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Magnetically powered metachronal waves induce
locomotion in self-assemblies
Ylona Collard 1✉, Galien Grosjean 1,2 & Nicolas Vandewalle1

When tiny soft ferromagnetic particles are placed along a liquid interface and exposed to a

vertical magnetic field, the balance between capillary attraction and magnetic repulsion leads

to self-organization into well-defined patterns. Here, we demonstrate experimentally that

precessing magnetic fields induce metachronal waves on the periphery of these assemblies,

similar to the ones observed in ciliates and some arthropods. The outermost layer of particles

behaves like an array of cilia or legs whose sequential movement causes a net and con-

trollable locomotion. This bioinspired many-particle swimming strategy is effective even at

low Reynolds number, using only spatially uniform fields to generate the waves.
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In recent years, many efforts have been made to create syn-
thetic microswimmers. These tiny structures use a wide variety
of techniques to move in a fluid at low Reynolds number.

Some mimic living microorganisms with artificial flagella1,2 or
rotating helices3–5 while others are propelled by chemical reac-
tions6,7, ultrasound8,9, or even light10,11. The motivations for
studying these systems range from the fundamental under-
standing of biological processes to the development of medical
and technological applications12,13. However, the synthesis,
manipulation, and assembly of the required microscopic com-
ponents can be a challenge. One possible approach to facilitate
the fabrication process is to rely on self-assembly14–16.

For instance, floating crystals of particles can form owing to a
magnetic repulsion between particles in a confinement17,18 or
through a combination of a magnetic repulsion and an attraction
due to capillary forces19,20. The latter, magnetocapillary self-
assemblies, are the focus of this paper. Similar-looking structures
can also be obtained through dynamic self-assembly under a
constant supply of energy, for example, with a combination of
magnetic attractions and hydrodynamic repulsions between
rapidly rotating disks21, or through a combination of magnetic,
hydrodynamic, and capillary forces with magnetic droplets under
precessing fields22. When exposed to a spatially uniform, time-
varying magnetic field, magnetocapillary self-assemblies have
been shown to spontaneously move along the interface15. This
intriguing behavior has since been the subject of numerous stu-
dies23–29. No general approach for swimming has yet been
developed, though, as this phenomenon is highly dependent on
the geometry of the particular assembly24,26.

To overcome this problem, we can find inspiration in nature.
Microbial swimmers often use one or several dedicated hair-like
appendages for propulsion12. When these slender organelles
operate in large groups, they are called cilia. Motile cilia are found
on various eukaryotic cells, including epithelial cells, where they are
used to transport fluid or objects inside the body, and on ciliates, a
group of unicellular organisms that use them, among other things,
for propulsion. The most striking feature of motile cilia is their
asynchronous beating. Cilia operate in succession, producing a
wave-like motion called a metachronal rhythm. Metachronal waves
have been shown to drastically increase swimming speed and effi-
ciency30,31. They are also found in the gait or stroke of various
invertebrates, including crustaceans32, worms33, and insects34.

To create a net flow and swim, a ciliate must periodically
deform in a way that is not time-reversible. This is a necessary
condition due to the properties of low Reynolds number flows12.
This nonreciprocal motion can happen in two ways. First, the
individual stroke of a single cilium can obey this condition. And
second, the motion of several cilia relative to each other can also
break time-reversal symmetry. Indeed, two nearby bodies per-
forming a reciprocal motion can still generate a net displacement
if there is a phase difference between them35.

A ciliary beat is divided in two parts: an effective stroke and a
recovery stroke. During the effective stroke, the tip of the cilium is
further away from the surface of the ciliate than during the
recovery stroke. This means that more fluid is displaced during
the effective stroke, which causes a net flow over a complete
period. The phase shift between adjacent cilia can induce one or
more metachronal waves on the surface of the living organism36.
These waves emerge from hydrodynamic coupling between the
cilia, and possibly as well from coupling through the cell mem-
brane37. Therefore, the beating pattern of a cilium has to
accommodate both individual and collective effects. Swimming
speed, efficiency, and direction are all governed by both the
individual strokes and the waves31.

Various attempts have been made to mimic cilia and their
metachronal rhythm. On the one hand, simple artificial cilia can

be fabricated on a substrate and actuated, although synchro-
nously, by magnetic fields38–40. On the other hand, the macro-
scopic approach of using individual actuators to generate the
metachronal rhythm is not well-suited for miniaturization41.
Metachronal swimmers that use active materials to produce a
traveling wave have also been theorized42 and successfully
implemented, using structured light to locally trigger the wave11.

The particular structures shown here are formed by self-
assembly, through a combination of capillary attraction and
magnetic dipole–dipole interactions; however, the same general
approach could be applied to microfabricated magnetic cilia.
When particles are placed at a water–air interface, they locally
deform the interface. This curvature is due to gravity and surface
tension, and depends on the shape, buoyancy, and wetting
properties of the particles43. Nearby particles will therefore
attract or repel, as each particle experiences an inclination of the
interface caused by the presence of another. Two identical
spheres will deform the interface in the same way, inducing an
attraction between them. This phenomenon of agglomeration is
playfully called the Cheerios effect44. In order to control the
interaction between the particles, we use soft ferromagnetic
spheres19. Magnetic dipoles of controllable magnitude and
direction can be reversibly induced in the particles using external
magnetic fields. To avoid contact between the particles, a vertical
magnetic field Bz is applied perpendicularly to the interface. This
magnetic field induces magnetic dipoles in the particles, leading
to repulsive interactions. The balance between capillary attrac-
tion and magnetic repulsion can lead to an equilibrium distance
larger than the particle diameter for typical field values of a few
milliteslas19.

The magnetocapillary interaction between two soft ferromag-
netic particles has been investigated in depth in earlier works23,25.
The distance rij between two particles i and j can be modified by
adjusting the magnetic field Bz as long as contact is avoided. The
dimensionless interaction energy between these particles can be
described by

uij ¼ �K0 xij
� �

þMc
x3ij

; ð1Þ

where K0 is a modified Bessel function of the second kind, xij=
rij/λ is the normalized distance in the horizontal plane between
beads, using λ ¼ ffiffiffiffiffiffiffiffiffiffi

γ=ρg
p

as the capillary length associated with
the characteristic interface deformations44. The parameter Mc in
Eq. (1) is the magnetocapillary number capturing the competi-
tion between magnetic and capillary effects. This number is
roughly independent of particle sizes20, such that the results
obtained in this paper could be expanded to systems of different
scales. Particles ranging from 3 μm to ~1 mm could in theory be
bound by the magnetocapillary interaction25. This range is
determined by gravity, as larger particles would sink and smaller
ones would not deform the surface enough to cause a significant
capillary attraction25,43. The magnetocapillary interaction can
lead to the formation of well-ordered floating rafts at a liquid–air
interface19, resulting in a wide variety of self-assembled
structures15,20.

Here, we propose an approach where a spatially uniform, pre-
cessing magnetic field triggers waves of deformations on the
periphery of these self-assemblies. Depending on the configuration
of the field, this can lead to rotational or translational motion. We
identify and discuss two types of nonreciprocal deformations
caused by these waves, which present similarities with the swim-
ming strategies of ciliates. This wave-based collective approach to
locomotion allows to move many-particle rafts at low Reynolds
number, and is robust for various assembly configurations.
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Results
Self-assembly. We focus on self-assembled rafts constituted by N
soft ferromagnetic beads of different diameters placed at a
water–air interface and immersed in a vertical magnetic field Bz

perpendicular to the interface. Figure 1 presents a few structures
from regular to more complex assemblies. The total number of
particles N ranges between 7 and 19, and the diameters D1, D2,
and D3 used herein are 800, 500, and 400 μm. To simplify the
notations, we will designate by D the diameter of the peripheral
beads of an assembly in the following sections. We introduce the
notation {N1, N2, N3}, where the Ni are the number of large,
intermediate, and small particles, respectively. For instance,
Fig. 1a, b shows a {1,6,0} assembly. Figure 1c–f shows several
other assemblies we will discuss in this paper. While the equili-
brium distance between particles is independent of their size,
larger particles are naturally located toward the center of self-
assemblies due to gravity20. The combination of long-range
capillary pull and short-range magnetic repulsion typically leads
to compact hexagonal structures, such as in Fig. 1b, d–f. However,

the weight of the assembly can curve the water surface downward,
which explains why fivefold symmetries are sometimes
observed20. With a larger particle in the center, sevenfold, and
even eightfold symmetries can become stable owing to its
stronger capillary pull, as shown in Fig. 1c.

Mimicking ciliated locomotion. The main objective of this work
is to develop a universal strategy to move self-assembled rafts
composed of many particles, drawing inspiration from the
metachronal rhythms used by ciliates and some arthropods. A
common example of ciliated organism is the algae colony Volvox,
which has a roughly spherical shape. Each individual cilium on
Volvox follows a periodic beat with an effective and a recovery
stroke, as shown in Fig. 2a. The blue cycle shows the position of
the tip of the cilium over time. We exploit the fact that peripheral
beads in magnetocapillary assemblies can describe a similar flow
pattern (Fig. 2b). Ciliary beats are generally quite complex,
asymmetric and can either be planar or nonplanar. However, the

Fig. 1 Examples of self-assembled rafts. Typical magnetocapillary assemblies with between 7 and 19 beads. The particle diameters are 400, 500 and
800 μm. a A N= 7 assembly, with one large and six intermediate particles, or {1,6,0}. The deformation of the liquid around each particle can be seen. The
inset shows the frame of reference we adopt for rafts with rotational symmetry, the direction of the magnetic field B, and the distance between the central
bead and a peripheral one ri. The eight-shaped line shows the trajectory of the magnetic field when the vertical component is constant and a time-
dependent horizontal component is applied. The self-assemblies shown in this figure are not subject to horizontal magnetic fields but only to a constant
vertical magnetic field. b Top view of the hexagonal raft {1,6,0}; c top view of the octagonal raft {1,8,0}; d top view of {1,6,6} composed of particles of three
different sizes; e top view of {1,6,12}; and f top view of the asymmetric raft {2,8,0}.
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motion of a rigid sphere near a surface can produce a similar flow
pattern, at least in the far field, and is therefore often used to
model a cilium39,45–48. In the case of an elliptical trajectory, one
can show that the flow far from the sphere is proportional to
the area of the ellipse projected on the plane perpendicular to the
surface45.

Remarkably, Volvox is able to change its swimming direction
by changing the symmetry of the strokes on its body49. When it
swims in a straight line, metachronal waves propagate between
two poles on its body, in the same direction as the effective
strokes of the individual cilia47. To change direction, for instance
when exposed to light, Volvox can revert the strokes on part of its
body49. Figure 2c, d illustrates symmetries on Volvox that would
lead to pure rotation and pure translation, respectively. The
direction of the effective strokes is represented by the gray arrows,
while the resulting motions are represented by the black arrow.

This is a greatly simplified view, as the configurations adopted by
Volvox lie on a continuum. Nonetheless, changing the symmetry
of how the strokes are distributed on the body produces different
behaviors. By using different symmetries for the variations of the
magnetic field, we report in this paper how to change the
direction of both the metachronal waves and the strokes, causing
different behaviors. This is illustrated in Fig. 2e, f.

Focusing first on the {1,6,0} assembly from Fig. 1b, the central
bead is surrounded by a shell of six neighboring beads forming a
hexagon. These peripheral particles will play the role of cilia, as
sketched in Fig. 2b. To generate metachronal locomotion, these
simple cilia must become motile. The energy required to set the
cilia in motion, which in eukaryotes is provided by the hydrolysis
of adenosine triphosphate, will here come from the dipole–dipole
interaction between the beads. Indeed, the addition of a
horizontal field, for example, along the x-axis, can change the
interaction energy. This causes a distortion in the assembly, as it
rearranges to find a new minimum of energy. The interaction
potential between neighboring beads is now given by

uij ¼ �K0ðxijÞ þ
Mcð1þ β2Þ

x3ij
1� 3cos2θij
h i

; ð2Þ

where β= Bx/Bz, and θij is the angle formed by rij and the external
field. When the horizontal component Bx vanishes, β goes to zero
and θij reaches π/2, such that Eq. (2) simplifies into Eq. (1).
Additional information about this interaction can be found in
Supplementary Note 1 and Supplementary Fig. 1.

In Fig. 3, quasi-static experiments have been performed by
increasing the horizontal field Bx step by step, in order to observe
the distortion of the structure. By tracking the distances ri
between the six beads and the central one (see Fig. 1a), one can
build the dimensionless shape distortion vector

σ ¼ 1
6hri

X6
i¼1

ri; ð3Þ

which is zero for a regular hexagon. Figure 3a shows σ= ∣σ∣ as a
function of Bx/Bz. As expected, the distortion increases with the
field ratio β meaning that the shape deviates from a regular
polygon. At a critical ratio βc ≈ 0.17, the system collapses, i.e.,
some beads come into contact. Figure 3b presents four snapshots
of the assembly for β= 0.0285, β= 0.0857, β= 0.1428, and the
collapse at β > βc. An asymmetric deformation appears along
the x-axis, causing σ to become nonzero as the particles in the
direction of Bx (ri and Bx parallel) move closer to the central one.
This causes σ to orient in the direction opposite to Bx. A slight
azimutal reorientation of the assembly is also observed. One
could wonder why the interaction is not mirror-symmetric with
respect to the y-axis, as it is a function of the magnetic field
squared. The origin of this asymmetry lies in the vertical positions
of the particles. The center of the larger central particle sits deeper
in the liquid, so that the angle θ in Eq. (2) depends on the sense of
the vector Bx. The continuous curve in Fig. 3a is a simplified
model developed from Eq. (2), taking into account the fact that
the central bead is larger than the others. More details on the
model and the discussion on asymmetry can be found in
Supplementary Note 2 and Supplementary Fig. 2.

Rotational motion. Because of this asymmetry, the distortion of
the assembly follows the direction of the magnetic field. By
tracking it, we can follow the metachronal waves around the
periphery of the assembly. As with ciliates, both the individual
strokes and the phase shift between neighboring particles can
produce a net flow. As will be shown later on, both effects would
lead to a motion in the direction of the metachronal wave. We
can therefore expect different behaviors as a function of the

Fig. 2 Swimming strategy of ciliates compared to magnetocapillary rafts.
a Effective and recovery stroke of a cilium (red), where the blue cycle
shows the position of the tip over time. b The trajectory of a peripheral
bead in a magnetocapillary assembly can also describe a cycle on the
horizontal plane. c Sketch of Volvox. When the effective strokes of the cilia
(gray dashed arrow) have the same orientation around the body, Volvox
rotates (black arrow). d When the ciliary beats point toward the same
direction, Volvox swims straight-ahead (black arrow). Metachronal waves
travel from one pole to the other (blue dots) in the same direction. e Sketch
of an assembly around which a deformation wave travels, causing a
rotation. f Conversely, two deformation waves propagating around the body
cause a translation. The black arrows represent the trajectories of the
assembly, the gray dashed arrows represent the directions of the effective
strokes and the blue dots represent the poles, where the waves start and
end in the translation case.
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symmetry of the waves, as sketched in Fig. 2. In order to pro-
pagate the distortion around the assembly, we will first consider a
counterclockwise rotating field along the horizontal plane, while
keeping a constant field in the vertical direction. This can be
written

Bx ¼Bh cosð2πftÞ;
By ¼Bh sinð2πftÞ;
Bz ¼Bv;

ð4Þ

with a typical rotation frequency f between 10−1 Hz and 2 Hz,
leading to periodic distortions with period T= 1/f. An example
trajectory is shown in Fig. 4a, as well as Supplementary Movie 1.
Frequencies up to 10 Hz have been tested, as discussed in Sup-
plementary Note 3 and Supplementary Fig. 3. One expects that
dipole–dipole interactions along the horizontal plane will induce
a distortion propagating on the periphery of the assembly29. This
distortion is shown in Fig. 4b, where a color scale from yellow to
red is used to characterize the distance ri between each peripheral
bead i and the central one. The particle closest to the central one
is colored yellow, and the farthest red. By following the yellow
bead, one can see that the distortion is rotating along the per-
iphery of the assembly, as denoted by the arrow. In a frame of
reference rotating with the assembly, the trajectory of each per-
ipheral bead describes a cycle as sketched in Fig. 2b.

Figure 4c shows the dimensionless distances (ri(t)− 〈r〉)/D,
where 〈r〉 is the distance in the absence of distortion. Each of the
six peripheral beads is shown over two periods of the precessing
magnetic field. To improve readability, the measurements for
each bead were filtered at the frequency corresponding to the
maximum of their Fourier transform (see “Methods” section).
Each particle oscillates at the frequency of the magnetic field. The
minimum of each ri(t) over one period is denoted by vertical dot
dashed lines, emphasizing that the oscillations of the beads are
successively shifted by T/6. The small variations in amplitude are
induced by the small differences in magnetic properties and
wetting of the beads. This propagating distortion is the signature
of a metachronal wave rotating around the body, in the direction

opposite to the effective strokes as sketched in Fig. 2e. This is
similar to the symmetry responsible for the rotational motion of
Volvox, except in that case the wave is in the direction of the
working stroke (Fig. 2c).

The resulting motion of the structure is a rotation at an angular
speed <2πf. This is illustrated in Fig. 4a, where the trajectory of
the beads is shown over four periods T. This rotational motion
comes from the cooperative motion of all beads. Each bead in the
perimeter of the structure is roughly displaced by D/2 over a
period T. Note that depending on the frequency and amplitude,
different regimes can be observed under a rotating field, as
explorer for three particles in ref. 29. For instance, very low
frequencies can lead to a locking with the external field, and for
higher frequencies, inertia can start to play a role. A sweep in
frequency can be found in Supplementary Fig. 3. Here, we limit
our study to the regime where locomotion is due to nonreciprocal
deformations.

Translational motion. While using a precessing field to generate
a rotation of the body seems natural, the symmetry needed to
generate a translation is not trivial. In the typical ciliate depicted
in Fig. 2d, metachronal waves appear and disappear at two poles
on the body. A 2D equivalent would be two waves starting from
the back and traveling on each side along the periphery of the
assembly to the front of the system. The horizontal field should
cause two waves of deformation propagating in the same direc-
tion, and vanishing at the poles. Starting from the field from
Eq. (4), we can double the excitation frequency along one
direction, or

Bx ¼ Bh cosð2πftÞ;
By ¼ Bh sinð4πftÞ;
Bz ¼ Bv:

ð5Þ

This is the equation of a Lissajous figure with a ratio of 1:2, as
sketched in Fig. 1a. Such a field describes a figure-8 pattern in the
horizontal plane, or lemniscate. The resulting trajectory is shown
in Fig. 5a, over 20 periods T= 1/f of the horizontal magnetic field.

Fig. 3 Distortion of a hexagonal self-assembly. a Distortion σ increases with the ratio between horizontal (Bx) and vertical (Bz) magnetic fields β= Bx/Bz
until the collapse, i.e., the contact between two or more beads at the critical ratio βc. Data points correspond to the average over four experiments and
the error bars correspond to the standard deviation. The continuous curve is a fit from theory, obtained by balancing magnetic and capillary forces.
b Visualization of the distortion for {1,6,0} at β= 0.0285 (A), β= 0.0857 (B), β= 0.1428 (C), and β > βc (D). The distortion vector σ tends to orient in the
direction opposite to Bx.
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A similar trajectory is shown in Supplementary Movie 2 for the
larger assembly {2,8,0}. For translational motion, the typical
precession frequency f is taken between 10−1 Hz and 2 Hz. In
Fig. 5b, two successive waves of deformation on each side of the
assembly can be seen. The yellow circle, which denotes the
peripheral particle closest to the central one, moves from back to
front. The system is translating at a speed of ~10−1D/T. This is
comparable to the speeds that were obtained in the much simpler
three-particle systems, ranging from 10−2D/T in the collinear
case to five 10−1D/T in the triangular one26.

Figure 5c displays the dimensionless distances (ri(t)− 〈r〉)/D as
a function of time, for two periods T= 1/f. The frequency
spectrum of the distances ri(t) shows peaks at f and 2f. To better
visualize the movement of each bead, a filter at the frequency f has
been applied (see “Methods” section). Two groups of three
particles can be distinguished that correspond to the left and right
sides of the assembly, their trajectories shown respectively in
green and in blue. Each side is successively affected by the passage
of the magnetic field. The deformation wave moves from back to
front, with a shift of ~T/8 between the oscillations of the three
particles. We use the same color code in Fig. 5a, c, where the
beads from the back to the front of the assembly are colored light
to dark, allowing to see the propagation of the wave.

The waves shown in Fig. 5 cause a translation toward the
positive y-axis. To cause the assembly to swim toward
the negative y-axis, the motion of the field must proceed in the
opposite direction, for instance by inverting the sign of By in
Eq. (5). It is possible to swim in any direction by changing the
orientation of the lemniscate in the plane of the interface. For
instance, inverting the x and y components in Eq. (5) causes a
translation along the x-axis. By construction, any trajectory in the
plane is therefore possible, following the same remote control
strategy as in previously studied, low-particle-count cases24.

Since the particles are mostly immersed in water, i.e., 80% of
their volume is immersed, we will consider their Reynolds

number Re ¼ ρvD=η, with ρ and η the density and viscosity
of water. For all motions discussed above, Re is between 10−2 and
10−1. To eliminate any possible influence of inertia, additional
experiments were performed on a water–glycerol mixture,
increasing the viscosity by a factor 10 (10 ± 0.5 mPa). This allows
to reach Reynolds numbers down to 10−3. The behavior of the
assembly is generally unchanged, as seen in Supplementary
Movie 3. The only noticeable difference is in the swimming speed,
which is ~0.8 times the speed on water. Such a small effect of a
tenfold increase in viscous drag might seem surprising; however,
this is not uncommon in microswimmers, as the swimming
stroke can also be affected by the change in viscosity50.
Comparatively, few-particle magnetocapillary swimmers were
considerably more affected by a change in viscosity15.

Locomotion mechanism. As with ciliates, both individual and
collective effects between the peripheral particles could lead to
locomotion. First, consider a single peripheral particle i and its
position relative to the central sphere ri, as defined in Fig. 1a, that
we will express in terms of polar coordinates ri and αi. From Eq.
(2), we see that under a horizontal external field Bx, the minimum
of energy corresponds to the situation, where ri and Bx are par-
allel. Because of the presence of other particles in the assembly,
particle i can only move around its equilibrium position.
Therefore, αi will oscillate, following the direction of the hor-
izontal field, when ri and Bx are close to being aligned. Con-
cerning distance ri, as discussed in Fig. 3, it becomes smaller when
Bx and ri are parallel. The combination of these two effects is a
trajectory that resembles the effective and recovery strokes of
cilia, as shown in Fig. 6a. The exact shape of the cycle in (r, α) can
vary, as the interactions are nonlinear and the neighboring par-
ticles also have an influence. However the basic characteristics of
an effective stroke far from the central sphere (Bx and ri anti-
parallel) and a recovery stroke closer to it (Bx and ri parallel) are

Fig. 4 Rotation of a self-assembly using a precessing field. a The precessing field described by Eq. (4) induces a rotation of {1,6,0}. The field has a
frequency f= 1.5 Hz, a horizontal amplitude Bh= 0.74mT and a vertical magnitude Bz= 4.9 mT. The trajectories are shown over four periods T of the
precessing magnetic field. b Snapshots of {1,6,0} separated by T/6. The peripheral particles are colored according to their distance ri to the central one, so
that the closest is yellow and the farthest red. Arrows indicate the anticlockwise propagation of the deformation wave. c Evolution for each bead of distance
(ri(t)− 〈r〉)/D, where D= 500 μm is the diameter of the peripheral particles, over two periods T of the magnetic field. A filter was applied at the maximum
of the Fourier transform for each trajectory. Dot dashed vertical lines indicate the successive minima, evidencing a phase shift of 2π/6 between
neighboring beads.
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consistently seen. Because the recovery stroke always follows the
direction of the wave, so does the induced motion. In that case,
the direction of the wave is said to be antiplectic. By contrast,
Volvox typically generates symplectic waves47.

To visualize how a phase shift between neighboring particles
can also lead to locomotion, Fig. 6b compares the angle αi of a
particle with the angles of its neighbors. One could similarly
measure the distance between neighboring particles; however, the
angle is slightly easier to interpret as it is decoupled from the
variation of ri. When three spheres on a line oscillate, they

produce a net flow proportional to the sine of the phase difference
Δϕ between the oscillations of each neighboring pair, as well as
the product of their amplitudes51,52. In the plane defined by their
interdistances, this corresponds to the area of the enclosed cycle.
The direction of the induced motion of the assembly is
determined by the sign of sinΔϕ (ref. 51), which in our case is
imposed by the direction of the metachronal wave. As this phase
difference, typically given by 2π/Nt, where Nt is the number of
peripheral particles, is always smaller than π, the induced motion
follows the direction of the wave.

Fig. 5 Translation of a self-assembly using a Lissajous figure. a When the horizontal magnetic field follows the figure-8 pattern described by Eq. (5), a
translation of {1,6,0} is induced. The field has a frequency f= 1.5 Hz (which is doubled along the y-direction), a horizontal amplitude Bh= 0.74mT and a
vertical magnitude Bz= 4.9 mT. The trajectories are shown over 20 periods T= 1/f of the magnetic field. The trajectories are not perfectly symmetric due
to slight differences in the particles’ properties. b Snapshots of {1,6,0} separated by T/8. Note that 3T/8 and 7T/8 are not shown as they correspond to the
zero of the horizontal field. The peripheral particles are colored according to their distance ri to the central one, so that the closest is yellow and the farthest
red. Arrows show the propagation of the two deformation waves, left and right. c Evolution for each bead of distance (ri(t)− 〈r〉)/D, where D= 500 μm is
the diameter of the peripheral particles, over two periods T of the horizontal magnetic field, filtered at the maximum of the Fourier transform. The color
code corresponds to the color in a to emphasize the direction of the two waves.

Fig. 6 Nonreciprocal motion of the peripheral particles. Nonreciprocal cycles in {1,6,0}, which is subjected to a precessing field with a frequency f= 1.5
Hz, a horizontal amplitude Bh= 0.74mT and a vertical magnitude Bz= 4.9 mT. Trajectories are shown for four periods T of the horizontal field. a Position of
a single peripheral particle in polar coordinates, where the distance from the central bead ri is rescaled by the diameter of the bead D, and the angle αi
is taken from an arbitrary position. A single peripheral particle experiences an effective stroke, then a recovery stroke closer to the central sphere.
b Neighboring particles move out of phase, shown here by measuring the angle αi of a particle relative to its two first neighbors. The trajectory is close to a
circle, which for harmonic oscillations would correspond to a phase shift of π/2.
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In the case of an assembly, such as {1,6,0}, the peripheral particles
are, of course, not aligned. The angle between two neighboring pairs
is, on average, 60 degrees. The effect that this angle has on a
collinear three-particle swimmer is to change the orientation of the
velocity, causing a rotation whose radius depends on the
deformation amplitude and the angle, with a local maximum of
angular displacement close to 60 degrees53. The effect of this
angular displacement likely depends on the symmetry considered.
In the translation case, the contributions from each side of the
assembly of this angular displacement will cancel out over one
period. However, the strokes left and right of the assembly are in
phase opposition. This might explain the slight periodic rocking
motion of the central particle that can be seen in Fig. 5a, as the
rotation radius likely does not match the radius of the assembly.
Concerning the rotation regime, both the tangential speed and this
angular displacement would cause a rotation in the same
direction53. Whether this situation is favorable compared to a
purely tangential contribution remains an open question.

One might wonder whether the individual stroke and the phase
shift between neighboring particles contribute equally to
locomotion, or if one effect dominates over the other. As
discussed above, assuming a simplified geometry, the net fluid
flow is in both situations proportional to the area enclosed by the
cycles shown in Fig. 6. When expressed in units of angles and
length ratios, the areas of these two types of cycles are
comparable. However, the prefactor that links the nonreciprocal
cycles with the fluid flow is typically given by the geometry of the
system45,54. To quantitatively compare the net quantity of fluid
displaced in each case would require a comprehensive theoretical
study taking fully into account the geometry of the system.
Furthermore, in both situations, the motion always follows the
direction of the metachronal wave. On the one hand, the recovery
stroke corresponds to the moment where ri is the smallest, which
happens when Bx and ri are parallel. On the other, the phase
difference between neighboring particles, which determines the
swimming direction in a three-particle swimmer, is also imposed
by the course of the wave and would lead to a motion in the same
direction. Therefore, while the motion observed likely is, as in
ciliates, a result of both the individual strokes and the phase
difference between neighbors, identifying their relative contribu-
tion would require a quantitative theoretical study, as the effects
cannot be separated experimentally. However, looking at
assemblies of different sizes might give additional insights into
the mechanism, as we will see in the next section.

Universality of the approach. While the assembly {1,6,0} has been
used as an example throughout this paper, the wave-based
approach has the advantage of remaining general. For instance,
Supplementary Movie 2 shows the translational motion of the
asymmetric raft {2,8,0} from Fig. 1f. In Fig. 7, we measure the speed
v of seven different structures, which depends on the total number
of particles N. Structures from N= 6 to N= 19 are shown, corre-
sponding respectively to {1,5,0} and {1,6,12}. These structures all
have a core of one or several larger particles, and one or two layers
of smaller particles at their periphery. A much wider range of
configurations has been successfully tested, including assemblies
where N < 6, monodisperse assemblies, and asymmetric ones.
However, to study the relation between N and v, we will only
consider the most common and stable configurations. Particles in a
magnetocapillary assembly tend to pack in a hexagonal or penta-
gonal symmetry19. While a purely hexagonal lattice would be
expected on a flat surface, the particles cause a local curvature of the
interface. Other assemblies include ones with incomplete layers, and
rarer configurations such as the octagonal {1,8,0} in Fig. 1c. These
structures are often metastable, causing the particles to reorganize

under variations of the applied field. As abrupt configuration
changes and crowding effects can affect the average speed, only the
more stable assemblies where the central particles are surrounded
by five or six neighbors were considered in Fig. 7.

The average speed v is given in diameter �D per period of
oscillation T, where �D ¼ P

NiDi=N corresponds to the average
diameter of the beads. The experimental parameters were identical
for the various assemblies, with two exceptions. First, the vertical
field Bz was adjusted to keep the distance between particles constant,
as large assemblies tend to be more compact. Secondly, to minimize
the influence of resonances that can appear in magnetocapillary
interactions25, every data point in Fig. 7 was averaged over several
values of f between 0.5 and 2Hz. When v is expressed in diameters
per period, it is roughly independent of frequency f for the
frequencies considered herein. Insets show typical assemblies and
their trajectories. The red and purple dots distinguish assemblies
where N3= 0 and N3≠ 0, respectively. For instance, the two dots on
the top right corner of Fig. 7 represent {1,0,5} for the purple one, and
{1,5,0} for the red one. The reason for changing the size of the
peripheral particles is to change the magnitude of some forces in the
system, most notably the hydrodynamic and viscous forces.
However, we can see that the points overlap for the same N, if we
rescale the speed by the average diameter of the assembly. The speed
v grows linearly with 1/N, meaning that the largest rafts tend to be
less efficient under fixed conditions.

Though describing analytically, the dynamics of large assemblies
would be complex due to the many degrees of freedom, it is possible
to justify the 1/N scaling from Fig. 7. The thrust provided by the
cooperative motion of peripheral particles can be written Ft ~Nte,
where Nt <N is the number of these particles acting as motors (or
cilia) and e is the efficiency of each motor. To simplify the

Fig. 7 Speed of assemblies of different size. Average speed v (in units of
the average diameter over all beads in the assembly D per period of
oscillation T) as a function of 1/N for assemblies of various sizes. The
amplitude of the horizontal field was kept at Bh= 0.5 mT, while the vertical
field Bz was adjusted between 4.5 and 6.3 mT to keep the distance between
particles constant across self-assemblies. For each data point, six
experiments have been done where the frequency of the horizontal field f
was varied between 0.5 and 2 Hz. When rescaled by T, we observed that v
is independent of f for this range of frequencies. The average speed is
plotted, and error bars correspond to the standard deviation. The line
emphasizes, the 1/N scaling expected for large systems. Examples of
particle trajectories are also shown as insets.
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discussion, we will consider that Nt is given by the number of beads
in the outermost layer of the assembly. This is equivalent to
considering that neighboring particles on successive layers act as a
single cilium, as their motion is coupled. Moreover, we will make
the assumption that, of the two mechanisms described in the
previous section, the effect of the phase shift between neighboring
particles is dominant. In this case, we expect the efficiency e of each
motor to be proportional to the area of the nonreciprocal cycles
as presented in Fig. 6b, and therefore to the sine of the phase
shift between adjacent beads. For small phase differences, we find
e ~ 1/Nt. In the particular case of precessing fields (Eq. (4)), the
phase shift is simply given by 2π/Nt. As a result, the total thrust Ft is
independent both of the total number of particles N, and of the
number of motors Nt. At low Reynolds number, the total thrust Ft
should be counterbalanced by the viscous forces Fη acting on all
particles of the structure, i.e., Ft= Fη with Fη ~Nv. As a result, the
average translation speed of the assembly is given by

vðNÞ ¼ v0=N : ð6Þ

This scaling is in agreement with the data from Fig. 7, and a fit
provides the value v0= 4.6 ± 0.2 in average diameter �D per period
T. Had we made the assumption that the stroke of a single
peripheral particle was the dominant mechanism, efficiency
e would have been independent on Nt. This would have led to the
scaling v ¼ v00Nt=N . Indeed, even if crowding could affect the
dynamics of a particle, the number of first neighbors is relatively
constant for the motor particles in the structures considered here,
i.e., with a complete outermost layer of particles on a hexagonal
or pentagonal lattice. The results from Fig. 7 therefore suggest
that the effect of the phase shift is dominant for the assemblies
considered here.

The slope v0 is likely dependent on the experimental
parameters, including particle-to-particle distance and amplitude
Bh. Future studies could aim at maximizing v0 by changing
the properties of the horizontal field. In Eq. (5), one could vary
the relative amplitude as well as the phase difference between Bx
and By, change the frequency ratio, or change the waveform
altogether. For instance, a quadrifolium curve might generate two
successive waves on each side of the assembly. One could also
create a piecewise function such that the horizontal field never
goes through zero. Indeed, when the field is interrupted, the
assembly travels by a dimensionless coasting distance given by
d=D � Re ρs=ρ � 10�1, where ρs is the density of the particles12.
This means that any interruption in the waves is essentially lost,
as coasting is very small at low Reynolds number.

Discussion
Metachronal waves are abundantly found in nature, from uni-
cellular organisms to insects and crustaceans. They provide a way
to coordinate a large number of appendages in order to generate
locomotion efficiently. Using self-organized rafts of magnetic
particles, we demonstrated how to produce rotational and
translational motion at low Reynolds number through meta-
chronal waves in an artificial system. Precessing magnetic fields
induce waves of deformations that propagate in the system in a
controlled way. These local deformations are triggered by a uni-
form magnetic field, owing to the properties of the dipole–dipole
interaction. By contrast with most magnetically powered swim-
mers, this strategy remains general and works on assemblies of
various sizes and symmetries. As the system is self-assembled, no
microfabrication is needed. However, this approach could pos-
sibly also be applied to magnetic artificial cilia attached to a body.
Indeed, similarly to the particles used herein, the response of
magnetic cilia typically depends on the relative orientation with

the field38–40. The strategy of propagating deformation waves
using Lissajous curves might therefore be applicable.

This swimming strategy is not only general, but quite efficient,
approaching speeds of about one particle diameter per period of
oscillation. However, optimizing the swimming speed was not the
primary objective of this paper. Further research could focus on
engineering faster swimmers by changing the parameters of the
magnetic field, as well as the properties of the structures. One could
perform experiments with particles of different shapes, sizes, and
wetting properties. Different types of liquid interfaces can also be
explored, such as oil–water interfaces and soap films. The con-
ceptual simplicity of the approach presented in this paper leaves
many possibilities open, from more complex self-assemblies to
systems with microfabricated cilia, from the most
fundamental aspects of biomimetic propulsion to versatile micro-
systems engineered to perform various tasks at the milli and
microscale.

Methods
The experimental setup is the following. A glass container is filled with either water
or, to change the viscosity, a glycerol and water mixture stirred for 48 h, and its
viscosity measured with a rheometer. It is placed in the center of a large tri-axis
Helmholtz system of coils. By injecting current into the coils, spatially uniform
magnetic induction fields can be generated in any direction inside the system. The z
coil is used to generate a constant, vertical magnetic field Bz and is therefore fed by
a DC current generator. The x and y coils are connected to amplifiers and a
multichannel arbitrary function generator (AFC), which allows to generate oscil-
lating fields in the plane of the interface. The AFC is commanded by a computer
for better control of the parameters, allowing for instance to compensate the
Earth’s magnetic field and to change the oscillation direction quickly. The mag-
nitude of Bz hardly exceeds 5 mT, while the horizontal amplitudes are usually
smaller by a factor 2 to prevent contact between the particles. Said particles are
precision spheres made of either martensitic stainless steel (AISI 420) or low alloy
martensitic chrome steel (AISI 52100). Under a magnetic field, these particles
behave like an ideal soft magnet, with very little remanence and coercivity25. The
exact diameters used are 397, 500, and 793 μm. The spheres are highly spherical
and ~7.8 times denser than water.

The container is made of glass and covered with a glass lid to avoid con-
tamination. The glass is coated with a transparent conducting oxide and connected
to earth, in order to prevent the build up of electric charge. Prior to each experi-
ment, the tank and lid are carefully washed, and the particles and water replaced.
Consistency is essential when filling the tank and placing the particles to avoid
variations in the meniscus of the bath and the contact line of the particles. The bath
is lit from below and filmed from the top, using a camera equipped with a macro
lens. To measure the position of the particles, they are tracked through a circle
Hough transform. In Figs. 4 and 5, the trajectories were filtered to make the
comparison between different particles easier. Indeed, the trajectories can be quite
nonlinear and there can be slight differences between particles due to variations in
their magnetic properties and wetting. To single out the dominant part of each
signal, we performed a Fourier transform and multiplied each spectrum by a filter
equal to 1 at its maximum and 0 elsewhere. This allows to identify the phase
difference between the various trajectories more clearly.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used in this study is available from the corresponding author upon reasonable
request.
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