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Abstract
For any free oriented Borel–Moore homology theory A, we construct an associative
product on the A-theory of the stack of Higgs torsion sheaves over a projective curve
C . We show that the resulting algebra AHa0C admits a natural shuffle presentation, and
prove it is faithful when A is replaced with usual Borel–Moore homology groups. We
also introduce moduli spaces of stable triples, heavily inspired by Nakajima quiver
varieties, whose A-theory admits an AHa0C -action. These triples can be interpreted as
certain sheaves on PC (ωC ⊕OC ). In particular, we obtain an action of AHa0C on the
cohomology of Hilbert schemes of points on T ∗C .
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0 Introduction

Let C be a hereditary abelian category over finite field Fq , such that all Hom- and Ext-
spaces have finite dimension. We have two important examples of such categories:

• for a finite quiver Q, the category of finite dimensional representations Rep Q =
RepFq

Q;
• for a smooth projective curve C over Fq , the category of coherent sheaves CohC .

Given a category C satisfying the conditions above, one can associate to it the Hall
algebra H(C), as defined in [46]. Broadly speaking, its basis is given by isomorphism
classes of objects in C, and the product is given by the sum of all non-isomorphic
extensions. In the case C = Rep Q, where Q is a quiver of Dynkin type, a famous
theorem by Ringel [44] describes the Hall algebra H(Rep Q) as the positive half of
the quantum groupUν(gQ), specialized at ν = q1/2. Moreover, one can upgradeH(C)
to a (twisted, topological) bialgebra, such that the Drinfeld double D(H(Rep Q)) is
isomorphic to the quantum group itself.

By contrast, the Hall algebra H(CohC) seems to be far less understood. For
instance, an explicit description of (the spherical part of) H(CohC) by generators
and relations is known only when C is rational [22] or elliptic [6]. Our principal moti-
vation is to get a better understanding of this algebra. One way to do it is to study its
representation theory. Unfortunately, since we do not possess an explicit combinato-
rial description of H(CohC) in terms of generators and relations (see, however, [46,
Section 4.11] for partial results), we have to construct its representations indirectly.

We use an approach close in spirit to the well-known construction of Nakajima [36],
which realizes irreducible representations of the universal enveloping algebra U (g)
of a simple Lie algebra g as homology groups of certain varieties. Let us summarize
a variant of this construction, following the point of view from [52]. Namely, for a
finite type quiver Q = (I , E) and a projective CQ-module P with top of graded
dimensionw ∈ Z

I+, one considers the algebraic stack T ∗ Rep←P
v Q, where Rep←P

v Q
parametrizes pairs (V , ϕ) with V ∈ Rep Q, dimV = v, and ϕ ∈ HomCQ(P, V ). The

C-points of this stack can be identified with representations of a quiver Q
♥
, satisfying

certain conditions [16, Section 5]. For every dimension vectorv ∈ Z
I+, one introduces a

stability condition on these representations, such that subrepresentations of stable rep-
resentations are stable, and the moduli stack of stable representations forms a smooth
variety M(v,w). Inside these varieties, one has Lagrangian subvarieties L(v,w) :=
ß−1v (0), where πv:M(v,w)→ Spec 0(OM(v,w)) is the affinization map. Finally, one
considers a correspondence Zv ⊂ (T ∗ Repv Q × M(v1,w))×M(v+ v1,w), which
parametrizes triples (V , V1, V2)with V2/V1 	 V . Denoting the projections on the first
and second factor by �v and �v correspondingly, we have the following operators in
Borel–Moore homology:

ei,v = (�εi )∗(�εi )
∗([T ∗ Repεi

Q]�−): H(M(v,w))→M(v + i,w),

fi,v =
〈
(�εi )∗(�εi )

∗(−), [T ∗ Repεi
Q]〉 : H(M(v,w))→M(v − i,w),

where εi is the dimension vector of the simple representation at vertex i ∈ I . Then ei :=∑
v ei,v, fi := ∑v fi,v give rise to an action of U (gQ) on Mw =⊕v H(M(v,w)),
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and moreover its restriction to
⊕

v H(L(v,w)) is the irreducible highest module of
weight w.

In fact, this action can be extended to a much bigger algebra, so-called Yangian.
This can be achieved by realizing it inside the cohomological Hall algebra [48,52],
isomorphic to

⊕
v H(T ∗ Repv Q) as a vector space (see [31] for another perspective

on Yangians). The latter algebra then acts on Mw by correspondences similar to the
ones described above. The purpose of this paper is to begin investigation of analogous
algebras and their representations in the context of curves.

In order to apply the same set of ideas to our situation, we have to introduce several
modifications to our context. First, we have to consider T ∗ Coh C instead of Coh C ;
note that the former stack is isomorphic to the stack of Higgs sheaves Higgs C .
Secondly, we will study a homological version of Hall algebra. It will be modeled
on the vector space A(Higgs C), where A is either Borel–Moore homology or an
arbitrary free oriented Borel–Moore homology theory (see [30, Chapter 5] for the
definition of the latter).

Optimistically, our program is as follows:

(1) construct a (bi-)algebra structure AHaC on A(Higgs C);

(2) define a suitable stability condition on T ∗Coh←FC , where Coh←FC is the stack
of pairs (E, α) with E ∈ CohC , α ∈ Hom(F, E);

(3) construct an action of the Drinfeld double D(AHaC ) on the A-theory A(M) of
the moduli of stable objects.

In the present article, we treat a very particular case of the plan above. Namely,
we restrict our attention to the category of torsion sheaves on C . Then, we have the
following result:

Theorem 0.1 There exists an associative product on
⊕

d A(Higgs0
d

C), which makes
it into an algebra AHa0,C (Theorem 2.2).

The proof uses the techniques found in [49,52]. Because of our restrictions on the
rank of sheaves, all stacks we consider can be explicitly realized as global quotients,
and thus we can forget their stacky nature and work with equivariant A-theory of their
atlases instead. In positive rank the stack Cohr ,d is only locally a quotient stack, so
that one has to check that separate constructions in each patch can be glued together.
This was done in [45].

Note that we do not construct a coproduct on AHa0C . However, if we denote by

AHa0,TC the version of AHa0C equivariant with respect to the scaling action of Gm on
the cotangent fibers, one can define a certain algebra AShC with explicit formulas for
multiplication and construct a map ρ: AHa0,TC → AShC . Roughly speaking, AShC

looks like the space of formal series with coefficients in A(C), and the product is
given by twisted symmetrization (see Definition 3.3). We expect ρ to be injective
(Conjecture 4.12). This prediction is supported by the following theorem:

Theorem 0.2 If A = H are the usual Borel–Moore homology groups, the map
ρ: HHa0,T0,C → HShC becomes injective after tensoring by Frac(AT (pt))
(Corollary 4.5).
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If the conjecture is true, this map can be used to find relations in AHa0,TC via direct
computations, and also to transport a natural coproduct from AShC .

Next, let us pick a locally free sheaf F as framing.

Definition A stable Higgs triple of rank 0, degree d and frame F is a triple (E, α, θ)
with E ∈ Coh0,d C , α ∈ Hom(F, E), θ ∈ Ext1(E, (F α−→ E)⊗ω), such that the image
of α generates E under θ (Definition 5.3).

Theorem 0.3 Let C be a smooth projective curve, and d, n positive integers.

(1) The moduli of stable Higgs triples of degree d and frame F is represented by a
smooth quasi-projective variety B(d,F) (Theorem 5.8);

(2) Let F = kn ⊗ O. Then for any n, the space AMn = ⊕d A(B(d,kn ⊗ O)) is
equipped with a structure of an AHa0C -module (Corollary 5.10).

The second part of this theorem is proved by the same methods as Theorem 0.2.
We strongly expect that the same result holds for any locally free F. As for the first
part, it is done by realizing stable Higgs triples as sheaves on a compactification of
T ∗C . Namely, we have the following theorem:

Theorem 0.4 The variety B(d,F) is isomorphic to the moduli space of f -semisimple
torsion-free sheaves on PC (ω ⊕O), equipped with framing at infinity and satisfying
certain numerical conditions. In particular, B(d,O) is isomorphic to the Hilbert
scheme of points Hilbd T ∗C (Sect. 7).

This isomorphism can be understood as a relative version of classical derived equiv-
alence between the category of sheaves on P

1 and of representations of the Kronecker
quiver [3]. We refer the reader to Sect. 7 for definitions and precise statement.

Unfortunately, it is not entirely clear how to extend a AHa0,TC -module structure on

AM T
n to a Yetter–Drinfeld module [43] with respect to some coproduct on AHa0,TC .

Still, the isomorphism B(d,O) 	 Hilbd(T ∗C) suggests that AM T
n should admit an

action of the Drinfeld double of AHa0,TC , similar to [37, Chapter 8].
In higher rank, we expect the moduli of stable Higgs triples to retain a close relation

to the moduli of sheaves on PC (ω ⊕ O) framed at infinity. This is evidenced by the
fact that similar objects appear in the works of Neguţ [38,39], where for any smooth
projective surface S he defines an action of a certain W-algebra on the K -theory
of moduli of stable sheaves on S. We expect that for S = T ∗C , these algebras get
embedded into a suitable completion of KHa0C . In general, since Higgs sheaves on
C can be thought of as coherent sheaves with proper support on T ∗C via BNR-
correspondence [2], one can imagine a much more general picture:

Guiding principle Let S be a smooth projective surface together with a smooth
divisor D ⊂ S. Denote by Coh(S, D) the stack of OS-modules with support dis-
joint from D, and by Coh0(S, D) its substack of OS-modules of finite length. Then
AHaS = A(Coh(S, D)) should admit a Hall-like structure of an associative algebra,
such that AHa0S = A(Coh0(S, D)) is a subalgebra containing A-theoreticW-algebra.
Furthermore, the Drinfeld double D(AHaS) should act on the A-theory of stable
sheaves on S framed at D, for a certain stability condition.
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For this principle to hold true, one will certainly need additional technical assump-
tions, such as transversality of the divisor defining stability conditionwith D. However,
this discussion reaches far beyond the scope of this article.

Since the first draft of the present paper has appeared, some additional progress has
been made in generalizing its results. As mentioned above, the definition of algebra
AHa0C was extended to positive rank Higgs sheaves in [45]. In K -theory, the rank 0
algebra KHa0S was defined for any smooth surface S in [53]. In homology, the full
algebra HHaS was defined in [24]. Moreover, it was shown there that HHaS acts
on the Borel–Moore homology groups of rank 1 semi-stable sheaves on S. Finally, a
certain categorified version of HHaS was introduced in [42].

Let us finish the introduction with a brief outline of the structure of the paper. In
Sect. 1 we choose explicit presentations of Coh0,d and Higgs

0,d
as global quotient

stacks, given by certain Quot-schemes. We also recollect basic facts about these
schemes. In Sect. 2 we recall a construction introduced in works of Schiffmann and
Vasserot, which permits us to define an associative product on

⊕
d A(Higgs

0,d
). In

Sect. 3 we introduce global shuffle algebras AShg , prove that these algebras satisfy
some quadratic relations, and obtain a shuffle presentation ρ of AHa0,TC for a certain
choice of g. The map ρ is obtained by localizing our product diagrams to the fixed
point sets of a certain torus T. In passing, we also propose a geometric interpretation
of the difference between two types of shuffle product, appearing in literature in
similar context (Corollary 3.10). In Sect. 4, we prove that for A = H the shuffle
presentation ρ is faithful. The proof uses the scaling torus action and weight filtration
in a crucial way, so that it cannot be easily translated to other homology theories.
However, we conjecture that ρ is faithful for general A. In Sect. 5 we introduce
the moduli stack of Higgs triples, construct an action of AHa0C on

⊕
d A(B(d, n)),

and discuss how it can be related to the classical action of Heisenberg algebra on
cohomology groups of Hilbert schemes of points on T ∗C [37]. In Sect. 6, we collect
some technical facts about quiver sheaves for later use. In Sect. 7, we provide an
alternative description of B(d, n) as a moduli of sheaves on a compactification of
T ∗C . We also briefly describe the relation between our work and the W -algebras
of Neguţ. Finally, in “Appendix A” we recall the notion of oriented Borel–Moore
homology functor, following the monograph by Levine andMorel [30], and gather the
statements necessary for our proofs. In particular, we adapt the localization theorem
of Borel–Atiyah–Segal to this framework.

0.1 Conventions

We denote by Sch/k the category of k-schemes of finite type over k; pt stands for the
terminal object Speck ∈ Sch/k. For any X ∈ Sch/k, the category of coherent OX -
sheaves is denoted by Coh X . We will usually denote coherent sheaves by calligraphic
letters, and implicitly identify locally free sheaves with corresponding vector bundles.
For any E,F ∈ Coh X , we write Exti (E,F) for Ext-functors, Hom := Ext0, and
Exti (E,F) for Ext-sheaves, Hom := Ext0. More generally, for any two complexes
of sheaves E•,F• we denote by Hom(E•,F•) the space of morphisms in the derived
categoryDb(Coh X), andExti (E•,F•) := Hom(E•,F•[i]). Finally, we will liberally
use the language of stacks; see [28,41] for background.
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1 Coherent sheaves andQuot-schemes

Let k be an algebraically closed base field of characteristic 0. Let C be a smooth
projective curve defined over k, and O its structure sheaf. Then one can define the
following algebraic stacks (over Sch/k in étale topology):

• Coh0,d , the stack of torsion sheaves on C of degree d [28, Théorème 4.6.2.1];

• for any F ∈ CohC , the stack Coh←F
0,d of pairs (E ∈ Coh0,d C, α ∈ Hom(F, E))

[15, Section 4.1];
• the cotangent stackHiggs

0,d
:= T ∗Coh0,d . It is defined as the relative Spec of the

symmetric algebra of the tangent sheaf; see [28, Chapitre 14, 17] for the relevant
definitions.

Remark 1.1 Note that the tangent sheaf of a stack is not the same as the tangent
complex, but is rather its zeroth cohomology.

All of the stacks above can be realized as global quotient stacks. Below we will
make an explicit choice of such presentation for computational purposes.

Definition 1.2 Let Quot0,d be the following functor:

Quot0,d : Sch/k→ Setop,

T �→
{
ϕ:kd ⊗OT×C � ET

∣∣∣∣
ET ∈ Coh(T × C), ϕ flat over T ,

for any t ∈ T , rk Et = 0 and deg Et = d.

}
,

(T ′ f−→ T ) �→ (ϕ �→ f ∗ϕ).

Moreover, let us consider its open subfunctor Quot◦0,d ⊂ Quot0,d , consisting of
quotients

ϕ:kd ⊗OT×C � ET ,

such that the map H0(ϕt ):kd → H0(Et ) is an isomorphism for all t ∈ T .

Let Gd := GLd(k). Note that Gd acts on Quot◦0,d via linear transformations of

kd .

Proposition 1.3 Let d > 0 be an integer.

(1) Quot0,d and Quot◦0,d are representable by smooth schemes Quot0,d and Quot◦0,d
respectively, and Quot0,d is a projective variety of dimension d2;

(2) we have an isomorphism [Quot◦0,d/Gd ] 	 Coh0,d;
(3) let F 	 V ⊗ O for some finite dimensional vector space V . Then we have an

isomorphism [(Hom(V ,kd)×Quot◦0,d)/Gd ] 	 Coh←F
0,d .

Proof For (1), see [29]. The claim (2) follows from the observation that any torsion
sheaf of degree d is generated by its global sections, and every isomorphism of torsion
sheaves is completely determined by its action on global sections. Finally, for (3) let
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us consider the natural map Coh←V⊗O
0,d → Coh0,d . This is a vector bundle, which is

trivialized in the atlas given by Quot◦0,d :

Coh←V⊗O
0,d ×Coh0,d Quot◦0,d 	 Hom(V ,kd)×Quot◦0,d .

The statement of (2) then implies the desired isomorphism.

Remark 1.4 Note that (3) fails for other sheaves F �	 V ⊗ O. In general, we would
have to pick a certain closed subvariety out of Hom(F,kd ⊗O)×Quot◦0,d ; see [20]
for more details.

Recall that for any algebraic group G and any smooth G-variety X the cotangent
bundle T ∗X is naturally equipped with a Hamiltonian G-action. Let μ: T ∗X → g∗
be the corresponding moment map, where g is the Lie algebra of G, and put T ∗G X :=
μ−1(0). Note that the infinitesimal G-action provides a morphism g ⊗ OX

μ∗−→ TX ,
where TX is the tangent sheaf of X .

Lemma 1.5 Let X be a smooth variety equipped with an action of G. Then we have a
natural isomorphism of stacks T ∗[X/G] 	 [T ∗G X/G].
Proof It follows from the definition of the moment map that the composition

T ∗X = Spec Sym(TX )
μ∗−→ Spec Sym(g⊗OX ) = g∗ × X

pr1−−→ g∗

coincides with μ. Therefore Spec Sym(Cokerμ∗) 	 μ−1(0) = T ∗G X , and we obtain
the desired isomorphism after descending to [X/G].

The lemma above implies that

Higgs
0,d
= T ∗Coh0,d 	 [T ∗GQuot◦0,d/G].

Example 1.6 Let d = 1. As a set, Quot0,1(k) = {O ϕ−→ E | E ∈ Coh0,1, ϕ �= 0}.
Note that since the G1 = Gm-action is trivial here and Hom(O, E) = k by Riemann–
Roch, we actually have Quot0,1 	 Quot◦0,1 	 C , and Coh0,1 	 C × BGm . The
corresponding universal family is given by O� ∈ Coh(C × C), where O� is the
structure sheaf of the diagonal � ⊂ C × C . Moreover, T ∗GQuot0,1 	 T ∗Quot0,1 	
T ∗C , and thus Higgs

0,d
	 T ∗C × BGm .

Let us also define the following filtered version of Quot◦0,d .

Definition 1.7 For any d• = {0 = d0 ≤ d1 ≤ · · · ≤ dk = d}, fix a filtration kd1 ⊂
· · · ⊂ kd . Denote by Q̃uot0,d• the subset ofQuot0,d consisting of quotientskd⊗O ϕ−→
E such that the map H0(ϕ)|kdi⊗O:kdi → H0(Im ϕ|kdi⊗O) is an isomorphism for any
i .
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We introduce the following notations for later use:

Gd• =
k∏

i=1
Gdi−di−1 , Quot0,d• =

k∏

i=1
Quot0,di−di−1 , Quot◦0,d• =

k∏

i=1
Quot◦0,di−di−1 .

Wealso fix isomorphismskdi /kdi−1 	 kdi−di−1 for each i ∈ [1, k], so thatGdi−di−1
gets identified with invertible maps in Hom(kdi−di−1,kdi /kdi−1), and quotients of
(kdi /kdi−1)⊗O are parametrized by the variety Quot0,di−di−1 .

Proposition 1.8 Q̃uot0,d• is a smooth closed subvariety in Quot◦0,d .

Proof In order to prove that Q̃uot0,d• is a closed subvariety ofQuot◦0,d , let us recall the
construction ofQuot-schemes in [29, Chapter 4]. Namely, fix n � 0 and an ample line
bundle O(1) on C . Denote by H = H0(O(n)) the space of global sections of O(n),
h = dim H . Let Grassd(kd ⊗ H) be the Grassmanian of subspaces of codimension d
in kd ⊗ H , and consider the following map:

Quot0,d → Grassd(kd ⊗ H),
(
0→ K→ kd ⊗O ϕ−→ E→ 0

)
�→
(

H0(K⊗O(n)) ⊂ kd ⊗ H
)
.

It is a closed embedding for n big enough. Now, for each quotient kd ⊗O ϕ−→ E and
for each i ∈ [1, k] we have the restricted short exact sequence

0→ Ki → kdi ⊗O ϕi−→ Ei → 0 (1)

with Ki := K ∩ (kdi ⊗ O), ϕi = ϕ|kdi⊗O, and Ei = Im ϕi . Since H0(ϕ) is an
isomorphism, H0(ϕi ) is injective for all i , and thus h0(Ei ) ≥ di for all i ; moreover, ϕ
belongs to Q̃uot0,d• precisely when all the previous inequalities turn into equalities.
Tensoring (1) by O(n) and taking global sections, we get an exact sequence

0→ H0(Ki (n))→ kdi ⊗ H → H0(Ei (n))→ 0

for n big enough and all Ki . Since Ei is torsion sheaf, there exists an isomorphism
Ei (n) 	 Ei , and the exact sequence above implies that

dim H0(Ki (n)) = dim H0(K(n)) ∩ (kdi ⊗ H) ≤ di (h − 1),

where the equality holds if and only if ϕ belongs to Q̃uot0,d• . Therefore

Q̃uot0,d• = Quot◦0,d ∩
{

V ⊂ kd ⊗ H

∣∣∣∣
dim V = d(h − 1),

dim V ∩ (kdi ⊗ H) ≥ di (h − 1)

}

⊂ Grassd(kd ⊗ H).
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The second set is closed in Grass(kd ⊗ H), and thus Q̃uot0,d• is closed in Quot◦0,d
as well.

In order to prove that Q̃uot0,d• is smooth, consider the following diagram:

Q̃uot0,d• × Gd•

Quot0,d• × Gd• Q̃uot0,d•

p q

where we identify Gdi−di−1 with invertible maps in Hom(kdi−di−1,kdi /kdi−1), the

map p sends (ϕ, (gi )
k
i=1) to

(
(g∗i (ϕ|kdi /kdi−1 ))

k
i=1, (gi )

k
i=1
)
, and q is the projection

on the first coordinate. Note that we have the following map between short exact
sequences for any point in Q̃uot0,d• :

0 kdi−1 kdi kdi /kdi−1 0

0 H0(Ei−1) H0(Ei ) H0(Ei/Ei−1) 0

	 	 H0(ϕ|
kdi /kdi−1 )

It follows that the map ϕ|kdi /kdi−1 : (kdi /kdi−1) ⊗ O → Ei/Ei−1 induces an isomor-
phismonglobal sections, and thus the image of p belongs toQuot◦0,d•×Gd• .Moreover,
the diagram above also implies that p is an affine fibration over Quot◦0,d• with fiber

k⊕

i=1
Hom(kdi−di−1 ⊗O, Ei−1) =

k⊕

i=1
kdi−di−1 ⊗ H0(Ei−1)

of dimension (di − di−1)di−1. SinceQuot◦0,d• is smooth and q is a trivial Gd•-torsor,

this observation implies the smoothness of Q̃uot0,d• .

Remark 1.9 In the proof above we chose an n big enough so that all K’s and Ki ’s
cease to have higher cohomology groups and become generated by global sections
after tensoring by O(n). It is possible because all our sheaves are parametrized by
a finite union of Quot-schemes, and thus form bounded families (see Lemma 4.4.4
in [29]).

Notation Throughout the paper, for any quotient kd ⊗ O ϕ−→ E in Quot0,d we will
denote Ker ϕ by K, and the inclusion K ↪→ kd ⊗O by ι. We will also decorate K, E,
ϕ and ι with appropriate indices and markings.

Next, we recall the description of tangent spaces of Quot-schemes.

Proposition 1.10 Let kd ⊗ O ϕ−→ E be a point in Quot0,d , and let K = Ker ϕ. Then
the tangent space TϕQuot0,d at ϕ is naturally isomorphic to Hom(K, E). Moreover, if

ϕ ∈ Q̃uot0,d• we have
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TϕQ̃uot0,d• = {v ∈ Hom(K, E): v(Ki ) ⊂ Ei ∀i} .

Proof The proof of the first claim can be found in [29, Chapter 8]. The second claim
can be proved in a similar fashion, keeping track of the condition of admitting a
sub-quotient throughout the proof of the first claim.

Because of this proposition, we will usually regard T ∗Quot◦0,d as a variety, whose
k-points are identified with pairs

T ∗Quot◦0,d =
{
(ϕ, β) | ϕ ∈ Quot◦0,d , β ∈ Hom(K, E)∗

}
.

Additionally, let us define for later purposes the nilpotent part (TϕQ̃uot0,d•)
nilp of

TϕQ̃uot0,d• :

(TϕQ̃uot0,d•)
nilp := {v ∈ Hom(K, E): v(Ki ) ⊂ Ei−1 ∀i} . (2)

Note that

Hom(kd ⊗O, E) 	 Hom(kd , H0(E)) 	 Hom(kd ,kd) =: gd ,

with the second isomorphism being induced by H0(ϕ):kd ∼−→ H0(E). In these terms
the moment map for the Gd -action on T ∗Quot◦0,d can be written as follows:

μ: T ∗Quot◦0,d → g∗d ,
(ϕ, β) �→ ι∗β ∈ Hom(kd ⊗O, E)∗ 	 g∗d .

Since E is a torsion sheaf, we have Ext1(kd ⊗ O, E) = 0, and thus over each
ϕ ∈ Quot◦0,d the restriction μϕ of the map μ to T ∗ϕQuot◦0,d can be embedded in a long
exact sequence:

0→ Ext1(E, E)∗ → Hom(K, E)∗
μϕ−→ Hom(kd ⊗O, E)∗ → Hom(E, E)∗ → 0.

This implies that μ−1ϕ (0) 	 Ext1(E, E)∗, and we get an identification on the level of
k-points

T ∗Gd
Quot◦0,d =

{
(ϕ, β):ϕ ∈ Quot◦0,d , β ∈ Ext1(E, E)∗

}
⊂ T ∗Quot◦0,d . (3)

Example 1.11 Let C = A
1. Even though this curve is not projective, we can fix an

isomorphism A
1 = P

1\{∞}, and define

Quot0,d(A
1) :=

{
kd ⊗OP1

α−→ E: supp E ⊂ A
1
}
⊂ Quot0,d(P

1).
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Then the open subvariety

Quot◦0,d(A1) = Quot0,d(A
1) ∩Quot◦0,d(P1)

parametrizes quotients kd [t] α−→ V , where V is a torsion k[t]-module of length d, and
α induces an isomorphism of k-vector spaces kd t0 	 V . Equivalently, Quot◦0,d(A1)

parametrizes linear operators on kd , that is

Quot◦0,d(A1) 	 gd ,

where the Gd -action on the left gets identified with the adjoint action on the right.
Thus T ∗Quot◦0,d(A1) 	 (gd)

2, and T ∗Gd
Quot◦0,d(A1) is isomorphic to the commuting

variety C (gd) = {(u, v) ∈ (gd)
2: [u, v] = 0}.

In light of the example above, we will refer to T ∗Gd
Quot◦0,d as the commuting

variety of C , and denote it by Cd = Cd(C). We will also write Cd• = Cd•(C) :=
T ∗Gd•Quot◦0,d• .

Example 1.12 Let us fix a geometric point x ∈ C(k), and consider the punctual Quot-
scheme

Quot◦0,d(x) :=
{
kd ⊗O α−→ E: supp E = x

}
⊂ Quot◦0,d .

Such quotient is completely determined by its localization at x . More explicitly, since
C is smooth, the completion Ôx is (non-canonically) isomorphic to k�t�. The stalk

of α at x is thus of the form kd�t�
α1−→ E, where E is a k�t�-module, and α1 induces

an isomorphism of k-vector spaces kd t0 	 E. Such quotient is in its turn uniquely
determined by a nilpotent operator T on kd , the correspondence given by

T ∈ End(kd) �→ (0→ kd�t�
ι−→ kd�t�→ E→ 0), ι(vt i ) = (T .v)t i − vt i+1.

Thus we see that Quot◦0,d(x) is isomorphic to the nilpotent cone Nd ⊂ gd together
with the adjoint action of Gd . Moreover, under this identification the cotangent space
Hom(K, E)∗ inQuot◦0,d of a point α gets identified with gd , and the restriction of the
moment map μ: T ∗Quot◦0,d → gd toNd × gd is the commutator. In particular,

Cd ∩ T ∗Quot◦0,d |Quot◦0,d (x) 	 C n,•
d :=

{
(u, v) ∈ (gd)

2: [u, v] = 0, u nilpotent
}
.

2 The product

Let us once and for all fix a free oriented Borel–Moore homology theory (OBM) A;
for the definition and basic facts about this notion, see “Appendix A”. As explained
there, we abuse the notation somewhat and consider the usual Borel–Moore homology
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H∗ as if it were a free OBM. We also equip the cotangent bundle T ∗C with an action
of Gm , given by dilations along the fibers; let us denote this torus by T .

We begin by recalling a general construction from [47]. Let G be an algebraic
group with fixed Levi and parabolic subgroups H ⊂ P . Assume we are given smooth
quasi-projective varieties X ′, Y , V , equipped with actions of G, H , P respectively,
and H -equivariant morphisms

V

Y X ′

p q

such that p is an affine fibration and q is a closed embedding. Set W = G ×P V ,
X = G ×P Y , where the P-action on Y is induced by the natural projection P → H ,
and consider the following maps of G-varieties:

W

X X ′

f g f : (g, v)mod P �→ (g, p.v)mod P,
g: (g, v)mod P �→ g.q(v).

The map ( f , g):W → X × X ′ is a closed embedding, so from now on we will
identify the smooth variety W with its image in X × X ′. Let Z = T ∗W (X × X ′) be the
conormal bundle. Projections on factors define two maps:

Z

T ∗X T ∗X ′
� �

We denote ZG = Z ∩ (T ∗G X × T ∗G X ′). Then �−1(T ∗G X) = �−1(T ∗G X ′) = ZG [49,
Lemma 7.3(b)], and we have the following induced diagram:

ZG

T ∗G X Z T ∗G X ′

T ∗X T ∗X ′

�G �G

� �

(4)

Now,� and�G are projective,� is an lci map, so that we get the followingmorphisms
in A-groups:

(�G)∗: AG(ZG)→ AG(T ∗G X ′),
�!: AG(T ∗G X)→ AG(ZG).

By composing these two maps and using the induction isomorphism AH (T ∗H Y )
∼−→

AG(T ∗G X) (see Proposition A.6), we obtain a map
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ϒ = (�G)∗ ◦�! ◦ indG
H : AH (T ∗H Y )→ AG(T ∗G X ′). (5)

Let us apply this general construction to a particular case ofQuot-schemes of rank
0. Namely, let d• = {0 = d0 ≤ d1 ≤ · · · ≤ dk = d}, denote G = Gd , H = Gd• ,
and let P = Pd• be the parabolic group preserving the flag kd1 ⊂ · · · ⊂ kd . We use
Gothic letters g, p, h for corresponding Lie algebras, and p− for the parabolic algebra
opposite to p. Next, put

Y = Quot◦0,d• , V = Q̃uot0,d• , X ′ = Quot◦0,d .

By Proposition 1.8 we have a closed embedding g: V ↪→ X ′ and an affine fibration
f = gr : V � Y .
The following lemma will help us to identify all the terms in diagram (4).

Lemma 2.1 Let G, P, H , X ′, X , V ,Y be as above.

(1) There exist natural isomorphisms of G-varieties

T ∗X ′ = T ∗Quot◦0,d ,

Z = G ×P

{
(ϕ, β) ∈ T ∗Quot◦0,d |Q̃uot0,d•

:β|
(TϕQ̃uot0,d• )nilp = 0

}
,

T ∗X = G ×P (p∗− ×h∗ T ∗Quot◦0,d•)
= G ×P {(x, (ϕ•, β•)) ∈ p∗− × T ∗Quot◦0,d• : x |h = μ(ϕ•, β•)},

where (TϕQ̃uot0,d•)
nilp is defined as in (2). For each (ϕ, β) ∈ T ∗Q̃uot0,d• we

have

�((g, ϕ, β)mod P) = (g, μ(ϕ, β), gr(ϕ, β))mod P,

�((g, ϕ, β)mod P) = g.(ϕ, β).

(2) There are isomorphisms of G-varieties

T ∗G X ′ = Cd , T ∗G X = G ×P Cd• .

Proof (1) The first isomorphism is obvious, so we start with T ∗X :

T ∗X = T ∗(G ×P Quot◦0,d•) = T ∗P (G ×Quot◦0,d•)/P

= {(g, x, (ϕ•, β•)) ∈ G × g∗ × T ∗Quot◦0,d• : g.x |p − μ(ϕ•, β•) = 0 ∈ p∗
}
/P

= G ×P
{
(x, (ϕ•, β•)) ∈ p∗− × T ∗Quot◦0,d• : x |h = μ(ϕ•, β•)

}
.

Let us also note that the moment map μ: T ∗X → g∗ is given by

μ ((g, x, ϕ•, β•) mod P) = g.x .



   30 Page 14 of 67 A. Minets

By the same reasoning,

T ∗(X × X ′) = T ∗
(
G ×P (Quot◦0,d• ×Quot◦0,d)

)

= T ∗P
(
G ×Quot◦0,d• ×Quot◦0,d

)
/P

= G ×P

{
(x, (ϕ•, β•), (ϕ, β)) ∈ g∗ × T ∗Quot◦0,d•
such that x |p = μ(ϕ•, β•)+ μ(ϕ, β)|p

}
.

Next, let us compute Z = T ∗W (X × X ′). We have W = G ×P Q̃uot0,d• , and
therefore

T ∗W = T ∗P (G × Q̃uot0,d•)/P

=
{
(g, x, ϕ, β) ∈ G × g∗ × T ∗Q̃uot0,d• : g.x |p − μ(ϕ, β) = 0

}
/P

= G ×P

{
(x, ϕ, β) ∈ g∗ × T ∗Q̃uot0,d• : x |p = μ(ϕ, β)

}
,

so that

T ∗(X × X ′)|W

= G ×P

{
(x, ϕ, β•, β) ∈ g∗ × Q̃uot0,d• × T ∗gr ϕQuot◦0,d• × T ∗ϕQuot◦0,d

such that x |p = μ(ϕ•, β•)+ μ(ϕ, β)|p

}

.

But the conormal bundle T ∗W (X × X ′) can be expressed as the kernel of the fol-
lowing map of vector bundles:

T ∗(X × X ′)|W → T ∗W ,

(g, x, ϕ, β•, β)mod P �→
(

g, x, ϕ, β• − β|
TϕQ̃uot0,d•

)
mod P.

Therefore, we finally obtain

T ∗W (X × X ′) = G ×P

{
(ϕ, β•, β) ∈ Q̃uot0,d• × T ∗gr ϕQuot◦0,d• × T ∗ϕQuot◦0,d•
such thatβ|

TϕQ̃uot0,d•
= β•

}

	 G ×P

{
(ϕ, β) ∈ Q̃uot0,d• × T ∗ϕQuot◦0,d :β|(TϕQ̃uot0,d• )nilp = 0

}
.

Note that the desired formula for� follows from the first equality, and the formula
for � is evident. The claim (2) follows from the explicit descriptions of moment
maps T ∗X ′ → g∗, T ∗X → g∗.

The general construction thus produces a map

ϒ : AH (Cd•)→ AG(Cd).



Cohomological Hall algebras for Higgs torsion sheaves… Page 15 of 67    30 

For instance, if k = 2, then H = Gd ′ ×Gd ′′ , d = d ′ + d ′′, and we get a bilinear map

ϒ : AHa0C [d ′] ⊗ AHa0C [d ′′] → AHa0C [d], AHa0C [d] := A(Higgs
0,d

) = AGd (Cd).

We denote AHa0C =
⊕

d≥0 AHa0C [d], where AHa0C [0] := A(pt).

Theorem 2.2 (AHa0C , ϒ) is an associative algebra.

Proof We begin by introducing some notations. Let d1 ≤ d2 ≤ d, d• = (d1, d2, d),
d ′• = (d1, d), d ′′• = (d2 − d1, d − d1), G = Gd , P = Pd• , P ′ = Pd ′• . Define the
following varieties:

X1 = G ×P Quot◦0,d• ; W1 = G ×P ′ Q̃uot0,d ′• ;
X2 = G ×P ′ Quot◦0,d ′• ; W2 = G ×P Q̃uot0,d• ;
X3 = Quot◦0,d ; W3 = G ×P (Quot◦0,d1 × Q̃uot0,d ′′• ).

These varieties are Quot- and Q̃uot-bundles over certain partial flag varieties, so we
may identify their k-points as pairs (flag, quotient). Adopting “mod 3”-notation for
indices, we have obvious inclusions Wi ↪→ Xi−1 × Xi+1.

Lemma 2.3 Using the notations above,

(1) we have an isomorphism W2 → W1 ×X2 W3;
(2) the intersection (W1 × X1) ∩ (X3 ×W3) in X3 × X2 × X1 is transversal.

Proof First of all, we introduce a small abuse of notation. Namely, for any morphism

of sheaves E f−→ F and for any subsheaf E′ ↪→ E, the codomain of H0( f )|E′ is assumed
to be H0( f (E′)). With that in mind, we have

– X1 =
{
(D•, (ϕi )

3
i=1)
∣∣∣∣
dim D• = d•, ϕi : Di/Di−1 ⊗O→ Ei ,

H0(ϕi ) is an iso, i ∈ {1, 2, 3}
}
;

– X2 = {(D′•, (ϕi )
2
i=1) | dim D′• = d ′•, ϕi : Di/Di−1 ⊗ O → Ei , H0(ϕi ) is an iso,

i ∈ {1, 2}};
– X3 = {ϕ | kd ⊗O→ E, H0(ϕ) is an iso};
– W1 = {(D′•, ϕ) | dim D′• = d ′•, ϕ:kd ⊗ O → E, H0(ϕ)|Di⊗O is an iso, i ∈
{1, 2}};

– W2 = {(D•, ϕ) | dim D• = d•, ϕ:kd ⊗ O → E, H0(ϕ)|Di⊗O is an iso, i ∈
{1, 2, 3}};

– W3=
{
(D•, ϕ1, ϕ2)

∣∣∣∣
dim D• = d•, ϕ1: D1 ⊗O→ E1, ϕ2:kd/D1 ⊗O→ E2,

H0(ϕi ), i ∈ {1, 2}, H0(ϕ2)|D2/D1⊗O are iso

}
.

Next, consider a commutative diagram
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X1 W3 X2

W2 W1

X3

p32p31

p21

p23

α23

α21

p12

p13

p12: (D′•, ϕ) �→ (D′•, gr′ ϕ);
p13: (D′•, ϕ) �→ ϕ;
p21: (D•, ϕ) �→ (D•, gr ϕ);
p23: (D•, ϕ) �→ ϕ;
p31: (D•, ϕ1, ϕ2) �→ (D•, (ϕ1, gr′′ ϕ2));
p32: (D•, ϕ1, ϕ2) �→ (fgt(D•), (ϕ1, ϕ2));
α21: (D•, ϕ) �→ (fgt(D•), ϕ);
α23: (D•, ϕ) �→ (D•, gr′ ϕ),

where gr = grd• : Q̃uot0,d• → Quot◦0,d• is the natural affine fibration, and

fgt : (D1 ⊂ D2 ⊂ E) �→ (D1 ⊂ E),

gr′ = grd ′• , gr
′′ = grd ′′• .

(1)We have the following equalities on the level of k-points:

W1 ×X2 W3 =
{(
(D′•, ϕ), (D•, ϕ1, ϕ2)

) | fgt D• = D′•, (ϕ1, ϕ2) = gr′ ϕ
}

= {((fgt D•, ϕ), (D•, gr′ ϕ)
)} ⊂ W1 ×W3.

The natural map

p = (p23, p21):W2 → W1 ×X2 W3,

(D•, ϕ) �→
(
(fgt D•, ϕ), (D•, gr′ ϕ)

)

can be thus seen to be a bijection. The fiber product W1 ×X2 W3 is normal by [18,
Proposition 6.14.1], W2 is connected, therefore Zariski’s main theorem implies that p
is an isomorphism.

(2) To prove that our intersection is transversal, we need to show that for any x ∈
(W1 × X1) ∩ (X3 ×W3) 	 W2 there is an equality

Tx (W1 × X1) ∩ Tx (X3 ×W3) = Tx W2.

By Proposition 1.10 we have the following isomorphisms:

TϕQuot0,d = Hom(K, E); (6)

TϕQuot0,d• = Hom(K•, E•) :=
⊕

i

Hom(Ki/Ki−1, Ei/Ei−1); (7)

TϕQ̃uot0,d• = H̃omd•(K, E) := {β ∈ Hom(K, E):β(Ki ) ⊂ Ei for all i}. (8)

Let us fix a flag D• of dimension d•, and a quotient ϕ ∈ Quot0,d such that (D•, ϕ) ∈
W2. Then the equalities above allow us to compute all the tangent spaces in question:
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T(D•,gr ϕ)X1 T(D•,gr′ ϕ)W3 T(D′•,gr′ ϕ)X2

T(D•,ϕ)W2 T(D′•,ϕ)W1

Tϕ X3

T(D′•,ϕ)W1 = g/p′ ⊕ H̃omd ′•(K, E);
T(D•,ϕ)W2 = g/p⊕ H̃omd•(K, E);
T(D•,gr′ ϕ)W3 = g/p⊕ Hom(K1, E1)

⊕H̃omd•(K/K1, E/E1),

where p′, p ⊂ g are parabolic subalgebras associated to flags D′•, D• respectively,
and K1 = Ker ϕ|D1⊗OX . A straightforward computation shows that at a point x =
(D•, ϕ) ∈ W2 we have

Tx (W1 × X1) ∩ Tx (X3 ×W3) = {(β, (ξ red , gr′ β), (ξ, gr β)) | β ∈ H̃omd•(K, E),
ξ ∈ g/p},

where ξ red denotes the image of ξ under the quotient map g/p → g/p′. The space
above is isomorphic to Tx W2 by means of the map

Tx W2 → Tx (W1 × X1) ∩ Tx (X3 ×W3),

(ξ, β) �→ (β, (ξ red , gr′ β), (ξ, gr β)).

This proves the transversality.

Let us nowput Zi = T ∗Wi
(Xi−1×Xi+1). The lemmaabove, combinedwithTheorem

2.7.26 in [9], tells us that the projection T ∗(X3 × X2 × X1)→ T ∗(X3 × X1) gives
rise to an isomorphism

Z1 ×T ∗X2 Z3
∼−→ Z2.

Therefore, we obtain the following diagrams with cartesian squares:

T ∗X1 Z3 T ∗X2

Z2 Z1

T ∗X3

�3�3

�2

�2

α

β

�1

�1

T ∗G X1 Z3G T ∗G X2

Z2G Z1G

T ∗G X3

�3G�3G

�2G

�2G

αG

βG

�1G

�1G

where ZiG := Zi ∩(T ∗G Xi−1×T ∗G Xi+1). In view of LemmaA.12, the second diagram
implies that

ϒ ◦ (id⊗ϒ) = ((�1G)∗ ◦�!1G) ◦ ((�3G)∗ ◦�!3G)

= (�1G)∗ ◦ (βG)∗ ◦ α!G ◦�!3G = (�2G)∗ ◦�!2G .
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In a similar way we may prove that ϒ ◦ (ϒ ⊗ id) = (�2G)∗ ◦ �!2G , so that the
associativity of multiplication in AHa0C follows.

Note that all varieties in the definition of AHa0C admit a T = Gm-action (by dilation
along the fibers of cotangent and conormal bundles) and all maps we consider are T -
equivariant. Therefore, the construction above also defines an associative product on

AHa0,TC =
⊕

d

AHa0,TC [d] =
⊕

d

AT (Higgs
0,d

).

Example 2.4 Let C = A
1, and equip it with a natural action of weight 1 of another

torus T ′ = Gm . In this case KHa0,T×T ′
C and HHa0,T×T ′

C are precisely the K -theoretic
and cohomological Hall algebras studied in [48,49] respectively.

3 Global shuffle algebra

In this section we focus our attention on the algebra AHa0,TC . In order to study its
product, we will utilize the localization Theorem A.14. Let d• = {0 = d0 ≤ d1 ≤
· · · ≤ dk = d}, and denote G = Gd , P = Pd• , H = Gd• as before. We will also
denote by Td ⊂ H the maximal torus, which consists of operators diagonal with
respect to the standard basis v1, . . . , vd of kd . The Weyl group of G is then naturally
isomorphic to Sd , and the Weyl group of H is isomorphic toSd• =

∏
i Sdi−di−1 .

Denote T = Td × T , and write t1, . . . , td for the basis of character lattice of
Td corresponding to the standard basis of kd . In the same way, let t be the char-
acter of T of weight 1. One can think about characters of T as equivariant line
bundles over a point. In this fashion, we identify AT(pt)loc := Frac(AT(pt)) with
A(pt)((e(t1), . . . , e(td), e(t))) (see Example A.3).

Lemma 3.1 We have (T ∗Quot◦0,d)T = Quotd
0,1, where the embedding Quotd

0,1 ↪→
Quot◦0,d is defined by the basis {v1, . . . , vd} associated to Td .

Proof First of all, (T ∗Quot◦0,d)Td×T = (Quot◦0,d)Td . Next, a point (kd ⊗O ϕ−→ E) ∈
Quot0,d is Td -stable if and only if for any g ∈ Td we have Kϕ := Ker ϕ = Ker(ϕ ◦
(g ⊗ id)) = g.Kϕ . We choose an integer N and an ample line bundle L such that for
any ϕ the sheaf LN ⊗ Kϕ is generated by its global sections. Then Kϕ is uniquely
determined by the subspace V := H0(LN ⊗ Kϕ) ⊂ kd ⊗ H0(LN ) of codimension
d, that is by a point in certain Grassmanian. Let us denote H = H0(LN ). Then Kϕ

is T -stable if and only if V is T -stable. But we know that the only subspaces stable
under the torus actions are direct sums of subspaces of weight spaces. Therefore
V =⊕n

i=1 V ∩ (kvi ⊗ H), and thusKϕ is T -stable iffKϕ =⊕d
i=1Kϕ ∩ (kvi ⊗O).

Finally, this is equivalent to saying that E =⊕d
i=1 ϕ(kvi ⊗O), that is ϕ ∈ Quotd

0,1.

Recall thatQuot0,1 	 C (see Example 1.6), and let pi j :Quot0,1×Quot0,1×C →
C × C denote the projection along the unnamed factor.
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Lemma 3.2 Let K, E ∈ Coh(Quot0,1 × C) 	 Coh(C × C) be the universal families
of kernels and images of quotients O→ E respectively. Then

p12∗Hom(p∗13K, p∗23E) 	 OC×C (�),

p12∗Hom(p∗13O, p∗23E) 	 OC×C ,

where � ⊂ C × C is the diagonal.

Proof. It is easy to see that E 	 O�, K 	 O(−�). Since K is locally free and E is a
torsion sheaf over any point ϕ ∈ Quot0,1, the higher Ext-sheaves Exti (p∗13K, p∗23F)
vanish for all i > 0. We denote �i j = p−1i j �, and �123 ⊂ C × C × C the small
diagonal. Then

p12∗Hom(p∗13K, p∗23E) 	 p12∗((p∗13K)∗ ⊗ p∗23E)
	 p12∗(O(�13)⊗O�23) 	 p12∗(O�23(�123))

	 OC×C (�).

This proves the first equality. For the second one, we conclude by a similar computa-
tion:

p12∗Hom(p∗13O, p∗23E) 	 p12∗(O�23) 	 OC×C .

Notation In order to keep notation concise, for two sheavesA,B ∈ Coh(Quot0,1×C)

we will write Hom(A,B) instead of p12∗Hom(p∗13A, p∗23B) (here the pushforward
p12∗ is underived).

Let jH :Cd• ↪→ T ∗Quot◦0,d• denote the closed embedding, and let iH :Quotd
0,1 ↪→

T ∗Quot◦0,d• be the inclusion of the fixed point set. Recall that by localization Theo-
rem A.14 the map i∗H becomes an isomorphism upon tensoring with the fraction field
of AT(pt). Consider the following composition:

ρH = i∗H ◦ jH∗: AH×T (Cd•) 	 AT(Cd•)
Wd• → AT(Cd)Wd• ,

where the isomorphism on the left is given by Proposition A.7, Weyl group acts on
the right-hand side by Remark A.18, and Quotd

0,1 is identified with Cd . In the same
way, we can define a map

ρd = ρG : AG×T (Cd)→ AT(Cd)Wd .
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The goal of this section is to construct a mapϒloc (between localized A-groups), such
that the following diagram commutes:

AH×T (Cd•) AG×T (Cd)

ATd×T (Cd)
Sd•
loc ATd×T (Cd)

Sd
loc

ϒ

ρH ρG

ϒloc

As in [49, Section 10], one expects ϒloc to be some incarnation of shuffle product.
Let z be a formal variable, and let g ∈ (A∗(C × C)((t))) ((e(z))) be an A∗T (C ×C)loc-
valued formal Laurent series in e(z), where we interpret the latter as a formal symbol.
We will also abuse the notations and write g as a function of z. For any positive d1,
d2 with d1 + d2 = d, put

gd1,d2(z1, . . . , zd) =
d1∏

i=1

d∏

j=d1+1
g

(
z j

zi

)
.

Let us also fix the following set of representatives of classes in Sd/(Sd1 ×Sd2):

Sh(d1, d2) = {σ ∈ Sd | σ(i) < σ( j) if 1 ≤ i < j ≤ d1 or d1 + 1 ≤ i < j ≤ d} .

Definition 3.3 The shuffle algebra associated to g is the vector space

AShg =
⊕

d

AShg[d] =
⊕

d

(
A(Cd)((e(t); e(t1), . . . , e(td)))

)Sd

equipped with the product

�: AShg[d1] × AShg[d2] → AShg[d1 + d2],
�( f , h) =

∑

σ∈Sh(d1,d2)

σ.
(
gd1,d2(t1, . . . , td1+d2) f (t1, . . . , td1)h(td1+1, . . . , td1+d2)

)
.

(9)

The formula (9) requires some explanation. First of all, the product between f and

h is given by the map A(Cd1)⊗ A(Cd2)
×−→ A(Cd1+d2). Next, after replacing zi ’s by

ti ’s and taking Euler classes, the function gd1,d2 becomes an honest cohomology class,
which then operates on the product f · h. Finally, the natural action of σ ∈ Sh(d1, d2)
(see Remark A.18) simultaneously permutes ti ’s and factors in the direct product
Cd1+d2 .

It is easy to check that this product is associative. We will be mainly concerned
with two specific choices of g:
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• the global shuffle algebra, denoted by AShC , is the shuffle algebra associated to

gC = e(t z−1)e(zO(−�))e(t zO(�))
e(z)

;

• the normalized global shuffle algebra, denoted by AShnorm
C , is the shuffle algebra

associated to

gnorm
C = e(zO(−�))e(t zO(�))

e(z)e(t z)
.

By invoking the formal group law � associated to A, we can deduce that both functions
are Laurent series in e(z) (see also discussion before Proposition 3.12).

Remark 3.4 Two algebras above are isomorphic under the map RN = ⊕d RN [d],
where:

RN [d]: AShnorm
C [d] → AShC [d],

f (t1, . . . , td) �→
⎛

⎝
∏

i �= j

e

(
t
t j

ti

)⎞

⎠ f (t1, . . . , td).

Theorem 3.5 The collection of maps ρd : AGd×T (Cd) → AT(Cd)Sd ⊂ AT(Cd)
Sd
loc

defines a morphism of graded associative algebras

ρ: AHa0C → AShC .

Proof Let us first introduce some notations. Define

I 2d = [1; d] × [1; d] ⊂ Z
2;

Tp =
k⋃

i=1
[di−1 + 1; di ] × [di−1 + 1; d]; Tn =

k−1⋃

i=1
[di−1 + 1; di ] × [di + 1; d].

Also, let us denote the space W ×WH Cd from Proposition A.17 by Ĉd . Recall that
we have a projection s: Ĉd → Cd , given by shuffle permutations Sh(d1, d2).

Recall the notations of Sect. 2, specifically Lemma 2.1(2). Our proof will proceed
in two steps. First, consider the following diagram:

AH×T (Cd•) AG×T (T ∗G X)

AH×T (T ∗Quot◦0,d•) AH×T (p∗− ×h∗ T ∗Quot◦0,d•) AG×T (T ∗X)

AT(Cd)Sd AT(Cd)Sd AT(Ĉd)Sd

j∗

indG
H

j∗

i∗

indG
H

i∗ i∗

s∗



   30 Page 22 of 67 A. Minets

Let us denote all vertical compositions by ρ, leaving out the subscripts. For any closed
embedding of smooth varieties M ⊂ N , we denote by TM N the normal bundle of M .

Lemma 3.6 We have

ρ ◦ indG
H (c) = s∗

⎛

⎝
∏

(i, j)∈Tn

e

(
t

ti
t j

)
ρ(c)

⎞

⎠

for any c ∈ AH×T (Cd•).

Proof Everything in this diagram commutes, except for the lower left square. More-
over, by Proposition A.15 this square becomes commutative after multiplying by an
appropriate Euler class. Note that since p∗− = n∗− ⊕ h∗, we have an isomorphism

p∗− ×h∗ T ∗Quot◦0,d• 	 n∗− × T ∗Quot◦0,d• .

This (trivial) vector bundle has the same T -fixed points as its zero section T ∗Quot◦0,d• .
Therefore, the Proposition A.15 tells us that the required Euler class is

e
(

TT ∗Quot◦0,d•n
∗− × T ∗Quot◦0,d•

∣∣∣
Cd

)
= e(n∗−) =

∏

(i, j)∈Tn

e

(
t

ti
t j

)
,

and we are done.

Next, consider another diagram:

AG×T (T ∗G X) AG×T (ZG) AG×T (Cd)

AG×T (T ∗X) AG×T (Z) AG×T (T ∗Quot◦0,d)

AT(Ĉd)Sd AT(Ĉd)Sd AT(Cd)Sd

j∗

�!

j∗

�∗

j∗
�∗

i∗

�∗

i∗ i∗

s∗

Let pi j :Cd → C×C be the projection to i th and j-th components, and�i j = p−1i j (�).

Lemma 3.7 We have

ρ ◦�∗ ◦�!(c) = s∗

⎛

⎝s∗
⎛

⎝
∏

(i, j)∈Tn

e

(
t j

ti

)−1
e

(
t j

ti
O(−�i j )

)
e

(
t
t j

ti
O(�i j )

)⎞

⎠ ρ(c)

⎞

⎠

for any c ∈ AG×T (T ∗G X).
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Proof Once again, all squares in this diagram commute, except for the lower right one,
which commutes up to multiplication by a certain Euler class (see Lemma A.12(2)
and Proposition A.15). Therefore, we have:

ρ ◦�∗ ◦�!(c) = s∗ ◦ ρ
(

e(TĈd Z)−1s∗(e(TCd T ∗Quot◦0,d)) · c
)
.

It is left to compute the product of Euler classes in parentheses. We have the following
chain of equalities:

e(TĈd Z)−1s∗(e(TCd T ∗Quot◦0,d))

= s∗
(

e(TCd Q̃uot0,d•)
−1e(TQ̃uot0,d•

Z |Cd )
−1e(TCdQuot◦0,d)e(TQuot◦0,d T ∗Quot◦0,d |Cd )

)

= s∗
⎛

⎝e(TCd Q̃uot0,d•)
−1e(n−)−1e

(
T ∗Quot◦0,d

(T Q̃uot0,d•)nilp,∗

∣∣∣∣∣
Cd

)−1

× e(TCdQuot◦0,d)e(T ∗Quot◦0,d |Cd )
)

= s∗
(

e(n−)−1e((T Q̃uot0,d•)
nilp,∗|Cd )e(TCd Q̃uot0,d•)

−1e(TCdQuot◦0,d)
)
.

Let ϕ = ⊕d
i=1ϕi be a point in Cd 	 Quotd

0,1, where each ϕi produces a short exact

sequence 0 → Ki → OC
ϕi−→ Ei → 0. Formulas (6)–(8) provide us with explicit

expressions for tangent spaces of various Quot-schemes:

TϕQuotd
0,1 =

d⊕

i=1
Hom(Ki , Ei ); TϕQuot◦0,d =

d⊕

i, j=1
Hom(K j , Ei );

TϕQ̃uot0,d• =
⊕

(i, j)∈Tp

Hom(K j , Ei ).

Therefore by Lemma 3.2

(T Q̃uot0,d•)
nilp,∗|Cd = t

⊕

(i, j)∈Tn

Hom(K j , Ei )
∗ 	

⊕

(i, j)∈Tn

t
t j

ti
O(�i j ),

TCd Q̃uot0,d• =
⊕

(i, j)∈Tp,i �= j

Hom(K j , Ei ) 	
⊕

(i, j)∈Tp,i �= j

ti
t j
O(−�i j ),

TCdQuot◦0,d =
⊕

i �= j

Hom(K j , Ei ) 	
⊕

i �= j

ti
t j
O(−�i j ),
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and a straightforward computation shows that

e(n−) =
∏

(i, j)∈Tn

e

(
t j

ti

)
,

e((T Q̃uot0,d•)
nilp,∗|Cd )e(TCd Q̃uot0,d•)

−1e(TCdQuot◦0,d)

=
∏

(i, j)∈Tn

e

(
t j

ti
O(−�i j )

)
e

(
t
t j

ti
O(�i j )

)
.

The statement of lemma follows.

Combining the results of two lemmas, we get:

ρG ◦ m(c) = ρ ◦�∗ ◦�! ◦ indG
H (c) = s∗ ◦ s∗ ◦ (gC,d•(z)ρ(c)) = � ◦ ρH (c),

which proves the theorem.

Remark 3.8 In order to recover the shuffle presentation in [49, Theorem 10.1], we can
add an action of another torus as in Example 2.4. If we denote by q the T ′-character
of weight by − 1, we get O(�) = q−1, and we obtain the desired presentation after
further replacing t by qt . Unfortunately, we do not have a succinct explanation for this
changeof variables.Morally speaking, it occurs because in the natural compactification
A
2 ⊂ P

2 the divisor at infinity is “diagonal”, and for T ∗C ⊂ P(T ∗C) it is “horizontal”.

Even though we have got an explicit formula, the morphism ρ depends on the
embedding ofCd into a smooth ambient variety T ∗Quot◦0,d . Unfortunately, the scheme

Cd is highly singular; for instance, the inclusion Cd ↪→ Cd is not known to be lci, so
that we can not localize to T-fixed points directly. Still, we can do a little better. Let

μ̃ be the composition T ∗Quot◦0,d
μ−→ g∗d 	 gd → gd/td , where td ⊂ gd is the tangent

algebra of Td . We introduce the following auxiliary variety, analogous to the one in
[25]:

C�
d := μ̃−1(0) = μ−1(td).

Proposition 3.9 The closed embedding C�
d ↪→ T ∗Quot◦0,d is a complete intersection.

Proof First of all, the statement is true for C = A
1 [25]. For general C , it suffices to

prove that dimC�
d ≤ dimQuot◦0,d + dim td = d(d + 1). Let us consider the map

σ : T ∗Quot◦0,d → SdC,

(kd → E) �→ supp E.

For any ν = (ν1 ≥ · · · ≥ νk) partition of d let

SνC = {x = ν1x1 + · · · + νk xk : xi �= x j for i �= j
} ⊂ SdC
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Then SdC =∐ν�d SνC , and this defines a stratification of C�
d :

C�
d =

∐

ν�d

C�
ν , C�

ν = C�
d ∩ σ−1(SνC).

Consider the restriction of σ to these strata. For any point x ∈ SνC , we have a Gd -
equivariant map

τ : σ−1(x) ∩ C�
d →

∏

i

Grassνi (kd),

(p, β) �→
(

H0(E|x1), . . . , H0(E|xk )
)
,

The image of this map is an open subset where the vector subspaces defined by
points in Grassmanians do not intersect. At each such point, the Gd -action induces an
isomorphism between the preimage of τ and

∏
i C

n,•,�
νi

by Example 1.12, where

C n,•,�
k =

{
(x, y) ∈ (gk)

2: [x, y] ∈ tk, x nilpotent
}
.

Since in particular this applies to C = A
1, we have

dimC�
ν (C) = k +

∑

i

(
νi (d − νi )+ dimC n,•,�

νi

) = dimC�
ν (A1) ≤ d(d + 1).

The dimension of C�
d is bounded above by the dimensions of stratas, therefore

dimC�
d ≤ d(d + 1).

Armed with the proposition above, let i�d :Cd ↪→ C�
d , j�d :Cd ↪→ C�

d be the
natural closed embeddings, and consider the composition

�d = (i�d )
∗ ◦ ( j�d )∗: AG×T (Cd)→ AT(Cd)Sd .

Corollary 3.10 The collection of maps �d , d ∈ N
+ defines a morphism of graded

associative algebras

�: AHa0C → AShnorm
C .

Proof Denote the closed embedding C�
d ↪→ T ∗Quot◦0,d by j ′d . By Corollary A.16,

we have the following identity:

ρ(c) = i∗d ◦ jd∗(c) = i∗d ◦ j ′d∗ ◦ ( j�d )∗(c) = (i�d )
∗ ◦ ( j�d )∗(e1c) = �(e1c),

e1 = e(TC�
d

T ∗Quot◦0,d).

Note that the map μ̃ is T -equivariant. Since T contracts T ∗Quot◦0,d to a subvariety of

C�
d and dimC�

d = dim μ̃, the argument similar to the one found in [14, Proposition
2.3.2] shows that μ̃ is flat. In particular,
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e(TC�
d

T ∗Quot◦0,d) = e((gd/td)
∗),

by base change; see [13, B.7.4]. Therefore, we have

�(c) = ρ(e−11 c) = ρ

⎛

⎜
⎝

⎛

⎝
∏

i �= j

e

(
t
t j

ti

)⎞

⎠

−1
c

⎞

⎟
⎠ = ρ ◦ RN−1(c).

Since both ρ and RN are morphisms of algebras, � is as well.

Remark 3.11 For any function g, one can equip the algebra AShg with a topological
coproduct, analogous to the coproduct in [40, Section 4]. If themorphism ρ is injective
(see Sect. 4 for discussion and partial results), it can be used to induce a coproduct on
AHa0C . However, it is less clear how to construct such coproduct without using shuffle
presentation.

Let us conclude this section by computing some relations in the algebra AShg for
an arbitrary rational function g(z). We write g(z) = h1(z)/h2(z), where h1, h2 are
polynomials. Given a line bundle L on C , define a bi-infinite series

EL(z) =
∑

i∈Z
e(L)−i e(z)i ,

where z is a formal variable, and we consider e(z) to be a formal expression. Using
the formal group law � associated to A (see “Appendix A”), we have the following
equality for some f ∈ A∗(pt)�u, v�:

0 = e(1) = e

(
z

z

)
= e(z)�e(z−1) = e(z)+ e(z−1)+ e(z)e(z−1) f (e(z), e(z−1))

⇒ e(z−1) = −e(z)
(
1+ e(z−1) f (e(z), e(z−1))

)
.

Therefore, by implicit function theorem for formal series [50, Exercise 5.59] e(z−1)
can be interpreted as a formal series in e(z). In particular, g (w/z) is a formal series
in e(w), e(z).

Proposition 3.12 Let L1,L2 be two line bundles on C, and g(z) a rational function.
Suppose that e(zw) is a polynomial in e(z) and e(w), and e(z−1) is a Laurent poly-
nomial of e(z). Then the following equality holds:

h

(
t1L1w

t2L2z

)
EL1(z)EL2(w) = h

(
t2L2z

t1L1w

)
EL2(w)EL1(z), (10)

where h(z) = h1(z)h2(z−1), the product between EL1 and EL2 is taken in AShg, and
we consider both sides as bi-infinite series in e(z), e(w) with coefficients in AShg[2].
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Proof In order to unburden the notation, denote Z = e(z), W = e(w), Ti = e(ti ),
Li = e(Li ). Let us also introduce bi-infinite series δ(z) =∑i∈Z zi . Note that for any
Laurent polynomial f (z) the following identity, which we call change of variables, is
satisfied:

δ(w/z) f (z) = δ(w/z) f (w). (11)

We have:

EL1(z)EL2(w) =
(
∑

i∈Z
L−i
1 Zi

)⎛

⎝
∑

j∈Z
L− j
2 W j

⎞

⎠

=
∑

i, j∈Z

(
L−i
1 L− j

2 g

(
t2
t1

)
+ L− j

1 L−i
2 g

(
t1
t2

))
Zi W j

= δ
(

L−11 Z
)
δ
(

L−12 W
)

g

(
t2
t1

)
+ δ
(

L−11 W
)
δ
(

L−12 Z
)

g

(
t1
t2

)

=
(

h2

(
t1
t2

)
h2

(
t2
t1

))−1 (
δ
(

L−11 Z
)
δ
(

L−12 W
)

h

(
t2
t1

)

+ δ
(

L−11 W
)
δ
(

L−12 Z
)

h

(
t1
t2

))
.

Therefore, the equality (10) is equivalent to the following:

δ
(

L−11 Z
)
δ
(

L−12 W
)(

h

(
t1L1w

t2L2z

)
h

(
t2
t1

)
− h

(
t2L2z

t1L1w

)
h

(
t1
t2

))

= δ
(

L−11 W
)
δ
(

L−12 Z
)(

h

(
t2L2w

t1L1z

)
h

(
t2
t1

)
− h

(
t1L1z

t2L2w

)
h

(
t1
t2

))
.

(12)

However, using change of variables (11) for LHS we get:

δ
(

L−11 Z
)
δ
(

L−12 W
)(

h

(
t1L1w

t2L2z

)
h

(
t2
t1

)
− h

(
t2L2z

t1L1w

)
h

(
t1
t2

))

=
(
δ
(

L−11 Z
)

h

(
t1L1w

t2L2z

))(
δ
(

L−12 W
)

h

(
t2
t1

))

−
(
δ
(

L−11 Z
)

h

(
t2L2z

t1L1w

))(
δ
(

L−12 W
)

h

(
t1
t2

))

= δ
(

L−11 Z
)
δ
(

L−12 W
)(

h

(
t1w

t2L2

)
h

(
t2L2

t1w

)
− h

(
t2L2

t1w

)
h

(
t1w

t2L2

))
= 0.

By the same reasoning RHS is also equal to zero. Therefore (12) is satisfied, and we
may conclude.
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In particular, if we setL1 = t−11 and L2 = t−12 , the equality (10) assumes a simpler
form:

h

(
w

z

)
E(z)E(w) = h

( z

w

)
E(w)E(z), (13)

where E(z) =∑i∈Z e(t−11 )−i e(z)i .

Remark 3.13 Note that the conditions of Proposition 3.12 are extremely restrictive.
While they are satisfied for A = H , already for A = K the Euler class e(z−1)
is not a Laurent polynomial of e(z). However, if we denote ẽ(z) = 1 − e(z), then
ẽ(z−1) = ẽ(z)−1, and thus the proof of relations (10) goes through if we replace
EL(z) by

ẼL(z) =
∑

i∈Z
ẽ(L)−i ẽ(z)i =

∑

i∈Z
ẽ(zL−1)i .

In particular, we recover the identity (3.4) in [39]. This slight discrepancy is related to
the fact that our K -theory, considered in the context of OBM homology theories, has a
different set of equivariant generators from the usual K -theory, as defined for instance
in [9, Chapter 5]. Nevertheless, the two are isomorphic up to a certain completion, see
Remark A.4.

4 Injectivity of shuffle presentation

Let ω = ωC be the canonical bundle of C . Applying Serre duality to (3), one sees
that k-points of Higgs

0,d
are given by pairs (E, θ), where E ∈ Coh0,d , and θ ∈

Hom(E, E⊗ ω). We call θ the Higgs field.

Definition 4.1 A Higgs sheaf (E, θ) is called nilpotent if θN = 0 for N big enough.

We denote the stack of nilpotent Higgs torsion sheaves byHiggsnilp
0,d

. It is a closed
substack of Higgs

0,d
, which has the following global quotient presentation:

Higgsnilp
0,d
= [C •,nd /Gd ],

C •,nd =
{
(kd ⊗O p−→ E, β): p ∈ Quot◦0,d , β ∈ Hom(E, E⊗ ω), β is nilpotent

}
,

and the embeddingHiggsnilp
0,d

↪→ Higgs
0,d

is given by the natural inclusionC •,nd ↪→
Cd .

Proposition 4.2 Let G be a reductive group, and let i :� ↪→ X be a closed equivariant
embedding of G ×Gm-varieties. Suppose that

{
x ∈ X :G.x ∩� �= ∅} = �, (14)
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and assume that for any x ∈ X the intersection Gm .x ∩ � is not empty. Then the
pushforward along i induces an isomorphism of localized A-groups:

AG×Gm (�)⊗AGm (pt) Frac(AGm (pt))
∼−→ AG×Gm (X)⊗AGm (pt) Frac(AGm (pt)).

Proof Note that our assumptions imply X G×Gm ⊂ �. Furthermore, byPropositionA.7
we can assume that G is a torus. Take x ∈ X , and let (g, t) ∈ G × Gm lie in the
stabilizer of x . Suppose that t has infinite order. Then t−1.x = g.x , and by consequence
G.x ∩ � = (G × T ).x ∩ � is non-empty, so that x ∈ �. We conclude that for any
x ∈ X\� there exists a positive number N (x) such that Stab(x) ⊂ G×μN (x). Since
torus actions on finite type schemes always possess finitely many stabilizers, one can
assume that N = N (x) does not depend on x . Let us consider the following character
of G ×Gm :

χ :G ×Gm → Gm,

(g, t) �→ t N .

It is clear that for any x ∈ X\� one has StabG×Gm (x) ⊂ Ker χ . Therefore by
Proposition A.13 one has an isomorphism

AG×Gm (�)[c1(χ)−1] ∼−→ AG×Gm (X)[c1(χ)−1],

which implies the desired result.

Corollary 4.3 The natural map

AT (Higgsnilp
0,d

)→ AT (Higgs
0,d

)

becomes an isomorphism upon tensoring by Frac(AT (pt)).

Proof Take X = Cd , � = C •,nd . Any point in (p, β) ∈ X\� is separated from � by
the characteristic polynomial of β. Therefore condition (14) is verified. Moreover, the
action of T contracts any Higgs field to zero, that is for any x ∈ X the intersection
T .x ∩ Quot◦0,d ⊂ T .x ∩ � is not empty. We conclude by invoking Proposition 4.2.

From now on till the end of the section we suppose that k = C, and A is the usual
Borel–Moore homology H .

Theorem 4.4 The group H T∗ (Higgsnilp
0,d

) is torsion-free as an H∗G×T (pt)-module.

Corollary 4.5 The morphism ρ: HHa0,TC → HShC of Theorem 3.5 becomes injective
after tensoring by Frac(HT (pt)).

We will prove Theorem 4.4 in three steps:

(1) shrink localizing set;



   30 Page 30 of 67 A. Minets

(2) reduce the question to Coh0,d ⊂ Higgsnilp
0,d

;
(3) explicit computation for Coh0,d .

First of all, let I ⊂ H∗G×T (pt) be the ideal of functions f (t1, . . . , td , t) such that
f (0, . . . , 0, t) = 0. It is clear that Q[t] ∩ I = {0}. For any H∗G×T (pt)-module M we
denote by Mloc,I its localization with respect to H∗G×T (pt)\I .

Since H∗T (pt)\{0} ⊂ H∗G×T (pt)\I , the localization theorem A.14 yields an iso-
morphism

H Gd×T∗ ((C •,n)T )loc,I
∼−→ H Gd×T∗ (C •,n)loc,I .

Note, however, that

H Gd×T∗ ((C •,n)T )loc,I 	 H Gd×T∗ (Quot◦0,d)loc,I 	 H T∗ (Coh0,d)loc,I ,

where the T -action on the latter stack is trivial. By Poincaré duality and a result of
Laumon [26, Théorème 3.3.1],

H∗(Coh0,d) 	 H∗(Coh0,d) 	 Sd(H∗(C × BGm)) = Sd(H∗(C)[z]).

The H∗G(pt)-action on the latter space is given as follows. The natural free Q[z]-
module structure on H∗(C)[z] defines embeddings of algebras:

H∗G(pt) Sd(Q[z]) Sd(H∗(C)[z])

T d(Q[z]) T d(H∗(C)[z])
(15)

The upper horizontal map defines us the desired action. Note that since lower
horizontal map turns T d(H∗(C)[z]) into a free T d(Q[z])-module, the same is true
for a H∗G(pt)-module Sd(H∗(C)[z]). In particular, this implies that the H∗G×T (pt)-
module H T∗ (Coh0,d)loc,I is torsion-free. Putting together the arguments above, we get
the following result:

Proposition 4.6 The group H T∗ (Higgsnilp
0,d

)loc,I is torsion-free as a H∗G×T (pt)-
module.

Next, let us break down the stack of nilpotent Higgs sheaves into more manageable
pieces. Recall the following stratification ofHiggsnilp

0,d
due to Laumon [27].

Definition 4.7 For any partition ν � d, ν = (1ν12ν2 . . .), let

Nilν =
{
(E, θ) ∈ Higgsnilp

0,d
: deg

(
Ker θ i/(Im θ ∩ Ker θ i + Ker θ i−1)

)
= νi for all i

}
.
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These substacks are locally closed, disjoint, and cover the whole stack of nilpotent
Higgs sheaves:

Higgsnilp
0,d
=
⊔

ν�d

Nilν .

Proposition 4.8 For any ν � d, there exists a stack vector bundle pν :Nilν →∏
i Coh0,νi

.

Proof See the proof of Proposition 5.2 in [33].

As a consequence of this proposition, for any ν � d we have an isomorphism

p∗ν : H T∗

(
∏

i

Coh0,νi

)
∼−→ H T∗ (Nilν). (16)

Before continuing with the rest of the proof, let us recall some basic properties
of weight filtration from [10,11] and references therein. For any algebraic variety
X , Deligne constructed the weight filtration Wk on cohomology groups Hi (X). This
filtration is compatiblewithKünneth isomorphisms.Moreover, it is strictly compatible
with natural maps, in the sense that an element in target group belongs to Wk if and
only if it is an image of an element in Wk . We say that the weight filtration on Hi (X)
is pure of weight i if Wi−1Hi (X) = 0, Wi Hi (X) = Hi (X). This is the case for any
smooth projective variety X , aswell as for classifying spacesBG.Weight filtration also
exists for Borel–Moore homology and in equivariant setting; it can thus be extended
to homology groups of quotient stacks.

Lemma 4.9 Let X be a G-variety, U an open G-subvariety, and Z = X\U. Suppose
that homology groups Hi (U ), Hi (Z) are pure of weight i for all i . Then the long exact
sequence in Borel–Moore homology splits into short exact sequences

0→ H G
i (Z)→ H G

i (X)→ H G
i (U )→ 0

and H G
i (X) is pure of weight i for all i .

Proof The weight filtration is strictly compatible with all maps in the long exact
sequence. In particular, since H G

i (U ) and H G
i−1(Z) are pure and have differentweights,

the connecting homomorphism vanishes. Furthermore, by strict compatibility we have
the following short exact sequences for each j :

0→ W j H G
i (Z)→ W j H G

i (X)→ W j H G
i (U )→ 0

By purity of outer terms we have Wi−1H G
i (X) = 0, Wi H G

i (X) = H G
i (X), so that

H G
i (X) is pure of weight i .
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Let us choose a total order ≺ on the set of partitions of d such that for any two
partitions ν, ν′ the inclusion Nilν ⊂ Nilν′ implies ν ≺ ν′. Denote

Nil≺ν =
∐

ν′≺ν
Nilν′ ; Nil�ν = Nil≺ν �Nilν .

For each ν, this order gives rise to a long exact sequence in Borel–Moore homology:

· · · → H T
k (Nil≺ν)→ H T

k (Nil�ν)→ H T
k (Nilν)→ · · · (17)

The homology groups H∗(Coh0,d) comprise the Sd -invariant part of H∗(C ×
BGm)

⊗d . Since the latter group has pure weight filtration, the same is true for the
former as well, and by (16) for H T∗ (Nilν) for any ν. A straightforward induction
on ν using Lemma 4.9 shows that both H T∗ (Nil≺ν) and H T∗ (Nil�ν) are also pure.
Additionally, the long exact sequence (17) splits into short exact sequences:

0→ H T
k (Nil≺ν)→ H T

k (Nil�ν)→ H T
k (Nilν)→ 0

These short exact sequences yield a filtration F• of H T∗ (Higgsnilp
0,d

), such that Fi is of

the form H T
k (Nil≺ν), and

grF H T∗ (Higgsnilp
0,d

) =
⊕

ν�d

H T∗ (Nilν). (18)

Proof of Theorem 4.4 The desired statement is equivalent to injectivity of the localiza-
tionmorphism, which can be written as a composition of two successive localizations:

H T∗ (Higgsnilp
0,d

)
lI−→ H T∗ (Higgsnilp

0,d
)loc,I → H T∗ (Higgsnilp

0,d
)loc.

The second map being injective by Proposition 4.6, it suffices to prove injectivity
of lI . Note that H T∗ (Coh0,d) is a free H∗T (pt)-module, because T acts trivially on
Coh0,d . Taking into account isomorphisms (18) and (16), we are reduced to proving
the injectivity of

lm: H∗
(
∏

i

Coh0,νi

)

→ H∗

(
∏

i

Coh0,νi

)

loc,m

for any ν � d, where we localize atm ⊂ H∗G(pt)—maximal homogeneous ideal with
respect to homological grading. Since H∗(

∏
i Coh0,νi

) is evidently a graded H∗G(pt)-
module, the annihilator of c is a graded ideal for any c ∈ H∗(

∏
i Coh0,νi

), therefore
fully contained in m. This proves injectivity of lm and concludes the proof of the
theorem.

Corollary 4.10 The identity (10) holds in HHa0,TC .
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Proof Note that we have the following chain of isomorphisms:

H∗Gd×T (T
∗Quot◦0,d) 	 H∗Gd×T (Quot◦0,d) 	 H∗(Coh0,d)⊗ H∗T (pt)

	 Sd(H∗(Coh0,1))[t] 	 (H∗(Cd)[t; t1, . . . , td ])Sd .

Therefore, the closed embedding Cd ↪→ T ∗Quot◦0,d defines a (H∗(Cd)

[t; t1, . . . , td ])Sd -module structure on HHa0,TC [d], compatible with ρ. In particular,

the identity (10) is well-defined in HHa0,TC .
Combining Corollary 4.3 and Theorem 4.4, we see that the natural morphism

H T∗ (Higgsnilp
0,d

)→ H T∗ (Higgs
0,d

)

is injective. Furthermore, it easily follows from the construction in Sect. 2 that the
space

⊕
d H T∗ (Higgsnilp

0,d
) is a subalgebra in HHa0,TC . Since H T∗ (Higgsnilp

0,1
) =

H T∗ (Coh0,1) 	 H T∗ (Higgs
0,1
), all operators intervening in identity (10) belong to

⊕
d H T∗ (Higgsnilp

0,d
), and we conclude by Corollary 4.5 and Proposition 3.12.

Remark 4.11 Note that for A = H the function gnorm
C takes the following form:

gnorm
C (z) = e(zO(−�))e(t zO(�))

e(z)e(t z)
= (z −�)(z + t +�)

z(z + t)
= 1− �(t +�)

z(t + z)
,

where� ∈ H2(C×C) is the class of diagonal. Using this explicit expression, we can
rewrite the identity (10) as a set of relations. In particular, for L1 = t−11 , L2 = t−12 ,
we get

[ei , e j ]3 − (t2 +�(t +�))[ei , e j ]1 + t�(t +�)(ei e j + e j ei ) = 0

for any i, j ∈ Z, where ei = t i
1, and

[ei , e j ]n :=
n∑

k=0
(−1)k

(
n

k

)
(ei+ke j+n−k − e j+n−kei+k).

For general L1 and L2 the relations become more complicated.

Conjecture 4.12 For any oriented Borel–Moore theory A, the morphismρ: AHa0,TC →
AShC of Theorem 3.5 is injective.

We hope to prove Conjecture 4.12 in subsequent work by analyzing the action of
AHa0,TC on modules AM T

n for varying n, defined in next section.
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5 Moduli of stable Higgs triples

In this section we introduce an action of AHa0C on the A-theory of certain varieties,
which can be regarded as generalization of the Hilbert schemes of points on T ∗C (see
Sect. 7).

We start with the stack Coh←F
0,d , where F ∈ CohC is a fixed coherent sheaf on C .

The following proposition seems to be well-known (compare to [20, Theorem 4.1.(i)]
and the entirety of [17]), but we did not manage to find a precise reference.

Proposition 5.1 Let p = (E, α) ∈ Coh←F
0,d be a pair. Then the tangent space TpCoh←F

0,d

at p is naturally isomorphic to Hom(F α−→ E, E).

Proof Let D = Speck[ε]/ε2. By definition, the tangent space TpCoh←F
0,d is given by

the space of maps D→ Coh←F
0,d , which restrict to p at origin. Again, by definition

{
D→ Coh←F

0,d

}
=
{
F[ε] α̃−→ Ẽ: Ẽ ∈ OC [ε] −mod; Ẽ flat over D; α̃mod ε = α

}
,

and since the infinitesimal deformations of a coherent sheaf over a scheme are given
by its self-extensions, we see that maps D → Coh←F

0,d are parametrized by diagrams
of the form

0 F F⊕ F F 0

0 E Ẽ E 0

α α̃ α

Splitting off F on the left, this data is equivalent to the following diagram:

F

0 E Ẽ E 0

α̃ α (19)

On the other hand, let us compute Hom(F α−→ E, E). Fix an injective resolution I•
of E. Applying Hom-functor, one produces a double complex

Hom(E, I0) Hom(E, I1) Hom(E, I2) · · ·

Hom(F, I0) Hom(F, I1) Hom(F, I2) · · ·

d0◦−

−◦α

d1◦−

−◦α −◦α
d0◦− d1◦−
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Taking cohomology of its total complex, we get

Hom(F α−→ E, E) =
{
( f , g) ∈ Hom(E, I1)⊕ Hom(F, I0): d1 ◦ f = 0, d0 ◦ g = f ◦ α}

{(d0 ◦ h,−h ◦ α): h ∈ Hom(E, I0)}
=
{
( f , g) ∈ Hom(E,Ker d1)⊕ Hom(F, I0): d0 ◦ g = f ◦ α}

{(d0 ◦ h,−h ◦ α): h ∈ Hom(E, I0)} .

But by Yoneda construction, pullback of the extension 0→ E→ I0 → Ker d1→ 0
gives a bijection between self-extensions of E and morphisms E → Ker d1 up to
the ones factorizing through I0. Associating to every element ρ ∈ Ext1(E, E) the
corresponding extension 0→ E→ Eρ

πρ−→ E→ 0, we get

Hom(F α−→ E, E) = {(ρ ∈ Ext1(E, E), g:F→ Eρ): g ◦ πρ = α},

which is precisely the space of infinitesimal deformations of (E, α) as seen above in
the diagram (19).

Definition 5.2 A Higgs triple of rank r , degree d and frame F is the data (E, α, θ) of
a coherent sheaf E ∈ Cohr ,d C , a map α:F→ E, and an element θ ∈ Ext1(E, (F α−→
E) ⊗ ω). Given two Higgs triples T1 = (E1, α1, θ1), T2 = (E2, α2, θ2), a morphism
from T1 to T2 is a map f ∈ Hom(E1, E2) such that α2 = f ◦ α1, and θ2 ◦ f = f ◦ θ1.

Thanks to Serre duality and Proposition 5.1, thek-points of the stack T ∗Coh←F
0,d are

precisely Higgs triples of rank 0, degree d and frame F. More generally, its T -points
for any scheme T are given by families of triples (ET , αT , θT ), where ET is flat over
T .

Definition 5.3 A Higgs triple is called stable if there is no subsheaf E′ ⊂ E such that:

• Im α ⊂ E′, and
• a(θ) ∈ Im(b), where a, b are the maps below, induced by inclusion E′ ⊂ E:

Ext1(E, (F α−→ E)⊗ ω)
a−→ Ext1(E′, (F α−→ E)⊗ ω)

b←− Ext1(E′, (F α−→ E′)⊗ ω).

(20)

In other words, a triple is stable if the image of α generates E under θ . We denote
by
(
T ∗Coh←F

0,d

)st ⊂ T ∗Coh←F
0,d the substack of stable Higgs triples of rank 0.

Recall that for an abelian category C of homological dimension 1 every complex
in the bounded derived category Db(C ) is quasi-isomorphic to the direct sum of its
shifted cohomology objects (see [23, Proposition 2.1.2]). Because of this observation,
we can alternatively write Higgs triples as quadruples

(E, α, θe, θh): E ∈ Cohr ,d , α:F→ E,
θe ∈ Ext1(E,Ker α ⊗ ω), θh ∈ Hom(E,Coker α ⊗ ω).
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Lemma 5.4 A Higgs triple is stable if and only if there are no non-trivial subsheaves
E′ ⊂ E such that Im α ⊂ E′ and θh(E′) ⊂ (E′/ Im α)⊗ ω.

Remark 5.5 Note that the stability condition does not depend on θe in this form.

Proof Replacing the complex F α−→ E by the sum of its kernel and cokernel, the
diagram (20) splits into two:

Ext1(E,Ker α ⊗ ω)
ae−→ Ext1(E′,Ker α ⊗ ω)

be←− Ext1(E′,Ker α ⊗ ω),

Hom(E,Coker α ⊗ ω)
ah−→ Hom(E′,Coker α ⊗ ω)

bh←− Hom(E′, (E′/ Im α)⊗ ω).

Note that the map be is an isomorphism. Therefore, the condition a(θ) ∈ Im(b) is
equivalent to ah(θh) ∈ Im(bh), that is θh(E′) ⊂ (E′/ Im α)⊗ ω.

We say that a morphism of triples is a quotient, if the underlying map of sheaves is
surjective.

Lemma 5.6 Let T = (E, α, θ), T ′ = (E′, α′, θ ′) be two triples, together with a quotient
map π : E→ E′. If T is stable, then T ′ is stable as well.

Proof Suppose that T ′ is not stable, that is there exists a subsheaf E′1 ⊂ E′, such that
Im α′ ⊂ E′1 and θ ′(E′1) ⊂ (E′1/ Im α′) ⊗ ω. Consider its preimage E1 := π−1(E′1).
Since α′ = π ◦ α by definition, we get Im α ⊂ E1.

Let us denote U = Ker π . Since θ ′ ◦ π = π ◦ θ , we have

θh(U ) ⊂ (U/(U ∩ Im α))⊗ ω ⊂ (E1/ Im α)⊗ ω. (21)

Moreover, since E1/U 	 E′1, we get

θh(E1)/(U + Im α) = θ ′h(E′1) ⊂ (E′1/ Im α′)⊗ ω = (E1/(U + Im α))⊗ ω. (22)

Combining (21) and (22), we conclude that θh(E1) ⊂ (E1/ Im α) ⊗ ω. Therefore
E1 ⊂ E is a destabilizing subsheaf by Lemma 5.4, and thus instability of T ′ implies
instability of T .

The following lemma can be viewed as an avatar of Schur’s lemma.

Lemma 5.7 Stable Higgs triples have no non-trivial automorphisms.

Proof Let T = (E, α, θ) be a stable Higgs triple, and suppose f ∈ End(E) induces
an automorphism of T . We pose E′ = Ker( f − idE) ⊂ E. Since f ◦ α = α, we have
Im α ⊂ E′. Moreover, by definition f |E′ = idE′ . Therefore the equality θh ◦ f = f ◦θh

implies that ( f − idCoker α) ◦ θh |E′ = 0, and thus θh(E′) ⊂ E′/ Im α. This means that
E′ is a destabilizing subsheaf, which can only happen for E′ = E. Thus f = idE.

From now on, we will only consider Higgs triples of rank 0.



Cohomological Hall algebras for Higgs torsion sheaves… Page 37 of 67    30 

Theorem 5.8 Let F be a locally free sheaf on C. Then the moduli stack of stable Higgs
triples of rank 0, degree d and frame F is represented by a smooth quasi-projective
variety B(d,F). In particular, B(d,O) 	 Hilbd T ∗C.

We will prove this theorem in Sect. 7 by realizingB(d,F) as a moduli of torsion-
free sheaves on a ruled surface. It is also possible to prove it directly by relating
stability of Higgs triples to Mumford’s GIT stability [35] on an atlas of T ∗Coh←F

0,d ,
which was the approach used in a previous version of this paper.

Let us further assume that F 	 kn ⊗O is a trivial sheaf of rank n. To simplify the
notation, we will write1

Brn
0,d := Coh←kn⊗O

0,d , B(d, n) := B(d,kn ⊗O).

In the remainder of this section we will produce an action of AHa0C on the A-theory
of moduli spacesB(d, n). In order to do this, we will use the general machinery from
the beginning of Sect. 2.

Let d• = {0 = d0 ≤ d1 ≤ · · · ≤ dk = d}, and F a vector space of dimension n.
As before, we note G = Gd , P = Pd• . We put:

Ỹ = Hom(F,kd/kdk−1)×Quot◦0,d• , Ṽ = Hom(F,kd)× Q̃uot0,d• ,

X̃ ′ = Hom(F,kd)×Quot◦0,d .

We have a natural closed embedding g̃: Ṽ ↪→ X̃ ′ and an affine fibration f̃ : Ṽ � Ỹ .
The formula (5) gives rise to a map in A-theory

md• : AH∗ (T ∗H Ỹ )→ AG∗ (T ∗G X̃ ′).

For instance, in the case k = 2 we get a map:

md1,d2 : AHa0C [d1] ⊗ A∗(T ∗Brn
0,d−d1) ↪→ A∗(Higgs

0,d1
× T ∗Brn

0,d−d1)→ A∗(T ∗Brn
0,d).

Collecting these maps for all d1, d2, we get a map

m: AHa0C ⊗ AMn → AMn,

where AMn =⊕d A∗(T ∗Brn
0,d).

Proposition 5.9 The map m defines an AHa0C -module structure on AMn.

Proof The proof is mostly analogous to the proof of Theorem 2.2. Namely, using
notations of that proof, let us consider the following varieties:

X̃1 = G ×P (Hom(F,kd/kd2 )×Quot◦0,d• ); W̃1 = G ×P ′ (Hom(F,k
d )× Q̃uot0,d ′• );

X̃2 = G ×P ′ (Hom(F,k
d/kd1 )×Quot◦0,d ′• ); W̃2 = G ×P (Hom(F,kd )× Q̃uot0,d• );

X̃3 = Hom(F,kd )×Quot◦0,d ; W̃3 = G ×P (Hom(F,kd/kd1 )×Quot◦0,d1 × Q̃uot0,d ′′• ).

1 Br stands for Bradlow, as in “Bradlow pairs” [51].
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Again, we have inclusions W̃i ↪→ X̃i−1× X̃i+1. Taking into account Hom-terms, the
proof of Lemma 2.3 easily implies that W̃2 = W̃1 ×X̃2

W̃3, and that the intersection

(W̃1 × X̃1) ∩ (X̃3 × W̃3) inside X̃3 × X̃2 × X̃1 is transversal. Finally, putting Z̃i =
T ∗

W̃i
(X̃i−1 × X̃i+1) and contemplating the diagram with cartesian square below:

T ∗ X̃1 Z̃3 T ∗ X̃2

Z̃2 Z̃1

T ∗ X̃3

(23)

we may conclude as in the proof of Theorem 2.2.

Recall that we have open embeddings B(d, n) ⊂ T ∗Brn
0,d . If we denote

AMn =
⊕

d

AMn[d] :=
⊕

d

A(B(d, n)),

the collection of these embeddings defines us a map of graded vector spaces

AMn → AMn, (24)

which is surjective if A �= H by Proposition A.10.

Corollary 5.10 There exists a AHa0C -module structure on AMn, such that the map (24)
commutes with the action of AHa0C .

Proof Let us consider the following diagram:

(T ∗G X̃)st (Z̃G)
st (T ∗G X̃ ′)st

T ∗G X̃ Z̃G T ∗G X̃ ′
i

�̃′ �̃ ′

i i

�̃ �̃

(25)

where

(T ∗G X̃ ′)st = T ∗G X̃ ′ ×T ∗Brn
0,d

B(d, n),

(T ∗G X̃)st = T ∗G X̃ ×
Higgs

0,d1
×T ∗Brn

0,d−d1

(
Higgs

0,d1
×B(d − d1, n)

)
,

(Z̃G)
st = Z̃G ∩

(
(T ∗G X̃)st × (T ∗G X̃ ′)st

)
.
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Recall that quotients of stable triples are stable by Lemma 5.6. Therefore we have an
equality

Z̃G ∩
(

T ∗G X̃ × (T ∗G X̃ ′)st
)
= Z̃G ∩

(
(T ∗G X̃)st × (T ∗G X̃ ′)st

)
,

which shows that the map �̃ ′ is proper, and right square in the diagram above is
cartesian. Hence, we have

i∗ ◦ �̃∗ = �̃ ′∗ ◦ i∗

by Lemma A.12. This shows us that the diagram (25) defines a commutative square

AHa0C ⊗ AMn AMn

AHa0C ⊗ AMn AMn

m

id⊗π π

m′

where m′ = (�̃ ′)∗ ◦ (�̃′)!. Moreover, if we replace all varieties in diagram (23) by
open subvarieties of stable points as above, we can equally see that the upper right
square remains cartesian. Therefore the map m′ defines an AHa0C -module structure
on AMn .

Since the whole construction is T -equivariant, we also obtain an action of AHa0,TC
on AMT

n :=
⊕

d AT∗ (T ∗Brn
0,d) and AM T

n :=
⊕

d AT∗ (B(d, n)).

Example 5.11 Suppose C = A
1, and equip it with the natural action of Gm of weight

1 as in Example 2.4. In this setting, for A = H and A = K we recover algebras
and representations constructed in [48, Proposition 6.2] and [49, Proposition 7.9]
respectively.

We finish this section by comparing our results with the classical construction of
Grojnowski and Nakajima. Recall [37, Chapter 8] that for any smooth surface S there
exists an action of Heisenberg algebra on

⊕
d H∗(Hilbd S). More precisely, for any

positive k and any homology class α ∈ H∗(X) we possess an operator Pα[k], given
as follows:

Pα[i](β) = q∗ ◦ p!(α � β), where β ∈ H∗(Hilbd S),

Z� = {(I1, I2) | I1 ⊃ I2, | supp(I1/I2)| = 1} ⊂ Hilbd S × Hilbd+k S,

p: Z�→ S × Hilbd S, (I1, I2) �→ (supp(I1/I2), I1),
q: Z�→ S × Hilbd+k S, (I1, I2) �→ I2.

We now suppose that S = T ∗C . Let us compare this action with the HHa0C -action
on HM1. In view of Theorem 5.8, HM1 = H∗(Hilbd T ∗C). Recall thatHiggs

0,k
	

Cohk(T
∗C), where the latter stack parametrizes coherent sheaves of length k on T ∗C .
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Therefore, the correspondence defining the HHa0C -module structure on HM1 can be
identified with the lower row in the following diagram with cartesian square:

T ∗C × Hilbd(T ∗C)

Coh�k (T
∗C)× Hilbd(T ∗C) Z�

Cohk(T
∗C)× Hilbd(T ∗C) Z Hilbd+k(T ∗C)

i×id

s×id p

�� q

�̃�̃

where

Coh�k (T
∗C) = {E ∈ Cohk(T

∗C) | | supp E| = 1},
Z = {(I1, I2) | I1 ⊃ I2} ⊂ Hilbd T ∗C × Hilbd+k T ∗C,

i is the natural closed embedding Coh�k (T
∗C) ↪→ Cohk(T

∗C), and s: Coh�k (T
∗C)→

T ∗C sends each coherent sheaf to its support. One would like to prove an equality of
the form

q∗ ◦ p! = (�̃∗ ◦ �̃!) ◦ ((ι× id)∗ ◦ (s × id)!), (26)

so that the operators Pα[k] are realized by action of certain elements in HHa0C , sup-
ported at diagonals Coh�k (T

∗C). Unfortunately, themap s is too singular for a pullback
to be well-defined. However, one can easily check that it is a locally trivial fibration
with a fiber isomorphic to [C n,n

k /Gk], where

C n,n
k := {(x, y) ∈ (gk)

2: [x, y] = 0, x, y nilpotent}.

If the local system I k
s on T ∗C , given by homology groups of fibers of s, were trivial,

H∗(Coh�k (T
∗C)) would be isomorphic to the direct product H∗(T ∗C)⊗ H Gk∗ (C n,n

k ),
and one would be able to define the pullback s! by c �→ c � 1. After that, the iden-
tity (26) would follow once we proved that p! = (��)! ◦ (s! × id). In light of these
considerations, let us state the following conjecture:

Conjecture 5.12 The local system I k
s is trivial, and the action of Pα[i] on HM1 	⊕

d H∗(Hilbd T ∗C) is given by ι∗(α � 1) ∈ HHa0C .

Note that Conjecture 5.12 is trivially satisfied for k = 1. Indeed, Coh�1 (T
∗C) 	

Coh1(T
∗C) 	 T ∗C × BGm , thus the diagram above takes the following form:

T ∗C × Hilbd(T ∗C)

BGm × T ∗C × Hilbd(T ∗C) Z = Z� Hilbd+1(T ∗C)

s×id p

�̃

q=�̃
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Since the scheme Z is smooth by [8], pullbacks along all of the maps in triangle are
well-defined, and therefore

q∗ ◦ p! = q∗ ◦ p∗ = (�̃∗ ◦ �̃∗) ◦ (s × id)∗,

which gives us a realization of operators Pα[1].

6 Quiver sheaves

In this section we recollect some properties of quiver sheaves, as introduced in [17].
Let X be a scheme over k. Let Q = (I , E) be a finite quiver with head and tail

maps h, t : E → I , and assume that Q has no cycles. For each edge a ∈ E , pick a
locally free sheaf Ma ∈ Coh X , and set Mi = OX for all i ∈ I .

Observe that A0 = ⊕i∈I Mi is a sheaf of OX -algebras with coordinate-wise
multiplication. We equipA1 =⊕a∈E Ma with anA0-bimodule structure, where the
map

Mi ⊗Ma ⊗M j = OX ⊗Ma ⊗OX →Ma (27)

is the natural isomorphism if h(a) = i , t(a) = j , and zero otherwise.

Definition 6.1 The twisted path algebra A = AQ,M is the tensor algebra of A1 over
A0.

By definition, A is a sheaf of OX -algebras. The category A-mod of sheaves of
coherent A-modules (or A-modules for short) is an abelian category with enough
injectives (see [17, Prop. 3.5]).

Let ei be the unit section of Mi = OX . For each i ∈ I , define left A-modules

Pi := Aei =
⊕

j∈I

e jAei

and right A-modules

Ii := eiA =
⊕

j∈I

eiAe j .

By definition of A, it decomposes into the direct sum

A =
⊕

i, j∈I

eiAe j ,

so that we have an equality of left A-modules A =⊕i∈I Pi and of right A-modules
A = ⊕i∈I Ii . Note that the multiplication map (27) ensures we have maps of A-
modules

m(i)
a :Ma ⊗ It(a)→ Ih(a), m(p)

a :Ph(a) ⊗Ma → Pt(a).
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An element V ∈ A-mod can be equivalently defined as a collection (Vi , ϕa) of
coherent OX -modules Vi , i ∈ I , together with morphisms ϕa :Ma ⊗ Vt(a) → Vh(a)

for all a ∈ E . Under this identification, we have a natural isomorphism ofOX -modules
Ii ⊗A V 	 Vi . Since the forgetful functor A-mod → A0-mod is faithful, we deduce
that the functor Ii ⊗A − is exact.

Proposition 6.2 We have an exact sequence of left Aop ⊗A-modules

0→
⊕

a∈E

Ph(a) ⊗Ma ⊗ It(a)
q−→
⊕

i∈I

Pi ⊗ Ii
p−→ A→ 0,

where all tensor products are considered overOX , p is the concatenationAei⊗eiA→
A, and q is given by q(x, n, y) = m(p)

a (x, n)− m(i)
a (n, y).

Proof The statement is local in X . When X = Spec R is affine, this is the standard
resolution of the twisted path algebra as a bimodule over itself [7, (1.2)].

Let us now consider the derived category Db(A-mod).

Corollary 6.3 For any V ∈ A-mod, we have a short exact sequence

0→
⊕

a∈E

Ph(a) ⊗Ma ⊗ Vt(a)→
⊕

i∈I

Pi ⊗ Vi → V→ 0.

More generally, for any V• ∈ Db(A-mod) we have an exact triangle

⊕

a∈E

Ph(a) ⊗Ma ⊗ V•t(a)→
⊕

i∈I

Pi ⊗ V•i → V• +1−→,

where V•i := Ii ⊗A V• ∈ Db(Coh X).

Proof Apply the functor −⊗A V• to the exact sequence from Proposition 6.2.

Let (Vi , ϕa), (W, ψa) ∈ A-mod, and consider the following complex of sheaves:

C•(V,W) =
(
⊕

i∈I

HomOX (Vi ,Wi )
δ−→
⊕

a∈E

HomOX (Ma ⊗ Vt(a),Wh(a))

)

,

where δ is given by

( fi )i∈I �→
(

fh(a) ◦ ϕa − ψa ◦ (1⊗ ft(a))
)

a∈E .

Theorem 6.4 ([17, Theorem 5.1]) Let V,W ∈ A-mod, and suppose V is locally free
as OX -module. Then we have an isomorphism of complexes

R Hom(V,W) 	 R�(C•(V,W)).
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Let us consider a closely related category A-modD. Its objects are given by
collections (V•i , ϕa)i∈I ,a∈E , where V•i ∈ Db(Mi -mod) 	 Db(Coh X), ϕa ∈
Hom(Ma ⊗ V•t(a),V•h(a)). A morphism (V•i , ϕa)→ (W•i , ψa) is a collection of mor-
phisms ( fi :V•i →W•i )i∈I , such that ψa ◦ ft(a) = fh(a) ◦ ϕa .

We have a functor F :Db(A-mod)→ A-modD, defined by

V• �→ (V•i , ϕa),

where the maps ϕa are induced by multiplication maps (27).

Lemma 6.5 The functor F is full and essentially surjective.

Proof Given an object (V•i , ϕa) ∈ A-modD, let V• be a mapping cone of the map

⊕

a∈E

Ph(a) ⊗Ma ⊗ V•t(a)
m(p)

a ⊗1−1⊗ϕa−−−−−−−−→
⊕

i∈I

Pi ⊗ V•i .

ByCorollary 6.3, we have F(V•) = (V•i , ϕa), so that F is essentially surjective. More-
over, if we consider any morphism (V•i , ϕa)→ (W•i , ψa) inA-modD, the existence of
a compatible morphism V• →W• follows from the axioms of a triangulated category.
Thus F is full, and we may conclude.

Given a category C , let us denote by C the groupoid obtained from C by forgetting
all non-invertible morphisms.

Corollary 6.6 The functor F induces an equivalence of groupoids F ′:Db(A-mod)→
A-modD.

Proof Consider the forgetful functor

Db(A-mod)→ Db(A0-mod), V• �→ (V•i ).

It preserves isomorphisms and factors through F . Therefore, F ′ is faithful.

7 Torsion-free sheaves on PC(! ⊕ O)

In this section we prove Theorem 5.8 by realizing the moduli of Higgs triples as a
certain moduli of sheaves on a surface.

Let X be a scheme over k, not necessarily smooth. Pick a line bundle L over X ,
and consider the projectivization S = PX (L ⊕ OX ) of its total space Tot L . Denote
the complement of Tot L in S by D; let also i : D ↪→ S be the natural embedding,
and π : S → X the natural projection. Note that by definition of S and D we have
Rπ∗O(D) = π∗O(D) = OX ⊕ L∨, and π induces an isomorphism D 	 X .

Let T = OS(D) ⊕ OS , and consider the sheaf of OX -algebras π∗Hom(T, T). We
can write it as a matrix algebra over X ; the opposite algebra, which we denote by A,
is then obtained by transposition:
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π∗Hom(T, T) =
(
O O⊕ L∨
0 O

)
, A =

(
O 0

O⊕ L∨ O

)
.

Note that A can be seen as a twisted path algebra of the following quiver:

Q = 1 2
O

L∨

A leftA-module V is then determined by a quadruple (V1,V2, ϕ0, ϕ1), where V1,V2 ∈
Coh X , ϕ0 ∈ Hom(V1,V2), and ϕ1 ∈ Hom(V1 ⊗ L∨,V2).

For any coherent sheaf E ∈ Coh S, the Hom-sheaf Hom(T, E) = π∗(T∨ ⊗ E) is
naturally a left A-module, given by the quadruple (π∗E(−D), π∗E, ϕ0, ϕ1), where
(ϕ0, ϕ1) is the natural composition

π∗E(−D)⊗ (O⊕ L∨) = π∗E(−D)⊗ π∗O(D)→ π∗E .

Since T is an (Aop,OS)-bimodule, we have a pair of adjoint functors

−⊗L
A T:Db(A-mod) Db(Coh S): Rπ∗Hom(T,−). (28)

As a left module over itself,A can be decomposed as a direct sumP1⊕P2, where

P1 = O O⊕ L∨ , P2 = 0 O

are the left A-modules defined in Sect. 6.
The following proposition should be known to experts (for example, see remark at

the end of [3]), but we include the proof for completeness.

Proposition 7.1 The pair of functors (28) establishes an equivalence of triangulated
categories.

Proof The proof is based on Beı̆linson’s lemma [3]. For any E ∈ Coh S, there exists
n > 0 such that E(nD) has no higher cohomology, and the counitmapπ∗π∗E(nD)→
E(nD) is surjective. By the seesaw principle [34, Corollary 5.6], the kernel of this
map has the form π∗(N)(−D), whereN ∈ Coh X . Thus E admits a resolution of the
form

0→ π∗(N2)(−(n + 1)D)→ π∗(N1)(−nD)→ E → 0,

where N1,N2 ∈ Coh X . Taking into account short exact sequences

0→ O((n − 1)D)→ O(nD)⊕O(nD)→ O((n + 1)D)→ 0,

we see that as a triangulated category, Db(Coh S) is generated by Coh X and T =
OS(D)⊕OS . Similarly, Db(A-mod) is generated by Coh X and A = P1 ⊕ P2 as a
triangulated category by Corollary 6.3.
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We have Rπ∗Hom(T,O(D)) = P1, Rπ∗Hom(T,O) = P2. Using Theorem 6.4,
it is easy to check the following isomorphisms:

R Hom(π∗E, π∗F) 	 R Hom(E,F) 	 R Hom(E⊗ P1,F⊗ P1),

R Hom(π∗E(D), π∗F) 	 0 	 R Hom(E⊗ P1,F⊗ P2),

R Hom(π∗E, π∗F(D)) 	 R Hom(E,F⊗ (O⊕ L∨)) 	 R Hom(E⊗ P2,F⊗ P1),

R Hom(π∗E(D), π∗F(D)) 	 R Hom(E,F) 	 R Hom(E⊗ P2,F⊗ P2).

Applying Beı̆linson’s lemma, we conclude that the functor RHom X (T,−) is an
equivalence of triangulated categories. Moreover, since the functor −⊗L

A T is its left
adjoint, it provides the inverse equivalence.

Let us apply this proposition to X = T × C , L = OT � ωC . Combining it with
Corollary 6.6, we obtain an equivalence of groupoids

�:Db(Coh(T × PC (ω ⊕O))) 	 (Lp∗A)-modD, (29)

where p: T × C → C is the projection. Moreover, this equivalence commutes with
base change in T whenever the latter preserves bounded derived categories, e.g. for
flat maps T ′ → T .

Remark 7.2 It would be desirable to express this as an equivalence of presheaves in
groupoids. The problem is that groupoids on both sides of (29) are not functorial
in T . Namely, boundedness of complexes is not preserved under pullbacks along
general maps T ′ → T . Nevertheless, in the sequel we are only concerned with certain
subgroupoids on both sides, see Proposition 7.7. Their objects will satisfy flatness
condition over T , and therefor will be preserved under arbitrary base change, forming
presheaves.Wewill thus abuse the notation for convenience, and say that the two sides
of (29) form presheaves Db(Coh S) and A-modD respectively.

From now on, let X = C , so that S = PC (ω ⊕ O) compactifies the cotangent
bundle T ∗C . Let us recall some properties of sheaves on S; we will closely fol-
low the exposition in [32, Section 2]. The Neron–Severi group of S is given by
NS(S) = H2(S,Z) = ZD ⊕ Z f , where f is the class of a fiber of π : S → C .
Thus, for any coherent sheaf E on S we will write the first Chern class c1(E) as a
linear combination c1,D(E)D + c1, f (E) f . The product in NS(S) is determined by
the following equalities:

f 2 = 0, D f = 1, D2 = 2− 2g,

where the last one follows from the fact thatOS(D)|D 	 ω−1.Moreover, the canonical
divisor of S is KS = −2D.Wewill write elements of Heven(S,Z) as triples (a, b, c) ∈
Z⊕ NS(S)⊕ Z; the same applies to Heven(C,Z). In this fashion, Todd classes of S
and C are respectively given by

td S = (1, D, 1− g), tdC = (1, 1− g),
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and the pushforward along π in cohomology is given by

π∗(a, bD D + b f f , c) = (bD, c).

Given a sheaf E ∈ Coh S, the Chern character of its derived pushforward Rπ∗E can
be computed using Grothendieck–Riemann–Roch theorem. Namely, let a = c1,D(E),
b = c1, f (E), r = rk E , and recall that

ch(E) =
(

r , c1(E),
c1(E)2 − 2c2(E)

2

)
= (r , aD + b f , a2(1− g)+ ab − c2(E)).

We have:

(rk(Rπ∗E), c1(Rπ∗E)+ (1− g) rk(Rπ∗E)) = ch(Rπ∗E) tdC = π∗(ch E td S)

= π∗((r , aD + b f , ch2(E))(1, D, 1− g))

= (a + r , (r + 2a)(1− g)+ b + ch2(E)).

The result of this computation can be rewritten as follows:

rk(Rπ∗E) = a + r , c1(Rπ∗E) = a(1− g)+ b + ch2(E). (30)

For any nef divisor H on S, we can define a notion of H -semistability for sheaves
on S. One example of nef divisor is given by f . Instead of giving general definitions,
we will use the following characterization of f -semistable sheaves:

Lemma 7.3 ([32, Lemma 4.3]) A torsion-free sheaf E on S is f -semistable if and only
if its generic fiber over C is isomorphic to OP1(l)⊕m for some l ∈ Z, m ∈ N.

Lemma 7.4 For a torsion-free f -semistable sheaf E, the following numerical condi-
tions are equivalent:

1. π∗E = 0 and rk R1π∗E = 0, 2. rk E = −c1,D(E), 3. l = −1.

If these conditions are fulfilled, we further have H0(E) = H2(E) = 0, and H1(E) =
H0(R1π∗E).

Proof Let us first prove the equivalence.
1⇒ 2: follows from the first formula in (30);
2⇒ 3: rank is a generic invariant, therefore we have

0 = rk Rπ∗E = m
(

h0(OP1(l))− h1(OP1(l))
)
= m(l + 1).

Since m is a positive number, this implies that l = −1.
3⇒ 1: since R�(OP1(−1)) = 0, both π∗E and R1π∗E have rank 0. Furthermore,

let T ⊂ π∗E be a torsion subsheaf. By adjunction, we exhibit a map π∗T→ E from
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a torsion sheaf to a torsion-free sheaf. It is a zero map if and only if T = 0; thus π∗E
is locally free. We conclude that π∗E = 0.

In order to prove the second statement, recall that we have Leray spectral sequence

Hi (C, R jπ∗E)⇒ Hi+ j (S, E).

Since R jπ∗E = 0 for j �= 1, it degenerates to the equality Hi+1(E) = Hi (R1π∗E).
Finally, R1π∗E is a torsion sheaf, so that Hi (E) is non-zero only for i = 1.

We will also need the following computation:

Lemma 7.5 Let ε:π∗π∗O(D) → O(D) be the natural counit map. Then Ker ε 	
π∗ω∨(−D).

Proof Let us denote K = Ker ε. Since ε is surjective and becomes an isomorphism
after applying π∗, we have Rπ∗K = 0. This means that at each point c ∈ C the fiber
Kc is isomorphic to a direct sum of several copies of OP1(−1) [34, Corollary 5.4]. In
particular, K (D)c is trivial at each point c, and thus the natural map π∗π∗(K (D))→
K (D) is an isomorphism. Consider the following short exact sequence:

0→ K (D)→ (π∗π∗O(D)
)⊗O(D)→ O(2D)→ 0.

Note that all these sheaves have globally generated fibers over C . Therefore, after
applying π∗ we obtain

π∗(K (D)) 	 Ker (π∗O(D)⊗ π∗O(D)→ π∗O(2D)) .

However, since π∗O(D) = O⊕ ω∨, we have

π∗(K (D)) 	 Ker
(
(O⊕ ω∨)⊗ (O⊕ ω∨)→ O⊕ ω∨ ⊕ (ω∨)2

)
	 ω∨.

Therefore K 	 π∗π∗(K (D))⊗O(−D) 	 π∗ω∨(−D), and we may conclude.

Remark 7.6 For later purposes, let us fix an isomorphism π∗(K (D)) 	 ω∨, so that
the inclusion π∗(K (D)) ⊂ π∗O(D)⊗ π∗O(D) is identified with the composition

ω∨ (1,−1)−−−→ (ω∨ ⊗O
)⊕ (O⊗ ω∨

) ⊂ (O⊕ ω∨
)⊗ (O⊕ ω∨

)
.

Let us return to the equivalence (29). Fix d > 0, and a locally free sheafF ∈ CohC
of rank n. Consider subfunctors CohF

d S ⊂ Db(Coh S), A-modF
d ⊂ A-modD, defined

as follows:

CohF
d S(T ) =

{
E ∈ Coh(S × T )

∣∣∣∣
E is torsion-free, flat over T , E |D×T 	 F � OT ,

c1(Et ) = degF · f , c2(Et ) = d, Et is f -semistable ∀t ∈ T

}
,

A-modF
d (T ) =

{
(V1[−1],V•2, ϕ0, ϕ1)

∣∣∣∣
V1 ∈ Coh(C × T ), flat over T , Cone(ϕ0) 	 F � OT ,

(V1)t is a torsion sheaf, deg(V1)t = d ∀t ∈ T

}
.
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Proposition 7.7 For any d > 0, the equivalence (29) induces a natural transformation

�′d : CohF
d S→ A-modF

d .

Proof We need to check that for any T , we have �
(
CohF

d S(T )
) ⊂ A-modF

d (T ). Let
E ∈ CohF

d S(T ). Then by definition �(E) = (Rπ∗E(−D), Rπ∗E, ϕ0, ϕ1), where
ϕ0: Rπ∗E(−D) → Rπ∗E is obtained by applying Rπ∗ to the first map in the short
exact sequence

0→ E(−D)→ E → E |D×T → 0.

In particular, Cone(ϕ0) 	 Rπ∗(E |D×T ) 	 F � OT .
Pick a point t ∈ T .We have π∗E(−D)t = 0 by Lemma 7.4, so that Rπ∗E(−D)t =

R1π∗E(−D)t [−1]. Moreover, the formulas (30) applied to E(−D)t show that
rk(Rπ∗E(−D)t ) = 0 and c1(Rπ∗E(−D)t ) = −d. Therefore, R1π∗E(−D)t is a
torsion sheaf of degree d.

Finally, let us prove flatness. Let f : T × S → T , p: T × C → T be the natural
projections. Using the second part of Lemma 7.4, a proof analogous to [29, Corol-
lary 4.2.12] shows that R1 f∗E(−D) is a locally free sheaf. Let L be an ample line
bundle on C , and k ∈ N. Since R1π∗E(−D)t is a torsion sheaf for any t ∈ T , it is
isomorphic to Lk ⊗ R1π∗E(−D) in the neighborhood of t . In particular, the fact that
p∗(R1π∗E(−D)) 	 R1 f∗E(−D) is locally free implies that p∗(Lk ⊗ R1π∗E(−D))

is locally free for any k. We conclude that R1π∗E(−D) is flat over T by [21, Propo-
sition 2.1.2].

Consider rigidified functors Coh←F
d S, Db(Coh S)

←F
, where we fix the additional

data of an isomorphism �: E |D ∼−→ F. We will refer to elements of (Coh←F
d S)(k) as

F-framed sheaves.

Lemma 7.8 Any F-framed sheaf is locally free in a neighborhood of D.

Proof Recall that for any torsion-free sheaf E , its double dual E∨∨ is a vector bundle.
Let (E, �) be anF-framed sheaf, and consider the quotient U = E∨∨/E . It is a sheaf
with zero-dimensional support. If the intersection D ∩ suppU is non-empty, E |D is a
proper subsheaf of E∨∨|D . However,

deg E |D = degF = c1(E)D = c1(E
∨∨)D = deg E∨∨|D,

and rk E |D = rk E∨∨|D , so that E |D = E∨∨|D . Therefore the support ofU is disjoint
from D, and we have an isomorphism E 	 E∨∨ in a neighborhood of D.

Let us recall a closely related notion of stable pairs. We specialize the definition
in [5] to the case when polarization of S is given by the divisor H = D + N f , and
N > 2g − 2. Recall that for any locally free sheaf E on C , its slope is defined as
μ(E) = deg E/ rk E.
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Definition 7.9 Let E be a torsion-free sheaf on S satisfying ch E = (n, degF· f ,−d),
and�: E |D ∼−→ F an isomorphism. Fix N > 2g− 2, and δ > 0. A pair (E, �) is said
to be (N , δ)-stable, if for any subsheaf E ′ ⊂ E with 0 < rk E ′ < n the following
inequality holds:

c1(E ′)H
rk E ′

<

{
μ(F)− δ/n if E ′ ⊂ E(−D),

μ(F)+ δ/ rk E ′ − δ/n otherwise.

It is known that themoduli of (N , δ)-stable pairs is represented by a quasi-projective
variety, see [5, Theorem 2.3].

Proposition 7.10 There exist N , δ big enough, such that every F-framed sheaf (E, �)

is (N , δ)-stable. In particular, the functorCoh←F
d S is represented by a quasi-projective

variety B(d,F).

Proof The (N , δ)-stability condition is vacuous for sheaves of rank 1. Therefore, we
will assume that n ≥ 2. The existence of Harder-Narasimhan filtration [29, Chapter
5] implies that for a locally free sheaf F on C , there exists a constant μmax (F),
such that μ(F′) < μmax (F) for all F′ ⊂ F. From now on, we will assume that
δ > (μmax (F)− μ(F))n2, and N > 2g − 2+ δ.

Let E ′ ⊂ E be a subsheaf of rank n′ with 0 < n′ < n. Since Ec 	 On
P1 for

a generic c ∈ C , there exist integers 0 ≤ k1 ≤ · · · ≤ kn′ such that generically
E ′c 	

⊕n′
i=1OP1(−ki ).

Assume first that E ′ �⊂ E(−D). Consider the saturation E ′ of E ′ inside E . It has
the same rank as E ′, and c1,D(E ′) ≤ 0. Moreover, since E is a vector bundle in the
neighborhood of D by Lemma 7.8, E ′ is its subbundle in the same neighborhood. As a
consequence, we have E ′|D ⊂ E |D , and c1(E ′)D = deg(E ′|D). Putting this together,
we obtain

c1(E ′)H
r ′

≤ c1(E ′)H
r ′

= μ
(

E ′|D
)
+ Nc1,D(E ′)

r ′
≤ μmax (F) < μ(F)+ δ/n2

< μ(F)+ δ/r ′ − δ/n,
(31)

which is the desired estimate.
Now, suppose E ′ ⊂ E(−D). In this case k1 > 0, and E ′ is not contained in

E(−(k1 + 1)D). Let k be the maximal positive integer such that E ′ ⊂ E(−k D); we
have k ≤ k1. In particular, E ′(k D) is naturally a subsheaf of E , which is not contained
in E(−D).Moreover, for a generic point c ∈ C , we have E ′(k D)c 	⊕n′

i=1OP1(−k̃i ),
where k̃i = ki − k ≥ 0 for all i . Therefore, the inequality (31) holds for E ′(k D) by
previous considerations. We have

c1(E ′)H
r ′

= c1(E ′(k D))H

r ′
− k D · H = c1(E ′(k D))H

r ′
+ k(2g − 2− N )

< μ(F)+ δ/n2 + k(2g − 2− N ) < μ(F)+ δ/n2 − kδ < μ(F)− δ/n.
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Wecan thus conclude that for our choice of N , δ everyF-framed sheaf is (N , δ)-stable.

Remark 7.11 The divisor D ⊂ S is not nef when g(C) > 1, so that [5, Theorem
3.1] could not be invoked directly. Moreover, one can check that if we omit framing,
f -semistable sheaves can possess automorphisms.

Analogously to Coh←F
d S, consider the rigidified functorA-mod←F

d , given by fixing

a distinguished triangle� =
(
V1[1] ϕ0−→ V•2

ψ−→ F
ϕ′0−→
)
. Then�′d extends to a natural

transformation �← = �←d : Coh←F
d S→ A-mod←F

d .
Let us establish relation between A-mod←F

d and the stack of Higgs triples.

Lemma 7.12 LetE,F ∈ CohC,ϕ ∈ Hom(F, E), andC1, C2 two cones ofϕ. Then there
exists the unique map f ∈ Hom(C1, C2) making the following diagram commute:

E C1 F[1]

E C2 F[1]

i

f

j ϕ

i j ϕ

where i, j are the natural maps.

Proof The existence ofmap f is assured by axioms of triangulated category. Let f1, f2
be two such maps, and consider their difference g = f1− f2: C1→ C2. By definition,
we have g ◦ i = 0 and j ◦ g = 0. Therefore, g lies in the image of composition

Hom(F[1], E)→ Hom(C1, E)→ Hom(C1, C2).

Since both E and F lie in the heart of Db(CohC), we have Hom(F[1], E) = 0. Thus
g = 0, and the unicity of f follows.

Thanks to the lemmaabove,wecandefine anatural transformation τ :A-mod←F
d →

T ∗Coh←F
0,d , which to each element (V1[−1],V•2, ϕ0, ϕ1,�) ∈ A-mod←F

d (T ) asso-
ciates the triple

(V1, ϕ
′
0, f ◦ ϕ1),

where f :V•2 ∼−→ (F ϕ0−→ V1) is the unique isomorphism given by Lemma 7.12.

Proposition 7.13 The functor τ is a natural equivalence.

Proof Let us consider a natural transformation

υ: T ∗Coh←F
0,d → A-mod←F

d ,

defined on T -points by the following formula:

υ(E, α, θ) =
(
E[−1],F α−→ E, ι, θ [−1],�

)
.
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Here ι is the natural map E[−1] → (F → E), and � is obtained from the mapping
cone of α:

� =
(
E[−1] ι−→ (F→ E) ψ−→ F α−→

)
.

It is clear that τ ◦ υ is the identity functor. On the other hand, the composition υ ◦ τ
sends (V1,V•2, ϕ0, ϕ1,�) to (V1,F

ϕ′0−→ V1, f ◦ϕ0, f ◦ϕ1,�′), where�′ is the triangle

�′ =
(
V1[−1] ι−→ (F→ V1)

ψ−→ F
ϕ′0−→
)
.

The map f induces a natural equivalence υ ◦ τ 	 IdA-mod←F
d

, so that τ and υ are
mutually inverse equivalences.

Theorem 7.14 The composition
←−
� = τ ◦ �← factors through the stack of stable

Higgs triples, and induces an equivalence

←−
� : Coh←F

d S
∼−→
(

T ∗Coh←F
0,d

)st
.

Proof Since the functor
←−
� is fully faithful, it is enough to compute its image on

T -points of Coh←F
d S for every T . Let (E, α, θ) be a Higgs triple, and consider the

morphism

ξ = ε ⊗ 1+ π∗(ι, θ ⊗ ω∨) ∈ Hom
(
π∗π∗O(D)⊗ π∗E,O(D)⊗ π∗E⊕ π∗α[1]) ,

where ε:π∗π∗O(D) → O(D) is the counit map from Lemma 7.5, and we use the
identification π∗O(D) 	 O⊕ ω∨. After restricting to D, we get

ξ |D =
(
ι θ ⊗ ω∨
0 1

)
: E⊕ E⊗ ω∨ → α[1] ⊕ E⊗ ω∨.

The map ξ |D can be naturally completed to a distinguished triangle

F (α,0)−−−→ E⊕ E⊗ ω∨ ξ |D−−→ α[1] ⊕ E⊗ ω∨ +1−→ .

Thus, we obtain an identification �:Cone(ξ |D) ∼−→ F.
Note that

←−
�(E) = τ ◦ F ′(Rπ∗Hom(T, E))

up to remembering the framing. Combining the inverses of each functor in the com-
position provided by Propositions 7.1, 7.13, and Lemma 6.5, we obtain the following
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left inverse of �← on the set of isomorphism classes of T -points:

GT : T ∗Coh←F
0,d (T )→ Db(Coh S)

←F
(T ), (E, α, θ) �→ (Cone(κ ◦ ξ)[−1], �),

where κ:π∗E(D)⊕π∗α[1] → π∗E(D)⊕π∗α[1]multiplies first summand by 1, and
the second one by−1. Inwhat follows,we are only interested in the set-theoretic image
of GT . As such, we will not concern ourselves with functoriality, and will liberally
make use of (non-unique) cones of various maps.

Lemma 7.15 As a complex, ξ is quasi-isomorphic to O(−D) ⊗ (π∗(E ⊗ ω∨) ξ ′−→
O(D) ⊗ π∗α[1]), where ξ ′ is obtained by adjunction from (−θ ⊗ ω∨, ι ⊗ ω∨) ∈
Hom(E⊗ ω∨, π∗O(D)⊗ α[1]).
Proof Let p1, p2 be the projection maps from π∗E(D) ⊕ π∗α[1] to the first and the
second summand respectively. Note that p1 ◦ ξ = ε ⊗ 1. Applying octahedral axiom
to these three maps, we obtain a distinguished triangle, denoted by dashed arrows
below:

π∗(E⊗ ω∨)(−D) π∗α[1] Cone(ξ)

π∗E⊗ π∗π∗O(D) π∗E(D)⊕ π∗α[1] Cone(ξ)

π∗E(D) π∗E(D)

ξ ′′

j i2
ξ

ε⊗1 p1

Here, j is defined by Lemma 7.5, and i2 is the natural inclusion of a summand. We
see that ξ is quasi-isomorphic to ξ ′′, so it remains to compute the map ξ ′′. Since j is
injective and the diagram commutes, we have ξ ′′ = p2 ◦ ξ ◦ j = π∗(ι, θ ⊗ ω∨) ◦ j .
After tensoring with O(D) and applying π∗, we obtain the composition

E⊗ ω∨ ↪→ (O⊕ ω∨)⊗ (O⊕ ω∨)⊗ E 1⊗(ι,θ⊗ω∨)−−−−−−−→ (O⊕ ω∨)⊗ α[1].

The map on the left is induced by the diagonal embedding ω∨ (1,−1)−−−→ ω∨ ⊗ ω∨ as
in Remark 7.6. Thus the composition is precisely (−θ ⊗ ω∨, ι ⊗ ω∨), and we may
conclude.

Let us consider themapGk betweenk-points. Recall (see Sect. 5) that as a complex,
α is quasi-isomorphic to K ⊕ J [−1], where K = Ker α, J = Coker α. Thus, we can
express ξ ′ as a sum:

ξ ′ = ξ ′e + ξ ′h, ξ ′e:π∗(E⊗ ω∨)→ π∗K (D)[1], ξ ′h :π∗(E⊗ ω∨)→ π∗ J (D).

Let M ∈ Ext1(π∗(E⊗ω∨), π∗K (D)) be the extension given by ξ ′e. Then the two-step
complex given by ξ ′ is quasi-isomorphic to M → π∗ J (D), with arrow defined as the
composition of ξ ′h with the projection M � π∗(E⊗ ω∨). Consequently, the cone of
ξ ′ has length 1 if and only if ξ ′h is surjective.
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Lemma 7.16 The map ξ ′h is surjective if and only if the triple (E, α, θ) is stable.

Proof By abuse of notation, we will write ξ = ξ ′h⊗ω throughout the proof, and study
surjectivity of ξ . Thanks to Lemma 7.15, ξ is adjoint to

(θ,−ι): E→ J ⊗ (ω ⊕O),

where θ = θh as in Section 5, and ι = ιh : E � J is the natural projection. Let c ∈ C ,
and s = π−1(c) = P(ωc⊕Oc). If we choose an identification ωc 	 Oc, the stalk ξs at
the point s is given by a linear combination aθc+ bιc for some a, b ∈ k. In particular,
ξ is surjective if and only if it is surjective at each point s ∈ S, that is for every c ∈ C
and [a: b] ∈ P

1 the map aθc + bιc is surjective.
Suppose that ξ is not surjective. Then there exists a point s ∈ π−1(c), c ∈ C where

surjectivity fails. This means that J ′c := Im(aθc + bιc) is a proper subsheaf of Jc for
some a �= 0, b. Denote E′c = ι−1(J ′c); then θc(E′c) ⊂ J ′c. Further, let

E′ = E′c ⊕
⊕

p∈C\{c}
Ep, J ′ = J ′c ⊕

⊕

p∈C\{c}
Jp.

Then Im α ⊂ E′ and θ(E′) ⊂ J ′, which precludes the triple (E, α, θ) from being stable.
Conversely, suppose that (E, α, θ) is destabilized by a subsheaf E′ ⊂ E. Denote

J ′ = ι(E′). Let us choose a point c ∈ C , such that E′c ⊂ Ec is a proper subsheaf.
By assumption ξ(E′c) ⊂ J ′c and E/E′ 	 J/J ′. Suppose ξ is surjective. Then for any
s ∈ π−1(c) the stalk ξs induces an automorphism of Ec/E′c. In particular, the map
a Id+bθc is an automorphism of Ec/E′c for each [a: b] ∈ P

1. However, E is a torsion
sheaf, therefore Ec/E′c is finite-dimensional as a k-module. Because of this, θ must
possess an eigenvalue λ, so that θ −λ Id cannot be invertible. Thus ξ is not surjective.

Lemma 7.16 shows that any family of Higgs triples which contains a non-stable
one is mapped outside of Coh←F

d S by GT . This proves that the essential image of
←−
� is

contained in
(
T ∗Coh←F

0,d

)st
.Wenowneed to show that everyflat T -family (ET , αT , θT )

of stableHiggs triples lies in the image of
←−
� , or equivalently its imageGT (ET , αT , θT )

lies in Coh←F
d S(T ). By Lemma 7.16, it is a coherent sheaf ET on S × T , equipped

with an isomorphism �: ET |D×T
∼−→ F � OT . Moreover, by construction ET is a

subsheaf of MT , with latter being obtained as an extension of a torsion-free sheaf
π∗KT (D) by π∗ET . As a consequence, the torsion Tor ET is contained in the support
of π∗ET . However, since F is locally free, the existence of � implies that the support
of Tor ET must be disjoint from D × T . Since the support of every subsheaf of π∗E
intersects D × T , we conclude that E is torsion-free.

Pick a point t ∈ T . Outside of the support of π∗E, the complex ξ [−1] is quasi-
isomorphic to π∗F. By Lemma 7.3, it implies that Et is f -stable.

Let us compute the Chern character of Et :

ch(Et ) = ch(O(−D)⊗ π∗(Et ⊗ ω∨))− ch(π∗αt [1])
= (1,−D, 1− g)(0, d f , 0)− (0, d f , 0)− (n, deg F · f , 0) = (n, deg F · f ,−d).
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Thus c1(Et ) = deg F · f , and c2(Et ) = c1(Et )
2/2− ch2(Et ) = d.

It remains to show that ET is T -flat. For this, we will express ET in a different
fashion. In what follows, we will drop the subscript T , implicitly assuming that all
objects live in families over T .

Denote by ev: H0(E)⊗O � E the natural evaluation map. Let K̃ be the kernel of

(α, ev):F⊕
(

H0(E)⊗O
)

� E.

The octahedral axiom applied to the composition F (id,0)−−−→ F⊕ H0(E)⊗O (α,ev)−−−→ E
produces a distinguished triangle

π∗α→ π∗K̃→ H0(E)⊗OS
+1−→ .

Next, consider the composition H0(E)⊗OS[−1] → π∗α→ E , where the first map is
defined by the triangle above, and the second map comes from the quasi-isomorphism
E 	 ξ ′ ⊗ (−D). One more application of the octahedral axiom gives rise to the
following diagram:

π∗α E π∗(E⊗ ω∨)(−D)

π∗K̃ Ẽ π∗(E⊗ ω∨)(−D)

H0(E)⊗OS H0(E)⊗OS

(32)

Here, Ẽ is defined as a cone of the composition above. Note that since both E and
H0(E)⊗OS are sheaves (as opposed to complexes of sheaves), Ẽ is also a sheaf.

Recall that if N is a T -flat sheaf, and

0→ M1→ M2 → N → 0

is a short exact sequence, then M1 is T -flat if and only if M2 is. As a consequence of
this, π∗K̃ is T -flat as the kernel of π∗(α, ev); the middle row of diagram (32) shows
Ẽ is T -flat; and finally, the middle column of (32) shows that E is T -flat as well.

Proof of Theorem 5.8 Representability follows from Theorem 7.14 together with
Proposition 7.10. For smoothness, recall [5, Theorem 4.3] that B(d,F) is smooth
at a point (E, �) if the kernel of the trace map

Ext2(E, E(−D))→ H2(S,O(−D))

vanishes. Since Ext2(E, E(−D)) 	 Hom(E, E(−D))∗ by Serre duality, and
H2(S,O(−D)) 	 Hom(O,O(−D))∗ = 0, it suffices to show that for any f -stable
sheaf E there exist no non-zero maps from E to E(−D). Let ϕ: E → E(−D) be such
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a map. By definition of f -stability, E |π−1(c) 	 On
P1 for a generic point c ∈ C . Since

OP1(−1) has no global sections, this implies that the image of ϕ must be a torsion
sheaf. However, E(−D) is a torsion-free sheaf, so we may conclude.

For the second claim, let E1 be a locally free sheaf of rank 1 on S, such that
c1(E1) = 0. By the seesaw principle, E1 	 π∗π∗E1. In particular, if E1|D 	 OC ,
then E1 	 OS . As a consequence, we have E∨∨ 	 OS for any (E, �) ∈ B(d, 1),
and fixing � makes this isomorphism canonical. Therefore, the map

E �→ (E |T ∗C ) ⊂ E∨∨|T ∗C = OT ∗C

establishes the desired isomorphism B(d, 1) 	 Hilbd T ∗C .

In view of Theorem 5.8, it is instructive to compare our results with recent works
of Neguţ [38,39]. For any smooth projective surface S and an ample divisor H , he
considers the moduli space M of H -stable sheaves on S with varying second Chern
class, and for every n ∈ Z defines an operator en : K (M)→ K (M×S) by Hecke cor-
respondences. These operators generate a subalgebraA inside

⊕
k>0 Hom(K (M)→

K (M × Sk)), which can be then projected to a shuffle algebra Vsm . The content of
Conjecture 3.20 in [39] is that this projection is supposed to be an isomorphism. This
conjecture is proved under rather restrictive assumptions; for instance, it is required
that K (S × S) 	 K (S)⊗ K (S).

Let us now take S = T ∗C together with a scaling action of T 	 Gm , and
replace usual K -groups with their T -equivariant counterpart. In this case, the alge-
bra Vsm can be identified with the subalgebra of KShnorm

C , generated by K (BGm) ⊂
KShnorm

C [1] 	 K T (C × BGm). If we further replace K -groups by Borel–Moore
homology, then by Corollary 4.5 homological version of Vsm is realized as a sub-
algebra of HHa0,TC . Therefore, one can regard results of Sect. 5 as a “homological
non-compact” version of Neguţ’s conjecture for S = T ∗C , c1,D = 0, and stability
condition given by f . Another modest gain of our approach is that whileA is given by
operators on K -groups K (M), the definition of AHa0,TC is independent from its nat-
ural representations, which allows to study this algebra without invoking torsion-free
sheaves on T ∗C .

In general, one expects that the moduli of framed sheaves on PC (ω ⊕ O) with
non-trivial first Chern class can be recovered from the moduli of stable Higgs triples
of positive rank. Nevertheless, as stability condition for triples varies, Lemma 7.16
seems to suggest that the objects on S which correspond to stable Higgs sheaves do
not have to lie in the usual heart of Db(Coh S). These questions will be investigated
in future work.
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Appendix A: Oriented Borel–Moore homology theories

In this appendix we recall the notion of equivariant oriented Borel–Moore functor and
recollect some of its properties. For a more detailed exposition, we refer the reader
to the monograph [30] for a treatment of non-equivariant version, and to [19] for the
equivariant case.

Definition A.1 An oriented Borel–Moore homology theory A on Sch/k (or OBM for
short) is the data of:

(1) for every object in X ∈ Sch/k, a graded abelian group A∗(X);
(2) for every projective morphism f : X → Y , a homomorphism f∗: A∗(X) →

A∗(Y );
(3) for every locally complete intersection (lci for short) morphism g: X → Y of

relative dimension d, a homomorphism f ∗: A∗(Y )→ A∗+d(X);
(4) an element 1 ∈ A0(pt), and for any X ,Y ∈ Sch/k a bilinear pairing

×: A∗(X)⊗ A∗(Y )→ A∗(X × Y ),

u ⊗ v �→ u × v,

which is associative, commutative and has 1 as unit;
satisfying the following conditions:

(BM0) A∗(X1 � X2) = A∗(X1)⊕ A∗(X2);
(BM1) Id∗X = IdA∗(X), ( f ◦ g)∗ = g∗ ◦ f ∗;
(BM2) g∗ ◦ f∗ = f ′∗ ◦ g′∗ for any cartesian diagram with projective f , transversal to

lci g:

W X

Y Z

g′

f ′ f
g

(BM3) ( f × g)∗(u′ × v′) = f∗(u′)× g∗(v′), ( f × g)∗(u × v) = f ∗(u)× g∗(v);
(PB) let E → X be a vector bundle of rank n+ 1, q:PE → X its projectivization,

O(1) → PE tautological line bundle, and s:PE → O(1) its zero section.
Then the map

n∑

i=0
(s∗ ◦ s∗)i ◦ q∗:

n⊕

i=0
A∗+i−n(X)→ A∗(PE)

http://creativecommons.org/licenses/by/4.0/
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is an isomorphism;
(EH) let p: V → X be an affine fibration of rank n. Then p∗: A∗(X)→ A∗+n(V )

is an isomorphism;
(CD) for r , N > 0, let W = (PN )r , with pi :W → P

N being i-th projection. Let
also [X0: · · · : X N ] be homogeneous coordinates on P

N , n1, . . . , nr ∈ Z, and
i : E → W the subschemedefinedby

∏r
i=1 p∗i (X N )

ni = 0. Then i∗: A∗(E)→
A∗(W ) is injective.

Given an OBM A, we can further define:

• for any smooth variety Y , set A∗(Y ) := Adim Y−∗(Y ). The map�∗Y ◦×: A∗(Y )⊗
A∗(Y )→ A∗(Y ) defines an associative product on A∗(Y );

• for any f : Z → Y , we have the graph morphism � f = ( f , IdZ ): Z → Y × Z ,
which is always a regular embedding. The map�∗f ◦×: A∗(Y )⊗ A∗(Z)→ A∗(Z)
defines a A−∗(Y )-module structure on A∗(Z);
• for any lci morphism f : Y → X and arbitrary morphism g: Z → X , we have a

Gysin pullback map

f ! = f !g: A∗(Z)→ A∗(Z ×X Y ).

It coincides with the usual pullback for Z = X , g = IdX . We will also liberally
replace f by its pullback f ′: Z ×X Y → Z in the notations;
• for any line bundle L → X , denote by s: X → L its zero section. We have a
graded homomorphism

c1(L) := s∗ ◦ s∗: A∗(X)→ A∗−1(X).

Moreover, let us consider any vector bundle E → X of rank n together with its
projectivization q:PE → X and the tautological line bundle O(1)→ PE . Then
there exist unique homomorphisms ci (E): A∗(X)→ A∗−i (X) for i = {0, . . . , n},
called i-th Chern classes, such that c0(E) = 1 and

n∑

i=0
(−1)i c1(O(1))n−i ◦ q∗ ◦ ci (E) = 0.

They satisfy all the usual properties of Chern classes (see [30, Proposition 4.1.15]).
For a smooth variety X , the classes ci (E) can be realized by elements of Ai (X);
• there exists a formal group law FA ∈ (u + v)+ uvA∗(pt)�u, v� on A∗(pt) such
that for any X ∈ Schk and two line bundles L, M on X , we have

c1(L ⊗ M) = FA(c1(L), c1(M)).

Since we never consider two OBMs at the same time, we will use multiplicative
notation for group laws, and write FA(c1(L), c1(M)) = c1(L)�c1(M).

In [30], Levine and Morel define and study algebraic cobordism theory !∗ asso-
ciated to the universal formal group law (L, FL) on the Lazard ring L. Let us call an
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OBM A free if the natural map !∗ ⊗L∗ A∗(pt) → A∗ is an isomorphism. For this
class of OBMs many properties will follow immediately after establishing them for
!∗.

Example A.2 Chow group functor C H∗ and the Grothendieck group of coherent
sheaves K0 are free OBMs.

Note that usual Borel–Moore homology is not an OBM, because of the presence
of odd-dimensional part. Moreover, even the even-dimensional part fails to be a free
OBM, which prevents us from translating results found in [30] in a straightforward
way. Still, all of the results we need can be proved in a similar way for the usual
Borel–Moore homology. We will thus abuse the language somewhat and allude to it
as to a free OBM in the propositions below, giving separate proofs where needed; in
the case of omitted proof, we will give a separate reference.

For any reductive group G, free OBM A, and a G-variety X Heller and Malagón-
López [19] define equivariant homology groups AG∗ (X). Roughly speaking, the group
G has a classifying space represented by a projective system {EG N }N∈N of G-
varieties, and we set

AG∗ (X) = lim←−
N

A∗(X ×G EG N ).

For example, ifG = GLd , the varieties EG N are just theGrassmaniansGrassd(d, N ).
Most of the constructions mentioned above for ordinary OBMs can be extended to the
equivariant ones.

Example A.3 If G = T is an algebraic torus of rank d, then by Lemma 1.3 in [52] we
have

AT∗ (pt) = A∗(pt)�c1(t1), . . . , c1(td)�,

for some choice of basis t1, . . . , td of the character lattice of T .

Remark A.4 One can observe that in the case of algebraic K -theory we get K T (pt) =
Z[1− t−11 , . . . , 1− t−1d ], which is different from the usual ring of Laurent polynomials
Z�t±11 , . . . , t±1d �. However, the two become isomorphic after passing to completion.
One can prove that this happens for any T -scheme X , using the argument in [1, Lemma
3.1] (the author would like to thank Gufang Zhao for this remark).

From now on until the end of appendix, let us fix a free OBM A. Moreover, since we
are not concerned with questions of integrality, we also assume that A∗(pt) contains
Q, so that all A-groups are Q-vector spaces. We will often omit homological grading
from notations, and write A = A∗, AG = AG∗ , AG = A∗G .

Remark A.5 To the best of author’s knowledge, the notion of oriented Borel–Moore
homology theory is not yet fully developed for arbitrary algebraic stacks. However,
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since all the stacks of interest in our paper are quotient stacks, we usually slightly
abuse the notation and write

A([X/G]) := AG(X)

for any quotient stack [X/G] (see also [19, Proposition 27]).

Proposition A.6 ([19, Theorem 26]) Let H ⊂ G be a closed subgroup, and X a G-
variety. Then there exists a natural isomorphism

indG
H : AH (X)

∼−→ AG((X × G)/H),

where H acts on X × G diagonally.

Proposition A.7 ([19, Theorem 33]) Let G be a reductive simply connected algebraic
group, T ⊂ G a maximal torus with normalizer N, W = N/T the Weyl group, and
X a G-variety. Then W acts on AT (X), and we have a natural isomorphism

AG(X) 	 AT (X)W .

Proposition A.8 Let Z be a non-reduced G-scheme, and denote by Zred its reduction.
Then the pushforward map along the natural embedding

AG(Zred)→ AG(Z)

is an isomorphism.

Proof Follows from the definition of algebraic cobordism theory. For an explicit men-
tion of this fact, see the proof of Proposition 3.4.1 in [30].

Proposition A.9 (Projection formula) Let f : X → Y be a G-equivariant projective
morphism of smooth varieties, β ∈ AG∗ (X), and α ∈ A∗G(Y ). We have the following
identity:

f∗( f ∗α · β) = α · f∗β.

Proof See [30, Proposition 5.2.1] for non-equivariant version; equivariant proof is
completely analogous.

The following proposition holds only for universal OBMs, usual Borel–Moore
homology not included.

Proposition A.10 ([19, Theorem 20]) Let i : Z → X be a closed equivariant embed-
ding of G-varieties, and j :U → X the complementary open embedding. Then the
sequence

AG(Z)
i∗−→ AG(X)

j∗−→ AG(U )→ 0

is exact.
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For a G-equivariant vector bundle E → X , we define its Euler class e(E) as the
top Chern class:

e(E) := crk E (E) ∈ AG(X).

Also, for any regular embedding of smooth varieties M ⊂ N , let TM N be the normal
bundle of M in N .

Proposition A.11 (Self-intersection formula) Let i : N ↪→ M be a G-equivariant reg-
ular embedding of smooth G-varieties. Then

i∗i∗(c) = e(TN M) · c

for any c ∈ AG(N ).

Proof Follows from [30, Theorem 6.6.9]. For A = H , see [9, Corollary 2.6.44].

Given G-equivariant regular embeddings j : P ↪→ N , i : N ↪→ M ,Whitney product
formula applied to the short exact sequence

0→ TP N → TP M → j∗TN M → 0

tells us that

e(TP M) = e(TP N ) · j∗e(TN M). (33)

For our purposes, one of the most important pieces of data coming from an OBM
is the Gysin pullback. Let us state several compatibility results about it.

Lemma A.12 The following properties of Gysin pullback are verified:

(1) Gysin pullback commutes with composition, that is for any diagram with cartesian
squares

Z ′ Y ′ X ′

Z Y X

g′ g
f2 f1

one has ( f1 ◦ f2)!g = ( f2)!g′ ◦ ( f1)!g, provided that f1 and f2 are locally complete
intersections;

(2) let F :Y → X, G: X ′ → X, ι: Z → X be morphisms of schemes such that F
is lci, G and ι are proper, and F and G are transversal. Consider the following
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diagram, where all squares are cartesian:

Y ′ X ′

W ′ Z ′

W Z

Y X

G

f ′

g′ g

ι′

f

ι

F

Then we have an equality

g′∗ ◦ f ′!ι′ = f !ι ◦ g∗.

Proof See [30, Theorem 6.6.6(3)] for (1) and [52, Lemma 1.14] for (2).

Proposition A.13 Let i : Y ↪→ X be a closed embedding of T -varieties, and
{χ1, . . . , χk} ⊂ T∨ a finite set of characters. Suppose that X T is not empty, X T ⊂ Y ,
and for any point x ∈ X\Y its stabilizer under the action of T is contained in⋃k

i=1 Ker(χi ). Then the pushforward along i induces an isomorphism

i∗: AT∗ (Y )[c1(χ1)−1, . . . , c1(χk)
−1] ∼−→ AT∗ (X)[c1(χ1)−1, . . . , c1(χk)

−1].

Proof In the interest of brevity, we will abuse the notation and write χi instead of
c1(χi ). Let us start with surjectivity. By Proposition A.10 we have an exact sequence

AT (Y )
i∗−→ AT (X)→ AT (X\Y )→ 0.

Thus it suffices to prove that AT∗ (X\Y )[χ−11 , . . . , χ−1k ] = 0.ByLemma2 in [12], there
exists an open subvariety U ⊂ X\Y and a subgroup T1 ⊂ T such that U 	 Ũ ×T /T1
as T -variety, where Ũ is equipped with a trivial action of T . In particular, AT∗ (U ) 	
A∗(Ũ )⊗A∗(pt) AT∗ (T /T1). Because of our hypotheses, one has T1 ⊂ Ker(χi ) for some
i , and thus χi AT∗ (U ) = 0. We conclude by Noetherian induction. Namely, let Z be
the complement of U in X\Y . We have the following exact sequence:

AT (Z)
i∗−→ AT (X\Y )→ AT (U ).

By induction p AT (Z) = 0, where p is a monomial in χ1, . . . χk . Therefore AT (X) is
annihilated by χi p, and thus AT (X\Y )[χ−11 , . . . , χ−1k ] = 0.

It is left to prove injectivity. If A = H , we may already conclude by invoking
long exact sequence in homology. Otherwise, we follow an approach found in [4, 2.3,
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Corollary 2]. First, let us denote

Y" =
{

y ∈ Y : Stab(y) /∈
k⋃

i=1
Ker(χi )

}

.

Note that Y" is non-empty, since X T ⊂ Y". We have the following commutative
triangle

AT∗ (Y")[χ−11 , . . . , χ−1k ] AT∗ (X)[χ−11 , . . . , χ−1k ]

AT∗ (Y )[χ−11 , . . . , χ−1k ]

where the diagonal arrows are surjective by the first part of the proof. If the hori-
zontal arrow is injective, the same can be said of the map AT∗ (Y )[χ−11 , . . . , χ−1k ] →
AT∗ (X)[χ−11 , . . . , χ−1k ]. Thus, from now on we will assume that Y = Y".

Let U 	 Ũ × T /T1 ⊂ X\Y be as in the proof of surjectivity. Since T1 ⊂ Ker(χi )

for some i , we get a regular function

f : Ũ × T /T1→ k∗, (u, t) �→ χi (t).

It extends to a rational function f : X → P
1
k with the property that f (t .x) = χi (t) f (x)

for any x ∈ X and t ∈ T . In particular, if y ∈ Y and t ∈ Ker(χi )\StabT (y)
this equality becomes χi (t) f (y) = f (y), so that y belongs to the support of the
divisor associated to f . Let us denote this support by D. Thus Y ⊂ D, and the
map AT∗ (D) → AT∗ (X) becomes injective after inverting χi ; see [4] for details. We
conclude by Noetherian induction on D.

For any commutative ring R and an R-module M , let Mloc be the localized Frac(R)-
module Frac(R)⊗R M .

Theorem A.14 (Localization theorem) Let T be an algebraic torus, R = AT∗ (pt), X
a T -variety, and iT : X T → X inclusion of the fixed point set. Suppose that X T is not
empty. Then the Frac(R)-linear map

iT∗: AT∗ (X T )loc → AT∗ (X)loc

is an isomorphism. Moreover, if X is smooth, then the map

i∗T : AT∗ (X)loc → AT∗ (X T )loc

is an isomorphism as well.
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Proof Any action of an algebraic torus has finitely many distinct stabilizers. One can
therefore assume that

⋃

x∈X\X T

StabT (x) ⊂
k⋃

i=1
Ker(χi )

for some choice of characters χ1, . . . , χk ∈ T∨. Applying Proposition A.13 to the
embedding X T ↪→ X and localizing Chern classes of all characters instead of chosen
ones, we see that iT∗ becomes an isomorphism after localization. In view of Propo-
sition A.11, it remains to prove that if X is smooth, then the Euler class e(TX T X) is
not a zero-divisor in AT∗ (X T ). Since the T -action on X T is trivial, we can decompose
TX T X into isotypical components:

TX T X =
⊕

i

pi ⊗ Ei ,

where pi are non-trivial characters of T , and Ei are vector bundles on X T . It suffices
to assume TX T X = p1 ⊗ E1, because Euler class is multiplicative with respect to
direct sums. In the case when E1 is a line bundle, we have

e(p1 ⊗ E1) = c1(p1)�c1(E1) = c1(p1)+ c1(E1)(1+ c1(p1 + · · · )).

The class c1(p1) is not a zero-divisor by Example A.3, c1(E1) is nilpotent by [30,
Remark 5.2.9], therefore e(p1 ⊗ E1) is not a zero-divisor as well. Finally, the case
when rank of E1 is bigger than 1 can be reduced to the former by using axiom (PB)
and the usual technique of Chern roots.

The following proposition describes the behavior of localization map with respect
to pullbacks and pushforwards.

Proposition A.15 Let f : X → Y be a morphism of smooth T -varieties. Assume that
the fixed point sets X T , Y T are non-empty, and consider the natural commutative
diagram

X Y

X T Y T

f

fT

iX iY

(1) if f is lci, then i∗X ◦ f ∗ = f ∗T ◦ i∗Y ;
(2) if f is projective, then the following diagram commutes:

AT (X)loc AT (Y )loc

AT (X T )loc AT (Y T )loc

f∗

e(T ∗XT
X)−1⊗i∗X (−) e(T ∗YT

Y )−1⊗i∗Y (−)
fT∗
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Proof First claim is obvious, and Proposition A.11 coupled with the localization the-
orem proves the second claim as well.

Corollary A.16 Under conditions of Proposition A.15(2), we have

i∗Y ◦ f∗(c) = fT∗
(

f ∗T (e(TYT Y )) · e(TXT X)−1 · i∗X (c)
)

for any c ∈ AT (X)loc. If, moreover, f is a regular embedding such that X T = Y T ,
then

i∗Y ◦ f∗(c) = i∗X (e(TX Y )c).

For the following proposition we fix a reductive group G, and let T ⊂ H ⊂ P be
a maximal torus, Levi and parabolic subgroup of G respectively. Denote by W and
WH the Weyl groups of T in G and H respectively; we also fix a representative σ for
each class in W/WH .

Proposition A.17 Let X be an H-variety, and denote Y = G ×P X, where the action
of P on X is given by the natural projection P → H. Then Y T = W ×WH X T , and
we have a commutative diagram

AH (X) AG(Y )

AT (X T ) AT (W ×WH X T )

indG
H

i∗X i∗Y
s∗

where s:W×WH X T → X T is the projection associated to the choice of representatives
σ .

Remark A.18 For an arbitrary H -variety X , the action of normalizer NH (T ) can be
restricted to X T , and thus induces an action ofWeyl group WH on AT (X T ). Moreover,
the restriction map AT (X)→ AT (X T ) can be seen to be WH -equivariant. With that
in mind, note that even though s∗ depends on the choice of representatives σ , its
restriction to the WH -equivariant part AT (X T )WH , which contains the image of i∗X ,
does not.

Proof First, let us compute T -fixed points of Y . Let (g, x) be a point in G × X . Then
we have:

t .(g, x) = (g, x)mod P ∀t ∈ T ⇔ ∀t ∈ T ∃p ∈ P: tg = gp−1, p.x = x

⇔ g−1T g ⊂ P, x ∈ X g−1T g

⇔ g ∈ NG(T ) · P, x ∈ X g−1T g

⇔ ∃p′ ∈ P: gp′−1 ∈ NG(T ), x ∈ p′.X T
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Therefore (g, x)mod P is T -stable iff (g, x) ∈ (NG(T )P)× (p′.X T )/P = W ×WH

X T , which proves the first claim. Next, let iξ : X ↪→ Y be the inclusion of the fiber
over ξ ∈ G/P . Note that by definition of indG

H , it is a right inverse to i∗e . Therefore,
G-equivariance implies that

i∗g P (ind
G
H c) 	 g.c ∈ AH g

(X) for all g ∈ G.

If we restrict all our structure groups to T and suppose that g ∈ N (T ), we get

i∗ξ (indG
H c) 	 g.c ∈ AT (X) for all ξ ∈ G/P

with the action of g on AT (X) is as inPropositionA.7.Moreover,wehave the following
commutative square

AT (X) AT (X)

AT (X T ) AT (X T )

g

i∗X i∗X
g

since the action of g on AT (X T ) is just the restriction of the action above. Finally,

i∗Y (indG
H c) = i∗X

⎛

⎝
∑

ξ∈NG (T )/NH (T )

i∗ξ P

⎞

⎠ (indG
H c) = i∗X

⎛

⎝
∑

ξ∈NG (T )/NH (T )

ξ.c

⎞

⎠

=
∑

σ∈W/WH

σ.i∗X (c) = s∗i∗X (c)

for all c ∈ AH (X), and the second claim follows.

Remark A.19 The same proof as above shows that (G ×P X)T = W ×WH X T for a
P-variety X .
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