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Abstract

Algorithms in computational 3-manifold topology typically take a triangulation as an

input and return topological information about the underlying 3-manifold. However,

extracting the desired information from a triangulation (e.g., evaluating an invariant) is

often computationally very expensive. In recent years this complexity barrier has been

successfully tackled in some cases by importing ideas from the theory of parameterized

algorithms into the realm of 3-manifolds. Various computationally hard problems were

shown to be efficiently solvable for input triangulations that are sufficiently “tree-like.”

In this thesis we focus on the key combinatorial parameter in the above context: we

consider the treewidth of a compact, orientable 3-manifold, i.e., the smallest treewidth of

the dual graph of any triangulation thereof. By building on the work of Scharlemann–

Thompson and Scharlemann–Schultens–Saito on generalized Heegaard splittings, and on

the work of Jaco–Rubinstein on layered triangulations, we establish quantitative relations

between the treewidth and classical topological invariants of a 3-manifold. In particular,

among other results, we show that the treewidth of a closed, orientable, irreducible, non-

Haken 3-manifold is always within a constant factor of its Heegaard genus.
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Marcin and Mathilde Suskiewicz, Peter Synak, Barbi Szirányi, Pepa Tkadlec,
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1 Introduction

1.1 Motivation and Guiding Questions

In 3-dimensional topology many fundamental problems can be solved algorithmically.

Famous examples include deciding whether a given knot is trivial [54], deciding whether a

given 3-manifold is homeomorphic to the 3-sphere [125, 144], and, more generally, deciding

whether two given 3-manifolds are homeomorphic, see, e.g., [9, 87, 136]. The algorithm

for solving the homeomorphism problem is still purely theoretical, and its complexity

remains largely unknown [87, 89, 90]. In contrast, the first two problems are known to lie

in the intersection of the complexity classes NP and co-NP [56, 68, 86, 88, 132, 151].1

Moreover, implementations of, for instance, algorithms to recognize the 3-sphere exist

out-of-the-box (e.g., by using the computational 3-manifold topology software Regina [28])

and exhibit practical running times for virtually all known inputs.

In fact, many topological problems have implemented algorithmic solutions that can

efficiently handle instances of considerable size. This is despite the fact that most of these

implementations have prohibitive worst-case running times, or the underlying problems

are even known to be computationally hard in general. In recent years, there have been

several attempts to explain this gap using the concepts of parameterized complexity and

algorithms for fixed-parameter tractable (FPT) problems. This effort has proven to be

highly effective and, today, there exist numerous FPT algorithms in the field [29, 31, 32,

33, 100]. More specifically, given a triangulation T of a 3-manifold M with n tetrahedra

whose dual graph Γ(T ) has treewidth2 at most k, there exist algorithms to compute

1The proof that 3-sphere recognition lies in co-NP assumes the Generalized Riemann Hypothesis.
2We often simply speak of the treewidth of a triangulation, meaning the treewidth of its dual graph.
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• taut angle structures3 of what is called ideal triangulations with torus boundary

components in running time O(7k · n) [33];

• optimal Morse matchings4 in the Hasse diagram of T in O(4k2+k · k3 · log k · n) [31];

• the Turaev–Viro invariants5 for parameter r ≥ 3 in O((r−1)6(k+1) ·k2 · log r ·n) [32];

• every problem which can be expressed in monadic second-order logic in O(f(k) ·n),

where f often is a tower of exponentials [29].6

Some of these results are not purely theoretical, but are implemented and outperform

previous state-of-the-art implementations for typical input. Consequently, they have a

significant practical impact. This is in particular the case for the algorithm to compute

Turaev–Viro invariants [32] (cf. [100]).

Note that treewidth—the dominating parameter k in the running times given above—

is a combinatorial quantity linked to a triangulation, and not a topological invariant of

the underlying 3-manifold.7 This gives rise to the following approach to efficiently solve

topological problems on a 3-manifoldM: given a triangulation T ofM, search for another

triangulation T ′ of the same manifold with smaller treewidth.

This approach faces severe difficulties. By a theorem due to Kirby and Melvin [80], the

Turaev–Viro invariant for parameter r = 4 is #P-hard to compute. Thus, if there were

a polynomial time procedure to turn an n-tetrahedron triangulation T into a poly(n)-

tetrahedron triangulation T ′ with dual graph of treewidth at most k, for some universal

constant k, then this procedure, combined with the algorithm from [32], would constitute

a polynomial time solution for a #P-hard problem. Furthermore, known facts imply that

most triangulations of most 3-manifolds must have large treewidth (see Appendix B.1).

However, while these arguments indicate that triangulations of small treewidth may be

rare and computationally hard to find, they do not rule out that every manifold has some

(potentially very large) triangulation of bounded treewidth. Thus it is intriguing to ask

3Taut angle structures are combinatorial versions of semi-simplicial metrics which have implications
on the geometric properties of the underlying manifold.

4Optimal Morse matchings translate to discrete Morse functions with minimal number of critical points
with respect to the combinatorics of the triangulation and the topology of the underlying 3-manifold.

5Turaev–Viro invariants are powerful tools to distinguish between 3-manifolds. They are the method
of choice when, for instance, creating large censuses of manifolds.

6This result is analogous to Courcelle’s celebrated theorem in graph theory [38].
7The necessary background on graph parameters and 3-manifolds is introduced in Chapter 2.
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Question 1. Does there exist a universal constant C, such that every 3-manifoldM has

a triangulation T with dual graph of treewidth at most C?

Indeed, Question 1 and variations thereof had been repeatedly raised by researchers

in computational 3-manifold topology at several meetings and open problem sessions

including an Oberwolfach workshop in 2015 [30, Problem 8] (formulated in the context of

knot theory). It has also served as the main guiding question for the present thesis.

In order to put Question 1 into context, it will be helpful to introduce the treewidth

of a compact, connected 3-manifold M defined by

tw (M) = min{tw (Γ(T )) : T is a triangulation of M}, (1.1)

where Γ(T ) denotes the dual graph of T . Using (1.1), we can reformulate Question 1 as

Question 1′. Does there exist a universal constant C, such that, for every 3-manifold

M, we have tw (M) ≤ C?

In this setting it is also natural to consider two closely related open-ended questions.

Question 2. What is the quantitative relation between treewidth tw (M) (and other

similar invariants such as the cutwidth cw(M) and pathwidth pw(M), cf. Section 5.1.1)

and other well-known topological invariants associated with 3-manifolds?

Question 3. What can we say about 3-manifolds M for which tw (M) is small?

1.2 The Main Results

As the first result in this thesis, we settle Question 1 by answering it in the negative.8

More specifically, in Section 5.2 we prove the following two statements.

Theorem 1.1. There exist 3-manifolds M with arbitrary large pathwidth pw(M).

Theorem 1.2. There exist 3-manifolds M with arbitrary large treewidth tw (M).

We establish these results through the following theorems, that forge a quantitative

link between the pathwidth (resp. treewidth) and the Heegaard genus of a 3-manifold, a

classical invariant which has been subject of interest since the end of the 19th century.

8See [41] for related work concerning the respective question about knots and their diagrams.
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Theorem 1.3. Let M be a closed, orientable, irreducible and non-Haken 3-manifold.

Then the pathwidth pw(M) and Heegaard genus g (M) of the 3-manifold M satisfy

g (M) ≤ 4(3 pw(M) + 1).

Theorem 1.4. Let M be a closed, orientable, irreducible and non-Haken 3-manifold.

Then the treewidth tw (M) and Heegaard genus g (M) of the 3-manifold M satisfy

g (M) ≤ 18(tw (M) + 1).

The key instrument in proving Theorems 1.3 and 1.4 is the machinery of generalized

Heegaard splittings, pioneered by Scharlemann–Thompson [131] and further developed

by Scharlemann–Schultens–Saito [130]. We provide a detailed and illustrated exposition

to this framework in Section 4.1.

By a result of Agol [1] (Theorem 5.4 in this thesis), there exist closed, orientable,

irreducible, non-Haken 3-manifolds of arbitrarily large Heegaard genus. Combining this

result with Theorems 1.3 and 1.4 thus immediately implies Theorems 1.1 and 1.2.

Remark 1.5. Note that Theorem 1.1 can be directly deduced from Theorem 1.2 since the

pathwidth of a graph is always at least as large as its treewidth.9 Nonetheless, we provide

separate proofs for each of the two statements. The motivation is that while the proof

of Theorem 1.3 is considerably simpler than that of Theorem 1.4, it already illustrates

several key concepts and ideas which we are building upon in the proof of Theorem 1.4.

In the second half of Chapter 5, we construct small-treewidth triangulations informed

by the topology of 3-manifolds. In Section 5.3.1, building on the theory of layered triangu-

lations by Jaco–Rubinstein [71], we show that the Heegaard genus dominates the cutwidth

(and so the pathwidth and treewidth as well) by virtue of the following statement.

Theorem 1.6. Let M be a closed, orientable 3-manifold, and let cw(M) and g (M)

respectively denote the cutwidth and the Heegaard genus of M. Then we have

cw(M) ≤ 4g (M)− 2.

Theorem 1.6, in combination with Theorems 1.3 and 1.4, implies that for the class of

non-Haken 3-manifolds, the Heegaard genus is in fact within a constant factor of both the

9This is immediate from the definitions of pathwidth and treewidth, see Section 2.1.1.
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cutwidth, pathwidth and treewidth of a 3-manifold, providing an interesting connection

between a classical topological invariant and topological properties directly related to the

triangulations of a manifold (Corollary 5.19).

In Section 5.3.2, by constructing layered triangulations of compression bodies, we prove

a strengthening of Theorem 1.6, where we show that the cutwidth is upper-bounded even

by the linear width defined by Scharlemann–Thompson [131], which, for Haken-manifolds,

can be much smaller than the Heegaard genus. (The difference can be arbitrary large.)

Theorem 1.7. For every compact, orientable 3-manifold M, possibly with nonempty

boundary, the cutwidth cw(M) and the linear width L (M) satisfy

cw(M) ≤ 24L (M).

Similarly as before, Theorem 1.7, in combination with the techniques used to prove

Theorem 1.3 (cf. Theorem 5.13) yields that the cutwidth, pathwidth and linear width of

a closed, orientable 3-manifold are always within a constant factor (Corollary 5.22).

In Section 5.4 we turn our attention to the profuse family of hyperbolic 3-manifolds.

Improving upon recent work of Maria and Purcell [99], we show that the volume of a

hyperbolic 3-manifold provides a linear upper bound on its pathwidth.

Theorem 1.8. There exists a universal constant C > 0 such that, for any closed hyper-

bolic 3-manifold M with pathwidth pw(M) and volume vol(M), we have

pw(M) ≤ C · vol(M).

In Chapter 6, we inspect 3-manifolds having treewidth at most one. It turns out that

this class is essentially the same as that of 3-manifolds with Heegaard genus at most one.

Theorem 1.9. The class of 3-manifolds of treewidth at most one coincides with the

class of 3-manifolds of Heegaard genus at most one together with the Seifert fibered space

SFS[S2 : (2, 1), (2, 1), (2,−1)] of Heegaard genus two.

In contrast, in Chapter 7 we show, by exhibiting triangulations of treewidth two for

all orientable Seifert fibered spaces over the 2-sphere (Theorem 7.2) or a non-orientable

surface (Theorem 7.4), that linking Heegaard genus to treewidth fails to hold in general

in a very strong sense: there are infinite families of 3-manifolds of unbounded Heegaard



6

genus which are all of treewidth two (Corollary 7.9). Combining this construction with

Theorem 1.9, we deduce that the treewidth of all 3-manifolds with spherical or S2 × R

geometry equals two (Corollary 7.6). As a result, we can determine the treewidth of 4889

out of the 4979 manifolds in the (≤ 10)-tetrahedra census (Table 7.1). Specifically, only

90 of them have treewidth possibly higher than two. These computations also confirm

that not all minimal triangulations are of minimum treewidth (Corollary 7.8).

Altogether, our results suggest that combinatorial width parameters for 3-manifolds

(see Section 5.1.1) are interesting notions at the interface of topology and combinatorics,

and are well-suited to indicate the power of fixed-parameter tractable algorithms in the

field of computational 3-manifold topology.

1.3 Outline of the Thesis

This thesis is organized as follows. We start with basic definitions regarding graphs

and parameterized complexity in Chapter 2. Then, in Chapter 3, we provide a quick

introduction to 3-manifolds and discuss various ways of constructing them from smaller

pieces. This is followed, in Chapter 4, by an exposition about generalized Heegaard

splittings and layered triangulations. In Chapters 5, 6 and 7 we present the proofs of

our results outlined in Section 1.2. Along the way, we also provide bibliographic remarks

and explanations of the additional techniques that are too specific to be included in

the introductory chapters. The document is concluded with an Appendix of related

constructions and results, that support the main line of discussion.

Graphs versus triangulations. Following a convention adopted by several authors in

the field of computational low-dimensional topology, throughout this thesis we use the

terms edge and vertex to refer to an edge or vertex in a 3-manifold triangulation, whereas

the terms arc and node denote an edge or vertex in a graph, respectively.
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2 Preliminaries on Graphs and

Parameterized Complexity

In this chapter we recall basic terminology about graphs and parameterized complexity,

and introduce key concepts that provide the foundation for the subsequent chapters.

2.1 Graphs

A graph (more precisely, a multigraph) G = (V,E) is an ordered pair consisting of a finite

set V of nodes and of a multiset E of unordered pairs of nodes, called arcs.1 A loop is an

arc ` ∈ E that is a multiset itself, e.g., ` = {v, v} for some v ∈ V . An element of E with

multiplicity higher than one is called a multiple arc. A simple graph is a graph without

loops or multiple arcs. The degree deg(v) of a node v ∈ V equals the number of arcs

containing it, counted with multiplicity. If all of its nodes have the same degree k ∈ N, a

graph is called k-regular. A tree is a connected graph with n nodes and n− 1 arcs, and a

path is a tree in which every node has degree at most two. A leaf is a node of degree one.

For general background in graph theory we refer to [46].

Sometimes it will be useful to consider the simplification of a multigraph in which we

forget the loops and reduce each multiple arc to a single one (cf. Figure 2.1).

−→

Figure 2.1: The local effect of simplification in a multigraph

1If we refer to the nodes (resp. arcs) of a specific graph G, we also use the notation V (G) (resp. E(G)).
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2.1.1 Selected Width Parameters for Graphs

The theory of parameterized complexity has its sources in graph theory, where many

problems which are NP-hard in general become tractable in polynomial time if one as-

sumes structural restrictions about the possible input graphs [19]. For instance, several

graph theoretical questions have a simple answer if one asks them about trees, or graphs

that are similar to trees in some sense. Width parameters capture this similarity in a

quantitative way [61]. We are particularly interested in the behavior of these parameters

and their relationship with each other when considering bounded-degree graphs or, more

specifically, dual graphs of 3-manifold triangulations (cf. Section 3.1).

Treewidth and pathwidth. The concepts of treewidth and pathwidth were intro-

duced by Robertson and Seymour in their early papers on graph minors [123, 124] and

have become cornerstones of structural graph theory [14, 16, 77, 93]. The treewidth and

pathwidth of a given graph respectively measure how tree-like or path-like the graph is.

Definition 2.1 (Tree decomposition, treewidth). A tree decomposition of G = (V,E) is

a pair ({Bi : i ∈ I}, T = (I, F )) with bags Bi ⊆ V , i ∈ I, and a tree T = (I, F ), such that

1) ⋃i∈I Bi = V ,

2) for every arc {u, v} ∈ E, there exists i ∈ I with {u, v} ⊆ Bi, and

3) for every node v ∈ V , Tv = {i ∈ I : v ∈ Bi} spans a connected subtree of T .

The width of a tree decomposition equals maxi∈I |Bi| − 1, and the treewidth tw (G) is the

smallest width of any tree decomposition of G. See Figure 2.2 for some examples.

Definition 2.2 (Path decomposition, pathwidth). A path decomposition of a graph G is

a tree decomposition for which the tree T is required to be a path. The pathwidth pw(G)

of a graph G is the minimum width of any path decomposition of G.

Cutwidth and congestion. While treewidth and pathwidth are generally useful in the

design and analysis of graph algorithms, congestion and cutwidth have turned out to be

helpful, respectively, to relate treewidth and pathwidth to classical topological invariants

in a quantitative way [41, 66, 67, 98, 99]. In Chapter 5 we will see this in action.

First we discuss cutwidth. See [45] for an overview of its algorithmic aspects.
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(i) tw(tree) = 1 (ii) tw(G) = 2 (iii) tw(k × k-grid) = k (iv) tw(Kn) = n − 1

G

Figure 2.2: (i) Graphs with treewidth one are precisely the trees, and those multigraphs

which become trees after simplification. (ii) A graph of treewidth two. (iii) The k×k-grid

(in the above example k = 5) shows that planar graphs can have arbitrary large treewidth.

(iv) The complete graph Kn on n nodes has treewidth n− 1

Definition 2.3 (cutset, cutwidth). Let G = (V,E) be a graph with V = {v1, . . . , vn}.

Given a permutation, i.e., a bijection σ : [n] → [n] and an integer ` ∈ [n − 1], we can

consider the cutset C(σ, `) = {{vi, vj} ∈ E : σ(i) ≤ ` < σ(j)}. The cutwidth cw(G) is the

size of the largest cutset minimized over all permutations of V . More formally,

cw(G) = min
σ

max
`
|C(σ, `)|.

Cutwidth and pathwidth are closely related: for bounded-degree graphs they are

within a constant factor. Let D(G) denote the maximum degree of a node in G.

Theorem 2.4 (Bodlaender, Theorems 47 and 49 from [15]2). Given a graph G, we have

pw(G) ≤ cw(G) ≤ D(G) pw(G).

Motivated by the study of communication networks, Bienstock introduced congestion

[12], a generalization of cutwidth, which is a quantity related to treewidth in a similar

way as cutwidth to pathwidth (compare Theorems 2.4 and 2.6).

Let us consider two graphs G and H, called the guest and the host, respectively. An

embedding E = (ι, ρ) of G into H consists of an injective mapping ι : V (G) → V (H)

together with a routing ρ that assigns to each arc {u, v} ∈ E(G) a path in H with

endpoints ι(u) and ι(v). If e ∈ E(G) and h ∈ E(H) is on the path ρ(e), then we say that

2The inequality cw(G) ≤ D(G) pw(G) seems to be already present in the earlier work of Chung and
Seymour [37] on the relation of cutwidth to another parameter called topological bandwith (see Theorem
2 in [37]). However, the inequality is phrased and proved explicitly by Bodlaender in [15].
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“e is running parallel to h.” The congestion of G with respect to an embedding E of G

into a host graph H, denoted as cngH,E(G), is defined to be the maximal number of times

an arc of H is used in the routing of arcs of G. We also say that H is realizing congestion

cngH,E(G). Several notions of congestion can be obtained by minimizing cngH,E(G) over

various families of host graphs and embeddings (see, e.g., [115]). In this thesis we work

with the following variant originally considered by Bienstock.

Definition 2.5 (Congestion3). Let T{1,3} be the set of unrooted binary trees.4 The

congestion cng(G) of a graph G is defined as

cng(G) = min{cngH,E(G) : H ∈ T{1,3}, E = (ι, ρ) with ι : V (G)→ L(H) bijection},

where L(H) denotes the set of leaves of H.

In other words, we minimize cngH,E(G) when the host graph H is an unrooted binary

tree and the mapping ι maps the nodes of G bijectively onto the leaves of H. The routing

ρ is uniquely determined as the host graph is a tree. See Figure 2.3.

0

1

2 3

4
h

 
1

2

4

0
3

E

H

K5

Figure 2.3: The complete graph K5 (guest) routed along an unrooted binary tree H (host).

We have cngH,E(K5) = 6 which is witnessed by h: six arcs of K5 are running parallel to h

Theorem 2.6 (Bienstock [11, p. 108–111]5). For a graph G with largest degree D(G),

max
{

2
3(tw (G) + 1),D(G)

}
≤ cng(G) ≤ D(G)(tw (G) + 1).

3It is important to note that congestion in the sense of Definition 2.5 is also known as carving width, a
term which was coined by Robertson and Seymour in [138]. However, the usual abbreviation for carving
width is ‘cw’ which clashes with that of the cutwidth. Therefore we stick to the name ‘congestion’ and
the abbreviation ‘cng’ to avoid this potential confusion in notation.

4An unrooted binary tree is a tree in which each node is incident to either one or three arcs.
5Only the right-hand side inequality of Theorem 2.6, cng(G) ≤ (tw (G) + 1) D(G), is formulated

explicitly in [11] as Theorem 1 on p. 111, whereas the left-hand side inequality is stated “inline” in the
preceding paragraphs on the same page.
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Example 2.7 (The Petersen graph). One of the most widely used examples in graph

theory is the Petersen graph, denoted P , see Figure 2.4(i). Although it is not a dual

graph of a 3-manifold triangulation (since it is not 4-regular), it turns out to be helpful

for comparing the graph parameters considered in this article.

• cw(P ) = 6. Notice that for any S ⊂ V = V (P ) of cardinality four there are at

least six arcs running between S and V \ S. That is, on the one hand, cw(P ) ≥ 6.

On the other hand, it is easily verified that in the linear ordering 0 < 1 < 2 < . . . < 9

the maximal cutset has size six.

• pw(P ) = 5. A minimal-width path decomposition (which we computed using the

module ‘Vertex separation’ of SageMath [44]) is the following.

{0} − {0, 1} − {0, 1, 2} − {0, 1, 2, 4} − {0, 1, 2, 4, 5} − {1, 2, 3, 4, 5}

{4, 6, 7, 9} − {3, 4, 5, 6, 7, 8} − {2, 3, 4, 5, 6, 7} − {1, 2, 3, 4, 5, 6}

• tw (P ) = 4. An optimal tree decomposition (computed using SageMath [44]) is

shown in Figure 2.4(ii).

• cng(P ) = 5. Every arc e ∈ E(H) of a host tree H specifies a cut in P , i.e.,

by deleting e, the leaves of the two components of H \ e correspond to a partition

V (P ) = Se∪Re. It is easy to see that, for any host tree H there is an edge e ∈ E(H)

with {#Se,#Re} ∈ {{3, 7}, {4, 6}, {5, 5}}, and that every such cut contains at least

five arcs of P , hence cng(P ) ≥ 5. The reverse inequality is proven through the

example shown in Figure 2.4(iii).

(ii)

(iii)

1 2 3 40 7 9 6 85

{0, 3, 6, 7, 8}

{0, 5, 7, 8}

{0, 3, 4, 9}{0, 3, 6, 7, 9}

{0, 2, 3, 6, 7} {0, 1, 2, 3, 6}

0

1

2 3

4
5

6

7 8

9

(i)

Figure 2.4: (i) The Petersen graph, (ii) a tree decomposition with minimal treewidth, and

(iii) an unrooted binary tree realizing minimal congestion
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2.2 Parameterized Complexity

There exist various concepts and notions that provide a refined complexity analysis for

theoretically difficult problems (e.g., average-case complexity or, more recently, generic-

case complexity [75]). In the field of parameterized complexity theory, systematized by

Downey and Fellows [47] (also see the textbooks [40, 48] for an introduction), a parameter

is identified on the input set, which is responsible for the hardness of a given problem.

More precisely, for a problem P with input set I, a parameter is a computable function

p : I → N. If the parameter p is the output of P , then p is called the natural parameter.

The problem P is said to be fixed-parameter tractable in the parameter p (or FPT in

p, for short) if there exists an algorithm which solves P for every instance I ∈ I with

running time O(f(p(I)) · poly(n)), where n is the size of the input I, and f : N→ N is a

computable function. By definition, such an algorithm then runs in polynomial time on

the set of inputs with bounded p. Hence, this identifies, in some sense, p as a potential

“source of hardness” for P .

The FPT-results cited in Chapter 1 use the treewidth of the dual graph of the input

triangulation as a parameter [29, 31, 32, 33]. Similarly, for computational problems in

knot theory, it has been very fruitful to work with width parameters of the given knot

diagram (considered as a 4-regular multigraph), see, e.g., [18, 95, 96, 98]. Note that these

parameters can have very different values for different triangulations (resp. diagrams) of

the same 3-manifold (resp. knot). In particular, every 3-manifold (resp. knot) admits a

triangulation (resp. diagram) with arbitrarily high width parameters—for all parameters

considered in this article. See, e.g., Appendix B.2.

For this reason, in computational 3-manifold topology, a very important family of

parameters is the one of topological invariants, i.e., properties which only depend on the

topology of a given manifold and are independent of the choice of triangulation. At

present, the algorithmic scope of these parameters remains largely unexplored. See [100]

for such a result, using the first Betti number as parameter.

For computational aspects and comparison of the various graph parameters considered

in this thesis we refer to Appendix A.
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3 A Primer on 3-Manifolds

The main objects of study in this thesis are 3-dimensional manifolds, or 3-manifolds for

short. As we will also work with 2-manifolds, also known as surfaces, we give the general

definition. A d-dimensional manifold with boundary is a topological space1 M such that

each point x ∈ M has a neighborhood which looks like (i.e., is homeomorphic to) the

Euclidean d-space Rd or the closed upper half-space {(x1, . . . , xd) ∈ Rd : xd ≥ 0}. The

points ofM that do not have a neighborhood homeomorphic to Rd constitute the boundary

∂M of M. A compact manifold is said to be closed if it has an empty boundary.

Two manifolds M1 and M2 are considered equivalent, simply denoted M1 = M2,

if they are homeomorphic, i.e., if there exists a continuous bijection f : M1 →M2 with

f−1 being continuous as well. So when talking about a manifold, we are ultimately

not interested in its particular shape, but rather in those properties thereof, which are

preserved under homeomorphisms. These are called topological invariants.

We refer to [134] for an introduction to 3-manifolds (cf. [57, 60, 69, 128, 147]).

All 3-manifolds considered in this thesis are assumed to be compact and orientable.

3.1 Triangulations

A classical result of Moise [108] (cf. [13]) asserts, that every compact 3-manifold admits

a triangulation (in fact, infinitely many). To build a triangulation, take a disjoint union

∆̃ = ∆1 ∪ . . . ∪ ∆n of finitely many tetrahedra with 4n triangular faces altogether. Let

Φ = {ϕ1, . . . , ϕm} be a set of at most 2n face gluings, i.e., simplicial homeomorphisms,

each of which identifies a distinct pair of these triangular faces. Performing all the gluings,

1More precisely, we only consider topological spaces which are second countable and Hausdorff.



14

the resulting quotient space T = ∆̃/Φ is called a triangulation, and the pairs of identified

triangular faces are referred to as triangles of T . Note that these face gluings also identify

several tetrahedral edges (or vertices) of ∆̃ resulting in a single edge (or vertex) of T .

The face gluings, however, cannot be arbitrary. A triangulation T is homeomorphic

to a closed 3-manifold M, if and only if the boundary of a small neighborhood around

each vertex is S2, and no edge is identified with itself in reverse.2 If some of the vertices

have small neighborhoods with boundaries being disks, then T describes a 3-manifold

with boundary. In computational topology a 3-manifold is very often presented this way.3

To explicitly describe a face gluing ϕ ∈ Φ, we label the four vertices of the tetrahedron

∆i ∈ ∆̃ as ∆i(0), ∆i(1), ∆i(2), and ∆i(3). The expression ∆i(123) ϕ←→ ∆j(103) then

means that ϕ identifies ∆i(1) with ∆j(1), ∆i(2) with ∆j(0), and ∆i(3) with ∆j(3).

In the study of triangulations, their dual graphs play an instrumental role.4 Given a

triangulation T = ∆̃/Φ, its dual graph Γ(T ) = (V,E) is a multigraph where the nodes

in V correspond to the tetrahedra in ∆̃, and for each face gluing ϕ ∈ Φ that identifies

two triangular faces of ∆i and ∆j, we add an arc between the corresponding nodes in V ,

cf. Figure 3.1. (Note that i and j could be equal.) By construction, Γ(T ) has maximum

degree ≤ 4. Moreover, when T triangulates a closed 3-manifold, then Γ(T ) is 4-regular.

Remark 3.1. A given pair of triangular faces can be identified six different ways, thus by

passing to the dual graph Γ(T ) we forget the exact structure of T . Still, some information

is retained even about the topology of the underlying 3-manifold, cf. Chapter 6.

For a triangulation T , we denote its size, i.e., the number of tetrahedra in T , with

|T |. Finally, the triangulation complexity tc(M) of a given 3-manifoldM is defined to be

the minimum number of tetrahedra in any triangulation of M.5

2Otherwise the midpoint of such an edge would have a small neighborhood with RP 2 boundary.
3Triangulations (also called generalised, semi-simplicial, or singular triangulations in the literature)

provide a convenient and efficient way to encode 3-manifolds for computational purposes. There exist
13 399 distinct closed, orientable 3-manifolds which admit a triangulation with at most 11 tetrahedra
[25]. Note that a triangulation, in the present sense, is not necessarily a simplicial complex. However, it
can always be turned into one by taking at most two barycentric subdivisions. See [126, Section 2] for
more detailed introduction to 3-manifold triangulations.

4The dual graph of a triangulation is also known as the face pairing graph, or as the dual 1-skeleton.
5Except for S3, RP 3 and the lens space L(3, 1), the triangulation complexity of a 3-manifold is the

same as its ‘complexity’ introduced and popularized by Matveev, cf. Chapter 2 and Remark 2.1.7 in [103].
We adopted the term ‘triangulation complexity’ from the recent preprint [91].
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(ii) Γ(T )(i) T

∆1

0
1

3
∆2

0
1

2

3

2
∆1 ∆2

ϕ1

ϕ2 ϕ3

ϕ3

ϕ1

ϕ2

Figure 3.1: (i) A triangulation T = ∆̃/Φ with two tetrahedra ∆̃ = {∆1,∆2} and three

face gluing maps Φ = {ϕ1, ϕ2, ϕ3}. The map ϕ1 is specified to be ∆1(123) ϕ1←→ ∆2(103).

(ii) The dual graph Γ(T ) of the triangulation T

3.2 Handle Decompositions

It follows from Morse theory that every compact 3-manifold can be built from finitely

many solid building blocks called 0-, 1-, 2-, and 3-handles [134, Appendix B]. In such a

handle decomposition all handles are homeomorphic to 3-balls, and are only distinguished

in how they are glued to the existing decomposition. For instance, to construct a closed

3-manifold from handles, we may start with a disjoint union of 3-balls, or 0-handles,

where further 3-balls are glued to the boundary of the existing decomposition along pairs

of 2-dimensional disks, the so-called 1-handles, or along annuli, the so-called 2-handles.

This process is iterated until the boundary of the decomposition consists of a union of

2-spheres. These are then eliminated by gluing in one additional 3-ball per boundary

component, the 3-handles of the decomposition.

(ii)(i) (iii) (iv)

Figure 3.2: (i) A 0-handle, (ii) a 1-handle, (iii) a 2-handle, and (iv) a 3-handle. The

attaching sites are indicated with light gray. For a 1-handle, this is a disjoint union of

two disks, for a 2-handle an annulus, and for a 3-handle the entire boundary

In every step of building up a (closed) 3-manifoldM from handles, the existing decom-

position is a submanifold whose boundary—called a bounding surface—separatesM into
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two pieces: the part that is already present, and its complement (each of them possibly

disconnected). Bounding surfaces and, more generally, all kinds of surfaces embedded in

a 3-manifold, play an important role in the study of 3-manifolds (similar to that of sim-

ple closed curves in the study of surfaces). When chosen carefully, an embedded surface

reveals valuable information about the topology of the ambient 3-manifold.

Any triangulation gives rise to a handle decomposition in a very natural way.

Definition 3.2. Let T be a triangulation of a closed 3-manifoldM. The canonical handle

decomposition chd(T ) of M associated with T consists of

• one 0-handle for the interior of each tetrahedron of T ,

• one 1-handle for a thickened version of the interior of each triangle of T ,

• one 2-handle for a thickened version of the interior of each edge of T , and

• one 3-handle for a neighborhood of each vertex of T .

(i) (ii) (iii)

0

1

2

3

0

1

2

3

1

2

Figure 3.3: (i) A 0-handle in the interior of a tetrahedron. (ii) The 1-handle corresponding

to the triangle {0, 1, 3}. (iii) A 2-handle corresponding to the edge {0, 3}, and the two

3-handles adjacent to it

Remark 3.3. In Definition 3.2 we associate 0-handles with tetrahedra and 3-handles

with vertices of the triangulation. This is motivated by the fact that we model this

decomposition on the dual graph rather than on the triangulation itself. The reason

for this choice, in turn, is that it is the dual graph of a triangulation which acts as an

intermediary between the topology of a 3-manifold and the framework of structural graph

theory, which we will exploit in Section 5.2.

Remark 3.4. The notion of “thickened version” in Definition 3.2 can be made precise via

barycentric subdivisions. Given a triangulation T , let sd1(T ) and sd2(T ) denote its first
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and second barycentric subdivision, respectively. Note that vertices of sd1(T ) are in one-

to-one correspondence with the simplices of T . Let v ∈ sd1(T ) be a vertex corresponding

to an i-simplex σ of T . The (3 − i)-handle of chd(T ) corresponding to σ is then the

union of all simplices in sd2(T ) that are incident to v. See Figure 3.4 for a 2-dimensional

illustration. The 3-dimensional case is analogous.

(iii) chd(T )(ii) sd2(T )

(i) T (ii) sd1(T )

2-handles

1-handles

0-handles

Figure 3.4: The canonical handle decomposition of a 2-dimensional triangulation

3.3 Surfaces in 3-Manifolds

Given a 3-manifoldM, a surface S ⊂M is said to be properly embedded, if it is embedded

inM, and for the boundary we have ∂S = S ∩∂M. Let S ⊂M be a properly embedded

surface distinct from the 2-sphere, and let D be a disk embedded into M such that its

boundary satisfies ∂D = D ∩ S. D is said to be a compressing disk for S if ∂D does not

bound a disk on S. If such a compressing disk exists, then S is called compressible, oth-

erwise it is called incompressible. An embedded 2-sphere S ⊂M is called incompressible

if S does not bound a 3-ball in M.
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Example 3.5. A basic example of a compressible surface is a torus embedded in the

3-sphere S3, and of an incompressible surface is the 2-sphere S2 × {x} ⊂ S2 × S1.

A connected 3-manifoldM is called irreducible, if every embedded 2-sphere bounds a 3-

ball inM. Moreover, it is called P 2-irreducible, if it does not contain an embedded 2-sided6

real projective plane RP 2. This notion is only significant for non-orientable manifolds,

since orientable 3-manifolds cannot contain any 2-sided non-orientable surfaces, and are

readily P 2-irreducible. If a P 2-irreducible, irreducible 3-manifold M contains a 2-sided

incompressible surface, then it is called Haken, otherwise it is called non-Haken.

Finally, let S be a compact (not necessarily connected or orientable) surface. The genus

of S, denoted by g(S), equals the maximum number of pairwise disjoint simple closed

curves one can remove from S without increasing the number of connected components.

The genus and the orientability determine a closed surface up to homeomorphism. We

denote the closed orientable (resp. non-orientable) surface of genus g by Fg (resp. Ng).

(i) (iii)T2 RP 2T2#T2(ii)


 


Figure 3.5: (i) The 2-torus T2 = F1, i.e., the closed orientable surface of genus one, can be

obtained by identifying the opposite sides of a square. (ii) The closed orientable surface

of genus two is the connected sum of two T2’s. (iii) The real projective plane RP 2 = N1

3.4 Handlebodies and Compression Bodies

Similarly to tetrahedra, handles (seen in Section 3.2) can be thought of as fundamental

building blocks of 3-manifolds. Here we discuss handlebodies and compression bodies,

6A properly embedded surface S ⊂ M is 2-sided in M, if the codimension zero submanifold in M
obtained by thickening S has two boundary components, i.e., S locally separates M into two pieces.
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built from several handles, which provide other ways to construct 3-manifolds.

A handlebody H is a connected 3-manifold with boundary that can be described as a

single 0-handle with a number of 1-handles attached to it, or, equivalently, as a thickened

graph. Up to homeomorphism, H is determined by the genus g(∂H) of its boundary.

Let S be a compact, orientable (not necessarily connected) surface. A compression

body is a 3-manifold C obtained from S× [0, 1] by (optionally) attaching some 1-handles to

S×{1}, and (optionally) filling in some of the 2-sphere components of S×{0} with 3-balls.

C has two sets of boundary components: ∂−C = S ×{0}\{filled-in 2-sphere components}

and ∂+C = ∂C \ ∂−C. We call ∂+C the upper boundary, and ∂−C the lower boundary of C.

Dual to this construction, a compression body C can also be built by starting with

a closed, orientable surface F , thickening it to F × [0, 1], (optionally) attaching some

2-handles along F × {0}, and (optionally) filling in some of the resulting 2-spheres with

3-balls. The upper and lower boundary are given by ∂+C = F ×{1} and ∂−C = ∂C \∂+C.

See Figures 3.6 and 3.7 for schematics and illustrations, respectively.

Remark 3.6. Let C be a compression body constructed as above.

(1) Note that for the genera of the boundaries we always have g(∂+C) ≥ g(∂−C).

(2) If ∂−C = ∅, then the compression body C is actually a handlebody. This can be

achieved if S = S2 and we fill in the single 2-sphere boundary S ×{0} with a 3-ball.

(3) If C is homeomorphic to S × [0, 1] then C is called a trivial compression body. This

happens if we omit all optional steps in the construction.

(4) If C is connected, it is reducible if and only if ∂−C contains a 2-sphere component.

(5) Each component of the lower boundary ∂−C is incompressible in C.

(6) The upper boundary ∂+C is incompressible in C if and only if C is trivial.

C ∂+C∂−C P1 P2 D1D2

(ii) (iii) Primal (iv) Dual

H ∂H

(i)

Figure 3.6: (i) Schematic of a handlebody H. (ii)–(iv) Three schematics of the same

compression body C emphasizing different viewpoints (cf. Figure 3.7)
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F × [0, 1]

F

S × [0, 1]

S

∪h
(2)
1 ∪ h

(2)
2

(F × [0, 1])

∪h
(1)
1 ∪ h

(1)
2

(S × [0, 1])

h
(1)
1 h

(1)
2

h
(2)
1 h

(2)
2

P2

P1

D2

D1

C

Figure 3.7: Two ways (primal and dual) of constructing a compression body C
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3.5 Heegaard Splittings

Introduced in [59], Heegaard splittings have been central to the study of 3-manifolds

for over a century. Given a closed, orientable 3-manifold M, a Heegaard splitting is a

decomposition M = H ∪S H′ where H and H′ are homeomorphic handlebodies with

H∪H′ =M and H∩H′ = ∂H = ∂H′ = S. The Heegaard genus g (M) of M equals the

smallest genus g(S) over all Heegaard splittings ofM. Sometimes we think of a Heegaard

splitting in a procedural way: Start with the disjoint union of two identical handlebodies,

H and H′, and identify their boundary surfaces via a homeomorphism f : ∂H → ∂H′

referred to as the attaching map. We use the notation M = H∪f H′ if we want to stress

this viewpoint. Heegaard splittings with isotopic attaching maps yield homeomorphic

3-manifolds, hence are considered equivalent. See [129] for a comprehensive survey.

Example 3.7 (Heegaard splittings from triangulations, I). Given a triangulation T of a

closed, orientable 3-manifold M, let T (1) denote its 1-skeleton consisting of the vertices

and edges of T . Thickening up T (1), i.e., taking its regular neighborhood, in M yields

a handlebody H1. The closure H2 of the complement M \ H1 is also a handlebody

homeomorphic to a regular neighborhood of Γ(T ), and M = H1 ∪ H2 is a Heegaard

splitting of M.

Note that H1 is the union of 2- and 3-handles of the canonical handle decomposition

chd(T ), and H2 is the union of the 0- and 1-handles thereof, cf. Definition 3.2.

The following proposition is folklore.

Proposition 3.8. Let T be a triangulation of a closed 3-manifold M consisting of n

tetrahedra. Then the Heegaard splitting considered in Example 3.7 is of genus n+ 1.

Proof. This is a straightforward Euler characteristic computation. First of all, H2, by

construction, is homotopy equivalent to Γ(T ), thus their Euler characteristic is the same.

Second, the nodes and arcs of the dual graph Γ(T ) correspond to the tetrahedra and

triangles of T , respectively. Third, since the underlying 3-manifold M is assumed to be

closed, the triangulation T with n tetrahedra necessarily has 2n triangles. Therefore for

the Euler characteristic of H2 we have χ(H2) = χ(Γ(T )) = n − 2n = −n, which in turn

yields g(∂H2) = 1− χ(H2) = 1 + n.
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Remark 3.9. Proposition 3.8 implies that the Heegaard genus g (M) and the triangula-

tion complexity tc(M) of any 3-manifoldM satisfy g (M) + 1 ≤ tc(M). (Moreover, this

bound is sharp for infinitely many 3-manifolds [50].) This gives a flavor of the endeavors

central to our work: minimize a combinatorial quantity over all triangulations of a given

3-manifold M and relate it to classical topological invariants of M.

Heegaard splittings of 3-manifolds with boundary. Using compression bodies, one

can generalize Heegaard splittings to 3-manifolds with nonempty boundary. Let M be a

3-manifold and ∂1M∪∂2M = ∂M be an arbitrary partition of its boundary components.

Then there exist compression bodies C1 and C2 with C1 ∪ C2 =M, ∂−C1 = ∂1M, ∂−C2 =

∂2M, and C1 ∩ C2 = ∂+C1 = ∂+C2. (See Example 3.10, based on [130, Theorem 2.1.11],

for a construction similar to that in Example 3.7. Also see [129, Section 2.2].) The

decomposition M = C1 ∪S C2 is called a Heegaard splitting of M compatible with the

partition ∂1M∪ ∂2M. Its splitting surface, or Heegaard surface, is S = C1 ∩ C2. The

Heegaard genus g (M) is again the minimum genus g(S) over all such decompositions.

Example 3.10 (Heegaard splittings from triangulations, II). Let T be a triangulation of

M with partition ∂1M∪ ∂2M of its boundary components. Suppose that no simplex in

T is incident to more than one component of ∂M.7 Take the first barycentric subdivision

sd1(T ) of T . Recall that T (1) and Γ(T ) denote the 1-skeleton and the dual graph of

T . Their first barycentric subdivisons T (1)
sd and Γ(T )sd are both naturally contained in

sd1(T ). Consider the subcomplex N(∂2M) ⊂ sd1(T ) consisting of all simplices incident

to ∂2M. We define two further subcomplexes of sd1(T ), namely

Γ1 = ∂1M∪ {vertices and edges of T (1)
sd not incident to ∂2M}, and

Γ2 = N(∂2M) ∪ Γ(T )sd.

Now pass to the second barycentric subdivision sd2(T ) and let (Γi)sd denote the image of

Γi under this operation (i = 1, 2). Let η(Γi) be the “thickening” of Γi, i.e., the subcomplex

of sd2(T ) formed by all simplices incident to (Γi)sd. One can readily verify that η(Γ1)

and η(Γ2) are compression bodies whose union is M, their upper boundaries satisfy

∂+η(Γ1) = ∂+η(Γ2) = η(Γ1) ∩ η(Γ2), and for their lower boundaries ∂−η(Γ1) = ∂1M and

∂−η(Γ2) = ∂2M. Hence η(Γ1) and η(Γ2) form a Heegaard splitting ofM compatible with

the given partition of its boundary components. See Figure 3.8 for an example.
7This can be achieved, e.g., by passing to the first subdivision of T if necessary.
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BAAB
(i) M = T2 × [0, 1] (ii) A quadrangulation Q of

M with eight cubes

(iii) The first barycentric

subdivision sd1(Q) of Q

(iv) Γ1

Γ1 = ∂1M∪ {vertices & edges

of T (1)
sd avoiding N(∂2M)}

Γ2 = N(∂2M) ∪ Γ(T )sd

(v) Γ2

Figure 3.8: Constructing a Heegaard splitting of T2 × [0, 1] from a quadrangulation

3.6 Seifert Fibered Spaces

Seifert fibered spaces, first described and classified in [137], comprise an important class

of 3-manifolds. Here we describe those that are closed and orientable following [128].

Let us consider the surface Fg,r = Fg \ (intD1∪ · · ·∪ intDr) obtained from the closed,

connected, orientable genus g surface by removing the interiors of r pairwise disjoint

disks. Taking the product with the circle S1 yields an orientable 3-manifold Fg,r × S1

whose boundary consists of r tori: ∂(Fg,r × S1) = (∂D1) × S1 ∪ · · · ∪ (∂Dr) × S1. For

each (∂Di) × S1, 1 ≤ i ≤ r, we glue in a solid torus so that its meridian wraps ai

times around the meridian (∂Di) × {yi} and bi times around the longitude {xi} × S1 of

(∂Di) × S1. Here ai and bi are assumed to be coprime integers with ai ≥ 2, and the

point (xi, yi) ∈ (∂Di)×S1 is chosen arbitrarily. This way we obtain a closed orientable 3-

manifold M = SFS[Fg : (a1, b1), . . . , (ar, br)] which is called the Seifert fibered space over

Fg with r exceptional (or singular) fibers. In relation to M, the surface Fg is referred to

as the base space (or base orbifold, or orbit surface).
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Example 3.11. Lens spaces, the 3-manifolds of Heegaard genus one, agree with Seifert

fibered spaces over S2 having at most two singular fibers [128, p. 27].8

Non-orientable base spaces. With a slight modification of the above construction,

one can obtain additional orientable Seifert fibered spaces having non-orientable base

spaces. Beginning with Ng, the non-orientable genus g surface, we pass to Ng,r by adding

r punctures (i.e., by removing r pairwise disjoint open disks). At this point, however,

instead of taking the product Ng,r × S1 (which yields a non-orientable 3-manifold) we

consider the “orientable S1-bundle” over Ng,r, denoted Ng,r×̃S1, which has again r torus

boundary components. As before, we conclude by gluing in r solid tori, specified by pairs

of coprime integers (ai, bi) with ai ≥ 2, where 1 ≤ i ≤ r. The notation for the resulting

3-manifold remains the same. See [94, Section 2] for a concrete and detailed description

of orientable Seifert fibered spaces (cf. the classes {Oo, g} and {On, g} therein).

Remark 3.12. By leaving some of the boundary tori of Fg,r × S1 or Ng,r×̃S1 intact, i.e.,

not filling them in with solid tori, we obtain Seifert fibered spaces with boundary.

3.7 On the Classification of 3-Manifolds

“Perhaps by the year 2000 our understanding of 3-manifolds and Kleinian groups

will be solid, and the phenomena we now expect will be proven.”

— William P. Thurston, 1982 [146]

A vast amount of research about 3-manifolds in the 20th century has been directly or

indirectly motivated by the famous Poincaré Conjecture from 1904, according to which any

simply connected,9 closed 3-manifold is homeomeomorphic to the 3-dimensional sphere.

In a celebrated effort, the conjecture was affirmatively resolved in 2003 by Perelman

[116, 117, 118], along with Thurston’s more general Geometrization Conjecture [146],

by completing the “curvature flow” approach envisioned by Hamilton [55]. (We refer to

[9, 81, 110] for complete accounts of the proof of the Geometrization Conjecture, to [4,

Chapter 1] for a survey, and to [105, 107, 120, 140] for expository and historical overviews.)

8In particular, we regard S2 × S1 (the SFS over S2 without exceptional fibers) to be a lens space, too.
9A topological space X is simply connected if its fundamental group π1(X ) vanishes, or, informally, if

any closed loop in X can be continuously tightened to a single point.
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The Geometrization Conjecture can be seen a major step towards the classification of

3-manifolds. Very informally, it states that any compact 3-manifold can be decomposed

into “geometric” pieces in a “canonical” way. An in-depth discussion of the Geometrization

Conjecture is way beyond the scope of this thesis. In what follows, we provide a high-level

overview in order to introduce some important notions we will encounter later.

The classification of surfaces. We start with a brief review of the classification of

surfaces, i.e., 2-dimensional manifolds. This is a classical result, often part of advanced

undergraduate or introductory graduate courses on topology. We refer to Chapter 1 of

[102] for a concise treatment, and to [52] for an extensive one, including historical remarks.

The following operation is central to the classification of both 2- and 3-manifolds.

Definition 3.13 (connected sum). LetM1 andM2 be compact, connected d-manifolds.

Consider M′
i = Mi \ int(Bi) obtained by removing the interior of a d-dimensional ball

Bi ⊂ Mi from Mi. Let M = M′
1 ∪f M′

2 be a d-manifold obtained from the disjoint

union of M′
1 and M′

2 by identifying ∂B1 and ∂B2 via a homeomorphism f : ∂B1 → ∂B2.

(If M′
1 and M′

2 are oriented manifolds, we require that f is orientation-reserving.) We

say that M is the connected sum of M1 and M2, which we denote as M =M1#M2.

The connected sum of two surfaces is always uniquely defined. In dimension d = 3,

the situation is slightly more complicated: orientable (but not oriented) 3-manifolds can

have two non-homeomorphic connected sums. Nevertheless, if we consider oriented 3-

manifolds, the construction in Definition 3.13 delivers a well-defined result. Moreover,

taking the connected sum is an associative and commutative operation, with the d-sphere

Sd being its (unique) neutral element, i.e., M#Sd =M for any d-manifoldM. See [134,

Section 1.6] and [60, Chapter 3] for details, and Figure 3.5(ii) for a basic example.

A closed, connected d-manifold M 6= Sd is prime if it cannot be obtained as a non-

trivial connected sum. In other words, whenever M = M1#M2 then one of the sum-

mands is Sd. The only prime surfaces are the torus T2 and the real projective plane RP 2

(Figure 3.5). By Theorem 3.14, any closed surface other than S2 can be built from them.

Theorem 3.14 (The Classification of Surfaces). A closed, connected surface S is either

homeomorphic to S2, or to a connected sum of tori, or to a connected sum of real projective

planes. Moreover, in either case the number of summands is uniquely determined and is

equal to the genus g(S) of the surface S (cf. the last paragraph of Section 3.3).
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Theorem 3.14 can be viewed as a “prime decomposition theorem” for surfaces, which,

together with the fact that there are only two “prime elements” (T2 and RP 2), readily

provides a classification. From Theorem 3.14 one can also deduce the geometrization

theorem for orientable surfaces, which has been known since the 1870s.

Theorem 3.15 (The Geometrization of Surfaces). Any closed, connected and orientable

surface S can be presented as a quotient of S2 (regarded as the unit sphere in R3 equipped

with its standard round metric), the Euclidean plane E2, or the hyperbolic plane H2 by a

discrete group of isometries of the respective metric spaces.

We note that there are only two closed, orientable surfaces that are not hyperbolic:

S2 itself and the torus T2 which is Euclidean. See Section 2 of [105] for details.

Decomposition theorems for 3-manifolds. Triangulations and Heegaard splittings

represent two extremes in making up a given 3-manifold from identical building blocks: a

triangulation consist of several “small” pieces (namely, tetrahedra), whereas a Heegaard

splitting is constructed from only two but “large” chunks (namely, handlebodies).

The Geometrization Conjecture takes a different, top-down approach, in which a given

3-manifold is first decomposed into smaller parts (in two stages), after which the individual

pieces (still of very high variability) are classified in terms of their geometric structure.

Our exposition of the following material is inspired by Chapter 1 of [4] and by [120].

As we generally do throughout this thesis, we only consider orientable 3-manifolds.

The first stage is the same as for surfaces: a decomposition into prime manifolds.

Theorem 3.16 (Prime Decomposition Theorem; Kneser [83], Milnor [106]). Every closed,

connected and oriented 3-manifold M can be decomposed as a connected sum M =

M1# · · ·#Mk of prime 3-manifolds Mi (1 ≤ i ≤ k). Moreover, if M = N1# · · ·#N` is

another decomposition into prime 3-manifolds Nj (1 ≤ j ≤ `), then ` = k and there exists

a permutation π : {1, . . . , k} → {1, . . . , k}, such that Mπ(i) = Ni for every i ∈ {1, . . . , k}.

Remark 3.17. The set of decomposing spheres, along which the connected sums are

formed in Theorem 3.16, is not unique up to isotopy. However, two such sets of spheres

are always related by so-called “slide homeomorphisms” of the ambient manifold, cf. [104,

Section 3] for details, and [152, Section 2.2] for a visual description.
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It is not hard to show that an orientable 3-manifold is prime if and only if it is

irreducible (Section 3.3) or homeomorphic to S2 × S1, see, e.g., [134, Theorem 3.3.4].

Thus, for the rest of this section, we may restrict our attention to irreducible 3-manifolds.

A 3-manifold M is (homotopically) atoroidal if, for any continuous map f : T2 →M

which induces an injective map f∗ : π1(T2) → π1(M) between the fundamental groups,

there is a homotopy H : T2 × [0, 1] → M, Ht(x) = H(x, t) with H0 = f and im(H1) ⊆

∂M. In particular, every incompressible torus embedded in M is isotopic to a boundary

component (and if ∂M = ∅, then M does not contain incompressible tori at all).10

In the second stage, irreducible 3-manifolds are further decomposed along tori.

Theorem 3.18 (Torus Decomposition Theorem; Jaco–Shalen [72], Johannson [73]). Let

M be a closed, irreducible, orientable 3-manifold. There exists a family T = {T2
1, . . . ,T2

s}

of pairwise disjoint incompressible tori embedded in M, such that each component of the

3-manifold M′ obtained by cutting M along T is atoroidal or Seifert fibered. Moreover,

a minimal such family of tori is canonical, i.e., uniquely determined up to isotopy.

The decomposition presented in Theorem 3.18 is called the JSJ decomposition of M,

and the connected components ofM′ are referred to as its pieces. A 3-manifold is a graph

manifold [149] if all the pieces in its JSJ decomposition are Seifert fibered.

Example 3.19 (3-torus). Consider the 3-dimensional torus, or 3-torus, T3 = S1×S1×S1.

Note, that the tori T2
1 = S1 × S1 × {x0} ⊂ T3 and T2

2 = S1 × {y0} × S1 ⊂ T3 are both

incompressible and non-isotopic in T3. However, this does not contradict the uniqueness of

JSJ decompositions, simply because T3 is a Seifert fibered space over the 2-torus without

exceptional fibers. Hence its minimal family T of decomposing tori is empty.

Example 3.20 (torus bundles over S1). Let h : T2 → T2 be an orientation-preserving

homeomorphism. The mapping torus M(h) is a closed orientable 3-manifold obtained from

T2 × [0, 1] by identifying its boundary components via (x, 0) 7→ (h(x), 1) where x ∈ T2.

Such a manifold is also called a torus bundle over S1. If h = id, then M(h) = T3. However,

for h “complicated enough,” M(h) is not Seifert fibered, but a so-called solvmanifold.11

10This condition is sometimes called “geometrically atoroidal” and is strictly weaker than being
atoroidal in the homotopical sense, see, e.g., [97, p. 383].

11In particular, its JSJ decomposition cuts it along a torus fiber resulting in a single piece homeomorphic
to T2 × [0, 1]. For the classification of torus bundles over S1, cf. [57, §2.2].
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Geometrization of 3-manifolds. Any closed, connected and orientable surface can be

obtained as a quotient of S2, E2, or H2 by a discrete group of isometries (Theorem 3.15).

The analogous statement for 3-manifolds is generally not true. However, Thurston boldly

conjectured [146] (and established for 3-manifolds which are Haken) that the pieces in

the JSJ decomposition can already be “geometrized.” More precisely, he postulated that

the interior of each of these pieces can be obtained as a quotient of one of eight simply

connected, homogeneous12 Riemannian 3-manifolds (called model geometries) by a discrete

group of isometries acting freely. We refer to the surveys [22, 135] and [101, Chapter 12]

for details about geometrization and the eight model geometries. (See [110, Chapter 1] for

a quick overview.) Below we present a “hybrid” version of the Geometrization Theorem.

To that end we only need to deal with two kind of geometries.

A 3-manifold M is spherical (resp. hyperbolic) if it (resp. its interior) is the quotient

of the standard 3-sphere S3 (resp. hyperbolic space H3) by a discrete group of isometries

acting freely on S3 (resp. H3). The geometry ofM is said to be modeled on S3 (resp. H3).

The following two theorems, conjectured by Thurston and proved by Perelman, show

that the geometry of a compact 3-manifold is closely governed by its fundamental group.

Theorem 3.21 (Elliptization Theorem). Every closed 3-manifold with finite fundamental

group is spherical. [In particular, the Poincaré Conjecture is true.]

Theorem 3.22 (Hyperbolization Theorem). Let M be a compact, irreducible, orientable

3-manifold with ∂M being empty or the disjoint union of tori. Suppose thatM is atoroidal

and not homeomorphic to S1 × D2, T2 × [0, 1] or K2×̃[0, 1] (the orientable I-bundle over

the Klein bottle K2). If the fundamental group of M is infinite, then M is hyperbolic.

It has been known since the 1930s that every spherical 3-manifold is Seifert fibered

[145, §7, Hauptsatz] (cf. [114, Chapter 6, Theorem 5]), as well as the 3-manifolds S1×D2,

T2 × [0, 1] and K2×̃[0, 1]. These facts together with Theorems 3.18, 3.21 and 3.22 imply

Theorem 3.23 (Geometrization Theorem). Let M be a closed, irreducible, orientable

3-manifold. There exists a family T = {T2
1, . . . ,T2

s} of pairwise disjoint incompressible

tori embedded in M such that each component of the 3-manifold M′ obtained by cutting

M along T is either hyperbolic or Seifert fibered. Moreover, a minimal such family of

tori is canonical, i.e., uniquely determined up to isotopy.
12Here ‘homogeneous’ means that the isometry group of the respective 3-manifold is acting transitively.
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Remark 3.24. As mentioned earlier, Theorem 3.23 may be regarded as a “hybrid” version

of the Geometrization Theorem, because some pieces of the decomposition are described

in geometric (viz., ‘hyperbolic’) and others in non-geometric (viz., ‘Seifert fibered’) terms.

With a slight adjustment, however, one can recover from it the “fully geometric” version.

In order to do that, one has to geometrize the Seifert fibered pieces as well. For most

cases, this can readily be done using the aforementioned spherical (S3) geometry or one

of five other geometries: E3, S2 × R, H2 × R, S̃L2(R), and Nil.

Some subtleties have to be taken care of, because the “fully geometric” version of the

Geometrization Theorem in fact requires the pieces to have finite volume. For example,

the interior of T2 × [0, 1] is modeled on the Euclidean 3-space E3 [146, p. 359], it is,

however, not of finite volume. At the same time, if some piece P ′ in the JSJ decomposition

of M is homeomorphic to T2 × [0, 1], then, due to the minimality of T , this piece has

to stem from a torus bundle P over S1, which is recovered from P ′ = T2 × [0, 1] by

gluing its two boundary components back together via a homeomorphism. Now P can

be endowed with a finite-volume geometry modeled on E3, Nil, or Sol, depending on the

gluing homeomorphism. (Due to the connectedness of M, we actually have M = P in

this case.) For similar reasons, we also have to allow decompositions along Klein bottles.

This is sufficient to state the “fully geometric” version of the Geometrization Theorem:

Every closed, irreducible, orientable 3-manifoldM admits a canonical decomposition13

along tori or Klein bottles, such that the resulting pieces can be geometrized using the

following eight model geometries: E3, S3, S2 × R, H2 × R, S̃L2(R), Nil, Sol, and H3.

Again, we refer to [22], [135], [101, Chapter 12] and [110, Chapter 1] for details.

Towards the classification of 3-manifolds. By Theorem 3.14, closed surfaces are

determined by their genus and their orientability. Moreover, both of these properties

can easily be computed from a triangulation.14 As the previous paragraphs suggest,

characterizing 3-manifolds is a much more complicated task, and one should not expect

to tell them apart by means of a “simple” computable invariant. Nevertheless, there are

various ways to approach their taxonomy, each of which has been quite productive.

13While this canonical decomposition is similar to the JSJ decomposition (and sometimes it coincides
with it), the above examples show that they are generally not the same. Cf. [101, Section 11.5.3].

14Recall that the Euler characteristic χ(S) of a closed surface S equals χ(S) = 2 − 2g(S) if S is
orientable, and χ(S) = 1− g(S) if S is non-orientable.
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In view of Theorems 3.16 and 3.23, the classification of 3-manifolds boils down to

understanding Seifert fibered manifolds and those that are hyperbolic. There is a striking

contrast between the two classes. While Seifert fibered spaces were already classified by

Seifert [137], the family of hyperbolic 3-manifolds remains elusive.15 In addition, most

3-manifolds are hyperbolic (cf. Theorem 2.6 in [146] and the discussion thereafter). Thus,

in the past forty years tremendous effort has been dedicated to research on hyperbolic

3-manifolds, cf. [4, Chapter 4], [10] and [97], and the references therein.

A different take on the classification problem aims at building a catalogue, or census,

of 3-manifolds listed by increasing “complexity.” A natural measure of complexity in this

context is the triangulation complexity, i.e., the minimum number of tetrahedra required

to triangulate a given 3-manifold (Section 3.1). Such a census may be created two steps:

1. generate all triangulations up to a given size, and

2. eliminate the duplicates (up to homeomorphism).

The real challenge lies in the second step, which calls for a solution to the Homeomorphism

Problem, a fundamental decision problem in 3-dimensional topology:

Given two triangulations, decide whether they encode homeomorphic 3-manifolds.

Recently it was rigorously shown, that the Geometrization Theorem (in synthesis with

other results) yields algorithmic solutions to the Homeomorphism Problem [87, 136]. At

present, however, the practical impact of these algorithms is limited (viz., they have not

been implemented), and their computational complexity is far from being understood, see

Section 3.1 in [90] for the current state of the art.

Therefore, in practice, the Homeomorphism Problem is approached via topological

invariants. Computational challenges are still present: algorithms for evaluating invari-

ants that are fine enough to tell large classes of 3-manifolds apart may need exponential

time to terminate in the worst case (measured in terms of the number of tetrahedra in

the triangulation). At the same time, as mentioned in Chapter 1, there exist powerful

invariants (e.g., the Turaev–Viro invariants), which have been successfully employed in

creating large censuses of triangulated 3-manifolds, largely due to being fixed-parameter

tractable in the treewidth of the input triangulation [32].
15Hyperbolic 3-manifolds with finitely generated fundamental groups (regardless the finiteness of their

volume) have been classified in terms of the Tameness [2, 34] and the Ending Lamination [23] Theorems.
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4 Interfaces between Combinatorics and

Topology

3-Manifolds have the pleasant feature that they can be equipped with different structures

providing various viewpoints of study. In this chapter we discuss interfaces that will allow

us to navigate between the combinatorial and the topological viewpoints in Chapter 5.

4.1 Generalized Heegaard Splittings

The notion of a Heegaard splitting, where a 3-manifold is built by gluing two handlebodies

together, was refined by Scharlemann and Thompson in a seminal paper [131] motivated

by the notion of thin position in knot theory [51].

In a generalized Heegaard splitting a 3-manifold is constructed from several pairs of

compression bodies. This construction arises naturally from more complicated sequences

of handle attachments, e.g., when a 3-manifold can be assembled by first attaching only

some of the 0- and 1-handles before attaching any 2- and 3-handles.

4.1.1 Linear Splittings

A linear generalized Heegaard splitting (or linear splitting, for short) of a 3-manifold M

is a decomposition

M = (N1 ∪S1 K1) ∪R1 · · · ∪Rr−1 (Nr ∪Sr Kr) (4.1)

where (N1,K1, . . . ,Nr,Kr) is a sequence of possibly disconnected compression bodies in

M. They are pairwise disjoint except for subsequent pairs, which are “glued together”

along (pairwise disjoint) closed surfaces S1,R1, . . . ,Sr−1,Rr−1,Sr. More precisely,

Si = ∂+Ni = ∂+Ki (1 ≤ i ≤ r) and Rj = ∂−Kj = ∂−Nj+1 (1 ≤ j ≤ r − 1).
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The lower boundaries of N1 and Kr constitute the boundary of M, i.e.,

∂M = ∂−N1 ∪ ∂−Kr.

In the light of Example 3.10, a linear splitting is a decompositionM =M1∪ . . .∪Mr

into 3-manifolds with boundary, such that Mi ∩Mj 6= ∅ ⇒ |i − j| ≤ 1, together with a

choice of a Heegaard splitting Mi = Ni ∪Si
Ki for each constituent compatible with the

partition ∂Mi = ∂−Ni ∪ ∂−Ki of the boundary components of Mi. See Figure 4.1.

N1 K1 N3 K3 N4 K4
∂1M ∂2MS1 S2

M1 M2 M3 M4

N2 K2

S4S3S2R1 R2 R3R1 R2 R3

Figure 4.1: Schematic for a linear generalized Heegaard splitting of a 3-manifold M.

The picture indicates the fact that g(Si) ≥ max{g(Ri−1), g(Ri+1)}. However, it does not

contain information about the connectedness of these surfaces or the manifolds Mi

Example 4.1 (Linear splittings from handle decompositions). Assume M is a closed

3-manifold given via a handle decomposition, i.e., a sequence of handle attachments to

build up M. Consider the first terms of the sequence up to (but not including) the first

2- or 3-handle attachment. Let N1 be the union of all handles in this subsequence. In the

second step look at all 2- and 3-handles following the initial sequence of 0- and 1-handles

until we reach 0- or 1-handles again, and follow the dual construction to obtain another

compression body K1. More precisely, define ∂+K1 = ∂+N1, thicken the top boundary into

∂+K1× [0, 1], and then attach the given 2- and 3-handles along ∂+K1×{0}. Iterating this

procedure results in a linear splitting ofM into compression bodies (N1,K1, . . . ,Nr,Kr).

4.1.2 Graph Splittings

Similarly to linear splittings, a graph generalized Heegaard splitting (or graph splitting) of

a 3-manifold M is a decomposition

D = {Mi : i ∈ I, ⋃i∈IMi =M, and int(Mi) ∩ int(Mj) = ∅ for i 6= j} (4.2)
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into finitely many 3-manifolds with pairwise disjoint interiors that intersect along surfaces,

together with an appropriate Heegaard splitting for each Mi. However, here the Mi are

not necessarily glued together in linear order, but along an arbitrary graph.

More precisely, given a decomposition D as above, consider its dual graph,1 which is

a multigraph Γ(D) = (I, E) with nodes corresponding to the Mi and arcs between i and

j to the connected components of Mi ∩Mj, cf. Figure 4.2. Pick an ordering of I, i.e.,

a bijection ` : I → {1, . . . , |I|}. For any i ∈ I, let ∂1Mi ∪ ∂2Mi be a partition of the

connected components of ∂Mi, so that ∂1Mi (resp. ∂2Mi) contains the components glued

to those of any Mj with `(j) < `(i) (resp. `(j) > `(i)). The “unpaired” components of

∂Mi, i.e., those which contribute to the boundary ∂M of the ambient manifold M, are

partitioned among ∂1Mi and ∂2Mi arbitrarily. For each i ∈ I, choose a Heegaard splitting

Mi = Ni ∪Si
Ki of Mi compatible with the partition ∂1Mi ∪ ∂2Mi of the boundary

components (Example 3.10). This way we obtain a graph splitting of M (Figure 4.3).

(i)

1 2

3 4
M

M1
M2

M3 M4

(ii) (iii)

Figure 4.2: (i) Schematic of a closed 3-manifold M with nontrivial first homology, (ii) a

decomposition D of M into four submanifolds, and (iii) the dual graph Γ(D) of D

(i) (ii) (iii)

S2S1

S3 S4

S2S1

S4S3

S1 S2

S4S3

Figure 4.3: (i)–(ii) Two graph splittings ofM stemming from the decomposition shown on

Figure 4.2, which respectively correspond to the orderings `1(i) = i (i ∈ I = {1, 2, 3, 4}),

and `2(1) = 2, `2(2) = 4, `2(3) = 1, `2(4) = 3. (iii) A non-example, cf. Remark 4.2(1).

The pieces of the splitting are colored with gray and white for increased visibility

1Not to be confused with the dual graph of a triangulation.
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In some situations we merely need to talk about the constituents of a decomposition

or a graph splitting thereof without having to deal with the exact way the parts are glued

together. Then we will use the shorthand notation

M =
⋃
i∈I
Mi and M =

⋃
i∈I

(Ni ∪Si
Ki), where Ni ∪Si

Ki =Mi. (4.3)

In other situations, e.g., when connectivity properties of the graph Γ(D) underlying

a given splitting are relevant, we will also work with so-called fork complexes. Here we

give a brief overview of this language. For more details, see [130, Chapter 5].

A fork complex is essentially a decorated version of Γ(D). It is a labeled graph in which

the compression bodies of a given decomposition are modeled by forks. More precisely,

an n-fork is a tree F with n + 2 nodes V (F ) = {g, p, t1, . . . , tn} with p being of degree

n+ 1 and all other nodes being leaves. The nodes g, p, and the ti are called the grip, the

root, and the tines of F , respectively (Figure 4.4(i) shows a 0- and a 3-fork). We think

of a fork F = FC as an abstraction of a compression body C, such that the grip of F

corresponds to ∂+C, whereas the tines correspond to the connected components of ∂−C.

root
grip

tine

(i) (ii) (iii)

N1 K1 N2 K2

S1 R1 S2

(iv)

R2

Figure 4.4: Fork complexes of (ii) Heegaard, (iii) linear, and (iv) graph splittings. Note

that the labels on (iii) near the roots and tines refer to the underlying compression bodies

and surfaces, respectively, and not to the roots and tines themselves

Informally, a fork complex F (representing a given graph splitting of a 3-manifold

M) is obtained by taking several forks (corresponding to the compression bodies which

constitute M), and identifying grips with grips, and tines with tines (following the way

the boundaries of these compression bodies are glued together). The set of grips and tines

which remain unpaired is denoted by ∂F (as they correspond to surfaces which constitute

the boundary ∂M). The formal relationship between F and the underlying 3-manifold

M (possibly with boundary) is described by a map ρ : (M; ∂M) → (F ; ∂F ) which has

to satisfy certain natural criteria [130, Definition 5.1.7]. The pair (F , ρ) is called a graph

splitting. See Figure 4.4 for illustrations, and [130, Section 5.1] for further details.
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(i) (ii)

S1 S2

S3 S4

S1 S2

S3 S4

Figure 4.5: Fork complexes representing the graph splittings shown on Figure 4.3.

Remark 4.2. We conclude the section with some remarks.

(1) Ordering the vertices of Γ(D) and choosing the Heegaard splittings of the Mi in a

compatible way might seem to be an ad-hoc requirement in the construction of graph

splittings. It becomes more natural if we consider graph splittings to be refinements

of linear splittings. The above requirement ensures that any graph splitting can be

linearized, i.e., turned into a linear splitting. See, e.g, Figure 4.6. Note that the

fake graph splitting in Figure 4.3(iii) cannot be linearized.

 R

Figure 4.6: Turning a graph splitting into a linear one. The decomposition might

need to be (trivially) refined at some of the lower boundaries, e.g., at R

(2) Generalized Heegaard splittings are described in various ways in the literature. Our

treatment of graph splittings is inspired by [5] and [130]. The terms “linear splitting”

and “graph splitting” were adopted from [62, 63].

(3) Along with the notion of strong irreducibility, pioneered by Casson and Gordon [35],

generalized Heegaard splittings have been central to the study of classical Heegaard

splittings of 3-manifolds, cf. Section 5 of the survey [64].

(4) Any generalized Heegaard splitting can be turned into a classical one via a procedure

called amalgamation [133]. (Here we also rely on the requirement mentioned in (1)

above, cf. [5, Example 2.6].) Amalgamations lie at the heart of many applications,

including the main result of [5] according to which the problem of computing the

Heegaard genus is NP-hard. We also make use of amalgamations in Section 5.4.
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4.2 Layered Triangulations

In this section we provide a brief and selective introduction to the theory of layered

triangulations by Jaco and Rubinstein [71], which captures the inherently topological

notion of a Heegaard splitting (see Section 3.5) in a combinatorial way. We focus on the

terminology important for our purposes. Despite all the technicalities, the nomenclature

is very expressive and encapsulates much of the intuition.

4.2.1 Spines and Layered Triangulations of Handlebodies

Let Ng,r denote the non-orientable surface of genus g with r punctures.2 A g-spine is

a 1-vertex triangulation of Ng,1. It has one vertex, 3g − 1 edges (out of which 3g − 2

are interior and one is on the boundary), and 2g − 1 triangles. In particular, the Euler

characteristic of any g-spine equals 1− g.

−→ −→ i i

b

−→ −→

Figure 4.7: Left to right: Transforming the well-known depiction of the Möbius band (the

non-orientable surface of genus one with one puncture) into a 1-spine with interior edge i

Now consider a triangulation S of a surface—usually seen as a g-spine or as the

boundary of a triangulated 3-manifold—and let e be an interior edge of S with t1 and t2

being the two triangles of S containing e. Gluing a tetrahedron ∆ along t1 and t2 without

a twist is called a layering onto the edge e of the surface S, cf. Figure 4.8(i). Importantly,

we allow t1 and t2 to coincide, e.g., when layering on the interior edge of a 1-spine (Figure

4.7, right).

It is a pleasant fact that by layering a tetrahedron onto each of the 3g−2 interior edges

of a g-spine we obtain a triangulation of the genus g handlebody Hg, called a minimal

layered triangulation thereof (see Figure 4.9). Moreover, we call any triangulation obtained

by additional layerings a layered triangulation of Hg.

2For example, N1,0 = RP 2, N1,1 = Möbius band, N2,0 = Klein bottle.
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e

t1

t2

S = ∂T

(i)

e′S ′ = ∂T ′

(ii)

∆

Figure 4.8: (i) Layering onto the edge e of S = ∂T , (ii) has the effect of flipping e into e′
· ·

·

1 1

4

7

10

3g − 2

4

7

10

3g − 2

2

5

8

11

· ·
·

· ·
·

3g − 4

3

6

9

3g − 3

∂

· ·
·

· ·
·

2
3
5
6
8

3g − 4
3g − 3

4

7

3g − 2

1

(i) (ii)

Figure 4.9: (i) A g-spine together with the order in which we layer onto its interior edges.

(ii) The dual graph of the resulting minimal layered triangulation of Hg

4.2.2 Layered Triangulations of Heegaard Splittings

Let M = H ∪f H′ be a closed, orientable 3-manifold given by a Heegaard splitting. If H

and H′ can be endowed with layered triangulations T and T ′, respectively, such that the

attaching map f is a simplicial isomorphism (i.e., respects the triangulations of ∂T and

∂T ′), then T ∪f T ′ triangulates M and is called a layered triangulation of M. The next

theorem is fundamental and asserts that this is always possible.

Theorem 4.3 (Jaco–Rubinstein, Theorem 10.1 of [71]). Any closed, orientable 3-manifold

admits a layered triangulation (which is a one-vertex triangulation by construction).

4.2.3 Layered Solid Tori

The case g = 1 is of particular importance. Starting with a 1-spine (Figure 4.7) and

layering on its interior edge i produces a 1-tetrahedron triangulation T of the solid torus

H1 (Appendix C). Its boundary S = ∂T is the unique 2-triangle triangulation of the
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torus with one vertex and three edges, and layering onto any edge of S yields another

triangulation of H1. We may iterate this procedure to obtain further triangulations, any

of which we call a layered solid torus, cf. [24, Section 1.2] for a detailed exposition. By

construction, its dual graph consists of a single loop at the end of a path of double arcs;

see, e.g, Figure 4.10(v).

(i)

µ

(ii) (iii) (iv) (v)

+

−e3

e1

e2

e2

e1

(0, 1,−1) (2, 3,−5)

µ
µ

Figure 4.10: (i) An oriented meridian µ on the torus T2. (ii) The minimal triangulation

of T2 together with a labeling of its edges and triangles. (iii)–(iv) Two non-isotopic

triangulations of T2 with the relative positions of the meridian µ. (v) The dual graph of

a layered solid torus with four tetrahedra

While combinatorially the same, boundary triangulations of layered solid tori generally

are not isotopic; they can be described as follows. Consider a “reference torus” T with

a fixed meridian µ, Figure 4.10(i). Given a layered solid torus, its boundary induces a

triangulation of T. Label the two triangles with + and−, and the three edges with e1, e2,

and e3, Figure 4.10(ii); and fix an orientation of µ. Let p, q and r denote the geometric

intersection number of µ with e1, e2 and e3, respectively. We say that the corresponding

layered solid torus is of type (p, q, r), or LST(p, q, r) for short, cf. Figure 4.10(iii)–(iv). It

can be shown that p, q, r are always coprime with p+ q+ r = 0. Conversely, for any such

triplet, one can construct a layered solid torus of type (p, q, r), cf. [24, Algorithm 1.2.17].
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5 From Combinatorics to Topology and

Back – In a Quantitative Way

In this chapter we forge quantitative relationships between several numerical invariants,

which, in one way or another, capture the “width” of a compact 3-manifold.

First we give an overview of selected width parameters for 3-manifolds (Section 5.1).

In particular, we discuss a general scheme of turning graph parameters into topological

invariants of 3-manifolds, which we call combinatorial width parameters. Then we review

topological width parameters associated with classical and generalized Heegaard splittings.

We also briefly consider geometric width parameters defined for hyperbolic 3-manifolds.

The next two sections, based on joint work with Spreer and Wagner [67], and Spreer

[66], respectively, showcase some of the main results of this thesis. In Section 5.2 we show

that combinatorial width parameters dominate their topological counterparts, whereas in

Section 5.3 we explore possibilities of reversing these inequalities.

In Section 5.4 we restrict our focus to hyperbolic 3-manifolds. By making use of

generalized Heegaard splittings, we improve upon a result of Maria and Purcell [99]; we

show that the volume of a hyperbolic 3-manifold gives an upper bound on its pathwidth.

5.1 Selected Width Parameters for 3-Manifolds

5.1.1 Combinatorial Width Parameters

Invariants of “topological objects” are often defined via “combinatorial models” thereof.

Well-known examples include the Euler characteristic of a topological space presented

as a simplicial complex; knot polynomials, when defined through planar diagrams; or

the Turaev–Viro invariants of 3-manifolds, computed from triangulations. Since a given
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topological object generally admits infinitely many distinct “models,” these definitions

always come with a respective theorem, which states that the outcome of the computation

does not depend on the chosen model, but only on the underlying topological object. An

advantage of this perspective is, that it offers an explicit way of computing these invariants.

In this section we follow another common way of obtaining topological invariants of

combinatorial flavor: consider a numerical parameter and minimize its value over all

models that represent a given topological object. Basic examples from low-dimensional

topology entail the crossing number of a knot K, i.e., the minimum number of crossings

of any diagram of K, or the triangulation complexity (Section 3.1) of a 3-manifold. In

contrary to the examples of the previous paragraph, such quantities are readily seen to be

topological invariants. At the same time, their definition does not offer a direct pathway

to compute them. Indeed, given a “complicated” triangulation T of a 3-manifold M,

it is generally a challenging question to decide whether, and up to what extent, T can

be reduced to a smaller triangulation T ′ of the same 3-manifold, even for M = S3 [26].

Therefore, these invariants are often understood in terms of their quantitative relationship

with other (preferably computable) invariants.

Now recall the graph parameters discussed in Section 2.1.1.

Treewidth & Co. of a 3-manifold. Let T be a triangulation of a compact 3-manifold

M. By the treewidth of T we mean tw (Γ(T )), i.e., the treewidth of its dual graph. The

treewidth tw (M) of M is the smallest treewidth of any triangulation of M, i.e.,

tw (M) = min{tw (Γ(T )) : T is a triangulation of M}. (5.1)

The definitions of pathwidth pw(M), cutwidth cw(M), and congestion cng(M) are anal-

ogous. We collectively refer to these quantities as combinatorial width parameters.

Since in the dual graph of any 3-manifold triangulation each node has degree at most

four, Theorem 2.4 readily implies that

tw (M) ≤ pw(M) ≤ cw(M) ≤ 4 pw(M) (5.2)

for any 3-manifold M. Similarly, from Theorem 2.6 we immediately deduce

max
{

2
3(tw (M) + 1), 4

}
≤ cng(M) ≤ 4(tw (M) + 1). (5.3)

We note that there are simple ways to prove that any 3-manifold admits triangulations

of arbitrarily high treewidth, hence pathwidth, cutwidth and congestion (Appendix B.2).
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5.1.2 Topological Width Parameters

The Heegaard genus (defined in Section 3.5) is a first example for a topological width

parameter of a 3-manifold: the larger the Heegaard genus, the “wider” the manifold.

Here we consider two subsequent refinements, the linear width and the graph width, whose

properties are essential for proving our results in Sections 5.2.1 and 5.2.2, respectively.

Linear width. In [131] Scharlemann and Thompson extend the concept of thin position

from knot theory [51] to 3-manifolds and define the linear width of a manifold.1 For this

they look at linear splittings, i.e., linear decompositions of a 3-manifold into compression

bodies. This setup is explained in Section 4.1.1.

Given a linear splitting of a 3-manifold M into 2r compression bodies with upper

boundary surfaces {Si : 1 ≤ i ≤ r}, consider the multiset {g(Si) : 1 ≤ i ≤ r} of the genera

of the surfaces Si. This multiset {g(Si) : 1 ≤ i ≤ r}, when arranged in non-increasing

order, is called the width of the (linear) splitting.2 We here define the linear width of

a manifold M, denoted by L (M), to be the maximum entry in a lexicographically

smallest width ranging over all linear splittings of M.3 A manifold M together with a

linear spitting of lexicographically smallest width is said to be in thin position.

A guiding idea behind thin position is to attach 2-handles as early as possible and

1-handles as late as possible in order to obtain a decomposition for which the “topological

complexity” of the upper boundary surfaces is minimized.

One of the key properties of thin position is expressed by the following result.

Theorem 5.1 (Scharlemann–Thompson, Rule 5 from [131]; cf. Casson–Gordon [35]). Let

M be a 3-manifold together with a linear splitting (N1,K1, . . . ,Nr,Kr) in thin position,

and {Ri ⊂M : 1 ≤ i ≤ r−1} be the set of lower boundary surfaces Ri = ∂−Ki = ∂−Ni+1.

Then every connected component of every surface Ri is incompressible.

1Also see [64] and the textbook [130] for an introduction to generalized Heegaard splittings and to
thin position, and for a survey of recent results.

2In [131] the width is defined via the multiset {c(Si) : 1 ≤ i ≤ r}, where c(S) = max{0, 2g(S) − 1}.
For us it is more natural to work with the genus g(S), which is also in agreement with the way this notion
is discussed in [130].

3For our purposes it is most convenient to define the linear width to be a single integer rather than a
multiset of integers. We thus deviate also at this point from the definition of linear width in [131].
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Corollary 5.2 (Scharlemann–Thompson [131]). Let M be an irreducible, non-Haken 3-

manifold. Then the smallest width linear splitting of M into compression bodies is a

Heegaard splitting of minimal genus g (M). In particular, we have L (M) = g (M).

Proof (sketch). Let (N1,K1,N2,K2, . . . ,Nr,Kr) be a thin decomposition of M. By The-

orem 5.1, all surface components of all bounding surfaces Ri, 1 ≤ i < r, must be incom-

pressible. Moreover, all Ri are separating and thus they are 2-sided. However, irreducible,

non-Haken 3-manifolds do not have incompressible 2-sided surfaces. Hence r = 1 and

therefore the decomposition (N1,K1) must be a Heegaard splitting of M.

Graph width. In [130] Scharlemann, Schultens and Saito further refine the concept of

thin position to graph splittings of 3-manifolds, see Section 4.1.2. In particular, given

a manifold M together with a graph splitting defined by a fork complex F , let {Sj :

j grip of F } be the set of upper boundary surfaces of the decomposition. Then the width

of the graph splitting coming from F is defined as the multiset {g(Sj) : j grip of F } with

non-increasing order. Similar to the construction of linear width, the graph width G (M)

ofM is defined to be the largest entry of the lexicographically smallest width ranging over

all graph splittings of M. A graph splitting of M which has lexicographically smallest

width is said to be thin.

Theorem 5.3 (Scharlemann–Schultens–Saito, [130, Lemma 5.2.4]). Leta F be a fork

complex that determines a thin graph splitting of a 3-manifold M, and let {Ri ⊂ M :

i tine of F } be the set of lower boundary surfaces as defined in Section 4.1.2. Then every

connected component of every lower boundary surface Ri is incompressible.

Similarly to the linear width case, Theorem 5.3 implies that a thin graph splitting

of an irreducible, non-Haken 3-manifold must be a Heegaard splitting. In particular,

G (M) = L (M) = g (M) for any given irreducible, non-Haken 3-manifold M.

Non-Haken 3-manifolds of large genus. The next theorem provides an infinite fam-

ily of 3-manifolds for which we can apply our results established in the subsequent sections.

Theorem 5.4 (Agol, Theorem 3.2 in [1]). There exist orientable, closed, irreducible, and

non-Haken 3-manifolds of arbitrarily large Heegaard genus.
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Remark 5.5. The construction used to prove Theorem 5.4 starts with n-component

link complements (having Heegaard genus at least n/2, cf. Example 3.10), and performs

Dehn fillings which neither create incompressible surfaces, nor decrease the (unbounded)

Heegaard genera of the complements. The existence of such Dehn fillings is guaranteed

by work due to Hatcher [58] and Moriah–Rubinstein [111]. As can be deduced from the

construction, the manifolds in question are closed and orientable and non-Haken.

5.1.3 Geometric Width Parameters for Hyperbolic 3-Manifolds

Recall that a 3-manifold M is hyperbolic, if its interior can be obtained as a quotient

of the hyperbolic 3-space H3 by a discrete group of isometries acting freely on H3. This

is equivalent to saying that the interior of M admits a complete Riemannian metric

of constant sectional curvature −1. Throughout this section, M is assumed to be an

orientable Riemannian 3-manifold.

After fixing an orientation on M, its metric tensor induces a “volume form” ω. This

in turn leads to the notion of volume defined via the integral

vol(D) =
∫
D
ω

for any open set D ⊆M. Also, any submanifold of M (e.g., surfaces) has a Riemannian

metric induced by the metric tensor of M. Thus we may measure lengths of paths and

areas of surfaces in M as well. We refer to [101, Section 1.2] for details.

IfM is compact, then vol(M) is finite. The next striking result has been of paramount

importance in geometric topology, as it implies that “metric properties” of finite-volume

hyperbolic 3-manifolds are actually topological invariants.

Theorem 5.6 (Mostow Rigidity Theorem [112], cf. [4, Theorem 1.7.1], [101, Chapter 13]).

Let M, N be finite-volume hyperbolic 3-manifolds. Every isomorphism π1(M)→ π1(N )

is induced by a unique isometry M→N .

Corollary 5.7. If two hyperbolic 3-manifolds have different volume, then they cannot be

homotopy equivalent.

Therefore the volume can be considered a geometric width parameter—a topological

invariant of a hyperbolic 3-manifold derived from the geometry thereof.
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In a series of two papers, Hoffoss and Maher have introduced additional geometric

width parameters based on Morse functions [62, 63] (cf. [134, Appendix B] for a quick

refresher on Morse theory). For any Morse function f : M→ R, we may define its area,

denoted Area(f), as the supremal area of any level set f−1(t) ⊂ M ranging over the

regular values t ∈ R of f . (Note that for any regular value t ∈ R of f , the level set f−1(t)

is a codimension-one submanifold of M, i.e., a surface.) Now the Morse area AM(M) of

M is the infimal area of any Morse function on M [62]. In short,

AM(M) = inf {Area(f) | f : M→ R is a Morse function} . (5.4)

In [63] the Gromov area of a Riemannian 3-manifold is defined. This is an adaptation

of Morse area based on generalized Morse functions µ : M → Y , where Y is a trivalent

(i.e., 3-regular) graph. To define such functions, first recall that the critical points Crit(f)

of a Morse function f : M → R form a finite subset of M, they are classified by their

index (0, 1, 2, or 3), and f |Crit(f) is an injection. For the local structure of the level sets

around a critical point, there are two possibilities:

A. If p ∈ Crit(f) is of index 0 or 3, then there is a level set preserving homeomorphism

h : N(p)→ B1(0) between a small open ball N(p) around p inM, and the unit open ball

B1(0) ⊂ R3 centered at the origin 0 ∈ R3 and regarded as the union B1(0) = ⋃
t∈[0,1) St of

the level sets St = {(x, y, z) ∈ R3 : x2 + y2 + z2 = t}.

B. For p ∈ Crit(f) of index 1 or 2, we can almost repeat the previous paragraph, but

now we equip B1(0) with the level set structure Ht = {(x, y, z) ∈ B1(0) : x2 +y2−z2 = t},

where t ∈ (−1, 1). Figure 5.1 shows what these level sets typically look like.

(i) t < 0

−→z

(ii) t = 0 (iii) t > 0

Figure 5.1: Solution sets of the equation x2 + y2 − z2 = t near the origin in R3
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Observe that B1(0) \ H0 has three connected components: H+ = {(x, y, z) ∈ B1(0) :

x2 + y2− z2 > 0} and the two components of H− = {(x, y, z) ∈ B1(0) : x2 + y2− z2 < 0}.

Thus, if p ∈ M is a critical point of index 1 or 2, and h : N(p) → B1(0) is a level set

preserving homeomorphism, then h−1 (H0) divides N(p) into three connected components

as well (Figure 5.2(i)). Let C be the quotient map that collapses each component of the

level sets h−1 (Ht) into a single point. Then C (N(p)) is a “partial graph” with one node

C (h−1(H0)) and three “open-ended” arcs emanating from it (Figure 5.2(ii)). We call C a

collapsing map and p a trivalent singularity.

� h−1(H+)

� h−1(H− ∩ {z < 0})

� h−1(H− ∩ {z > 0})

h−1(H0)

p

`1

`2`2

(i)

C
−→ C (h−1(H0))

C (`2)

C (`1)

(ii)

Figure 5.2: (i) Two-dimensional slice of a small open ball N(p) around a critical point

p ∈M of index 1 or 2, with contour lines indicating some of the level sets. (ii) The image

of N(p) under the collapsing map C

Now let Y = (V,E) be a 3-regular graph (also regarded as a topological space). A map

µ : M→ Y is a generalized Morse function, or simply Morse, if the restriction µ|µ−1(int(e))

to the preimage of the interior of any e ∈ E is Morse (in the classical sense), and for every

v ∈ V , the preimage µ−1(v) is either empty or contains a unique trivalent singularity

around which µ is locally isotopic to a collapsing map.

Similarly as before, the Area(µ) of a generalized Morse function µ : M→ Y is defined

to be the maximum area of any preimage µ−1(y) for y ∈ Y , and the Gromov area AG(M)

of M is the infimal area of any Morse function on M to any 3-regular graph [63], i.e.,

AG(M) = inf {Area(µ) | Y is a 3-regular graph, µ : M→ Y is Morse} . (5.5)

Remark 5.8. Any classical Morse function can be regarded as a generalized one. Indeed,

given a Morse function f : M→ R, take a sufficiently large open interval I ⊂ R containing

f(M). Consider an inclusion ι : I → Y into a 3-regular graph Y , such that ι(I) ⊂ e for

some arc e of Y . Then ι ◦ f : M→ Y is a generalized Morse function.
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From Remark 5.8 it immediately follows that for any Riemannian 3-manifold

AG(M) ≤ AM(M). (5.6)

Remark 5.9. Using the language of foliations, one can considerably streamline the dis-

cussion of generalized Morse functions. Consult [134, Section 7.5] and the references

therein for an introduction to this framework.

Remark 5.10. One advantage of generalized Morse functions over classical ones is their

ability to differentiate between the connected components of a given level set (of a classical

Morse function). This is illustrated in Figure 5.3 via a 2-dimensional example.

R←−−−−−−−−−−−−− T2 −−−−−−−−−−−→ Y
f µ

y1 y2
µ−1(y1) µ−1(y2)

x

Figure 5.3: Comparison of a classical (f) and a generalized (µ) Morse function on T2.

The latter gives a finer picture of the level sets, e.g., f−1(x) = µ−1(y1) ∪ µ−1(y2)

Theorem 5.6 (Mostow Rigidity) implies that, for hyperbolic 3-manifolds the Morse

area and the Gromov area are topological invariants. Moreover, by the following result,

they are within a constant factor to the linear width and the graph width, respectively.

Theorem 5.11 (Hoffoss–Maher, Theorem 1.2 of [62] and Theorem 1.3 of [63]). There

exist universal constants KM, KG > 0, such that for any closed hyperbolic 3-manifold M

with linear width L (M), graph width G (M), Morse area AM(M), and Gromov area

AG(M) the following inequalities hold:

(1) KML (M) ≤ AM(M) ≤ 4πL (M), and

(2) KGG (M) ≤ AG(M) ≤ 4πG (M).

Remark 5.12. Both left-hand side inequalities in Theorem 5.11 rely on a well-known

conjecture by Pitts and Rubinstein [119] asserting that, under some natural assumptions,

a Heegaard surface in a Riemannian 3-manifold can be isotoped to be a minimal surface.

A proof of this conjecture was recently announced by Ketover–Liokumovich–Song [78].
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5.2 From Combinatorics to Topology...

5.2.1 An Obstruction to Bounded Cutwidth and Pathwidth

In this section we prove Theorem 1.1, that is, we show that there exists an infinite family

of 3-manifolds not admitting triangulations of uniformly bounded pathwidth. The proof

relies on the following bound on the linear width of a 3-manifold in terms of its cutwidth.

Theorem 5.13. Let M be a closed, orientable 3-manifold. Then, for its linear width

L (M) and cutwidth cw(M), we have L (M) ≤ 3 cw(M) + 4.

For non-Haken 3-manifolds, Theorem 5.13, in combination with previously mentioned

results, implies the following.

Theorem 1.3 (rephrased using the notation from Section 5.1). Let M be a closed, ori-

entable, irreducible and non-Haken 3-manifold. Then, for its Heegaard genus g (M) and

pathwidth pw(M), we have g (M) ≤ 4 (3 pw(M) + 1).

Proof of Theorem 1.3 assuming Theorem 5.13. By Theorem 2.4, cw(M) ≤ 4 pw(M) since

dual graphs of 3-manifold triangulations are 4-regular. By Corollary 5.2, L (M) = g (M)

wheneverM is irreducible and non-Haken. Combining these relations with the inequality

provided by Theorem 5.13 yields the desired result.

Theorem 1.1 is now obtained from Theorem 1.3 and Agol’s Theorem 5.4. It remains

to prove Theorem 5.13. To this end, let M be a closed, orientable 3-manifold and T be

a triangulation of M. Consider the canonical handle decomposition chd(T ) associated

with this triangulation (Definition 3.2). In what follows, we construct a linear generalized

Heegaard splitting ofM based on chd(T ), such that the genera of the boundary surfaces

of the compression bodies in the splitting is upper-bounded by 3 cw(Γ(T )) + 4.

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7

Figure 5.4: A linear layout of the dual graph Γ(T ) of the smallest triangulation T of

M = SFS[T2 : (1, 2)]. The largest cutset has six arcs, hence cw(M) ≤ 6. Source: [28]
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Note that, if T consists of a single tetrahedron, then M ∈ {S3,L(4, 1),L(5, 2)}, see

[28, Closed Census]. Now these 3-manifolds all have Heegaard genus, hence linear width,

at most one, so they satisfy Theorem 5.13. Thus, for the remainder, we assume that M

is a connected 3-manifold and T consists of at least two tetrahedra.

Construction of the linear splitting. Fix an ordering ∆1 < ∆2 < . . . < ∆n of the

tetrahedra in T , so that the corresponding linear layout of the dual graph Γ(T ) realizes

minimal cutwidth (see, e.g., Figure 5.4). Let ∅ = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tn = M be a

filtration ofM by submanifolds, where Tj is the union of all those handles of chd(T ) that

are disjoint from the union of tetrahedra ∆i ⊂M with i > j. We now turn this filtration

into a linear splitting M = (N1 ∪S1 K1) ∪R1 · · · ∪Rn−1 (Nn ∪Sn Kn). The construction is

the same as in Example 4.1, but here we spell out the details. To this end, recall the

primal and dual constructions of compression bodies (Figures 3.6 and 3.7), and, for each

i ∈ {1, . . . , n}, let h(∆i) denote the 0-handle in chd(T ) corresponding to ∆i.

Set R0 = ∅. We think of R0 as the empty surface. Inductively, for i ∈ {1, . . . , n}, two

compression bodies Ni and Ki are constructed, in two steps each, as follows.

Construction of Ni

P1(i) : Take the disjoint union of Ri−1 × [0, 1] and h(∆i), and

P2(i) : attach all the 1-handles of Ti \ Ti−1 along Ri−1 × {1} ∪ ∂h(∆i).

The resulting compression body is denoted by Ni.

We set ∂−Ni = Ri−1 × {0} and Si = ∂+Ni = ∂Ni \ ∂−Ni.

Construction of Ki

D1(i) : Start with the thickened surface Si × [0, 1], and

D2(i) : attach all the 2- and 3-handles of Ti \ Ti−1 along Si × {1}.

The resulting compression body is denoted by Ki.

We set ∂+Ki = Si × {0} and Ri = ∂−Ki = ∂Ki \ ∂+Ki.

The desired linear splitting ofM is obtained by identifying ∂+Ni with ∂+Ki (1 ≤ i ≤ n),

and ∂−Ki with ∂−Ni+1 (1 ≤ i ≤ n − 1). Note that N1 and Kn are handlebodies, thus

∂−N1 = ∂−Kn = ∅. See Figure 5.5 for an illustration of this construction.
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N2 N3 K3

S2 × [0, 1] S3 × [0, 1]
R2 × [0, 1]

D2(1)

K1

S1 × [0, 1]
R1 × [0, 1]

N1 K2

P1-P2(1)

R1 R2S1 S2 S3

D1(1) D2(2)D1(2) D2(3)D1(3)P2(2)P1(2) P2(3)P1(3)

Figure 5.5: The linear splitting of M constructed in the proof of Theorem 5.13

Bounding the width. Recall that, by the definition of linear width, we have

L (M) ≤ max
1≤i≤n

g(Si). (5.7)

In what follows we give an upper bound on the maximum genus of any surface Si that

appears in the linear splitting above. The first step is the following general observation.

Lemma 5.14. Let T be a triangulation of a 3-manifold M and ∆1 < ∆2 < . . . < ∆n

be a linear ordering of its tetrahedra. Let ∅ = T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂ Tn = M be a

filtration of M by codimension zero submanifolds as before, where Tj is the union of all

those handles of chd(T ) that are disjoint from the union of tetrahedra ∆i ⊂M with i > j.

Then passing from Tj to Tj+1 corresponds to adding at most 15 handles. Moreover, if T̃j
denotes a codimension zero submanifold of M constructed from Tj by adding an arbitrary

subset of these handles, then, for the genus of its boundary, we have

g(∂T̃j) ≤ g(∂Tj) + 4. (5.8)

Proof of Lemma 5.14. This is apparent from the fact that every tetrahedron consists of

15 (non-empty) faces and thus at most 15 handles of chd(T ) are disjoint from Tj but

not disjoint from Tj+1. In particular, at most 15 handles are added at the j-th level of

the filtration. Moreover, note that at most four of the handles added in every step are

1-handles (corresponding to the four triangular faces of the tetrahedron), which are the

only handles that can increase the genus of ∂Tj.

Corollary 5.15. For the surfaces Ri−1 and Si (1 ≤ i ≤ n) constructed before, we have

g(Si) ≤ g(Ri−1) + 4. (5.9)
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Proof of Corollary 5.15. By construction, Ri−1 = ∂Ti−1, and Si is obtained by attaching

at most four 1-handles to a parallel copy ofRi−1, hence (5.9) follows from Lemma 5.14.

We can now conclude the proof of Theorem 5.13.

Proof of Theorem 5.13. Let vj (1 ≤ j ≤ n) be the nodes of Γ(T ) with corresponding

tetrahedra ∆j ∈ T (1 ≤ j ≤ n). We may assume, without loss of generality, that the

largest cutset of the linear ordering v1 < v2 < . . . < vn has cardinality cw(Γ(T )) = k.

Let Tj ⊂ chd(T ), 1 ≤ j ≤ n, be the filtration from Lemma 5.14. Moreover, let Cj,

1 ≤ j < n, be the cutsets of the linear ordering above (cf. Definition 2.3). Naturally, the

cutset Cj can be associated with at most k triangles of T with, together, at most 3k edges

and at most 3k vertices of T . Let M(Cj) ⊂ chd(T ) be the corresponding submanifold

formed from the at most k 1-handles and at most 3k 2- and 3-handles each of chd(T )

associated with these faces of T .

By construction, the boundary of M(Cj) decomposes into two parts, one of which

coincides with ∂Tj = Rj. SinceM(Cj) is the “neighborhood of k triangles in T ,” and since

the 2- and 3-handles of chd(T ) form a handlebody, the 2- and 3-handles of M(Cj) form

a union of handlebodies with sum of genera at most 3k. To complete the construction of

M(Cj), at most k 1-handles are attached to this union of handlebodies as 2-handles. These

either increase the number of boundary surface components, or decrease the overall sum

of genera of the boundary components. Altogether, the sum of genera of Rj ⊂ ∂M(Cj)

is bounded above by 3k.

Hence, following Corollary 5.15, we have g(Si) ≤ 3k + 4 = 3 cw(Γ(T )) + 4, which,

together with (5.7), implies L (M) ≤ 3 cw(M) + 4.

5.2.2 An Obstruction to Bounded Congestion and Treewidth

In this section is to prove Theorems 1.2 and 1.4, the counterparts of Theorem 1.1 and 1.3

for treewidth. At the core of the proof is the following explicit connection between the

congestion of the dual graph of any triangulation of a 3-manifoldM and its graph width.

Theorem 5.16. Let M be a closed, connected, orientable 3-manifold of graph width

G (M), and T be a triangulation of M with dual graph Γ(T ) of congestion cng(Γ(T )).

Then either G (M) ≤ 9
2 cng(Γ(T )), or T only contains one tetrahedron.
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Proof of Theorem 1.4 assuming Theorem 5.16. First note, that the only closed orientable

3-manifolds which can be triangulated with a single tetrahedron are the 3-sphere of Hee-

gaard genus zero, and the lens spaces of type L(4, 1) and L(5, 2) of Heegaard genus one

(see Example 3.11) for which Theorem 1.4 holds. Otherwise, since dual graphs of 3-

manifold triangulations are 4-regular, Theorem 2.6 yields cng(Γ(T )) ≤ 4(tw (Γ(T )) + 1).

In addition, Theorem 5.3 implies that G (M) = g (M) whenever M is irreducible and

non-Haken. Combining these relations with the inequality provided by Theorem 5.16 we

obtain Theorem 1.4.

Similar as in Section 5.2.1, Theorem 1.2 immediately follows from Theorems 1.4 and

5.4. Hence, the remainder of the section is dedicated to the proof of Theorem 5.16.

Proof of Theorem 5.16. LetM be a closed, connected, orientable 3-manifold, and T be a

triangulation of M whose dual graph Γ(T ) has congestion cng(Γ(T )) = k. Furthermore,

let H be an unrooted binary tree realizing cng(Γ(T )) = k (cf. Definition 2.5).

If k = 0, then T must consist of a single tetrahedron, and the theorem holds. Thus

we may assume that k ≥ 1.

The idea of the proof is to first construct a graph splitting of M from a fork complex

F modeled on H (cf. Section 4.1.2), and then to analyze the genera of the upper boundary

surfaces appearing in the splitting to see that they are all bounded above by 9
2 cng(Γ(T )).

Construction of the graph splitting. Consider the canonical handle decomposition

chd(T ) of M associated with T as defined in Definition 3.2. Every compression body in

the graph splitting described below is either a union of handles in chd(T ), a thickened

surface parallel to the boundary surface of some union of handles from chd(T ), or a

combination of both. In particular, the graph splitting maintains the handle structure

coming from chd(T ). Note that we do not require the following compression bodies to be

connected, but rather to be the union of connected compression bodies.

For every leaf w ∈ V (H), a handlebody Hw is constructed as follows. Consider the

abstract tetrahedron ∆w ∈ T associated to w. If ∆w has no self-identifications in T , then

Hw is just the 0-handle of chd(T ) corresponding to ∆w. If ∆w exhibits self-identifications,

then first note that at most one pair of triangular faces of ∆w are identified, otherwise

∆w would be disjoint from the rest of T . Up to symmetry there are two possibilities:
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∂−C2
v

∂−C1
v

∂+C1,2
v

C1
v

C2
v

∂−C2
t

∂−C2
sHw Cw

∂+Hw = ∂+Cw ∂−Cw(i)

(ii)

(iii)

Cr

Hr Hr

Figure 5.6: Local pictures of the fork complex F built in the proof of Theorem 5.16

Either, ∆w forms a “snapped” 3-ball in T , see Figure 5.7(i), in which case Hw is built

from the 0-handle, the 1-handle, and the 2-handle of chd(T ) corresponding to ∆w, to the

face gluing, and to the edge {1, 2} of ∆w, respectively. Or, ∆w forms a solid torus in T ,

see Figure 5.7(ii), and then Hw consists of the 0-handle and of the 1-handle of chd(T ),

corresponding to ∆w and to the face gluing, respectively. Moreover, for every leaf w ∈

V (H), a compression body Cw = ∂Hw×[0, 1] is attached to ∂Hw along ∂+Cw = ∂Hw×{0}.

See Figure 5.6(i).

0

2

3

1

0

2

3

1

(i) (ii)

Figure 5.7: (i) A snapped 3-ball, and(ii) a one-tetrahedron solid torus

Before proceeding, let us fix a “root arc” r ∈ E(H). This choice induces a partial order

on V (H): for x, y ∈ V (H), x ≺ y if and only if y is contained by the path connecting

x with r. We also say “x is below y”. In particular, x ≺ x for all x ∈ V (H). Given

x ∈ V (H), let Tx denote the submanifold of M consisting of

• any 0-handle of chd(T ) corresponding to a leaf of H below x,

• any 1-handle of chd(T ) where both adjacent 0-handles are in Tx
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• any 2-handle of chd(T ) where all adjacent 0-handles are in Tx, and

• any 3-handle of chd(T ) where all adjacent 0-handles are in Tx.

In other words, Tx is the submanifold of M spanned by the 0-handles of chd(T ) below x.

Claim 1. If x ≺ y then Tx ⊆ Ty. If x 6≺ y and y 6≺ x then Tx ∩Ty = ∅ and ∂Tx ∩ ∂Ty = ∅.

Proof of Claim 1. The first part of the claim is obvious. For the second part, let x, y ∈

V (H) with x 6≺ y and y 6≺ x. The way we construct Tx and Ty ensures that Tx and Ty
do not only have disjoint interiors, but are also separated from each other such that their

boundaries are disjoint as well. Indeed, if Tx and Ty are both collections of 0-handles

this is certainly true as each of these 0-handles can be thought of as living inside a single

tetrahedron of T away from its boundary. As soon as we have two such 0-handles living

in two adjacent tetrahedra in, say, Tx, the 1-handle(s) corresponding to their common

triangular face(s) can be glued to the two 0-handles and the resulting boundary is still

disjoint from any Ty being such a collection of 0- and 1-handles itself. Now fix an edge

f of T and suppose that Tx contains all 0- and 1-handles associated to tetrahedra and

triangles around f , then we are safe to add the 2-handle corresponding to f to Tx and still

be disjoint from Ty even if Ty itself is such a collection of 0-, 1-, and 2-handles. The case

of adding 3-handles to Tx and Ty corresponding to vertices of T is completely analogous

to the previous case. This proves the second part of the claim.

We can now describe the remaining parts of the graph splitting of M. For this, let

v ∈ V (H) be a degree three node, u, u′ ∈ V (H) be the two nodes below and incident to

v, and let e, e′ ∈ E(H) denote the arcs with endpoints v and u, u′, respectively. For every

such degree three node v ∈ V (H), a pair of compression bodies (C1
v , C2

v) is constructed in

two steps. (See Figure 5.6(ii) for an example of a local schematic picture of F around v.)

1. To construct the first compression body C1
v , we start with (∂(Tu ∪ Tu′))× [0, 1] and

attach to (∂(Tu ∪ Tu′)) × {1} all 1-handles of chd(T ) corresponding to triangles of

T associated to arcs of Γ(T ) running parallel to e and e′. (These are the remaining

1-handles of Tv not attached earlier.) We then define its lower and upper boundary

as ∂−C1
v = (∂(Tu ∪ Tu′))× {0} and ∂+C1

v = ∂C1
v \ ∂−C1

v , respectively.

2. For the second compression body C2
v , we start with ∂+C1

v × [0, 1] (with the top

boundary being defined as ∂+C2
v = ∂+C1

v × {1}). The compression body is then



54

completed by attaching along ∂+C1
v × {0} all 2- and 3-handles of chd(T ) which are

contained in Tv but not in Tu ∪ Tu′ . We set ∂−C2
v = ∂C2

v \ ∂+C1
v .

For the root arc r = {s, t}, we construct a pair of compression bodies (Cr,Hr) as

follows. (Hr is a union of handlebodies, hence the notation.)

1. To build Cr, start with (∂−C2
s ∪ ∂−C2

t )× [0, 1], define the lower boundary as ∂−Cr =

(∂−C2
s ∪ ∂−C2

t ) × {0} and attach to (∂−C2
s ∪ ∂−C2

t ) × {1} all 1-handles of chd(T )

corresponding to arcs of Γ(T ) routed through r. As usual, ∂+Cr = ∂Cr \ ∂−Cr.

2. Finally, to obtain Hr, take ∂+Cr× [0, 1], set ∂+Hr = ∂+Cr×{1} and identify it with

∂+Cr, and attach all remaining 2- and 3-handles of chd(T ) to ∂+Cr × {0}.

Figure 5.6(iii) shows a possible scenario near the root arc. This finishes the construction.

Claim 2. The compression bodies Hw, Cw, C1
v , C2

v , Cr, and Hr (where w, v ∈ V (H),

deg(w) = 1, deg(v) = 3, and r ∈ E(H) is the root arc), glued together along their

appropriate boundary components, form a graph splitting of M.

Proof of Claim 2. It follows from Claim 1 and the construction that all compression bodies

above have pairwise disjoint interiors. We check that their lower and upper bonudary

components match up whenever they are identified (cf. Figure 5.6). For the identifications

between Hw and Cw, between C1
v and C2

v , and between Cr and Hr this is immediate. Now

let v ∈ V (H) be of degree three with adjacent nodes u, u′ ∈ V (H) below. Note that,

by construction, ∂−C2
u = ∂Tu and ∂−C2

u′ = ∂Tu′ and they are disjoint by Claim 1. Hence

∂−C1
v = (∂(Tu ∪ Tu′)) × {0} can indeed be identified with the disjoint union of ∂−C2

u and

∂−C2
u′ . For the gluings between ∂−Cr and ∂−C2

s ∪∂−C2
t , where r = {s, t} ∈ E(H) is the root

arc, the reasoning is analogous. Finally, as it is modeled on the tree, the fork complex F

is exact (see [130, Definition 5.1.4]), yielding a graph splitting of M.

Bounding the width. Following [130, Section 5.1], cf. Section 5.1.2, the width of the

graph splitting of M exhibited above is given by the largest genus of a top boundary

of a connected compression body in the graph splitting. However, this splitting, by

construction, consists of unions of compression bodies. In particular, C1
v , C2

v , Cr, and Hr

may be disconnected. Note that this is not a problem since the sum of genera of top



55

boundaries for every such union cannot be smaller than the genus of the largest genus

compression body in the union. Hence, with this adjustment, we are left with the multiset
{
g(∂Hw), g(∂+C1

v), g(∂Hr)
∣∣∣∣ w, v ∈ V (H), deg(w) = 1, deg(v) = 3, r ∈ E(H) root arc

}

to determine an upper bound on the graph width of M, where g(S) denotes the sum of

the genera of all connected components of S.

The handlebody Hw has genus at most one: g(∂Hw) = 0 if ∆w is a 0-handle, or forms

a “snapped” 3-ball in T , and g(∂Hw) = 1 if ∆w forms a solid torus in T .

Let us fix a node v ∈ V (H) of degree three. Our goal is to upper-bound g(∂+C1
v). Note

that, since cng(Γ(T )) ≤ k, at most k arcs of Γ(T ) run parallel to each arc of H. Moreover,

counting those arcs of Γ(T ) along the three arcs of H incident to v, we encounter each of

them twice, therefore at most 3
2k arcs of Γ(T ) meet v. Based on this fact, we show that

g(∂+C1
v) ≤ 9k

2 . The proof relies on the next key observation.

Claim 3. Let x ∈ V (H) be a node of H and a ∈ E(H) be the unique arc of H above and

incident to x. Then any handle h ∈ chd(T ) \ Tx that touches ∂Tx is adjacent or equal to

a 1-handle of chd(T ) corresponding to an arc of Γ(T ) routed through a.

Proof of Claim 3. Recall that Tx is spanned by those 0-handles of chd(T ) that correspond

to the leaves of H below x. Turning this around, every handle in chd(T ) \ Tx is either

a 0-handle whose corresponding leaf is not below x, or is adjacent to at least one such

0-handle. Now let h ∈ chd(T ) \ Tx be a handle that touches ∂Tx.

First, observe that h cannot be a 0-handle. Indeed, if h is a 0-handle not in Tx then its

corresponding leaf is not below x, and therefore all h′ ∈ chd(T ) adjacent to h are not part

of Tx either. As the union of these handles h′ comprise a neighborhood of h, it follows

that ∂h ∩ ∂Tx = ∅, contradicting the assumption that h touches ∂Tx.

Second, notice that if h is an i-handle (i ∈ {1, 2, 3}) and no 0-handles adjacent to h

are below x, then h is separated from Tx by the union of the h′ ∈ chd(T ) \ {h} that are

adjacent to at least one of these 0-handles. Thus there exists a 0-handle h1 ∈ chd(T )

adjacent to h with corresponding leaf below x. Moreover, some other 0-handle adjacent

to h, say h2, must be in chd(T ) \ Tx, since otherwise h must be part of Tx.

If h is a 1-handle, then h1 and h2 are precisely the two 0-handles adjacent to h, which

thus corresponds to an arc of Γ(T ) routed through a ∈ E(H) and we are done. If h is
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a 2- or 3-handle, then there is an alternating sequence h1 = h(0), h(1), h(2), . . . , h(p) = h2

of 0- and 1-handles adjacent to h, and h(j) being adjacent to h(j+1) (0 ≤ j < p). Since

h1 ∈ Tx and h2 ∈ chd(T ) \ Tx, for some even q ∈ {0, 2, . . . , p − 2} we have h(q) ∈ Tx
and h(q+2) ∈ chd(T ) \ Tx. But then h(q+1) is a 1-handle of chd(T ) adjacent to h that

corresponds to an arc of Γ(T ) routed through a. This concludes the proof of Claim 3.

By construction, ∂+C1
v ≈ ∂(Tu ∪ Tu′ ∪He,e′), where He,e′ consists of the 1-handles in

chd(T ) corresponding to arcs of Γ(T ) running parallel to both e = {u, v} and e′ = {u′, v}.

(Here S1 ≈ S2 denotes that the surfaces S1 and S2 are parallel, and hence, in particular,

of the same genus.)

Let X be the submanifold ofM built from the handles in chd(T )\ (Tu∪Tu′) touching

∂(Tu ∪ Tu′). It follows from Claim 3, that each handle in X is either a 1-handle routed

through e or e′, or a 2- or 3-handle adjacent to such a 1-handle. In particular, X consists of

at most 3k
2 1-handles, at most 9k

2 2-handles, and at most 9k
2 3-handles, cf. the paragraph

before Claim 3. Since the 2- and 3-handles of chd(T ) form a handlebody, the 2- and

3-handles of X form a union X2,3 of handlebodies with sum of genera at most 9k
2 .

Consider the submanifold Y ⊆ X obtained from X2,3 by attaching to it all 1-handles

of X not in He,e′ . (These are precisely the 1-handles of chd(T ) that correspond to arcs

of Γ(T ) running parallel either to e or to e′ but not to both.) Note that these 1-handles

are attached to X2,3 as 2-handles. Each of these attachments either increases the number

of boundary surface components, or decreases the overall sum of genera of the boundary

components by one. Consequently, g(∂Y) ≤ g(∂X2,3) ≤ 9k
2 . Finally, by construction, ∂+C1

v

is parallel to the union of some components of ∂Y , and therefore g(∂+C1
v) ≤ g(∂Y) ≤ 9k

2 .

Bounding above the genus of ∂Hr is analogous. The only difference is that ∂Hr ≈

∂(Ts ∪ Tt ∪ Hr), where Hr now consists of the at most k 1-handles in chd(T ) which

correspond to arcs of Γ(T ) routed through the root arc r = {s, t} ∈ E(H). Here an even

stronger bound holds, i.e., g(∂Hr) ≤ 3k < 9k
2 .

From the definition of graph width it immediately follows that G (M) ≤ 9k
2 .
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5.3 ...and Back

5.3.1 Combinatorial Width and Heegaard Genus

In Section 5.2.2 it was shown that for a closed, orientable, irreducible and non-Haken

3-manifold M, the Heegaard genus g(M) and the treewidth tw (M) satisfy

g(M) ≤ 18(tw (M) + 1). (5.10)

In this section we further explore the connection between these two parameters, guided

by two questions: 1. Does a reverse inequality hold? 2. Can one refine the assumptions?

For the first one, we give an affirmative answer.

Theorem 1.6. Let M be a closed, orientable 3-manifold, and let cw(M) and g (M)

respectively denote the cutwidth and the Heegaard genus of M. Then we have

cw(M) ≤ 4g (M)− 2. (5.11)

The result is almost immediate if one takes a layered triangulation of a closed, orientable

3-manifold. Due to Jaco and Rubinstein (cf. Theorem 4.3), this is always possible.

The second question is more open-ended. As a first step, we prove the following.

Proposition 5.17. There exists an infinite family of 3-manifolds of bounded cutwidth—

hence of bounded treewidth—with unbounded Heegaard genus.

Proof. Consider {Mk = M#k : k ∈ N}, where Mk is the k-fold connected sum of a

3-manifold M of Heegaard genus one (e.g., M = S2 × S1). Since the Heegaard genus is

additive under taking connected sums [69, Corollary II.10.], we have that g (Mk) = k.

However, Mk admits a triangulation of bounded cutwidth. Indeed, start with a fixed

triangulation T of M that contains two tetrahedra ∆1 and ∆2 which a) do not share

any vertices in T , and b) do not have any self-identifications in T . Let w denote the

width of an ordering of V (Γ(T ))—the nodes of the dual graph Γ(T )—in which ∆1 and

∆2 correspond to the first and the last node, respectively. Moreover, let T i (1 ≤ i ≤ k)

be k copies of T . Forming connected sums along ∆i
2 and ∆i+1

1 (1 ≤ i ≤ k − 1) yields a

triangulation Tk ofMk together with an ordering of V (Γ(Tk)) of width w, see Figure 5.8.

Therefore cw(Mk) ≤ cw(Tk) ≤ w for every k ∈ N.
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∆i
2 ∆i+1

1
. . . . . . . . .=⇒ . . .. . .

Figure 5.8: The effect of forming T i#T i+1 at the level of the dual graphs

Remark 5.18. Proposition 5.17 shows that among reducible 3-manifolds one can easily

find infinite families that violate (5.10). Nevertheless, irreducibility alone is insufficient

for (5.10) to hold. In particular, in Chapter 7 we prove that orientable Seifert fibered

spaces over S2 have treewidth at most two (Theorem 7.2). However, all but two of them

are irreducible [134, Theorem 3.7.17] and they can have arbitrarily large Heegaard genus

[21, Theorem 1.1].

Nevertheless, as mentioned before, the reverse inequality always holds.

Proof of Theorem 1.6. Let g = g (M). Consider the g-spine S in Figure 4.9(i) together

with the indicated order in which we layer onto the 3g − 2 interior edges of S to build

two copies T ′ and T ′′ of a minimal layered triangulation of the genus g handlebody. See

Figure 4.9(ii) for the dual graph of T ′ (and of T ′′). Note that ∂T ′ and ∂T ′′ consist of

4g − 2 triangles each.

By Theorem 4.3, we may extend T ′ to a layered triangulation T ′′′ which can be glued

to T ′′ along a simplicial map f : ∂T ′′′ → ∂T ′′ to yield a triangulation T = T ′′′ ∪f T ′′

of M. This construction imposes a natural ordering on the tetrahedra of T : 1. Start by

ordering the tetrahedra of T ′ according to the labels of the edges of S onto which they

are initially layered. 2. Continue with all tetrahedra between T ′ and T ′′ in the order they

are attached to T ′ in order to build up T ′′′. 3. Finish with the tetrahedra of T ′′ again in

the order of the labels of the edges of S onto which they are layered. This way we obtain

a linear layout of the nodes of Γ(T ) which realizes width 4g − 2 (Figure 5.9). Therefore

cw(M) ≤ 4g − 2.

Combining Theorem 1.6 with tw (M) ≤ cw(M), we directly deduce the following.

Corollary 5.19. For any closed, orientable, irreducible, non-Haken 3-manifold M the

Heegaard genus g (M) and the treewidth tw (M) satisfy

1
4(tw (M) + 2) ≤ g (M) ≤ 18(tw (M) + 1). (5.12)
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··· ···

· · ·

T ′

T ′′′

T ′′

≤ 4g − 2 = 4g − 2 ≤ 4g − 2

Figure 5.9: A linear layout showing that cw(M) is bounded above by 4g (M)− 2

Remark 5.20. Bachman et al. [5] ask (cf. Question 5.3 therein) whether computing the

Heegaard genus of a 3-manifold is still hard when restricting to the set of non-Haken

3-manifolds. Corollary 5.19 implies that the answer to this question also has implications

on the hardness of approximating the treewidth of non-Haken manifolds.

For an algorithmic consequence of Theorem 1.6 see Appendix D.

5.3.2 Layered Triangulations of Generalized Heegaard Splittings

In this section we prove the following qualitative strengthening of Theorem 1.6.

Theorem 1.7. There exists a universal constant C > 0, such that, for any 3-manifold

M (possibly with ∂M 6= ∅), the cutwidth cw(M) and the linear width L (M) satisfy

cw(M) ≤ 24L (M). (5.13)

At the heart of the proof lies the following lemma.

Lemma 5.21. Let C be a compression body, where ∂−C has no S2 components. Then C

admits a triangulation T with at most 12g(∂+C) − 6 tetrahedra that induces a minimal

(one-vertex) triangulation on each boundary surface.

Proof. We may assume C to be connected. Then the disconnected case follows by arguing

component-wise. We will construct the desired triangulation T by performing an adapted

version of the primal construction (cf. Section 3.4 and the upper part of Figure 3.7) and

working with triangulated building blocks. Recall that, via the primal construction, the

compression body C with lower boundary ∂−C = S is simply obtained as follows:
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P1. Take the thickened surface S × [0, 1]. P2. Attach some 1-handles to S × {1}.

Note that if S = S1 ∪ . . . ∪ Sm, where the Si are the connected components of S, and

γ = g(∂+C)− g(∂−C), then, by slightly modifying the primal construction, C can be built

by first thickening each Si (1 ≤ i ≤ m), then connecting these thickened surfaces with

m− 1 one-handles called connectors, and finally appending a handlebody Hγ of genus γ,

again via a connector. See Figure 5.10 for an example, where m = 2 and γ = 2.

S1 × [0, 1] S2 × [0, 1]

Hγ

h1

h2

Figure 5.10: A compression body C = (S1 × [0, 1]) ∪ h1 ∪ (S2 × [0, 1]) ∪ h2 ∪Hγ

We now construct triangulations of these three building blocks (i.e., thickened surfaces,

connectors, and handlebodies), which can then be assembled into a triangulation T of C.

Thickened surfaces. This construction is illustrated in Figure 5.11 for the case g = 2.

Let Fg denote the closed orientable surface of genus g. It is well-known that Fg can

be obtained from a regular polygon with 4g vertices by identifying its edges in pairs.

Specifically, let P be a 4g-gon with vertices v(1)
1 , v

(1)
2 , v

(1)
3 , v

(1)
4 , . . . , v

(g)
1 , v

(g)
2 , v

(g)
3 , v

(g)
4 in this

circular order. Triangulate P by adding the diagonals incident to v
(1)
1 . Performing the

identifications (v(i)
1 , v

(i)
2 ) ↔ (v(i)

4 , v
(i)
3 ), and (v(i)

2 , v
(i)
3 ) ↔ (v(i+1)

1 , v
(i)
4 ), for i ∈ {1, . . . , g},

where v(g+1)
1 = v

(1)
1 , gives a minimal (one-vertex) triangulation of Fg with 4g−2 triangles.

We refer to Figure 5.11(i) for an example.

This triangulation of Fg with 4g−2 triangles naturally lends itself to a decomposition

of Fg × [0, 1] into 4g − 2 triangular prisms glued together along pairs of quadrilaterals of

the form e× [0, 1], where e is an edge in the triangulation of Fg. Imagine, for a moment,

that we cut up this shape along those quadrilaterals that correspond to the boundary

edges of P identified in the previous paragraph. This way we recover a thickened version

P of the 4g-gon P . Let v1 denote a distinguished vertex v(1)
1 × {1}, cf. Figure 5.11(ii).
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Next we subdivide every triangular prism in P into three tetrahedra each, to get a

triangulation of P . We do this in two steps. First, we split each quadrilateral in ∂P into

two triangles by adding a diagonal, in a way that is compatible with the identifications

above. Moreover, in the two quadrilaterals at v1 we add those diagonals that are incident

to v1. This gives a triangulation of ∂P , see Figure 5.11(iii). Now a triangulation of P is

obtained by coning over the vertex v1, cf. Figure 5.11(iv).

By redoing the identifications at the triangulated quadrilaterals, we get a triangulation

of Fg × [0, 1] with exactly 3 · (4g − 2) = 12g − 6 tetrahedra.4

(ii)

(iii) (iv)

v
(1)
1

(i)

v1

v1 v1

v
(1)
2

v
(1)
3

v
(1)
4v

(2)
1

v
(2)
2

v
(2)
3

v
(2)
4

P P

Figure 5.11: Triangulating the compression body Fg × [0, 1] with 12g − 6 tetrahedra

Connectors. We triangulate a connector as a triangular bipyramid, which is the union of

two tetrahedra sharing one triangular face (Figure 5.12). Its five vertices are labeled with

0, 1, 2, 4 and 5. In our example, {0, 1, 3} is the common face of the tetrahedra {0, 1, 2, 3}

and {0, 1, 3, 4}. We distinguish two boundary triangles t = {0, 1, 2} and t′ = {0, 3, 4},

which will act as attaching sites.

4It is worth noting that these triangulations are not minimal. In [70] it was shown that Fg× [0, 1] can
always be triangulated with 10g − 4 tetrahedra. Moreover, this bound is sharp, cf. [70, Theorem 25].
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1 4

32

0t t′

Figure 5.12: A connector is a triangular bipyramid with two attaching sites t and t′

Handlebodies. Here we will work with minimal layered triangulations (Section 4.2.1).

For the handlebody Hg of genus g such a triangulation T (Hg) consists of 3g−2 tetrahedra

and induces a minimal (1-vertex) triangulation on the boundary ∂Hg = Fg.

Having discussed the building blocks, we can now conclude the proof of Lemma 5.21.

Let C be a connected compression body with S1, . . . ,Sm being the connected components

of its lower boundary ∂−C. Furthermore, let γ = g(∂+C)− g(∂−C).

For 1 ≤ i ≤ m, consider the thickened surfaces Ci = Si× [0, 1] and endow each of them

with a triangulation T (Ci) as described above. Then |T (Ci)| = 12g(Si) − 6, and at both

boundary components ∂−Ci = Si × {0} and ∂+Ci = Si × {1} the induced triangulations,

respectively denoted as ∂−T (Ci) and ∂+T (Ci), are minimal triangulations with 4g(Si)− 2

triangles and one vertex each. We now formalize the construction shown in Figure 5.10.

Set T (1) = T (C1), ∂+T (1) = ∂+T (C1) and ∂−T (1) = ∂−T (C1). For i ∈ {2, . . . ,m},

iteratively define T (i) = T (i−1) ∪ϕ h ∪ψ T (Ci), where h is a connector with distinguished

boundary triangles t and t′ sharing a single vertex (cf. Figure 5.12), ϕ identifies t with a

triangle on ∂+T (i−1), and ψ identifies t′ with a triangle on ∂+T (Ci).

Note that, at each step, ∂+T (i) is maintained to be a 1-vertex triangulation (of a closed

orientable surface of genus ∑i
j=1 g(Sj)), and so is each component of ∂−T (i).

After m iterations, we have connected the triangulations T (Ci) of all thickened surfaces

Ci = Si × [0, 1] (1 ≤ i ≤ m). For the last step, we take T = T (m) ∪ϕ h ∪ψ Hγ, where

ϕ identifies t with a triangle on ∂+T (m), and ψ identifies t′ with a triangle on ∂T (Hγ).

Thus we have constructed a triangulation T of C. For the size |T | we have

|T | ≤
(

m∑
i=1
|T (Ci)|

)
+ 2m+ (3γ − 2)

=
(

m∑
i=1

12g(Si)− 6
)

+ 2m+ (3γ − 2)

= 12g(∂−C)− 4m+ 3 (g(∂+C)− g(∂−C))− 2 ≤ 12g(∂+C)− 6.
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Proof of Theorem 1.7. Suppose that M /∈ {B3, S2 × S1}. Assume first that M is prime.

Consider a linear generalized Heegaard splittingM = (N1∪S1K1)∪R1 · · ·∪Rr−1 (Nr∪SrKr)

in thin position.5 Being in thin position has two consequences for the splitting that are

important for us:

1. Every 2-sphere component of every lower boundary Ri is essential, i.e., it does not

bound a 3-ball, see [130, Observation 5.2.1].6 Therefore, since M is irreducible,7

none of the lower boundary surfaces Ri can have a 2-sphere component.

2. max{g(Si) : 1 ≤ i ≤ r} = L (M).

The first property precisely means that the compression bodies Ni and Ki (1 ≤ i ≤ r)

satisfy the condition of Lemma 5.21. The second one then implies that each of them

can be constructed using at most 12L (M) − 6 tetrahedra, so that we have 1-vertex

triangulations at their boundary components.

Now the gluings ∂+Ni ↔ ∂+Ki (1 ≤ i ≤ r) and ∂−Ki ↔ ∂−Ni+1 (1 ≤ i ≤ r−1) can be

realized via layerings (Section 4.2), analogously to the procedure in the proof of Theorem

1.6. In particular, the dual graph of the resulting triangulation admits a linear layout as

shown in Figure 5.13 (cf. Figure 5.9).

N1 K1 N2 K2

≤ 4L (M)− 2 ≤ 4L (M)− 2≤ 4L (M)− 2

Figure 5.13: Layout of the dual graph of a layered triangulation of a linear splitting. The

size of any cutset “between” the compression bodies is at most 4L (M)− 2

Note that, for every i ∈ {1, . . . , r}, the dual graphs of the triangulations of Ni and Ki
contain at most 24L (M) − 12 arcs each, since they have at most 12L (M) − 6 nodes

with maximum degree at most 4. This readily implies that Theorem 1.7 holds in case the

3-manifold M is prime.

5See page 41 for details regarding thin position.
6This is not true for the genus zero Heegaard splitting of B3, but we have excluded this case.
7The only orientable, reducible prime 3-manifold is S2 × S1, but this case has been excluded as well.
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In the general case, consider the prime decompositionM =M1# · · ·#Mr. It can be

shown that the cutwidth cw(M) and the linear width L (M) satisfy

cw(M) = max{cw(Mi) : 1 ≤ i ≤ r}, and (5.14)

L (M) = max{L (Mi) : 1 ≤ i ≤ r}. (5.15)

The proof of (5.14) is the same as the proof of Proposition 5.17 (cf. Figure 5.8), while

(5.15) follows from the “additive” property of the original definition of linear width by

Scharlemann and Thompson [131, p. 233]. Having these formulas at hand, the general

inequality cw(M) ≤ 24L (M) immediately follows.

Theorem 1.7, in combination with other results cited or developed in this thesis, has

several consequences. For example, Theorems 5.13 and 1.7 readily imply the following.

Corollary 5.22. For every closed, orientable 3-manifold M with cutwidth cw(M) and

linear width L (M) we have

1
3(L (M)− 4) ≤ cw(M) ≤ 24L (M). (5.16)

By (5.2) the pathwidth pw(M) is also within a constant factor of cw(M) and L (M).

Furthermore, blending in Theorem 5.11(1) by Hoffoss–Maher, we deduce

Corollary 5.23. For closed, orientable, hyperbolic 3-manifolds, the cutwidth cw(M),

pathwidth pw(M), linear width L (M), and the Morse area AM(M) are all within a

constant factor of each other.

Remark 5.24. The technique used in the proof of Theorem 1.7 can readily be used

to triangulate graph splittings as well. We strongly believe that, for 3-manifolds with

bounded first Betti number (in particular for rational homology 3-spheres), the congestion

cng(M), the treewidth tw (M), the graph width G (M) and—in case M is hyperbolic—

the Gromov area AG(M) are within a constant factor of each other.
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5.4 On the Width of Hyperbolic 3-Manifolds

In Sections 5.2 and 5.3 we studied the quantitative relationship of combinatorial and

topological width parameters of (closed) 3-manifolds in general. Here we restrict our

attention to hyperbolic 3-manifolds that possess a rigid geometry (Theorem 5.6). We have

already seen that, for such manifolds, some geometric and topological width parameters

are linearly related (Theorem 5.11). In this section we improve upon a recent result by

Maria and Purcell that relates the treewidth and the volume of hyperbolic 3-manifolds.

Theorem 5.25 (Maria–Purcell [99]). There exists a universal constant C > 0 such that,

for any closed hyperbolic 3-manifold M with treewidth tw (M) and volume vol(M),

tw (M) ≤ C · vol(M). (5.17)

Equivalently, using the ‘big O notation,’ this can be written as tw (M) = O(vol(M)).

The main steps of the proof of Theorem 5.25 can informally be summarized as follows:

1. Start with a thick-thin decompositionM =Mthick∪Mthin. The fact that hyperbolic

manifolds of finite volume (in any dimension, even if non-compact8) admit such a

decomposition is one the most important structure theorems in geometric topology.

Here Mthick ∩Mthin is a disjoint union of tori, and Mthin is that of solid tori.9

2. Choose a triangulation Tthick of the thick part Mthick with O(vol(M)) tetrahedra.

Due to Jørgensen and Thurston (Theorem 5.30), this is always possible. Trivially,

the dual graph of Tthick satisfies tw (Γ(Tthick)) = O(vol(M)).

3. Perform an operation called crushing on Tthick to get another, “simpler” triangulation

T̂thick ofMthick, where each component of ∂T̂thick is a one-vertex triangulation of T2.

Maria and Purcell show that tw
(
Γ(T̂thick)

)
= O(vol(M)) is still true.

4. Finally, extend T̂thick to a triangulation T of M by attaching a layered solid torus

to each component of ∂T̂thick. As layered solid tori have very simple triangulations,

cf. Figure 4.10(v), this final step also maintains the treewidth to be O(vol(M)).

Here we strengthen Theorem 5.25 by showing that the volume of a closed hyperbolic

3-manifolds provides a linear upper bound even on its pathwidth.10

8Typical examples of finite-volume non-compact hyperbolic 3-manifolds are those with cusps.
9This is so, because M is compact. In general Mthin also contains the cusps of M, cf. Theorem 5.28.

10It would be interesting to understand the extent of the improvement, in particular, whether the
difference pw(M)− tw (M) can be arbitrary large.
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Theorem 1.8. There exists a universal constant C ′ > 0 such that, for any closed hyper-

bolic 3-manifold M with pathwidth pw(M) and volume vol(M), we have

pw(M) ≤ C ′ · vol(M). (5.18)

The proof of Theorem 1.8 rests on the following result, known to experts in the field

(see, e.g., [139, p. 336–337] or [122]), according to which the Heegaard genus of a closed

hyperbolic 3-manifold can be linearly upper-bounded in terms of its volume.

Theorem 5.26. There exists a universal constant C ′′ > 0 such that, for any closed

hyperbolic 3-manifold M with Heegaard genus g (M) and volume vol(M), we have

g (M) ≤ C ′′ · vol(M). (5.19)

Proof of Theorem 1.8 assuming Theorem 5.26. By combining Theorem 5.26 with the es-

timate of Theorem 1.6 (i.e., cw(M) ≤ 4g (M) − 2) and the left-hand-side inequality in

Theorem 2.4 (i.e., pw(M) ≤ cw(M)), the claim of Theorem 1.8 is readily deduced.

Next, we supply a proof of Theorem 5.26 that is likely to be a roundabout way to

establish this result, nevertheless reflects the author’s understanding of it. The proof is

inspired by that of Theorem 5.25. The improvement comes from the observation that a

triangulation of the thick part with O(vol(M)) tetrahedra lends itself to a generalized

Heegaard splitting ofM, where the sum of genera of the Heegaard surfaces is O(vol(M)).

This generalized Heegaard splitting can then be “amalgamated” into a classical Heegaard

splitting, which is still of genus O(vol(M)). We now elaborate on the proof ingredients.

Thick-thin decompositions. The first ingredient is the same as in the proof Theorem

5.25 by Maria–Purcell: the thick-thin decomposition theorem, a fundamentally important

structural result for hyperbolic manifolds. In order to formulate it, we need to introduce

some notions about Riemannian manifolds.

Definition 5.27 (injectivity radius). LetM be a Riemannian manifold and x ∈M. The

injectivity radius of M at x, denoted injx(M), is the supremal value r > 0 such that the

metric ball of radius r around x is embedded inM. The injectivity radius ofM is defined

as the infimal value of injx(M), i.e., inj(M) = inf{injx(M) : x ∈M}.
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After fixing some threshold ε > 0, a Riemannian manifold M naturally decomposes

into an ε-thick and an ε-thin part based on the injectivity radius of its points:

M[ε,∞) = {x ∈M : injx(M) ≥ ε/2} and M(0,ε] = {x ∈M : injx(M) ≤ ε/2}. (5.20)

We can now state the Thick-Thin Decomposition Theorem according to which, for a

sufficiently small constant ε > 0 only depending on the dimension d, the ε-thin part of

any orientable hyperbolic d-manifold has a well-understood structure.11

Theorem 5.28 (Thick-Thin Decomposition; cf. [101, Chapter 4], [121, Section 5.3]).

There exists a universal constant εd > 0, depending only on the dimension d, such that

for any ε ∈ (0, εd], the ε-thin part of any orientable hyperbolic d-manifold M consists of

tubes around short geodesics diffeomorphic to S1 × Dd−1, or cusps.12

M[ε,∞)

M(0,ε]

cusp tube

Figure 5.14: Thick-thin decomposition of a non-compact hyperbolic surface

Remark 5.29.

(1) In case of compact 3-manifolds, there are no cusps in the thick-thin decomposition,

but only tubes. In dimension three, they are homeomorphic to solid tori. This is

important, as Theorem 5.26 is concerned with closed (hence compact) 3-manifolds.

(2) The supremum of all εd for which the conclusion of Theorem 5.28 holds is called

the d-dimensional Margulis constant. As of now, the precise value of εd remains

unknown. For d = 3, it is known that 0.104 ≤ ε3 ≤ 0.616, cf. [121, p. 92].

(3) Theorem 5.28 is a corollary of a more general result about discrete subgroups of Lie

groups, called the Margulis Lemma, which appeared in [76], cf. [101, Section 4.2]

and [121, Theorem 5.22].
11The manifolds in consideration are also required to be complete (as metric spaces). However, the way

we define hyperbolic d-manifolds (i.e., quotients of Hd under discrete groups of isometries acting freely)
automatically ensures their completeness.

12A d-dimensional cusp is a d-manifold with boundary that is diffeomorphic to N × [0,∞), where N
is a (d− 1)-dimensional flat, i.e., Euclidean, manifold. See [101, Section 4.1] for a precise definition.
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Triangulating the thick part. In Chapter 4 we discussed generalized Heegaard split-

tings and layered triangulations as “interfaces between combinatorics and topology.” Here

we invoke the aforementioned theorem by Jørgensen and Thurston (carefully proved by

Kobayashi and Rieck), which can be regarded as an interface between combinatorics and

geometry in the realm of hyperbolic 3-manifolds. To precisely state this result, let us

define the (closed) δ-neighborhood Nδ (X ) of a subset X of a Riemannian 3-manifold M

to be the set of those points in M that have distance at most δ from some point in X .

Theorem 5.30 (Jørgensen–Thurston [148, §5.11], Kobayashi–Rieck [84]). Let ε ∈ (0, ε3],

where ε3 is the Margulis constant in dimension three.

(1) For any δ > 0 there exists a constant K > 0, depending on ε and δ, so that for

any finite-volume hyperbolic 3-manifold M, the δ-neighborhood Nδ

(
M[ε,∞)

)
⊂ M

of the thick part M[ε,∞) admits a triangulation with at most K · vol(M) tetrahedra.

(2) Moreover, Nδ

(
M[ε,∞)

)
is obtained fromM by removing open tubular neighborhoods

around short geodesics, and truncating cusps [84, Proposition 1.2].

We now fix ε ∈ (0, ε3] and δ > 0. In the proof of Theorem 5.25, Theorem 5.30 plays the

crucial role in ensuring that the treewidth of Nδ

(
M[ε,∞)

)
is upper-bounded by a linear

function of the volume of M, and that ∂Nδ

(
M[ε,∞)

)
can be filled with solid tori.

For proving Theorem 5.26, we utilize Theorem 5.30 in a slightly different way:

Corollary 5.31. Let Y = Nδ

(
M[ε,∞)

)
as in Theorem 5.30. The following are true.

(1) For the Heegaard genus of Y we have g (Y) = O(vol(M)).

(2) Y has O(vol(M)) boundary components, each of which are tori.

Proof. To establish (1), first consider a triangulation T of Y with O(vol(M)) tetrahedra.

Such a triangulation is guaranteed to exist by Theorem 5.30(1). Fix an arbitrary partition

P = {∂1Y , ∂2Y} of the boundary components of Y (the trivial partition, i.e., ∂1Y = ∅,

∂2Y = ∂Y , is also allowed). Following the procedure described in Exampe 3.10, we obtain

a Heegaard splitting of Y compatible with P. By construction, the genus of this splitting

is O(vol(M)), hence, for the Heegaard genus of Y , we have g (Y) = O(vol(M)).

For the first part of (2) observe, that a tetrahedron can contribute triangles to at most

one boundary component. The second part of (2) follows from Theorem 5.30(2).
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Generalized Heegaard splittings. As we saw in Section 4.1.2, any decomposition

M = ⋃
i∈IMi of a 3-manifold into codimension zero submanifolds with pairwise disjoint

interiors gives rise to generalized Heegaard splittings of M. Here we construct a graph

splitting from a thick-thin decomposition of the hyperbolic 3-manifold M. Let

D = {Mi : i ∈ [m], ⋃mi=1Mi =M, and int(Mi) ∩ int(Mj) = ∅ for i 6= j} (5.21)

be a thick-thin decomposition ofM, whereM1 = Y = Nδ

(
M[ε,∞)

)
is the thick part and

M2 . . . ,Mm are the thin ones, see, e.g., Figure 5.15(i).

Note that, by Theorem 5.30(2), each Mi (2 ≤ i ≤ m) is homeomorphic to a solid

torus S1 × D2, and, by Corollary 5.31(2), m = O(vol(M)). Let us label the nodes of

Γ(D) via the identity map (Figure 5.15(ii)). For each i ∈ [m], choose a Heegaard splitting

Mi = Ni ∪Si
Ki of minimal genus compatible with this labeling (Figure 5.15(iii)).

1

2

3

45

6

(i) D (iii) F(ii) Γ(D)

M2

M3

M4M5

M6

S1
S4

S3

S2
S6

S5

R5

N1

K1

K5

N5

M1 = Y

Figure 5.15: (i) Schematic of a thick-thin decomposition D of a hyperbolic 3-manifold

M. (ii) The dual graph Γ(D) of D with its nodes labeled. (iii) The fork complex F of a

generalized Heegaard splitting associated with D and the given labeling of V (Γ(D))

Proposition 5.32. It follows directly from the construction that the Heegaard splittings

Mi = Ni ∪Si
Ki above possess the following properties:

(1) All the Ni are handlebodies. For N1 we have g(∂N1) = g(S1) = O(vol(M)).

(2) If 2 ≤ i ≤ m, then Ni is a solid torus, therefore g(∂Ni) = g(Si) = 1.

(3) K1 is a compression body with ∂+K1 = S1 and ∂−K1 = “disjoint union of m tori.”

(4) If 2 ≤ i ≤ m, then Ki is a trivial compression body homeomorphic to T2 × [0, 1].

For its boundary components we have ∂+Ki = Si and ∂−Ki = Ri =Mi ∩M1.

(5) We note that ∑m
i=1 g(Si) = O(vol(M)).
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Amalgamations. Introduced by Schultens in [133], amalgamation is a useful procedure

that turns a generalized Heegaard splitting into a classical one. There are several excellent

references where amalgamations are discussed in detail (cf. [5, Section 2], [43, Section 2.3],

[130, Section 5.4]), therefore we rely on a simple example to illustrate this operation.

Let M = (N1 ∪S1 K1) ∪R (N2 ∪S2 K2) be a linear splitting of M, which we would

like to amalgamate to form a classical Heegaard splitting M = N ∪S K, see Figure 5.16.

Recall that every compression body C can be obtained by first taking the thickened version

∂−C × [0, 1] of its lower boundary ∂−C and then attaching some 1-handles to ∂−C × {1}

(see steps P1 and P2 in Figure 3.7). In our example ∂−K1 = R = ∂−N2, so K1 can be

built from R× [−1, 0] by attaching two 1-handles h(1)
1 and h(1)

2 along R×{−1}. Similarly,

N2 is constructed by taking R× [0, 1] and attaching the 1-handles h(2)
1 and h(2)

2 to R×{1}.

The amalgamation process consists of two steps: 1. Collapse R× [−1, 1] to R× {0},

such that the attaching sites of the 1-handles h(1)
1 , h(1)

2 , h(2)
1 and h

(2)
2 remain pairwise

disjoint. (This can be achieved by slightly deforming the attaching maps, if necessary.)

2. Set N = N1 ∪ h(2)
1 ∪ h

(2)
2 and K = K2 ∪ h(1)

1 ∪ h
(1)
2 , see Figure 5.16(ii).

N1 N2K1 K2S1 S2R N KS

 

(ii)(i)
R× [−1, 1]

h
(1)
1

h
(1)
2

h
(2)
1

h
(2)
2

Figure 5.16: Amalgamating a generalized Heegaard splitting into a Heegaard splitting

If R is connected, then for the genus of the amalgamated Heegaard surface S we have

g(S) = g(S1) + g(S2)− g(R). (5.22)

However, in case R has multiple connected components, then (5.22) does not hold

anymore. The procedure of amalgamation nevertheless works for arbitrary generalized

Heegaard splittings (cf. Remark 4.2(4) and [5, Section 2], [43, Section 2.3], [130, Section

5.4]), and the formula (5.22) can be adapted to the general setting by taking into account

the Euler characteristic of the dual graph of the decomposition.
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Theorem 5.33 (Quantitative Amalgamation; cf. Theorems 2.8 and 2.9 in [5]).

(1) Any generalized Heegaard splitting M = ⋃
i∈I(Ni ∪Si

Ki) of a given 3-manifold M

can be amalgamated to a (classical) Heegaard splitting M = N ∪S K thereof.

(2) Let D be the decompositionM = ⋃
i∈IMi underlying the generalized Heegaard split-

ting above, and Γ(D) = (I, E) be its dual graph with Euler characteristic χ(Γ(D)).

For any e = {u, v} ∈ E, let Re be the connected component of Mu ∩Mv dual to

e.13 Then the genus g(S) of the amalgamated Heegaard surface S satisfies

g(S) =
∑
i∈I

g(Si)−
∑
e∈E

g(Re) + 1− χ(Γ(D)). (5.23)

Now let M be a hyperbolic 3-manifold and consider a generalized Heegaard splitting

M = ⋃
i∈I(Ni ∪Si

Ki) with minimum genus Heegaard surfaces, induced by a thick-thin

decomposition (Figure 5.15). By Theorem 5.33, we may amalgamate this to a classical

Heegaard splittingM = N ∪S K. Finally, by combining the formula (5.23) with the data

from Proposition 5.32, we immediately get

g(S) =
∑
i∈I

g(Si)−
∑
e∈E

g(Re) + 1− χ(Γ(D)) (5.24)

= g(S1) +
m∑
i=2

(g(Si)− g(Ri)) + 1− χ(Γ(D)) (5.25)

= O(vol(M)) +
m∑
i=2

(1− 1) + 1− 1 (5.26)

= O(vol(M)). (5.27)

This concludes the proof of Theorem 5.26.

13Note that there might be multiple arcs between the nodes u and v in Γ(D). We account for all.
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6 The Classification of 3-Manifolds with

Treewidth One

This chapter is dedicated to the proof of Theorem 1.9.

Theorem 1.9. The class of 3-manifolds of treewidth at most one coincides with the

class of 3-manifolds of Heegaard genus at most one together with the Seifert fibered space

SFS[S2 : (2, 1), (2, 1), (2,−1)] of Heegaard genus two.

One direction in Theorem 1.9 readily follows from work of Jaco and Rubinstein.

Theorem 6.1 (cf. [71], Theorem 6.1). Every lens space has a layered triangulation T

with the simplification of Γ(T ) being a path. In particular, all 3-manifolds of Heegaard

genus at most one have treewidth at most one.

For the proof of the other direction, the starting point is the following observation.

Lemma 6.2. If the simplification of a 4-regular multigraph is a tree, then it is a path.

Proof. Let G be a 4-regular multigraph whose simplification S(G) is a tree. Call an arc of

S(G) even (resp. odd) if its corresponding multiple arc in G consist of an even (resp. odd)

number of arcs. Let Odd(G) be the subgraph of S(G) consisting of all odd arcs. It follows

from a straightforward parity argument that all nodes in Odd(G) have an even degree. In

particular, if the set E(Odd(G)) of arcs is nonempty, then it necessarily contains a cycle.

However, this cannot happen as S(G) is a tree by assumption. Consequently, all arcs of

S(G) must be even. This implies that every node of S(G) has degree at most 2 (otherwise

there would be a node in G with degree > 4), hence S(G) is a path.

Consequently, if tw (Γ(T )) ≤ 1 for a triangulation T of a closed 3-manifold, then Γ(T )

is a “thick” path. If tw (Γ(T )) = 0, then Γ(T ) is a single node with two loops (Figure
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∆n∆1 ∆2 ∆3

· · ·(iii)(ii)(i)

Figure 6.1: The only possible dual graphs (corresponding to closed 3-manifolds) of

treewidth at most one

6.1(i)). By looking at the Closed Census [28], the only orientable 3-manifolds admitting

a dual graph of this kind are S3 and two lens spaces. If Γ(T ) has a quadruple arc, then

it must be a path of length two (Figure 6.1(ii)), and the only 3-manifold not a lens space

appearing here is SFS[S2 : (2, 1), (2, 1), (2,−1)] which has Heegaard genus two, cf. [128,

p. 27]. Otherwise, order the tetrahedra ∆1, . . . ,∆n of T as shown in Figure 6.1(iii), and

define Ti ⊂ T to be the ith subcomplex of T consisting of ∆1, . . . ,∆i.

T1 is obtained by identifying two triangles of ∆1. Without loss of generality, we may

assume that these are the triangles ∆1(013) and ∆1(023). There are six possible face

gluings between them (corresponding to the six bijections {0, 1, 2} → {0, 2, 3}).

The gluing ∆1(013) 7→ ∆1(023) yields a 3-vertex triangulation of the 3-ball, called

a snapped 3-ball, and is an admissible choice for T1, Figure 6.2(i). ∆1(013) 7→ ∆1(032)

and ∆1(013) 7→ ∆1(203) both create Möbius bands as vertex links of the vertices (0)

and (2), respectively, and thus these 1-tetrahedron complexes cannot be subcomplexes of

a 3-manifold triangulation. ∆1(013) 7→ ∆1(230) and ∆1(013) 7→ ∆1(302) both produce

valid but isomorphic choices for T1: the minimal layered solid torus of type LST(1, 2,−3),

Figure 6.2(ii). Lastly, ∆1(013) 7→ ∆1(320) identifies the edge (03) with itself in reverse,

it is hence invalid. We discuss the two valid cases separately, starting with the latter one.

(i) ∆1(013) 7→ ∆1(023) (ii) ∆1(013) 7→ ∆1(230)

3

(iii) (iv)

0

2

1

30

2

1

30

2

1

Figure 6.2: (i) The snapped 3-ball. (ii) A layered solid torus, (iii) with four normal

triangles comprising the single vertex link, (iv) which is a triangulated hexagonal disk
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Lemma 6.3. Let T be a triangulation of a closed, orientable 3-manifoldM. Assume that

tw (Γ(T )) = 1 and T1 is a solid torus. Then M has Heegaard genus g (M) ≤ 1.

Proof. The proof consists of the following three parts.

1) We systematize all subcomplexes T2 ⊂ T which arise from gluing a tetrahedron ∆2

to T1 along two triangular faces, and discard all complexes which cannot be part of

a 3-manifold triangulation.

2) For the remaining cases we discuss the combinatorial types of complexes Ti, i > 2,

and triangulations of 3-manifolds arising from them.

3) We show for all resulting triangulations, that the fundamental group of the under-

lying manifold is cyclic, and that it thus is of Heegaard genus at most one.

To enumerate all possibilities for T2, we may assume that T1 is obtained by ∆1(013) 7→

∆1(230). The boundary ∂T1 is built from two triangles (012)∂ and (123)∂, sharing an edge

(12), via the identifications (01) = (23) and (02) = (13), see Figure 6.2(ii). The vertex

link of T1 is a triangulated hexagon as shown in Figure 6.2(iii)–(iv).

The second subcomplex T2 is obtained from T1 by gluing ∆2 to the boundary of T2

along two of its triangles. By symmetry, we are free to choose the first gluing. Hence,

without loss of generality, let T ′2 be the complex obtained from T1 by gluing ∆2 to T1

with gluing ∆2(012) 7→ (012)∂. The result is a 2-vertex triangulated solid torus with

four boundary triangles ∆2(013), ∆2(023), ∆2(123) and (123)∂, see Figure 6.3(ii). Since

adjacent edges in the boundary of the unique vertex link of T1 are always normal arcs

in distinct triangles of ∂T1, the vertex links of T ′2 must be a triangulated 9-gon and a

single triangle, shown in Figure 6.3(iii). Note that both vertex links of T ′2 are symmetric

with respect to the normal arcs coming from boundary triangles ∆2(013), ∆2(023) and

∆2(123). By this symmetry, we are free to choose whether to glue ∆2(013), ∆2(023) or

∆2(123) to (123)∂, in order to obtain T2. Therefore we have the following six possibilities

to consider (Figure 6.4).

∆2(123) 7→ (123)∂ is a layering onto (12). It yields another layered solid torus with vertex

link a triangulated hexagon with edges adjacent in the boundary of the link being

normal arcs in distinct faces in ∂T2. Hence we have the same options for T3 as the

ones in this list. Any complex obtained by iterating this case is of this type.
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(iii)(i)

20

1 3

20

1 3
(ii)

Figure 6.3: (i) The solid torus T1, (ii) the complex T ′2 , and (iii) the vertex links of T ′2

(i) ∆2(123) 7→ (123)∂ (ii) ∆2(123) 7→ (132)∂ (iii) ∆2(123) 7→ (213)∂

(iv) ∆2(123) 7→ (231)∂ (v) ∆2(123) 7→ (312)∂ (vi) ∆2(123) 7→ (321)∂

disk 1-punctured Klein bottle

3-punctured sphere3-punctured sphere 1-punctured Klein bottle

INVALID EDGE
(12) ↔ (21)

Figure 6.4: The six possibilities for the link of the unique vertex in T2

Definition 6.4 (type). Here, as well as for the remainder of the proof, whenever we obtain

a subcomplex with all cases for the next subcomplex equal to a case already considered

(i.e., isomorphic boundary complexes compatible with isomorphic boundaries of vertex

links), we talk about these cases to be of the same type.

We denote the type obtained via ∆2(123) 7→ (123)∂ by TI.
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∆2(123) 7→ (132)∂ is invalid, as it creates a punctured Klein bottle as vertex link.

∆2(123) 7→ (213)∂ is invalid, as it identifies (12) on the boundary with itself in reverse.

∆2(123) 7→ (231)∂ gives a 1-vertex complex with triangles (013)∂ and (023)∂ comprising

its boundary, which is isomorphic to the boundary of the snapped 3-ball with all of

its three vertices identified. The vertex link is a 3-punctured S2 with two boundary

components being normal loop arcs and one consisting of the remaining four normal

arcs. This complex is discussed in detail below; we denote its type by TII.

∆2(123) 7→ (312)∂ results in a 1-vertex complex of type TII as in the previous case.

∆2(123) 7→ (321)∂ is invalid: it produces a punctured Klein bottle in the vertex link.

Now we discuss complexes of type TII. To this end, let T2 be the complex in Figure

6.5(ii) defining this type. By gluing ∆3 to T2 along a boundary triangle, say ∆3(013) 7→

(013)∂, we obtain a complex T ′3 (see Figure 6.5(iii)). Note that no boundary edge of the

3-punctured sphere vertex link L can be identified with an edge in another boundary

component of L, for that would create genus in L (an obstruction to being a subcomplex

of a 3-manifold triangulation in which all vertex links must be S2). As shown in Figure

6.6, there is a unique gluing to avoid this, namely ∆3(023) 7→ (023)∂, which yields a

1-vertex complex T3 with vertex link still being a 3-punctured sphere, but now with three

boundary components consisting of two edges each, as indicated in Figure 6.6(i). Let TIII

denote its type. Repeating the same argument for T3 implies that a valid T4 must be

again of type TII.

Altogether, the type of each intermediate complex Ti (i < n) is either TI (a layered

solid torus), or one of the two types TII and TIII of 1-vertex complexes with a 3-punctured

sphere as vertex link. If Tn−1 is of type TI, then it can always be completed to a triangu-

lation of a closed 3-manifold by adding a one-tetrahedron solid torus or a snapped 3-ball.

If Tn−1 is of type TII, it may be completed by adding a snapped 3-ball. If Tn−1 is of type

TIII it cannot be completed to a triangulation of a 3-manifold.

To conclude that any resulting T triangulates a 3-manifold M of Heegaard genus at

most one, we observe that the fundamental group of M is generated by one element.

Indeed, π1(T1) is isomorphic to Z and is generated by a boundary edge. Furthermore,

since T1 only has one vertex, all edges in T1 must be loop edges, and no edge which is

trivial in π1(T1) can become non-trivial in the process of building up the triangulation
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(iii)

20

1 3

(ii)→ →→ →

−→

20

1 3

TII

−→

20

1 3

(i) ∆2(123) 7→ (231)∂ ∆3(013) 7→ (013)∂

Figure 6.5: Discussion of the complex of type TII

of the closed 3-manifold. When we extend T1 by attaching further tetrahedra along two

triangles each, then most edges of the newly added tetrahedron are identified with edges

of the previous complex and the unique new boundary edge can be expressed in terms of

the existing generator. Therefore the fundamental group of the new complex still admits

a presentation with one generator. Moreover, since we have a one-vertex triangulation,

no new generator can arise in the last step of gluing the two boundary triangles together.

So either π1(M) is infinite cyclic, i.e., isomorphic to Z, in which case M must be

S2× S1 [57]; or π1(M) is finite, but then it is spherical by the Elliptization Theorem (see

Theorem 3.21), hence it is a lens space [146, Theorem 4.4.14.(a)].

Lemma 6.5. Let T be a triangulation of a closed, orientable 3-manifold M with n tetra-

hedra, such that tw (Γ(T )) = 1 and both T1 and T \ Tn−1 is a snapped 3-ball. Then M

has Heegaard genus g (M) ≤ 1.

Proof. The proof follows the same structure as the one of Lemma 6.3. Let T1 be a snapped

3-ball, say, obtained by the gluing ∆1(013) 7→ ∆1(023). Its boundary is a three-vertex

two-triangle triangulation of S2 with triangles (012)∂ and (123)∂ glued along common

edge (12) with edge identifications (01) = (02) and (13) = (23), see Figure 6.7(i). One



79

(iv) ∆3(023) 7→ (230)∂ (v) ∆3(023) 7→ (302)∂ (vi) ∆3(023) 7→ (320)∂

3-punctured torus3-punctured torus

(i) ∆3(023) 7→ (023)∂ (ii) ∆3(023) 7→ (032)∂ (iii) ∆3(023) 7→ (203)∂

3-punctured sphere surface with genus surface with genus

INVALID EDGE
(03) ↔ (30)

Figure 6.6

vertex link of T1 consists of two triangles identified along a common edge, and two vertex

links are single triangles with two of their edges identified (Figure 6.7(iii)).

T2 is obtained from T1 by gluing ∆2 to the boundary of T2 along two of its triangles.

Again, by symmetry, we are free to choose the first gluing. Hence, let T ′2 be the complex

obtained from T1 by gluing ∆2 to T1 via ∆2(012) 7→ (012)∂. The result is a 4-vertex

triangulated 3-ball with four boundary triangles ∆2(013), ∆2(023), ∆2(123), and (123)∂
(Figure 6.8(i)). The vertex links of T ′2 are a two-triangle triangulation of a bigon with

an interior vertex of degree one, a triangulation of a hexagon, and two 1-triangle trian-

gulations of a disk, one with a single boundary edge, and one with three boundary edges,

cf. Figure 6.8(ii). While all four vertex links of T ′2 are symmetric with respect to the

normal arcs of the boundary triangles ∆2(013) and ∆2(023), the normal arcs of ∆2(123)

are different. It follows that there are twelve cases to consider (cf. Figures 6.9 and 6.10).

∆2(013) 7→ (123)∂ In this case we can see that T2 has as boundary two triangles identified

along their boundaries with two vertices identified. The two vertex links are an

annulus and a disk, and all three boundary components of the links are bigons.



80

0 3

2

1
(i)

0 3

2

1
(ii) (iii)

Figure 6.7: (i) A snapped 3-ball, (ii) its normal triangles, and (iii) its vertex links

20

1 3
(i) (ii)

Figure 6.8: (i) The complex T ′2 , and (ii) its four vertex links

Extending this case to a valid complex T3 is only possible in the trivial way, i.e.,

gluing ∆3 to T2 along ∆3(123) 7→ (123)∂ and ∆3(023) 7→ (123)∂. This yields a

2-vertex complex with boundary isomorphic to that of the snapped 3-ball but with

one apex identified with the vertex of the loop edge. Again, we have one annulus

and one disk as vertex links. In accordance with the structure of ∂T3, the disk is

now bounded by a single normal arc while the annulus has a loop normal arc as one

boundary component, and four normal arcs in the other.

We can glue ∆4 to the unique valid complex T3 described in the previous paragraph

in twelve distinct ways: We start by ∆4(012) 7→ (012)∂ and proceed by gluing

∆4(013) and ∆4(023) to (012)∂ in all possible six ways each.

Apart from the trivial gluing, which results in the same type as T2 above, we obtain

three 1-vertex complexes with boundary being S2 with vertices identified and vertex

link a 3-punctured sphere. Two of them have a vertex link with three boundary

components consisting of two edges each (i.e., ∂T4 is of type two triangles identified
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(iii) ∆2(013) 7→ (213)∂

Möbius band, disk
(iv) ∆2(013) 7→ (231)∂

disk; T2 is a solid torus

(v) ∆2(013) 7→ (312)∂

annulus, disk
(vi) ∆2(013) 7→ (321)∂

Möbius band, disk

(ii) ∆2(013) 7→ (132)∂

disk; but T2 is non-orientable
(i) ∆2(013) 7→ (123)∂

annulus, disk

Figure 6.9

along their boundaries and all vertices identified), one of them has a vertex link

with two boundary components with one and one boundary component with four

edges (i.e., the boundary ∂T4 is isomorphic to that of the snapped 3-ball with all

vertices identified). These cases correspond to types TIII and TII respectively, from

the proof of Lemma 6.3.

∆2(013) 7→ (132)∂ yields a non-orientable 1-handle with Klein bottle boundary, which

cannot be completed to an orientable 3-manifold. Hence we are done with this case.

∆2(013) 7→ (213)∂ is invalid, as it produces a Möbius band in one of the vertex links.

∆2(013) 7→ (231)∂ gives a 1-vertex triangulation of the solid torus. In particular, the

vertex link is a triangulated hexagon with neighboring edges in the boundary of the

link being normal arcs in triangles of ∂T2. We can thus proceed as in the proof of
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Lemma 6.3 to conclude that T must be of Heegaard genus one.

∆2(013) 7→ (312)∂ produces a 2-sphere of type “boundary of the snapped 3-ball” in the

boundary, and two vertex links. One of them an annulus, the other one a disk. Here,

the disk is bounded by a single normal arc while the annulus has a loop normal arc

as one boundary component, and four normal arcs in this other. This case is of the

same type as T3 in case ∆2(013) 7→ (123)∂ above.

∆2(013) 7→ (321)∂ creates a Möbius band in the vertex link and can thus be discarded.

(iii) ∆2(123) 7→ (213)∂ (iv) ∆2(123) 7→ (231)∂

annulus, disk

(v) ∆2(123) 7→ (312)∂

annulus, disk
(vi) ∆2(123) 7→ (321)∂

Möbius band, disk

(ii) ∆2(123) 7→ (132)∂

Möbius band, disk
(i) ∆2(123) 7→ (123)∂

three disks

(12) ↔ (21)
INVALID EDGE

Figure 6.10

∆2(123) 7→ (123)∂ is a layering that creates an interior degree two edge. Consequently

we obtain two triangles glued along their boundaries for ∂T3. The three vertex links

are all disks with two boundary edges.
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Extending this complex by attaching T3 yields three valid complexes. The first is

obtained via the trivial gluing and of the same type as the snapped 3-ball T1. The

other two are 1-vertex triangulations of the solid torus discussed in Lemma 6.3.

∆2(123) 7→ (132)∂ yields a Möbius band in the vertex link and can be discarded.

∆2(123) 7→ (213)∂ identifies (12) on the boundary with itself in reverse, thus is invalid.

∆2(123) 7→ (231)∂ This gluing, again, produces two vertex links. One of them an annulus,

the other one a disk. The boundary of T2 and the boundary components of the vertex

links are of the same type as in the case ∆2(013) 7→ (123)∂.

∆2(123) 7→ (312)∂ gives an annulus and a disk as vertex links. ∂T2 and the boundary

components of the vertex links are of the same type as in the case ∆2(013) 7→ (123)∂.

∆2(123) 7→ (321)∂ produces a Möbius band in the vertex link and can be discarded.

It remains to show—along the same lines as in Lemma 6.3—that none of the complexes

described above can be completed to a triangulation of Heegaard genus greater than one.

It suffices to look at the complexes which can be completed to a triangulation of a manifold.

The 1-vertex complexes with torus boundary (∆2(013) 7→ (231)∂ and ∆2(123) 7→ (123)∂)

are solid tori and thus admit a fundamental group with one generator. Following the proof

of Lemma 6.3, the Heegaard genus of a triangulation of a closed 3-manifold obtained from

these subcomplexes are of Heegaard genus at most one. The three 1-vertex complexes

with vertex links a 3-punctured sphere have as fundamental group the free group with

two generators. However, note that these complexes can only be extended by trivial

gluings and completed by inserting a 1-tetrahedron snapped 3-ball or, in the case of three

boundary components of size two, closed off by trivially identifying the two boundary

triangles. In all of these cases we obtain a triangulation of the 3-sphere and in particular

a closed 3-manifold of Heegaard genus at most one.
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7 Some 3-Manifolds with Treewidth Two

In what follows, we use the classification of 3-manifolds of treewidth one (Theorem 1.9)

to show that a large class of orientable Seifert fibered spaces and some graph manifolds

have treewidth two. This is done by exhibiting appropriate triangulations, which have all

the hallmarks of a space station. First, we review the building blocks (cf. Appendix E).

7.1 What Makes a Space Station?

Robotic arms. These are the layered solid tori with 2-triangle boundaries introduced

in Section 4.2.3 and encountered in the proof of Theorem 1.9. Their dual graphs are thick

paths (Figure 4.10(v)). A layered solid torus is of type LST(p, q, r) if its meridional disk

intersects its boundary edges p, q and r times. For any coprime p, q, r with p+ q+ r = 0,

a triangulation of type LST(p, q, r) can be realized by [24, Algorithm 1.2.17].

Example 7.1. A special class of robotic arms are the ones of type LST(0, 1, 1), as they

can be used to trivially fill-in superfluous torus boundary components without inserting

an unwanted exceptional fiber into a Seifert fibered space (cf. descriptions of A2 and A1

below). One of the standard triangulations of robotic arms of type LST(0, 1, 1) has three

tetrahedra ∆i, 0 ≤ i ≤ 2, and is given by the gluing relations

∆0(023) 7→ ∆1(013), ∆0(123) 7→ ∆1(120), ∆1(023) 7→ ∆2(201),

∆1(123) 7→ ∆2(301), ∆2(023) 7→ ∆2(312).
(7.1)

Core unit with three docking sites. Start with a triangle t, take the product t×[0, 1],

triangulate it using three tetrahedra, Figure 7.1(i)–(ii), and glue t×{0} to t×{1} without a
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twist, Figure 7.1(iii). The dual graph of the resulting complex A3 (which is topologically

a solid torus) is K3, hence of treewidth two. Its boundary (a 6-triangle triangulation

of the torus) can be split into three 2-triangle annuli, corresponding to the edges of

t, each of which we call a docking site. Edges running along a fiber and thus of type

{vertex of t} × [0, 1] are termed vertical edges. Edges orthogonal to the fibers, i.e., the

edges of t×{0} = t×{1}, are termed horizontal edges. The remaining edges are referred

to as diagonal edges. The triangulation of A3 has gluing relations

∆0(012) 7→ ∆1(012), ∆1(013) 7→ ∆2(013), ∆2(023) 7→ ∆0(312). (7.2)

∆0

∆1

∆2

2

1

1

1

3

3

2

2

0

0

0

3
∆0 ∆1 ∆2

(i) (iii)(ii)

∆0

∆1

∆2

Figure 7.1: Construction of the core unit A3 with three docking sites

Core assembly with r docking sites. For r = 2 (resp. r = 1), take a core unit A3

and glue a robotic arm of type LST(0, 1, 1) onto one (resp. two) of its docking sites such

that the unique boundary edge of the robotic arm (i.e., the boundary edge which is only

contained in one tetrahedron of the layered solid torus) is glued to a horizontal boundary

edge of A3. See Example 7.1 for a detailed description of a particular triangulation of

a layered solid torus of type LST(0, 1, 1) with unique boundary edge being ∆0(01). The

resulting complex is denoted by A2 (resp. A1) and their dual graphs are shown in Figure

7.1. Observe that they have treewidth two.

For Ar (r ≥ 3) take r − 2 copies of A3, denote them by Ai
3 (1 ≤ i ≤ r − 2) with

tetrahedra ∆i
0, ∆i

1 and ∆i
2 (1 ≤ i ≤ r− 2). Glue them together by mirroring them across

one of their docking sites as shown by (7.3) for 1 ≤ i ≤ r − 3 odd, and by (7.4) for
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2 ≤ i ≤ r − 3 even. The resulting complex, denoted by Ar (see Figure 7.3 for r = 5), has

2r boundary triangles which become r docking sites.

i odd: ∆i
1(123) 7→ ∆i+1

1 (123), ∆i
2(123) 7→ ∆i+1

2 (123). (7.3)

i even: ∆i
0(023) 7→ ∆i+1

0 (023), ∆i
1(023) 7→ ∆i+1

1 (023). (7.4)

(i) Γ(A1) (ii) Γ(A2)

Figure 7.2: The dual graphs of the core assemblies A1 and A2 with one and two docking

sites, respectively

∆1
0

∆1
1

∆1
2 ∆2

0

∆2
1

∆2
2 ∆3

0

∆3
1

∆3
2

A5

Γ(A5)

Figure 7.3: The core assembly A5 with five docking sites and its dual graph Γ(A5)

Möbius laboratory module. This complex, denoted by M, is given by

T0(123) 7→ T1(123), T0(023) 7→ T1(031), T1(012) 7→ T2(201),

T1(023) 7→ T2(023), T0(013) 7→ T2(132).
(7.5)

Its dual graph is a triangle with two double edges, and hence of treewidth two (see, for

instance, Figure 7.5). M has one torus boundary component, or docking site, given by

the two triangles T0(012) and T2(013) with edges T0(01) = T2(13), T0(02) = T2(03), and

T0(12) = T2(01). M triangulates the orientable S1-bundle over N1,1.
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7.2 Constructing Space Stations

Theorem 7.2. Orientable Seifert fibered spaces over S2 have treewidth at most two.

Proof. To obtain a treewidth two triangulation of SFS[S2 : (a1, b1), . . . , (ar, br)], start with

the core assembly Ar and a collection {LST(ai,±|bi|,−a ∓ |bi|) : 1 ≤ i ≤ r} of robotic

arms. The robotic arms are then glued to the r docking sites (2-triangle torus boundary

components, separated by the vertical boundary edges) of Ar, such that boundary edges

of type ai are glued to vertical boundary edges, and edges of type bi are glued to horizontal

boundary edges. The sign in LST(ai,±|bi|,−a ∓ |bi|) is then determined by the type of

diagonal edge in the ith docking site of Ar and by the sign of bi. (See, e.g., Figure 7.4.)

··
·

··
·

··
·

· · ·
· · ·

· · ·
Ar· · ·

Figure 7.4: Dual graph of a treewidth two triangulation of an orientable SFS over S2

Remark 7.3. Note that, in some cases, a fiber of type (2, 1) can be realized by identifying

the two triangles of a docking site of Ar with a twist. In the dual graph this appears as

a double arc rather than the attachment of a thick path. See Figure 7.6 on the right for

an example in the treewidth two triangulation of the Poincaré homology sphere.

Theorem 7.4. An orientable Seifert fibered surface over a non-orientable surface is of

treewidth at most two.

Proof. In order to obtain a treewidth two triangulation of the orientable Seifert fibered

space SFS[Ng : (a1, b1), . . . , (ar, br)] over the non-orientable surface Ng of genus g, start
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with a core assembly Ar+g and attach g copies Mj, 1 ≤ j ≤ g, of the Möbius laboratory

module via

T j0 (012) 7→ ∆j
2(201) and T j2 (013) 7→ ∆j

0(013), (7.6)

where T j0 , T j1 and T j2 are the tetrahedra comprising Mj, and ∆j
0, ∆j

1 and ∆j
2 denote

the tetrahedra making up the first g core units (each being a copy of A3) in Ar+g. By

construction, this produces a triangulation of the orientable S1-bundle over Ng,1. Proceed

by attaching a robotic arm of type LST(ai,±|bi|,−ai ∓ |bi|), 1 ≤ i ≤ r, to each of the

remaining r docking sites. Again, for the gluings between the robotic arms and the core

assembly Ar+g, the edges of type ai must be glued to the vertical boundary edges, the

edges of type bi must be glued to the horizontal boundary edges, and attention has to be

paid to the signs of the bi and to how exactly diagonal edges run. See Figure 7.5 for the

dual graph of the resulting complex, which is of treewidth two by inspection.

··
·

··
·

··
·

· · ·
· · ·

· · ·
Ar+g

· · ·

· · ·

Figure 7.5: Dual graph of a treewidth two triangulation of an orientable SFS over Ng

Corollary 7.5. An orientable Seifert fibered space M over S2 or a non-orientable sur-

face is of treewidth one if M is a lens space or SFS[S2 : (2, 1), (2, 1), (2,−1)], and two

otherwise.
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Corollary 7.5 directly follows from the combination of Theorems 1.9, 7.2 and 7.4.

Corollary 7.6. Orientable 3-manifolds with spherical or S2×R geometry have treewidth

at most two.

Proof. Every orientable 3-manifold with spherical or S2×R geometry can be represented

either as a Seifert fibered space over S2 with at most three exceptional fibers, or as a

Seifert fibered space over the projective plane (i.e., N1) with at most one exceptional fiber

[135]. Hence the result follows from Theorems 7.2 and 7.4.

Corollary 7.7. Graph manifolds MT modeled on a tree T with nodes being orientable

Seifert fibered spaces over S2 or Ng, g > 0, have treewidth at most two.

Proof of Corollary 7.7. Let M be such a graph manifold. A treewidth two triangulation

of M can be constructed in the following way: For every node of T of degree k insert a

treewidth two triangulation of the respective Seifert fibered space from Theorem 7.2 or

Theorem 7.4 with k additional docking sites. As can be deduced from the construction

of Ar, this can be done without increasing the treewidth. Proceed by gluing the Seifert

fibered spaces along the arcs of T using the additional docking sites (torus boundary

components) added in the previous step: Every such gluing is determined by a diffeo-

morphism on the torus and every such diffeomorphism can be modelled by a sequence

of layerings onto the boundary components with dual graph a path of double edges of

treewidth one. This fact can be deduced from, for instance, [71, Lemma 4.1]. Altogether,

the triangulation constructed this way is of treewidth at most two, cf. Figure 7.7.

Corollary 7.8. Minimal triangulations are not always of minimum treewidth.

Proof. The Poincaré homology sphere SFS[S2 : (2, 1), (3, 1), (5,−4)] has treewidth two but

its minimal triangulation has treewidth four, see Figure 7.6.

Corollary 7.9. There exist irreducible 3-manifolds with treewidth two, but arbitrarily high

Heegaard genus.

Proof. Due to work of Boileau and Zieschang [21, Theorem 1.1(i)], the 3-manifold

Mm = SFS[S2 : (2, 1), . . . , (2, 1), (am, bm) ],

for am odd, has Heegaard genus g (Mm) ≥ m− 2. At the same time, Mm is irreducible

[134, Theorem 3.7.17] and tw (Mm) = 2 due to Theorem 7.4.
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(i) (ii)

Figure 7.6: Dual graph of the minimal (i), and of a treewidth two (ii) triangulation of the

Poincaré homology sphere (cf. Corollary 7.8 and Remark 7.3)

By combining Theorems 1.9, 7.2 and 7.4, we can determine the treewidth of most

closed, orientable 3-manifolds triangulable with at most 10 tetrahedra (Table 7.1).

n # mfds. M tw (M) = 0 tw (M) = 1 tw (M) = 2 unknown

1 3 3 0 0 0

2 7 0 7 0 0

3 7 0 6 1 0

4 14 0 10 4 0

5 31 0 20 11 0

6 74 0 36 36 2

7 175 0 72 100 3

8 436 0 136 297 3

9 1154 0 272 861 21

10 3078 0 528 2489 61

Σ 4979 3 1087 3799 90

Table 7.1: The 3-manifolds triangulable with ≤ 10 tetrahedra and their treewidths

Using similar constructions it can be shown that orientable Seifert fibered spaces over

orientable surfaces have treewidth at most four. Naturally, this only provides an upper

bound rather than the actual treewidth of this family of 3-manifolds. Computing the

maximum treewidth of an orientable Seifert fibered space is left as future work.
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SFS2

SFS1

SFS3

SFS4SFS5

T

Figure 7.7: Dual graph of a treewidth two triangulation of a graph manifold modeled on

the tree T . In order to increase visibility, the core of each constituent Seifert fibered space

is highlighted in gray
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A Computational Aspects

A.1 Complexity and Fixed Parameter Tractability

In Table A.1 we collect complexity and fixed parameter tractability properties of comput-

ing the considered graph parameters. First, we explain the columns of the table.

• Complexity. The computational complexity of the question “Is p(G) ≤ k?”. Here

k is a variable given as part of the input.

• FPT. Fixed parameter tractability in the natural parameter. The check mark (X)

indicates the following: if k is fixed (as opposed to being a variable part of the

input) and G is an n-vertex graph, then the answer to the question “Is p(G) ≤ k?”

can be found in O(poly(n)) time.

• Bounded-degree graphs. What is known if we restrict our attention to a family

of bounded-degree graphs.

p Complexity FPT Bounded-degree graphs

tw NP-complete [3] X [17] remains NP-complete [20]

pw NP-complete [3] X [17] remains NP-complete [109]1

cw NP-complete [53] X [143] polynomial if tw bounded [142]

cng NP-complete [138] X [141]2

Table A.1: Complexity and fixed parameter tractability of selected graph parameters

1NP-completeness is shown for the vertex separation number which is equivalent to pathwidth [79].
2See the discussion in the introduction of [141].
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We point out that there is a more detailed table in [14], showing the complexity of

computing pathwidth and treewidth on several different classes of graphs.

A.2 On Working with Different Width Parameters

A small treewidth k ≥ 0 of the dual graph Γ(T ) of an n-tetrahedron triangulation T of

a 3-manifold can be exploited by applying standard dynamic programming techniques to

the tetrahedra of the triangulation.

In a tree decomposition T of Γ(T ) with O(n) bags realizing width k, every bag B ∈

V (T ) corresponds to a subcomplex XB ⊂ T of at most k + 1 tetrahedra of T . Going up

from the leaves of T , for each bag B ∈ V (T ), compute a list of candidate solutions of the

given problem on XB ⊂ T . When processing a new bag B′ ∈ V (T ), for all child bags

Bi ∈ V (T ), 1 ≤ i ≤ r, their lists of candidate solutions (which are already computed) are

used to validate or disqualify candidate solutions for XB′ . Due to property 2) of a tree

decomposition (Definition 2.1), every time a tetrahedron disappears from a bag while we

go up from the leaves to the root of T , it never reappears. This means that constraints

for a global solution coming from such a “forgotten” tetrahedron are fully incorporated

in the candidate solutions of the current bags. If for each bag the running time, as well

as the length of the list of candidate solutions is a function in k, the procedure must have

running time O(n) for triangulations with dual graphs of constant treewidth.

Moreover, for every tree decomposition T with O(n) bags, there exists a linear time

procedure to preprocess T into a tree decomposition T ′ of Γ(T ), also with O(n) bags,

such that every bag is of one of three types: introduce, forget, or join bag [82]. Such a

nice tree decomposition3 has the advantage that only three distinct procedures are needed

to process all the bags—causing such FPT-algorithms to be much simpler in structure:

Introduce and forget bags are bags in T with only one child bag where a node is either

added to or removed from the child bag to obtain the parent bag. Procedures to deal with

these situations are often comparatively simple to implement and running times are often

comparatively feasible. A join bag is a bag with two child bags such that parent bag and

both child bags are identical. Depending on the problem to be solved, the procedure of

3See the 3-manifold software Regina [28] for a visualization of a tree decomposition, and a nice tree
decomposition of the dual graph of any given triangulation.
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a join bag can be more intricate, and running times are often orders of magnitude slower

than in the other two cases.

Pathwidth vs. treewidth. Since every (preprocessed) nice path decomposition is a

nice tree decomposition without join bags, every FPT-algorithm in the treewidth of the

input is also FPT in the pathwidth with the (often dominant) running time of the join

bag removed. Thus, at least in certain circumstances, it can be beneficial to work with

nice path decompositions—and thus with pathwidth as a parameter—instead of treewidth

and its more complicated join bags in their nice tree decompositions.

For small cutwidth and for small congestion, similar dynamic programming techniques

can be applied to the cutsets of the respective linear or binary tree layouts of the nodes and

arcs of the dual graph of a triangulation. Thus, in the following paragraph we compare

these parameters to treewidth (and pathwidth), and point out some potential benefits

from using them as alternative parameters.

Congestion vs. treewidth and cutwidth vs. pathwidth. Parameterized algorithms

using pathwidth or treewidth operate on bags containing elements corresponding to tetra-

hedra of the input triangulations. In contrast to this, parameterized algorithms using

cutwidth or congestion operate on cutsets containing elements corresponding to triangles

of the input triangulations. It follows that an algorithm operating on a tree decomposi-

tion of width k must handle a 3-dimensional subcomplex of the input triangulation made

of up to 15(k + 1) faces in one step. An algorithm operating on a tree layout of conges-

tion k, however, only needs to consider a 2-dimensional subcomplex of up to 7k faces of

the input triangulation per step. Moreover, cutwidth and congestion are equivalent to

pathwidth and treewidth respectively (for bounded degree graphs, up to a small constant

factor, see Theorems 2.4 and 2.6), and parameterized algorithms for 3-manifolds are not

just theoretical statements, but may give rise to practical tools outperforming current

state-of-the-art algorithms (see, for example, [32]). These observations suggest that, at

least for some problems, parameterized algorithms using cutwidth or congestion of the

dual graph have a chance to outperform similar algorithms operating on pathwidth or

treewidth, respectively.
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B High-Treewidth Triangulations

B.1 Most Triangulations Have Large Treewidth

As mentioned in the Introduction, most triangulations of most 3-manifolds must have

large treewidth. Here we briefly review two well-known and simple observations that,

together, imply this fact. Since they are hard to find in the literature, we also sketch their

proofs.

Proposition B.1. There exists a constant C > 1, such that there are at least Cn log(n)

3-manifolds which can be triangulated with ≤ n tetrahedra.

Sketch of the proof. Note that the number of isomorphism classes of graphs is superexpo-

nential in the number of nodes. Consider the family of graph manifolds where the nodes

are Seifert fibered spaces of constant size.1 Conclude by the observation that graph man-

ifolds modeled on non-isomorphic graphs are non-homeomorphic, cf. [89, Section 3].

Proposition B.2. Given k ≥ 0, there exists a constant Ck > 1 such that there are at most

Cn
k triangulations of 3-manifolds with dual graph of treewidth ≤ k and ≤ n tetrahedra.

Sketch of the proof. The property of a graph to be of bounded treewidth is closed under

minors. Hence, it follows from a theorem of Norine, Seymour, Thomas and Wollan [113]

that the number of isomorphism classes of graphs with treewidth ≤ k is at most expo-

nential in the number of nodes n of the graph. Furthermore, any given graph can at most

produce a number of combinatorially distinct triangulations exponential in n.

1See [114] for an overview on graph manifolds and Seifert fiber spaces.
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triangulations with tw ≤ k

(at most exponential growth)

· · · · · · · · ·

?

Figure B.1: As n grows larger, the triangulations of treewidth at most k represent a rapidly

decreasing fraction of the set Tn of all (≤ n)-tetrahedra triangulations of 3-manifolds

Let Mi ⊂ Tnj
denote the set of triangulations of the manifold Mi with at most nj

tetrahedra. The main question we are investigating in this article is the following:

Given a 3-manifold M, does there always exist some nM ∈ N, such that the set of

triangulations M in TnM overlaps with the region of treewidth ≤ k triangulations? In

other words, does the set of triangulations of every 3-manifold eventually behave like the

one of M1 on Figure B.1? Theorem 1.2 answers this question in the negative in general.

B.2 Constructing High-Treewidth Triangulations

Proposition B.3. Every 3-manifold admits a triangulation of arbitrarily high treewidth.

Sketch of the proof. Treewidth is monotone with respect to taking subgraphs [15, Lemma

11 (Scheffler)], hence it is sufficient to exhibit high-treewidth triangulations for the 3-ball,

which then can be connected (via the ‘connected sum’ operation) to any triangulation.

For every k ∈ N, however, it is easy to construct a triangulation of the 3-ball, whose

dual graph contains the k × k-grid as a minor (Figures B.2 and B.3). As treewidth is

minor-monotone [15, Lemma 16] and tw (k × k-grid) = k [15, Section 13.2], the result

follows.
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Remark B.4. There is another approach [6], making use of the existence of arbitrarily

large simplicial 2-neighborly triangulations of 3-manifolds (cf. [127], and [150, Section 7]).

Figure B.2: A “grid-like” triangulation T3×3 of the 3-ball

Figure B.3: The dual graph of T3×3 from Figure B.2 contains the 3× 3 grid as a minor
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C The 1-Tetrahedron Layered Solid Torus

Given a tetrahedron ∆, the single face-gluing ϕ : ∆(012)→ ∆(231) (cf. Figure 5.7) yields

a 3-manifold with boundary homeomorphic to a solid torus. Here we aim to shed some

light on this simple construction, which, at first, can be quite perplexing.

The idea is to break up the face-identification ϕ into two smaller steps. To this end,

consider the “thickening” M of a Möbius band M , i.e., the orientable I-bundle with base

space M . Note that the fiber-wise boundary A of M is homeomorphic to an annulus and

covers M twice under the projection p : M →M onto the base space (Figure C.1).

p←−

(i) (ii)
Figure C.1: (i) A Möbius band M , and (ii) the orientable I-bundle M over M

Consider a 2-triangle triangulation of A (Figure C.2). Layering the tetrahedron ∆ on edge

1 of A, and composing this layering with the projection p yields a solid torus. Observe

that this composition agrees with the face-gluing ϕ above.

−→ −→

1

−→

←−←−

Figure C.2: Triangulating the orientable 2-cover A of the Möbius band M
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D An Algorithmic Aspect of Layered

Triangulations

As an application of Theorem 1.6, we describe how the machinery of layered triangulations

together with work of Bell [7] can be employed to construct a “convenient” triangulation of

a 3-manifold when it is presented via a mapping class w ∈ MCG(F?g ).1 This triangulation

can then be used—as an input of existing FPT-algorithms, e.g., [29, 31, 32, 33, 100]—to

compute difficult properties of M in running time singly exponential in g and linear in

the complexity of the presentation—for some reasonable definition of complexity. First,

we introduce the additional background for the statement and proof of Theorem D.2.

The mapping class group. Recall the definition of a Heegaard splitting from Section

3.5. For the study of such splittings of a given genus g, it is crucial to get a grasp on

isotopy classes of their attaching maps. To this end, let F?g be the closed orientable

genus g surface Fg with one marked point ? ∈ Fg (for reasons provided later), and let

Homeo+(F?g ) denote the group of orientation-preserving homeomorphisms f : Fg → Fg
with f(?) = ?. The mapping class group MCG(F?g ) consists of the isotopy classes (also

called mapping classes) of Homeo+(F?g ), where isotopies are required to fix ?.

The group MCG(F?g ) can be generated by some “elementary” homeomorphisms: Let

c ⊂ Fg be a non-separating simple closed curve (i.e., an embedding of the circle which

does not split the surface into two connected components). Informally, a Dehn twist along

c is a homeomorphism τc : Fg → Fg where we first cut Fg along c, twist one of the ends

by 2π, and then glue them back together [42]. A commonly used—although non-minimal

[65], cf. [74, 85]—set of Dehn twists to generate MCG(F?g ) is given by Theorem D.1. For

more background, we refer to [49, Chapters 2 & 4].

1M = H ∪f H′, where H and H′ are genus g handlebodies and f belongs to the isotopy class w.
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Theorem D.1 (Lickorish [92]). The group MCG(F?g ) is generated by the Dehn twists

along the simple closed curves αi, βj (1 ≤ i, j ≤ g) and γk (1 ≤ k ≤ g − 1), as shown in

Figure D.1.

Figure D.1: The marked surface F?g with 3g − 1 Dehn twists generating MCG(F?g )

Flips. Recall the definition of a layered triangulation from Section 4.2. Layered trian-

gulations provide the following combinatorial view on the mapping class group. Let T

be a layered triangulation of a handlebody H. By layering a tetrahedron ∆ onto an edge

e ∈ S = ∂T , we obtain another triangulation T ′ = T ∪∆ of H, where, combinatorially,

S ′ = ∂T ′ is related to S via an (edge) flip e↔ e′, see Figure 4.8.

Theorem 4.3 implies that for any homeomorphism f : ∂H → ∂H, there is a sequence

T (0) → · · · → T (i+1) = T (i) ∪∆→ · · · → T (m) of layered triangulations of H, descending

to a flip sequence S(0) → · · · → S(i) = ∂T (i) → · · · → S(m) of one-vertex triangulations of

∂H, such that f , when considered as a map S(0) → S(m), is a simplicial isomorphism.

We can now state and prove the main theorem of this section.

Theorem D.2. Let X be a set of Dehn twists generating MCG(F?g ), and M be a 3-

manifold given by a word w ∈ 〈X〉 (representing a mapping class). Then we can con-

struct a layered triangulation of M of size O(g + K|w|) and cutwidth ≤ 4g − 2 in time

O (K(|X|+ |w|)), where |w| denotes the length of w, and K is a constant only depending

on g and X.

Proof. Take a minimal layered triangulation T ′ of the genus g handlebody (e.g., the one

shown in Figure 4.9). Then ∂T ′ is a one-vertex triangulation of F?g (and its vertex is

the “marked point” ?). For every Dehn twist τc ∈ X, let kc be the geometric intersection

number of the edges of ∂T ′ with the curve c ⊂ ∂T ′ defining τc. Computing kc is immediate

due to the so-called bigon criterion, see [7, Lemma 2.4.1]. Moreover, according to [7,
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Theorem 2.4.6], a flip sequence of length O(kc) realizing τc simplicially (cf. Section 4.2 for

definitions) can be found in O(kc) steps. Let K = max{kc : τc ∈ X}. It follows that we

can compute the flip sequences for all generators in X in time O(K|X|).

With this setup it is straightforward to construct a layered triangulation T ofM: start

with T ′ and for every letter ` in w (i.e., ` ∈ X), perform at most K layerings specified by

the respective precomputed flip sequence; denote the resulting triangulation by T ′′. This

can be done in O (K|w|) steps altogether. T is then completed by gluing a copy of T ′

to T ′′.

By construction, the number of tetrahedra in T is at most 6g − 4 + K|w|, and,

following the proof of Theorem 1.6, cw(Γ(T )) ≤ 4g − 2. The overall running time is

O (K(|X|+ |w|)).

Remark D.3. In this setting, it is natural to ask the following. Given a 3-manifold M

of Heegaard genus g(M) = g, what is the minimum length a word w ∈ MCG(F?g ) (with

respect to some generating set X) that realizes M? If we choose X to be the set given

by Theorem D.1, we obtain the so-called Heegaard–Lickorish complexity of M [36].

Remark D.4. Theorem D.2 gives an upper bound on the size of a triangulated Heegaard

splitting in terms of the genus of the splitting and the length of the word corresponding to

the gluing mapping class. It is worth noting that this construction has been implemented

by Bell, Hall and Schleimer in the software Twister [8], which has also been included in

the widely-used computational topology software bundle SnapPy [39].
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E Generating Treewidth Two

Triangulations Using Regina

The following Python functions can be executed using Regina’s Python interface or the

shell environment within the Regina GUI. See [27, 28] for more information.

First note that layered solid tori (of treewidth one) are readily available from within

Regina. Given an n-tetrahedra triangulation t, we can insert a layered solid torus of type

LST(a, b, a + b) at the end of t using the command t.insertLayeredSolidTorus(a,b)

with tetrahedra ∆n, . . . ,∆n+k. Its boundary is always given by the triangles ∆n(012) and

∆n(013) and the unique edge only contained in ∆n is thus (01).

Moreover, there is also the possibility of generating triangulations of the orientable

Seifert fibered spaces over the sphere (with treewidth two), as well as layered lens spaces

(with treewidth one), out-of-the-box using Regina.

# 3-punctured sphere x Sˆ1

def prism1():

t = Triangulation3()

t.newSimplex()

t.newSimplex()

t.newSimplex()

t.simplex(0).join(3,t.simplex(1),NPerm4())

t.simplex(1).join(2,t.simplex(2),NPerm4())

t.simplex(2).join(1,t.simplex(0),NPerm4(3,0,1,2))

return t

# Moebius strip x˜ Sˆ1
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def moebius():

t = Triangulation3()

t.newSimplex()

t.newSimplex()

t.newSimplex()

t.simplex(0).join(0,t.simplex(1),NPerm4())

t.simplex(1).join(1,t.simplex(2),NPerm4())

t.simplex(0).join(1,t.simplex(1),NPerm4(0,2,3,1))

t.simplex(1).join(3,t.simplex(2),NPerm4(2,0,1,3))

t.simplex(0).join(2,t.simplex(2),NPerm4(1,3,0,2))

return t

# Moebius strip union 3-punctured sphere x˜ Sˆ1

def ext_moebius():

t = Triangulation3()

t.insertTriangulation(moebius())

t.insertTriangulation(prism1())

t.simplex(0).join(3,t.simplex(5),NPerm4(2,0,1,3))

t.simplex(2).join(2,t.simplex(3),NPerm4())

return t

# Non-orientable genus g surface x˜ Sˆ1

def nonor_bundle(g):

t = Triangulation3()

for i in range(g):

t.insertTriangulation(ext_moebius())

for i in range(g-1):

if i%2==0:

t.simplex(6*i+4).join(0,t.simplex(6*i+10),NPerm4())

t.simplex(6*i+5).join(0,t.simplex(6*i+11),NPerm4())

if i%2==1:

t.simplex(6*i+3).join(1,t.simplex(6*i+9),NPerm4())
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t.simplex(6*i+4).join(1,t.simplex(6*i+10),NPerm4())

return t

# r-punctured sphere x Sˆ1

def disk(r):

if r < 0:

return None

if r == 0:

t = prism1()

t.insertLayeredSolidTorus(0,1)

t.simplex(3).join(3,t.simplex(2),NPerm4(2,0,1,3))

t.simplex(3).join(2,t.simplex(0),NPerm4(1,3,2,0))

t.insertLayeredSolidTorus(0,1)

t.simplex(6).join(3,t.simplex(0),NPerm4(3,2,0,1))

t.simplex(6).join(2,t.simplex(1),NPerm4(0,3,1,2))

t.insertLayeredSolidTorus(0,1)

t.simplex(9).join(3,t.simplex(2),NPerm4(3,2,1,0))

t.simplex(9).join(2,t.simplex(1),NPerm4(2,1,0,3))

return t

if r == 1:

t = prism1()

t.insertLayeredSolidTorus(0,1)

t.simplex(3).join(3,t.simplex(2),NPerm4(2,0,1,3))

t.simplex(3).join(2,t.simplex(0),NPerm4(1,3,2,0))

t.insertLayeredSolidTorus(0,1)

t.simplex(6).join(3,t.simplex(0),NPerm4(3,2,0,1))

t.simplex(6).join(2,t.simplex(1),NPerm4(0,3,1,2))

return t

if r == 2:

t = prism1()

t.insertLayeredSolidTorus(0,1)

t.simplex(3).join(3,t.simplex(2),NPerm4(2,0,1,3))
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t.simplex(3).join(2,t.simplex(0),NPerm4(1,3,2,0))

return t

if r >= 3:

t = Triangulation3()

for i in range(r-2):

t.insertTriangulation(prism1())

for i in range(r-3):

if i%2 == 0:

t.simplex(3*i+1).join(0,t.simplex(3*i+4),NPerm4())

t.simplex(3*i+2).join(0,t.simplex(3*i+5),NPerm4())

if i%2 == 1:

t.simplex(3*i).join(1,t.simplex(3*i+3),NPerm4())

t.simplex(3*i+1).join(1,t.simplex(3*i+4),NPerm4())

return t

# Non-orientable genus g surface x˜ Sˆ1 with r punctures

def nonor_bundle_punct(g,r):

t = Triangulation3()

t.insertTriangulation(nonor_bundle(g))

t.insertTriangulation(disk(r))

t.simplex(3).join(1,t.simplex(6*g),NPerm4())

t.simplex(4).join(1,t.simplex(6*g+1),NPerm4())

return t

# Example

t = nonor_bundle_punct(6,12)

print t.detail()
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Zürich, Switzerland, August 3–11, 1994, volume 1, pages 601–611. Birkhäuser, 1995.
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