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Highly parallel lab evolution reveals that epistasis
can curb the evolution of antibiotic resistance
Marta Lukačišinová 1,2,3, Booshini Fernando1 & Tobias Bollenbach 1✉

Genetic perturbations that affect bacterial resistance to antibiotics have been characterized

genome-wide, but how do such perturbations interact with subsequent evolutionary adap-

tation to the drug? Here, we show that strong epistasis between resistance mutations and

systematically identified genes can be exploited to control spontaneous resistance evolution.

We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic

platform that tightly controls population size and selection pressure. We find a global

diminishing-returns epistasis pattern: strains that are initially more sensitive generally

undergo larger resistance gains. However, some gene deletion strains deviate from this

general trend and curtail the evolvability of resistance, including deletions of genes for

membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force

evolution on inferior mutational paths, not explored in the wild type, and some of these

essentially block resistance evolution. This effect is due to strong negative epistasis with

resistance mutations. The identified genes and cellular functions provide potential targets for

development of adjuvants that may block spontaneous resistance evolution when combined

with antibiotics.
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Bacterial resistance to antibiotics has become a major public
health concern and a vibrant field of research1–3. Strategies
for countering the spread of resistance include the dis-

covery of new antibiotics and drug combinations4–6. Given the
increasing difficulty of identifying new drugs, recent work has
focused on novel treatment schemes that minimize selection for
resistance using drug cycling or combinations that exploit phy-
siological or evolutionary interactions between drugs7–12. More
sustainable drug treatments, however, require novel strategies
that anticipate the evolutionary potential of pathogens and funnel
them toward less evolvable genotypes or evolutionary dead ends.
To this end, it is promising to identify genetic factors and cellular
mechanisms that do not immediately increase a pathogen’s
resistance but rather determine its ability to evolve13–16. The
possibility of interfering with the ability of different genotypes to
spontaneously evolve drug resistance (here: “resistance evolva-
bility”) by lowering the mutation rate or the rate of horizontal
gene transfer has been investigated in depth13,17–21.

Clinical antibiotic resistance is often due to horizontally
transferred resistance genes; a case in point is tetracycline resis-
tance, which is mediated primarily by drug efflux proteins
encoded by the plasmid-borne resistance genes tetA and tetB22.
When such resistance genes are unavailable, antibiotic resistance
can evolve by spontaneous mutations. For example, mutations
can enhance expression of chromosomally encoded multidrug
efflux pumps, leading to moderate-level resistance23. Alter-
natively, high-level resistance for specific antibiotics such as
quinolones can be gained by mutations in the drug target, pre-
venting antibiotic binding24. In this case, increased mutation rates
can accelerate resistance evolution25. Consequently, many studies
have focused on identifying ways of slowing resistance evolution
by preventing an increase of the mutation rate under stress
(stress-induced mutagenesis)13–15,26,27.

There have been notable successes in preventing stress-induced
mutagenesis13–15,17. However, the mutation rate cannot be low-
ered indefinitely due to biophysical limits28. As a result, the
potential of slowing resistance evolution by approaches focused
on mutation rate is fundamentally limited. Efforts to alter evol-
vability by other means, including the exploitation of genetic
interactions, could circumvent this fundamental limit but have
received less attention16,29. Different epistasis patterns—ways in
which genetic differences affect the fitness effects of new muta-
tions—are commonly found in evolution experiments30,31. In
particular, global patterns of diminishing-returns epistasis, where
new mutations produce smaller fitness gains on fit relative to
unfit backgrounds, have been observed32–34. Genetic interactions
can also quantitatively affect antibiotic resistance. Interfering with
different cellular functions can sensitize or protect cells35 and
thus alter the initial state in resistance evolution. But how do such
targeted perturbations of cellular functions interact with the
subsequent evolutionary adaptation to drugs?

The genetic background determines the effects of resistance
mutations, which can enable or block specific mutational paths to
drug resistance. For example, the transcriptional regulator AmpR
opens a key path to resistance in Pseudomonas, since only strains
that carry the gene rapidly evolve ceftazidime resistance by
overexpressing beta-lactamase16. Similar perturbations to tran-
scriptional regulators could alter resistance evolvability more
generally, since they can completely change the expression state
of the cell, and thus enable selection to act on downstream
expressed genes. In fact, perturbing any cellular function that
interacts with a resistance mechanism could affect the cell’s ability
to evolve. This could be by interfering with its regulation, protein
folding, localization, function, or degradation, all of which are
potential sources of epistasis. To more generally identify such
epistasis patterns and discover mechanisms that determine

resistance evolvability, a systematic investigation of resistance
evolution starting from a diverse set of defined genotypes is
needed.

Resistance evolvability can be measured by exposing bacteria
with different genotypes to equivalent selection pressures in
evolution experiments and comparing the evolutionary out-
comes36. Differing population size, selection pressure and the
number of generations a population undergoes strongly influence
the outcome37,38, but these factors often vary due to the inflex-
ibility of the experimental protocol rather than a meaningful
difference in evolutionary potential of the starting genotype. A
particular challenge in evolution experiments selecting for drug
resistance is that the drug concentration needs to be carefully
adjusted for each strain. Otherwise, strains that are initially more
sensitive can be quickly wiped out and the experiment no longer
informs on their ability to evolve. For a sound quantitative
comparison, it is essential to control these factors tightly—a
characteristic that is achievable due to recent technological
advances39,40, albeit in relatively low throughput. The outcome of
such evolution experiments then depends solely on the evolu-
tionary determinants of the starting genotype, including its
mutation rate and the distribution of fitness effects of resistance
mutations.

Here, we solved these critical technical issues and report the
systematic discovery of targeted genetic perturbations that dras-
tically affect spontaneous antibiotic resistance evolution due to
strong epistatic interactions with resistance mutations. We
developed a feedback-controlled robotic platform for high-
throughput lab evolution, which tightly controls both popula-
tion size and selection pressure for drug resistance. Quantifying
the evolvability of ~100 E. coli K-12 gene-deletion strains from
the Keio collection41 representing major cellular functions
revealed a global trend of diminishing-returns epistasis: Geno-
types that were initially more sensitive evolve resistance faster and
converge to the same limit of resistance as initially resistant ones.
Notably, we identified gene deletions that deviate from this global
trend due to strong genetic interactions between specific cellular
functions and resistance mutations. In some cases, these inter-
actions entirely prevent the evolution of antibiotic resistance
within the time scale of our experiments.

Results
High-throughput platform measures resistance evolvability. To
quantify the dynamics of resistance evolution for many differ-
ent genotypes and replicates, we developed an automated
platform that monitors the growth of hundreds of bacterial
cultures while tightly controlling conditions and key evolution
parameters (Fig. 1, see Methods). Similar to the “morbidostat”
setup40,42, the antibiotic concentration of each culture is peri-
odically adjusted to maintain high selection pressure for anti-
biotic resistance for up to 2 weeks. Every 3–5 h, a dedicated
robotic system dilutes and transfers cultures to new 96-well
plates (Fig. 1a). In this transfer step, the volumes of medium,
drug, and bacterial culture are individually tuned to keep each
culture in exponential phase at 50% growth inhibition with
defined population size (Fig. 1b–e, Methods). We keep the
cultures in exponential phase under vigorous shaking and
continuously adjust the antibiotic concentration to ensure
strong selection pressure for fast growth in the presence of the
antibiotic. If the bacterial population cannot endure the sus-
tained antibiotic stress (e.g., due to slow accumulation of toxic
metabolites in the cell), the antibiotic concentration is auto-
matically decreased until the growth rate has recovered to 50%.
In this way, we can directly compare resistance evolution
between hundreds of bacterial populations of the same size that
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undergo the same number of generations and experience the
same clearly defined selection pressure.

This lab evolution platform yields a precise and reproducible
real-time measure of the quantitative resistance increase for each
culture. Typically, resistance is measured by determining the
minimum concentration needed to stop growth (MIC) or the
concentration needed to inhibit growth by 50% (IC50). In our
automated platform, a feedback loop continually adjusts the
antibiotic concentration to maintain 50% growth inhibition.
Therefore, the antibiotic concentration in each well is a direct
estimate of the IC50 (Methods). Indeed, we validated that this
“on-the-fly” measurement of the IC50 agrees well with a standard
IC50 measurement in a drug concentration gradient after the
evolution experiment (Pearson’s correlation coefficient r= 0.8,
Supplementary Fig. 1). Thus, our experimental setup can
quantitatively measure changes in resistance (IC50) in real time;
resistance measured in this way can vary continuously and is not
confined to pre-defined discrete concentration steps as in classical
dose–response curve measurements.

The strong selection pressure leads to rapid evolution:
Tetracycline resistance in the E. coli K-12 ΔlacA strain from the
Keio collection41 we used as reference strain in our experiments
increases by 10–20-fold within 5 days40; the parent strain of the
Keio collection (BW25113) behaves identically (Fig. 1e, Supple-
mentary Fig. 2). Note that the lab strains we used do not carry or
acquire horizontally transferred tetracycline resistance genes in
this assay, but evolve spontaneous tetracycline resistance. While

this is not the most common cause of tetracycline resistance in
the clinic, it enables investigations of resistance evolution with a
focus on quantitative and conceptual aspects12,40,43. Despite the
fundamental stochasticity of evolution, the observed resistance
increase over time is usually reproducible for replicates starting
from the same genotype (Fig. 1e), in line with previous
reports40,44. Whole-genome sequencing of evolved E. coli strains
confirmed that the mutated genes are also largely reproducible
(Methods, Supplementary Fig. 3). For example, in the presence of
the antibiotic tetracycline, the genes marR, lon, and acrR are often
mutated at the end of the experiment (Supplementary Fig. 3a,
Supplementary Data 1), in good agreement with previous
observations22,45,46. Typical evolved populations have three to
four fixed mutations after 10 days (Supplementary Fig. 4). Taken
together, our automated platform enables phenotypically and
genotypically repeatable resistance evolution for hundreds of
parallel populations and is suitable for detecting perturbations
that can alter resistance evolvability.

Resistance evolution exhibits diminishing-returns epistasis. To
address how diverse cellular perturbations affect resistance evol-
vability, we investigated strains with genetic perturbations in a
broad range of cellular functions from the Keio collection, a
genome-wide E. coli gene-deletion library41 (Fig. 2a). Performing
such an investigation genome-wide would require over 10,000
evolution experiments (including replicates), which is currently
prohibitive, even with the automated evolution platform we
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Fig. 1 Automated highly controlled lab evolution leads to reproducible fast evolution of antibiotic resistance. a Schematic of lab evolution protocol. 96-
well plates are shaken in an incubator, optical density (OD) is measured every 10–15 min in a plate reader, and the cultures are diluted and transferred to
new plates every 3–5 h. At dilution, the volumes of culture, drug, and medium are individually tuned based on the previous OD measurements (panel b),
such that the OD after dilution and the growth rate is always close to the predetermined level (panels c and d, Methods). b Schematic of dose–response
curve in ancestral (gray line) and a resistant population (black line). At each dilution, the target antibiotic concentration ctarget is calculated assuming that
the effect of resistance is equivalent to reducing the concentration by a factor, i.e., a mere horizontal shift of the semi-logarithmic dose–response curve44.
The growth rate since last dilution and antibiotic concentration in the given well (gcurrent and ccurrent) then define the curve from which the new target
concentration ctarget is calculated. c OD values over the course of an evolution experiment for all culture-containing wells from a 96-well plate including 25
different gene-deletion mutants. The cultures are continuously in exponential phase as seen by the linear increase of OD on a log scale. The downward
changes in OD are due to dilutions to a target OD. d Growth rates from fits to the OD traces in (c). Values are normalized to the growth rate of the
reference strain in no drug. e Tetracycline concentration in the wells of eight replicates of the reference strain (a subset of the wells shown in (c) and (d)).
The increase is adjusted to keep the growth rate of each culture close to 50% of drug-free growth rate, despite resistance evolution. An arbitrary single well
is highlighted in black on all three plots (c–e). All values are from plate 1 of experiment M1 (Methods, Supplementary Table 2, Source data).
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developed. Thus, we focused on a sample of 98 gene deletions,
which affect diverse cellular functions. We selected more than
half of the gene deletions because we hypothesized that they
would affect resistance evolvability or they are already known to
do so (Methods). Specifically, for 13 out of 98 selected genes,
the impaired function could have an effect on evolvability
through mutation rate; these functions include DNA-mismatch

repair47,48, SOS response13, and oxidative-stress response18. In
general, increased mutation rate in these strains is expected to
accelerate evolution. Importantly, we further aimed to identify
new ways of altering evolvability that are independent of muta-
tion rate changes.

Specifically, we hypothesized that deletions of known resistance
genes such as drug efflux pumps49 and porins50,51, together with
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Fig. 2 Resistance increases in gene-deletion strains exhibit hallmarks of diminishing-returns epistasis. a Gene deletions chosen as ancestors for
evolution experiments grouped by possible mechanism of evolvability alteration (large colored boxes) and specific cellular function (small boxes). b Mean
fold increase in resistance after 180 h of evolution versus initial resistance for each deletion strain. The final and initial resistance measures for each
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several other membrane-related functions (Fig. 2a) can affect
resistance evolvability. In particular, as mutations that lead to the
overexpression of the AcrAB-TolC multidrug efflux pump are a
common way of evolving tetracycline resistance40,52,53, it is
plausible that disrupting this efflux pump could eliminate the
phenotypic impact of these resistance mutations and thus affect
resistance evolvability. Perturbations of functions that could
systematically interfere with (yet unrecognized) resistance
mechanisms were also included, in particular those affecting
protein folding54,55, membrane composition, and transcription
factors (Fig. 2a). Apart from such genes hypothesized to affect
resistance evolvability, we included 33 gene deletions that
represent diverse cellular pathways expressed in rich
medium35,56. In general, we selected gene deletions with
negligible fitness costs based on control measurements of growth
rate in antibiotic-free medium (Supplementary Fig. 5), which is
crucial to avoid selecting primarily for suppressor mutations of
the gene deletion rather than for drug resistance (Methods); three
gene deletions that exhibited greater fitness costs (rpsF, tktA,
tufA) were excluded from further analysis. This broad selection of
genetically different strains enables the discovery of general
trends in resistance evolution and of cellular functions that, if
perturbed, lead to deviations from these trends.

We evolved the selected strains for tetracycline resistance and
first identified general patterns that can explain the extent to
which gene-deletion strains evolved. A common pattern in
evolution experiments is that identical beneficial mutations have
weaker effects on fitter than on less fit backgrounds32,33. Here, we
observed such diminishing-returns epistasis in the context of
drug resistance: strains that were initially more sensitive under-
went greater resistance increases during the experiment and
effectively caught up with initially more resistant strains (Fig. 2b).
Gene deletions often alter antibiotic resistance35,44; for tetracy-
cline, the initial resistance levels of deletion strains varied by an
order of magnitude (Fig. 2b). However, after 180 h of evolution
(about 100 generations), these differences had largely evened out:
strains with an x-fold lower initial resistance (IC50) than the wild
type tended to increase their resistance by x-fold more in the
evolution experiment (Fig. 2b). This trend is quantitatively
demonstrated by a clear anti-correlation between initial resistance
and fold increase in resistance (Spearman’s ρ=−0.544, p= 2 ×
10−7); bias estimation by bootstrapping indicated that this anti-
correlation is not due to a bias in our selection of gene-deletion
strains (Fig. 2b and Methods). Notably, a recent study on
resistance evolvability using fewer mutants from a long-term
evolution experiment did not detect this diminishing-returns
trend57 (see Discussion). As the highest resistance levels in our
experiment remain ~1000-fold below the solubility limit of the
antibiotic, this global pattern supports that there is a hard upper
bound for spontaneous tetracycline resistance (“resistance limit”,
Fig. 2b), which diminishes the possible resistance increases when
approached.

Perturbations of drug efflux pumps lower resistance evolva-
bility. Can cells be forced to deviate from this general trend of
seemingly inevitable resistance? In E. coli lab strains like those
used in our experiments, which do not carry horizontally trans-
ferred tetracycline resistance genes such as tetA and tetB22,58,
many tetracycline resistance mutations directly relate to the
overexpression of endogenous drug efflux pumps52,53. Thus, we
reasoned that perturbing the composition or regulation of these
pumps may affect resistance evolvability. Indeed, compromising
efflux pumps sensitizes bacteria to various drugs35,59, but the
effect on evolvability is unknown. On the one hand, strains with
perturbed efflux pumps are farther away from the resistance limit

and thus, according to the diminishing-returns pattern (Fig. 2b),
should undergo greater relative resistance increases. On the other
hand, disrupting efflux pumps could effectively block mutational
paths to resistance and force evolution to seek a different—likely
less accessible and less beneficial—path. The latter scenario would
be equivalent to a shift of the “resistance limit” in Fig. 2b to lower
values. To discriminate between these two scenarios, we tested
how perturbations of efflux pumps affect resistance evolvability.

We found that deleting genes that code for components of the
AcrAB-TolC efflux pump can essentially block resistance
evolution (Fig. 3a). The most drastic effect occurred for ΔtolC
in tetracycline, where we detected no increase in resistance in all
seven replicates of the evolution experiment (Fig. 3a). This is
notable because not only did this strain evolve under the same
strong selection pressure for drug resistance at the same
population size for the same number of generations as all other
strains, but it was even five times more sensitive at the beginning
of the evolution experiment (Fig. 3a, Supplementary Fig. 6)60, and
thus expected to increase in resistance dramatically. We detected
only one fixed mutation (a single base-pair substitution in the
promoter of the yhdJ gene) in a single ΔtolC evolution replicate,
corroborating the lack of adaptation; this idiosyncratic mutation
seemed random and was unrelated to resistance (Supplementary
Data 1). A likely mechanistic explanation for the lack of
adaptation in the ΔtolC strain is that the disruption of AcrAB-
TolC effectively neutralizes the beneficial effects of resistance
mutations related to this efflux pump.

Similar to ΔtolC, only a single ΔacrA replicate out of five
evolved tetracycline resistance, namely by overexpressing the
homologous, rarely used AcrEF-TolC efflux pump, thus circum-
venting acrA loss61,62. The rapidity at which evolution found this
alternative mutational path highlights the difficulty of perturbing
resistance evolvability. The lack of resistance evolution for ΔtolC
(Fig. 3a) likely reflects that TolC serves as an outer membrane
channel for at least eight different efflux pumps63, which can be
disabled simultaneously. As a result, the alternative path to
resistance followed in the ΔacrA strain is not available when tolC
is deleted. In sum, these results exemplify the importance of
detecting cellular functions that not only sensitize cells to a drug,
but simultaneously hinder resistance evolution in ways that are
not easily circumvented by alternative mutational paths to
resistance.

We hypothesized that interfering with the regulation of efflux
pumps while preserving their structural integrity provides
additional ways to manipulate resistance evolvability. Indeed,
several genetic perturbations of efflux-pump regulation signifi-
cantly altered the rate of resistance evolution. Deleting marA,
coding for a key activator of efflux-pump expression45,64 slightly
increased the initial sensitivity to tetracycline and slowed
subsequent resistance evolution, even if not completely abolishing
it (Fig. 3a). In contrast, deleting marR, coding for a repressor of
marA65 and therefore an indirect repressor of efflux-pump
expression, increased initial resistance but had no lasting effect on
resistance (Fig. 2c), following the diminishing-returns pattern.
This is expected, since loss-of-function mutations in marR are
extremely common in the experiment (Fig. 3b and Supplemen-
tary Fig. 3), and deletion of marR does not interfere with the
usual resistance path, but rather represents a step along it, leading
to the general resistance limit (Fig. 2b). Deleting acrR, coding for
a repressor of the acrAB operon and the mar regulon66, increased
initial sensitivity to tetracycline, likely because its coding region
contains a MarA biding site that activates the acrAB operon67.
Despite this greater initial sensitivity, resistance of the ΔacrR
strain increased only modestly during the evolution experiment,
by about 15-fold compared with 25-fold in the ΔlacA reference
strain. Thus, deleting acrR is another way to decrease acrAB
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expression and thus limit the attainable resistance. Taken
together, we identified multiple cellular targets that slow
spontaneous resistance evolution by affecting efflux pumps
(Fig. 3a), highlighting that even a single main mutational path
to drug resistance can be targeted in several ways.

Identification of genes that alter resistance evolvability. Beyond
efflux pumps, we revealed additional cellular functions that slow
resistance evolution when perturbed. In particular, even though
deleting the Hsp70 chaperone DnaK68 does not affect drug sen-
sitivity, it slowed resistance evolution by almost an order of
magnitude (Fig. 4). Furthermore, the ΔdnaJ strain which harbors
a deletion of DnaK’s co-chaperone also slowed resistance evolu-
tion, albeit less extreme than ΔdnaK (Supplementary Fig. 7). Both
observations are consistent with the notion that chaperones play a
key role in evolution by affecting the conversion of genetic to

phenotypic variability69,70. Perturbing different steps of the
lipopolysaccharide (LPS) biosynthesis pathway (ΔlpcA and
ΔlpxM) led to over 4- and 2-fold lower levels of final resistance,
respectively (Fig. 4 and Supplementary Fig. 7). Deletion of tatC, a
gene involved in protein transport across the membrane, also
significantly slowed resistance evolution (Fig. 4). This effect is
possibly due to a lower mutation rate as this gene is thought to
play a role in stress-induced mutagenesis71. The molecular
mechanisms underlying the effects of these genes on resistance
evolution are unclear, highlighting the difficulty of predicting
such evolvability modifiers and the importance of our systematic
approach to expose them. Together, these results support that
multiple independent cellular functions determine resistance
evolvability; perturbing these functions often defers resistance.

Fewer of the gene deletions we investigated accelerate
resistance evolution. Specifically, deleting decR, a regulator of
cysteine detoxification72, slightly accelerated resistance evolution
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common mutation loci (Supplementary Fig. 2, Supplementary Data 1) are marked by stars; amplification of a genome region is shown as stacked black lines
representing copies of DNA. Each mutation locus has a pie chart near it where colored segments represent the proportion of evolved populations started
from the reference strain (ΔlacA) which gained a mutation in that locus during the experiment. Slices of a darker shade of the gene color represent the
proportion of samples with predicted loss-of-function mutations in that locus.
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even though it did not affect initial resistance (Fig. 4). We
observed that a loss-of-function mutation in decR occurred
reproducibly in several evolved populations including the evolved
reference strain (Fig. 3b, Supplementary Fig. 3a, Supplementary
Data 1). This is intriguing since the decR deletion alone does not
increase resistance and suggests that loss of decR function
amplifies the effects of spontaneous resistance mutations. A more
established way of accelerating resistance evolution are perturba-
tions of DNA repair (ΔmutL in Fig. 4), which lead to mutator
phenotypes with ~100-fold increases in mutation rate47. How-
ever, the effect was weak, suggesting that the supply rate of
beneficial mutations, which should be drastically increased in the
ΔmutL strain, is not rate-limiting for resistance evolution under
our conditions. This observation indicates that resistance
evolution in larger bacterial populations, such as those in our
experiments, is in a regime that is not limited by the arrival of
new beneficial mutations. Overall, our results suggest that
bacteria are more easily perturbed in ways that slow resistance
evolution rather than accelerate it. Since we tested only a few
percent of the genes in the genome, this indicates a huge
unexploited reservoir of candidate targets for choking sponta-
neous resistance evolution.

Alterations of evolvability for different antibiotics are corre-
lated. To test if our results are specific to tetracycline or perhaps
more general, we performed a similar evolution experiment with
chloramphenicol. Like tetracycline, chloramphenicol targets the
ribosome but the details of this interaction differ considerably73.
Whereas the evolution of tetracycline resistance seemed to level
off within 7 days, for chloramphenicol, we observed a steady
increase even after 10 days (Fig. 5 and Supplementary Fig. 8),
confirming previous reports40. Many mutations that fixed during
the experiment overlapped with those observed for tetracycline,
with additional mutations related to the MdfA efflux pump
(Supplementary Fig. 3b) as previously described40,44. Despite
these differences, the effects of specific gene deletions on evolu-
tion in the two drugs were similar, as evidenced by highly

correlated increases in resistance (Pearson’s correlation coefficient
r= 0.63, p < 10−8 for the fold-change in resistance at the end of
the evolution experiment, relative to the fold-change in the ΔlacA
strain; Fig. 5a). In particular, the perturbations with the strongest
effects were common to both antibiotics: mutator strains (ΔmutT
and ΔmutL) adapted faster while the ΔtolC, ΔdnaK, and ΔmarR
strains adapted more slowly (Fig. 5b–f). The accelerated evolution
in mutator strains was clearer for chloramphenicol (Fig. 5e, f).
These results show that the cellular functions we identified do not
just affect evolvability for one specific antibiotic in an idiosyn-
cratic way. While it is not clear that the same genes will affect
resistance evolvability for other antibiotics, these results suggest
that hitting the same target can often modify resistance evolva-
bility for at least several different drugs.

Epistatic interactions underlie evolvability alterations. We
hypothesized that many of the observed changes in evolvability
are caused by epistasis between the gene deletions and common
spontaneous resistance mutations. To test this hypothesis, we first
combined our whole-genome sequencing data for evolved strains
with the resistance levels measured at the end of the evolution
experiment. Based on these data, we built a simple linear
regression model to estimate the benefit of each spontaneous
resistance mutation (Methods). This model enabled us to identify
deletion strains where these mutations fixed but had a different
resistance benefit than expected (Fig. 6a). This analysis indicated
magnitude epistasis, i.e., a quantitative change in the fitness effect
of a mutation due to the presence of a different mutation31,
between the deletion and the acquired mutations. For example, in
a ΔdnaK background, the same resistance mutations increased
resistance by considerably less than in other strains (Fig. 6a). In
extreme cases where the gene deletion completely nullifies the
benefit of spontaneous resistance mutations, these mutations
would not fix in the evolution experiment, as observed for the
ΔtolC strain (Fig. 3a, Supplementary Data 1). Thus, the strongest
epistatic effects are not detectable by this approach.
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To extend this analysis to extreme cases like ΔtolC and
corroborate the central role of epistasis in resistance evolvability,
we directly quantified epistatic interactions between specific gene
deletions and common resistance mutations. We isolated clones
from the ΔlacA reference populations evolved in tetracycline and
deleted genes that modified the rate of resistance evolution in our
experiments. We then measured the IC50 of the ancestral,
evolved, and newly modified strains (Fig. 6b, Methods). Deleting
tolC rendered the evolved reference strains even more sensitive to
tetracycline than the ancestral reference strain (Fig. 6b, c).
Deletion of dnaK or lpcA also sensitized the resistant strains,
albeit only partially (Fig. 6c). These results expose epistatic
interactions between resistance mutations and gene deletions
identified in our large-scale search for evolvability modifiers,
which are consistent with their slower resistance evolution. More
quantitatively, the extent of epistasis mirrored the observed
differences in resistance evolvability for ΔtolC and ΔdnaK,
respectively (Figs. 3 and 4). There is a plausible mechanism for
the epistatic interactions between ΔtolC and the common
resistance mutations: since many of the resistance mutations
affect the AcrAB-TolC multidrug efflux pump, which is likely
disabled by tolC deletion, these mutations lose their beneficial
effects. Together, these results highlight the potential of exploiting
epistatic interactions to restrain spontaneous resistance evolution.

Discussion
We presented a systematic analysis of the effects of targeted
genetic perturbations on spontaneous antibiotic resistance evo-
lution in well-controlled laboratory experiments. We identified a
general pattern of diminishing-returns epistasis that guides
resistance evolution (Fig. 2). Perturbations of specific cellular

functions clearly deviate from this trend (Figs. 3 and 4) and affect
resistance evolvability most drastically due to strong epistatic
interactions with resistance mutations (Fig. 6). To obtain these
results, we established an automated, high-throughput experi-
mental evolution platform that keeps hundreds of cultures in
parallel in exponential phase under controlled selection pressure
(Fig. 1). This platform allows precise detection of adaptation rates
over a wide dynamic range and is broadly applicable. It enables
quantitative investigations of evolvability for diverse microbes
and other stressors than antibiotics.

The diminishing-returns trend we observed for antibiotic
resistance extends similar observations of global epistasis that
were made at the level of fitness or growth32,74. In essence, we
found a strong tendency that gene-deletion mutants converge on
a fixed resistance limit by accumulating resistance mutations
under drug selection, irrespective of their initial resistance: The
effects of resistance mutations become weaker in more resistant
genetic backgrounds (Fig. 2b). This indicates that loss-of-function
mutations transform the fitness landscape of antibiotic resistance
in a largely predictable fashion. However, a recent study that
investigated resistance evolvability for clones derived from a long-
term evolution experiment detected no signs of diminishing-
returns epistasis for tetracycline and other antibiotics, and con-
cluded that resistance evolvability is historically contingent on
prior mutations57. These diverging conclusions might be due to
the different E. coli strain backgrounds and mutants used: Card
et al.57 investigated four clones carrying multiple mutations that
fixed under the selection conditions in the long-term evolution
experiment, while we studied a diverse set of defined gene-
deletion strains. Detecting the diminishing-returns trend is
facilitated by the increased statistical power of our approach,
resulting from the investigation of almost 100 lines, and the
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considerably greater fold increases in resistance that occur in our
assays, which select multiple resistance mutations over more than
a week while dynamically adjusting drug concentration to
maintain selection pressure, as also discussed in ref. 57. Future
studies extending this work to other antibiotics and bacteria are
needed to resolve if diminishing-returns epistasis is a general
phenomenon in antibiotic resistance.

We provided a systematic way of identifying genes that dras-
tically slow resistance evolution when deleted; specific examples
are tolC, dnaK, and lpcA (Figs. 3 and 4). In principle, the products
of such genes could be candidate drug targets for a strategy in
which antibiotics are combined with compounds that slow down
the evolution of resistance without any need for lowering the
mutation rate. The most notable candidate identified here is tolC:
its deletion not only impairs spontaneous resistance evolution,
which we showed here, but also sensitizes the cell to many
antibiotics60,75,76. A TolC-inhibitor would strongly synergize with
antibiotics like tetracycline and chloramphenicol60 while at the
same time slowing resistance evolution. Thus, in evolution
experiments, this strategy may circumvent the general trend that
synergistic drug combinations tend to accelerate resistance evo-
lution77. In clinical isolates, the prominence of horizontally

transferred resistance genes limits direct applications for the
specific antibiotics we focused on here. Notably, however, a recent
study showed that acquisition of resistance genes like tetA by
plasmid transfer in the presence of tetracycline depends on the
AcrAB-TolC multidrug efflux pump, which reduces the intra-
cellular tetracycline concentration and thus enables TetA trans-
lation78. Consequently, a TolC-inhibitor could hamper the
horizontal transfer of resistance genes while simultaneously
slowing the evolution of spontaneous tetracycline resistance,
which possibly becomes more relevant when horizontally trans-
ferred resistance is unavailable.

To follow this potential strategy, small molecules targeting the
evolvability modifiers identified using our approach are needed.
For this purpose, one could test antisense oligomers (phosphor-
odiamidate morpholino oligomers, PPMOs), which are a pro-
mising way to inhibit the expression of a broad range of targets79

—an approach that has been successfully used for genes encoding
efflux pumps, leading to antibiotic hyper-sensitivity60. Targeting
efflux pumps would also be possible with other small mole-
cules80–83 or with phages that require TolC for entry84. This
specific approach has broader potential for gram-negative bac-
teria, where TolC family proteins are ubiquitous85. As a general
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strategy, discovering inhibitors of evolvability modifiers along
with inhibitors of horizontally transferred resistance could rein-
vigorate old drugs and, at the same time, put their use on a more
sustainable future trajectory.

There is a plausible molecular mechanism for the negative
epistatic interactions between the tolC deletion and the common
resistance mutations (Fig. 6b, c), which drastically lower resis-
tance evolvability: the tolC deletion effectively disables AcrAB-
TolC and other efflux pumps that use TolC as their outer
membrane channel. As a result, the usual resistance mutations,
many of which affect the function and expression of these efflux
pumps (Fig. 3b), are effectively neutralized. While epistatic
interactions with common resistance mutations also contribute to
the altered evolutionary dynamics caused by gene deletions such
as ΔdnaK, ΔlpcA, ΔtatC, and ΔdecR (Fig. 6), the underlying
molecular mechanisms of these epistatic interactions remain to be
further studied. Chaperones such as DnaK were proposed to
affect evolution by buffering the phenotypic effects of
mutations54,70,86. There is also evidence that chaperones may
enhance the phenotypic effects of spontaneous mutations87. The
latter scenario is consistent with our observations: If DnaK
amplified the effects of spontaneous mutations, its deletion
would weaken the beneficial effects of spontaneous resistance
mutations and slow the rate of resistance evolution as observed in
our assay (Figs. 4 and 5c). However, in the case of efflux-pump
related resistance, an alternative explanation is that TolC is a
predicted client of DnaK88—hence, the main effect of the dnaK
deletion could be that it effectively knocks down tolC, which in
turn affects resistance evolvability by the mechanism
described above.

Similarly, perturbing membrane composition via LPS bio-
synthesis as in the ΔlpcA strain might slow resistance evolution
(Fig. 4) by interfering with the proper function of efflux pumps,
which would again weaken the effects of the most common
resistance mutations. However, there is evidence that perturbing
the assembled LPS layer itself does not change efflux-pump
activity89. The mechanisms underlying the faster adaptation of
the ΔdecR strain (Fig. 4) and the frequent occurrence of spon-
taneous mutations in this locus remain to be elucidated. DecR
was recently shown to be a repressor of a single operon that is
involved in L-cysteine detoxification72; decR is upregulated by
MarA and TolC is involved in L-cysteine transport90. Therefore,
the resistance mutations affecting these genes may also affect
DecR and L-cysteine levels, introducing a cost or sensitivity,
which could in turn be alleviated by specific mutations in this
regulator. In general, elucidating the molecular mechanisms
underlying the epistatic interactions that alter resistance evolva-
bility is challenging, not least because these mechanisms can be
different in each individual case. Still, this problem needs to be
addressed in future work.

Technological advances may enable investigating the effects of
all ~4000 viable E. coli gene deletions41 (and other mutant col-
lections) on resistance evolvability in the future. This approach
could provide a comprehensive overview of the role of all genes in
resistance evolvability, analogous to studies that characterized the
phenotypic effects of all genes on growth in the presence of
antibiotics and other chemicals35,44. Still, even if the rigorous
feedback-control of population size and selection pressure we
used here is relaxed to simplify the experiment, following this
route will require considerable advances in lab automation. For
global results, such as the diminishing-returns trend (Fig. 2b), it
often suffices to investigate a few percent of the genome; this
trend would almost certainly be confirmed in a genome-wide
investigation. Overall, our study provides a stepping-stone from
typical investigations of resistance evolution in a single or a few
different genotypes toward systematic investigations of genome-

wide perturbations on evolvability, which may become feasible in
the future.

The ability to perform an even greater number of evolution
experiments would also facilitate a systematic investigation of
resistance evolvability for a larger set of different antibiotics
representing all major modes of action. This approach would
clarify if the cellular functions and specific genes we identified as
modifiers of resistance evolvability are specific for tetracycline
and chloramphenicol or more general across different antibiotic
classes. Even if different cellular functions need to be targeted to
modify resistance evolvability for other antibiotics, our work
provides a systematic way of exposing these functions. Impor-
tantly, while targeting the AcrAB-TolC multidrug efflux pump is
only expected to slow resistance evolution for antibiotics that are
transported out of the cell by this pump, the concept of targeting
known resistance mechanisms to slow resistance evolution is
likely more general. We restricted the present study to two
ribosome inhibitors because many antibiotics with other modes
of action pose additional challenges for precise feedback-control
of population size and selection pressure. For example, quino-
lones act with time delays of several hours, while beta-lactams
have highly sensitive dose–response characteristics44. Hence,
investigating other antibiotic classes, while feasible, requires
careful adaptation of our automated evolution platform. Never-
theless, extending our approach to other antibiotic classes is a
promising direction of future research.

Even when resistance-enabling genes like tolC or dnaK are
disabled and horizontal gene transfer is prevented, evolution
would ultimately find ways to increase resistance, but our results
indicate that this could take orders of magnitude longer. A
potential strategy for slowing resistance evolution even further
would be to combine an antibiotic with inhibitors for several of
the key resistance-enabling genes identified using the approach
presented here. In this way, even less-common paths to resistance
could be blocked and the probability of circumventing these
blocks by mutation might become prohibitively low. This work
shows that most gene deletions affect the fitness landscape of
antibiotic resistance in a predictable way and provides a frame-
work for identifying perturbations that fundamentally alter the
local properties of this landscape. It will be interesting to extend
this approach to other organisms and drugs.

Methods
Strains, media, reagents, and antibiotics. Cultures were grown in LB medium
from Sigma-Aldrich (#L3022). For PCR reactions GoTaq G2 DNA Polymerase
(Promega #M7845) or Q5 high fidelity Polymerase (New England Biolabs
#M0491S) were used.

All strains originated from isolated clones (plated on solid LB, picked, regrown
overnight in LB and frozen in 15% glycerol) from the Keio collection41 with
kanamycin cassette included in the locus of the deleted gene.

Tetracycline stock solutions of 7 or 10 mg/ml were prepared by diluting
tetracycline hydrochloride powder (Sigma-Aldrich # T7660) in 83% ethanol at
room temperature. Chloramphenicol stocks of 10 mg/ml were prepared by diluting
powder (Sigma-Aldrich #C0378) in 99% ethanol. Kanamycin stock was made from
kanamycin-sulfate powder (Sigma-Aldrich #K4000). All antibiotic stocks were
stored at −20 °C.

Whole-genome sequencing analysis. Whole-genome sequencing was performed
for 380 samples altogether as listed in Supplementary Data 1. For all evolved
population samples, the ancestral clone was also sequenced and its mutations
analyzed (Supplementary Data 1), to distinguish clearly between mutations
acquired before and during the experiment. Genomic DNA was purified directly
from thawed glycerol stocks using the GenElute 96 Well Tissue Genomic DNA
Purification Kit (Sigma-Aldrich # G1N9604). Library preparation, multiplexing,
and sequencing were performed by LGC Genomics GmbH. The samples were
sequenced on an Illumina NextSeq500 V2 (paired-end sequencing, 150 bp read
length, ~230-fold coverage on average, but ranging from ~70- to ~800-fold due to
the multiplexing protocol). Sequencing data were analyzed using Breseq91 (version
0.32.0). Reads were aligned to the deposited Keio parent reference (Accession:
CP009273) using Bowtie (version 1.2.11). The mutations identified by Breseq were
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manually inspected for false positives; all validated mutations are listed in Sup-
plementary Data 1. Even though the samples were expected to be heterogeneous
(they were not isolated clones), the “clonal” mode of Breseq was used. Therefore,
the mutations detected only represent fixed mutations. Amplifications were noted
if the coverage of a multi-genic region (which includes the acrAB or mdfA operon
and is over 5000 bp) exceeded twice the median coverage of that sample. Since an
IS insertion in the lon promoter region was often among the “unassigned new
junction evidence” but at very high frequency, this type of mutation was assumed
to be fixed if the frequency exceeded 90%. For each evolved sample, we validated
that the intended gene deletion is present. If any reads in the deletion locus were
present, which would suggest cross-contamination with another strain, the sample
was excluded from the analysis.

Automated experimental evolution. The selected deletion strains from the Keio
collection41 as listed in Supplementary Table 1 were all streaked for single colonies
and clonal cultures frozen with 15% glycerol at −80 °C. The glycerol stocks were
used to assemble the starting 96-well plates for the evolution experiment. Each
plate had at least 12 empty wells, which were filled with sterile growth medium, and
handled like all other wells throughout the experiment to monitor cross-
contamination. Replicates of the same ancestor, if on the same plate, were placed
far from each other to avoid cross-contamination which would not be detected by
genotyping. Every plate contained at least two replicates (and usually more) of the
control strain (either the BW25113 parent strain of the Keio collection or the ΔlacA
strain). The ΔlacA strain was used as reference in later experiments instead of the
BW25113 to ensure that any difference between the strains is not due to the
presence or absence of the kanamycin cassette.

The automated evolution protocol was carried out four times using a Tecan
Freedom Evo 150 liquid-handling platform. The specific differences between the
runs of the experiment are given in Supplementary Table 2. The 200 µl cultures
were kept in LB rich medium in 96-well plates (Nunc, transparent flat-bottom) in a
shaking incubator (Liconic Storex, 30 °C, >95% humidity, 720 rpm). Continual
shaking and rich growth medium ensured that the cultures were homogeneous and
not under oxygen or nutrient limitation. Every 10–15 min, each plate was
transferred to a plate reader (Tecan Infinite F500) using a robotic manipulator arm
(RoMa) and the absorbance (OD at 600 nm) was measured. Every 3–5 h, the
cultures were transferred to new plates. They were not diluted in the same plates to
avoid biofilm formation and due to large errors in volumes left in the wells after
pipetting out most of the culture. The new plate was filled in three steps. First, pure
LB medium (vmed) was pipetted, then medium with antibiotic (vab) and last the
culture (vculture) from the previous plate. Each culture had its own dedicated 200 µl
disposable tip, which was washed in ethanol after every dilution. LB medium and
antibiotic stock were multi-pipetted into the new plates using 1000 µl tips. All tips
were exchanged once a day. The reservoirs with media had lids that were taken off
using the RoMa arm just before usage.

Every day of the experiment, the penultimate plates of that day were left in the
incubator to grow out: the next day 70 µl of 50% glycerol was added to each well
and the plates frozen at −80 °C. Fresh antibiotic stocks and medium reservoirs
were provided. There were always two concentrations of antibiotic stocks available,
~10-fold apart, the protocol always only chose one of the available stocks to pipette
from. The concentrations of the antibiotic stocks were chosen each day depending
on how resistant the populations had become.

Every 3–5 h, the cultures from each plate were transferred to new plates using
the Air LiHa robotic pipetting head. The appropriate volumes of culture, medium
and antibiotic to use were calculated at each dilution step and for each culture
using a custom Python script based on the OD values obtained since the last
dilution. The growth rate was obtained from 18 consecutive OD measurements by
obtaining the slope of the least-squares linear fit (numpy.polyfit function) to the
log2 of those background subtracted OD values which were between 0.01 and 0.1.
All growth rates were normalized to the growth rate of the reference strain in the
absence of antibiotic (1.7 doublings per hour). The volumes were calculated
separately for each well using the last OD measurement (d), normalized fitted
growth rate (gcurrent), concentration of antibiotic stock (cstock), current antibiotic
concentration in the well (ccurrent) and Hill coefficient of the dose–response curve
nTET= 1.8, nCHL= 2.444 in order to reach the target OD (dtarget= 0.01), growth
rate (gtarget= 0.5), and total volume (vtotal= 200) according to the equations:

Vculture ¼ Vtotal � dtarget=d ð1Þ

Vculture ¼ Vtotal � dtarget=dctarget ¼ ccurrent
gcurrent

1� gcurrent

� �1
n ð2Þ

Vab ¼ ðvtotal � ctarget � b � ccurrentÞ=cstock ð3Þ

Vmed ¼ Vtotal � Vculture � Vab ð4Þ
We took several precautions to deal with atypical input values. If the

concentration ccurrent is zero, ctarget is set to a default concentration of 0.1 µg ml−1

for tetracycline and 0.5 µg ml−1 for chloramphenicol, which are values lower than
the IC50 of the most sensitive strains in our selection. If the sum of squared
residuals from the fit to obtain the growth rate is >0.8, which was empirically
chosen to reflect a failed growth-rate fit, then ctarget is set to ccurrent. If the measured

normalized growth rate is larger than 0.9, it is set to 0.9 to avoid very large or
undefined values for ctarget due to the sigmoidal shape of the dose–response curve.
If the calculated volume Vab is smaller than 5 µl, Vab is set to zero (only medium is
used to dilute the culture) and concentrations are updated accordingly. Vculture is
capped at 140 µl, to assure accurate aspiration from the small 200 µl culture. There
were two available reservoirs of antibiotic stocks, the higher concentration was only
used if, for the lower stock concentration

Vab >Vtotal � Vculture: ð5Þ

Resistance measure. The “on-the fly” resistance (IC50) measure for a particular
culture is the antibiotic concentration in the well at that time. The concentration
was updated at every dilution. For all plots of resistance over time (Figs. 2–4) and
all “initial” and “final” resistance measures, only those time points where the
growth rate after that particular dilution was close to half-inhibited (between 0.3
and 0.7 of the maximum growth rate of the reference strain) were considered.

Correlation analysis and bootstrapping. For the diminishing-returns trend in
Fig. 2b, bootstrapping analysis was performed to estimate the confidence interval
and bias of the calculated correlation. To quantify the strength of the trend, we
used the Spearman (rank) correlation ρ, which is insensitive to extreme outliers like
tolC (Supplementary Fig. 6). Data points were resampled 10,000 times (Matlab
function bootstrp) to obtain the 95% confidence interval. The mean value of
ρ from the bootstrapped data was only 0.005 higher (−0.593) than the sample
correlation (−0.598), showing that sampling bias has a negligible effect on the
observed trend. For all correlations (Figs. 2b, 5a, and Supplementary Fig. 1),
a permutation test was performed to obtain the p-value of the correlation.

Regression model of mutational effects. The regression model has two major
assumptions. First, different mutations in the same locus provide the same resis-
tance benefit and second, the effects of mutations on resistance are additive on a log
scale, i.e., each mutation brings a fixed relative resistance increase irrespective of
which other mutations are present. Assuming this is true, the log resistance levels y
can be expressed as a linear model:

y ¼ b0 þ b � x þ ϵ; ð6Þ
where y is the log of the increase in resistance observed for the individual evolving
populations, b0 is a fitted coefficient corresponding to the resistance increase
common to all evolved populations not predicted by the five most common
mutations, b is the vector of fitted coefficients which correspond to the effects of
the individual mutations, x is a vector of ones or zeros determining the presence or
absence of that particular mutation in the given evolved population.

Mutations from all sequenced samples evolved in tetracycline which passed
contamination and quality control were included in the analysis Supplementary
Data 1. The function fitlm (Matlab R2016b) was used. The predicting variables
were the presence and absence of mutations in the five most commonly hit genes
(marR, lon, efflux-pump amplification, acrR, decR), the fit parameters were the
multiplicative effects of mutations in those loci, and the response variable was the
log resistance increase over the course of the experiment. The predicted mutational
effects of the five most common mutations are given in Supplementary Table 3.

Generation of double-deletion mutants. All newly constructed strains (used in
Fig. 6b, c) are available upon request.

Before introducing the kanamycin cassette into the evolved ΔlacA::kanR strains
to produce double-deletion mutants, clones were picked from LB agar plates with
25 µg ml−1 kanamycin sulfate and 10 µg ml−1 tetracycline hydrochloride and their
growth rates were compared with the evolved strain. The growth rate was
determined in a dose–response assay as explained in “Dose-response
measurements”. Clones with resistance level similar to the evolved population were
subjected to P1-phage transduction (for dnaK and tolC deletion) or lambda-red
recombineering (for lpcA deletion).

Prior to the P1-phage transduction, the FRT-flanked kanamycin cassette has
been removed from the evolved ΔlacA strains with the plasmid pCP20 and
selection on LB agar with 100 µg ml−1 ampicillin and with 25 µg ml−1 kanamycin.
Afterward the double-deletion mutants were created by transferring the respective
alleles (ΔdnaK, ΔtolC, ΔlpcA, and ΔlacA) from the Keio collection into ΔlacA
evolved strain using the standard P1-phage transduction protocol92. The genotype
was verified after P1 transduction with PCR (Supplementary Table 4).

To delete the lpcA gene in the evolved ΔlacA strains, the chromosomal gene
lpcA was targeted with lambda-red-mediated homologous recombination, due to
inefficient P1 infection of the ΔlpcA strain. A PCR product containing the
kanamycin cassette flanked by FLP recognition target sites and 50 base pairs
homologies to adjacent chromosomal sequences41 (Supplementary Table 4), and
20 bp homology to the plasmid pKD13, were amplified using Q5-HF-polymerase
(NEB). The PCR product was purified using a standardized PCR clean-up kit
(Promega #A9282) and electroporated into evolved E. coli BW2511 ΔlacA::kanR

with the recombineering plasmid pSIM19. The transformed cells were selected for
kanamycin (25 µg ml−1) and the presence of the PCR product was confirmed by
colony PCR (Supplementary Table 4).
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Analysis of the epistasis effects of gene deletions. In Fig. 6c, the significance of
the effects of gene deletions was determined by performing a two-sided t-test on
the relative resistance change due to the gene deletion on the ancestral (sensitive)
versus evolved (resistant) backgrounds. For this test, IC50 values of gene deletions
from the Keio collection41 (ΔdnaK, ΔtolC, ΔlpcA) were normalized to the mean
IC50 value of the reference ΔlacA strain; IC50 values of the constructed double-
deletion strains (gene deletions on background of evolved ΔlacA strains) were
normalized to the mean IC50 of their corresponding background resistant clones.

Dose–response assay. Strains were grown overnight at 30 °C in LB broth without
any antibiotics for 20 h. The growth rate of the double- and single-gene-deletion
mutants with and without tetracycline were determined at OD600 using the Biotek
plate reader Synergy H1. The overnight culture was diluted 1:1000 in all assays. The
cell growth was observed for 25 h at 30 °C.

The Hill function fits were obtained by fitting the function

y ¼ g0

1þ x
c0

� �n ð7Þ

to the growth-rate measurements using the function fit (Matlab R2016b). g0 is the
fitted maximum growth rate (or the growth rate without drug), c0 is the fitted IC50

and n is the fitted dose sensitivity44.

Growth-rate fits. Unless specified otherwise, growth rates are determined as the
slopes of a linear fit to the log2 background subtracted OD values. Only those OD
values which lie between 0.015 and 0.1 (after background subtraction) and only the
time window from when the values first cross 0.015 until they reach 0.2 were
considered. The function fit (Matlab R2016b) was used.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Whole-genome sequencing data is accessible in the European Nucleotide Archive under
accession code PRJEB37495. All other data are included within the main text or
supplementary materials. Figures 3b, 6a, Supplementary Fig. 3 and 4 are built on the
sequencing data and resulting mutation calls available in Supplementary Data 1. Data to
produce all other figures are available in Source data. Source data are provided with
this paper.

Code availability
This study did not generate any new computer code beyond basic data analysis code,
which is available from the corresponding author upon request. Source data are provided
with this paper.
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