
How Many Bits Does it Take to Quantize Your
Neural Network?

Mirco Giacobbe12, Thomas A. Henzinger1, and Mathias Lechner1

1 IST Austria, Klosterneuburg, Austria
2 University of Oxford, Oxford, United Kingdom

Abstract. Quantization converts neural networks into low-bit fixed-
point computations which can be carried out by efficient integer-only
hardware, and is standard practice for the deployment of neural net-
works on real-time embedded devices. However, like their real-numbered
counterpart, quantized networks are not immune to malicious misclas-
sification caused by adversarial attacks. We investigate how quantiza-
tion affects a network’s robustness to adversarial attacks, which is a
formal verification question. We show that neither robustness nor non-
robustness are monotonic with changing the number of bits for the rep-
resentation and, also, neither are preserved by quantization from a real-
numbered network. For this reason, we introduce a verification method
for quantized neural networks which, using SMT solving over bit-vectors,
accounts for their exact, bit-precise semantics. We built a tool and an-
alyzed the effect of quantization on a classifier for the MNIST dataset.
We demonstrate that, compared to our method, existing methods for the
analysis of real-numbered networks often derive false conclusions about
their quantizations, both when determining robustness and when detect-
ing attacks, and that existing methods for quantized networks often miss
attacks. Furthermore, we applied our method beyond robustness, show-
ing how the number of bits in quantization enlarges the gender bias of a
predictor for students’ grades.

1 Introduction

Deep neural networks are powerful machine learning models, and are becom-
ing increasingly popular in software development. Since recent years, they have
pervaded our lives: think about the language recognition system of a voice as-
sistant, the computer vision employed in face recognition or self driving, not to
talk about many decision-making tasks that are hidden under the hood. How-
ever, this also subjects them to the resource limits that real-time embedded
devices impose. Mainly, the requirements are low energy consumption, as they
often run on batteries, and low latency, both to maintain user engagement and
to effectively interact with the physical world. This translates into specializ-
ing our computation by reducing the memory footprint and instruction set, to
minimize cache misses and avoid costly hardware operations. For this purpose,
quantization compresses neural networks, which are traditionally run over 32-bit

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 79–97, 2020.
https://doi.org/10.1007/978-3-030-45237-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_5&domain=pdf

floating-point arithmetic, into computations that require bit-wise and integer-
only arithmetic over small words, e.g., 8 bits. Quantization is the standard tech-
nique for the deployment of neural networks on mobile and embedded devices,
and is implemented in TensorFlow Lite [13]. In this work, we investigate the ro-
bustness of quantized networks to adversarial attacks and, more generally, formal
verification questions for quantized neural networks.

Adversarial attacks are a well-known vulnerability of neural networks [24].
For instance, a self-driving car can be tricked into confusing a stop sign with a
speed limit sign [9], or a home automation system can be commanded to deac-
tivate the security camera by a voice reciting poetry [22]. The attack is carried
out by superposing the innocuous input with a crafted perturbation that is im-
perceptible to humans. Formally, the attack lies within the neighborhood of a
known-to-be-innocuous input, according to some notion of distance. The fraction
of samples (from a large set of test inputs) that do not admit attacks determines
the robustness of the network. We ask ourselves how quantization affects a net-
work’s robustness or, dually, how many bits it takes to ensure robustness above
some specific threshold. This amounts to proving that, for a set of given quanti-
zations and inputs, there does not exists an attack, which is a formal verification
question.

The formal verification of neural networks has been addressed either by
overapproximating—as happens in abstract interpretation—the space of outputs
given a space of attacks, or by searching—as it happens in SMT-solving—for a
variable assignment that witnesses an attack. The first category include meth-
ods that relax the neural networks into computations over interval arithmetic
[20], treat them as hybrid automata [27], or abstract them directly by using
zonotopes, polyhedra [10], or tailored abstract domains [23]. Overapproximation-
based methods are typically fast, but incomplete: they prove robustness but do
not produce attacks. On the other hand, methods based on local gradient de-
scent have turned out to be effective in producing attacks in many cases [16], but
sacrifice formal completeness. Indeed, the search for adversarial attack is NP-
complete even for the simplest (i.e., ReLU) networks [14], which motivates the
rise of methods based on Satisfiability Modulo Theory (SMT) and Mixed Integer
Linear Programming (MILP). SMT-solvers have been shown not to scale beyond
toy examples (20 hidden neurons) on monolithic encodings [21], but today’s spe-
cialized techniques can handle real-life benchmarks such as, neural networks for
the MNIST dataset. Specialized tools include DLV [12], which subdivides the
problem into smaller SMT instances, and Planet [8], which combines different
SAT and LP relaxations. Reluplex takes a step further augmenting LP-solving
with a custom calculus for ReLU networks [14]. At the other end of the spec-
trum, a recent MILP formulation turned out effective using off-the-shelf solvers
[25]. Moreover, it formed the basis for Sherlock [7], which couples local search
and MILP, and for a specialized branch and bound algorithm [4].

All techniques mentioned above do not reason about the machine-precise
semantics of the networks, neither over floating- nor over fixed-point arithmetic,
but reason about a real-number relaxation. Unfortunately, adversarial attacks

80 M. Giacobbe et al.

computed over the reals are not necessarily attacks on execution architectures,
in particular, for quantized networks implementations. We show, for the first
time, that attacks and, more generally, robustness and vulnerability to attacks
do not always transfer between real and quantized networks, and also do not
always transfer monotonically with the number of bits across quantized networks.
Verifying the real-valued relaxation of a network may lead scenarios where

(i) specifications are fulfilled by the real-valued network but not for its quantized
implementation (false negative),

(ii) specifications are violated by the real-valued network but fulfilled by its
quantized representation (false negatives), or

(iii) counterexamples witnessing that the real-valued network violated the spec-
ification, but do not witness a violation for the quantized network (invalid
counterexamples/attacks).

More generally, we show that all three phenomena can occur non-monotonically
with the precision in the numerical representation. In other words, it may occur
that a quantized network fulfills a specification while both a higher and a lower
bits quantization violate it, or that the first violates it and both the higher and
lower bits quantizations fulfill it; moreover, specific counterexamples may not
transfer monotonically across quantizations.

The verification of real-numbered neural networks using the available meth-
ods is inadequate for the analysis of their quantized implementations, and the
analysis of quantized neural networks needs techniques that account for their
bit-precise semantics. Recently, a similar problem has been addressed for bina-
rized neural networks, through SAT-solving [18]. Binarized networks represent
the special case of 1-bit quantizations. For many-bit quantizations, a method
based on gradient descent has been introduced recently [28]. While efficient (and
sound), this method is incomplete and may produce false negatives.

We introduce, for the first time, a complete method for the formal verification
of quantized neural networks. Our method accounts for the bit-precise semantics
of quantized networks by leveraging the first-order theory of bit vectors without
quantifiers (QF BV), to exactly encode hardware operations such as 2’comple-
mentation, bit-shift, integer arithmetic with overflow. On the technical side, we
present a novel encoding which balances the layout of long sequences of hardware
multiply-add operations occurring in quantized neural networks. As a result, we
obtain a encoding into a first-order logic formula which, in contrast to a standard
unbalanced linear encoding, makes the verification of quantized networks prac-
tical and amenable to modern bit-precise SMT-solving. We built a tool using
Boolector [19], evaluated the performance of our encoding, compared its effec-
tiveness against real-numbered verification and gradient descent for quantized
networks, and finally assessed the effect of quantization for different networks
and verification questions.

We measured the robustness to attacks of a neural classifier involving 890
neurons and trained on the MNIST dataset (handwritten digits), for quantiza-
tions between 6 and 10 bits. First, we demonstrated that Boolector, off-the-shelf
and using our balanced SMT encoding, can compute every attack within 16

How Many Bits Does it Take to Quantize Your Neural Network? 81

hours, with a median time of 3h 41m, while timed-out on all instances beyond 6
bits using a standard linear encoding. Second, we experimentally confirmed that
both Reluplex and gradient descent for quantized networks can produce false
conclusions about quantized networks; in particular, spurious results occurred
consistently more frequently as the number of bits in quantization decreases.
Finally, we discovered that, to achieve an acceptable level of robustness, it takes
a higher bit quantization than is assessed by standard accuracy measures.

Lastly, we applied our method beyond the property of robustness. We also
evaluate the effect of quantization upon the gender bias emerging from quantized
predictors for students’ performance in mathematics exams. More precisely, we
computed the maximum predictable grade gap between any two students with
identical features except for gender. The experiment showed that a substan-
tial gap existed and was proportionally enlarged by quantization: the lower the
number bits the larger the gap.

We summarize our contribution in five points. First, we show that the ro-
bustness of quantized neural networks is non-monotonic in the number of bits
and is non-transferable from the robustness of their real-numbered counterparts.
Second, we introduce the first complete method for the verification of quan-
tized neural networks. Third, we demonstrate that our encoding, in contrast to
standard encodings, enabled the state-of-the-art SMT-solver Boolector to verify
quantized networks with hundreds of neurons. Fourth, we also show that exist-
ing methods determine both robustness and vulnerability of quantized networks
less accurately than our bit-precise approach, in particular for low-bit quanti-
zations. Fifth, we illustrate how quantization affects the robustness of neural
networks, not only with respect to adversarial attacks, but also with respect to
other verification questions, specifically fairness in machine learning.

2 Quantization of Feed-forward Networks

A feed-forward neural network consists of a finite set of neurons x1, . . . , xk par-
titioned into a sequence of layers: an input layer with n neurons, followed by
one or many hidden layers, finally followed by an output layer with m neurons.
Every pair of neurons xj and xi in respectively subsequent layers is associated
with a weight coefficient wij ∈ R; if the layer of xj is not subsequent to that
of xi, then we assume wij = 0. Every hidden or output neuron xi is associated
with a bias coefficient bi ∈ R. The real-valued semantics of the neural network
gives to each neuron a real value: upon a valuation for the neurons in the input
layer, every other neuron xi assumes its value according to the update rule

xi = ReLU-N(bi +
k∑

j=1

wijxj), (1)

where ReLU-N : R → R is the activation function. Altogether, the neural net-
work implements a function f : Rn → Rm whose result corresponds to the valu-
ation for the neurons in the output layer.

82 M. Giacobbe et al.

The activation function governs the firing logic of the neurons, layer by layer,
by introducing non-linearity in the system. Among the most popular activation
functions are purely non-linear functions, such as the tangent hyperbolic and
the sigmoidal function, and piece-wise linear functions, better known as Rectified
Linear Units (ReLU) [17]. ReLU consists of the function that takes the positive
part of its argument, i.e., ReLU(x) = max{x, 0}. We consider the variant of
ReLU that imposes a cap value N , known as ReLU-N [15]. Precisely

ReLU-N(x) = min{max{x, 0}, N}, (2)

which can be alternatively seen as a concatenation of two ReLU functions (see
Eq. 10). As a consequence, all neural networks we treat are full-fledged ReLU
networks; their real-valued versions are amenable to state-of-the-art verification
tools including Reluplex, but neither account for the exact floating- nor fixed-
point execution models.

Quantizing consists of converting a neural network over real numbers, which
is normally deployed on floating-point architectures, into a neural network over
integers, whose semantics corresponds to a computation over fixed-point arith-
metic [13]. Specifically, fixed-point arithmetic can be carried out by integer-only
architectures and possibly over small words, e.g., 8 bits. All numbers are rep-
resented in 2’s complement over B bits words and F bits are reserved to the
fractional part: we call the result a B-bits quantization in QF arithmetic. More
concretely, the conversion follows from the rounding of weight and bias coeffi-
cients to the F -th digit, namely b̄i = rnd(2F bi) and w̄ij = rnd(2Fwij) where
rnd(·) stands for any rounding to an integer. Then, the fundamental relation
between a quantized value ā and its real counterpart a is

a ≈ 2−F ā. (3)

Consequently, the semantics of a quantized neural network corresponds to the
update rule in Eq. 1 after substituting of x, w, and b with the respective approx-
imants 2−F x̄, 2−F w̄, and 2−F b̄. Namely, the semantics amounts to

x̄i = ReLU-(2FN)(b̄i + int(2−F
k∑

j=1

w̄ij x̄j)), (4)

where int(·) truncates the fractional part of its argument or, in other words,
rounds towards zero. In summary, the update rule for the quantized semantics
consists of four parts. The first part, i.e., the linear combination

∑k
j=1 w̄ij x̄j ,

propagates all neurons values from the previous layer, obtaining a value with
possibly 2B fractional bits. The second scales the result by 2−F truncating the
fractional part by, in practice, applying an arithmetic shift to the right of F bits.
Finally, the third applies the bias b̄ and the fourth clamps the result between 0
and 2FN . As a result, a quantize neural network realizes a function f : Zn → Zm,
which exactly represents the concrete (integer-only) hardware execution.

We assume all intermediate values, e.g., of the linear combination, to be
fully representable as, coherently with the common execution platforms [13], we

How Many Bits Does it Take to Quantize Your Neural Network? 83

always allocate enough bits for under and overflow not to happen. Hence, any
loss of precision from the respective real-numbered network happens exclusively,
at each layer, as a consequence of rounding the result of the linear combination to
F fractional bits. Notably, rounding causes the robustness to adversarial attacks
of quantized networks with different quantization levels to be independent of one
another, and independent of their real counterpart.

3 Robustness is Non-monotonic in the Number of Bits

A neural classifier is a neural network that maps a n-dimensional input to one
out of m classes, each of which is identified by the output neuron with the largest
value, i.e., for the output values z1, . . . , zm, the choice is given by

class(z1, . . . , zm) = argmax
i

zi. (5)

For example, a classifier for handwritten digits takes in input the pixels of an
image and returns 10 outputs z0, . . . , z9, where the largest indicates the digit the
image represents. An adversarial attack is a perturbation for a sample input

original + perturbation = attack

that, according to some notion of closeness, is indistinguishable from the original,
but tricks the classifier into inferring an incorrect class. The attack in Fig. 1 is

Fig. 1: Adversarial attack.

indistinguishable from the original by the human eye, but induces our classifier
to assign the largest value to z3, rather than z9, misclassifying the digit as a
3. For this example, misclassification happens consistently, both on the real-
numbered and on the respective 8-bits quantized network in Q4 arithmetic.
Unfortunately, attacks do not necessarily transfer between real and quantized
networks and neither between quantized networks for different precision. More
generally, attacks and, dually, robustness to attacks are non-monotonic with the
number of bits.

We give a prototypical example for the non-monotonicity of quantized net-
works in Fig. 2. The network consists of one input, 4 hidden, and 2 output
neurons, respectively from left to right. Weights and bias coefficients, which are
annotated on the edges, are all fully representable in Q1. For the neurons in the
top row we show, respectively from top to bottom, the valuations obtained using
a Q3, Q2, and Q1 quantization of the network (following Eq. 4); precisely, we

84 M. Giacobbe et al.

+ =

1/2
6/8
3/4
1/2

2/8
1/4
1/2

3/8
1/4
1/2

3/2 -1 3/2

+1

a± ε

0

+1/2

3
2
4

8

a± ε
1

Q3
Q2
Q1

Fig. 2: Neural network with non-monotonic robustness w.r.t. its Q1, Q2, and Q3 quan-
tizations.

show their fractional counterpart x̄/2F . We evaluate all quantizations and obtain
that the valuations for the top output neuron are non-monotonic with the num-
ber of fractional bits; in fact, the Q1 dominates the Q3 which dominates the Q2
output. Coincidentally, the valuations for the Q3 quantization correspond to the
valuations with real-number precision (i.e., never undergo truncation), indicating
that also real and quantized networks are similarly incomparable. Notably, all
phenomena occur both for quantized networks with rounding towards zero (as
we show in the example), and with rounding to the nearest, which is naturally
non-monotonic (e.g., 5/16 rounds to 1/2, 1/4, and 3/8 with, resp., Q1, Q2, and
Q3).

Non-monotonicity of the output causes non-monotonicity of robustness, as
we can put the decision boundary of the classifier so as to put Q2 into a different
class than Q1 and Q3. Suppose the original sample is 3/2 and its class is associ-
ated with the output neuron on the top, and suppose attacks can only lay in the
neighboring interval 3/2 ± 1. In this case, we obtain that the Q2 network admits
an attack, because the bottom output neuron can take 5/2, that is larger than
2. On the other hand, the bottom output can never exceed 3/8 and 1/2, hence
Q1 and Q3 are robust. Dually, also non-robustness is non-monotonic as, for the
sample 9/2 whose class corresponds to the bottom neuron, for the interval 9/2
± 2, Q2 is robust while both Q3 and Q1 are vulnerable. Notably, the specific
attacks of Q3 and Q1 also do not always coincide as, for instance, 7/2.

Robustness and non-robustness are non-monotonic in the number of bits
for quantized networks. As a consequence, verifying a high-bits quantization,
or a real-valued network, may derive false conclusions about a target lower-bits
quantization, in either direction. Specifically, for the question as for whether an
attack exists, we may have both (i) false negatives, i.e., the verified network is
robust but the target network admits an attack, and (ii) false positives, i.e., the
verified network is vulnerable while the target network robust. In addition, we
may also have (iii) true positives with invalid attacks, i.e., both are vulnerable
but the found attack do not transfer to the target network. For these reasons
we introduce a verification method quantized neural network that accounts for
their bit-precise semantics.

How Many Bits Does it Take to Quantize Your Neural Network? 85

4 Verification of Quantized Networks using Bit-precise
SMT-solving

Bit-precise SMT-solving comprises various technologies for deciding the satisfia-
bility of first-order logic formulae, whose variables are interpreted as bit-vectors
of fixed size. In particular, it produces satisfying assignments (if any exist) for
formulae that include bitwise and arithmetic operators, whose semantics corre-
sponds to that of hardware architectures. For instance, we can encode bit-shifts,
2’s complementation, multiplication and addition with overflow, signed and un-
signed comparisons. More precisely, this is the quantifier-free first-order theory
of bit-vectors (i.e., QF BV), which we employ to produce a monolithic encoding
of the verification problem for quantized neural networks.

A verification problem for the neural networks f1, . . . , fK consists of checking
the validity of a statement of the form

ϕ(y1, . . . ,yK) =⇒ ψ(f1(y1), . . . , fK(yK)), (6)

where ϕ is a predicate over the inputs and ψ over the outputs of all networks; in
other words, it consists of checking an input–output relation, which generalizes
various verification questions, including robustness to adversarial attacks and
fairness in machine learning, which we treat in Sec. 5. For the purpose of SMT
solving, we encode the verification problem in Eq. 6, which is a validity question,
by its dual satisfiability question

ϕ(y1, . . . ,yK) ∧
K∧
i=1

fi(yi) = zi ∧ ¬ψ(z1, . . . , zK), (7)

whose satisfying assignments constitute counterexamples for the contract. The
formula consists of three conjuncts: the rightmost constraints the input within
the assumption, the leftmost forces the output to violate the guarantee, while
the one in the middle relates inputs and outputs by the semantics of the neural
networks.

The semantics of the network consists of the bit-level translation of the up-
date rule in Eq. 4 over all neurons, which we encode in the formula

k∧
i=1

xi = ReLU-(2FN)(x′
i) ∧ x′

i = b̄i + ashr(x′′
i , F) ∧ x′′

i =
k∑

j=1

w̄ijxj . (8)

Each conjunct in the formula employs three variables x, x′, and x′′ and is made
of three, respective, parts. The first part accounts for the operation of clamp-
ing between 0 and 2FN , whose semantics is given by the formula ReLU-M(x) =
ite(sign(x), 0, ite(x ≥ M,M,x)). Then, the second part accounts for the oper-
ations of scaling and biasing. In particular, it encodes the operation of rounding
by truncation scaling, i.e., int(2−Fx), as an arithmetic shift to the right. Fi-
nally, the last part accounts for the propagation of values from the previous
layer, which, despite the obvious optimization of pruning away all monomials

86 M. Giacobbe et al.

+

wkxk +

wk−1xk−1

w2x2 w1x1

+

+

+ +

+

w1x1 w2x2 wkxk

Linear layout Balanced layout
(a) (b)

Fig. 3: Abstract syntax trees for alternative encodings of a long linear combination of
the form

∑k
i=1 wixi.

with null coefficient, often consists of long linear combinations, whose exact se-
mantic amounts to a sequence of multiply-add operations over an accumulator;
particularly, encoding it requires care in choosing variables size and association
layout.

The size of the bit-vector variables determines whether overflows can occur.
In particular, since every monomial wijxj consists of the multiplication of two
B-bits variables, its result requires 2B bits in the worst case; since summation
increases the value linearly, its result requires a logarithmic amount of extra
bits in the number of summands (regardless of the layout). Provided that, we
avoid overflow by using variables of 2B + log k bits, where k is the number of
summands.

The association layout is not unique and, more precisely, varies with the or-
der of construction of the long summation. For instance, associating from left
to right produces a linear layout, as in Fig. 3a. Long linear combonations occur-
ring in quantized neural networks are implemented as sequences of multiply-add
operations over a single accumulator; this naturally induces a linear encoding.
Instead, for the purpose formal verification, we propose a novel encoding which
re-associates the linear combination by recursively splitting the sum into equal
parts, producing a balanced layout as in Fig. 3b. While linear and balanced lay-
outs are semantically equivalent, we have observed that, in practice, the second
impacted positively the performance of the SMT-solver as we discuss in Sec. 5,
where we also compare against other methods and investigate different verifica-
tion questions.

5 Experimental Results

We set up an experimental evaluation benchmark based on the MNIST dataset
to answer the following three questions. First, how does our balanced encoding

How Many Bits Does it Take to Quantize Your Neural Network? 87

scheme impact the runtime of different SMT solvers compared to a standard
linear encoding? Then, how often can robustness properties, that are proven for
the real-valued network, transferred to the quantized network and vice versa?
Finally, how often do gradient based attacking procedures miss attacks for quan-
tized networks?

The MNIST dataset is a well-studied computer vision benchmark, which
consists of 70,000 handwritten digits represented by 28-by-28 pixel images with
a single 8-bit grayscale channel. Each sample belongs to exactly one category
{0, 1, . . . 9}, which a machine learning model must predict from the raw pixel
values. The MNIST set is split into 60,000 training and 10,000 test samples.

We trained a neural network classifier on MNIST, following a post-training
quantization scheme [13]. First, we trained, using TensorFlow with floating-point
precision, a network composed of 784 inputs, 2 hidden layers of size 64, 32 with
ReLU-7 activation function and 10 outputs, for a total of 890 neurons. The
classifier yielded a standard accuracy, i.e., the ratio of samples that are correctly
classified out of all samples in the testing set, of 94.7% on the floating-point
architecture. Afterward, we quantized the network with various bit sizes, with
the exception of imposing the input layer to be always quantized in 8 bits, i.e.,
the original precision of the samples. The quantized networks required at least
Q3 with 7 total bits to obtain an accuracy above 90% and Q5 with 10 bits to
reach 94%. For this reason, we focused our study on the quantizations from 6
and the 10 bits in, respectively, Q2 to Q6 arithmetic.

Robust accuracy or, more simply, robustness measure the ratio of robust
samples: for the distance ε > 0, a sample a is robust when, for all its pertur-
bations y within that distance, the classifier class ◦ f chooses the original class
c = class ◦ f(a). In other words, a is robust if, for all y

|a− y|∞ ≤ ε =⇒ c = class ◦ f(y), (9)

where, in particular, the right-hand side can be encoded as
∧m

j=1 zj ≤ zc, for
z = f(y). Robustness is a validity question as in Eq. 6 and any witness for
the dual satisfiability question constitutes an adversarial attack. We checked
the robustness of our selected networks over the first 300 test samples from the
dataset with ε = 1 on the first 200 and ε = 2 on the next 100; in particular, we
tested our encoding using the SMT-solver Boolector [19], Z3 [5], and CVC4 [3],
off-the-shelf.

Our experiments serve two purposes. The first is evaluating the scalability
and precision of our approach. As for scalability, we study how encoding layout,
i.e., linear or balanced, and the number of bits affect the runtime of the SMT-
solver. As for precision, we measured the gap between our method and both a
formal verifier for real-numbered networks, i.e., Reluplex [14], and the IFGSM
algorithm [28], with respect to the accuracy of identifying robust and vulner-
able samples. The second purpose of our experiments is evaluating the effect
of quantization on the robustness to attacks of our MNIST classifier and, with
an additional experiment, measuring the effect of quantization over the gender
fairness of a student grades predictor, also demonstrating the expressiveness of
our method beyond adversarial attacks.

88 M. Giacobbe et al.

As we only compared the verification outcomes, any complete verifier for
real-numbered networks would lead to the same results as those obtained with
Reluplex. Note that these tools verify the real-numbered abstraction of the net-
work using some form of linear real arithmetic reasoning. Consequently, rounding
errors introduced by the floating-point implementation of both, the network and
the verifier, are not taken into account.

5.1 Scalability and performance

We evaluated whether our balanced encoding strategy, compared to a standard
linear encoding, can improve the scalability of contemporary SMT solvers for
quantifier-free bit-vectors (QF BV) to check specifications of quantized neural
networks. We ran all our experiments on an Intel Xeon W-2175 CPU, with 64GB
memory, 128GB swap file, and 16 hours of time budget per problem instance.
We encoded each instance using the two variants, the standard linear and our
balanced layout. We scheduled 14 solver instances in parallel, i.e., the number of
physical processor cores available on our machine. While Z3, CVC4 and Yices2

SMT-solver Encoding 6-bit 7-bit 8-bit 9-bit 10-bit

Boolector [19]
Linear (standard) 3h 25m oot oot oot oot
Balanced (ours) 18m 1h 29m 3h 41m 5h 34m 8h 58m

Z3 [5]
Linear (standard) oot - - - -
Balanced (ours) oot - - - -

CVC4 [3]
Linear (standard) oom - - - -
Balanced (ours) oom - - - -

Yices2 [6]
Linear (standard) oot - - - -
Balanced (ours) oot - - - -

Table 1: Median runtimes for bit-exact robustness checks. The term oot refers to
timeouts, and oom refers to out-of-memory errors. Due to the poor performance of Z3,
CVC4, and Yices2 on our smallest 6-bit network, we abstained from running experi-
ments involving more than 6 bits, i.e., entries marked by a dash (-).

timed out or ran out of memory on the 6-bit network, Boolector could check the
instances of our smallest network within the given time budget, independently
of the employed encoding scheme. Our results align with the SMT-solver perfor-
mances reported by the SMT-COMP 2019 competition in the QF BV division
[11]. Consequently, we will focus our discussion on the results obtained with
Boolector.

With linear layout Boolector timed-out on all instances but the smallest
networks (6 bits), while with the balanced layout it checked all instances with
an overall median runtime of 3h 41m and, as shown in Tab. 1, roughly doubling
at every bits increase, as also confirmed by the histogram in Fig. 4.

How Many Bits Does it Take to Quantize Your Neural Network? 89

Fig. 4: Runtimes for bit-exact adversarial robustness checks of a classifier trained on
the MNIST dataset using Boolector and our balanced SMT encodings. Runtime roughly
doubles with each additional bit used for the quantization.

Our results demonstrate that our balanced association layout improves the
performance of the SMT-solver, enabling it to scale to networks beyond 6 bits.
Conversely, a standard linear encoding turned out to be ineffective on all tested
SMT solvers. Besides, our method tackled networks with 890 neurons which,
while small compared to state-of-the-art image classification models, already
pose challenging benchmarks for the formal verification task. In the real-numbered
world, for instance, off-the-shelf solvers could initially tackle up to 20 neurons
[20], and modern techniques, while faster, are often evaluated on networks below
1000 neurons [14,4].

Additionally, we pushed our method to its limits, refining our MNIST net-
work to a four-layers deep Convolutional network (2 Conv + 2 Fully-connected
layers) with a total of 2238 neurons, which achieved a test accuracy of 98.56%.
While for the 6-bits quantization we proved robustness for 99% of the tested
samples within a median runtime of 3h 39min, for 7-bits and above all instances
timed-out. Notably, Reluplex also failed on the real-numbered version, reporting
numerical instability.

5.2 Comparison to other methods

Looking at existing methods for verification, one has two options to verify quan-
tized neural networks: verifying the real-valued network and hoping the func-
tional property is preserved when quantizing the network, or relying on incom-
plete methods and hoping no counterexample is missed. A question that emerges
is how accurate are these two approaches for verifying robustness of a quantized
network? To answer this question, we used Reluplex [14] to prove the robust-
ness of the real-valued network. Additionally, we compared to the Iterative Fast
Gradient Sign Method (IFGSM), which has recently been proposed to generate
�∞-bounded adversarial attacks for quantized networks [28]; notably, IFGSM is

90 M. Giacobbe et al.

incomplete in the sense that it may miss attacks. We then compared these two
verification outcomes to the ground-truth obtained by our approach.

In our study, we employ the following notation. We use the term ”false nega-
tive” (i) to describe cases in which the quantized network can be attacked, while
no attack exists that fools the real-number network. Conversely, the term ”false
positive” (ii) describes the cases in which a real-number attack exists while the
quantized network is robust. Furthermore, we use the term ”invalid attack” (iii)
to specify attacks produced for the real-valued network that fools the real-valued
network but not the quantized network.

Regarding the real-numbered encoding, Reluplex accepts only pure ReLU
networks. For this reason, we translate our ReLU-N networks into functionally
equivalent ReLU networks, by translating each layer with

ReLU-N(W · x+ b) = ReLU
(
− I · ReLU(−W · x− b+N)

)
. (10)

Out of the 300 samples, at least one method timed out on 56 samples, leaving
us with 244 samples whose results were computed over all networks. Tab. 2
depicts how frequently the robustness property could be transferred from the
real-valued network to the quantized networks. Not surprisingly, we observed
the trend that when increasing the precision of the network, the error between
the quantized model and the real-valued model decreases. However, even for the
10-bit model, in 0.8% of the tested samples, verifying the real-valued model leads
to a wrong conclusion about the robustness of the quantized network. Moreover,
our results show the existence of samples where the 10-bit network is robustness
while the real-valued is attackable and vice versa. The invalid attacks illustrate
that the higher the precision of the quantization, the more targeted attacks need
to be. For instance, while 94% of attacks generated for the real-valued network
represented valid attacks on the 7-bit model, this percentage decrease to 80%
for the 10-bit network.

True False False True
Bits negatives negatives positives positives

(i) (ii)

6 66.4% 25.0% 3.3% 5.3%
7 84.8% 6.6% 1.6% 7.0%
8 88.5% 2.9% 0.4% 8.2%
9 91.0% 0.4% 0.4% 8.2%
10 91.0% 0.4% 0.4% 8.2%

Invalid
attacks
(iii)

8%
6%
10%
20%
20%

Table 2: Transferability of vulnerability from the verification outcome of the real-
valued network to the verification outcome of the quantized model. While vulnera-
bility is transferable between the real-valued and the higher precision networks, (9
and 10-bits), in most of the tested cases, this discrepancy significantly increases when
compressing the networks with fewer bits, i.e. see columns (i) and (ii).

How Many Bits Does it Take to Quantize Your Neural Network? 91

Next, we compared how well incomplete methods are suited to reason about
the robustness of quantized neural networks. We employed IFGSM to attack the
244 test samples for which we obtained the ground-truth robustness and mea-
sure how often IFGSM is correct about assessing the robustness of the network.
For the sake of completeness, we perform the same analysis for the real-valued
network.

True False False True
Bits negatives negatives positives positives

(i) (ii)

6 69.7% 1.2 % - 30.3%
7 86.5% 1.6 % - 13.5%
8 88.9% 0.8 % - 11.1%
9 91.4% 0.8 % - 8.6 %
10 91.4% 0 % - 8.6 %

R 91.4% 0 % - 8.6 %

Table 3: Transferability of incomplete robustness verification (IFGSM [28]) to ground-
truth robustness (ours) for quantized networks. While for the real-valued and 10-bit
networks our gradient based incomplete verification did not miss any possible attack, a
non-trivial number of vulnerabilities were missed by IFGSM for the low-bit networks.
The row indicted by R compares IFGSM attacking the floating-point implementation
to the grouth-truth obtained, using Reluplex, by verifying the real-valued relaxation
of the network.

Our results in Tab. 3 present the trend that with higher precision, e.g., 10-
bits or reals, incomplete methods provide a stable estimate about the robustness
of the network, i.e., IFGSM was able to find attacks for all non-robust samples.
However, for lower precision levels, IFGSM missed a substantial amount of at-
tacks, i.e., for the 7-bit network, IFGSM could not find a valid attack for 10%
of the non-robust samples.

5.3 The effect of quantization on robustness

In Tab. 3 we show how standard accuracy and robust accuracy degrade on our
MNIST classifier when increasing the compression level. The data indicates a
constant discrepancy between standard accuracy and robustness; for real num-
bered networks, a similar fact was already known in the literature [26]: we empir-
ically confirm that observation for our quantized networks, whose discrepancy
fluctuated between 3 and 4% across all precision levels. Besides, while an ac-
ceptable, larger than 90%, standard accuracy was achieved at 7 bits, an equally
acceptable robustness was achieved at 9 bits.

One relationship not shown in Tab. 3 is that these 4% of non-robust samples
are not equal for across quantization levels. For instance, we observed samples

92 M. Giacobbe et al.

Precision 6 7 8 9 10 R

Standard 73.4% 91.8% 92.2% 94.3% 95.5% 94.7%
Robust 69.7% 86.5% 88.9% 91.4% 91.4% 91.4%

Table 4: Accuracy of the MNIST classifiers on the 244 test samples for which all
quantization levels could be check within the given time budget. The column indicated
by R compares the accuracy of the floating-point implementation to the robust accuracy
of the real-valued relaxation of the network.

that are robust for 7-bit network but attackable when quantizing with 9- and 10-
bits. Conversely, there are attacks for the 7-bit networks that are robust samples
in the 8-bit network.

5.4 Network specifications beyond robustness

Concerns have been raised that decisions of an ML system could discriminate
towards certain groups due to a bias in the training data [2]. A vital issue in
quantifying fairness is that neural networks are black-boxes, which makes it hard
to explain how each input contributes to a particular decision.

We trained a network on a publicly available dataset consisting of 1000 stu-
dents’ personal information and academic test scores [1]. The personal features
include gender, parental level of education, lunch plans, and whether the stu-
dent took a preparation course for the test, all of which are discrete variables. We
train a predictor for students’ math scores, which is a discrete variable between
0 and 100. Notably, the dataset contains a potential source for gender bias: the
mean math score among females is 63.63, while it is 68.73 among males.

The network we trained is composed of 2 hidden layers with 64 and 32 units,
respectively. We use a 7-bit quantization-aware training scheme, achieving a
4.14% mean absolute error, i.e., the difference between predicted and actual
math scores on the test set.

The network is fair if the gender of a person influences the predicted math
score by at most the bias β. In other words, checking fairness amounts to verifying
that ∧

i�=gender

si = ti ∧ sgender
= tgender =⇒ |f(s)− f(t)| ≤ β, (11)

is valid over the variables s and t, which respectively model two students for
which gender differs but all other features are identical—we call them twin stu-
dents. When we encode the dual formula, we encode two copies of the semantics
of the same network: to one copy we give one student s and take the respective
grade g, to the other we give its twin t and take grade h; precisely, we check for
the unsatisfiability the negation of formula in Eq. 11. Then, we compute a tight
upper bound for the bias, that is the maximum possible change in predicted
score for any two twins. To compute the tightest bias, we progressively increase
β until our encoded formula becomes unsatisfiable.

How Many Bits Does it Take to Quantize Your Neural Network? 93

We measure mean test error and gender bias of the 6- to the 10-bits quanti-
zation of the networks. We show the results in Tab. 5. The test error was stable

Quantization Mean Tightest bias
level test error upper bound

6 bits 4.46 22
7 bits 4.14 17
8 bits 4.37 16
9 bits 4.38 15
10 bits 4.59 15

Table 5: Results for the formal analysis of the gender bias of a students’ grade predic-
tor. The maximum gender bias of the network monotonically decreases with increasing
precision.

between 4.1 and 4.6% among all quantizations, showing that the change in pre-
cision did not affect the quality of the network in a way that was perceivable
by standard measures. However, our formal analysis confirmed a gender bias in
the network, producing twins with a 15 to 21 difference in predicted math score.
Surprisingly, the bias monotonically increased as the precision level in quantiza-
tion lowered, indicating to us that quantization plays a role in determining the
bias.

6 Conclusion

We introduced the first complete method for the verification of quantized neural
networks which, by SMT solving over bit-vectors, accounts for their bit-precise
semantics. We demonstrated, both theoretically and experimentally, that bit-
precise reasoning is necessary to accurately ensure the robustness to adversarial
attacks of a quantized network. We showed that robustness and non-robustness
are non-monotonic in the number of bits for the numerical representation and
that, consequently, the analysis of high-bits or real-numbered networks may de-
rive false conclusions about their lower-bits quantizations. Experimentally, we
confirmed that real-valued solvers produce many spurious results, especially on
low-bit quantizations, and that also gradient descent may miss attacks. Addi-
tionally, we showed that quantization indeed affects not only robustness, but
also other properties of neural networks, such as fairness. We also demonstrated
that, using our balanced encoding, off-the-shelf SMT-solving can analyze net-
works with hundreds of neurons which, despite hitting the limits of current
solvers, establishes an encouraging baseline for future research.

94 M. Giacobbe et al.

Acknowledgments

An early version of this paper was put into the easychair repository as EasyChair
Preprint no. 1000. This research was supported in part by the Austrian Science
Fund (FWF) under grants S11402-N23(RiSE/SHiNE) and Z211-N23 (Wittgen-
stein Award), in part by the Aerospace Technology Institute (ATI), the Depart-
ment for Business, Energy & Industrial Strategy (BEIS), and Innovate UK under
the HICLASS project (113213).

References

1. Students performance in exams. https://www.kaggle.com/spscientist/students-
performance-in-exams

2. Barocas, S., Hardt, M., Narayanan, A.: Fairness in machine learning. In: Proceeding
of NIPS (2017)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: Cvc4. In: International Conference on Computer Aided
Verification. pp. 171–177. Springer (2011)

4. Bunel, R.R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified
view of piecewise linear neural network verification. In: NeurIPS. pp. 4795–4804
(2018)

5. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

6. Dutertre, B.: Yices 2.2. In: International Conference on Computer Aided Verifica-
tion. pp. 737–744. Springer (2014)

7. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NFM. Lecture Notes in Computer Science,
vol. 10811, pp. 121–138. Springer (2018)

8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: ATVA. Lecture Notes in Computer Science, vol. 10482, pp. 269–286. Springer
(2017)

9. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rah-
mati, A., Song, D.: Robust physical-world attacks on deep learning models. arXiv
preprint arXiv:1707.08945 1 (2017)

10. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: IEEE Symposium on Security and Privacy. pp. 3–18. IEEE
(2018)

11. Hadarean, L., Hyvarinen, A., Niemetz, A., Reger, G.: Smt-comp 2019. https://smt-
comp.github.io/2019/results (2019)

12. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: CAV (1). Lecture Notes in Computer Science, vol. 10426, pp. 3–29.
Springer (2017)

13. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A.G., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: CVPR. pp. 2704–2713. IEEE Computer Society
(2018)

How Many Bits Does it Take to Quantize Your Neural Network? 95

14. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: CAV (1). Lecture Notes
in Computer Science, vol. 10426, pp. 97–117. Springer (2017)

15. Krizhevsky, A., Hinton, G.: Convolutional deep belief networks on cifar-10. Un-
published manuscript 40(7) (2010)

16. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A simple and accurate
method to fool deep neural networks. In: CVPR. pp. 2574–2582. IEEE Computer
Society (2016)

17. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML. pp. 807–814. Omnipress (2010)

18. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: AAAI. pp. 6615–6624. AAAI Press
(2018)

19. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. JSAT 9, 53–58 (2014)
20. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of

artificial neural networks. In: CAV. Lecture Notes in Computer Science, vol. 6174,
pp. 243–257. Springer (2010)

21. Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI
Commun. 25(2), 117–135 (2012)

22. Schönherr, L., Kohls, K., Zeiler, S., Holz, T., Kolossa, D.: Adversarial attacks
against automatic speech recognition systems via psychoacoustic hiding. In: ac-
cepted for Publication, NDSS (2019)

23. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. In: POPL. ACM (2019)

24. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)

25. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2018)

26. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be
at odds with accuracy. In: International Conference on Learning Representations
(2019)

27. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verifi-
cation for multilayer neural networks. IEEE Trans. Neural Netw. Learning Syst.
29(11), 5777–5783 (2018)

28. Zhao, Y., Shumailov, I., Mullins, R., Anderson, R.: To compress or not to compress:
Understanding the interactions between adversarial attacks and neural network
compression. In: SysML Conference (2019)

96 M. Giacobbe et al.

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

How Many Bits Does it Take to Quantize Your Neural Network? 97

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

	5 How Many Bits Does it Take to Quantize Your Neural Network?
	1 Introduction
	2 Quantization of Feed-forward Networks
	3 Robustness is Non-monotonic in the Number of Bits
	4 Verification of Quantized Networks using Bit-precise SMT-solving
	5 Experimental Results
	5.1 Scalability and performance
	5.2 Comparison to other methods
	5.3 The effect of quantization on robustness
	5.4 Network specifications beyond robustness

	6 Conclusion
	References

