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Abstract
In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of
pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial
extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings
of Kn was found recently. We extend this characterization to all graphs, by describing the set of
minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a
polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when
it is possible.
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1 Introduction

Since 2004, geometric methods have been used to make impressive progress for determining
the crossing number of (certain classes of drawings of) the complete graph Kn. In particular,
drawings that extend to straight lines, or, more generally, arrangements of pseudolines, have
been central to this work, spurring interest in such drawings for arbitrary graphs, not just
complete graphs [2, 5, 6, 7, 12].

In particular, for pseudolinear drawings, it is now known that, for n ≥ 10, a pseudolinear
drawing of Kn has more than

H(n) := 1
4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
crossings [1, 13]. The number H(n) is conjectured by Harary and Hill to be the smallest
number of crossings over all topological drawings of Kn; that is, the crossing number cr(Kn)
is conjectured to be H(n).
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9:2 Extending Drawings of Graphs to Arrangements of Pseudolines

Figure 1 Obstructions to pseudolinearity.

A pseudoline is the image ` of a continuous injection from the real numbers R to the plane
R2 such that R2 \ ` is not connected. An arrangement of pseudolines is a set Σ of pseudolines
such that, if `, `′ are distinct elements of Σ, then |`∩ `′| = 1 and the intersection is a crossing
point. More on pseudolines and their importance for studying geometric drawings of graphs
can be found in [10, 11].

A drawing D of a graph G is pseudolinear if there is an arrangment of pseudolines
consisting of a different pseudoline `e for each edge e of G and such that D[e] ⊆ `e.

In the study of crossing numbers, restricting the drawing to either straight lines or
pseudolines yields the rectilinear crossing number cr(Kn) or the pseudolinear crossing number
c̃r(Kn), respectively. Clearly cr(Kn) ≥ c̃r(Kn) and the geometric methods prove that
c̃r(Kn) > H(n), for n ≥ 10.

A good drawing is one where no edge self-intersects and any two edges share at most
one point – either a crossing or a common end point – and no three edges share a common
crossing. One somewhat surprising result is from Aichholzer et al.: a good drawing of Kn

in the plane is homeomorphic to a pseudolinear drawing if and only if it does not contain
a non-planar drawing of K4 whose crossing is incident with the unbounded face of the K4
[2]. There are equivalent characterizations in [5, 6]. These conditions can be shown to be
equivalent to not containing the B-configuration depicted as the third drawing of the first
row of Figure 1.

Twenty-five years earlier, Thomassen proved a similar theorem for drawings in which
each edge is crossed only once [16]. The B- and W -configurations are shown as the third
and fourth drawings in the first row of Figure 1. Thomassen’s theorem is: if D is a planar
drawing of a graph G in which each edge is crossed at most once, then D is homeomorphic
to a rectilinear drawing of G if and only if D contains no B- or W -configuration.

Thomassen presented in [16] the clouds (first column in Figure 1) as an infinite family of
drawings that are minimally non-pseudolinear.

Shortly after Thomassen’s paper, Bienstock and Dean proved that if cr(G) ≤ 3, then
cr(G) = cr(G) [8]. They also exhibited examples based on overlapping W -configurations to
show the result fails for cr(G) = 4; such graphs can have arbitrarily large rectilinear crossing
number.

Despite the existence of infinitely many obstructions to pseudolinearity, we characterize
them all.

I Theorem 1. A good drawing of a graph G is pseudolinear if and only if it does not contain
one of the infinitely many obstructions shown in Figure 1.
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The drawings in Figure 1 are obtained from the clouds (first column) by replacing at most
two crossings by vertices. The formal statement of Theorem 1 is Theorem 15 in Section 6;
also a more general version of this statement, Theorem 2, is discussed below. That there is a
result such as ours is somewhat surprising, because stretching an arrangement of pseudolines
to a rectilinear drawing has been shown by Mnëv [14, 15] to be ∃R-hard. In particular,
recognizing a drawing as being homeomorphic to a rectilinear drawing is NP-hard.

The natural setting for our characterization is strings embedded in the plane. An arc σ
is the image f([0, 1]) of the compact interval [0, 1] under a continuous map f : [0, 1]→ R2.
Let S(σ) = {p ∈ σ : |f−1(p)| ≥ 2} be the set of self-intersections of σ. A string is an arc σ
for which S(σ) is finite. If S(σ) = ∅, then σ is simple.

An intersection point between of two strings σ and σ′ is ordinary if it is either an endpoint
of σ or σ′, or is a crossing (a crossing is a non-tangential intersection point in σ ∩ σ′ that
is not an end of σ or σ′). A set Σ of strings is ordinary if Σ is finite and any two strings
in Σ have only finitely many intersections, all of which are ordinary. All the sets of strings
considered in this paper are ordinary.

If Σ is an ordinary set of strings, then its planarization G(Σ) is the plane graph obtained
from Σ by inserting vertices at each crossing between strings and also at the endpoints of
every string in Σ. To keep track of the information given by the strings, we will always
assume that each string Σ has a different color and that each edge in G(Σ) inherits the color
of the string including it.

If Σ is an ordinary set of strings, then, for a cycle C in G(Σ) (which is a simple closed
curve in R2) and a vertex v ∈ V (C), v is a rainbow for C if all the edges incident with v and
drawn in the closed disk bounded by C (including the two edges of C at v) have different
colours. The reader can verify that, for each drawing in Figure 1, if we let Σ be the edges
of the drawing, then the unique cycle in G(Σ) has at most two rainbows. Our main result
characterizes these cycles as the only possible obstructions:

I Theorem 2. An ordinary set of strings Σ can be extended to an arrangement of pseudolines
if and only if every cycle C of G(Σ) has at least three rainbows.

Henceforth, we define any cycle C in G(Σ) with at most two rainbows as an obstruction.
A set of strings is pseudolinear if it has an extension to an arrangement of pseudolines.

Theorem 2 is our main contribution. In the next section, we show that the presence
of an obstruction implies the set of ordinary strings is not pseudolinear. The converse is
proved in Section 4 by extending, one small step at a time, the strings in Σ to get closer
to an arrangement of pseudolines. After each extension, we must show that no obstruction
has been introduced. This involves dealing with cycles in G(Σ) that have precisely three
rainbows (that we refer as near-obstructions). In Section 3 we show the key lemma that if G
has two such near-obstructions that intersect nicely at a vertex v, then G has an obstruction.
In Section 5 we present a polynomial-time algorithm for detecting obstructions and we argue
why the proof of Theorem 2 implies a polynomial-time algorithm for extending a pseudolinear
set of strings. Finally, in Section 6, we show how Theorem 1 follows from Theorem 2 and we
present some concluding remarks.

2 A set of strings with an obstruction is not extendible

Let us start by showing the easy direction of Theorem 2:

I Lemma 3. If the underlying graph G(Σ) of a set Σ of strings has an obstruction, then Σ
is not pseudolinear.

SoCG 2020



9:4 Extending Drawings of Graphs to Arrangements of Pseudolines

Suppose that C is a cycle of G(Σ) for some set of strings Σ. We define δ(C) as the set of
vertices of C for which their two incident edges in C have different colours. In a set Σ of
simple strings where no two intersect twice, |δ(C)| ≥ 3 for every cycle C of G(Σ).

I Lemma 4. Let Σ be a set of simple strings where every pair intersect at most once. Suppose
that C is an obstruction with |δ(C)| as small as possible. Let S = x0, x1, . . . , x` be a path
of G(Σ) representing a subsegment of some string σ ∈ Σ such that x0x1 ∈ E(C), x1 ∈ δ(C)
and x1 is not a rainbow of C. Then V (C) ∩ V (S) = {x0, x1}.

Proof. By way of contradiction, suppose that there is a vertex xr ∈ V (C)∩V (S) with r ≥ 3.
Assume that r ≥ 3 is as small as possible. Let P be the subpath of S connecting x1 to xr.
Since x0x1 ∈ E(C) and x1 ∈ δ(C) and P ⊆ σ, x1x2 /∈ E(C). Because x1 is not a rainbow
for C and no two strings tangentially intersect at x1, the edge x1x2 is drawn in the closed
disk bounded by C. By choice of r, P is an arc connecting x1 to xr in the interior of C.

Let C1 and C2 be the cycles obtained from the union of P and one of the two xy-subpaths
in C. We may assume that x0x1 ∈ E(C1). Let ρ(C) be either δ(C) or the set of rainbows
in C. For i = 1, 2, let Qi = V (Ci) \ V (P ). Then ρ(C) ∩ Qi = ρ(Ci) ∩ Qi. We see that
ρ(C1) \Q1 ⊆ {xr} and ρ(C2) \Q2 ⊆ {x1, xr}.

For ρ = δ, |δ(C2)| ≥ 3, so |δ(C) ∩ Q2| ≥ 1. Since x1 /∈ δ(C1), |δ(C1)| ≤ |δ(C1) ∩ Q2| +
|{xr}| ≤ |δ(C)| − 2 + |{xr}| < |δ(C)|. Likewise, |δ(C) ∩ Q1| ≥ 2 and x1 ∈ δ(C) ∩ δ(C2).
Therefore, |δ(C2)| ≤ |δ(C)| − 2 + |{xr}| < |δ(C)|. Thus, neither C1 nor C2 is an obstruction.

Now taking ρ to be the set of rainbows, the preceding paragraph shows |ρ(C1)| ≥ 3 and
|ρ(C2)| ≥ 3. Therefore, |ρ(C) ∩Q1| = |ρ(C1) ∩Q1| ≥ 2 and |ρ(C) ∩Q2| = |ρ(C2) ∩Q2| ≥ 1.
Thus, |ρ(C)| ≥ 3, a contradiction. J

Proof of Lemma 3. By way of contradiction, suppose that Σ is pseudolinear and that G(Σ)
has an obstruction C.

Consider an extension of Σ to an arrangement of pseudolines, and then cut off the two
infinite ends of each pseudoline to obtain a set of strings Σ′ extending Σ, and in which every
pair of strings in Σ′ cross once. In G(Σ′), there is a cycle C ′ that represents the same simple
closed curve as C. Because C ′ is obtained from subdividing some edges of C and the colours
of a subdivided edge are the same, C ′ has fewer than three rainbows. Therefore, we may
assume that Σ = Σ′ and C = C ′. Now, the ends of every string in Σ are degree-1 vertices in
the outer face of G(Σ).

As every string in Σ is simple and no two strings intersect more than once, |δ(C)| ≥ 3.
We will assume that C is chosen to minimize |δ(C)|.

Since C is an obstruction, there exists x1 ∈ δ(C) such that x1 is not a rainbow in
C. Consider a neighbour x0 of x1 in C. Let S = x0, x1, . . . x` be the path obtained by
traversing the string σ extending x0x1, such that x` is an end of σ. By Observation 4,
V (S) ∩ V (C) = {x0, x1}, and because x` is in the outer face of C, the segment of σ from x1
to x` has its relative interior in the outer face of C.

However, since x1 is not a rainbow, there exists a string σ′ ∈ Σ including two edges
at x1 drawn in the disk bounded by C. Thus, σ and σ′ tangentially intersect at x1, a
contradiction. J

3 The key lemma

In this section we present the key lemma used in the proof of Theorem 2.
A plane graph G is path-partitioned if for m ≥ 1, there exists a colouring χ : E(G) →

{1, . . . ,m} such that for each i ∈ {1, . . . ,m}, the edges in χ−1(i) induce a path Pi ⊆ G where
any two distinct paths Pi and Pj do not tangentially intersect. Indeed, every underlying
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planar graph G(Σ) of a set of simple strings Σ is path-partitioned. Moreover, every path-
partitioned plane graph can be obtained by subdividing a planarization of an ordinary set of
simple strings. To extend the previously introduced notation we refer to each Pi as a string.
The concepts of rainbow and obstruction naturally extend to the context of path-partitioned
plane graphs.

Suppose that G is a path-partitioned plane graph. Given v ∈ V (G), a near-obstruction at
v is a cycle C with at most three rainbows and such that v is a rainbow of C. Understanding
how near-obstructions behave is the key ingredient needed in the proof of Theorem 2:

I Lemma 5. Let G be a path-partitioned plane graph and let v ∈ V (G). Suppose that C1
and C2 are two near-obstructions at v such that the union of the closed disks bounded by C1
and C2 contains a small open ball centered at v. Suppose that one of the following two holds:
1. no obstruction of G contains v; or
2. the two edges of C1 incident with v are the same as the two edges of C2 incident with v.
Then G has an obstruction not including v.

Given a plane graph G, a cycle C ⊆ G and a vertex v ∈ V (C), the edges at v inside C are
the edges of G incident with v drawn in the disk bounded by C.

I Useful Fact. Let G be planar path-partitioned graph. Suppose that for two cycles C and
C ′, v ∈ V (C)∩V (C ′) is a vertex such that the edges at v inside C ′ are also edges at v inside
C. If v is a rainbow for C, then v is a rainbow for C ′.

Proof of Lemma 5. By way of contradiction, suppose that G has no obstruction not includ-
ing v. The “small ball” hypothesis implies that v is not in the outer face of the subgraph
C1 ∪ C2.

We claim that |V (C1) ∩ V (C2)| ≥ 2. Suppose not. Then C1 and C2 are edge-disjoint
and V (C1) ∩ V (C2) = {v}. For i = 1, 2, let ei and fi be the edges of Ci at v and let ∆i

be the closed disk bounded by Ci. From the “small ball” hypothesis it follows that (i) ∆1
contains the edges e2 and f2; and (ii) the points near v in the exterior of ∆2 are contained
in ∆1. These two properties imply that the path C2 − {e2, f2} intersects C1 at least twice,
and hence, |V (C1) ∩ V (C2)| ≥ 2.

From the last paragraph we know that C1 ∪ C2 is 2-connected, and hence the outer face
of C1 ∪ C2 is bounded by a cycle Cout. We will assume that

(*) the cycles C1 and C2 satisfying the hypothesis of Lemma 5 are chosen so that the number
of vertices of G in the disk bounded by Cout is minimal.

The Useful Fact applied to C = Cout and to each C ′ ∈ {C1, C2}, shows that every vertex
that is a rainbow in Cout is also a rainbow in each of the cycles in {C1, C2} containing it.
We can assume that Cout is not an obstruction or else we are done. We may relabel C1 and
C2 so that two of the rainbows of Cout, say p and q, are also rainbows in C1. Neither p
nor q is v because v /∈ V (Cout). Because C1 is a near-obstruction, p, q and v are the only
rainbows of C1.

Since v /∈ V (Cout), by following C1 in the two directions starting at v, we find a path
Pv ⊆ C1 containing v in which only the ends u and w of Pv are in Cout (note that u 6= v

because {p, q} ⊆ V (C1) ∩ V (Cout)). As v is in the interior face of Cout, Pv is also in the
interior of Cout. Let Q1

out, Q2
out be the uw-paths of Cout. One of the two closed disks bounded

by Pv ∪Q1
out and Pv ∪Q2

out contains C1. By symmetry, we may assume that C1 is contained
in the first disk. Since Cout ⊆ C1 ∪ C2, this implies that Q2

out is a subpath of C2.

SoCG 2020



9:6 Extending Drawings of Graphs to Arrangements of Pseudolines

Our desired contradiction will be to find three rainbows in C2 distinct from v. We
find the first: let C1 − (Pv) be the uw-path in C1 distinct from Pv. The disk bounded
by (C1 − (Pv)) ∪ Q2

out contains the one bounded by C1. The Useful Fact applied to C =
(C1 − (Pv)) ∪ Q2

out and C ′ = C1 implies that each vertex in C1 − (Pv) that is rainbow in
(C1 − (Pv)) ∪Q2

out is also rainbow in C1. Since C1 has at most two rainbows in C1 − (Pv),
namely p and q, (C1 − (Pv)) ∪ Q2

out has a third rainbow r1 in the interior of Q2
out (else

(C1 − (Pv)) ∪Q2
out is an obstruction and we are done). Note that r1 is also a rainbow for C2.

To find another rainbow in C2, consider the edge eu of C2 incident to u and not in Q2
out.

We claim that either u is a rainbow in C2 or that eu is not included in the closed disk
bounded by Pv ∪Q2

out. Seeking a contradiction, suppose that u is not a rainbow of C2 and
that eu is included in the disk. Then we can find two edges in the rotation at u, included in
the disk bounded by Pv ∪Q2

out, that belong to the same string σ. The vertex u is a rainbow
in C1, as else, we would find a string σ′ with two edges inside Q1

out ∪ Pv, showing that σ
and σ′ tangentially intersect at u. As p and q are the only rainbows of C1 in Cout, u is one
of p and q. Therefore u is a rainbow in Cout, and hence, a rainbow in C2, a contradiction.

If u is a rainbow in C2, then this is the desired second one. Otherwise, eu is not in the
closed disk bounded by Pv ∪Q2

out. Let Pu ⊆ C2 be the path starting at u, continuing on eu
and ending on the first vertex u′ in Pv that we encounter. Let Cu be the cycle consisting of
Pu and the uu′-subpath uPvu′ of Pv.

B Claim 6. If Pu does not have a rainbow of Cu in its interior, then either Cu is an
obstruction not containing v or:
(a) Cu and C2 are near-obstructions at v satisfying the same conditions as C1 and C2 in

Lemma 5; and
(b) the closed disk bounded by the outer cycle of Cu ∪ C2 contains fewer vertices than the

disk bounded by Cout.

Proof. Suppose that all the rainbows of Cu are located in uPvu′. If z is a rainbow of Cu,
then z ∈ {u, v, u′}, as otherwise z is a rainbow of C1 distinct from p, q and v, a contradiction.
Thus, if v /∈ V (Cu), then Cu is the desired obstruction. We may assume that v ∈ V (Cu).

If u′ = w, then C2 = Pu ∪Q2
out, violating the assumption that v ∈ V (C2). Thus u′ 6= w.

If u′ = v, then the rainbows of Cu are included in {u, u′}, and hence Cu is an obstruction.
However, the existence of Cu shows that both alternatives (1) and (2) in Lemma 5 fail:
condition (1) fails because Cu contains v and (2) fails because the edge of Pu incident with v
is in E(C2) \ E(C1). Thus u′ 6= v.

The previous two paragraphs show that Cu is a near-obstruction at v with rainbows u,
v and u′. Since the interior of Cu near v is the same as the interior of C1 near v, the pair
(Cu, C2) satisfies the “small ball” hypothesis. Thus, (a) holds.

Let C ′out be the outer cycle of Cu ∪ C2. From the fact that Cu ∪ C2 ⊆ C1 ∪ C2 it follows
that the disk bounded by Cout includes the disk bounded by C ′out.

Since p, q ∈ V (Cout), p and q are in the disk bounded by Cout. If both p and q are in
C2, then p, q and r1 are rainbows in C2, and also distinct from v, contradicting that C2 is a
near-obstruction for v. If, say p /∈ V (C2), then p is not in the disk bounded by C ′out, which
implies (b). C

From Claim 6(b) and assumption (*) either Cu is the desired obstruction or Pu contains
a rainbow r2 of C2 in its interior. We assume the latter as else we are done.

In the same way, the last rainbow r3 comes by considering the edge of C2 −Q2
out incident

with w. It follows that v, r1, r2 and r3 are four different rainbows in C2, contradicting the
fact that C2 is a near-obstruction. J
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4 Proof of Theorem 2

In this section we prove that a set of strings with no obstructions can be extended to an
arrangement of pseudolines.

Proof of Theorem 2. It was shown in Observation 3 that the existence of obstructions
implies non-extendibility. For the converse, suppose that Σ is a set of strings for which G(Σ)
has no obstructions.

We start by reducing to the case where the point set
⋃

Σ is connected: iteratively add a
new string in a face of

⋃
Σ connecting two connected components of

⋃
Σ. No obstruction is

introduced at each step (obstructions are cycles), and, eventually, the obtained set
⋃

Σ is
connected. An extension of the new set of strings contains an extension for the original set,
thus we may assume that

⋃
Σ is connected.

Our proof is algorithmic, and consists of repeatedly applying one of the three steps
described below.

Disentangling Step. If a string σ ∈ Σ has an end a with degree at least 2 in G(Σ),
then we slightly extend the a-end of σ into one of the faces incident with a.
Face-Escaping Step. If a string σ ∈ Σ has an end a with degree 1 in G(Σ), and is
incident with an interior face, then we extend the a-end of σ until it intersects some point
in the boundary of this face.
Exterior-Meeting Step. Assuming that all the strings in Σ have their two ends in
the outer face and these ends have degree 1 in G(Σ), we extend the ends of two disjoint
strings so that they meet in the outer face.

Each of these three steps either increases the number of pairs of strings that intersect, or
increase the number crossings (recall that a crossing between σ and σ′ is a non-tangential
intersection point in σ ∩ σ′ that is not an end of σ or σ′). Moreover, these steps can be
performed as long as not all the strings have their ends in the outer face and they are pairwise
crossing (in this case we extend their ends to infinity to obtain the desired arrangement
of pseudolines). Henceforth, we will show that, if performed correctly, none of these steps
introduces an obstruction. The proof for each step can be read independently.

I Lemma 7 (Disentangling Step). Suppose that σ ∈ Σ has an end a with degree at least 2 in
G(Σ). Then we can extend the a-end of σ into one of the faces incident to a without creating
an obstruction.

Proof. A pair of different edges f and f ′ in G(Σ) incident with a are twins if they belong to
the same string in Σ. The edge e ⊆ σ incident with a has no twin.

The fact that no pair of strings tangentially intersect at a tells us that if (f1, f
′
1) and

(f2, f
′
2) are pairs of twins, then f1, f2, f ′1, f ′2 occur in this cyclic order for either the clockwise

or counterclockwise rotation at a. Thus, we may assume that the counterclockwise rotation
at a restricted to the twins and e is e, f1, . . . , ft, f

′
1, . . . , f

′
t , where (fi, f ′i) is a twin pair for

i = 1, . . . , t.
To avoid tangential intersections, the extension of σ at a must be in the angle between ft

and f ′1 not containing e. Let e1, . . . , ek be the counterclockwise ordered list of non-twin edges
at a having an end in this angle (as depicted in Figure 2). We label e0 = ft and ek+1 = f ′1.
If there are no twins, then let e0 = ek+1 = e.

Let us consider all the possible extensions: for i ∈ {0, . . . , k}, let Σi be the set of strings
obtained from Σ by slightly extending the a-end of σ into the face containing the angle
between ei and ei+1. Let αi be the new edge at a extending σ in Σi (see α0 in Figure 2).

SoCG 2020
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e

f1

ft = e0

α0

e1

e2ek−1

ek

f ′1 = ek+1

f ′t

Figure 2 Substrings included in the disk bounded by C0.

Seeking a contradiction, suppose that, for each i ∈ {0, ..., k}, G(Σi) contains an obstruction
Ci. Since αi contains a degree-1 vertex, αi is not in Ci. Hence Ci is a cycle of G(Σ). Thus
Ci is not an obstruction in G(Σ) that becomes one in G(Σi). This conversion has a simple
explanation: in G(Σ), Ci has exactly three rainbows, and one of them is a. After αi is added,
a is not a rainbow in Ci (witnessed by the edges e and αi included in the new version of σ).

Recall from Section 3 that a near-obstruction at a is a cycle with exactly three rainbows,
and one of them is a. Each of C0, C1,...,Ck is a near-obstruction at a in G(Σ).

For a cycle C ⊆ G, let ∆(C) denote the closed disk bounded by C. Both e and α0 are in
∆(C0). Thus, either ∆(C0) ⊇ {e, f1, f2, . . . , ft, e1} (blue bidirectional arrow in Figure 2) or
∆(C0) ⊇ {ft, e1, . . . , ek, f

′
1, f
′
2, . . . , f

′
t , e} (green bidirectional arrow). We rule out the latter

situation as the second list contains ft and f ′t , and this would imply that a is not a rainbow
for C0 in G(Σ).

We just showed that {e, e0, e1} ⊆ ∆(C0). By symmetry, {ek, ek+1, e} ⊆ ∆(Ck). Consider
the largest index i ∈ {0, 1, . . . , k − 1} for which {e, e0, . . . , ei+1} ⊆ ∆(Ci). By the choice
of i, and because {e, αi+1} ⊆ ∆(Ci+1), {e, f ′t , . . . , f ′1, ek, . . . , ei} ⊆ ∆(Ci+1). However, by
applying Lemma 5 to the pair Ci and Ci+1, we obtain that G(Σ) has an obstruction, a
contradiction. J

I Lemma 8 (Face-Escaping Step). Suppose that there is a string σ that has an end a with
degree 1 in G(Σ), and a is incident to an interior face F . Then there is an extension σ′ of
σ from its a-end to a point in the boundary of F such that the set (Σ \ {σ}) ∪ {σ′} has no
obstruction.

a

x1 = x8
x2

x3 = x5

x6

x4
x7

Figure 3 All possible extensions in the Face-Escaping Step.
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Proof. Let W be the closed boundary walk (x0, e1, x1, e2, . . . , en, xn) of F such that x0 =
xn = a and F is to the left as we traverse W (see Figure 3 for an illustration with n = 9).
For i = 1, . . . , n we let mi be a point in the relative interior of ei, and let P be the list of
non-necessarily distinct points m1, x1, m2, x2 . . . ,mn, which are the potential ends for all
the different extensions. For each p ∈ P , let Σp be the set of strings obtained from Σ by
extending the a-end of σ by adding an arc αp connecting a to p in F (see Figure 3). We
assume that every two distinct arcs αp and αp′ are internally disjoint.

Let fp be the edge e1 ∪αp in G(Σp); fp has ends x1 and p. Also, let σp = σ∪αp. Seeking
a contradiction, suppose that each G(Σp) has an obstruction.

B Claim 9. Let p ∈ P . Then there exists an obstruction Cp in G(Σp) including fp. Moreover,
(1) if p ∈ σ, then Cp can be chosen so that all its edges are included in σp; and
(2) if p /∈ σ, then every obstruction includes fp.

Proof. First, if p ∈ σ, then the string σp self-intersects at p; thus σp has a simple close curve
including fp. In this case let Cp be the cycle in G(Σp) representing this simple closed curve
without rainbows, and thus (1) holds.

Second, assume that p /∈ σ and let Cp be any obstruction of G(Σp). For (2), we will show
that fp ∈ E(Cp).

Seeking a contradiction, suppose that fp /∈ E(Cp).
If p = mi for i ∈ {1, . . . , n}, since mi is the only vertex whose rotation in G(Σ) differs

from its rotation in G(Σmi
), mi ∈ V (Cp). Consider the cycle C of G(Σ) obtained from Cp

by replacing the subpath (xi−1, mi, xi) by the edge xi−1xi. For each vertex v ∈ V (C) the
colors of the edges of G(Σ) at v included in the disk bounded by C are the same as in G(Σp)
for the disk bounded by V (Cp). Thus, C is an obstruction for G(Σ), a contradiction.

Suppose now that p is one of x1, . . . , xn−1. The only vertex in G(Σ) whose rotation is
different in G(Σp) is p. Therefore, p is a point that is a rainbow for Cp in G(Σ), but not
a rainbow in G(Σp), witnessed by two edges included in σp. Since at least one of the two
witnessing edges is in G(Σ), p ∈ σ. This contradicts the assumption that p /∈ σ. Hence
fp ∈ E(Cp). C

Henceforth we assume that, for p ∈ P , Cp is an obstruction in G(Σp) as in Claim 9.
More can be said about the obstructions in G(Σp), but for this we need some terminology.

If we orient an edge e in a plane graph, then the sides of e are either the points near e that
are to the right of e, or the points near e to the left of e. For any cycle C of G through e,
exactly one side of e lies inside C. This is the side of e covered by C. For the next claim
and in the rest of the proof we will assume that for p ∈ P , fp is oriented from x1 to p.

B Claim 10. For p ∈ P with p /∈ σ, every obstruction in G(Σp) covers the same side of fp.

Proof. Suppose that for p ∈ P there are obstructions Cp and C ′p covering both sides of fp.
Let G′ be the plane graph obtained from G(Σp) by subdividing fp, and let v be the new
degree-2 vertex inside fp.

We consider the edge-colouring χ induced by the strings in Σp. Let χ′ be a new colouring
obtained from χ by replacing the colour of the edge vp by a new colour not used in χ. It is a
routine exercise to verify that (i) χ′ induces a path-partition in G′ (defined in Section 3);
and (ii) Cp and C ′p are near-obstructions for v with respect to χ′. By applying Lemma 5
to C1 = Cp and C2 = C ′p, we obtain an obstruction in G′ not containing v. However, this
implies the existence of an obstruction in G(Σ), a contradiction. C

SoCG 2020



9:10 Extending Drawings of Graphs to Arrangements of Pseudolines

Recall that the boundary walk of F is W = (x0, e1, . . . , en, xn), with x0 = xn = a. Since
x1 and xn−1 are in σ, the extreme obstructions Cx1 and Cx2 cover the right of fx1 and the
left of fxn−1 , respectively. Thus, there are two consecutive vertices xi−1, xi in W − a, such
that the interior of Cxi−1 covers the right of fxi−1 and the interior of Cxi covers the left of
fxi

. Moreover, we may assume that the interior of Cmi
includes the left of fmi

(otherwise
we reflect our drawing).

The next claim (proved in the full version of this paper [4]) is the last ingredient to obtain
a final contradiction.

B Claim 11. Exactly one of the following holds:
(a) xi−1 ∈ σ, mi /∈ σ and G(Σmi) has an obstruction covering the side of fmi not covered

by Cmi
; or

(b) xi−1 /∈ σ and G(Σxi−1) has an obstruction covering the side of fxi−1 not covered by
Cxi−1 .

Claims 10 and 11 contradict each other. Thus, for some p ∈ P , G(Σp) has no obstructions. J

I Lemma 12 (Exterior-Meeting Step). If all the strings in Σ have their ends on the outer
face of G(Σ) and the ends have degree 1 in G(Σ), then we can extend a pair disjoint strings
so that they intersect without creating an obstruction.

Proof. By following the outer boundary of
⋃

Σ, we obtain a simple closed curve O containing
all the ends of the strings in Σ, but otherwise disjoint from

⋃
Σ.

Suppose σ1, σ2 are two disjoint strings in Σ. For i = 1, 2, let ai, bi be the ends of σi;
since σ1 and σ2 do not cross, we may assume that these ends occur in the cyclic order a1, b1,
b2, a2. We extend the ai-ends of σ1 and σ2 so that they meet in a point p in the outer face,
and so that all the ends of σ1 and σ2 remain incident with the outer face (Figure 4). Let Σ′
be the obtained set of strings.

O
σ1 σ2

p

a1

b1 b2

a2

Figure 4 Exterior-Meeting Step.

Seeking a contradiction, suppose that G(Σ′) has an obstruction C. Since G(Σ) has no
obstruction, p ∈ V (C). Our contradiction will be to find three rainbows in C. Note that
p is a rainbow. To obtain a second rainbow, traverse C starting from p towards a1. Let
d1 be the first vertex during our traversal that is not in the extended σ1, and let c1 be its
neighbour in σ1, one step before we reach d1. Since b1 has degree one, c1 6= b1.

B Claim 13. The cycle C has a rainbow included in the closed disk ∆1 bounded by σ1 and
the a1b1-arc of O disjoint from σ2.
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Proof. First, suppose that d1 /∈ ∆1. In this case, c1 is a rainbow because otherwise there
would be a string σ that tangentially intersects σ1 at c1. Thus, if d1 /∈ ∆1, then c1 is the
desired rainbow.

Second, suppose that d1 ∈ ∆1. Let P1 be the path of C starting at c1, continuing on the
edge c1d1, and ending at the first vertex we encounter in σ1. Since the cycle C ′ enclosed by
P1 ∪ σ1 is not an obstruction, there is one rainbow of C ′ that is an interior vertex of P1; this
is the desired rainbow of C. This concludes the proof of Claim 13. C

Considering σ2 instead of σ1, Claim 13 yields a third rainbow in C inside an analogous
disk ∆2 disjoint from ∆1, contradicting that C is an obstruction. Hence Lemma 12 holds. J

We iteratively apply the Disentangling Step, Face-Escaping Step or Exterior-Meeting Step
without creating obstructions. Each step increases the number of pairwise intersecting strings
in Σ until we reach a stage where the strings are pairwise intersecting and all of them have
their two ends in the unbounded face. From this we extend them into an arrangement of
pseudolines. This concludes the proof of Theorem 2. J

5 Finding obstructions and extending strings in polynomial time

We start this section by describing an algorithm to detect obstructions. Henceforth, we
assume that the input to the problem is the planarization G(Σ) of an ordinary set of s strings
Σ. For the running-time analysis, we assume that n and m are the number of vertices and
edges in G(Σ), respectively. Since G(Σ) is planar, m = O(n). Moreover, if Σ is pseudolinear,
then n ≤

(
s
2
)

+ 2s =
(
s+2

2
)
− 1. At the end of this section we explain how to extend Σ (if

possible) in polynomial time.
Recall that each string in Σ receives a different colour; this induces an edge-colouring on

G(Σ) where each string is a monochromatic path. An outer-rainbow is a vertex x ∈ V (G(Σ))
incident with the outer face and for which the edges incident with x have different colours.
Next we describe the basic operation in our obstruction-detecting algorithm.

x

Figure 5 From Σ to Σ− x.

Outer-rainbow deletion. Given an outer-rainbow x ∈ V (G(Σ)), the instance G(Σ− x) is
defined by: first, removing x and the edges incident to x; second, suppressing the degree-2
vertices incident with edges of the same colour; and third, removing remaining degree-0
vertices (Figure 5 illustrates this process). Edge colours are preserved.

It is easy to verify that G(Σ− x) is the planarization of an arrangement of strings. The
colours removed by this operation are those belonging to strings that are paths of length 1 in
G(Σ) incident with x. Our obstruction-detecting algorithm relies on the following property:

(**) if x is an outer-rainbow of G(Σ), then there is an obstruction in G(Σ) not including x
if and only if there is an obstruction in G(Σ− x).

SoCG 2020
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This property holds because cycles in G(Σ)− x and in G(Σ− x) are in 1-1 correspon-
dence: two cycles correspond to each other if they are the same simple closed curve. This
correspondence is obstruction-preserving.

Let us now describe the two subroutines in our algorithm. For this, we remark that an
outer-rainbow of G(Σ) is a rainbow for any cycle containing it.

Algorithm 1 Subroutine for detecting an obstruction through two outer-rainbows x and y.

(1) Find a cycle C through x and y whose edges are incident with the outer face of G(Σ). If
no such C exists, then output No obstruction through x and y. Else, go to Step 2.

(2) Find whether there is a third outer-rainbow z ∈ V (C) \ {x, y}. If such z exists, update
G(Σ)←− G(Σ− z) and go to Step 1. If no such z exists, output C.

Correctness and running-time of Algorithm 1: If an obstruction through x and y exists, then
x and y are in the same block (some authors use the term “biconnected component”). Since
x and y are incident with the outer face, the outer boundary of the block containing x and y
is the cycle C from Step 1. This C can be found by considering outer boundary walk W of
G(Σ) and then by finding whether x and y belong to the same non-edge block of W . Finding
W is O(m) and computing the blocks of W via a DFS takes O(m) time.

In Step 2, if there is a third outer rainbow z in C, then no obstruction through x and y
contains z. Property (**) justifies the update that takes O(m) time.

A full run from Step 1 to Step 2 takes O(m). Moving from Step 2 to Step 1 occurs O(n)
times. Thus, the total time for Algorithm 1 is O(mn) = O(n2).

Algorithm 2 Subroutine for detecting an obstruction through a single outer-rainbow x.

(1) Find a cycle C through x whose edges are incident with the outer face of G(Σ). If no
such C exists, output No obstruction through x. Else, go to Step 2.

(2) Find whether there is an outer-rainbow y in V (C) \ {x}. If no such y exists, output C.
Else, apply Algorithm 1 to x and y; if there is an obstruction C ′ through x and y, then
output C ′. Else, update G(Σ)←− G(Σ− y) and go to Step 1.

Correctness and running-time of Algorithm 2: If G(Σ) has an obstruction through x, then
there is a non-edge block in G(Σ) containing x. The outer boundary of this block is a cycle
C through x having all edges incident with the outer face. As in Algorithm 1, Step 1 takes
O(m) time.

Detecting the existence of y in Step 2 is O(m) because to detect rainbows in C, each edge
incident with a vertex in V (C) is verified at most twice. The update in Step 2 is justified by
Property (**). Since Step 2 may use Algorithm 1, Step 2 takes O(n2) time. As moving from
Step 2 to Step 1 occurs O(n) times, the total running-time for Algorithm 2 is O(n3).

We are now ready for the algorithm to detect obstructions.

Algorithm 3 Detecting obstructions in G(Σ).

(1) Find a cycle C having all edges incident with the outer face. If no such C exists, output
No obstruction. Else, go to step 2.

(2) Find whether there is an outer rainbow x ∈ V (C). If not, output C. Else apply
Algorithm 2 to x; if there is an obstruction C ′ through x, output C ′. Else, update
G(Σ)←− G(Σ− x) and go to Step 1.
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Correctness and running-time of Algorithm 3: If G(Σ) has an obstruction, then it has a
non-trivial block whose outer boundary is a cycle C as in Step 1. As before, C and x as in
Step 2 can be found in O(m) steps. If C has not outer rainbow x, then C is an obstruction;
Property (**) justifies the update in Step 2.

Since Step 2 may use Algorithm 2, a full run of Steps 1 and 2 takes O(n3) time. Since
Step 2 goes to Step 1 O(n) times, the running-time of Algorithm 3 is O(n4).

Algorithm 3 and the constructive proof of Theorem 2 imply the following result (proved
in the full version of this paper [4]).

I Theorem 14. There is a polynomial-time algorithm to recognize and extend an ordinary
set of strings that are extendible to an arrangement of pseudolines.

6 Concluding remarks

In this work we characterized in Theorem 2 sets of strings that can be extended into
arrangements of pseudolines. Moreover, we showed that the obstructions to pseudolinearity
can be detected in O(n4) time, where n is the number of vertices in the planarization of the
set of strings.

An easy consequence of Theorem 2 is the following (presented before as Theorem 1). We
prove this result in the full version of this paper [4].

I Theorem 15. Let D be a non-pseudolinear good drawing of a graph H. Then there is a
subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each σ ∈ S has a substring σ′ ⊆ σ

for which
⋃
σ∈S σ

′ is one of the drawings represented in Figure 1.

Theorem 2 can also be applied to find a short proof that pseudolinear drawings of Kn

are characterized by forbidding the B-configuration (see Theorem 2.5.1 in [3]). This implies
the characterizations of pseudolinear drawings of Kn presented in [2, 5, 6].

A drawing is stretchable if it is homeomorphic to a rectilinear drawing. There are
pseudolinear drawings that are not stretchable. For instance, consider the Non-Pappus
configuration in Figure 6. Nevertheless, as an immediate consequence of Thomassen’s main
result in [16], pseudolinear and stretchable drawings are equivalent, under the assumption
that every edge is crossed at most once.

Figure 6 Non-Pappus configuration.

I Corollary 16. A drawing D of a graph in which every edge is crossed at most once is
stretchable if and only if it is pseudolinear.

Proof. If a drawing D is stretchable then clearly it is pseudolinear. To show the converse,
suppose that D is pseudolinear. Then D does not contain any obstruction, and in particular,
neither of the B- and W -configurations in Figure 1 occurs in D. This condition was shown
in [16] to be equivalent to being stretchable. J
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One can construct more general examples of pseudolinear drawings that are not stretchable
by considering non-strechable arrangements of pseudolines. However, such examples seem to
inevitably have some edge with multiple crossings. This leads to a natural question.

I Question 17. Is it true that if D is a pseudolinear drawing in which every edge is crossed
at most twice, then D is stretchable?

We believe that there are other instances where pseudolinearity characterizes stretchability
of drawings. A drawing is near planar if the removal of one edge produces a planar graph.
One instance, is the following result by Eades et al. that can be translated to the language
of pseudolines:

I Theorem 18 ([9]). A drawing of a near-planar graph is stretchable if and only if the
drawing induced by the crossed edges is pseudolinear.
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