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Abstract
Simple stochastic games are turn-based 2½-player games with

a reachability objective. The basic question asks whether one

player can ensure reaching a given target with at least a given

probability. A natural extension is games with a conjunction

of such conditions as objective. Despite a plethora of recent

results on the analysis of systems with multiple objectives, the

decidability of this basic problem remains open. In this paper,

we present an algorithm approximating the Pareto frontier

of the achievable values to a given precision. Moreover, it is

an anytime algorithm, meaning it can be stopped at any time

returning the current approximation and its error bound.

CCS Concepts: • Theory of computation → Algorithmic
game theory; Verification by model checking; • Mathe-
matics of computing→ Probability and statistics.

Keywords: Stochastic games; Multiple Reachability Objec-

tives; Pareto frontier; Anytime algorithm
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1 Introduction
Simple stochastic games [27] are zero-sum turn-based sto-

chastic games (SG) with two players, which we call Maximizer

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the

owner/author(s).

LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7104-9/20/07.

https://doi.org/10.1145/3373718.3394761

and Minimizer. The objective of player Maximizer is to maxi-

mize the probability of reaching a given target set of states,

while player Minimizer aims at the opposite. The basic de-

cision problem is to determine whether there is a strategy

for Maximizer achieving at least a given probability thresh-

old. These games are interesting theoretically: the problem

is known to be in NP∩ co-NP, but whether it belongs to P is

a major and long-standing problem. Moreover, several other

important game problems such as parity games reduce to

it [17]. Besides, they are also practically relevant: they can

serve as a tool for synthesis with safety/co-safety objectives

in environments with stochastic uncertainty.

Multi-objective stochastic systems have attracted a lot

of attention recently, both SG and the special case with only

one player (Markov decision processes,MDP [43]). Theymodel

and enable optimization with respect to conflicting goals,

where a desired trade-off is to be considered. A natural multi-

dimensional generalization of the reachability threshold con-

straint P[^𝑇 ] ≥ 𝑡 is a conjunction
∧

𝑖 P[^𝑇𝑖 ] ≥ 𝑡𝑖 giving rise

to generalized-reachability (or multiple-reachability) stochastic
games, similar to e.g. generalized mean-payoff SG [8, 16]. The

problem is then to decide whether a given vector of thresh-

olds can be achieved by Maximizer. Note that these games

are not determined [23], and in this paper we consider the

lower-value (worst-case) problem formulation, i.e. finding a

strategy of Maximizer that can guarantee the vector no matter

what Minimizer does.

The main results established in the literature are as fol-

lows. For MDP, while generalized mean-payoff can be solved

in P [10, 15], generalized reachability is PSPACE-hard and

can be solved in exponential time [44]. For SG, generalized

mean-payoff has been solved for almost-sure conditions only

[8, 16] and approximation of the values for generalized mean-

payoff as well as generalized reachability are still open. The

generalized-reachability SG problem is only known to be de-

cidable for the subclass of stopping SGs with a 2-dimensional
objective [13] (an SG is stopping if under any strategies a

designated set of sinks is reached almost surely).

https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1145/3373718.3394761
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The main open question for generalized-reachability SG

is decidability. There are several important subgoals towards

this problem: From the decidability perspective, stopping SG

with more than 2-dimensional objectives, or general SG with

2- (or more) dimensional objectives have been open. More-

over, the same holds even for 𝜀-approximability. From the

algorithmic perspective, [23] provides a converging sequence

of lower bounds on the Pareto frontier, i.e. the set of achievable
vectors that are pointwise-maximal (in other words, vectors

which cannot be improved in one dimension without sac-

rificing another one). It is open whether converging upper

bounds can also be computed. Since such bounds would imply

𝜀-approximability, this open question is the most imminent.

Our contribution in this paper is twofold. Firstly, we prove

the following theorem:

Theorem: The set of all achievable vectors in an ar-
bitrary (not necessarily stopping) SGwith generalized-
reachability objective of any dimension can be ef-
fectively approximated for any given precision 𝜀.

Secondly, we provide a value-iteration algorithm that approx-

imates the Pareto frontier by giving converging lower and
upper bounds. Consequently, it becomes an anytime algorithm,

providing the current approximation and its error at each mo-

ment of the computation. Thus our first contribution resolves

the 𝜀-approximability open question and our second contribu-

tion resolves the algorithmic open question; both results are

for arbitrary SG with generalized-reachability objectives of

any dimension.

Convergent upper bounds on the value are known to be
notoriously difficult to achieve. Until recently, the default en-

gine for analysis in the most used probabilistic model checker

PRISM [40] and PRISM-Games [22] used value iteration, e.g.
[43], which converges to the value from below, but because

of the used stopping criteria the results could be arbitrarily

wrong [35]. For a solutionwith a given precision, one could use

linear programming instead, which however, does not scale

well for MDP, and, more importantly, does not work at all for

SG [28]. For MDP, value iteration has been extended [11, 35]

so that it provides not only the under-approximating conver-

gent sequence, but also an over-approximating one, calling the

technique “bounded value iteration” (due to [41]) or “interval

iteration”, respectively. Its essence is to collapse maximal end
components (MECs) of the MDP, thereby not changing the

values; on MDP without MECs the over-approximating se-

quence converges to the actual value of the (collapsed as well

as original) MDP. This technique was further extended toMDP

with mean-payoff objective [2]. In contrast, for SG one cannot

collapse MECs since they account for non-trivial alternating

structure, as opposed toMDP,where any desired action exiting

the MEC can be taken almost surely. Therefore, a more com-

plex procedure has been proposed for SG [37]: Depending on

the current under-approximation, problematic parts of MECs

are dynamically identified and their over-approximation is

lowered to over-approximations of certain actions exiting the

MEC, as exemplified and explained later. We lift this proce-

dure to general dimensions. Note that we do not give any

convergence rate for our algorithm, because it is not possible

to extend the argument of the single-dimensional case [19] in

a straightforward manner. This argument requires the lowest

probability occurring in a play to be bounded. However, in the

multi-dimensional setting strategies may need infinite mem-

ory and hence there is no lower bound on the probability that

a strategy assigns to actions [24, Appendix B1, full version].

Giving bounds on the convergence is an interesting direction

of future work.

This paper combines and extends several techniques from

literature to obtain the corresponding result for the multi-

dimensional case:

• Firstly, we use the Bellman operator extended to down-

ward-closed sets (instead of just real values) [23], allow-

ing for value iteration in the multi-dimensional setting.

• Secondly, we exploit the technique of [37], which in

the single-dimensional setting repetitively identifies the

problematic parts of MECs hindering convergence.

• Thirdly, in order to apply this technique, we reduce the

multi-dimensional problem to a continuum of single-

dimensional problems, by splitting the Pareto front into

directions, similar to [33].

• Fourthly, we group the single-dimensional problems

into finitely many regions, similar in spirit to regions

of timed automata [1] since they are essentially given

by orderings of the approximate values of certain ac-

tions. Nevertheless, due to the projective geometry of

the problem, we need to work slightly more generally

with simplicial complexes, see e.g. [36].

Themain technical difficulty is to identify (i) the parts of MECs

with an unjustified too high upper bound and (ii) the value to

which it should be decreased in each step. Both of these depend

on the desired trade-off between the targets. As we compute

the whole set of achievable vectors, we need to consider all

possible trade-offs, which are, moreover, uncountably many.

Related work. Already for a decade, MDP have been ex-

tensively studied in the setting of multiple objectives. Mul-

tiple objectives have been considered both qualitative, such

as reachability and LTL [30], as well as quantitative, such

as mean payoff [10, 15], discounted sum [18], or total re-

ward [32]. The expectation has been combined with variance

in [12]. Beside expectation queries, conjunctions of percentile

(threshold) queries have been considered for various objec-

tives [10, 21, 31, 45]. Further, for general Boolean combinations

for Markov chains with total reward, [34] approximates the

value, while computability is still open. In contrast, [47] shows

that Boolean combinations over mean payoff games become

quickly undecidable. For the specifics of the two-dimensional

case and the interplay of the two objectives, see [4]. The usage
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of the multi-dimensional setting is discussed in [5, 6], compar-

ing multiple rewards and quantiles and reporting how they

have practically been applied and found useful by domain

experts.

More recently, SG have been also analyzed with multiple

objectives; [46] provides an overview and implementation of

existing algorithms for Pareto frontier computation for multi-

objective total reward, reachability, and probabilistic LTL prop-

erties as well as mixtures thereof. However, the computation

is limited to stopping SGs, i.e. ones without end components

Multiple mean-payoff objective was first examined in [8]

and both the qualitative and the quantitative problems are

coNP-complete [16]. Although Boolean combinations of mean-

payoff are undecidable in general [47], in certain subclasses

of SG they can be approximated [9]. Boolean combinations

of total-reward objectives were approximated in the case of

stopping games [23] and applied to autonomous driving [25],

where LTL is reduced to total reward in the case of stopping

games and, for dimension two, the problem is shown decidable

in [13].

PRISM-Games [38] provides tool support for several multi-

player multi-objective settings [39]. Other tools supporting

multi-player settings, GAVS+ [26] and GIST [20], are not main-

tained any more and are limited to single-objective settings.

In many settings, Pareto frontiers can be 𝜀-approximated in

polynomial time [42]. Pareto frontiers are constructed for the

generalizedmean-payoff objective for 2-player (non-stochastic)

games in [14], MDPs in [10, 21], and SGs in [9]. For the genera-

lized-reachability, the Pareto frontier is approximated forMDP

in [30], but for SG the Pareto frontier is not even known to be

given by finitely many points, except for dimension two [13].

In contrast, in the single-dimensional case, the value is known

to be a multiple of a denominator that can be calculated from

the syntactic description of the game [19].

Structure of the paper After recalling the basic notions

in Section 2, we illustrate the problem, the difficulties and

our solution on examples in Section 3. The algorithm is de-

scribed and the correctness intuitively explained in Section 4

and formally proven in Section 5. The proofs of several tech-

nical statements are, for the sake of readability, relayed to [3,

Appendix]. We conclude in Section 6.

2 Preliminaries
2.1 Stochastic Games
A probability distribution on a finite set 𝑋 is a mapping 𝛿 :

𝑋 → [0, 1], such that∑𝑥 ∈𝑋 𝛿 (𝑥) = 1. The set of all probability

distributions on 𝑋 is denoted by D(𝑋 ). Given a dimension

𝑛 ∈ N, often implicitly clear from context, and 𝑐 ∈ R, we
let ®𝑐 denote the 𝑛-dimensional vector with all components

equal to 𝑐 . For a vector ®𝑣 , its 𝑖-th component is denoted ®𝑣𝑖 . We

compare vectors component-wise, i.e. ®𝑢 ≤ ®𝑣 if ®𝑢𝑖 ≤ ®𝑣𝑖 for all
𝑖 . In this paper, we restrict ourselves to non-negative vectors,

i.e. elements of R𝑛≥0

Now we define turn-based two-player stochastic games. As

opposed to the notation of e.g. [27], we do not have special

stochastic nodes, but rather a probabilistic transition function.

Definition 2.1 (SG). A stochastic game (SG) is a tuple (S, S�,
S⃝, s0,A,Av, 𝛿), where S is a finite set of states partitioned
into the sets S� and S⃝ of states of the player Maximizer
and Minimizer, respectively, s

0
∈ S is the initial state, A is a

finite set of actions, Av : S → 2
A
assigns to every state a set

of available actions, and 𝛿 : S × A → D
(
S
)
is a transition

function that given a state s and an action a ∈ Av (s) yields a
probability distribution over successor states.

A Markov decision process (MDP) is then a special case of

SG where S⃝ = ∅. We assume that SG are non-blocking, so

for all states s we have Av (s) ≠ ∅.
For a state s and an available action a ∈ Av (s), we denote

the set of successors by Post (s, a) := {s′ | 𝛿 (s, a, s′) > 0}. We

say a state-action pair (s, a) is an exit of a set of states𝑇 , writ-
ten (s, a) exits𝑇 , if ∃𝑡 ∈ Post (s, a) : 𝑡 ∉ 𝑇 , i.e., if with some

probability a successor outside of 𝑇 could be chosen. Further,

we use Exits(𝑇 ) = {(s, a) | s ∈ 𝑇, a ∈ Av (s), (s, a) exits𝑇 }
to denote all exits of a state set 𝑇 ⊆ S . Finally, for any set of

states 𝑇 ⊆ S , we use 𝑇� and 𝑇⃝ to denote the states of 𝑇 that

belong to Maximizer and Minimizer, whose states are drawn

in the figures as � and ⃝, respectively.

The semantics of SG is given in the usual way by means of

strategies and the induced Markov chain [7] and its respective

probability space, as follows. An infinite path 𝜌 is an infinite

sequence 𝜌 = s
0
a
0
s
1
a
1
· · · ∈ (S × A)𝜔 , such that for every

𝑖 ∈ N, a𝑖 ∈ Av (s𝑖 ) and s𝑖+1 ∈ Post (s𝑖 , a𝑖 ). Finite paths are
defined analogously as elements of (S × A)∗ × S . A strategy
of Maximizer or Minimizer is a function 𝜎 : (S × A)∗ × S� →
D

(
A

)
or (S × A)∗ × S⃝ → D

(
A

)
, respectively, such that

𝜎 (𝜌s) ∈ D
(
Av (s)

)
for all s. We call a strategy deterministic if it

maps to Dirac distributions only; otherwise, it is randomizing.
A pair (𝜎, 𝜏) of strategies of Maximizer and Minimizer induces

an (infinite state) Markov chainG
𝜎,𝜏

with finite paths as states,

s
0
being initial, and the transition function 𝛿 (ws,wsas′) =

𝜎 (ws) (a) · 𝛿 (s, a, s′) for states of Maximizer and analogously

for states ofMinimizer, with𝜎 replaced by𝜏 . TheMarkov chain

induces a unique probability distribution P𝜎,𝜏 over measurable

sets of infinite paths [7, Ch. 10] (the usual index with the initial

state is not used since it is fixed already in the game).

2.2 End Components
Now we recall a fundamental tool for analysis of MDP called

end components. An end component of a SG is then defined as

the end component of the underlying MDP with both players

unified.

Definition 2.2 (EC). A non-empty set 𝑇 ⊆ S of states is an

end component (EC) if there is a non-empty set𝐵 ⊆ ⋃
s∈𝑇 Av (𝑠)

of actions such that

1. for each s ∈ 𝑇, a ∈ 𝐵 ∩Av (s), we have (s, a) ∉ Exits(𝑇 ),
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2. for each s, s′ ∈ 𝑇 there is a finite path w = sa
0
. . . a𝑛s

′ ∈
(𝑇 × 𝐵)∗ ×𝑇 , i.e. the path stays inside 𝑇 and only uses

actions in 𝐵.

Intuitively, ECs correspond to bottom strongly connected

components of the Markov chains induced by possible strate-

gies. Hence for some pair of strategies all possible paths start-

ing in an EC remain there. An EC 𝑇 is a maximal end compo-
nent (MEC) if there is no other end component 𝑇 ′ such that

𝑇 ⊆ 𝑇 ′. Given an SG G, the set of its MECs is denoted by

MEC(G) and can be computed in polynomial time [29].

2.3 Generalized Reachability
For a set 𝑇 ⊆ S , we write ^𝑇 := {s

0
a
0
s
1
a
1
· · · ∈ (S × A)𝜔 |

∃𝑖 ∈ N : s𝑖 ∈ 𝑇 } to denote the (measurable) set of all paths

which eventually reach 𝑇 . A generalized-reachability objective
(of dimension 𝑛) is an 𝑛-tuple T = (𝑇1, . . . ,𝑇𝑛) of state sets
𝑇𝑖 ⊆ S . A vector ®𝑣 (of dimension 𝑛) is achievable if there is
a strategy 𝜎 of Maximizer such that for all strategies 𝜏 of

Minimizer

∀𝑖 ∈ {1, . . . , 𝑛} P𝜎,𝜏 (^𝑇𝑖 ) ≥ ®𝑣𝑖
Note that, since these games are not determined [23], this

corresponds to the lower value, i.e. the worst case analysis.

For a given state s, the set of points achievable from s,

meaning in a game where the initial state is set to s, is denoted

𝔄T (𝑠) or just 𝔄(𝑠) when T is clear from context.

2.4 Basic Geometry Notation and Pareto Frontiers
In order to consider convex combinations of sets, we define

scaling of a set 𝑋 ⊆ R𝑛 by a constant 𝑐 ∈ [0, 1] as 𝑐 · 𝑋 =

{𝑐 · 𝑥 | 𝑥 ∈ 𝑋 }, and the Minkowski sum of sets 𝑋 and 𝑌 as

𝑋 + 𝑌 = {𝑥 + 𝑦 | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 }. The convex hull of a set

𝑋 is denoted by 𝑐𝑜𝑛𝑣 (𝑋 ) = {∑𝑘
𝑖=1 𝑎𝑖𝑥𝑖 | 𝑘 ≥ 1, 𝑥𝑖 ∈ 𝑋, 𝑎𝑖 ≥

0,
∑𝑘

𝑖=1 𝑎𝑖 = 1}.
A downward closure of a set 𝑋 of vectors is dwc(𝑋 ) := {𝑦 |
∃𝑥 ∈ 𝑋 : 𝑦 ≤ 𝑥}. A set 𝑋 is downward closed if 𝑋 = dwc(𝑋 ).
The set 𝔄 of achievable points is clearly downward closed.

It will be convenient to use a few basic notions of projective

geometry, which we now recall. Intuitively, a direction is a

ray from the origin ®0 into the (𝑛-dimensional) first quadrant.

As such, we may represent it with any vector ®𝑣 ≠ ®0 on that

ray. Then all vectors 𝜆 · ®𝑣 for any 𝜆 ∈ R>0 are equivalent

and represent the same direction. For instance, direction d =

[(1, 0, 0)] denotes the 𝑥-axis and it is equal to [(𝜆, 0, 0)] for any
𝜆 > 0. Formally, a direction d = [®𝑣] is the set {𝜆 · ®𝑣 | 𝜆 ∈ R>0}.
We denote byD = {[®𝑣] | ®𝑣 ∈ dwc({®1})} the set of all directions
(in the first quadrant).

Given a set 𝑋 of points and a direction d, 𝑋 evaluated in
direction d is the (Euclidean) length of the vector from the

origin to the farthermost intersection of 𝑋 and d, denoted

𝑋 [d] := sup{| | ®𝑥 | | | ®𝑥 ∈ 𝑋, d = [®𝑥]}
with the usual sup ∅ = 0. Fig. 1 illustrates an evaluation of a

direction on an achievable set. Intuitively, it describes what is

d
𝑋

1

1

Figure 1. Example showing a Pareto frontier of a set 𝑋 , a direction

d, and the point of intersection of d with the frontier, depicted as

in distance 𝑋 [d] from the origin.

achievable if we prefer the dimensions in the “ratio” given by

d. Another example is the whole set (blue and red) of Fig. 4a:

evaluated in [(1, 1)] it yields
√
2/2.

Given a downward closed set 𝑋 , its Pareto frontier is the set
of farthermost points in each direction:

𝔓(𝑋 ) = {®𝑥 | d ∈ D, d = [®𝑥], 𝑋 [d] = | | ®𝑥 | |}

The Pareto frontier of a state s is the Pareto frontier of the set

achievable in s, i.e. 𝔓(s) := 𝔓(𝔄(s)). The Pareto set of the
game is 𝔓 := 𝔓(s

0
). Thus by definition, 𝔓 = 𝔓(𝔄(s

0
)) and,

further, dwc(𝔓) is (the closure of) 𝔄(s
0
).1 Note that it is not

known whether 𝔄 is closed, since it is not known whether the

suprema of achievable points are also achievable. Our notion

of𝔓 includes these suprema, which is why it is only equal to

the closure of 𝔄.

2.5 Problem Formulation
In this paper, we are interested in 𝜀-approximating𝔓. In terms

of under- and over-approximation:

Given an SG, generalized-reachability objective T , and
precision 𝜀 > 0, the task is to construct sets L,U ⊆ R |T |
such that for each direction d ∈ D, L[d] and U[d] are
effectively computable and we have

L[d] ≤ 𝔓[d] ≤ U[d] and U[d] − L[d] < 𝜀 .

2.6 Multi-dimensional and Bounded Value Iteration
In this section we recall two extensions of the standard value

iteration: a generalization formulti-dimensional objectives and
a “bounded” one with an over-approximating sequence. Firstly,

the multi-dimensional Bellman operator for reachability, e.g.

[23],

𝔅 :

(
S → 2

[0,1]𝑛 ) → (
S → 2

[0,1]𝑛 )
works with sets 𝑋 (s) of points achievable in s rather than

single points:

1
Our notion of Pareto frontier captures the whole surface in the first quadrant.

Other definitions such as 𝔓T = {®𝑣 | ®𝑣 is achievable ∧ ∀ achievable ®𝑢 :

®𝑢 ≯ ®𝑣 } only capture the Pareto optimal points. For example, if the set of

achievable points in the three-dimensional space is the whole unit cube then

our definition returns its three sides, while the other definition returns only

the singleton with the Pareto optimal point (1, 1, 1) .
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𝔅(𝑋 ) (s) =
{ ⋂

𝑎∈Av (s) 𝑋 (s, a) if s ∈ S⃝
𝑐𝑜𝑛𝑣 (⋃𝑎∈Av (s) 𝑋 (s, a)) if s ∈ S�

where we define

𝑋 (s, a) = ©«dwc({1T (s)}) +
∑
s
′∈S

𝛿 (s, a, s′) · 𝑋 (s′)ª®¬ ∩ 1
and 1T is the indicator vector function of target sets, i.e.

1T (s)𝑖 equals 1 if s ∈ 𝑇𝑖 and 0 otherwise, and 1 = dwc({®1}) is
the unit box.

Intuitively, the operator works as follows. Given what can

be achieved from s using now an action a, we can compute

the value for the minimizing state as the intersection over

all actions since these points are achievable no matter what

Minimizer does. For maximizing states, if there exists an action

achieving a point then Maximizer can achieve it from here;

moreover, we compute the convex hull since Maximizer can

also randomize and, as opposed to the minimizing case with

intersection, union of convex sets need not be convex. Once

we have dealt with decision making on the first line, it remains

to determine what can be achieved by each decision, on the

second line. The achievable values are given by the weighted

average of the successors’ values, but additionally, the base

case of targets must be handled. Namely, whenever a state is in

a target set, all values up to 1 in that dimension are achievable

(but not greater than 1).

This also gives rise to an algorithm approximating𝔄 , which

is the least fixpoint of 𝔅 [23]. We initialize L : S → 2
[0,1]𝑛

to return {®0} everywhere and iteratively apply the Bellman

operator, yielding arbitrarily precise approximations of 𝔄 by

𝔅𝑘 (L) as 𝑘 → ∞ [23]
2
. Moreover, for every state 𝑠 it can be

checked that the set 𝔅𝑘 (L) (𝑠) is presented at each step 𝑘 as a

closed downward-closed convex polyhedron, i.e. a finite object.
Thus we can effectively construct any desired approximation.

However, it is not known how to bound the difference of

the actual achievable set 𝔄 and the approximation after 𝑘

iterations. For that reason, [37] introduced for the single-

dimensional case the bounded value iteration (named along the

tradition of [41]), a way to compute also an over-approximating

sequence. If we initialize U to return dwc({®1}) everywhere3,
then lim𝑘→∞𝔅𝑘 (U) is a fixpoint, which is generally different

from the least one. Hence [37] modifies 𝔅 so that it has a sin-

gle fixpoint equal to the least one of the original𝔅. Then both

the sequence of lower bounds and of upper bounds converge

to 𝔄, the value of the game. The modification is demonstrated

2
Precisely, lim𝑘→∞𝔅𝑘 (L) ⊆ 𝔄 ⊆ dwc (𝔓) = clos(lim𝑘→∞𝔅𝑘 (L)) where
clos is the standard closure in R𝑛 .
3
The same holds even if we initialize to 0 all the dimensions 𝑖 in states from

which there is no path to𝑇𝑖 , as is customary in MDP analysis. The solution

of [37] is not sensitive to this and does not require this special treatment in

the initialization of U.

p

q

r

𝛼

𝛽

𝛾

a

b

c

d

e

f

g

Figure 2. An example demonstrating the complications arising in

an end component.

in the next section, where we also illustrate the main ideas

how to cope with the multi-dimensional case.

3 Example
In this section, we illustrate the issues preventing convergence

of the upper bounds, as well as the solution of [37] and our

extension of it. Value iteration converges if the SG is stopping,

i.e. if the game reaches a designated sink with probability 1,

or equivalently, if there are no end components (ECs). Hence

the difficulty in solving reachability SG is rooted in ECs, as it

is possible to cycle in its states infinitely long. As a running

example, consider the EC in Fig. 2 with states p, q, r and actions

a, . . . , g. The symbols 𝛼 , 𝛽 and 𝛾 are placeholders; in the single

dimensional case, they represent a real number; in the multi

dimensional case, a Pareto frontier. One can make this game

a standard SG in the single dimensional case by, for example,

replacing 𝛼 with a transition that reaches the target with

probability 𝛼 and the sink with probability 1 − 𝛼 . The multi-

dimensional case is a straightforward extension.

We start by considering the single-reachability objective.

The standard Bellman update procedure as described in Sec-

tion 2.6 reduces to the following equations, where intersec-

tions become minima and unions become maxima. We write

U
𝑘
as short for 𝔅𝑘 (U).

U𝑖+1 (p) = min {U𝑖 (q),U𝑖 (r), 𝛾}
U𝑖+1 (q) = max {U𝑖 (p), 𝛼}
U𝑖+1 (r) = max {U𝑖 (p), 𝛽}

By replacing U with L, we get the update equations for the

lower bound. Recall that we initialize L
0
to return 0 every-

where and U
0
to return 1 everywhere.

3.1 MDP
Firstly, let us briefly mention the solution of [11, 35] for MDP.

Suppose that all states belonged to the maximizing player,

i.e. p was also maximizing. Then, the initialization U
0
= ®1 is

already a fixpoint, although the true value of all three states

ismax{𝛼, 𝛽,𝛾}. Intuitively, the reason for this is that the equa-

tions create a cyclic dependency: the process of finding the

value by “asking neighbours” is not well-founded and all states
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falsely believe that they can achieve the higher value 1. [37]

calls such an EC bloated, having an unjustifiably large (bloated)
upper bound. The solution of [11, 35] is to detect that this is

an EC and collapse it into a single state, eliminating the cycle.

Only outgoing actions 𝛼, 𝛽,𝛾 of the EC are kept, and in the

next iteration, the Bellman operator correctly sets the value

of the collapsed state to max{𝛼, 𝛽,𝛾}, thus converging to the

true value. The solution of [37] captures this idea from a dif-

ferent perspective: It does not change the underlying graph,

but instead realizes that all three states can reach the “best
exit” of the EC, i.e. the state with an action exiting the EC

and having the highest value. Then the algorithm reduces the

upper bounds of the states of the EC to that of the best exit.

This is called deflating, as the “internal higher pressure” of
bloated upper bounds is “relieved”, equalizing with the best

exit.

3.2 Single-reachability SG
Secondly, for single-reachability SG, the EC cannot in general

be collapsed, since the values of the states differ, and it is not

clear a priori which states share a value. They depend on the

ordering of the values of the exits, i.e. on the ordering of 𝛼 , 𝛽

and 𝛾 .

Case 1: If 𝛾 < min(𝛼, 𝛽), then after the first iteration we

have U
1
(p) = 𝛾 , U

1
(q) = 1 and U

1
(r) = 1. After the next

iteration, U
2
(p) = 𝛾 , U

2
(q) = 𝛼 and U

2
(r) = 𝛽 . These are the

true values, as observable in Figure 2. In this caseU
𝑘
converges

to the value. However, note that the values of the states in the

same EC are different.

Case 2: If 𝛾 ≥ min(𝛼, 𝛽), and say 𝛼 > 𝛽 , then the values of

p and r are 𝛽 and that of q is 𝛼 . This is the case, because p will

always play action c, not allowing state r to achieve anything

but the smallest value 𝛽 . However, U
𝑘
does not converge to

these values. In the first iteration, U
1
(p) = 𝛾 , U

1
(q) = 1 and

U
1
(r) = 1. After the next iteration,U

2
(p) = U

2
(q) = U

2
(r) = 𝛾 .

After this, the upper bounds do not change any more, because

we have the problem of cyclic dependencies as described in

Section 3.1. If we fix the strategy of the Minimizer to c as that

is the best choice, only {p, r} forms an EC. The value of both

p and r is 𝛽 , as that is the best exit that the Maximizer can

achieve, given that Minimizer does not play the suboptimal

action a. Such an EC where all states share the same value is

called simple end component (SEC) [37]. It is simple, because

after fixing the strategy of Minimizer to be optimal, this player

cannot influence the play anymore (as the SG locally becomes

an MDP). In the SEC, Maximizer can direct the play to the

best exit and almost surely achieve the value of it. Deflating

the SEC {p, r}, i.e. setting the upper bound for all states in the

SEC to that of the best exit, correctly updates the bounds to 𝛽 .

Afterwards, the upper bound of q is correctly set to 𝛼 in the

next iteration. So one would like to find and deflate all SECs.

However, which states form a SEC depends on the relative

ordering of the exits’ values and the corresponding choices

that Minimizer makes (recall we had to fix the strategy of p

0.9

0.5

(0.5, 0.9)

0.5

0.9

(0.9, 0.5)

(0.5, 0.9)

(0.9, 0.5)

1

1

Figure 3. Pareto frontiers of 𝛼 (left), 𝛽 (center) and 𝛾 (right) in a 2-

objective setting. X-axis represents the value along the first objective

and Y-axis represents the value along the second objective.

d1
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d3

0.9

0.5

0.5

0.9
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0.5

0.5
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Figure 4. (a) Visualizing the regions for state p; and (b) the result of

deflating.

to the optimal action 𝑐 in order to realize which states form

the SEC). Indeed, in the case with 𝛼 < 𝛽 , a different SEC

({p, q}) should be deflated and if 𝛼 = 𝛽 then all three states

form a SEC. Since we do not know the values of the exits,

the algorithm uses the approximations (L𝑖 ) to guess which

actions are suboptimal for the Minimizer, and hence which

states form a SEC. As the lower approximation converges to

the value, the true SECs are eventually detected and correctly

deflated. However, when L𝑖 is not yet close enough to the

value, the computation of SECs can be wrong, e.g. if 𝛼 < 𝛽 ,

but for the first few iterations of the algorithm the lower

bound on 𝛽 is smaller than that on 𝛼 . Then, for these first

iterations, the algorithm believes {p, r} to be the SEC, and

only afterwards realizes that it actually is {p, q}. Hence, the
operation we perform on the SEC has to be conservative, i.e.

sound even if it is given a set of states that actually do not

form a SEC. This is why deflating was introduced, as it is

sound for any EC, even ones that are not SECs [37, Lemma 3].

In contrast, modifying the underlying graph by collapsing as

in [11, 35] would commit to the detected SEC-candidate and

thereby possibly make the wrong choice. Note that we never

know that we have correctly detected a SEC, we just know

that in the limit we will eventually detect it.

3.3 Generalized-reachability SG
Here we intuitively describe and illustrate the main elements

of our solution. The formal definitions of the key concepts

only follow in the next section.
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Regions. Consider again the example of Fig. 2. In the multi-

dimensional case, instead of 𝛼, 𝛽 and 𝛾 being reals, they are

sets of achievable vectors. Let them be given as in Fig. 3, so

e.g. 𝛼 = dwc({(0.5, 0.9)}). Here 𝛾 gives the highest values, so

it is the best one for Maximizer, and hence Minimizer will not

play the corresponding e (as in Case 2 in Section 3.2). 𝛼 and

𝛽 , however, cannot be compared. Depending on the trade-off

(corresponding to a direction) thatMaximizerwants to achieve,

𝛼 or 𝛽 might be better than the other. To this end, let d be the

direction in which Maximizer wants to maximize. Depending

on d, Minimizer’s behaviour changes. If the objective along

the x-axis is more important, then Minimizer chooses action

a. This way, the value of the more important objective is

restricted to 0.5. If on the other hand, the objective along y-

axis is more important, then the Minimizer chooses action c.

The Minimizer, for each direction d, decides on the action to

be chosen by comparing 𝛼 and 𝛽 evaluated in that direction;

in other words, by computing the minimum of 𝛼 [d] and 𝛽 [d].
Our algorithm identifies finitely many regions where the

Minimizer has the same preference ordering over actions and

then we deflate each region separately. In our example, we

can identify three regions, as shown in Fig. 4a. Between the

directions d1 and d2 (red region), Minimizer’s best choice

is action 𝑐; between d2 and d3 (blue region), Minimizer’s

best choice is action 𝑎; and along d2 (grey line), Minimizer

is indifferent.

Deflating regional SECs. Once restricting to a region fixes
the preference ordering over Minimizer’s actions, we can pro-

ceed as in the single-dimensional case: We fix Minimizer’s

optimal strategy based on the lower bounds, identify SEC-

candidates and deflate them. That means we update the Pareto

frontier in the region to that of the best exit from the SEC. The

whole Pareto frontier is constructed piece by piece, region by

region.

Returning to our running example, we have already iden-

tified the three regions in the Pareto frontier for state p in

Figure 4a. The SECs depending on the regions are as follows:

In the blue region it is {p, q}, in the red region it is {p, r},
and along d2 all three states form a SEC. Deflating the blue

region, we see that the best exit from the SEC has value 𝛼 , so

between 0° and 45° the value of p is set to the corresponding

part of 𝛼 . Doing the same for the other two regions results in

the Pareto frontier depicted in Figure 4b. This result is also

intuitively expected, as depending on which direction Maxi-

mizer prefers, Minimizer can always restrict the play to the

other exit. Note that for the sake of example here we always

talked about the true values, while the algorithm does not

know these precisely. Therefore, deflating cannot update the

values based on the value of 𝛼 , but only on its approximation.

Being on the safe side, the values will be decreased only to its

over-approximation.

[0, 1, 0] [1, 0, 0]

[0, 0, 1]

[0, 1, 0] [1, 0, 0]

[0, 0, 1]

[0, 1, 0] [1, 0, 0]

[0, 0, 1]

Figure 5. The left column shows Pareto frontiers; there is the blue

tetrahedon and a pink box of varying size. The right column shows

the projection of the intersection onto the projective hyperplane.

Figure 6. Triangulation of the top right of Fig. 5

Computing and representing regions. As explained above,
a region depends on the preference ordering of actions. To

compute regions where this ordering is constant, we use geo-

metric methods. In the example of Fig. 4a, the point where

the preference ordering changes is (0.5, 0.5), which is where

the two Pareto frontiers intersect. So, intuitively, by drawing

the Pareto frontiers and finding the points of intersection, we

can identify the regions (sets of the corresponding directions)

where the preference ordering over actions is constant.

In Figure 5, we give a set of three examples to illustrate

the construction of regions. The left picture in each row of

the figure shows two Pareto frontiers: One is the blue tetra-

hedron, generated by Maximizer’s free, but exclusive choice

between target sets. The other is a red box of different sizes,

generated by the possibility to reach a state in all target sets

with a given probability. From top to bottom, we increase this
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(a) Three sets of

achievable points

[(1,0,0)][(0,1,0)]

[(0,0,1)]

[(0.5,0,0.5)]

(b) Projection of the

intersections

(c) Convex regions as
a simplicial complex

Figure 7. Projections of intersections of Pareto frontiers to the pro-

jection plane, which in 3D is the triangle formed by the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1). In Fig. 7b, labels represent directions and not

individual vectors.

probability, thereby increasing the size of the box, yielding

three different examples. We define regions as sets of direc-

tions. In order to draw directions, it is useful to consider the

so-called projective hyperplane. It is the set of all directions
and can be drawn (in our case with non-negative vectors only)

as a triangle with corners [1, 0, 0], [0, 1, 0], [0, 0, 1], capturing
all directions. When a point (vector) ®𝑣 is projected into its

direction [®𝑣], it intuitively corresponds to drawing a ray from

the origin through the point ®𝑣 . If we identify the projective

hyperplane with the hyperplane passing through the points
(1, 0, 0), (0, 1, 0) and (0, 0, 1) (or more precisely with this trian-

gle) then the intersection of the ray and the hyperplane, say

point ®𝑝𝑣 , is the projection of ®𝑣 to the projective hyperplane. In

our example, the right side of the figure shows the projection

of the intersection of the Pareto frontiers onto the projective

hyperplane. This gives rise to three regions, each with differ-

ent preference ordering: the inner open triangle, its boundary

and the outer triangle with the hole. Minimizer prefers the

red action in the outside triangle, the blue one in the inside

triangle, and is indifferent on the boundary. As these regions

are hard to describe (as well as possibly not even convex and

connected), we triangulate the projections to get smaller re-

gions which are convex and generated by finitely many points.

The triangulation of the top right of Figure 5 is depicted in

Figure 6. Further note that while the preference ordering of

actions is constant in each region, the faces of a region rep-

resent turning points of the preference ordering; hence these

faces need to be separate regions like is customary for timed

automata [1]. Hence in order to represent the regions, we thus

decompose the triangle (generally, in higher dimensions, a

simplex) into open triangles, open line segments and points

(in general into a simplicial complex, i.e. the simplex together

with its faces and recursively their faces).

As another example of the projection to the projective

hyperplane and the triangulation, consider Figure 7a with

three achievable sets: two rectangles – dwc({(1, 0, 0.5)}) and

dwc({(0.5, 0, 1)}); and one line – dwc({(0, 1, 0)}). The fron-

tiers of the sets generate only one non-empty intersection
4
,

namely the point (0.5, 0, 0.5). Its projection is represented by

its direction, [(0.5, 0, 0.5)] in Figure 7b. In order to keep the

representation of regions effective, we again triangulate re-

gions into finer ones, which are convex and generated by

finitely many points, see Fig. 7c. Finally, note that Pareto fron-

tiers of smaller dimensions may induce regions that are faces

of the projective hyperplane (triangle). In this example, the

vertex at [(0, 1, 0)] is its own region, as it is the only direction

where playing the line-action is not optimal for Minimizer.

We can also see that in Fig. 4b: the red vertex corresponds to

Minimizer choosing one of the "rectangular" actions (as the

other action is suboptimal), the orange region to choosing

the action yielding (0, 1, 0), and in the yellow Minimizer is

indifferent between all actions. Since these cases only arise

on faces of the projective hyperplane, the decomposition into

the simplicial complex of the projective hyperplane (triangle)

caters for these corner cases. Note that for identifying the

regions, we considered the point [(0.5, 0, 0.5)], which is the

turning point of preference between the two rectangles. As

both of them are suboptimal in this direction, this is not neces-

sary to get the coarsest partition. However, it is not a problem

to use a finer partition (splitting the orange line and the yellow

triangle), as we still have the invariant that in every region

the strategy of Minimizer is constant.

4 Algorithm
4.1 Lifting the concepts from the single-dimensional

case
Before giving the algorithm, we have to define extensions of

the concepts of best exit and simple end component (SEC)

introduced in [37] to the multi-objective setting, as intuitively

discussed in the previous section. To this end, we also intro-

duce the concept of regions.

Best exits. In the single-dimensional case, the best exit of

an EC was just the best exiting action for the Maximizer. In the

multi-dimensional setting, Maximizer cannot only pick the

best exit, but first visits all targets inside the (S)EC and then

use any combination of exits to achieve any desired tradeoff.

The definition of best exit depends on a parameter 𝑓 . This

function is used to calculate the set of achievable points from

an exit. We can instantiate it with 𝔄 to denote the actual set

of achievable points, as well as with the over-approximation

U; in the algorithm, we do the latter, as we do not know 𝔄 .

Thuswe define the best exit in themulti-dimensional setting

(similarly as 𝑋 (s, a) in Section 2.6):

BE
𝑓 (𝑇 ) := ©«dwc(

∑
s∈𝑇
{1T (s)}) + 𝑐𝑜𝑛𝑣 (

⋃
(s,a) ∈Exits(𝑇�)

𝑓 (s, a))ª®¬ ∩ 1
4
The neutral element {®0} is not considered a non-empty intersection.
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The first part ensures that, if a target is in the EC, all states in

the EC have probability 1 to reach it; the second part takes the

convex hull of the union of (Pareto sets of) all of Maximizer’s

exits, corresponding to randomizing over the exiting actions.

For general ECs, this may give a strict over-approximation

since Minimizer might prevent Maximizer from freely visiting

all states and combining all actions. However, for SECs the

expression is later shown exact. Note that here we use the

convention

⋃
∅ (·) = {®0}, which is a neutral and minimal

element. This solves the corner case of an EC without any

exit.

Regions. The extension of SEC works only when partition-

ing the set of all possible directions into regions, and then

applying the same ideas as in the single-dimensional case in

each region separately.

Definition 4.1 (Region). A region is a subset 𝑅 ⊆ D of direc-

tions.

To keep the presentation simple, we rely on a very general

definition of regions at this point. We will see later in Section

4.3 how we can restrict to handling only regions that corre-

spond to a finitely generated cone. In the following, slightly

abusing notation, we sometimes view a region 𝑅 as the set of

points it contains, i.e. {𝑣 ∈ [0, 1]𝑛 | ∃d ∈ 𝑅 : [𝑣] = d}.

Simple ECs. In the single-dimensional case, the idea of

SEC is the following: If Minimizer fixes their strategy to the

optimal strategy (i.e. ignores all suboptimal actions), and in

the remaining game there still exists an EC, then this EC is

simple. It is the best choice of Minimizer to allow Maximizer

to roam around freely in the SEC and pick the best exit. Thus,

all states in the SEC have the same value, namely that of the

best exit (recall, best for Maximizer).

In the multi-dimensional case, the optimal strategy of Min-

imizer depends on the tradeoffs between the different goals.

This is why, to generalize the concept of SEC, we need to add

the restriction that a set of states is a SEC for some region 𝑅,

as the trade-offs between the goals are resolved in the same

way in the whole region, or in other words: where the opti-

mal strategy of Minimizer is the same for all directions in 𝑅.

Formally:

Definition 4.2 (Regional 𝑆𝐸𝐶). An EC 𝑇 is a regional simple
end component for some region 𝑅, if for every direction d ∈ 𝑅
and all states 𝑠 ∈ 𝑇 , 𝔄 (𝑠) [d] = BE

𝔄 (𝑇 ) [d].

Note that from this definition we also know that all states in

the regional 𝑆𝐸𝐶 have the same value. Moreover, as we shall

see, the definition implies that on 𝑅, the optimal strategy of

Minimizer should be the same in all directions. Lifting this to

a set of regions we have the following property:

Definition 4.3 (Consistent Partition). Let 𝑇 be an EC and

𝑓 : 𝑆 → 2
R𝑛
. A partition of the set D of directions into a set

of regions R is called consistent w.r.t. 𝑇 and 𝑓 if for all 𝑅 ∈ R

Algorithm 1Multi-Objective Bounded Value Iteration

Input:
SG G, generalized-reach. objective T , precision 𝜀

Output:
L,U such that ∀d ∈ D : L[d] ≤ 𝔓[d] ≤ U[d] and
U[d] − L[d] < 𝜀

1: procedureMO-BVI(G,T ,𝜀)
2: for each s ∈ S do ⊲ Initialization

3: L (s) ← {®0} ⊲ to the least and

4: U (s) ← dwc({®1}) ⊲ the greatest values

5: repeat ⊲ The new Bellman update 𝔅

6: L ← 𝔅(L) ⊲ Standard Bellman updates

7: U ← 𝔅(U)
8: U ← DEFLATE_SECs(G, L,U) ⊲ New treatment

9: until max

d∈D
U (s

0
) [d] − L (s

0
) [d] < 𝜀 ⊲ 𝜀-approximate

10: return (L (s
0
),U (s

0
))

and all d1, d2 ∈ 𝑅, 𝑠 ∈ 𝑇⃝ and 𝑎 ∈ Av (𝑠) it holds that

𝑓 (𝑠, 𝑎) [d1] = min

𝑏∈Av (𝑠)
𝑓 (𝑠, 𝑏) [d1] ⇐⇒

𝑓 (𝑠, 𝑎) [d2] = min

𝑏∈Av (𝑠)
𝑓 (𝑠, 𝑏) [d2] .

In the other direction, we shall see that every possible re-

gional SEC can be defined on regions of an arbitrary consistent

partition. Hence, algorithmically, we shall be looking for such

partitions first and then for regional SECs.

4.2 Algorithms
We present our overall bounded VI procedure as Algorithm 1.

In the following, we provide intuitive explanations of the al-

gorithm and its sub-procedures, as well as the proofs for the

lemmata on correctness of the sub-procedures. The correct-

ness of the whole algorithm is proven in Section 5. Section 4.3

gives more details on the effectiveness of the computation in

Algorithm 3, as that pseudocode is rather mathematical and

it is not trivial to see that it is indeed effectively computable

and yields an effective approximation.

Algorithm 1 (MO-BVI). initializes the under- and over-

approximations L and U and updates them using the new Bell-

man update operator𝔅. This operator first performs the stan-

dard Bellman updates and then calls the procedureDEFLATE_SECs,

which we exemplified in Section 3. The intuition of the whole

algorithm is, that as the under-approximation converges, even-

tually the correct regional SECs are found and deflated. When

all regional SECs are deflated, the over-approximation ap-

proaches the true set of achievable vectors in the limit. Note

that the stopping criterion can be evaluated, as the under- and

over-approximation are at all times described by finitely many

points, for details see Section 4.3.
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Algorithm 2 Deflate candidate SECs

Input:
SG G, functions L and U such that for all states 𝑠 : L (𝑠) ⊆
𝔄 (𝑠) ⊆ U (𝑠)

Output:
Updated upper bound U

′

1: procedure DEFLATE_SECs(G, L,U)
⊲ In each MEC, we compute relevant regions, find all

candidate 𝑆𝐸𝐶s and decrease their upper bounds

2: U
′(𝑠) ← {®0} for all s ∈ 𝑆 ⊲ Result variable

3: M ← MEC(G) ⊲ MEC decomposition of the game

4: for each 𝑇 ∈ M do
5: R ← GET_REGIONS(𝑇, L)
6: for each 𝑅 ∈ R do
7: S ← FIND_SECs(𝑇, L, 𝑅) ⊲ Candidate SECs

8: for each s ∈ 𝑇 do
⊲ If in candidate SEC, deflate

9: if s ∈ 𝐶 for some 𝐶 ∈ S then
10: U

′(s) ← U
′(s) ∪ (U (s) ∩ BEU (𝐶) ∩ 𝑅)

⊲ Otherwise, keep estimate in this region

11: else
12: U

′(s) ← U
′(s) ∪ (U (s) ∩ 𝑅)

13: return U
′

Algorithm 3 Compute consistent partition into regions

Input:
MEC 𝑇 ⊆ S , function L such that for all states 𝑠 : L (𝑠) ⊆
𝔄 (𝑠)

Output:
Consistent partition R w.r.t. 𝑇 and L

1: procedure GET_REGIONS(𝑇, L)
2: R ← {D} ⊲ initialize with trivial partition

3: for s ∈ 𝑇⃝ do
4: for each 𝐵 ⊆ Av (s) do
5: 𝑅𝐵 ← {d ∈ D | 𝐵 = argmin𝑎∈Av (s) L (s, 𝑎) [d]}
6: R ′ = {𝑅𝐵 | 𝐵 ⊆ Av (𝑠), 𝑅𝐵 ≠ ∅}
7: R ← common refinement of R and R ′
8: return R

Algorithm 2 (DEFLATE_SECs). is the heart of our new

algorithm. It implements the correct handling of end com-

ponents, ensuring convergence of the upper and the lower

approximation to the same fixpoint. As every SEC is an EC and

every EC is a subset of a MEC, the algorithm first computes

the MEC-decomposition. Then, for each MEC we compute

a consistent partition of the set of directions into regions

using Algorithm 3. Finally, Algorithm 2 updates the over-

approximation of every state in the considered MECs. It does

so piece by piece, region by region; this is why in Lines 10

and 12 we always intersect with 𝑅, restricting the update to

Algorithm 4 Find candidate SECs

Input: Under-approximation L, EC 𝑇 , region 𝑅 from a con-

sistent partition w.r.t. 𝑇 and 𝐿

Output: Set of Regional 𝑆𝐸𝐶s for 𝑅, according to L

1: procedure FIND_SECs(L,𝑇 ,𝑅) 𝑇 ⊆ S, L, region 𝑅

2: d← arbitrary element of 𝑅

3: Av
′← Av

4: for each 𝑠 ∈ 𝑇⃝ do
⊲ Keep only optimal Minimizer actions

5: Av
′(𝑠) ← {𝑎 ∈ Av (𝑠) | L (𝑠, 𝑎) [d] =

min𝑏∈Av (𝑠) L (𝑠, 𝑏) [d]}
6: return MEC(𝑇 |Av′) ⊲ MEC decomposition on 𝑇

with actions restricted to Av
′

points in the current region, and take the union with the in-

termediate result U
′
, adding all the points from the previous

iterations of the loop over R. If a state is part of a regional
SEC 𝐶 (as detected by Algorithm 4), the upper bound in the

current region is reduced to BE
U (𝐶), i.e. to the best exit from

the regional SEC. If a state is not in a candidate SEC for the

current region, its upper bound does not change. Note that the

best exit depends on U, our current best over-approximation.

The intersection with U (𝑠) ensures that deflate is monotonic.

Formally, we have the following:

Lemma 4.4 (DEFLATE is monotonic and sound). Given a
game G with correct upper and lower bounds U and L (i.e.
∀𝑠 ∈ 𝑆 : L (s) ⊆ 𝔄 (s) ⊆ U (s)), U′ = DEFLATE_SECs(G, L,U)
has the following properties: For all states 𝑠 ∈ 𝑆 ,
• U

′(s) ⊆ U (s) (Monotonicity),
• 𝔄 (s) ⊆ U

′(s) (Soundness),

Proof. For monotonicity notice that due to line 10, U
′(𝑠) is

obtained by intersecting U (𝑠) with BE
U (𝐶) on each region

𝑅 ∈ R, which makes sure thatU
′(s) ⊆ U (s) in the end. For the

second item, we have that 𝔄 (s′) ⊆ U
′(s′) for all states 𝑠 ′ by

assumption. Recall that BE
U (𝔄) is the set of points achievable

from 𝑠 ∈ 𝐶 assuming that Maximizer has control over all

states in𝐶 . Clearly,𝔄 (𝑠) ⊆ BE
𝔄 (𝐶) ⊆ BE

U (𝔄), which proves

soundness (see [3, Appendix A.1] for details). �

Algorithm 3 (GET_REGIONS). has to return a consistent

partition of the set of directions D, i.e. for all directions in a

region, the optimal strategy of Minimizer needs to be the same.

To do that, for every state in the given MEC, we partition the

set of directions into regions according to the optimal strategy

of Minimizer, i.e. which actions are optimal in the region
5
.

Then we take the common refinement of all these partitions.
The common refinement of two partitionsR1 andR2 is defined

as the coarsest partition R such that for all 𝑅1 ∈ R1, 𝑅2 ∈ R2

5
The implementation suggested in Section 4.3 actually computes regions for

all orderings of actions. It then describes the regions with the same optimal

actions as a union of all regions where these actions are at the top of the

ordering.
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we have 𝑅1 ∩ 𝑅2 ∈ R. Notice that the common refinement

of any number of consistent partitions (w.r.t. the same 𝑇 and

L) is again consistent. Intuitively, in every resulting region

the strategy of all Minimizer states in the MEC is constant.

Formally, we have the following lemma:

Lemma 4.5 (GET_REGIONS is sound). For any set of states𝑇
and bound function L, the set of regions R returned by procedure
GET_REGIONS(𝑇, L) is a consistent partition.

Proof. We simply consider for every subset 𝐵 ⊆ Av (𝑠), 𝑠 ∈
𝑇⃝ , the region 𝑅 where the actions in 𝐵 are all optimal. This

yields a partition R ′ = {𝑅𝐵 | 𝐵 ⊆ Av (𝑠), 𝑅𝐵 ≠ ∅} which is

consistent w.r.t. {𝑠} and L. We repeat this for all 𝑠 ∈ 𝑇⃝ and

take the common refinement of all partitions obtained in this

way, yielding a consistent partition for the whole EC 𝑇 and L.

See the next section on how to technically implement these

operations effectively. �

Algorithm 4 (FIND_SECs). is very similar to the single-di-

mensional case ([37, Alg. 2]). The difference is that in themulti-

objective setting we cannot just fix the strategy of Minimizer

and compute the ECs in the resulting SG. We have to pick a di-

rection from the region and consider the strategy of Minimizer

w.r.t. that direction. Since we know that the given region is

from a consistent partition by assumption on the input (which

is true due to Lemma 4.5), Minimizer’s optimal strategy is the

same for all directions in the input region. Thus the direc-

tion can be arbitrarily chosen from that region. We stress that

FIND_SECs is called with the current under-approximation

and returns only those state sets, which according to the cur-

rent lower bound form regional SECs; these need not actually

be regional SECs according to 𝔄 . However, as sketched in

the proof of Lemma 4.4, deflation is so conservative that it

is sound given any EC. The required property of FIND_SECs

is that it eventually finds the correct regional SECs when L

converges to 𝔄 close enough, or formally:

Lemma 4.6 (FIND_SECs is sound). For 𝑇 ⊆ S and a region 𝑅
from a consistent partition, it holds that𝑋 ∈ FIND_SECs(𝑇,𝔄, 𝑅)
if and only if 𝑋 is an inclusion-maximal 𝑆𝐸𝐶 for region 𝑅.

Proof. Since 𝑅 is from a consistent partition, we can pick any

direction d ∈ 𝑅 and identify Minimizer’s optimal actions for

the whole region 𝑅 as in line 5. Let 𝑋 be a MEC returned by

FIND_SECs. Then within this EC, Minimizer only has optimal

actions for region 𝑅 and thus, it does not matter how exactly

these choices are resolved – in particular, it does notmake a dif-

ference if Maximizer takes over control of Minimizer’s states

as explained earlier. But then, from each 𝑠 ∈ 𝑋 , Maximizer can

achieve precisely BE
𝔄 (𝑋 ). Thus 𝑋 is an inclusion-maximal

SEC for region 𝑅. �

4.3 Effectiveness of GET_REGIONS
In this section we describe GET_REGIONS in more detail

and argue why the computation is effective. As discussed in

Section 3, regions in our context bear some resemblance to

regions of timed automata [1]. We first recall some geometric

notions from e.g. [36] that are necessary to talk about the

representation of the considered objects:

A (𝑘)-simplex is a 𝑘-dimensional polytope given as the

convex hull of 𝑘 + 1 affinely independent vertices. Intuitively,

a simplex is a point, line segment, triangle, tetrahedron etc.

For example, considering Figure 7b, the point (0.5, 0, 0.5) is a 0-
simplex, the line between this point and (1, 0, 0) is a 1-simplex,

and thewhole triangle is a 2-simplex. A face of a𝑘-dimensional

simplex is the convex hull of a non-empty subset of the 𝑘 + 1
points making up the simplex. A facet of a 𝑘-dimensional

simplex is a natural face, i.e. a face that uses exactly 𝑘 points.

For example, for a 2-simplex which is a triangle, the triangle

itself, the 3 edges and 3 vertices are all faces. Each face is also

a simplex. Only the three edges are facets.

A simplicial complex (SC) is a set of simplices closed under

taking faces, i.e. every face of a simplex in the SC is also

part of the SC. It also satisfies the property that a non-empty

intersection of any two simplices in the SC is a face of both the

simplices. Using Figure 7b again: Consider the SC containing

the two lines (1-simplices) between (0.5, 0, 0.5) and (1, 0, 0) as
well as between (0.5, 0, 0.5) and (0, 0, 1). It also has to contain

the point (0-simplex) (0.5, 0, 0.5), as that is the intersection
of the lines. Additionally, the points (1, 0, 0) and (0, 0, 1) need
to be in the SC, as they are the faces of the lines. In order to

represent (i) partitions (disjoint decompositions) and (ii) open

regions, as discussed already in Section 3.3, we consider the

open version: we subtract from each simplex all its facets and,

abusing the notation, call them simplices and their union SC.

The invariant of our computation is that all partitions into

regions as well as the Pareto frontiers are represented as finite

unions of SCs. The partitions decompose (triangulate) D, the

part of the projective hyperplane that is in the non-negative

orthant (𝑛-dimensional analog of the first quadrant), which

can thus itself be seen as (𝑛 − 1)-simplex; the Pareto frontiers

are given by linear functions on the areas defined by regions,

hence consists of SCs in the non-negative orthant (of course,

generally not arranged in a hyperplane). Altogether, since

simplices can be stored as the set of their vertices, we can

effectively represent these partitions and frontiers by finite

sets of finite sets of points.

For the computation of GET_REGIONS on Line 5, we can

compute the intersections of all pairs of Pareto frontiers of

the available actions as they are piece-wise linear with finitely

many pieces, and we obtain a finite partition. The projected

intersections then become 𝑘-simplices for some 𝑘 > 0 (the

intersection of Pareto frontiers can be points, lines, planes and

so on as seen in Fig. 7 and 5). Similarly, on Line 7, starting

from two finite partitions, their common refinement after the

respective triangulation, as e.g. in Figure 6, is also finite and

an SC. Recall the base case for the partition is the SC of the

projective 𝑛 − 1-simplex.
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Finally, the resulting approximation of 𝔄 is effective since,

given a direction d, we can identify its region and the respec-

tive simplex on the Pareto frontiers L and U and their value

in the intersection with d. For effectiveness of the stopping
criterion on Line 9 of Algorithm 1, we additionally note that

we only need to test for each simplex the differences in its

generating points (more precisely the limits as the simplex is

open) since the difference is a linear function on each of the

finitely many pieces of the approximation.

5 Correctness Proof of Algorithm MO-BVI
Our new Bellman operator𝔅 defined as one application of the

loop body of Algorithm 1 is a higher order operator transform-

ing pairs of the estimate functions: the two estimate functions

L,U ∈ S → 2
[0,1]𝑛

for the under-/over-approximation are

transformed into a pair with the modified under- and over-

approximation. It can thus be seen as a function of type

𝔅 :

(
S → 2

[0,1]𝑛 × 2[0,1]𝑛
)
→

(
S → 2

[0,1]𝑛 × 2[0,1]𝑛
)
.

We fix an SG G = (S, S�, S⃝, s0,A,Av, 𝛿 ) and a generalized-

reachability objectiveT for the following proofs and implicitly

use them as parameters of 𝔅. Note that for all states s ∈ S ,
U
0
(s) = dwc({®1}) respectively L

0
(s) = {®0} are set by the

initialization.

We consider the sequence (L𝑖 ,U𝑖 ) := 𝔅
𝑖
(L

0
,U

0
), 𝑖 ∈ N,

output by our algorithm. We also use the notation L∞ :=

lim𝑖→∞ L𝑖 :=
⋃

𝑖≥0 L𝑖 and U∞ := lim𝑖→∞ U𝑖 :=
⋂

𝑖≥0 U𝑖 .

Proposition 5.1. Soundness
Algorithm 1 computes for each state s ∈ S a sequence of mono-
tonic over- and under-approximations of 𝔄(s), i.e. ∀𝑖 ∈ N :

L𝑖 (s) ⊆ 𝔄(s) ⊆ U𝑖 (s) and for 𝑖 < 𝑗, L𝑖 (s) ⊆ L𝑗 (s) as well as
U𝑖 (s) ⊇ U𝑗 (s).

Proposition 5.2. Convergence from below
∀ states s ∈ S and all directions d ∈ D : L∞ (s) [d] = 𝔄(s) [d].

Proposition 5.3. Convergence from above
∀ states s ∈ S and all directions d ∈ D : U∞ (s) [d] = 𝔄(s) [d].

Note that for all directions d and for all s ∈ S by definition

𝔄(s) [d] = 𝔓(s) [d]. Using this and the three propositions, we
can prove the main theorem.

Theorem 5.4. Algorithm 1 computes convergent monotonic
over- and under-approximations of𝔓(s) for each s ∈ S . Since
it is convergent, for every 𝜖 > 0 there exists an 𝑖 , such that for
every s ∈ S and direction d ∈ D : U𝑖 (s) [d] − L𝑖 (s) [d] < 𝜖 . So
by instantiating s with s

0
, we solve the problem posed in Section

2.5.

Proof of Propositions 5.1 and 5.2. Note that for all 𝑖 ∈ N it holds

that L𝑖 = 𝔅𝑖 (L
0
), since DEFLATE_SECs does not change the

under-approximation. [9, Proposition 8] proves that𝔅 is order-

preserving, i.e. monotonic, and that it converges to the unique

least fixpoint 𝔄 when repeatedly applied to the bottom el-

ement of a complete partial order. The least possible lower

bound assigns ®0 to all S , since there is no smaller vector that

can be assigned to a state. This is exactly the definition of L
0
,

which implies that for all s ∈ S , the closure of L∞ (s) equals
the closure of 𝔄(s), which implies Proposition 5.2.

For the soundness of the over-approximation we require

that the additional operation, namely DEFLATE_SECs, per-

formed by𝔅 is sound (proven in Lemma 4.4). The monotonic-

ity of the under- and over-approximation follows from the

monotonicity of 𝔅 [9, Proposition 8] and of DEFLATE_SECs

(Lemma 4.4) Thus we can deduce Proposition 5.1. �

It only remains to show Proposition 5.3. As a key ingredient

for the proof we will use the following:

Lemma 5.5 (Fixpoint). 𝔅(L∞,U∞) = (L∞,U∞), i.e. the limit
of 𝔅 is also a fixpoint.

Proof idea. We only need to argue about the second compo-

nent U∞. If we did not have a fixpoint, then a further applica-

tion of 𝔅 would find a SEC 𝑇 for some region 𝑅 and decrease

the over-approximation U∞ for some d ∈ 𝑅 and 𝑠 ∈ 𝑇 , i.e.

BE
U∞ (𝑇 ) [d] < U∞ (𝑠) [d]. The key idea is that since the lower

approximations 𝐿𝑖 converge to 𝔄 , the SEC 𝑇 is detected and

deflated infinitely many times before convergence. But this

means that BE
U∞ (𝑇 ) [d] = U∞ (𝑠) [d], contradiction. For more

details, see [3, Appendix A.2]. �

Proof of Proposition 5.3. Wewill use the fixpoint property from

Lemma 5.5 to derive a contradiction. We assume for contradic-

tion that there is a state s ∈ S and a direction d ∈ D such that

U∞ (s) [d] ≠ 𝔄(s) [d]. Applying the Bellman operator once

more to (L∞,U∞) results in a new upper bound U
′
. We will

show that U
′ ( U∞. In other words, applying the loop once

more decreases the over-approximation. This is a contradic-

tion to U∞ being a fixpoint and proves our goal.

1. Assume for contradiction, that∃𝑡 ∈ S, d ∈ D : U∞ (𝑡) [d] ≠
𝔄(𝑡) [d] and thus ∃d U∞ (𝑡) [d] > 𝔄(𝑡) [d] with Prop.

5.1. We fix this direction d and 𝑡 for the rest of the proof.

2. Let 𝑋 := {s ∈ S | Δ(s) = max𝑡 ∈S Δ(𝑡)}, where Δ(s) :=
U∞ (s) [d] − 𝔄(s) [d] is the difference between over-

approximation U∞ (s) and achievable set 𝔄 in d.
a. We also define Δ(s, a) := U∞ (s, a) [d] − 𝔄(s, a) [d]
for an action a ∈ Av (𝑠).

b. By assumption, 𝑋 ≠ ∅ and for all s ∈ 𝑋 : Δ(s) > 0.

Note: Δ(𝑠),Δ(𝑠, 𝑎) and 𝑋 are all defined w.r.t. the fixed

direction d (not indicated in notation to avoid clutter).

3. Δ(𝑠) > 0 implies that dwc(1T (s)) [d] = 0, i.e. 𝑠 is not

contained in target sets “aligned” in direction d because

otherwise, U∞ (s) [d] = 𝔄(s) [d] = dwc(1T (s)) [d].
4. For all (s, a) exits𝑋 it holds that Δ(s, a) < Δ(s).

Reason: If (s, a) exits𝑋 , then ∃s′ ∈ Post (s, a) \𝑋 . Note
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that Δ(s′) < Δ(s) by construction of 𝑋

Δ(s, a) = U∞ (s, a) [d] − 𝔄 (s, a) [d] (Definition of Δ(𝑠, 𝑎))

=
∑

s
′∈Post (s,a)

𝛿 (𝑠, 𝑎, 𝑠 ′)
(
U∞ (s′) [d] − 𝔄 (s′) [d]

)
(Definition of 𝔄 (s, a) and Step 3)

=
∑

s
′∈Post (s,a)

𝛿 (𝑠, 𝑎, 𝑠 ′)Δ(𝑠 ′) (Definition of Δ(𝑠))

< Δ(s) (since 𝑡 ∈ Post (s, a) and Δ(𝑡) < Δ(s))
5. No state in 𝑋 depends on a leaving action. Formally:

(a) ∀s ∈ 𝑋⃝, (s, a) exits𝑋 : 𝔄 (s) [d] < 𝔄 (s, a) [d], i.e.
a leaving action leaving 𝑋 cannot be optimal for

Minimizer in direction d.
Reason: Since s is a state of Minimizer, ∀a ∈ Av (𝑠) :
U∞ (s) [d] ≤ U∞ (s, a) [d]. From this and the inequal-

ity from the previous Step 4, we get that:

U∞ (s, a) [d] − 𝔄 (s, a) [d]
= Δ(s, a) (Definition of Δ)

< Δ(s) (Step 4)

= U∞ (s) [d] − 𝔄 (s) [d] (Definition of Δ)

≤ U∞ (s, a) [d] − 𝔄 (s) [d] (s ∈ 𝑋⃝)
SubtractingU∞ (s, a) [d] andmultiplying by (-1) yields

the claim.

(b) ∀s ∈ 𝑋�, U∞ (𝑠) [d] >
∑

𝑎∈Av (𝑠,𝑎) 𝑤𝑎 · U∞ (𝑠, 𝑎) if
𝑤𝑎 > 0 for some action 𝑎 exiting 𝑋 . Intuitively, this

means that Maximizer cannot assign positive weight

to any action leaving 𝑋 . The proof is similar to part

(a).

6. 𝑋 contains an EC because if not, then ∃𝑠 ∈ 𝑋 : ∀a ∈
Av (𝑠) : (𝑠, 𝑎) exits𝑋 . But then 𝑠 necessarily depends

on a leaving action in the sense of the previous Step 5,

contradiction.

7. Using that 𝑋 contains an EC, we can show that 𝑋 even

contains a regional simple EC 𝑍 ⊆ 𝑋 w.r.t. to the re-

gion {d}. Applying 𝔅 once more to (𝔄,U∞), the over-
approximation decreases.

Reason: We only give high-level intuition here, as the

proof is very technical. The formal details are in [3,

Appendix A.3]. We prove by a large case distinction

that 𝑋 contains a regional SEC 𝑍 for the region {d}.
Since L∞ = 𝔄 , by Lemma 4.6 this regional SEC is found

and deflated. By construction of 𝑍 , then its value is

set to “depend on the outside”, i.e. it assigns a positive

weight on an action leaving 𝑋 . Then, by Step 5, the

over-approximation is reduced and we arrive at a con-

tradiction. �

6 Conclusion
For a given 𝜀 > 0 and a generalized-reachability stochastic

game, we compute an 𝜀-approximation of its Pareto frontier.

Our algorithm can be run as an anytime algorithm, reporting

the under- and over-approximations on the frontier, due to

an extended version of value iteration. We have suggested

the name “bounded value iteration” as it better generalizes

to higher dimensions than “interval iteration”. We conjecture

that this technique can be generalized to other models, such

as concurrent games, and more complex objectives, such as

total reward. Finally, while decidability remains open, the ap-

proximation algorithms are practically more relevant even in

the single-dimensional case. Note that approximative value it-

eration is the default technique for analysis of MDP, although

there is an exact and polynomial solution by linear program-

ming. The reason is that the theoretical worst-case complexity

of value iteration is practically not too relevant. Consequently,

an efficient implementation, possibly exploring only a part of

the state space using learning, as e.g. in [11, 37], may be an

interesting future direction.
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