.81

sHEE
10 1

Relative growth rates in LEE sLEE
1 1 Flow cytometry experiment

sLEE
2 0.94 (fitness landscape; Fig 5.2d)

sLEE
3 0.84 in combination with growth

sLEE
4 0.74 rate measurement of

sLEE
5 0.67 the fittest copy number (sHEE

10 )

sLEE
6 0.62 (Section 5.4)

sLEE
7 0.57

sLEE
8 0.53

sLEE
9 0.50

sLEE
10 0.44

Table 5.2: Model parameter values. LEE – low expression environment, HEE – high expression

environment. Reported values represent the mean of triplicate experiments.
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Name Purpose Source

pZA21-yfp source for yfp in pMS6* [Lutz and Bujard, 1997]

pKD13 kan template for recombineering [Datsenko and Wanner, 2000]

pMS7 starting point for construction of

the gene cassette for evolution,

pir dependent replication

[Steinrueck and Guet, 2017]

pMS6* gene cassette template for

recombineering, pir dependent

replication, pir dependent

replication

this study

pMS1 template for constitutive galP

promoter (fragment J23100)

based on pKD13

lab collection

pBAD24 basis for pIT07 [Guzman et al., 1995]

pIT07 gene cassette template for

recombineering, based on

pBAD24

this study

Table 5.3: Plasmids.
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Strain
name

Genotype Purpose Source

MG1655 F- λ- ilvG- rfb-50 rph-1 strain background for all
experiments except testing
experiment

lab collection

BW27784 lacIq rrnB3 ∆lacZ4787 hsdR514
DE(araBAD)567 DE(rhaBAD)568
DE(araFGH) Φ(∆araEp
PCP4AâĂŞaraE)

background for testing
experiment (Fig 5.1b) strain
construction

[Khlebnikov
et al., 2001]

IT013 BW27784, JA23100::galP,
mglBAC::FRT, galK::FRT

background for testing
experiment (Fig 5.1b) strain
construction

this study

IT013-TCD BW27784, JA23100::galP,
mglBAC::FRT, galK::FRT,
locus1::pBAD-galK

strain background for testing
experiment (Fig 5.1b)

this study

MS022 MG1655, JA23100::galP,
mglBAC::FRT, galK::FRT

background for evolution
experiment strain construction

lab collection

JW0740-3 F-, ∆(araD-araB)567,
∆lacZ4787(::rrnB-3), λ-,
∆tolC732::kan, rph-1,
∆(rhaD-rhaB)568, hsdR514
∆galK729::kan

source for galK deletion [Baba et al.,
2006]

BW25142 lacIq rrnB3 (lacZ4787 hsdR514
DE(araBAD)567 DE(rhaBAD)568
(phoBR580 rph-1 galU95 (endA9
uidA((MluI)::pir-116 recA1

host for pir plasmids pMS6* and
pMS7

[Haldimann
and Wanner,
2001]

IT028 MS022 locus1::p0-RBS-galK-RBS-
yfp-FRT-pR-cfp

ancestor strain for evolution
experiment (Fig 5.6b,c)

this study

IT030 MS022 locus2::p0-RBS-galK-RBS-
yfp-FRT-pR-cfp

ancestor strain for evolution
experiment (Fig 5.9b)

this study

IT028-EE1-
D8

IT028 dup(atpB-rsbD), rho
(S265>A)

amplified strain locus 1, evolved
in evolution experiment
(Fig 5.6b,c)

this study

IT028-EE1-
D8-recA

IT028 dup(atpB-rsbD), rho
(S265>A), ∆recA

∆recA-stabilzed version of
amplified strain IT028-EE1-D8
(Fig 5.8d,e)

this study

IT028-
EE11-D4

IT030 dup(IS1B-IS1C) amplified strain locus 2, evolved
in evolution experiment
(Fig 5.9b)

this study

IT028-
EE1-D8-
pRmCherry

MS022 dup(locus1::p0-RBS-galK-
RBS-yfp-FRT-pR-cfp),
attP21::pR-mCherry

amplified strain locus 1, for
microfluidics (Fig 5.3b,c)

this study

IT034 IT028 attP21::pR-mCherry ancestral strain in co-culture
experiments (Fig 5.4b,d)

this study

IT028-H5r MS022 locus1::pconst-RBS-galK-
RBS-yfp-FRT-pR-cfp

constitutive strain in co-culture
experiments (Fig 5.4b,d)

this study

Table 5.4: Bacterial strains.
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6 Conclusion

The thesis addressed four questions relating to gene regulation across different

scales and their evolutionary consequences. We started with a broader, systems-level

problem of crosstalk and how crosstalk influences the type of regulation. We have

shown that global crosstalk, which takes into account the whole network, could

play a role in determining one form of regulation above the other.

Next, we focused on eukaryotic gene regulation, in particular, on the architecture of

eukaryotic enhancers. We showed that the normative approach (i.e., an approach

that postulates the optimal biological function) can be successful in controlling the

complexity of eukaryotic models. We demonstrated how a simple generalization of

equilibrium models allows us to escape equilibrium bounds and access optimal reg-

ulatory phenotypes, while remaining consistent with the reported phenomenology

and simple enough to be inferred from upcoming experiments.

In Chapter 4 we focused on prokaryotic gene regulation by addressing one of the

central questions of evolutionary biology: that of genotype-phenotype mapping.

With our model, which accurately predicted the genotype-phenotype map, we

explored the constraints and mechanisms of promoter function on this map. This is

arguably the first exploration of evolutionary consequences for promoter evolution

in a model that is biophysically realistic enough to fit dynamic gene expression data.

Furthermore, we have also shown that underlying mechanisms – and not the whole

detailed GP mapping – determine general trends in promoter evolution.

We concluded with an evolutionary aspect of gene regulation. In Chapter 5, we

demonstrated under what conditions intrinsic instability of gene duplication and

amplification provides a generic alternative to canonical gene regulation. Using

modeling we showed that this alternative can work in a wide range of environments,
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including those where transcription factor-based schemes are hard to evolve or

maintain.

These four questions addressed gene expression and regulation across different

time scales. First two chapters described processes that are related to organisms

responding to environmental cues. These are biological processes, such as produc-

tion and binding of transcription factors, which ensure the survival of the organism.

These occur on short time scales. The opposite, the evolutionary time scales, are

required to evolve new regulatory binding sites. We have shown in Chapter 4

that even though both regulation and expression need evolutionary time scales to

evolve, the regulation requires much longer to evolve than expression. Therefore,

what can a cell with constitutive expression but no available gene regulation do

when this regulation is required? If selection is strong, such organisms wouldn’t

survive unless an alternative to regulation is found. We explored this in the last

chapter where we showed that amplification is a viable alternative to (evolving)

gene regulation. Therefore, we concluded the thesis with this mechanism which

bridges the necessity of fast response to environmental cues together with long

evolutionary times required to evolve the machinery to do that.

As we have seen in Chapter 4, thermodynamic-based models of gene regulation

are interpretable in mechanistic terms and have high predictive power, making

them perfectly suited as components in models of promoter and network evolution.

What could be the future directions that such models explore, and how could we

address them with our existing framework?

Theoretical studies of evolution often focus on point mutations and,at best, insertions

and deletions, whereas experimental results point to a much broader repertoire of

mutational moves. There is evidence that regulatory evolution, in practice, proceeds

mainly by these alternative moves [Steinrueck and Guet, 2017]. This agrees with

what we have shown in Chapter 5: that duplication and amplifications play an

important role in gene regulation. Therefore, we could extend our biophysical

model to include these types of mutations, thus allowing amplification of individual
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binding sites. We could investigate if such mechanisms, which do not leave any

genomic signature, could be a factor in significantly influencing the TF-BS evolution.

Given their high rates, this idea appears plausible.

Next, understanding how other types of gene regulation change the biophysical

constraints could prove important. Therefore, by studying regulation by activation,

and how it influences evolutionary trajectories, we could gain new insights into

evolutionary preferences of difference regulatory networks. Two extreme scenarios

can be imagined. First, the main conclusions of biophysical constraints would not

be changed when looking at different type of gene regulation, showing that main

properties of such constraints do not originate from network properties. In the

second scenario, most of the biophysical constraints would be strongly influenced

by the type of regulation, showing a strong need to further understand how network

characterstics affect the biophysical properties. Reality most likely lies somewhere

between the two extremes. Furthermore, in such study any combination of regula-

tors could be included, addressing questions of biophysically realistic evolution of

whole regulatory networks.

When studying transcription factor binding site evolution, a common simplification

is that transcription factor properties are fixed and are not changing. Knowing

that transcription factor representation is captured by an energy matrix, we can

study how evolution of transcription factor binding sites is affected by changing

transcription factors (i.e., energy matrices). This would allow us to investigate, for

example, the relationship between changing transcription factors and their binding

sites, answering under which conditions binding sites can or cannot evolve. In other

words, we could ask how fast and in what way can transcription factors change

such that evolution of binding sites can follow these changes? Overall, connecting

the mutational effects in the coding region of a protein to the correct representation

of its binding affinity poses a crucial step in correctly understanding transcription

factor binding site evolution.

All of the above extensions represent different facets of the same general problem:

namely, of using biophysical realism to construct, simulate, and understand the

evolution of genetic regulatory networks. This approach would offer the ability to
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remain firmly grounded to known molecular mechanisms and study their individual

influences, while simultaneously allowing us to consider systems- and network-level

effects, such as crosstalk.

This thesis represents over four years of work at IST Austria. Of the four projects

described, two of them started already during my rotations which then transformed

into full projects. The other two projects are a result of an interdisciplinary and

encouraging environment – an environment which shaped me not only as a scientist

but also as a person. To conclude, I believe that I took advantage of the interdisci-

plinary environment at IST which, I hope, is seen at the broadness of my projects

and this thesis.
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