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Abstract
Discrete Morse theory has recently lead to new developments in the theory of random geometric
complexes. This article surveys the methods and results obtained with this new approach, and
discusses some of its shortcomings. It uses simulations to illustrate the results and to form
conjectures, getting numerical estimates for combinatorial, topological, and geometric properties
of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha
and Wrap complexes contained in the mosaics.
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1 Introduction

Natural phenomena are often characterized by spatial decompositions reflecting local prox-
imity. Indeed, such phenomena arise in different disciplines of science and beyond, so that
a variety of names were established all referring to the same geometric model: Voronoi
diagrams, Dirichlet tessellations, Wigner–Seitz cells, Thiessen polygons, Brillouin zones
etc.; see [3]. The basic version is defined for a locally finite set, X ⊆ Rn, and assigns to
each x ∈ X the region of points that are at least as close to x as to any other point in X.
We refer to the collection of such regions as the Voronoi tessellation of X. Assuming the
points are in general position, the nerve of the Voronoi tessellation is a simplicial complex
in Rn, which we refer to as the Delaunay mosaic of X. Beyond the basic version, we limit
ourselves to the weighted case, in which the squared Euclidean distance is replaced by the
power distance to a point. The resulting decomposition is often referred to as power diagram
or Laguerre tessellation but we will call it a weighted Voronoi tessellation. To introduce
randomness, we use a stationary Poisson point process in Euclidean space, and we refer to
the resulting random geometric structures as Poisson–Voronoi tessellations and their dual
Poisson–Delaunay mosaics. While the former have more interesting geometry, the latter are
more convenient to work with when combinatorial and topological aspects are in the focus.
We will be interested in such aspects of the Alpha and Wrap complexes of Delaunay mosaics.

Prior work and contributions. The systematic investigation of random Voronoi tessel-
lations and Delaunay mosaics was initiated by Miles’ extensive study of the 2-dimensional
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case [39], but some results were already known to Meijering [38]. While Miles settled a wide
variety of stochastic questions in R2, few theoretical results beyond two dimensions were
known prior to [26]. An exception is the expected number of Voronoi vertices or, equivalently
the top-dimensional simplices in the Delaunay mosaic, although many integral expressions
and relations for geometric characteristics like intrinsic volumes and numbers of simplices
were available; see [11, 12, 42], and [46, Chapter 10] for a general survey. In this context, we
also mention [6], where general Gamma-type results for distributions of various associated
quantities were obtained. Parallel to the purely mathematical interest, the study of random
tessellations in R3 is motivated by questions in material science, and a wealth of primarily
experimental findings on 3-dimensional Poisson–Voronoi tessellations can be found in [35, 37].
Random weighted Voronoi tessellations were studied in [33, 34], with the weights following
their own distribution, such as uniform or normal. Alternatively, we may construct a weighted
Voronoi tessellation as a slice of a higher-dimensional unweighted Voronoi tessellation, and
this construction was briefly considered in [42].

In this paper we continue the study of the questions pioneered in the already mentioned
works of Miles [39, 40], and we consider them from the viewpoint of discrete topology.
When we construct a Delaunay mosaic incrementally, then each simplex acquires topological
significance. To formalize this idea, we may consider the (generalized) discrete Morse function
that encodes the family of Alpha complexes contained in the mosaic [5]. We are motivated to
shift to this view by the widespread use of persistence diagrams in topological data analysis
[13, 19]. A first step in this analysis turns the data into a filtration of complexes, and the
most common types are the Čech, Vietoris–Rips, and Alpha complexes. The stochastic
properties of the first two applied to a Poisson point process have been investigated by
Kahle [30, 31], by Bobrowski and coauthors [7, 9], by Decreusefond et al. [15], and recently
by us [43]. The stochastic properties of Alpha complexes have come into focus recently
[23, 24, 25, 26], and some of these findings will be surveyed in this paper. In addition,
we will present experimental data to illustrate the theoretical results but also to motivate
further studies aimed at shedding light on observed but mathematically not yet understood
stochastic phenomena.

Approach. There is a subtle but important difference between the conventional approach
to stochastic geometry and the approach taken in this paper. To explain the difference,
consider the problem of counting the simplices in a Poisson–Delaunay mosaic in Rn, possibly
differentiating between simplices of different dimensions. To get started, we map each
simplex, Q, to a representative point, center(Q) ∈ Rn, and we study the resulting point
process with tools from integral geometry. In the conventional approach, center(Q) is chosen
in an isometry-equivariant manner, for example as the center of mass. In contrast, in this
paper we map Q to the center of the smallest sphere that passes through the vertices of the
simplex and does not enclose any points of X. This definition is not isometry-equivariant
as center(Q) depends on more than just the simplex, so we call this the context-sensitive
approach. Note that this mapping is generally not injective — not even if we assume that
the points of X are in general position — but there is topological meaning in the incidences.
Indeed, all simplices that map to the same point form an interval in the face poset, and if this
interval contains two or more simplices, then adding them to the last Alpha complex does
not change the homotopy type. In addition to studying the resulting point process, we need
to understand the intervals of simplices that share the same representative point. In other
words, we study the discrete Morse function of the Delaunay mosaic and get topologically
refined stochastic information on its simplices. The idea of the context-sensitive approach
thus originates in discrete Morse theory, which was introduced by Forman in [27], later
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generalized to intervals by Freij in [28], and recently applied to Delaunay complexes in [5].

Outline. In this survey, we summarize the results obtained with the context-sensitive
approach, particularly focusing on the remaining open questions and on numerical simulations.
In Section 2, we study unweighted Delaunay mosaics, and in addition to counting all simplices,
we count those with circumscribed spheres of radius at most r, which amounts to studying
Alpha complexes. In Section 3, we extend the study to Wrap complexes, which exploit the
flow defined by discrete Morse theory of the Delaunay mosaic to reconstruct shapes from
data. In Section 4, we turn to the weighted Poisson–Delaunay mosaics generated from slices
of higher-dimensional unweighted Voronoi tessellations. In Section 5, we address questions
about the sphericity regions in weighted and unweighted Voronoi tessellations. In Section 6,
we conclude the main part of this paper. We collect background material that may be helpful
to the non-specialist in three appendices, discussing tessellations, mosaics, and complexes in
Appendix A, introducing discrete Morse theory and homology groups in Appendix B, and
explaining probabilistic concepts in Appendix C.

2 Poisson–Delaunay Mosaics

In this section, we present fundamental probabilistic results on random Delaunay mosaics and
the Alpha complexes, which are their subcomplexes. As it turns out, it can be easier to study
the Alpha complexes first and to combine the obtained insights to gain an understanding
of random Delaunay mosaics. We begin with a brief introduction of the main geometric
and topological concepts and follow up with probabilistic results from the literature and
with numerical data collected from extensive computational experiments. More detailed
introductions to the geometric, topological, and probabilistic background can be found in
the appendices.

Geometric and topological concepts. We write Rn for the n-dimensional Euclidean
space and let X ⊆ Rn be a locally finite set. The Voronoi tessellation of X covers Rn with
closed convex domains, one for each point in X. Assuming general position, the Delaunay
mosaic of X, denoted Del(X), is the nerve of the Voronoi tessellation, geometrically realized
by mapping each domain to the corresponding point in X. By construction, Del(X) is a
simplicial complex with simplices of dimension 0 to n. Each p-simplex is the convex hull of
p+ 1 points, and we find it convenient to identify the simplex with its set of vertices, Q ⊆ X.
It is not difficult to see that for each simplex Q ∈ Del(X), there is an (n− 1)-dimensional
sphere such that all points of Q lie on the sphere, and no point of X lies inside the sphere.
There is a unique smallest such sphere, which we refer to as the Delaunay sphere of Q.
Letting R(Q) be the radius of the Delaunay sphere, we get a function R : Del(X) → R,
which we call the (Delaunay) radius function of X. For each r ∈ R, the Alpha complex of X
for r is the corresponding sublevel set of the radius function: Alphar(X) = R−1[0, r].

The Delaunay mosaic can be partitioned into intervals, which consist of simplices with
common Delaunay sphere. The simplices inside an interval share the radius, hence every
Alpha complex either contains all simplices in an interval or none of them. Writing ` for the
minimum dimension and m for the maximum dimension of any simplex in an interval, we
say the interval has type (`,m). If ` = m, we call the interval singular and its only simplex a
critical simplex of R. The critical simplices determine the topology of the Alpha complexes
as measured by their homology groups; see Appendix B for details. Indeed, if we construct
the Delaunay mosaic incrementally, in the order of non-decreasing radius, we preserve the
Betti numbers whenever we add a non-singular interval, and we change exactly one Betti
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number whenever we add a critical p-simplex, namely we increase the p-th Betti number by
1 if the simplex gives birth of a p-cycle, and we decrease the (p− 1)-st Betti number by 1 if
the simplex gives death of a (p− 1)-cycle.

Probabilistic background. As proved in [26], the radius of the typical interval of a given
type is Gamma-distributed. To state this more formally, consider a stationary Poisson
point process X with intensity ρ > 0 in Rn, and write cn`,m(r) for the expected number
of intervals of type (`,m) in the Alpha complex Alphar(X) that lie inside a Borel region
Ω ⊆ Rn. Write Γ(m) for the Gamma function, γ(m; t) for its lower incomplete version, and
call γ̃(m; t) = γ(m; t)/Γ(m) the regularized lower incomplete Gamma function. Then there
exist constants Cn`,m such that

cn`,m(r) = γ̃(m; ρνnrn) · Cn`,m · ρ‖Ω‖ (1)

for every ` > 0 and every r ≥ 0, in which νn = π
n
2 /Γ

(
n
2 + 1

)
is the volume of the unit ball in

Rn. Using (7) in Appendix B, we can transform this into a statement about the number of
simplices. Writing dnj (r) for the expected number of j-simplices in Alphar(X) in Ω, we have

dnj (r) =
j∑
`=0

n∑
m=j

(
m− `
m− j

)
γ̃(m; ρνnrn) · Cn`,m · ρ‖Ω‖ (2)

for j > 0 and every r ≥ 0. For convenience, we also define the expected number of simplices
per unit volume, Dn

j , using the formula dnj (∞) = Dn
j ρ‖Ω‖. The proof of (2) can be found in

[26], where the constants Cn`,m are computed explicitly for n ≤ 4. By saying “in Ω” we mean
that the center of the Delaunay sphere lies in Ω. An intuitively clear but technical fact [26,
Appendix A] is that this condition can be replaced by “lying inside Ω” or “intersecting Ω”,
at the cost of weakening (1) and (2) by adding o(‖Ω‖) on their right-hand sides. We use this
to estimate the distribution numerically.

Computational experiments. We present experimental results in 2 and 3 dimensions.
Figure 1 shows a 2-dimensional Poisson–Delaunay mosaic restricted to a square window. For
the computation, we chose the square window of size 300× 300 in R2 or the cube window of
size 60× 60× 60 in R3. To avoid boundary effects, we impose periodic boundary conditions
in our simulations. An instance of the Poisson point process with intensity ρ = 1 is sampled
and the geometric software library CGAL [54] is used to compute Voronoi tessellations and
Delaunay mosaics. We count the intervals and simplices and compare the experimentally
observed constants Cn`,m and Dn

j with their mathematically derived values. In R2, the Euler
characteristic implies D2

0 = 1, D2
1 = 3, D2

2 = 2. For a Poisson point process, we expect
that half the triangles are acute and the other half are obtuse [39], which implies C2

1,1 = 2,
C2

1,2 = 1, C2
2,2 = 1. Averaging the experimentally observed numbers over 1 000 runs, we

match these predictions with an accuracy of at least two positions after the decimal point.
In R3, we average the observed numbers over 100 runs; see Table 1 for a comparison of the
results.

Intervals and simplices. Besides the total densities of intervals and simplices, we are
interested in their dependence on the radius. Analytic formulas for these dependencies can
be found in [26], but no such formulas are known for the variances. As shown in [39], the
standard deviations are small if compared to the expected values, but exact values are not
available. Figure 2 gives the experimentally observed densities in R2 and in R3. Looking
at the graphs in the left panels, we get the number of intervals of any specific type with
radius between r1 and r2 per unit volume as the area below the corresponding curve and
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Figure 1 Poisson–Delaunay mosaic. The color distinguishes between an Alpha subcomplex and
the simplices whose Delaunay spheres have radii exceeding the threshold.

n = 3 theoretical exp.
C3

0,0 1 = 1.00 1.00
C3

1,1 4 = 4.00 4.00
C3

1,2
9
16π

2 − 3 ≈ 2.55 2.55
C3

2,2
3
16π

2 + 3 ≈ 4.85 4.85
C3

1,3
69
560π

2 ≈ 1.22 1.22
C3

2,3
3
8π

2 ≈ 3.70 3.70
C3

3,3
3
16π

2 ≈ 1.85 1.85
D3

0 1 = 1.00 1.00
D3

1
24
35π

2 + 1 ≈ 7.77 7.77
D3

2
48
35π

2 ≈ 13.54 13.53
D3

3
24
35π

2 ≈ 6.77 6.77

Table 1 Mathematically derived [26] and experimentally estimated values for Cn
`,m and Dn

j in
n = 3 dimensions. The numbers in the right column are averaged over 100 mosaics in R3 with
6 277 766 simplices on average.

above the segment [r1, r2]. These graphs are computed by normalizing the corresponding
histograms that bin the intervals with radii between i/100 and (i + 1)/100 for i ranging
from 0 to 250, averaging over the same number of runs as before. We fit regularized lower
incomplete Gamma functions to these graphs, using the curve_fit-function of Python 2.7’s
scipy-module, which is based on least squares optimization. As stated in (2), the densities
of the simplices are linear combinations of the densities of the intervals, so we fit linear
combinations of Gamma functions; see Section 3 for their discussion. Since these distributions
are known theoretically, it is not surprising that we get an excellent fit, but the precise
quantification of the error is still useful as it calibrates the error we get for some of the
theoretically unknown densities we discuss later. We have made no attempts to fit analytic
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(a) Observed interval densities in R2.
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(b) Observed cumulative variances in R2.
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(c) Observed interval densities in R3.
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(d) Observed cumulative variances in R3.

interval distribution experimental fit fitting error

(1, 1) C3
1,1 · γ̃

(
1; 4

3πr
3) 4.00 · γ̃

(
1.00; 4.19r3) 6.96× 10−5

(1, 2) C3
1,2 · γ̃

(
2; 4

3πr
3) 2.55 · γ̃

(
2.00; 4.19r3) 4.01× 10−5

(2, 2) C3
2,2 · γ̃

(
2; 4

3πr
3) 4.85 · γ̃

(
2.00; 4.19r3) 6.68× 10−5

(1, 3) C3
1,3 · γ̃

(
3; 4

3πr
3) 1.22 · γ̃

(
3.00; 4.19r3) 3.23× 10−5

(2, 3) C3
2,3 · γ̃

(
3; 4

3πr
3) 3.70 · γ̃

(
3.00; 4.19r3) 5.50× 10−5

(3, 3) C3
3,3 · γ̃

(
3; 4

3πr
3) 1.85 · γ̃

(
3.00; 4.19r3) 3.13× 10−5

Figure 2 The observed densities of the intervals as functions of the radius on the left, and the
corresponding variances normalized by the expected number of points on the right, showing the
experimental results in R2 on the top and in R3 in the middle. The table below the panels compares
the experimentally fit distributions in R3 with the mathematically derived formulas. The constants
in the table are rounded to two digits after the decimal point. We quantify the error by taking the
square root of the average squared deviation of the sampled points from the fitted curve, which
estimates the L2-difference between the fitted and sampled density functions.
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curves to the graphs for the variances, shown in the right panels of Figure 2, which are
computed with a window of size 100× 100 in R2 and of size 15× 15× 15 in R3, averaged
over 10 000 runs and normalized by the window size, which is also the expected number of
points. Trying different window sizes (result not shown), we get almost the same graphs,
which implies that the variances are proportional to the number of points.

Observe that the expected number of obtuse triangles (or intervals of type (1, 2)) in R2 is
the same as the expected number of acute triangles (or intervals of type (2, 2)), for every
r ≥ 0. In contrast, the variance for obtuse triangles is consistently smaller than that for
acute triangles.

Critical simplices and Betti numbers. Turning our attention to the topology of the
Alpha complexes, we consider the critical simplices that give birth and that give death, the
Betti numbers, and the variances of the Betti numbers as functions of the radius threshold;
see Appendix B for a detailed introduction of these concepts. No analytic expressions are
known for these densities, so Figure 3 just shows the experimental results. The graphs of
birth- and death-giving critical simplices are visually similar to those we get for the intervals,
but our attempt to fit Gamma-functions gives fitting errors of order 10−3 or worse, which
suggests that unlike the critical simplices, their two types do not follow Gamma-distributions.
We get the p-th Betti number as the difference between the number of birth-giving p-simplices
and the number of death-giving (p+1)-simplices. Since the latter are not Gamma-distributed,
neither are the former, with the exception of the n-th Betti number, which equals the number
of critical n-simplices.

3 Poisson–Wrap Complexes

In this section, we study the Wrap complexes of Poisson point processes. As described in
detail in Appendix B, each Wrap complex is contained in and homotopy equivalent to the
Alpha complex for the same radius.

Definitions of Wrap complex. Let X ⊆ Rn be locally finite and in general position so
that Del(X) is a simplicial complex and R : Del(X)→ R induces a well-defined partition of
the Delaunay mosaic into intervals. For every r ≥ 0, the Wrap complex of X for r, denoted
Wrapr(X), is the smallest subcomplex of Del(X) that contains all critical simplices with
radius R(Q) ≤ r and has only complete intervals. Clearly Wrapr(X) ⊆ Alphar(X), and
since both complexes contain the same critical simplices, the two have the same homotopy
type and therefore isomorphic homology groups and equal Betti numbers. It follows that the
experimental results shown in Figure 3 apply without change to Wrap complexes as well.

It will be useful to unpack this definition, which we do by introducing a partial order on
the simplices in the Delaunay mosaic. Inside an interval, the order climbs down the Hasse
diagram, and between intervals, it climbs up the Hasse diagram. For each critical simplex
Q of R, we define the lower set, denoted ↓Q, as the simplices that precede Q in this order.
The Wrap complex of X for r is then the union of the lower sets of all critical simplices in
Alphar(X).

This definition suggests we introduce the Wrap radius function, RW : Del(X) → R,
which maps each simplex, P , to the minimum radius of a critical simplex, Q, that satisfies
P ∈ ↓Q. By construction, RW agrees with R on the critical simplices, and we have
R(P ) ≤ RW (P ) for all P ∈ Del(X). With this definition, we have Wrapr(X) = R−1

W [0, r].
Since Wrapr(X) ⊆ Alphar(X), the number of intervals of any type contained in the Wrap
complex is less than or equal to those contained in the Alpha complex for the same radius.



8 Poisson–Delaunay Mosaics

0.0 0.5 1.0 1.5 2.0 2.5
r

0.0

0.5

1.0

1.5

2.0

2.5

#
cr
it
ic
al

si
m
p
li
ce
s

1 •
1 ◦
2 •

(a) Birth (◦) and death (•) in R2.
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(b) Birth (◦) and death (•) in R3.
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(c) Observed Betti numbers in R2.
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(d) Observed Betti numbers in R3.
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Figure 3 Top row: experimentally observed densities of birth- and death-giving critical simplices
in R2 on the left and in R3 on the right. Except for the top-dimensional simplices, which all give
death, they do not seem to follow Gamma-distributions. The numbers and types of critical simplices
determine the Betti numbers. Middle and bottom rows: the observed Betti numbers of the sublevel
sets and the corresponding variances, again in R2 on the left and in R3 on the right.
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(b) Simplices in Wrap and Alpha complexes.
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interval experimental fit fitting error

(1, 1) 2.00 · γ̃
(
1.00; 3.14r2) 1.37× 10−5

(1, 2) 0.62 · γ̃
(
3.01; 3.41r2)+ 0.38 · γ̃

(
4.07; 3.29r2) 2.41× 10−5

(2, 2) 1.00 · γ̃
(
2.00; 3.14r2) 1.51× 10−5

Figure 4 Experimentally observed densities of intervals and simplices in the Wrap complexes of a
Poisson point process in R2 and the corresponding variances, which are normalized by the expected
number of points. The table below the panels shows that for the interval densities there are linear
combinations of Gamma functions with surprisingly tight fit.
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(b) Simplices in Wrap and Alpha complexes.
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(d) Cumulative variances for simplices.
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(2, 3) 0.56 · γ̃
(
4.11; 6.19r3)+ 2.94 · γ̃

(
4.98; 4.23r2)+ 0.20 · γ̃

(
6.34; 7.31r2) 8.28× 10−5

(3, 3) 1.85 · γ̃
(
3.00; 4.19r3) 3.13× 10−5

Figure 5 Experimentally observed densities of intervals and simplices in the Wrap complexes of a
Poisson point process in R3 and the corresponding variances, which are normalized by the expected
number of points. The table on the bottom shows that for the interval densities there are linear
combinations of Gamma functions with surprisingly tight fit.
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It follows that the corresponding densities for the Wrap complexes lean to the right when
compared to the densities for the Alpha complexes. This can indeed be seen by comparing
the graphs in the upper left panels of Figures 4 and 5 with the graphs in the left two panels
of Figure 2. Similarly, the densities of the simplices in the Wrap complexes lean to the right
when compared to the densities of the simplices in the Alpha complexes. To facilitate this
comparison, we draw all graphs in the upper right panels of Figures 4 and 5: the solid graphs
for the Wrap complexes together with the dashed graphs for the Alpha complexes.

Lower sets. We measure the lower set of a critical simplex in two ways: with its cardinality
and with its diameter. The motivation for the two measures is their relevance in computing
the Wrap complexes. When we increase the radius threshold and thus add a critical simplex
to the Wrap complex, the change can be as large as the cardinality of its lower set. When we
study the Wrap complex for data within a window, we need to worry about boundary effects
if the lower set of a critical simplex lies only partially within the window. For example, if
the diameter of a typical lower set scales linearly with the window side, than we can expect
noticeable disturbances of the results due to boundary effects. Fortunately, the diameters are
typically small, which we confirmed in several computational experiments. We are, however,
lacking any theoretical justification of the findings, which are quantified in Table 2. We chose
p-values to represent the results. To explain them, consider the second row of the table, for
p-value 0.05. The first two entries in the row say that the lower sets of 95% = 1− 0.05 of the
critical edges in R2 have cardinality at most 1 and the lower sets of a possibly different 95%
of the critical edges have diameter at most 1.95. The next two entries give the maximum
cardinality and maximum diameter for the 95-percentile of critical triangles in R2, and
the rest of the row gives the numbers for simplices in R3. Accordingly, the first row, for
p-value 0.00, gives the maximum cardinalities and the maximum diameters we observe in the
experiment.

n = 2 n = 3
p-value j = 1 j = 2 j = 1 j = 2 j = 3
0.00 1 5.13 93 5.17 1 3.37 479 3.37 835 3.56
0.05 1 1.95 16 2.39 1 1.79 19 2.03 94 2.20
0.10 1 1.71 13 2.17 1 1.64 13 1.89 69 2.08
0.25 1 1.33 7 1.80 1 1.38 7 1.67 42 1.88
0.50 1 0.94 4 1.42 1 1.10 4 1.43 25 1.65
0.75 1 0.61 4 1.07 1 0.82 4 1.18 16 1.42

Table 2 Each double-column shows the maximum cardinality (left) and the maximum diameter
(right) of the lower sets within the given percentile. The average total number of simplices in the
simulation is 540 034 in R2 and 6 277 766 in R3. As before, we average over 1 000 experiments in a
window of size 300× 300 in R2, and over 100 experiments in a window of size 60× 60× 60 in R3.

We close this section with an experimental observation that is not reflected in the figures
and the table. Recall that for 1 ≤ p ≤ n − 1, there are two kinds of p-simplices in the
Delaunay mosaic: those that give birth and the others that give death. The data in R2 and
R3 suggest that the lower sets of the death-giving p-simplices tend to be smaller than those
of the birth-giving p-simplices. This makes intuitive sense because the death-giving simplices
tend to precede the birth-giving simplices and therefore have smaller radii. There seems to be
a positive correlation between radius and size of a lower set, which supports the conjecture.
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4 Weighted Poisson–Delaunay Mosaics

In this section, we study random weighted Delaunay mosaics and their weighted Alpha
complexes. We sidestep the need for selecting the weights separately from the points by
using a Poisson point process in a dimension that is higher than the dimension of the mosaic.

Geometric concepts. We recall that the Laguerre or weighted Voronoi tessellation gen-
eralizes the unweighted concept by substituting the power distance for the squared Euc-
lidean distance [2, 33]; see Appendix A for details. We make use of the fact that every
k-dimensional plane in Rn intersects the Voronoi tessellation of a locally finite set X ⊆ Rn
in a k-dimensional weighted Voronoi tessellation [47]. In the following, we write Rk for the
k-plane, and Y ⊆ Rk × R for the weighted points, each of which is the orthogonal projection
of an x ∈ X to Rk, with the negative squared distance to Rk as the weight. Assuming general
position, the weighted Delaunay mosaic of Y is the nerve of the weighted Voronoi tessellation,
geometrically realized by mapping each domain to the location of the corresponding weighted
point in Rk. We denote this mosaic by Del(Y ), deliberately using identical notation to blur
the difference between the weighted and the unweighted concepts.

Similar to the unweighted case, we have a weighted Delaunay radius function,R : Del(Y )→
R. To define it, let P ⊆ Y be a simplex in Del(Y ), write Q ⊆ X for its preimage, which is
a simplex in Del(X), and call a sphere in Rn anchored if its center lies in Rk. The radius
function maps P ∈ Del(Y ) to the radius of the smallest anchored (n− 1)-sphere such that all
points of Q lie on the sphere and no point of X lies inside the sphere. It is not difficult to see
that a simplex in Del(X) projects to a simplex in Del(Y ) iff such an anchored sphere exists;
see Figure 6. The sublevel sets of the weighted Delaunay radius function are the weighted
Alpha complexes of Y , Alphar(Y ) = R−1[0, r].

A related concept is the Boolean model of stochastic geometry. Given r ≥ 0, it is the
union of the balls with center y ∈ Rk and squared radius r2 + wy, in which (y, wy) ∈ Y and
we ignore the balls with r2 + wy < 0. It is not difficult to see that the Boolean model for
r ≥ 0 has the homotopy type of Alphar(Y ). It is equivalent to intersecting the union of
equal balls of radius r centered at points of X with Rk.

Figure 6 A 1-dimensional weighted Voronoi tessellation as a slice of a 2-dimensional unweighted
Voronoi tessellation. The weighted Delaunay mosaic in R1 is the projection of a chain of edges in
the 2-dimensional unweighted Delaunay mosaic.

Sampling weighted points. Some points in X may be redundant in the sense that their
domains do not intersect Rk, so that removing them from X does not affect the weighted
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Delaunay mosaic. Indeed, the further a point is from Rk, the higher its chance to be
redundant. Since sampling in Rn is costly, we restrict our attention to a tube neighborhood,
Rk × r · Bn−k ⊆ Rn. Sampling the points with density ρ = 1 inside the tube, we aim at
choosing the radius to maximize the fraction of non-redundant points while minimizing the
risk of missing a non-redundant point. To study this question, we sample points in Rn and
record the distances of the non-redundant points from Rk. Table 3 presents the results for
k = 1, 2 and k + 1 ≤ n ≤ 10. The respective top rows give the maximum distance of a

p-value n = 2 3 4 5 6 7 8 9 10
k = 1

0.00 2.30 1.60 1.40 1.24 1.22 1.20 1.19 1.20 1.20
0.05 0.88 0.88 0.88 0.90 0.92 0.95 0.97 1.00 1.03
0.25 0.54 0.66 0.72 0.77 0.81 0.85 0.89 0.92 0.95
0.50 0.33 0.50 0.60 0.66 0.72 0.77 0.81 0.85 0.89

k = 2
0.00 1.55 1.34 1.25 1.22 1.20 1.20 1.21 1.22
0.05 0.82 0.87 0.90 0.93 0.95 0.98 1.01 1.03
0.25 0.57 0.69 0.76 0.81 0.85 0.89 0.93 0.96
0.50 0.37 0.55 0.64 0.71 0.77 0.81 0.86 0.89

Table 3 The percentile of points sampled in Rn that are further from Rk than the given distance
but are nevertheless non-redundant. For every dimension n, the points in Rn, both redundant and
non-redundant, that are closer to Rk than the furthest non-redundant point, comprise less than 10%
of all generated points.

non-redundant point from R1 and from R2. Reading these rows from left to right, we see
that they first decrease and then increase. This effect is caused by the interaction of the
average distance, which increases with n, and the variance, which decreases with n. Indeed,
for increasing ambient dimension, the distances of non-redundant points get progressively
more concentrated around the radius of the ball with unit volume.

Filtering points. In order to minimize the risk of missing a non-redundant point in the
experiments, the vast majority of the generated points have to be redundant. However, the
high number of redundant points makes the computation prohibitively expensive, despite
these points having no influence on the weighted Delaunay mosaic. It is therefore necessary
to eliminate the majority of redundant points for which we can guarantee their redundancy
prior to computing the weighted Delaunay mosaic.

We use the following observation to eliminate some of the redundant points before
generating the Voronoi diagram. Let k = 1, p be a point of the process in Rn, and p̄ its
projection to R1. Note that p determines a unique hyperplane, P , in Rn that is orthogonal
to R1 and contains p. It is straightforward to see, that if there are two points s and t of the
process in different half-spaces determined by P , such that both s and t are closer to p̄ than
p, then every point in R1 is closer to either s or t than to p, meaning the Voronoi cell of p
does not intersect R1. We can therefore eliminate p from further computations. Similarly, for
k = 2, there exist two orthogonal hyperplanes, P1 and P2, in Rn that contain p and are both
orthogonal to R2 (we can pick any such pair of orthogonal hyperplanes). Note that P1 and
P2 divide Rn into four quadrants. If there are points of the process in all four quadrants that
are closer to p̄ ∈ R2 than p to p̄, then we can eliminate p from further computations as well.

In practice, we keep a test subset of already generated points against which we test the
redundancy of all other points as described. The points that are marked for elimination are
guaranteed to be redundant in the weighted Delaunay mosaic, and we therefore disregard
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them for the purposes of computation. However, typically not all redundant points are
eliminated in this way, the exact proportion depending on the amount and spatial distribution
of points in the test set. We were typically able to eliminate more than 95% of the generated
points, which allows for a feasible computation time.

Probabilistic background. Recall formulas (1) and (2), which give the expected numbers
of intervals and simplices in an unweighted Poisson–Delaunay mosaic with radius at most r
inside a Borel region Ω. The generalizations of these formulas to the weighted case can be
found in [25]. They assert the existence of constants Ck,n`,m such that the expected numbers of
intervals and simplices satisfy

ck,n`,m(r) = γ̃
(
m+ 1− k

n ; ρνnrn
)
· Ck,n`,m · ρ

k
n ‖Ω‖, (3)

dk,n` (r) =
n∑

m=j
γ̃
(
m+ 1− k

n ; ρνnrn
) j∑
`=1

(
m− `
m− j

)
Ck,n`,m · ρ

k
n ‖Ω‖, (4)

dk,nj (∞) = Dk,n
j · ρ k

n ‖Ω‖, (5)

with Dk,n
j =

∑n
m=j

∑j
`=1 C

k,n
`,m, in which γ̄ is the regularized lower incomplete Gamma

function, and Ω is a Borel region in Rk. We set ρ = 1 in all our experiments. Table 4 gives
the constants for k = 1, 2 and for a few values of n ≥ k + 1, each rounded to the nearest two
digits after the decimal point. It compares these values with the experimentally estimated
values, which are averaged over 10 000 runs, using a segment of length 300 in R1 and 1 000
runs, using a square of size 60 × 60 in R2. We see only small discrepancies between the
rounded and the experimentally estimated values, which gives us confidence that the formulas
in (3) to (5) are correct.

n = 2 n = 3 n = 5 n = 8 n = 10
th exp th exp th exp th exp th exp

k = 1
C1,n

0,0 1.00 1.00 1.09 1.09 1.22 1.22 1.32 1.32 1.37 1.37
C1,n

0,1 0.27 0.27 0.36 0.36 0.45 0.45 0.51 0.51 0.54 0.54
C1,n

1,1 1.00 1.00 1.09 1.09 1.22 1.22 1.32 1.32 1.37 1.37
D1,n

0 1.27 1.27 1.46 1.45 1.67 1.67 1.84 1.84 1.91 1.91
D1,n

1 1.27 1.27 1.46 1.45 1.67 1.67 1.84 1.84 1.91 1.91
k = 2

C2,n
0,0 1.11 1.11 1.38 1.38 1.66 1.66 1.79 1.79

C2,n
0,1 0.26 0.26 0.54 0.54 0.77 0.77 0.86 0.87

C2,n
1,1 2.47 2.48 3.30 3.30 4.09 4.09 4.44 4.44

C2,n
0,2 0.09 0.09 0.21 0.21 0.31 0.31 0.35 0.35

C2,n
1,2 1.46 1.46 2.13 2.13 2.74 2.74 3.01 3.01

C2,n
2,2 1.37 1.37 1.92 1.92 2.43 2.43 2.66 2.66

D2,n
0 1.46 1.46 2.13 2.13 2.74 2.74 3.01 3.01

D2,n
1 4.37 4.37 6.38 6.38 8.22 8.22 9.03 9.03

D2,n
2 2.92 2.92 4.25 4.25 5.48 5.48 6.02 6.02

Table 4 Each double-column shows the theoretically derived values for Ck,n
`,m and Dk,n

j on the
left and the corresponding experimentally computed values on the right. In k = 1 dimension, we use
an interval of length 300 and compute the constants by averaging over 10 000 mosaics. In k = 2
dimensions, we use a square of size 60 × 60 and compute the constants by averaging over 1 000
mosaics.
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(a) Densities of intervals for k = 1 and n = 2.
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(b) Corresponding cumulative variances.
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(c) Densities of intervals for k = 1 and n = 10.
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(d) Corresponding cumulative variances.

Figure 7 Experimentally observed densities of intervals and corresponding variances of weighted
Delaunay mosaics in R1. The mosaic is constructed from an n-dimensional unweighted Delaunay
mosaic, with n = 2 on the top and n = 10 on the bottom. The graphs are scaled by the expected
total number of points in the window. Note that we use the volume of the ball of radius r as the
parameter, which also stands for the expected number of points in a ball of this size. With this
notation, it is easier to compare the graphs for different ambient dimensions.
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(a) Densities of intervals for k = 2 and n = 3.
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(c) Densities of intervals for k = 2 and n = 10.
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Figure 8 Experimentally observed densities of intervals and corresponding variances of weighted
Delaunay mosaics in R2. The mosaic is constructed from an n-dimensional unweighted Delaunay
mosaic, with n = 3 on the top and n = 10 on the bottom. We use the same scaling as in Figure 7.
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Intervals, simplices, and Betti numbers. Following Section 2, we count the intervals
and simplices in weighted Alpha complexes of Poisson point processes and compare the
obtained graphs with the theoretical predictions stated in (3) and (4); see Figures 7 and 8.

Recall that a Boolean model has the same homotopy type as the corresponding weighted
Alpha complex. In k = 1 dimension, this implies that in the finite case the two have equally
many components. In our setting, we consider a Poisson point process in Rn, with n ≥ 2, we
center a ball of radius r at each point, we intersect the union of balls with a straight line, and
we ask for the expected density of components (segments) in this intersection. This is also
the density of the 0-th Betti number of the 1-dimensional weighted Alpha complex defined
by the same process, the same line, and the same radius. In contrast to the unweighted
case, not every vertex of the weighted Delaunay mosaic is critical. To count, we observe
that every critical vertex gives birth to a component, every critical edge gives death to a
component, and every vertex-edge pair extends a component thus preserving their number.
The 0-th Betti number for radius r is therefore the number of critical vertices of radius at
most r minus the number of critical edges of radius at most r; compare the left two panels
of Figure 9 for the cases k = 1 and n = 2, 10. Since the densities of critical vertices and of
critical edges are known analytically [25], an expression for the 0-th Betti number follows.
The situation in k ≥ 2 dimensions is more complicated and no analytic results are available;
see the right two panels of Figure 9 for the cases k = 2 and n = 3, 10.

5 Weighted Poisson–Voronoi Tessellations

The motivation for the material collected in this section is the observation that the vertices
of a weighted Delaunay mosaic are not distributed as a Poisson point process. Indeed, there
is a repulsive force implied by the slice construction that tends to distribute the points in
a more regular fashion, and progressively so with growing dimension n; see Figure 10. We
provide statistics to quantify this observation.

Distance to neighbors. As before, we write Y ⊆ Rk×R for a locally finite set of weighted
points, which we assume is obtained from a stationary Poisson point process X ⊆ Rn. We
recall that the density of edges in the weighted Delaunay mosaic is given in (5). To start,
we focus on the distance between adjacent vertices. In k = 1 dimension, we measure the
distance between contiguous vertices along the real line, drawing the observed distribution
for n = 2, 3, 5, 8, 13, 21, 34 in the left panel of Figure 11. Extending this to k = 2 dimensions,
we plot the lengths of the edges in the weighted Delaunay mosaic in the right panel. Both
for k = 1 and for k = 2, the distributions get progressively sharper with increasing n. We
quantify this phenomenon by listing the corresponding variances in Table 5.

variance n = 2 3 5 8 13 21 34
distance in R1 0.23 0.14 0.09 0.07 0.07 0.06 0.06
distance in R2 0.17 0.10 0.08 0.07 0.06 0.06
area in R2 0.23 0.18 0.15 0.13 0.11 0.10
length in R2 0.13 0.09 0.07 0.06 0.06 0.05

Table 5 The variances of the distances between adjacent vertices in 1- and 2-dimensional weighted
Voronoi tessellations in the two top rows, and the variances of the area and the edge length in
2-dimensional weighted Voronoi tessellations in the two bottom rows. The density of the generating
Poisson point process is set to 1 for all n.

.
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(a) Critical simplices in R1.
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(b) Critical simplices in R2.
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(c) Betti numbers in R1.
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Figure 9 Experimentally observed densities of birth- and death-giving critical simplices (top row)
and Betti numbers (bottom row) in the k-dimensional weighted Alpha complexes constructed from
a Poisson point process in Rn. Note that the radii are normalized, so that for ambient dimension
n, a simplex with radius r is represented as the volume of a ball with radius r in dimension n.
Specifically, given a simplex with radius r, the values on the horizontal axis are πr2 for n = 2, 4

3πr
3

for n = 3, and 1
120π

5r10 for n = 10.
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Figure 10 Two weighted Poisson–Voronoi tessellations in the plane, with ambient dimension
n = 3 on the left and n = 10 on the right. In contrast to the graphs in Figures 11 and 12, the
processes in Rn are scaled to achieve an equal density of points in R2. Note that many vertices are
located outside the domain they generate.

Geometric size. Rather than measuring the length of edges, we may quantify the vertex
distribution by measuring the volume of Voronoi domains. More sensitive to the shape of
these domains is a direct comparison of the volume and surface area with that of the round
ball. Traditionally, this is formulated as a dimensionless quantity between 0 and 1: the
sphericity of a body, A, of dimension m ≥ 2, is

Sph(A) = mν1/m
m

Volm(A)(m−1)/m

Volm−1(bdA) ; (6)

see [51]. Note that for the m-dimensional unit ball, we have Volm(A) = νm, Volm−1(bdA) =
σm, and σm/νm = m, so Sph(A) = 1. Observe also that one over the sphericity is the surface
area of A over the surface area of the ball that has the same volume as A, which is the
reason that Sph(A) is sometimes referred to as the isoperimetric quotient [37]. Extending the
geometric results on the Poisson–Voronoi mosaics from [11, 12, 39] with experimental means,
we obtain the graphs in Figure 12. The two top panels show the distributions of the area
of a typical polygon and the length of a typical edge in a 2-dimensional weighted Voronoi
tessellation; see Table 5 for the corresponding variances, which decrease with increasing
n. The two bottom panels show the distributions of the sphericity and the area-weighted
sphericity of a typical weighted Voronoi polygon. For the latter measure, the value of the
graph at 0 ≤ s ≤ 1 is the fraction of the total area covered by polygons with sphericity s.
There is no clear trend for the distributions of the sphericity, which, if anything, decrease
with increasing n. In contrast, the area-weighted sphericity clearly increases with increasing
n. To quantify these trends, we show the average sphericities and the weighted average
sphericities in Table 6.

Combinatorial size. Geometric shape information can also be gleaned from the combinat-
orics of the boundary of a Voronoi domain. In R2, the average number of edges per domain
or, equivalently, the average degree of a vertex in the dual mosaic, is 6. It is interesting to
observe how the distribution evolves as the ambient dimension, n, increases; see Figure 13.
We observe that for n ≥ 5, the most common degree is 5, which is only possible if sufficiently
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(a) Distances along a line.
0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50 3

5

8

13

21

34

(b) Distances in the plane.

Figure 11 The densities of distances between adjacent vertices in weighted Delaunay mosaics:
the length of intervals along the line on the left and the length of edges of the mosaic in the plane
on the right. The weighted tessellations are constructed as slices of unweighted Voronoi tessellations
in n = 2, 3, 5, 8, 13, 21, 34 dimensions.

average n = 3 5 8 13 21 34
sphericity 0.835 0.823 0.817 0.814 0.812 0.811
weighted sphericity 0.879 0.889 0.893 0.896 0.898 0.899

Table 6 The average and area-weighted average sphericity of a typical polygon in a 2-dimensional
weighted Voronoi tessellation.

.

many high-degree vertices bring the average up to almost 6; see Figure 10.

6 Discussion

This work adds an experimental flavor to the mathematical analysis of Poisson–Delaunay
mosaics started in [26]. The extension of the initial work on Poisson–Delaunay mosaics to
weighted mosaics [25] and to order-k mosaics [23] illustrates the power of a simple idea: to
count simplices through intrinsically defined representative points and to group them as
dictated by discrete Morse theory. While this idea has been applied to geometric structures
beyond those discussed in this paper, it has not yet reached its full potential, which includes
the formation of bridges between different areas of stochastic study. For example, the work
on random inscribed polytopes in [24] connects Euclidean with Fisher geometry, and the
duality between Alpha complexes and Boolean models suggests unexplored connections to
percolation theory. We conclude this paper with a list of questions aimed at expanding the
scope of the idea and shed light on its limitations.

Variance. Theoretically it is clear that in many settings considered in this paper the variance
is negligible compared to the expectation. Nevertheless, the variance distinguishes
between the uniform distribution and the Poisson point process on the sphere [48]. Can
our experimental results on the variance be complemented with analytic formulas?

Random Wrap complexes. Figure 4 gives experimental evidence that the intervals and
simplices in a random Wrap complex follow simple linear combinations of Gamma
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(a) Area in the plane.
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(b) Lengths of edges in the plane.
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(c) Sphericity in the plane.
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(d) Area-weighted sphericity in the plane.

Figure 12 Left and right in the top row: the densities of the area of a typical polygon and of
the length of a typical edge in the weighted Voronoi tessellation. Left and right in the bottom row:
the densities of the sphericity and the area-weighted sphericity of a typical polygon in the weighted
Voronoi tessellation. The tessellations are constructed as slices of unweighted Voronoi tessellations
in n = 2, 3, 5, 8, 13, 21, 34 dimensions.
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Figure 13 The normalized distribution of face degrees in weighted Voronoi tessellations in k = 2
dimensions. For example in n = 3 dimensions, the proportion of triangular faces is 6.23%, the
proportion of quadrangular faces is 13.60% and so on. The tessellations are constructed as slices of
unweighted Voronoi tessellations in n = 3, 5, 8, 13, 21, 34 dimensions.

distributions. Can this be proved or disproved analytically?
Lower sets. When we sort the critical simplices in the order of non-decreasing radius, the

death-giving simplices tend to precede the birth-giving simplices of the same dimension.
This suggests that the lower sets of the former type of simplices tend to be smaller than
the lower sets of the latter type. Can this be proven analytically?

Constants in weighted Delaunay mosaics. We have the constants Ck,n`,m for k = 1, 2 and
all corresponding combinations of `, m, and n [25] and also for k = n = 3 and all
corresponding combinations of ` and m [26]. Can the methods in these two papers be
extended to compute all constants for k = 3?

Probabilistic relations. Our experiments suggest that for a stationary Poisson point process
in Rn, we have C2,n

2,2 = C2,n
0,0 + C2,n

0,1 for all n ≥ 2; see Table 4. Equivalently, we have
C2,n

1,2 = C2,n
0,0 + C2,n

0,1 + C2,n
0,2 . Prove these relations and find additional ones that hold for

Poisson–Delaunay mosaics but not for more general Delaunay mosaics.
Neighborhood size. Given a typical vertex of degree j in a Poisson–Delaunay mosaic in R3,

Aboav [1] and Weaire [52] study the expected degree of a neighbor. It is plausible that
this function decreases with increasing j, but [35] provide experimental evidence that it
increases for small j, reaches its maximum for j = 12, and then decreases. How does the
function behave for weighted Delaunay mosaics and for dimensions k beyond 3?

Slice construction. Fixing k and letting n go to infinity, does the weighted Voronoi tessella-
tion obtained by taking a k-dimensional slice of the unweighted Voronoi tessellation of a
Poisson point process in Rn approach a limiting distribution of domains? If yes, in what
sense?

A common framework for many of the above questions is provided by the persistence
diagram of the radius function [19, 21]. Each point in this diagram is determined by two
critical simplices, so the density of the latter is twice the density of the points in the
diagram. Experiments suggest that for Poisson point processes the persistence diagrams
have characteristic shapes. An interesting quantity is the difference in radii between two
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matched critical simplices, whose maximum was studied in [8]. The points in this diagram
carry topological and therefore global meaning about the data. This makes questions about
the distribution of the points difficult to approach with tools from probability theory, and it
is not surprising that most of the interesting questions are yet untouched.
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A Voronoi Tessellations and Delaunay Mosaics

In this appendix, we present the definitions and basic properties of Voronoi tessellations,
Delaunay mosaics, Alpha complexes, and their weighted variants.

The unweighted case. Let X be a locally finite set in Rn. The Voronoi domain of x ∈ X
consists of all points for which x minimizes the Euclidean distance: dom(x) = {a ∈ Rn |
‖a− x‖ ≤ ‖a− y‖ for all y ∈ X}. Every Voronoi domain is a closed, possibly unbounded,
full-dimensional, convex polyhedron. The Voronoi tessellation of X is the collection of
Voronoi domains of points in X [49, 50]. As illustrated in Figure 14, the domains in the
tessellation have disjoint interiors, they possibly overlap along shared faces, and they cover
the entire Rn. We refer to [44] for a discussion of this concept and of its many variants.
The Delaunay mosaic is the dual of the Voronoi tessellation [16], and it may be viewed
geometrically, as a collection of cells, or combinatorially, as a collection of subsets of X.
We prefer the latter view and define Del(X) as the collection of maximal subsets Q ⊆ X

such that the Voronoi domain of the points in Q have a given non-empty intersection:
dom(Q) =

⋂
x∈Q dom(x) 6= ∅ and dom(Q) 6= dom(R) for every proper superset R of Q.

For example, if X is the set of 4 vertices of a square in R2, then Del(X) consists of four
singletons, four pairs, and one quadruplet. On the other hand, if X is in general position
— which in the plane includes that no 4 points lie on a common circle — then Del(X) is a
simplicial complex, which in the combinatorial setting means that Q ∈ Del(X) implies that
every subset of Q belongs to Del(X). More specifically, in this case Del(X) is isomorphic to
the nerve of the Voronoi tessellation and obtained by mapping every Voronoi domain to its
generating point. The Delaunay mosaic has a natural geometric realization in Rn, which we
obtain by mapping every Q ∈ Del(X) to the convex hull of Q. This is the geometric view of
the Delaunay mosaic.

Figure 14 The Voronoi tessellation decomposes the plane as well as the union of disks into
convex regions. The edges and vertices of the Delaunay mosaic are superimposed, and the Alpha
subcomplex is shown by thickening its edges and shading its triangles.

Now fix r > 0, write Br(x) for the closed ball with center x and radius r, and let
Xr =

⋃
x∈X Br(x) be the union of these balls. Clipping each ball to within the corresponding

Voronoi domain gives us a convex decomposition of the union: Xr =
⋃
x∈X [Br(x) ∩ dom(x)];

see Figure 14. The Alpha complex of X and r, denoted Alphar(X), consists of all cells in
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the Delaunay mosaic whose clipped Voronoi domains have a non-empty common intersection
[20, 22]; see again Figure 14. By the Nerve Theorem of algebraic topology [36], Xr and
Alphar(X) have the same homotopy type; see also [19, 29]. Similarly, Xr has the same
homotopy type as the Čech complex of X and r, which by definition is the nerve of the balls
Br(x). This is the justification why in topological data analysis the two complexes are often
used as proxies for the union of balls [13, 22].

The Delaunay mosaic can also be defined directly, without the introduction of Voronoi
tessellations. Call an (n−1)-sphere S in Rn empty if all points of X lie either on or outside S.
Then Q ⊆ X belongs to Del(X) iff there is an empty sphere S with Q = X ∩S. Indeed, every
such sphere has its center in the interior of dom(Q), and every point in the interior of dom(Q)
is the center of such a sphere. Furthermore, every point in dom(Q) is the center of an empty
sphere that passes through all points of Q and possibly through some additional points of
X. This slightly larger set contains a unique smallest sphere, which we call the Delaunay
sphere of Q. The Delaunay radius function, R : Del(X)→ R, maps every Q to the radius
of its Delaunay sphere. Its sublevel sets are the Alpha complexes: Alphar(X) = R−1[0, r].
Observe that R is non-decreasing, by which we mean that P,Q ∈ Del(X) and P ⊆ Q implies
R(P ) ≤ R(Q). Hence, Q ∈ Alphar(X) implies that all faces of Q also belong to Alphar(X).
This shows that Alphar(X) is indeed a subcomplex of Del(X) and not just a subset. We
refer to Appendix B for the topological significance of R.

The weighted case. In the weighted setting, we use real weights to control the influence a
point has on its surrounding. The extra degree of freedom permits better approximations
of observed space decompositions, such as cell cultures in plants [45] and microstructures
of materials [10], to name just two. For ease of distinction from the unweighted case, we
write k for the dimension of the space, we write Y ⊆ Rk × R for a locally finite set, and for
each (y, wy) ∈ Y we call y the point and wy the weight. We will however frequently abuse
notation and write y ∈ Y instead. Let πy : Rk → R be defined by πy(a) = ‖a− y‖2−wy and
call πy(a) the power distance of a from y. For wy = 0, the power distance equals the squared
Euclidean distance from y. For positive weight, the weighted point is conveniently visualized
by drawing the zero-set of πy, which is the sphere with center y and radius √wy.

Figure 15 The weighted Voronoi tessellation decomposes the plane as well as the union of disks
into convex regions. The edges and vertices of the weighted Delaunay mosaic are superimposed, and
the weighted Alpha subcomplex is shown by thickening its edges and shading its triangles.
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The weighted Voronoi domain of y consists of all points for which y minimizes the power
distance: dom(y) = {a ∈ Rk | πy(a) ≤ πz(a) for all z ∈ Y }. Similar to the unweighted
case, dom(y) is a closed, possibly unbounded, convex polyhedron, but it is not necessarily
full-dimensional. Indeed, if y is the only point with non-zero weight in Y , then its domain
is larger than in the unweighted case if wy > 0 and smaller if wy < 0. The latter case
includes the possibility that dom(y) is empty. The weighted Voronoi tessellation of Y is the
collection of weighted Voronoi domains; see Figure 15. The weighted Delaunay mosaic of
Y , denoted Del(Y ), is the dual of the weighted Voronoi tessellation, which we define as the
maximal subsets Q ⊆ Y such that the weighted Voronoi domains of the points in Q have
a given non-empty intersection: dom(Q) =

⋂
y∈Q dom(y) 6= ∅ and dom(Q) 6= dom(R) for

every proper superset R of Q. Since weighted Voronoi domains can be empty, the vertex set
of Del(Y ) is a subset and not necessarily the entire set Y . Assuming the weighted points are
in general position — for an appropriate definition of this notion — the weighted Delaunay
mosaic is again isomorphic to the nerve of the weighted Voronoi tessellation, and it can be
geometrically realized by mapping each domain to the generating point; see Figure 15.

Now fix r ∈ R, write Br(y) for the set of points that satisfy πy(a) ≤ r2, and let
Yr =

⋃
y∈Y Br(y) be the union of these balls. Clipping the balls, we get again a convex

decomposition: Yr =
⋃
y∈Y [Br(y) ∩ dom(y)]; see Figure 15. The weighted Alpha complex of

Y and r, denoted Alphar(Y ), is again the dual of these clipped domains. The Nerve Theorem
still applies, so Yr, Alphar(Y ), and the nerve of the Br(y) all have the same homotopy type.
Observe that the weighted Voronoi tessellation and the weighted Delaunay mosaic do not
change if we add the same constant value to the weight of every point in Y . In contrast, this
operation generally changes the weighted Alpha complex as well as the nerve of the balls.

We now present an alternative description of the weighted concepts that has the advantage
that the points and their weights can be selected in a single process. Let k < n and write
Rk for the space spanned by the first k coordinate vectors of Rn. For a point y ∈ Rk with
weight wy ≤ 0, let x = x(y) be a point in Rn whose orthogonal projection to Rk is y and
whose distance from Rk is ‖x− y‖ = √−wy. Then πy(a) = ‖a− x‖2 for every point a ∈ Rk.
In other words, if every point y in Y ⊆ Rk × R has non-positive weight, we can find a
set of unweighted points, X ⊆ Rn, such that the weighted Voronoi tessellation of Y is the
intersection of Rk with the (unweighted) Voronoi tessellation of X; see [4, 47]. Similarly,
we can construct Del(Y ) from Del(X), which we explain by calling an (n − 1)-sphere in
Rn anchored if its center lies in Rk. Recall that Q ⊆ X belongs to Del(X) iff there is an
empty sphere S with Q = X ∩ S. By adding the requirement that S be anchored, we get
exactly the cells Q ∈ Del(X) whose projections to Rk belong to Del(Y ). Similarly, we call the
smallest empty anchored sphere that passes through all points of Q the anchored Delaunay
sphere of Q. Accordingly, the weighted Delaunay radius function, R : Del(Y ) → R, maps
every cell that is the projection of Q ∈ Del(X) to the radius of the anchored Delaunay
sphere of Q. Finally, the weighted Alpha complex of Y and r is the sublevel set of this
function: Alphar(Y ) = R−1[0, r]; see again Figure 15. We note that the above construction is
predicated on the assumption that all weights are non-positive, but this is not a limitation of
generality since we can add a constant value to all weights without changing the tessellation
and the mosaic.

The Crofton connection. There is a direct connection between the density of top-
dimensional simplices in a k-dimensional weighted Delaunay mosaic and the density of the
(n− k)-dimensional skeleton of the n-dimensional Voronoi tessellation from which the mosaic
is obtained. This connection is the classic Crofton Formula of integral geometry [14, 46], as
we now explain. Observe that for a stationary Poisson point process in Rn, the statistics
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of the k-dimensional weighted Delaunay mosaic does not depend on the specific k-plane we
use. We can therefore integrate over all k-planes. Counting the top-dimensional simplices in
the k-dimensional weighted Delaunay mosaics is the same as counting the vertices in the
k-dimensional weighted Voronoi tessellations. By Crofton’s Formula, this number integrates
to a constant times the volume of the (n − k)-skeleton of the unweighted n-dimensional
tessellation.

As it turns out, it is relatively easy to compute the expected density of the (n−k)-skeleton,
so we use the Crofton Formula backward, deriving the expected density of top-dimensional
simplices in a weighted Poisson–Delaunay mosaic. This density implies the expected density
of (k − 1)-simplices, and for k = 2, the expected density of vertices in the weighted mosaic.
To get similar results for the intervals, we need traditional integral geometric methods, as
described in [25].

B Discrete Morse Theory and Homology

In the generic case, the radius function on a weighted or unweighted Delaunay mosaic
satisfies the axioms of a generalized discrete Morse function. This motivates us to define
these functions and discuss their basic properties in this second appendix. In addition, we
introduce homology groups and Betti numbers, which we use to state the discrete counterparts
of the classic Morse inequalities.

Generalized discrete Morse theory. The inspiration stems from classical Morse theory
[41], which studies manifolds through the behavior of generic smooth functions on them.
There are several ways to transport the smooth theory to the piecewise linear setting, and
we follow the more radical proposal by Forman [27] that formulates the discrete theory in
combinatorial terms entirely. More precisely, we present a slightly generalized version of the
original theory [28].

Let K be a simplicial complex, and recall that the face lattice of K is the partial order
on its simplices, in which P ≤ Q if P is a face of Q. The Hasse diagram is the reduced
graph representation of the face lattice, in which we draw an edge from P to Q if P ≤ Q and
dimP = dimQ− 1. An interval is a maximal collection of simplices that have a common
lower bound and a common upper bound: [P,R] = {Q ∈ K | P ≤ Q ≤ R}. We call a function
f : K → R non-decreasing if P ≤ Q implies f(P ) ≤ f(Q). A level set, f−1(r), is a subset of
K, and a step of f is a maximal subset of f−1(r) that induces a connected subgraph of the
Hasse diagram. Finally, a non-decreasing f is a generalized discrete Morse function if every
step is an interval. Its generalized discrete gradient is the corresponding partition of K into
intervals. We remark that it is often possible to assume that each level set is an interval, but
sometimes such an assumption seems unnatural, which is our motivation to introduce the
notion of a step.

The intervals are combinatorially simple. Indeed, if ` = dimP and m = dimR, then
[P,R] contains 2m−` simplices, namely

(
m−`
m−j

)
simplices of dimension j, for ` ≤ j ≤ m. We

call (`,m) the type of the interval. Knowing the number of intervals, of each type, it is
therefore easy to compute the number of simplices in the complex. Writing c`,m for the
number of intervals of type (`,m), the number of j-simplices in K is

sj =
j∑
`=0

∞∑
m=j

(
m− `
m− j

)
c`,m. (7)

The difference between the original discrete Morse theory of Forman [27] and the generalization
proposed in [28] is that the former limits its steps to intervals of size 1 and 2, while the
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latter permits intervals of all possible sizes. The intervals of size 1 play a special role, so
we call such an interval singular, the simplex it contains critical, and the function value
of this simplex a critical value of f . Their special role is best appreciated by considering
the construction of K by adding the simplices in increasing order of function values. When
we add the simplices of a non-singular interval, then the inverse operation can be realized
as a deformation retraction, which implies that that complex has the same homotopy type
before the operation as after the operation; see [19, 29] for background on these concepts.
Writing Ki and Ki+1 = Ki ∪ [P,R] for the two complexes, we say Ki+1 collapses to Ki,
denoted Ki+1 ↘ Ki, and we call the addition of [P,R] an anticollapse. The following lemma
is analogous to the classical theorem about the retractability of sublevel sets in smooth Morse
theory. Write Kr = f−1(−∞, r] for the subcomplex that consists of all simplices which value
at most r.

I Lemma 1 (Collapsibility [27, 28]). Let f : K → R be a generalized discrete Morse function
on a simplicial complex. If the half-open interval (r, s] ⊆ R contains no critical value of f ,
then Ks ↘ Kr.

As mentioned earlier, Ks ↘ Kr implies that the two complexes have the same homotopy
type. Indeed, a stronger statement is implied: there is a CW-complex whose cells are in
bijection with the critical simplices of f such that the subcomplex of cells whose critical
simplices have function value at most r has the same homotopy type as Kr, for every r ∈ R.
This CW-complex is called the Morse complex of f .

Homology and Morse inequalities. We use the language of homology to talk about how
a space or a complex is connected. The comprehensive introduction of this formalism is
beyond the scope of this paper, and we refer to [19, 29] for further background. However, if we
limit ourselves to Z/2Z coefficients — which amounts to using modulo-2 arithmetic — then
homology groups can be explained in purely combinatorial terms, as we now do. A p-chain
is a collection of p-simplices in K, and the sum of two p-chains is the symmetric difference
of the two collections. The boundary of a p-simplex is the collection of its (p − 1)-faces,
and the boundary of a p-chain is the sum of the boundaries of its simplices. Writing Cp for
the group of p-chains and ∂p : Cp → Cp−1 for the p-th boundary operator, we get the chain
complex, . . .→ Cp → Cp−1 → . . .. A p-cycle is a p-chain with empty boundary, z ∈ ker ∂p,
and a p-boundary is the boundary of a (p + 1)-chain, b ∈ img ∂p+1. The boundaries and
cycles form subgroups of each other and of the chain group: img ∂p+1 ⊆ ker ∂p ⊆ Cp. We
finally get the p-th homology group by calling cycles that differ by a boundary equivalent:
Hp = ker ∂p/img ∂p+1. Its rank is the p-th Betti number, which for Z/2Z coefficients is the
binary logarithm of the order: βp = log2 |Hp|.

While we define Betti numbers in terms of the simplices in K, they are in fact independent
of how we triangulate a space. More generally even, Betti numbers can be defined without
triangulation, and two spaces or complexes that have the same homotopy type also have
the same Betti numbers. For example, if K is a complex in R2, then β0(K) is the number
of components and β1(K) is the number of holes. Similarly, if K is a complex in R3, then
β0(K), β1(K), and β2(K) are its numbers of components, tunnels, and voids. Indeed, these
are the only possibly non-zero Betti numbers of complexes in R2 and R3.

As mentioned earlier, non-singular intervals of a generalized discrete Morse function
preserve the homotopy type and therefore the Betti numbers. Therefore, there must be a
connection between the Betti numbers and the critical simplices, as we now explain. To get
started, let sp be the number of p-simplices in K, and define the Euler characteristic as the
alternating sum of simplex numbers: χ =

∑
p(−1)psp. If we constructK one interval at a time,
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every non-singular interval preserves χ simply because
∑m
p=`(−1)p−`

(
m−`
m−p

)
= (1− 1)m−` = 0.

On the other hand, if we add a critical p-simplex, the Euler characteristic changes by (−1)p.
Writing cp for the number of critical p-simplices, we thus get χ =

∑
p(−1)pcp. We extend

this relation to Betti numbers by observing that sp = s◦p + s•p, in which s◦p counts the critical
simplices that give birth to p-cycles, and s•p counts the critical simplices that give death
to (p − 1)-cycles. In other words, when we add a critical simplex to the complex, either
βp increases by 1, or βp−1 decreases by 1. Either way, χ changes by (−1)p, which implies
the discrete Euler–Poincaré formula: χ =

∑
p(−1)pβp. The implied relation between the

alternating sum of critical simplex numbers and of Betti numbers is traditionally stated as a
strengthening of the last in a sequence of (strong) discrete Morse inequalities:

q∑
p=0

(−1)q−pβp ≤
q∑
p=0

(−1)q−pcp, (8)

for all q ≥ 0. For example, the first inequality asserts β0 ≤ c0, while the second inequality
asserts β1 − β0 ≤ c1 − c0, which implies β1 ≤ c1. Indeed, we get βq ≤ cq, for all q ≥ 0, which
are sometimes referred to as the weak discrete Morse inequalities.

The Delaunay setting. The prime example of generalized discrete Morse functions in this
paper are the radius functions of weighted and unweighted Delaunay mosaics [5]. We recall
that in the unweighted case, R(Q) is the radius of the smallest empty sphere that passes
through all points of Q, and in the weighted case, it is the radius of the smallest empty
anchored sphere that passes through the preimages of all weighted points in Q. We consider
first the unweighted case and let X ⊆ Rn be locally finite and in general position. Let
R ∈ Del(X) and recall that dom(R) is the intersection of the Voronoi domains of the points in
R. The center of the smallest empty circumsphere of R is the point a ∈ dom(R) that is closest
to the affine hull of R. If a ∈ aff R, then R is the upper bound of an interval, and otherwise
it is not. Assuming R is an upper bound, we now describe how to find the corresponding
lower bound and thus the entire interval. We call Q ⊆ R a facet if dimQ = dimR− 1, and
we say Q is visible from a if aff Q separates a from the unique point in R \Q within aff R.
By assumption of general position, aff Q contains neither a nor the point in R \Q, so there
is no ambiguity. The lower bound of the interval with upper bound R is the subset P ⊆ R of
points that belong to all visible facets. This completely describes the generalized discrete
gradient of the Delaunay radius function in the unweighted case. Figure 16 illustrates the
two possible configurations for a triangle in R2: either P = R, in which case R is critical,
or P is an edge of the triangle. It is not possible that R has two visible edges, because this
contradicts that the three points lie on a circle centered at a. More generally, an m-simplex
R cannot have more than m− 1 visible facets.

a a a

Figure 16 From left to right: the triangle has 0, 1, 2 visible edges. Only the first two cases can
occur in an unweighted Delaunay mosaic in R2.
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We consider second the weighted case, letting X ⊆ Rn be locally finite and in general
position, letting Rk be spanned by the first k < n coordinate axes of Rn, and writing
Y ⊆ Rk × R for the weighted points obtained by orthogonal projection. The situation is
similar to the unweighted case, except that we restrict ourselves to anchored spheres, which
we recall are spheres in Rn whose centers lie in Rk. For a simplex R ⊆ Y , the relevant sphere
is the smallest empty anchored sphere that passes through the preimages of the weighted
points in R. If such a sphere does not exist, then R 6∈ Del(Y ). Otherwise, we let a ∈ dom(R)
be the point closest to the affine hull of R, which is an affine subspace of Rk. If a ∈ aff R,
then R is the upper bound of an interval of R : Del(Y ) → R. As in the unweighted case,
the corresponding lower bound is the subset P ⊆ R of points that belong to all facets of R
visible from a.

The main difference to the unweighted case is that vertices of Del(Y ) are no longer
necessarily critical. Indeed, an m-simplex R ∈ Del(Y ) may have as many as m visible facets.
If it has m visible facets, then their intersection is a single point, which implies that the
corresponding lower bound is a vertex of the weighted Delaunay mosaic.

The Wrap complex. An application of discrete Morse theory is the Wrap complex studied
in Section 3; see [18] for the original paper on the subject and [17] for a discussion of
alternative methods. To construct the Wrap complex of X ⊆ Rn and r ∈ R, denoted
Wrapr(X), we start with Alphar(X) ⊆ Del(X) and then collapse all intervals of the radius
function that can be collapsed; see Figure 17. Specifically, if [P,R] is a non-singular interval
whose simplices all belong to the current complex, and P is not face of any simplex outside of
[P,R], then we remove all simplices in this interval from the complex and repeat. The final
result is the Wrap complex, and it does not depend on the sequence in which we collapse the
intervals. Equivalently, we can grow Wrapr(X) from the critical simplices of radius at most
r. To do this, we add all faces to get a complex, we complete the partially added intervals,
and we repeat. Again, it does not matter in which sequence the simplices are added and
the intervals are completed. A more formal definition of the Wrap complex can be found in
Section 3.

Figure 17 The colors distinguish the Wrap complex for r =∞ (green) from the Alpha complex
for the same radius (green and blue), which for r =∞ is the entire Delaunay mosaic.
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C Randomness and Expectation

In this appendix, we present the probabilistic background used throughout this paper. Our
preferred model is a Poisson point process in Euclidean space, which we introduce first.
Besides such point processes, we also consider points uniformly sampled on spheres.

Poisson point process. This is a natural extension of uniformly sampled points from
compact to possibly unbounded domains. A homogeneous or stationary Poisson point process,
X, with density ρ > 0 in Rn is characterized by the following two properties:

1. the number of points sampled within a Borel set of measure ‖Ω‖ is Poisson distributed;
that is: P[|X ∩ Ω| = k] = ρk‖Ω‖ke−ρ‖Ω‖/k!,

2. the numbers of points in any finite collection of pairwise disjoint Borel sets are independent;

see [32] for a good introduction to the topic. We construct Voronoi tessellations and Delaunay
mosaics, so it is important that X be locally finite. This is indeed the case with probability 1.
Furthermore, X is in general position with probability 1. We use the following four notions
of general position:

A. No (n− 1)-sphere in Rn passes through more than n+ 1 points of X.
B. For any P ⊆ Q ⊆ X with p = dimP , q = dimQ, and p < q ≤ n, the center of the

(p− 1)-sphere defined by P is different from the center of the (q− 1)-sphere defined by Q.
C. Fixing a linear subspace Rk ⊆ Rn, no (n − 1)-plane orthogonal to Rk passes through

more than k points of X.
D. For any Rk as in C and P ⊆ Q as in B, the center of the anchored p-sphere orthogonal to

Rk defined by P is different from the center of the anchored q-sphere orthogonal to Rk
defined by Q.

We need A to get Delaunay mosaics that are simplicial, and we need A and B to get Delaunay
radius functions that are generalized discrete Morse. We need A and C to get weighted
Delaunay mosaics that are simplicial, and we need A, C, and D to get weighted Delaunay
radius functions that are generalized discrete Morse.

Random mosaics. Our main focus is on counting the simplices and on determining
the radius distribution of a typical simplex of a random mosaic. As explained in Section
1, we adjust the conventional notion of representative point and Palm distribution to
carry topological meaning. For example, for the Poisson–Delaunay mosaic, we define the
representative point of a simplex Q ∈ Del(X) as the center of the smallest empty sphere
that passes through all points of Q. We call this the Delaunay sphere of Q, we refer to
its center as the center of Q, and we call its radius the radius of Q. The typical Delaunay
simplex of dimension j is therefore defined as a random j-simplex uniformly chosen from
all j-simplices of the Poisson–Delaunay mosaic with center in some open bounded Borel set
Ω ⊆ Rn, conditioned on the existence of such simplices. With this definition, the properties
of the typical j-simplex can depend on the choice of Ω, but this is not the case for the
properties we are interested in; compare the results surveyed in this paper with [42, 46].

The centers of the simplices form yet another point process in Rn, and we count simplices
by studying its intensity. Notice however that this point process is not necessarily simple, even
for X in general position; that is: even in the generic case representative points of different
simplices can be the same. We make it generically simple by mapping the intervals of the
radius function rather than the individual simplices to Rn. This motivates the probabilistic
analysis of intervals, which we will address shortly. The new point process is however
homogeneous — both for the intervals but also for the simplices — which can either be seen
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directly from the homogeneity of the underlying Poisson point process, or from the results
described in [25, 26].

Random inscribed simplices. The difference between the point process for intervals and
for simplices motivates the following probabilistic question: Letting Q be a set of m + 1
points chosen uniformly and independently on the unit sphere in Rm, what is the probability
that ` facets of convQ are visible from the origin? Following Wendel [53], we consider the
2m+1 m-simplices obtained by either retaining or centrally reflecting each point in Q; see
Figure 18. Assuming 0 ∈ convQ, we can decompose the m-simplex into the m+ 1 cones of
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Figure 18 Left: the inscribed triangle, UVW , and the three triangles obtained by reflecting one
of the vertices through the origin. Right: the three triangles obtained from UVW by reflecting two
of the vertices, and the triangle obtained by reflecting all three triangles.

0 over the facets. The m-dimensional volume of convQ is thus the sum of the volumes of
these cones. Importantly, the volume of each of the 2m+1 m-simplices is a sum of the same
cone-volumes, except that each cone either appears with the coefficient +1 or −1 in this sum.
More specifically, the sign pattern is either the same as for the vertices, or it is the opposite.
For example, in R2, this implies that 2 of the 8 triangles contain the origin and 6 triangles
have one visible edge each. This implies that the probability of the triangle to be acute is
1
4 and the probability of the triangle to be obtuse is 3

4 . This should be compared with the
fact that an expected half of the triangles in a Poisson–Delaunay mosaic in R2 are acute and
the other half are obtuse. The difference is explained by the re-parametrization necessary
to transform one setting to the other. Things get more complicated in higher dimensions,
and we refer to [26] for a complete analysis in dimension m ≤ 4. The approach of Wendel
extends to the weighted case, in which the points of Q are no longer required to lie on the
unit sphere, and a complete analysis in dimension m ≤ 2 can be found in [25].
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