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Abstract

This thesis is based on three main topics: In the first part, we study convergence of

discrete gradient flow structures associated with regular finite-volume discretisations of

Fokker-Planck equations. We show evolutionary Γ-convergence of the discrete gradient

flows to the L2-Wasserstein gradient flow corresponding to the solution of a Fokker-Planck

equation in arbitrary dimension d ≥ 1. Along the argument, we prove Mosco- and Γ-

convergence results for discrete energy functionals, which are of independent interest for

convergence of equivalent gradient flow structures in Hilbert spaces.

The second part investigates L2-Wasserstein flows on metric graph. The starting point

is a Benamou-Brenier formula for the L2-Wasserstein distance, which is proved via a

regularisation scheme for solutions of the continuity equation, adapted to the peculiar

geometric structure of metric graphs. Based on those results, we show that the L2-

Wasserstein space over a metric graph admits a gradient flow which may be identified as

a solution of a Fokker-Planck equation.

In the third part, we focus again on the discrete gradient flows, already encountered

in the first part. We propose a variational structure which extends the gradient flow

structure to Markov chains violating the detailed-balance conditions. Using this structure,

we characterise contraction estimates for the discrete heat flow in terms of convexity of

corresponding path-dependent energy functionals. In addition, we use this approach to

derive several functional inequalities for said functionals.
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INTRODUCTION

The central objects of this thesis are gradient flows for energy functionals on Wasser-
stein spaces and their counterparts on discrete spaces arising from continuous-time
Markov chains.

1. Gradient flow structures for Wasserstein spaces and for
finite-state Markov chains

A Wasserstein space over a metric space (X, d) consists of the set P(X) of all Borel
probability measures on X endowed with a metric – the so-called Lp-Wasserstein
distance. In case, X is a complete and connected Riemannian manifold, the Lp-
Wasserstein distance may be introduced for p > 1 by the Benamou-Brenier formula
[BB00]

W p
p (µ0, µ1) := inf

{∫ 1

0

‖vt‖pLp(µt)
dt

}
, (1)

where the infimum is over all pairs (µt, vt)t∈[0,1] of curves t 7→ µt joining µ0 to µ1 in the
space of Borel probability measures on X and vectorfields t 7→ vt solving the continuity
equation

d

dt
µt +∇ · (vtµt) = 0 (2)

in the sense of distributions. More generally, the Lp-Wasserstein distance may be
defined on metric spaces via the optimal transport problem going back to the works of
Gaspard Monge [Mon81] and Leonid V Kantorovich [Kan42]; we omit the definitions
and details of this approach.

Provided that X is compact, the Lp-Wasserstein distances metrises the topology of
weak convergence on P(X).

1.1. Gradient flows on the metric space (P(X),W2). There is a surprising re-
lation between solutions for Fokker-Planck equations on Euclidean domains Ω ⊆ Rn

with no-flux boundary conditions and gradient flows for entropy functionals in the L2-
Wasserstein space over (Ω, |·|2).

Recall that a gradient flow for a smooth functional F on Euclidean space or a
Riemannian manifold takes the simple form of a curve (xt)t≥0 solving

d

dt
xt = −∇F (xt).

While this equation extends in a straightforward fashion to, say, lower semicontinu-
ous functionals on Hilbert spaces via the notion of subdifferentials (see e.g. [BP70b],
[BP70a], [Bré71]), a generalisation to metric spaces is more involved. One possible
choice is to define a gradient flow (xt)≥0 for a functional F on a metric space (X, d)
in terms of the energy dissipation inequality

F (xt) +
1

2

∫ t

s

|ẋr|2d + |∂dF |2(xr) dr ≤ F (xs) ∀s ≥ t, (EDI)

which we assume to hold for times t = 0 and a.e. t > 0. In this inequality, the
expression |ẋr|d denotes the so-called metric derivative of xt and may be interpreted
as the “modulus of the speed” for the curve t 7→ xt.

1



2 INTRODUCTION

On the other hand, |∂dF | denotes the (local slope) of the functional F and may be
seen as a generalisation for the gradient of F .

The key observation in the celebrated work [JKO98] is the following: Weak solutions
for the heat equation with no-flux boundary conditions on a Euclidean domain Ω ⊆ Rn

satisfy (2.5) for F corresponding to the logarithmic entropy Ent(µ) :=
∫
Ω
ρ log ρ dx

whenever dµ = ρ dx on (P(Ω),W2). Indeed, in this setting, there exists precisely
one such curve satisfying (2.5) for a given initial condition µ0 = µ ∈ P(Ω) with finite
entropy Ent(µ) < +∞.

Since then, this metric notion of a gradient flow and its relatives have been suc-
cessfully applied to several energy functionals on Wasserstein spaces over Euclidean
domains, Riemannian manifolds and even metric measure spaces (see e.g. [Ott01],
[CMV+03], [CMV06], [AGS08], [GST09], [AGS14]).

1.2. Gradient flows for finite state Markov chains. The situation is different
however, in case of a discrete space X . Then the Lp-Wasserstein space does not
permit two disjoint points to be connected by a constant-speed geodesic, that is a
curve (µt)t∈[0,1] in (P(X ),Wp) satisfying the scaling relation

Wp(µs, µt) = |s− t|Wp(µ0, µ1) ∀s, t ∈ [0, 1]. (3)
Note that, up to parametrisation, constant speed geodesics in (P(X ),Wp) are precisely
the curves which (together with a correspondign vectorfield) achieve the infimum in
(1). As a consequence, there is no hope for a Benamou-Brenier formula (1) to hold.

To overcome this issue, a different metric on the space of discrete probability mea-
sures on a finite space X has been proposed independently in the works [Maa11],
[Mie11], [CHLZ12]. This time the main ingredient is not a metric on X but a
continuous-time Markov chain on X described by a infinitesimal generator Q ∈ RX×X .
It is assumed that the Markov chain is irreducible and satisfies the detailed balance
conditions

π(x)Q(x, y) = π(y)Q(y, x) ∀x, y ∈ X (4)
for a unique stationary distribution π of Q.

Then a metric W on P(X ) is introduced by

W2(µ0, µ1) := inf
{∫ 1

0

〈ψt,K(µt)ψt〉 dt
}
, (5)

where the infimum is over all pairs (µt, ψt)t∈[0,1] of smooth curves t 7→ µt connecting
µ0 to µ1 in P(X ) and measurable “vectorfields” t 7→ ψt in RX satisfying the discrete
continuity equation

d

dt
µt = K(µt)ψt a.e. t ∈ [0, 1]. (6)

Here K : P(X) → RX×X denotes the Onsager operator given by

K(µ) :=
∑
x,y∈X

π(x)Q(x, y)θ
(µ(x)
π(x)

, µ(y)
π(y)

)(
e(x)− e(y)

)
⊗

(
e(x)− e(y)

)
, (7)

where θ : R+
0 × R+

0 → R+
0 denotes a mean function – yet to be defined – and e(x)

denotes the unit vector at x.
Apart from a definition which mimics the Benamou-Brenier formula (1), the metric

W shows properties similar to the L2-Wasserstein distance over Euclidean domains. In
particular, any two points in (P(X ),W) may be joined by a constant-speed geodesic
– even more, the interior of P(X ) (that is the set of all nowhere vanishing probability
measures on X ) admits a Riemannian structure which induces W .
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Besides geometric properties in common, we may identify the EDI gradient flow
(µt)t≥0 for the entropy Ent on (P(X ),W) as a solution for

d

dt
µt = µtQ, (8)

provided that we fit the mean θ in (7) to the energy functional; in case of the loga-
rithmic entropy Ent, this is the logarithmic mean

θlog(a, b) :=
a− b

log a− log b
∀a, b > 0 : a 6= b.

2. Overview of results

In this section we give a brief overview of the works [FMP20a], [FMP20b], [EFMM20]
and [FM20] comprised in this thesis.

2.1. Evolutionary Γ-convergence of entropy gradient flow structures for
Fokker-Planck equations. For the metric W shares similarities with the L2-Wasser-
stein distance, yet arises from a very different structure on the underlying space –
namely a continuous-time Markov chain instead of a metric topology, it seems natural
to ask how both distances are related. In the works [GM13], [GKM18], [GKMP19]
Gromov-Hausdorff convergence of (P(X ),W) to (P(Ω),W2) is studied in the frame-
work of finite volume schemes which means that the state spaces X = T consist of
suitably regular meshes on an n-dimensional torus (as in [GM13]) or a compact do-
main in Rn (as in [GKM18]) with mesh size [T ] → 0.

The equation (8) may be related to a finite volume-scheme as follows: Consider a
finite partition T (called mesh) of a bounded domain Ω ⊂ Rn with non-empty convex
interior as well as the linear drift-diffusion equation

d

dt
ρt = ∆ρt +∇ · (ρt∇V ) = ∇ ·

(
σ∇(ρt

σ
)
)

(9)

with a no-flux boundary conditions on Ω and an equilibrium density σ = Ce−V for a
potential function V ∈ C1(Ω) and a normalisation constant C > 0.

We recall that a so-called two-point flux approximation finite-volume scheme may
be derived from (9) by integrating the left- and the right-hand side over a suitably
regular element K ∈ T (called cell) and applying the divergence theorem viz.

d

dt

∫
K

ρt dx =
∑
L∈T
L∼K

∫
ΓKL

σ∇(ρt
σ
) · νK dHn−1,

where L ∼ K denotes neighbouring cells L and K, ΓKL the common interface between
K and L, and νK the outward-pointing normal on ∂K. Now the approximation of this
equation takes the form

d

dt
µt(K) =

∑
L∈T
L∼K

SKL
1

dKL

(µt(K)

πK
− µt(L)

πL

)
Hn−1(ΓKL). (10)

We expect the expressions µt(K), SKL, and 1
dKL

(µt(K)
πK

− µt(L)
πL

)
to approximate the

density ρt on K, the equilibrium density σ on the common interface ΓKL, and the
directional derivative ∇(ρt

σ
) · νK , respectively. In particular, πK :=

∫
K
σ dx takes over

the role of a discretised equilibrium and dKL denotes the Euclidean distance between
reference points xK and xL interior of their respective cells K and L.
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Note that (10) corresponds to the discrete heat equation (8), provided that we
consider the infinitesimal generator

Q(K,L) =
SKL

πKdKL

Hn−1(ΓKL)

on the state space T . Evidently, a pair (Q, π) defined this way satisfies the detailed
balance conditions (4) and, hence, is admissible for the W-gradient flow structure for
the discrete entropy.

Convergence of this finite volume scheme as described in (10) is a well-studied
subject (see e.g. [EGH00], [BHO18]). Nevertheless, in [FMP20a] we are concerned
about convergence of gradient flows in (P(T ),W) to corresponding gradient flows in
(P(Ω),W2) by purely variational methods. More precisely, we use an abstract notion
of evolutionary Γ-convergence of EDI gradient flows introduced in [SS04], [Ser11]. To
this end, consider a sequence of meshes (TN)N∈N on a fixed compact domain Ω ⊂ Rn

with mesh size [TN ] ↘ 0 as well as (relative) logarithmic entropy functionals EntN
and EntΩ on P(TN) and P(Ω), respectively: The main-ingredients are a sequence of
curves (µN

t )N∈N of curves t 7→ µt satisfying (2.5) for entropies EntN on P(TN) and a
limit curve t 7→ µt in P(Ω) such that the following assumptions hold:

(i) Well-preparedness of the initial conditions:
The piecewise constant interpolants of µN

0 converge to µ0 in (P(Ω),W2) as N →
∞.

(ii) Γ-liminf bound on the entropies:
lim inf
N→∞

EntN(µ
N
t ) ≥ EntΩ(µt) ∀t ≥ 0. (11a)

(iii) Γ-liminf bound on the metric derivatives:

lim inf
N→∞

∫ T

0

∣∣µ̇N
t

∣∣2
W dt ≥

∫ T

0

|µ̇t|2W2
dt ∀T > 0. (11b)

(iv) Γ-liminf bound on the metric slopes:

lim inf
N→∞

∫ T

0

∣∣∂WµN
t

∣∣2 dt ≥ ∫ T

0

|∂W2µt|2 dt ∀T > 0. (11c)

This approach of showing evolutionary Γ-convergence for curves satisfying (2.5) for
the entropies on (P(TN),W) to their continuous counterparts was already successfully
implemented by [DL15] in a 1-dimensional setting, under an isotropy condition on the
meshes, using interpolation techniques that seem to be limited to the real line.

The achievement of [FMP20a] is an evolutionary Γ-convergence result, valid for
compact, convex domains in Rn for arbitrary dimension n and mild assumptions on
the regularity of the meshes.

Whereas the first bound (11a) on the limit inferior of the entropies (EntN)N∈N is
a consequence of the well-known weak lower-semicontinuity of relative entropy func-
tionals (see e.g. Lemma 9.4.3 in [AGS08]) together with Fatou’s lemma, the Γ-liminf
bounds on the metric derivatives and slopes in arbitrary dimension are based on
the following crucial tool: namely, a Mosco-convergence result for energy function-
als FN

µN
: L2(Ω) → [0,+∞] given by

FN
µN

(ϕ) :=
1

2
〈ϕ,K(µN)ϕ〉,

whenever ϕ is constant on every cell in the mesh Tn and , hence, may be interpreted
as a function on T ; otherwise, put FN

µN
(ϕ) = +∞.
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Under the assumptions that the piecewise constant interpolation densities for µN

converge weakly to some limit measure µ ∈ P(Ω) as N → ∞ and the (µN)N∈N are
uniformly is bounded from above and away from zero, the functionals FN

µN
converge in

Mosco-sense to the (continuous) Dirichlet form given by Fµ(ϕ) :=
1
2

∫
Ω
|∇ϕ|2 dµ, i.e.

we have the following bounds:
(i) For every sequence (ϕN)N∈N, weakly convergent to ϕ in L2(Ω), it holds

lim inf
N→∞

FN
µN

(ϕN) ≥ Fµ(ϕ). (12a)

(ii) For every ϕ ∈ L2(Ω), there exists a sequence (ϕN)N∈N strongly convergent to ϕ
in L2(Ω) such that

lim sup
N→∞

FN
µN

(ϕN) ≤ Fµ(ϕ). (12b)

The proof of this result is based on a compactness and representation procedure,
following ideas from [AC04] and [BFLM02].

In order to infer the Γ-liminf bound on the metric derivatives from the Mosco-
convergence result above, we use the fact that both the metric derivatives

∣∣µ̇N
t

∣∣
W and

|µ̇t|W2
may be expressed in terms of the Legendre duals of suitable Dirichlet forms viz.

1

2

∣∣µ̇N
t

∣∣2
W = sup

ϕ∈L2(Ω)

{
〈ϕ, d

dt
µN
t 〉 − FN

µN
t
(ϕ)

}
, (13)

where the paring between ϕ and d
dt
µN
t is understood in the sense of

〈ϕ, d
dt
µN
t 〉 =

∑
K∈T

ϕ(K) d
dt
µN
t (K),

whenever ϕ takes only a constant value on each cell in T , as well as
1

2
|µ̇t|2W2

= sup
ϕ∈C∞

c (Ω)

{
〈ϕ, d

dt
µt〉 − Fµt(ϕ)

}
(14)

with the canonical paring
〈ϕ, d

dt
µt〉 =

d

dt

∫
Ω

ϕ dµt.

Assuming enough regularity on the µN
t , we may use (12b) for a sequence of piecewise

constant interpolants ϕn → ϕ in L2(Ω) as well as (13) to infer

〈ϕ, d
dt
µt〉 − Fµt(ϕ) ≤ lim inf

N→∞

(
〈ϕ, d

dt
µN
t 〉 − FN

µN
t
(ϕ)

)
≤ 1

2

∣∣µ̇N
t

∣∣2
W .

Now, taking the supremum over all ϕ ∈ C∞
c (Ω) in this inequality, using (14) and

integrating both sides over the interval (0, T ) gives the Γ-liminf bound (11b).
The proof of the Γ-liminf bound on the metric slopes takes advantage of the Mosco-

convergence of Dirchilet forms as well. Indeed, we have the relations
1

2

∣∣∂WµN
t

∣∣2 = FN
µN
t
(
√
ρNt ) for ρNt :=

µN
t

πN
and

1

2
|∂W2µt|2 = Fµt(

√
ρt) for ρt :=

dµt

dx
.

Thus, integrating both sides of (12a) over the time interval (0, T ) for ϕN =
√
ρNt and

ϕ =
√
ρt translates directly into Γ-liminf bound (11c) , provided that the µN

t are again
regular enough to invoke the Mosco-convergence of the Dirichlet forms FN

µN
t

.
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In order to verify that the measures FN
µN
t

satisfy the regularity requirements for
both Mosco-bounds in (12) to hold, we will make use of a careful analysis of parabolic
Harnack inequalities for the discrete heat flow in (8), undertaken in the accompanying
note [FMP20b].

Harnack inequalities for diffusions and jump processes are intensively studied both
on locally finite graphs (e.g. [Del99], [BBK09]) and in metric measure spaces (e.g.
[Stu96], [CKW17], [CKW18], [CKW19a], [CKW19b]).

Note that the framework for gradient flows for finite state Markov chains described
above allows for an interpretation of the state space X as a finite weighted graph,
due to the detailed balance conditions (4): Two nodes x, y ∈ X are connected by
an edge {x, y} with edge weight j(x, y) = π(x)Q(x, y), precisely, when Q(x, y) > 0.
Endowed with a suitable metric (like for instance the usual graph metric) as well as
the the stationary distribution π of the Markov chain, we may further interpret this
graph/Markov chain as a metric measure space.

Nonetheless, in case of the finite volume scheme as described above and employed
in [FMP20a], none of the cited works above in the realms of Harnack inequalities
is directly applicable out of the box to obtain regularity for the discrete measures
FN

µN
t

. In particular, the main reference for quadratic diffusions on locally finite graphs
[Del99], requires the stationary distribution to satisfy the normalisation condition
π(x) =

∑
y∈X j(x, y) to hold, which is not the case in our setting of [FMP20a].

Hence, the goal of [FMP20b] is to fill up the small gap in the existing literature and
prove the validity of a parabolic Harnack inequality in the quadratic case for bounded-
horizon jump processes as well as a Hölder regularity result for the corresponding
discrete heat flow. The latter result allows for an application in the finite volume
framework as we obtain the required regularity for on the curves (µN

t )t≥t0 uniformly
for all N ∈ N, only in dependence of some time t0 > 0.

Let us briefly describe the main results mentioned above in the particular case of
our finite volume setting (see [FMP20b] for the general statements for jump processes
on metric measure spaces and locally finite graphs).

Then a parabolic Harnack inequality holds as follows: For every time t0 > 0 there
exist constants CH , R > 0, Nn ∈ N, and 0 < η0 < η1 < η2 < 1 such that for every non-
negative solution (µN

t )t≥0 of the discrete heat equation dt
dt
µt = µtQN with N ≥ N0, it

holds
sup
t∈Q−

s
K∈TN

µt(K) ≤ CH inf
t∈Q+

s
K∈TN

µt(K) ∀s ≥ t0,

where
Q−

s := [s− η1R
2, s− η0R

2] and Q+
s := [s, s+ η2R

2].

As a consequence, this Harnack inequality implies the following regularity result,
used in [FMP20a] to invoke the Mosco-bounds (12) for the discrete heat flow: For every
time t0 > 0 there exist constants C, λ > 0 and Nn ∈ N such that every non-negative
solution (µN

t )t≥0 of the discrete heat equation dt
dt
µt = µtQN with N ≥ N0 satisfies∣∣µN

t (K)− µN
t (L)

∣∣ ≤ C|xK − xL|λ sup
s≥t/2
K∈TN

µs(K) ∀K,L ∈ TN , t ≥ t0. (15)

In view of |xK − xL| = dKL denoting the distance between reference points xK and
xL in the interior of respective cells K and L in TN , one may see (15) as a discrete
λ-Hölder bound on the meshes TN , stable in terms of constants as N → ∞.
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2.2. Gradient flows on Wasserstein spaces over metric graphs. As already
mentioned above, the discrete heat flow (8) may be interpreted as a gradient flow
with respect to the metric W for probability measures on a finite weighted graph
corresponding to a Markov chain generator Q satisfying the detailed balance conditions
(4).

Yet, a connected weighted graph G = (V,E) gives rise to another gradient flow
structure by following the more traditional approach of Wasserstein gradient flows on
a geodesic space associated to G. This means that we require any two points in the
associated space to be connected by a constant-speed geodesic. A natural geometric
approach is to construct such a geodesic space by interpreting the edges of the graph
G as line-segments glued together at corresponding nodes. The resulting space is then
called a metric graph over G.

More formally, a metric edge space E over a directed graph G with weight function
m : E → R+ may be understood as the (topological) disjoint union of all intervals
{[0,me]}e∈E, each interval identified with an directed edge e ∈ E with edge weight
me := m(e). Then the metric graph G over G emerges as (topological) quotient
space G := E/ ∼, where points x ∼ y are identified, whenever they are (the canonical
injections of) endpoints of intervals, corresponding to the same node in V .

Provided, that we ignore the orientation of G, the metric graph G may be endowed
with a natural metric d which measures the total length of the shortest path between
any two points. Under the assumption that the underlying graph G is finite and
connected, (G, d) is a compact geodesic space – and so is every Wasserstein space
(P(G),Wp) for p ≥ 1.

However, a characterisation of the Lp-Wasserstein distance in terms of a Benamou-
Brenier formula (1) is not straightforward in P(G). Indeed, we first have to adapt
the continuity equation (CE) to the setting of a metric graph by imposing boundary
conditions on each node in V , which preserve the total mass µt on G, viz.

∑
e∈Ein

w

Ut(we) =
∑

e∈Eout
w

Ut(we) ∀w ∈ V, (16)

where Ut denotes the density of the momentum field vt · µt defined on E, we is the
(canonical injection of the) endpoint of the interval [0,me] corresponding to a node
w ∈ V with adjacent edge e ∈ E, as well as the sets Eout

w and Ein
w of all edges with w

as tail and head, respectively.
Now following the classical proofs for the Benamou-Brenier formula (1), one runs

into considerable obstacles caused by the particular geometry off metric graphs. In
fact, a Wasserstein space over a typical metric graph is a so-called branching space,
i.e. there exist constant-speed geodesics (µt)t∈[0,1], (µ̃t)t∈[0,1] and t0 ∈ (0, 1) such that
the values of µt and µ̃t agree at all times t < t0 but not at any time t > t0.

In particular, this means that a constant-speed geodesic in (P(G),Wp) is uniquely
defined as a solution of the continuity equation (CE) and node conditions (16) in terms
of the pair of initial values (µ0, vt), no matter the regularity of µ0. Hence, techniques
which rely on describing solutions of (CE) in terms of a flow are not at our disposal for
the proof of a Benamou-Brenier formula (1) for Wasserstein spaces over metric graphs.

Instead, our approach in [EFMM20] is inspired by [GH15] where a notion for the
continuity equation is studied in a setting of metric measure spaces, thus, using proof
techniques not relying on flows.
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On the other hand, in [GH15] only curves of probability measures with bounded
densities are considered. In particular, under this restriction a Benamou-Brenier for-
mula (1) in (P(G),W2) may only be inferred between any two measures µ0 and µ1

that can be connected by a geodesic µt possessing a density in L∞(G) for all times
t ∈ [0, 1].

In order to remove this restrictive assumption, we employ a regularisation for dis-
tributional solutions of the continuity equation (CE). On Euclidean domains the pair
(µt, vt)t∈[0,1] may be regularised by means of an even and compact convolution kernel,
which preserves the no-flux-boundary conditions accompanying (CE) on a neighbour-
hood of the domain.

In contrast, on a metric graph we have to employ a more delicate regularisation
scheme which results in regularised curves solving not only (CE) but also satisfying the
node conditions (16). As a result, we show in [EFMM20] that the Benanou-Brenier
formula (1) is valid between any two probability measures in (P(G),W2).

Furthermore, we use the regularisation scheme for solutions of the continuity equa-
tion on metric graphs to prove a chain-rule for relative entropy functionals along suit-
ably regular curves (µt)t∈[0,T ] in (P(G),W2). In particular, for the logarithmic entropy
we obtain

d

dt
Ent(µt) =

∫
E

〈∇ log ρt, Ut〉 dx a.e. t ∈ (0, T ), (17)

whenever the pair (µt, vt)t∈[0,T ] solves the continuity equation (CE) with node conditions
(16) such that

(i) the curve t 7→ µt is 2-absolutely continuous,
(ii) dµt = ρt dx and Ut = vtρt with (t, x) 7→

√
ρt(x) belonging to L1(0, T ;W 1,2(E)).

Hölder’s and Young’s inequality allow us to estimate the right-hand side of (64) as∫
E

〈∇ log ρt, Ut〉 dx ≤
∫
E

|∇ log ρt| · |Ut| dx ≤ 1

2

∫
E

|∇ log ρt|2 + |Ut|2 dx. (18)

Note that we have equality in (18), precisely, when Ut = −∇ log ρt for a.e. t ∈ [0, T ].
In this case, the continuity equation (CE) simplifies to to the heat equation

d

dt
ρt = ∇ρt, (19a)

together with node conditions∑
e∈Ein

w

∇ρt(we) =
∑

e∈Eout
w

∇ρt(we) ∀w ∈ V. (19b)

In particular, (ρt)t∈[0,T ] solves (19) if and only if the corresponding curve of probability
measures dµt = ρt dx satisfies a energy dissipation equality

d

dt
Ent(µt) =

1

2
|µ̇t|2W2

+
1

2
|∂W2 Ent|

2(µt) dx a.e. t ∈ (0, T ), (20)

where we identified
∫
E
|Ut| dx with the metric derivative |µ̇t|W2

and
∫
E
|∇ log ρt| dx with

the metric slope |∂W2 Ent|.

2.3. A variational structure for non-reversible Markov chains. Finally, in
[FM20] we turn our attention back to the gradient flow structure for finite-sate Markov
chains. We investigate the role of the detailed balance conditions (4) for the gradient
flow structure accompanying (22) as introduced above.
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To this aim, note that violating the detailed balance conditions (4) breaks the sym-
metry of the Onsager operator (7). As a consequence, (5) need not define a metric on
P(X ) anymore.

Given a non-reversible Markov chain, i.e. the corresponding infinitesimal generator
A violates the detailed balance conditions (4), and an equilibrium distribution π for
A, we propose the use of the following symmetric Onsager operator instead:

Ǩ(µ) :=
∑
x,y∈X

θlog
(
A(x, y)µ(x), A(y, x)µ(y)

)(
e(x)− e(y)

)
⊗

(
e(x)− e(y)

)
. (21)

Whenever A agrees with an infinitesimal generator Q satisfying the detailed balance
conditions (4), the Onsager operator Ǩ agrees with the usual one in (7).

Provided that one replaces K by Ǩ, the formula (5) gives rise to a metric W on
P(X ), no matter the validity of the detailed balance conditions.

It is well-known from numerical investigations (see e.g. [RBS16] [CLP99], [DHN00],
[LP17]) that a perturbation of a Markov chain generator, which breaks the detailed
balance conditions (4), may improve the rate of convergence to equilibrium in terms
of spectral gap.

On a more rigorous level, it is known that the L2-energy production along a curve
t 7→ µt solving

d

dt
µt = µtA (22)

depends only on the reversible part of A, given by
Q = diag(π)−1 Sym

(
diag(π)A

)
. (23)

Note that Q is an infinitesimal generator with the same equilibrium distribution π
satisfying the detailed balance conditions (4).

Such a result is not known to hold, when the L2-energy is replaced by a logarithmic
entropy. Indeed, in [FM20] we present a simple numerical example showing that the
rate of convergence in terms of the entropy relative to the equilibrium distribution
may actually decrease, when a non-reversible perturbation is performed as above.

Nevertheless, we may use the variational structure introduced above via the Onsager
operator Ǩ to relate geodesic convexity of a modified entropy functional to contraction
estimates for solutions of (22) in terms of the metric W . To this aim, we introduce a
family of functionals {Vt}t∈[0,1] on the space of constant-speed geodesics in (P(X ),W)
by setting

Vt(g) :=

∫ t

0

∑
x,y ∈X

ψr(x)Ǩ(gt)(x, y)L(x, y) dr

where g : [0, 1] → P(X ) denotes a constant-speed geodesic and the matrix L satisfies
the element-wise relation A(x, y) = eL(x,y)Q(x, y) for all x, y ∈ X and Q as in (23).

Note that, whenever A satisfies the detailed balance conditions (4), one may choose
L ≡ 0 and the functionals Vt vanish.

Now any two solutions (µt)t∈[0,T ], (µ̃t)t∈[0,T ] of the discrete heat equation (22), staying
in a small enough geodesic ball, satisfy the contraction estimate

W(µt, µ̃t) ≤ eλtW(µ0, µ̃0) (24)
for a constant λ ∈ R, precisely, when t 7→ Ent(gt) + Vt(g) is λ-convex for all constant
speed geodesics g : [0, 1] → P(X ).

This result may be seen as a discrete counterpart to a contraction result in [Ket16]
for non-reversible diffusions in terms of the L2-Wasserstein distance.
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As seen above in our Markov chain setting, reversibility of the diffusion operator
implies that the contraction constant λ is related to λ-convexity of just the logarith-
mic entropy along constant-speed geodesics in the Wasserstein space. As shown in the
celebrated works [S+06] and [LV09], the convexity constant λ then represents a syn-
thetic lower Ricci curvature bound.
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EVOLUTIONARY Γ-CONVERGENCE OF ENTROPY GRADIENT
FLOW STRUCTURES FOR FOKKER-PLANCK EQUATIONS IN

MULTIPLE DIMENSIONS

DOMINIK FORKERT, JAN MAAS, AND LORENZO PORTINALE

1. Introduction

This paper deals with the convergence of discrete gradient flow structures arising
from finite volume discretizations of Fokker-Planck equations on convex domains in
Rd. For a given potential V ∈ C(Ω), we consider the Fokker-Planck equation

∂tµ = ∆µ+∇ · (µ∇V ) on (0, T )× Ω, (1.1)

where Ω is a convex, open and bounded subset of Rd and T ∈ (0,+∞). Since the
seminal works of Jordan, Kinderlehrer and Otto [JKO98, Ott01], it is known that
(1.1) can be formulated as a gradient flow in the space of probability measures P(Ω)
endowed with the 2-Wasserstein distance W2 from optimal transport. The driving
functional is the relative entropy with respect to the invariant measure m(dx) :=
1
ZV

exp(−V (x)) dx, where ZV is a normalising constant.
Here we consider spatial discretisations of (1.1) obtained by finite volume methods

for a general class of admissible meshes. In this setting it is very well known that
solutions to the discrete equations converge to solutions of (1.1); see, e.g. [EGH00],
[BHO18] for results in dimension 2 and 3 and [DEG+18] for more general situations.

In this paper we exploit the fact that the discretised Fokker-Planck equations can
also be formulated as gradient flow with respect to a suitable discrete dynamical
transport distance WT ; see the independent works [CHLZ12, Maa11, Mie11]. This
gradient flow structure has been intensively studied in relation to curvature bounds
and functional inequalities [EM12, CHLZ12, EM14, EMT15, EMR15, EMW19].

In this paper we prove evolutionary Γ-convergence of the discrete gradient flow
structures to the Wasserstein gradient flow structure; i.e. rather than directly passing
to the limit at the level of the gradient flow equation, we pass to the limit in the
energy-dissipation inequality that characterises the gradient flow structure.

This yields a new proof of convergence for the associated gradient flow equations,
which does not rely on specific properties such as linearity or second order. Instead,
the method is based on properties of functionals and tools such as Γ- and Mosco
convergence.

The method of evolutionary Γ-convergence was pioneered by Sandier and Serfaty
[SS04]; see [Mie16] for a survey on the topic. This method has recently been applied
in various situations such as gradient systems with a wiggly energy; see [DFM19].

For Fokker-Planck equations in dimension d = 1, evolutionary Γ-convergence was
proved by Disser and Liero [DL15]. Their proof relies on interpolation techniques
which do not easily extend to multiple dimensions. Our proof is different and relies
on compactness and representation theorems, in particular [BFLM02, Theorem 2],

13
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adapting ideas from [AC04]. Our variational proof suggests the possibility of extend-
ing those techniques to more general settings (e.g. higher order and/or nonlinear
PDE).

The fact that the method of evolutionary Γ-convergence works on arbitrary ad-
missible meshes is remarkable in view of recent work on the limiting behaviour of
the associated transport distances; in fact, it was shown in [GKM18] that the con-
vergence of WT to W2 (in the limit of vanishing mesh size of T ) requires a restrictive
isotropy condition on the meshes; see [GKMP19] for explicit examples. This discrep-
ancy in convergence behaviour can be explained by regularity: to prove evolutionary
Γ-convergence one may impose spatial smoothness assumptions on the discrete dy-
namics (in view of regularity results for the discrete gradient flows); by contrast, the
transport costs on anisotropic meshes are minimised along highly oscillatory curves.

Organisation of the paper. In Section 2 we present the general gradient flow
picture linked to the Fokker-Planck equation in Rd, both at the continuous and at
the discrete level in a finite volume framework.

In Section 3 we present our main contributions of this work, namely the energy
bounds of Theorem 3.3 and evolutionary Γ-convergence of the Wasserstein discrete
gradient structures to the continuous one, reproving the convergence of the discrete
scheme, in Theorem 3.6. In Section 4 we sum up the previous and known results,
discussing different point of views and limitations.

In Section 5 we prove our main results, namely Theorem 3.3 and Theorem 3.6. In
Section 6 we give a short discussion about possible different gradient flow structures
for the Fokker-Planck equation on Hilbert spaces.

We then move to Section 7 and Section 8, where we present and prove the Mosco
convergence of some discrete functionals to their continuous counterparts, including
the one of certain Dirichlet forms.

Notation. Throughout the paper we use the notation a . b (or b & a) if a ≤ Cb
with C <∞ depending only on Ω, ζ and m. We write a h b if a . b and a & b.

2. Gradient flows

In this section we describe the formulation of the Fokker-Planck equations as
Wasserstein gradient flows of functionals on the space of probabilities, both at the
continuous and at the discrete level. For the sake of clarity, our discussion will be
somewhat informal. We refer to Section 3 below for rigorous statements of the main
results.

Fokker-Planck equations as Wasserstein gradient flows. On a bounded con-
vex domain Ω ⊂ Rd, we consider the Fokker-Planck equation

∂tµt = ∆µt +∇ · (µt∇V ) (2.1)

with a driving potential V ∈ C(Ω̄) ∩ C1(Ω). This equation describes the time-
evolution of the distribution of a Brownian particle in a potential field. The steady
state is given by the probability measure

m ∈ P(Ω) with density σ(x) =
dm

dx
=

1

ZV
e−V (x), (2.2)

where ZV > 0 is a normalising constant.
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Since the seminal work of Jordan, Kinderlehrer and Otto [JKO98], it is known
that (2.1) is a gradient flow with respect to the Wasserstein distance W2 from
optimal transport. In its dynamical formulation, W2 is given by the Benamou–
Brenier formula

W2(µ0, µ1)
2 = inf

{ ˆ 1

0

ˆ
Ω

|vt(x)|2 dµt(x) dt
}
, (2.3)

where the infimum runs over all curves (µt)t in the space of probability measures
and all vectorfields (vt)t satisfying the continuity equation

∂tµt +∇ · (µtvt) = 0 (2.4)
in the sense of distributions, with boundary conditions µt|t=0 = µ0 and µt|t=1 = µ1.
The driving functional in this gradient flow formulation is the relative entropy H :
P(Ω) → [0,+∞] given by

H(µ) :=


ˆ
Rd

ρ(x) log ρ(x) dm if dµ = ρ dm,

+∞ otherwise.
The gradient flow structure can be interpreted at various levels: the original for-
mulation in [JKO98] was given in terms of a time-discrete minimising movement
scheme. Another interpretation is in terms of Otto’s formal infinite-dimensional
Riemannian calculus on the Wasserstein space [Ott01]. Yet another approach re-
lies on the metric formulation of gradient flows in terms of the energy dissipation
inequality (EDI)

H(µt) +
1

2

ˆ T

0

|µ̇t|2W2
+ |∂W2H(µt)|2 dt ≤ H(µ0), (2.5)

where |µ̇t| denotes the W2-metric derivative of the curve µt and ∂W2H the slope of
the entropy functional, namely

|µ̇t|W2 := lim
h→0

1

h
W2(µt+h, µt), |∂W2H(µ)| := lim sup

ν→µ

[H(µ)−H(ν)]−
W2(µ, ν)

,

where [a]− = max{0,−a}. Writing ρ = dµ
dm

, we have the identity

|∂W2H(µ)|2 = I(µ), where I(µ) :=

ˆ
Ω

|∇ log ρ|2ρ dm = 4

ˆ
Ω

|∇√
ρ|2 dm (2.6)

is the relative Fisher information with respect to m.

Onsager formalism for gradient flows. Let us formulate (2.5) in terms of a
suitable energy A and its Legendre transform A∗. Consider the energy functional

A(µ, ϕ) :=
1

2

ˆ
Ω

|∇ϕ|2 dµ, ϕ ∈ C∞
c (Rd), µ ∈ P(Ω), (2.7)

and its Legendre dual of A with respect to the second variable
A∗(µ, η) = sup

ϕ∈C∞
c (Ω)

{〈ϕ, η〉 −A(µ, ϕ)}

for any distribution η ∈ D′(Ω). Note that
A∗(µ,w) = A(µ, ϕ) (2.8)



16 DOMINIK FORKERT, JAN MAAS, AND LORENZO PORTINALE

whenever w = −∇ · (µ∇ϕ). The connection to Wasserstein geometry is given by
the infinitesimal Benamou–Brenier formula

1

2
|µ̇t|2W2

= A∗(µt, ∂tµt).

Moreover, the relative Fisher information can then be written as
1

2
|∂W2H(µ)|2 = A(µ,−DH(µ)), (2.9)

where DH(µ) = log ρ is the L2(m)-differential of H. Hence, it follows from (2.8)
and (2.9) that (2.5) can be equivalently stated as

H(µT ) +

ˆ T

0

A∗(µt, µ̇t) +A(µt,−DH(µt)) dt ≤ H(µ0). (2.10)

This formulation is particularly convenient to relate the continuous framework to
the continuous one, as we discuss in the next subsection.

Discrete optimal transport and gradient flows. Since the works of [Maa11]
and [Mie11], entropy gradient flows have been widely investigated in discrete settings
as well. The connection between a novel discrete optimal transport distance and
some evolution equations, such as heat flow on finite graphs, have been analysed
and many properties of such metric structures have been studied (see e.g. [EM12],
[Mie13], [EM14], [MPR14], [FM16]). In this work we focus on discrete spaces arising
from finite volume discretisations.

The discrete Fokker-Planck equation as gradient flow. We consider a finite
partition T of Ω into sets (called cells) with nonempty and convex interior. We
assume that T is admissible, in the sense that each of the cells K ∈ T contains
a point xK ∈ K such that xK − xL is orthogonal to ΓKL := ∂K ∩ ∂L for any
neighbouring cell L of K. Furthermore, we assume that the mesh is ζ-regular for
ζ ∈ (0, 1], which means that the following conditions hold:

(inner ball) B(xK , ζ[T ]) ⊆ K for all K ∈ T ,
(area bound) H d−1(ΓKL) ≥ ζ[T ]d−1 for all K,L ∈ T with K ∼ L,

(2.11)

where [T ] := max{diam(K) : K ∈ T } denotes the size of the mesh.
We consider a reversible continuous-time random walk on T with invariant mea-

sure π and edge weights wKL given by

π({K}) := m(K), wKL :=
H d−1(ΓKL)

dKL
SKL for K ∼ L. (2.12)

Here we write dKL := |xK − xL| and SKL is a suitable average of the density on K
and L viz.

SKL := θ(σ(xK), σ(xL)) (2.13)
for some fixed function θ : R+ × R+ → R+ satisfying

min{a, b} ≤ θ(a, b) ≤ max{a, b}.
The associated Kolmogorov forward equation is a discrete approximation of (2.1),
given by

d

dt
mt(K) =

∑
L∼K

wKL

(
mt(L)

πL
− mt(K)

πK

)
. (2.14)
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It was shown in [Maa11] and [Mie11] that this equation is the gradient flow of the
discrete relative entropy

HT (m) :=
∑
K∈T

m(K) log
m(K)

πT
K

.

Thus (2.14) can be written as dm
dt

= −KT (m)DHT (m), with an Onsager operator
KT : P(T )× L2(T , π) → L2(T , π) given by(

KT (m)f
)
(K) =

∑
L∈T

wKLθlog

(mK

πT
K

,
mL

πT
L

)(
f(L)− f(K)

)
. (2.15)

The discrete analogue of (2.7) is given by the operator AT : P(T )×L2(T , π) →
R+ defined by

AT (m, f) =
1

4

∑
K,L∈T

(
f(K)− f(L)

)2
θlog

(mK

πT
K

,
mL

πT
L

)
wKL, (2.16)

where w is defined in (2.12). As in the continuous setting,

A∗
T (mt, ṁt) =

1

2
|ṁt|2WT

.

Written in the metric EDI-formulation, (2.14) is equivalent to

HT (mt) +

ˆ T

0

A∗
T (mt, ṁt) +AT (mt,−DHT (mt)) dt ≤ HT (m0). (2.17)

On the other hand, in the finite dimensional setting of P(T ) we simply have

AT (mt,−DHT (mt)) =
1

2
〈K−1

T (mt)∇WT HT (mt),∇WT HT (mt)〉

=
1

2
|∇WT HT (mt)|2WT

,

which is the finite-dimensional counterpart of (2.6). As in the continuous setting,
the discrete Fisher information relative to HT is given by

IT (m) := 2AT (m,−DHT (m)) for m ∈ P(T ). (2.18)

3. Statement of the main results

In this section we present our main result, the evolutionary Γ-convergence of the
discrete to continuous gradient flow structures. The proof of this result in Section 5
is based on regularity results for discrete flows [FMP20] and on a Mosco convergence
result for discrete energies (cf. Section 5) of independent interest.

We consider a sequence of admissible, ζ-regular meshes TN with vanishing mesh
size [TN ] → 0 as N → +∞. To avoid towers of subscripts, we simply write AN :=
ATN , WN := WTN , etc.

We introduce the canonical embedding ιT : P(T ) → P(Ω) defined by

ιTm =
∑
K∈T

m(K)UK for m ∈ P(T ) , (3.1)

where UK denotes the uniform probability measure on K ⊂ Ω.
The corresponding projection operator PT : P(Ω) → P(T ) is given by

(PT µ)(K) = µ(K) (3.2)
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for K ∈ T . In particular, ιT is a right-inverse of PT . By construction we then have
πT := PT m.

We denote by r the density of m ∈ P(T ) with respect to πT , namely

dm = r dπT ⇐⇒ r(K) =
m(K)

πT (K)
∀K ∈ T .

Definition 3.1 (Assumptions on approximating sequences). Let (TN)N be a vanish-
ing sequence of ζ-regular meshes and let mN ∈ P(TN) for N ≥ 1. Write rN = mN

πN
.

We consider the following conditions:
(i) The density lower bound holds if for some k > 0,

inf
K∈TN

rN(K) ≥ k > 0 ∀N ∈ N. (lb)

(ii) The upper bound holds if for some k̄ <∞,

sup
K∈TN

rN(K) ≤ k̄ < +∞ ∀N ∈ N. (ub)

(iii) The neighbour continuity bound holds if

lim
N→∞

sup
K∼L∈TN

|rN(K)− rN(L)| = 0. (nc)

(iv) The pointwise condition holds if µN := ιNmN ⇀ µ for some µ ∈ P(Ω) with
density ρ = dµ

dm
and the following inequalities hold:

lim
ε→0

lim inf
N→∞

sup
x∈Qε(x0)

ρN(x) ≤ ρ(x0) ≤ lim
ε→0

lim sup
N→∞

inf
x∈Qε(x0)

ρN(x) (pc)

for a.e. x0 ∈ Ω, where Qε(x0) denotes the open cube of size ε > 0 centred in
x0 and ρN(x) := rN(K) for x ∈ K.

Remark 3.2. Clearly, the pointwise condition holds if there is pointwise convergence
ρN(x) → ρ(x) for all x ∈ Ω.

We first present a lim inf-Γ convergence result. Then we apply it to the case of
solutions of the discrete flows to obtain the evolutionary Γ-convergence results. Note
that in fact the lower bound condition (lb) is not needed to obtain the first and the
third bound in the theorem below.

Theorem 3.3 (Lower bounds). Let (TN)N be a vanishing sequence of ζ-regular
meshes. Let µ ∈ P(Ω) and mN ∈ P(TN) be such that µN := ιNmN ⇀ µ as
N → ∞. Then the following assertions hold:

(i) We have the following lower semicontinuity estimate for the entropies:

lim inf
N→∞

HN(mN) ≥ H(µ). (3.3)

(ii) Assume (lb), (ub) and (pc). Then

lim inf
N→∞

A∗
N(mN , eN) ≥ A∗(µ, η) (3.4)

for every sequence (eN)N such that ιNeN ⇀ η in L2(Ω). The same bound also
holds without assuming (lb) if (eN)N satisfies

lim sup
N→∞

A∗
N(mN , eN) < +∞. (3.5)
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(iii) Assume (nc). Then we have the following estimate for the Fisher information
(as defined in (2.18) and (2.9), respectively):

lim inf
N→∞

IN(mN) ≥ I(µ). (3.6)

Remark 3.4. The bound in (3.4) can be o;btained without assuming (ub) and (pc) if
the mesh satisfies the so-called asymptotic isotropy condition (4.3) see Definition 4.1
and Proposition 4.3.

Remark 3.5. If mN = PN(ρ dx) for some continuous density ρ, the same result as in
(ii) can be proved more generally for all eN ∈ M(TN), η ∈ M(Ω) and ιNeN ⇀ η
in D′

(Ω). This is a consequence of an explicit construction of the recovery sequence
for the action AN(mN , ·) as in the isotropic case in Proposition 4.3; see Remark 8.7.

As a consequence of the previous result, we are able to obtain the evolutionary
Γ-convergence of the discrete Wasserstein gradient structures.

Pick an initial measure µ0 ∈ P(Ω) such that H(µ0) < +∞ and a sequence of
approximating measures mN

0 ∈ P(TN) satisfying ιNm
N
0 ⇀ µ0. For every N we

consider the solution to the discrete Fokker-Planck equation mN
t (2.14) with initial

datum mN
0 .

Taking (2.17) into account, this equivalently reads

HN(m
N
t ) +

ˆ T

0

A∗
N(m

N
t , ṁ

N
t ) +AN(m

N
t ,−DHN(m

N
t )) dt ≤ HN(m

N
0 ).

Our main result shows that one can pass to the limit at the level of the discrete
gradient flow formulation (2.17) in each of its parts and, as a consequence, recover
the gradient flow structure in the limit as N → ∞.

Theorem 3.6 (Evolutionary Γ-convergence, Wasserstein case). Let T > 0 and
consider a sequence of ζ-admissible meshes (TN)N . Fix an initial measure µ0 ∈
P(Ω) such that H(µ0) < +∞, together with measures mN

0 ∈ P(TN) for N ≥ 1,
that are well-prepared in the sense that

ιNm
N
0 ⇀ µ0 and lim

N→+∞
HN(m

N
0 ) = H(µ0).

Then the sequence of curves (µN)N defined by µNt := ιNm
N
t is compact in the space

C
(
[0, T ]; (P(Ω),W2)

)
. Thus, up to a subsequence, we have for every t ∈ [0, T ],

ιNm
N
t

W2−−→ µt as N → ∞. (3.7)

Moreover, the following estimates hold:

lim inf
N→∞

HN(m
N
t ) ≥ H(µt) ∀t ∈ [0, T ] (Entropy)

lim inf
N→∞

ˆ T

0

A∗
N(m

N
t , ṁ

N
t ) dt ≥

ˆ T

0

A∗(µt, µ̇t) dt, (Metric derivative)

lim inf
N→∞

ˆ T

0

AN(m
N
t ,−DHN(m

N
t )) dt ≥

ˆ T

0

A(µt,−DH(µt)) dt. (Fisher info)

Moreover, (µt)t solves (2.5) and (equivalently) the continuous Fokker-Planck equa-
tion (1.1).
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Remark 3.7. The well-preparedness assumption holds in the special case where the
discrete measures are defined by mN

0 := PNµ0 as in (3.2). Indeed, in that case
we have HN(m

N
0 ) = H(ιNPNµ0) and the well-preparedness follows from Jensen’s

inequality.

Finally, in the last section of this work we also show that the result obtained in
Section 7 can be used to prove the evolutionary Γ-convergence of some Hilbertian
gradient flow structures which are an equivalent representation of the Fokker-Planck
equations.

4. Previous works and known results

In this section we discuss the general state of the art about convergence results
of discrete Fokker-Planck structures to continuous ones.

The convergence of the discrete flows. It is well known [EGH00], [BHO18] (for
dimension d = 2, 3 at least) that the discrete heat flow converges in an appropriate
sense to the continuous one, whenever one takes a vanishing sequence of admissible
meshes. The authors in [EGH00], [BHO18] do not rely on a precise analysis of
the flow and work mainly at the level of the equation. In particular, they exploit
classical Sobolev a priori estimates and pass to the limit in a weak formulation
directly at the level of the Laplacian (see e.g. [BHO18, Lemma 8]). The idea of the
current work (as well as [DL15]) is to approach the problem of the convergence of
discrete flows to the continuous one with a thorough analysis of different gradient
flow structures as introduced in Section 2. Henceforth, the analysis itself does not
rely on an application of semigroup theory and does not require a linear structure
of the equation, leaving doors open for possible generalizations of such methods to
non-linear settings.

The one-dimensional setting. The evolutionary Γ-convergence result has been
obtained in the one-dimensional setting under additional geometric conditions using
methods that do not extend in a straightforward fashion to higher dimensions.

First of all, in [DL15] a sequence of meshes that satisfies the center of mass
condition  

∂K∩∂L
x dH d−1 =

xK + xL
2

, for all K ∼ L ∈ T (4.1)

is used. Such a condition is sufficient, for example, to obtain the convergence of the
discrete transport distance WN to the continuous one W2. Indeed, it is possible to
show that (4.1) implies an isotropy condition of the mesh, which has been proved
in [GKM18] to be sufficient (and essentially necessary) for the convergence of the
distances; see also Definition 4.1 for more details.

More substantially, the one dimensional setting allows for an easier correspondence
between the discrete setting and the continuous one, not only at the level of the
measures (which is always possible via the maps ιT and PT ) but also at the level
of the vectorfields. In particular, given a solution (mt, Vt) to the discrete continuity
equation

ṁt = KT (mt)Vt, (4.2)
with an Onsager operator KT as given in (2.15), it is possible to define, just by linear
interpolation on the points xK , a continuous vectorfield vt which is suitably close to
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Vt in in the sense that (ιTmt, vt) solves the continuity equation at the continuous
level (2.4).

Such an explicit construction breaks down as soon as one considers dimensions
d ≥ 2. In particular, it is not clear how to define such an interpolation between a
discrete vectorfield Vt(K,L) and a continuous one vt(x), which retains compatibility
with the continuity equation as well.

In this work we drastically change both perspective and approach. Indeed, we
do not rely on any explicit extension but rather attack the problem from a more
variational point of view.

Scaling limits for discrete optimal transport in any dimension. In this short
section we recall the key result obtained in [GKM18] about the convergence of the
discrete transport distances. The authors proved that admissibility of the meshes is
not sufficient to ensure the convergence of WT to W2; see also [GKMP19] for the
study of discrete distances for general periodic partitions.

Nonetheless, the center of mass condition used in [DL15] can be weakened, in any
dimension, by the so-called asymptotic isotropy condition [GKM18, Definition 1.3].

Below, [T ] denotes again the maximum diameter of a mesh.

Definition 4.1 (Asymptotic isotropy). A vanishing sequence of meshes (TN)N is
said to satisfy the asymptotic isotropy condition if for every N ∈ N it holds

1

2

∑
L∈T

wKL (xK − xL)⊗ (xK − xL) ≤ π(K) (Id + ηT (K)) ∀K ∈ TN , (4.3)

where sup
K∈TN

‖ηT (K)‖ → 0 as N → ∞.

In the sequel (Hε)ε≥0 denotes the heat semigroup in Rd and M0(T ) the space
of signed measure on T with zero mass. The following coarse bound is taken from
[GKM18, Lemma 3.4].

Lemma 4.2 (Coarse energy bound). Let T be a ζ-regular mesh. There exists a
constant C <∞ such that for any m ∈ P(T ) and σ ∈ M0(T ) we have

A∗(H[T ]ιTm,H[T ]ιT σ) ≤ CA∗
T (m,σ). (4.4)

Let us stress that the previous result holds without any isotropy assumption on
the mesh. On the contrary, the next result instead relies on this condition.

Proposition 4.3 (Action bounds). Let (TN)N be a sequence of meshes satisfying the
asymptotic isotropy condition (4.3). Suppose mN ∈ P(TN) are such that ιNmN ⇀ µ
as N → ∞ for some µ ∈ P(Ω).

(i) Pick any φ ∈ C1(Ω) and define fN : TN → R by fN(K) := φ(xK). Then we
have the upper bound

lim sup
N→∞

AT (mN , fN) ≤ A(µ, φ). (4.5)

(ii) Let eN ∈ M0(TN) and suppose that there exists η ∈ M0(Ω) such that ιNeN ⇀ η
as N → ∞. Then we have the lower bound

A∗(µ, η) ≤ lim inf
N→∞

A∗
T (mN , eN). (4.6)
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Proof. The proof is a straightforward modification of the one of [GKM18, Proposi-
tion 6.6], taking into account that m has a continuous and bounded density, both
from below and above. �

Assuming the isotropy condition, the previous theorem shows that the same bound
can be used to prove the lower bound for the metric derivative in (2.8); see also
Remark 3.4.

Remark 4.4. The proof in [GKM18, Proposition 6.6] shows that whenever (4.5) holds
for some sequence (fN)N such that ιNfN → φ in L2(Ω), then (ii) holds for every
ιNeN ⇀ η in L2(Ω), even if one a priori does not assume any local isotropy (4.3) of
the meshes.

Regularity of the discrete flows. A key ingredient in the proof of our main
result, Theorem 3.6, is a regularity result for the discrete Fokker-Planck equation
that can be derived from a Harnack inequality [CKW19]; see also [FMP20].

Proposition 4.5 (Regularity of discrete flows). Let T be a ζ-regular mesh, let (mt)t
be a solution to the discrete Fokker-Planck equation, and set rt := dmt

dπ
.

(i) For any t > 0, there exist C = C(Ω,m, ζ, t) < +∞ and λ = λ(Ω,m, ζ) > 0
such that the following Hölder estimate holds:

|rt(K)− rt(L)| ≤ C|xK − xL|λ sup
K′∈T

|rt/2(K ′)| ∀K,L ∈ T . (4.7)

(ii) For any t > 0 the ultracontractivity estimate

‖rt‖L∞ ≤ Ct−
d
2‖r0‖L1(π) (4.8)

holds for a constant C = C(Ω,m, ζ) < +∞.

We stress that the constants depend only on the aforementioned parameters.

5. Proof of the main result: the Wasserstein evolutionary
Γ-convergence

In this section we prove our main result, the evolutionary Γ-convergence of the
discrete gradient flow structures (Theorem 3.6). The section is divided into three
parts: The first subsection contains a proof of compactness for the continuously em-
bedded discrete solutions and some a priori estimates at first order in time (Propo-
sition 5.2). The second subsection concerns the proof of Theorem 3.3, which relies
on Theorem 7.2 . In the third and final part we complete the proof of Theorem 3.6.

5.1. Compactness and space-time regularity. In this section we prove the com-
pactness of the family of curves (t 7→ µNt )N in the space C

(
[0, T ]; (P(Ω),W2)

)
. We

follow the strategy employed in [LMPR17, Theorem 3.1], which is based on a metric
Arzelá-Ascoli theorem.

The corresponding one-dimensional result has been obtained in [DL15] using ex-
plicit interpolation formulas that are not available in the multi-dimensional setting.
Our proof is based on the coarse bounds obtained in Lemma 4.2.

Lemma 5.1 (W2-Equi-continuity). Let {TN}N be a family of admissible and ζ-
regular meshes. For each N ∈ N, let (mN

t )t∈[0,T ] be a continuous curve in P(TN)
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and suppose that the following uniform energy bound holds:

A := sup
N

ˆ T

0

A∗
N(m

N
t , ṁ

N
t ) dt < +∞. (5.1)

Then the curves µ̃N : [0, T ] → (P(Ω),W2) defined by µ̃Nt := H[TN ]ιNm
N
t are equi-1

2
-

Hölder continuous, i.e. for all 0 ≤ s < t ≤ T we have

W2(µ̃
N
t , µ̃

N
s ) .

√
A(t− s). (5.2)

Proof. For 0 ≤ s ≤ t ≤ T we invoke the Benamou-Brenier formula (2.3) and Lemma
4.2 to obtain

W2
2

(
µ̃Nt , µ̃

N
s

)
≤ (t− s)

ˆ t

s

A∗(µ̃Nh , ∂hµ̃
N
h ) dh

. (t− s) sup
N

ˆ T

0

A∗
N(m

N
h , ∂hm

N
h ) dh ≤ A(t− s),

which concludes the proof. �

An immediate corollary of Lemma 5.1 is the following compactness result. We
also obtain a regularity result that will be used in Section 5.3 below to pass to the
limit at the level of the metric derivative.

Proposition 5.2 (Compactness and regularity). For t ∈ [0, T ] and N ≥ 1 let
µNt := ιNm

N
t ∈ P(Ω) be defined as in Theorem 3.6.

(i) There exists a W2-continuous curve t 7→ µt ∈ P(Ω) satisfying, up to a subse-
quence,

sup
t∈[0,T ]

W2(µ
N
t , µt) → 0 as N → ∞.

(ii) The density ρt := dµt
dm

exists for a.e. t > 0. Moreover, for each δ ∈ (0, T ),
the curve t 7→ ρt belongs to H1

(
(δ, T );L2(Ω)

)
, and the sequence (ρ̇N)N has a

subsequence converging weakly in L2
(
(δ, T );L2(Ω)

)
to a curve t 7→ ρ̇t.

Proof. (i) We apply Lemma 5.1 to the family of discrete gradient flow solutions
(t 7→ mN

t )N . In this case, the required estimate (5.1) follows directly from the
discrete EDI in (2.17) and the well-preparedness of the initial conditions (mN

0 )N .
Thus, Lemma 5.1 implies the W2-equi-continuity of the curves (µN)N defined by
µ̃Nt := HεN ιNm

N
t , where εN := [TN ].

The metric Arzelá-Ascoli Theorem [AGS08, Lemma 9.4.3] yields the existence of
a limiting curve t 7→ µt satisfying suptW2(µ̃

N
t , µt) → 0. Using the well-known heat

flow bound W2(µ̃
N
t , µ

N
t ) ≤ C

√
εN (see e.g. [GKM18, Lemma 2.2(iii)] for a proof),

we obtain the desired result.
(ii) Fix 0 < δ < T . By self-adjointness of the discrete generator LN in L2(TN , πN)

we have

‖ṙNt ‖L2(TN ,πN ) = ‖LNrNt ‖L2(TN ,πN ) ≤ (t− δ/2)−1‖rNδ/2‖L2(TN ,πN )

for any t > δ/2; see e.g. [Bre10, Theorem 7.7]. Moreover, from (4.8) we infer that

‖rNt ‖L∞(TN ,πN ) . t−
d
2
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for t > 0. It follows from those bounds thatˆ T

δ

‖ρNt ‖2L2(Ω) dt . Tδ−d and

ˆ T

δ

‖ρ̇Nt ‖2L2(Ω) dt . δ−(d+1).

The Banach-Alaoglu theorem implies that there exists a subsequence such that
(ρN)N and (ρ̇N)N converge weakly in L2((δ, T );L2(Ω)) to limit curves ρ̄δ and σ̄δ,
respectively. In view of (i) we infer that ρ̄δt coincides with ρt := dµt

dm
for any δ.

Integration by parts yields for any φ ∈ C1
c ((δ, T );L

2(Ω)),ˆ T

δ

〈ρ̇Nt , φt〉L2(Ω) dt = −
ˆ T

δ

〈ρNt , φ̇t〉L2(Ω) dt.

As both (ρN)N and (ρ̇N)N converge weakly in L2((2δ, T );L2(Ω)), we may pass to
the limit to arrive atˆ T

δ

〈σ̄δ, φt〉L2(Ω) dt = −
ˆ T

δ

〈ρt, φ̇t〉L2(Ω) dt,

which shows that σ̄δt is the weak derivative of ρt on (δ, T ). �

Remark 5.3. Under stronger assumptions on the initial data (namely, well-prepared-
ness of the Dirichlet energies) it is possible to deduce the weak compactness in the
Sobolev space H1

(
(0, T );L2(Ω,m)

)
directly from the EDI formulation in L2(Ω,m)

(6.2), as done in [Mie16, Theorem 3.3]).
5.2. Asymptotic lower bounds for the functionals. We now have all the tools
needed to prove Theorem 3.3.
Proof of Theorem 3.3. Let µ and mN be as in the statement of the theorem.

(i) Lower bound for the entropy. Note that HN(mN) = Ent(µN |ιNπN) and
H(µ) = Ent(µ|m), where Ent(·|·) denotes the relative entropy. Since µN ⇀ µ and
ιNπN ⇀ m, the result follows immediately from the joint weak lower semicontinuity
of Ent(·|·), see e.g. [AGS08, Lemma 9.4.3].

(ii) Lower bound for A∗
N . Assume first that (lb), (ub) and (pc) hold. Theorem 7.2

(in particular, the existence of a recovery sequence) implies that for every φ ∈ C(Ω)
there exist fN ∈ L2(TN , πN) such that ιNfN → φ in L2(Ω,m) and

lim sup
N→∞

AN(mN , fN) ≤ A(µ, φ).

Since ιNeN ⇀ η in L2(Ω,m), it follows that 〈eN , fN〉L2(TN ,πN ) → 〈η, φ〉L2(Ω,m) and
〈η, φ〉L2(Ω,m) −A(µ, φ) ≤ lim inf

N→∞
〈eN , fN〉L2(TN ,πN ) −AN(mN , fN)

≤ lim inf
N→∞

A∗
N(mN , eN).

Taking the supremum over φ, we infer that A∗(µ, η) ≤ lim infN→∞ A∗
N(mN , eN), as

desired.
Assume now that only (ub), (pc) hold, and that (3.5) holds in addition, i.e. we

assume that E := lim supN→∞ A∗
N(πN , eN) < +∞. The key observation is that

the map mN 7→ A∗
N(mN , eN) is convex. Indeed, the concavity of θlog implies the

concavity of mN 7→ A(mN , fN), and thus the convexity of its Legendre dual as
a supremum of convex maps. To take advantage of this fact, we define mδ

N :=
(1− δ)mN + δπN for δ ∈ [0, 1] and obtain

(1− δ)A∗
N(mN , eN) ≥ A∗

N(m
δ
N , eN)− δA∗

N(πN , eN).
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Using (3.5) we obtain

(1− δ) lim inf
N→∞

A∗
N(mN , eN) ≥ lim inf

N→∞
A∗
N(m

δ
N , eN)− δE

for every δ ∈ [0, 1]. Note that ιNmδ
N ⇀ µδ := (1 − δ)µ + δm and mδ

N satisfies (lb)
with k = δ. We may apply the first part of the result to mδ

N to deduce

(1− δ) lim inf
N→∞

A∗
N(mN , eN) ≥ A∗(µδ, η)− δE

for every δ ∈ (0, 1]. Passing to the limit δ → 0 and using the weak lower semiconti-
nuity of A∗(·, η) we infer that

lim inf
N→∞

A∗
N(mN , eN) ≥ lim inf

δ→0
A∗(µδ, η) ≥ A∗(µ, η),

which concludes the proof.
(iii) Lower bound for the Fisher information. Assume that (nc) holds. We first

prove the lower bound (3.6) under the additional assumption (lb). This assumption
will be removed at the end of the proof. Take mN ∈ P(TN) and write rN = dmN

dπN
as

usual. The key identity relating the Fisher information to the Dirichlet form is

FN(
√
rN) = ÃN(mN ,−DHN(mN)), (5.3)

where ÃN is defined by replacing the logarithmic mean θlog in the definition of AN

by θ̃(a, b) := θlog(
√
a,
√
b)2. Since min{a, b} ≤ θ̃(a, b), θlog(a, b) ≤ max{a, b}, we have

|θlog(a, b)− θ̃(a, b)| ≤ |a− b| ≤ |a− b|
min{a, b}

θ̃(a, b).

The assumptions (3.6) and (lb) yield

εN := sup
K∼L∈TN

|rN(K)− rN(L)| → 0 and inf
K∈TN

rN(K) ≥ kmin. (5.4)

Combining these estimates, we infer that

|IN(mN)−FN(
√
rN)| =

∣∣(AN − ÃN

)
(mN ,−DHN(mN))

∣∣ ≤ εN
kmin

FN(
√
rN). (5.5)

Let us now assume that supN IN(mN) < +∞ along some subsequence. (If this
were not the case, the result would hold trivially.) The previous bound implies
that also supN EN(

√
rN) < +∞. Hence, (√ρN)N has a subsequence that converges

strongly in L2(Ω) by Proposition 8.5. Let g ∈ L2(Ω) be its limit.
Since ‖ρN−g2‖L1 ≤ ‖√ρN−g‖L2‖√ρN+g‖L2 , we infer that ρN → g2 in L1(Ω). As

µN := ρNL d ⇀ µ in P(Ω) by assumption, we infer that µ is absolutely continuous
with density ρ := g2.

Now we apply (5.5) and the Mosco convergence result F̃N
M−→ F from Theorem

7.2 to obtain

lim inf
N→∞

IN(mN) ≥ lim inf
N→∞

EN(
√
rN) ≥ F(

√
ρ) = I(µ),

which concludes this part of the proof.
Let us now show how to remove the assumption (lb) as in the proof of (ii). The

argument is based on the convexity of m 7→ IN(m), which is a consequence of the
joint convexity of the map (a, b) 7→ (a− b)(log a− log b) on (0,∞)× (0,∞).
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Pick δ ∈ (0, 1) and set mδ
N := (1− δ)mN + δπN . Note that mδ

N satisfies (lb) with
kmin = δ. Moreover, ιNmδ

N ⇀ µδ := (1 − δ)µ + δm. Applying the first part of the
result we obtain

I(µδ) ≤ lim inf
N→∞

IN(mδ
N) ≤ (1− δ) lim inf

N→∞
IN(mN)

for every δ ∈ (0, 1], where the last inequality uses the convexity of IN and the fact
that IN(πN) = 0.

Since µδ ⇀ µ, the result follows from the lower semicontinuity of I with respect
to the weak convergence in P(Ω). �

5.3. Proof of the Wasserstein evolutionary Γ-convergence. We are finally
ready to prove Theorem 3.6. The compactness is given by Proposition 5.2, whereas
the lower bound in (Entropy) follows from Theorem 3.3, together with (3.3) and an
application of Fatou’s lemma. We are left with the proof of the evolutionary lower
bounds for the metric derivative and the Fisher information.

The next auxiliary result can be found in [Ste08, Corollary 4.4].

Proposition 5.4 (Evolutionary Γ-liminf estimate). Let X be a separable Hilbert
space and let gN , g∞ : (0, T )×X → [0,+∞] be convex and lower semicontinuous in
space for a.e. time such that

g∞(t, ϕ) ≤ inf{lim inf
N→∞

gN(t, ϕN) : ϕN ⇀ ϕ in X} (5.6)

for all ϕ ∈ X and for a.e. t ∈ (0, T ). Then, whenever ϕN ⇀ ϕ in L2(0, T ;X), we
have ˆ T

0

g∞(t, ϕ(t)) dt ≤ lim inf
N→∞

ˆ T

0

gN(t, ϕN(t)) dt. (5.7)

In the following, we combine the results obtained in Theorem 3.3 together with
Proposition 5.4 in order to prove Theorem 3.6.

Proof of the evolutionary lower bound for the metric derivative. Fix 0 < δ < T and
define gN : (δ, T )× L2(Ω) → [0,+∞] by

gN(t, ϕ) :=

{
A∗
N(m

N
t , ϕ), if ϕ ∈ PCN ,

+∞, otherwise.

The maps gN are convex and lower semicontinuous in L2(Ω) for every time t ∈
(0, T ). Set ϕN(t) := ιNṁ

N
t . By Proposition 5.2, we can assume that ϕN ⇀ ϕ := ρ̇t

in L2(δ, T ;L2(Ω)) as N → ∞.
Define g∞(t, ϕ) := A∗(µt, ϕ). We apply Proposition 4.5 to deduce that mN

t sat-
isfies (ub) and (pc). Moreover, if we set eN := ṁN

t , using that LN is self-adjoint in
the discrete Sobolev space H−1 (see also Appendix 6), we deduce that (3.5) is sat-
isfied. Therefore we can apply Theorem 3.3 and (3.4) to infer that (5.7) is satisfied
as well. We then apply Proposition 5.4 to the sequences gN , g∞, ϕN , ϕ and deduce
that

lim inf
N→∞

ˆ T

0

A∗
N(m

N
t , ṁ

N
t ) dt ≥

ˆ T

δ

A∗(µt, µ̇t) dt.

Passing to the limit δ → 0 yields the result. �
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Proof of the evolutionary lower bound for the Fisher information. We follow the
same strategy as above; namely, we make use of a suitable application of Proposi-
tion 5.4. Once again, set X = L2(Ω), but this time define

gN(t, ϕ) :=

{
AN(m

N
t ,−DHN(PNϕ dπN)), if ϕ ∈ PCN ,

+∞, otherwise.

The maps gN are convex (see also the proof of (3.6) in Theorem 3.3) and lower
semicontinuous in X for every time t ∈ (0, T ). Consider the sequence ϕN(t) := ιNr

N
t

where rNt = dmN
t / dπN , which we know to be weakly convergent in L2(0, T ;X) to

ϕ(t) := ρt, by means of Proposition 5.2 and L2(Ω)-bounds, due to the monotonicity
of the LN .

As another application of Proposition 4.5, we also have that (nc) is satisfied.
Therefore, we may apply Theorem 3.3 to deduce from (3.6) that (5.7) is satisfied.
This allows us to apply Proposition 5.4 to gN , g∞, ϕN , ϕ, as defined above, and
conclude the proof.

6. A look at gradient flow structures in Hilbert spaces

The role of this section is to make some connections between the Mosco con-
vergence EN

M−→ E and equivalent gradient flow formulations of the same diffusion
equation. In particular, we discuss evolutionary Γ-convergence of some gradient flow
structures in Hilbert spaces, which are available for the description of Fokker-Planck
equations. We are largely inspired by the abstract convergence results for gradient
flows in reflexive Banach spaces obtained in [Mie16] (see also [Att84, Theorem 3.74]
for an earlier result in Hilbert spaces).

In the first two subsections below we present two classical gradient flows in the
respective Hilbert spaces L2(Ω,m) and H−1(Ω), followed by an introduction of their
counterparts in a discrete setting. The final two subsections deal with corresponding
evolutionary Γ-convergence results for the gradient flow structures discussed in this
section.

6.1. Gradient flows in Hilbert spaces: the L2 and H−1 distance. The Wasser-
stein setting is not the only one in which one can interpret the solution of the
Fokker-Planck equation as gradient flows of a suitable functional. In this section we
describe two more possibilities of this kind, both in Hilbert spaces.

The first one is to work in the Hilbert space L2(Ω,m) and with the Dirichlet form

E(ϕ) :=

{
1
2

´
Ω,m

|∇ϕ|2 dm, if ϕ ∈ H1(Ω) ⊂ L2(Ω,m),

+∞, otherwise.
(6.1)

In particular, the subdifferential of E in ϕ is not empty if and only if ϕ ∈ D(L)
for Lϕ := ∇ ·

(
σ∇

(
ϕ
σ

))
and in this case

∂L2E(ϕ) = {−Lϕ} , Lϕ ∈ L2(Ω,m).

On the other hand, the metric derivative is given by the L2-norm of the time
derivative. Thus, the EDI formulation of the gradient flow of the energy E in
L2(Ω,m) reads

E(ρT ) +
1

2

ˆ T

0

‖ρ̇t‖2L2 + ‖Lρt‖2L2 dt ≤ E(ρ0), (6.2)
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where we assume ρ0 ∈ H1(Ω) (see Remark 5.3 for a related discussion).
A second possibilities is to consider the Hilbert space H−1(Ω,m) (i.e. the dual of

the weighted Sobolev space H1(Ω,m)) and the functional

F(L) :=

{
1
2

´
Ω
ϕ2 dm if L = Lϕ,

+∞ otherwise,
(6.3)

where Lϕ ∈ H−1(Ω,m) is defined for ϕ ∈ L2(Ω,m) by

Lϕ(ψ) :=

ˆ
Ω

ϕψ dm, ∀ψ ∈ H1(Ω,m).

Let us denote by ∆mϕ the distributional m-Laplacian of ϕ ∈ H1(Ω,m) as an
element of H−1(Ω,m), namely

(−∆mϕ, ψ) :=

ˆ
Ω

〈∇ϕ,∇ψ〉 dm ∀ψ ∈ H1(Ω,m).

It is then possible to prove that the subdifferential of F is not empty only on
L = Lϕ with ϕ ∈ D(L) and in this case

∂H−1F(Lϕ) = {−∆mϕ} for ϕ ∈ D(L).

In a fashion similar to the previous setting, the metric derivative is given by the
H−1(Ω,m)-norm of the time derivative. Altogether, the EDI formulation of the
gradient flow of the energy F in H−1(Ω,m) reads

F(LρT ) +
1

2

ˆ T

0

‖ρ̇t‖2H−1 + ‖∆mρt‖2H−1 dt ≤ F(Lρ0) (6.4)

for ρ0 ∈ L2(Ω,m).

6.2. The L2- and H−1-gradient flow structures in the discrete setting. In
this section, we will recall two separate Hilbert space gradient flows which provide
solutions to the discrete heat equation u̇t = ∆T ut in P(T ). As done in the contin-
uous setting above, one possibility is to consider the L2-gradient flow with respect
to the Dirichlet form

ET (u) :=


1

4

∑
K,L∈T

(u(K)− u(L))2wKL if dm = u dπT for m ∈ P(T ),

+∞ otherwise.
For any smooth curve t 7→ ut of probability densities with respect to πT , the

computation
d

dt
ET (ut) =

1

2

∑
K,L∈T

(ut(K)− ut(L))(u̇t(K)− u̇t(L))wKL = −〈∆T ut, u̇t〉L2(πT )

shows that −∆T u is indeed the L2(πT )-gradient of ET (u). Hence, The energy dissi-
pation inequality (EDI) to the corresponding gradient flow reads

ET (ut) +
1

2

ˆ t

s

‖u̇r‖2L2(πT ) + ‖∆T ur‖2L2(πT ) dr ≤ ET (us) a.e. s ≥ 0, ∀t ≥ s. (6.5)

It is possible to endow a discrete function spaces with a Markov chain induced
norm, in order to mimic the structure of an H−1-space. In the setting of admissible,
ζ-regular meshes over a convex domain Ω ⊂ Rd this may be done, using a suitable
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H1-norm on L2(T , πT ) given by 1
2
‖·‖2H1 := ET . Thus, we may define ‖·‖H−1 on (the

dual space of) L2(T , πT ) by means of

‖f‖H−1 := sup
g∈L2(πT )

g 6=0

〈f, g〉L2(πT )

‖g‖H1

∀f ∈ L2(T , πT ), (6.6)

where we identified L2(T , πT ) with its dual.
Recall that the Laplacian acts as isometric isomorphism between H1(Ω) and

H−1(Ω). Such an identification is also possible in the discrete setting as done
for instance in Section 3.1 of [EM12]. Indeed, note that ∆T is a selfadjoint op-
erator on L2(T , πT ), which implies that ∆T is bijective on the linear subspace
ran∆T = {f : T : R :

∑
K∈T fKπK = 0}. Hence, one may introduce the inner

product
〈f, g〉H−1 := −〈∆−1

T f, g〉L2(π) ∀f, g ∈ ran∆T .

The induced norm takes the form

‖f‖2H−1 =
1

2

∑
K,L∈T

(∆−1
T fL −∆−1

T fK)
2wKL ∀f ∈ ran∆T ,

which may be easily verified to agree with the definition given in (6.6) on the linear
subspace ran∆T .

Now consider the functional

FT (u) :=


1

2

∑
K∈T

|uK |2 πK if dm = u dπ for m ∈ P(T ),

+∞ otherwise.

Then the EDI gradient flow for the functional FT in the finite dimensional Hilbert
space H−1 is given as solution to

FT (ut) +
1

2

ˆ t

s

‖u̇r‖2H−1 + ‖∆T ur‖2H−1 dr ≤ FT (us) a.e. s ≥ 0, ∀t ≥ s. (6.7)

6.3. Convergence of L2-Gradient flows for Dirichlet forms. We follow roughly
the approach sketched in [Mie16, Section 3.2]. A crucial ingredient is the Mosco
convergence EN

M−→ E for the Dirichlet form E as defined in (6.1) and the embedded
functionals EN corresponding to their discrete counterparts ETN .

In addition, we make use on the following result, the so-called strong weak-
closedness of the graphs of the subdifferentials for the Dirichlet forms (see [Mie16,
Proposition 2.9] or [Att84, Theorem 3.66] for a proof).

Lemma 6.1. Consider a sequence of proper, lower semi-continuous, convex func-
tionals JN : X → R∪{+∞} on some reflexive Banach space X such that EN

M−→ E0.
Then for every sequence uN ⇀ u such that EN(uN) → η ∈ R and ∂Eε(uN) 3 ξN →
ξ, we have E0(u) = η and ξ ∈ ∂EN(u).

The strong-weak closedness result above and the Mosco convergence of the discrete
Dirichlet forms allow us to prove the following convergence result.
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Proposition 6.2. Let T > 0 and consider a sequence of ζ-admissible meshes (TN)N .
Fix an initial value ρ0 ∈ L2(Ω,m) such that E(ρ0) < +∞, together with a sequence
of approximating functions uN0 ∈ L2(TN , πN), well-prepared in the sense that

ιNu
N
0 ⇀ ρ0 and lim

N→∞
EN(uN0 ) = E(ρ0).

Write ρNt := ιNu
N
t ; then the sequence (ρN)N , corresponding to curves (uNt )t∈[0,T ]

satisfying the energy dissipation inequality (6.5) with initial values uN0 , is weakly
sequentially compact in H1(0, T ;L2(Ω,m)).

Up to a (non-relabelled) subsequence, we have ρNt → ρt in L2(Ω,m) for every time
t ∈ [0, T ].

Moreover, we have the following lower bounds at the energy and dissipation level:
lim inf
N→∞

EN(uNt ) ≥ E(ρt), ∀t ∈ [0, T ] (energy)

lim inf
N→∞

ˆ T

0

∥∥u̇Nt ∥∥2

L2(πN )
dt ≥

ˆ T

0

‖ρ̇t‖2L2(m) dt, (metric derivative)

lim inf
N→∞

ˆ T

0

∥∥DEN(uNt )
∥∥2

L2(πN )
dt ≥

ˆ T

0

‖DE(µt)‖2L2(m) dt. (metric slope)

In particular, the curve (ρt)t solves the energy dissipation inequality (6.2) or, equiv-
alently, the continuous Fokker-Planck equation (9).

Proof. As the initial condition is well prepared, we may assume that the discrete
Dirichlet forms satisfy the uniform bound E(uN0 ) ≤ C for all N ∈ N. Combined with
the EDI in (6.7), this allows us to find uniform bound in terms of

E(uNt ) ≤ C0,

ˆ t

0

∥∥ιN∆Nu
N
r

∥∥2

L2(m)
dr ≤ C0,

ˆ t

0

∥∥ρNr ∥∥2

L2(m)
dr ≤ C0 (6.8)

for all times t ≥ 0.
By means of weak compactness, the second and third bound in (6.8) allow us to

extract (non-relabelled) subsequences ρN and ξN := ιN∆Nu
N such that ρN ⇀ ρ in

H1(0, T ;L2(Ω,m)) and ξN ⇀ ξ in L2(0, T ;L2(Ω,m)).
Using the uniform bound on the discrete Dirichlet forms, we may appeal to Propo-

sition 8.5, in order to obtain a time-dependent subsequence of (ρNt )N∈N converging
to ρt in L2(Ω,m), together with the uniform bound ‖∇ρt‖L2(m) ≤ C0 for each time
t ≥ 0.

As Theorem 7.2 establishes the Mosco convergence EN
M−→ E, we infer the estimate

lim inf
N→∞

EN(uNt ) = lim inf
N→∞

EN(ρ
N
t ) ≥ E(ρt) ∀t ≥ 0.

Turning to the metric differential and the metric slope, Fatou’s lemma, together
with the weak lower semicontinuity of the L2-norm, yieldsˆ T

0

‖ρ̇r‖2L2(m) dr ≤ lim inf
N→∞

ˆ T

0

∥∥ρ̇Nr ∥∥2

L2(m)
dr

and ˆ T

0

‖ξr‖2L2(m) dr ≤ lim inf
N→∞

ˆ T

0

∥∥ξNr ∥∥2

L2(m)
dr. (6.9)

In order to identify the expression ‖ξr‖2L2(m) with the metric slope ‖∂E(ρr)‖2L2(m),
we appeal to the fundamental theorem of Young measures adapted to strong-weak



EVOLUTIONARY Γ-CONVERGENCE FOR FOKKER-PLANCK EQUATIONS 31

topologies (cf. [MRS13, Theorem A.3]), which yields another subsequence (also de-
noted by ξN) and a family of Young measures (µt)t∈(0,T ) on L2(Ω,m) such that for
a.e. time t ∈ (0, T ) the identity

ξt =

ˆ
L2(m)

w dµt(w) (6.10)

holds with the property that µt is concentrated on the set of cluster points for
(ξNt )N∈N with respect to the weak topology on L2(Ω,m). Taking into account
Lemma 6.1 for suitable (time-dependent) subsequences of (ρNt )N∈N and (ξNt )N∈N,
we infer that µt is concentrated on ∂E(ρt) for a.e. t ∈ (0, T ). Since ∂E(ρt) is single-
valued for a.e. t, we infer from (6.10) that ξt = ∂E(ρt). As a result, (6.9) implies
the required bound on the metric slope. �

Remark 6.3. An alternative proof of Proposition 6.2 may be established by means of
gradient flow stability tools as found in [Ste08]. Indeed, it suffices to combine the the
characterisation results of gradient flows via the so-called Brezis-Ekeland principle
in Section 1 of the same article with [Ste08, Lemma 6.1]; we omit the details.

6.4. Convergence of H−1-gradient flows for the L2-energy functional. In
this last subsection we prove the evolutionary Γ-convergence of the H−1-gradient
flow structures.

Proposition 6.4. Let T > 0 and consider a sequence of admissible ζ-meshes (TN)N .
Fix an initial value ρ0 ∈ L2(Ω,m), together with a sequence of approximating func-
tions uN0 ∈ L2(TN , πN), well-prepared in the sense that

lim
N→∞

FN(u
N
0 ) = F(ρ0) < +∞.

Write ρNt := ιNu
N
t ; then the sequence (ρNN corresponding to curves (uNt )t∈[0,T ] satis-

fying the energy dissipation inequality (6.7) with initial values uN0 , is weakly sequen-
tially compact in H1(0, T ;L2(Ω,m))

Up to a (non-relabelled) subsequence, we have ρNt ⇀ ρt in L2(Ω,m) for every time
t ∈ [0, T ].

Moreover, we have the following lower bounds at the energy and dissipation level:

lim inf
N→∞

FN(u
N
t ) ≥ F(ρt), ∀t ∈ [0, T ] (energy)

lim inf
N→∞

ˆ T

0

∥∥u̇Nt ∥∥2

H−1 dt ≥
ˆ T

0

‖ρ̇t‖2H−1(m) dt, (metric derivative)

lim inf
N→∞

ˆ T

0

∥∥DFN(u
N
t )

∥∥2

H−1 dt ≥
ˆ T

0

‖DF(µt)‖2H−1(m) dt. (metric slope)

In particular, the curve (ρt)t solves the energy dissipation inequality (6.4) or, equiv-
alently, the continuous Fokker-Planck equation (9).

Proof. The well-preparedness of the initial value implies

lim
N→0

∥∥ρN0 ∥∥L2(m)
= ‖ρ0‖L2(m) .

In particular, we have the uniform bound
∥∥ρN0 ∥∥L2(m)

≤ C for all meshes N and some
constant C > 0. Combined with the EDI in (6.7), this implies the a priori bound
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L∞(0,T ;L2(m))

≤ C. Recalling

1

2

∥∥u̇Nt ∥∥2

H−1 =
1

2

∥∥∆Nu
N
t

∥∥2

H−1 = EN(uNt ), (6.11)

we may also deduce the estimate on the discrete Dirichlet forms
´ T
0
EN(uNt ) dt ≤ C

along the same lines.
A uniform L2(m)-bound for the time-derivative of uNt is deduced from the well-

preparedness of the initial condition and maximal monotone operator bounds on ρ̇Nt
(see e.g. [Bre10, Theorem 7.7]) for every δ > 0 in terms of∥∥ρ̇Nt ∥∥L2(m)

=
∥∥u̇Nt ∥∥L2(π)

≤ Cδ ∀t ∈ [δ, T ]

for a constant Cδ > 0 not depending on the mesh size. Hence, we may extract
a subsequence (ρNN ,δ)N∈N weakly converging to ρt in H1(δ, T ;L2(Ω,m)). Setting
ρN := ρNN ,δN for some sequence δN ↘ 0, we infer ρN ⇀ ρ in H1(0, T ;L2(Ω,m)).
Thanks to the L∞-a priori estimate established above, we may also infer from weak
compactness the existence of a further sub-sequence, also denoted by (ρNt )N∈N, such
that ρNt ⇀ ρt in L2(Ω,m) for all t ∈ [0, T ].

Now the energy bound follows immediately, using that the norm ‖·‖L2(m). There-
fore, F is weakly lower semicontinuous in L2(Ω,m) as well.

Using [Mie16, Theorem 2.8], one infers that the Mosco convergence EN
M−→ E (see

Theorem 7.2 below) is actually equivalent to E∗
N

M−→ E∗, where E∗
N and E∗ denote the

convex conjugates of the respective functionals EN and E in L2(Ω). In particular,
we may invoke Proposition 5.4 for the family of time-independent functionals E∗

N

to obtain the desired bound on the metric derivativeˆ t

0

‖ρ̇r‖2H−1(Ω,m) dr ≤ lim inf
N→∞

ˆ t

0

∥∥u̇Nr ∥∥2

H−1 dr ∀t ≤ T,

where we used the identities

E∗(ρ̇t) =
1

2
‖ρ̇r‖2H−1(Ω,m) and E∗

N(ρ̇
N
t ) = E∗

N(u̇
N
t ) =

1

2

∥∥u̇Nr ∥∥2

H−1 .

Due to Proposition 8.5, we have ‖∇ρt‖2L2 . supN EN(uNt ). Thus, the bound on
time integral over the discrete Dirichlet forms implies that ρ may be identified as an
element of L2(0, T ;H1(Ω)) with

´ T
0
‖∇ρt‖2L2(m) dt . C. In particular, we have the

identity

1

2
‖∆mρt‖2H−1(Ω,m) =

1

2
‖∇ρt‖2L2(Ω,m) = E(ρt) a.e. t ∈ [0, T ]. (6.12)

Moreover, EN
M−→ E implies E(ρt) ≤ lim infN→∞ ENN

(ρNN
t ) for every t ∈ [0, T ].

Hence, both the identities in (6.11) and (6.12), together with Fatou’s lemma, imply
ˆ t

0

‖∆mρr‖2H−1(Ω,m) dr ≤ lim inf
n→∞

ˆ t

0

∥∥∆Nu
N
t

∥∥2

H−1 dr ∀t ≤ T. (6.13)

Identifying both ‖∆mρr‖H−1(Ω,m) and
∥∥∆Nu

N
t

∥∥
H−1 with the respective metric slopes

‖DF(µt)‖H−1(m) and
∥∥DFN(u

N
t )

∥∥
H−1 , we conclude. �
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7. Mosco convergence of discrete energies: the statement

In this section we present a Mosco convergence result for sequences of discrete
energies to the corresponding continuous energy. This result is a key tool to prove
evolutionary Γ-convergence in Section 5. Let us first recall the definition of Γ- and
Mosco convergence.

Definition 7.1 (Γ- and Mosco convergence). Let F ,FN : X → R ∪ {+∞} be
functionals defined on a topological vector space X.

(1) The sequence (FN)N is said to be Γ-convergent to F if the following condi-
tions hold:
(i) liminf inequality: for every sequence (xN)N ⊆ X strongly converging

to x ∈ X we have

lim inf
N→∞

FN(xN) ≥ F(x).

(ii) limsup inequality: for every x ∈ X there exists a sequence (called
recovery sequence) (xN)N ⊆ X strongly converging to x and such that

lim sup
N→∞

FN(xN) ≤ F(x).

(2) The sequence (FN)N is said to be Mosco convergent to F if the same con-
ditions hold, with the modification that weakly convergent sequences are con-
sidered in (i).

We use the notations FN
Γ−→ F and FN

M−→ F to indicate the respective Γ- and
Mosco convergence.

Let us now fix the setup, which remains in force throughout Sections 7, 8 and 9.
Consider a family of ζ-regular meshes (TN)N with [TN ] → 0 as N → ∞. We fix a
reference measure m ∈ P(Ω) as in (2.2) and define πN ∈ P(TN) by πN := PNm as
before.

We consider a measure µ ∈ P(Ω) with density ρ = dµ
dm

∈ L2(Ω), together with
discrete measures mN ∈ P(TN) with densities rN = dmN

dπN
.

We define the discrete Dirichlet energy FN : L2(TN , πN) → R+ by

FN(f) := AN(mN , f), (7.1)

where AN := ATN is defined as in (2.16). Observe that

FN(f) =
1

4

∑
K,L∈TN

(
f(K)− f(L)

dKL

)2

θlog
(
rN(K), rN(L)

)
dKL|ΓKL|SKL, (7.2)

where SKL has been defined in (2.13). This formula illuminates the role of FN as
a natural discrete counterpart to the continuous Dirichlet energy Fρ : L2(Ω) →
R+ ∪ {+∞} given by

Fρ(ϕ) := A(µ, ϕ) =


1

2

ˆ
Ω

|∇ϕ|2 dµ if ϕ ∈ H1(Ω, µ),

+∞ otherwise,
(7.3)

where A is defined in (2.7). Due to our assumptions on µ, the weighted Sobolev
space H1(Ω, µ) coincides with the classical Sobolev space H1(Ω).
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To compare the discrete and the continuous functionals, we introduce F̃N :
L2(Ω) → R+ ∪ {+∞} by

F̃N(ϕ) :=

{
FN (PT ϕ) if ϕ ∈ PCN
+∞ otherwise,

(7.4)

where PCN ⊂ L2(Ω) denotes the space of all functions on the partition TN that are
constant on each cell K ∈ T and PT ϕ(K) = ϕ(xK) for ϕ ∈ PCN .

The main result of this section reads as follows.

Theorem 7.2 (Mosco convergence). Let (TN)N be a vanishing sequence of ζ-regular
meshes and suppose that µ and (mN)N satisfy (lb), (ub) and (pc). Then we have
Mosco convergence F̃N

M−→ Fρ with respect to the L2(Ω)-topology.

In the following, we give a sketch of the proof of Theorem 7.2. Our strategy is
based on a compactness and representation procedure, following ideas from [AC04]
and [BFLM02]. In particular, the paper [AC04] contains similar Γ-convergence
results on a particular discrete lattice (the cartesian grid) for a more general class of
functionals. These authors do not not characterize the limiting functional explicitly,
except in special situations, such as the periodic setting. For our application to
evolutionary Γ-convergence, a characterisation of the limiting functional is crucial.

A key ingredient in the proof is a representation result from [BFLM02, Theorem
2]. To be able to apply this result, we need to perform a localisation procedure.
In the following, O(Ω) denotes the class of all the open subsets of Ω. For every
A ∈ O(Ω) we then introduce the functionals FN : L2(TN , πN)×O(Ω) → R by

FN(f, A) :=
1

2

∑
K,L∈TN |A

K∼L

(f(K)− f(L))2wKLθlog(rN(K), rN(L)),

where for any subset A ⊆ Ω,
T |A :=

{
K ∈ T : K ∩ A 6= ∅

}
. (7.5)

The corresponding embedded functional F̃N : L2(Ω,m) ×O(Ω) → [0,+∞] is given
by

F̃N(ϕ,A) :=

{
FN(PT ϕ,A) if ϕ ∈ PCN ,

+∞ otherwise.

The proof of Theorem 7.2 consists of the following steps:
(Step 1) We show first, as in [AC04, Proposition 3.4], that any subsequential Γ-

limit point F0,ρ(·, A) of the sequence (F̃N(·, A))N is only finite on H1(Ω).
This result is a prerequisite for performing Step 3. We also show that Γ-
convergence implies Mosco convergence in this situation.

(Step 2) Using a compactness argument [Bra02], we infer that, up to a subsequence,
the functionals (F̃N(·, A))N Γ-converge to a limiting functional F0,ρ(·, A)
for any A ∈ O(Ω).

(Step 3) We prove the applicability of a suitable representation theorem [BFLM02,
Theorem 2], which allows us to deduce the following expression

F0,ρ(ϕ) =

ˆ
Ω

f(x, ϕ,∇ϕ) dx =

ˆ
Ω

〈A(x)∇ϕ,∇ϕ〉 dx; (7.6)
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see also [AC04, Theorem 2.2 and Remark 3.2].
(Step 4) In view of the previous steps, it remains to show that A(x) = ρ(x)σ(x)Id.

Steps 1 and 2 will be carried out in Section 8, while Steps 3 and 4 will be performed
in Section 9.

Remark 7.3. Mosco convergence of Dirichlet forms is equivalent to strong conver-
gence of the associated semigroups [Mos94]; see also [KS03] for a generalisation to
Dirichlet forms defined on different spaces.

8. Mosco convergence of the localised functionals

In this section we perform Steps 1 and 2 of the proof strategy described above,
i.e. we prove the following results.

Theorem 8.1 (Regularity of Γ-limits). Assume (lb). For A ∈ O(Ω), let F0,ρ(·, A)
be a subsequential Γ-limit of the sequence (F̃N(·, A))N in L2(Ω)-topology. Then
F0,ρ(ϕ,A) = +∞ for any ϕ /∈ H1(Ω). Moreover, the subsequence is also convergent
in the Mosco sense.

The proof of this result is contained in Section 8.1 and relies on an L2-Hölder
continuity result (Proposition 8.5).

Theorem 8.2 (Localised Mosco compactness). Assume (lb) and (ub). Then there
exists a subsequence of (F̃N)N such that for any A ∈ O(Ω), the sequence (F̃N(·, A))N
is Mosco convergent in the L2(Ω)-topology.

The proof of this result is contained in Section 8.2 and relies on an inner regularity
result (Proposition 8.8) which is based on a Sobolev upper bound (Proposition 8.6).

8.1. Regularity of finite energy sequences. In this subsection we prove that any
Γ-limit F0,ρ is only finite on Sobolev maps, which allows us to work with Theo-
rem 9.3. The proof of the corresponding result in [AC04] relies strongly on the
symmetric structure of the cartesian grid (where affine interpolation of vectorfields
can be used; see [AC04, Proposition 3.4]).

For any x, y ∈ R we write x . y (or equivalently, y & x) if there exists a constant
C = C(ζ, d) ∈ R+ such that x ≤ Cy. For h ∈ Rd we write τh(x) := x+ h and

K
h∼ L if L ∩ τhK 6= ∅.

Lemma 8.3 (Existence of good paths). Let T be a ζ-regular mesh. Then there
exists a family of paths {γKL}K,L∈T , where
γKL = {γKL(i) : i = 0, . . . , nKL}, K = γKL(0) ∼ γKL(1) ∼ . . . ∼ γKL(nKL) = L,

such that the following properties hold:
(1) for all K,L ∈ T we have

nKL .
dKL
[T ]

and

nKL∑
i=0

dγKL(i),γKL(i+1) . dKL; (8.1)

(2) for any h ∈ Rd and M,N ∈ T with M ∼ N we have

#
{
(K,L) ∈ T 2 : K

h∼ L, {M,N} ⊂ γKL

}
. 1 ∨ |h|

[T ]
. (8.2)
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Proof. Part (1) has been proved in [GKM18, Lemma 2.12], so we focus on (2) and
write S for the set whose cardinality we would like to bound. For r, l > 0,we consider
the cylinder Cyl(r, l) of radius r and height 2l given by

Cyl(r, l) :=
{
v = (v1, v

∗) ∈ Rd : v1 ∈ Bd−1
r , v∗ ∈ [−l, l]

}
,

where Bd−1
r denotes the ball in Rd−1 of radius r centred in the origin. Without loss

of generality we may assume that xM = 0. Let S1 ⊂ Rd be the union of all K ∈ T
such that (K,L) ∈ S for some L ∈ T .

We claim that

S1 ⊂ Cyl(r̄, l̄) (8.3)

for some r̄ . [T ] and l̄ . |h|+[T ]. Indeed, for all cells K,L ∈ T with (K,L) ∈ S, the
construction in [GKM18] yields that M ∪N is contained in the cylinder C̄ of radius
2[T ], whose central axis is obtained by extending the line segment between xK and
xL by a distance [T ] in both directions. Hence, we can set r̄ := 2[T ]. Moreover, in
order to conclude the proof of (8.3) it suffices to show that

|x| . [T ] + |h| ∀K ∈ S1, x ∈ K. (8.4)

Observe that 0 ∈ M ⊂ C̄ implies that there exists y ∈ Rd belonging to the axis
of C̄ with |y| ≤ 2[T ]. This shows that one has

C̄ ⊂ Br0(y)

for r0 := 4[T ] + dKL.
Pick now any x ∈ K ∈ S1. In particular x ∈ Br0(y). Henceforth, we have

|x| ≤ |x− y|+ |y| ≤ r0 + 2[T ] ≤ 6[T ] + dKL

≤ 6[T ] + |xK − xL + h|+ |h| ≤ 8[T ] + |h|,

where in the latter inequality we used that |xK − xL + h| ≤ 2[T ] whenever K h∼ L.
This shows (8.4) and, thus, (8.3) as well.

Now we conclude the proof by a simply volume comparison argument: On one
hand, the volume of the cylinder is given by

L d (Cyl(w̄, r̄)) . [T ]d−1([T ] + |h|) . [T ]d−1([T ] ∨ |h|). (8.5)

On the other hand, S1 can be written as a disjoint union of cells. Let us denote by
N1 ∈ N the number of such cells and by Ki the cells in S1.

Moreover, by regularity we know that there exists a δ . [T ] such that Bδ(xK) ⊂ K
for every K ∈ T . It follows that

L d(S1) =

N1∑
i=1

L d(Ki) ≥
N1∑
i=1

L d(Bδ(xK)) = N1δ
d & N1[T ]d. (8.6)

Putting (8.3), (8.5) and (8.6) together we infer that

N1 . 1 ∨ |h|
[T ]

.

We conclude the proof observing that regularity implies #S . N1. Indeed, for
every K ∈ T , K ⊂ S1, there exists a (universally) bounded number of cells L ∈ T



EVOLUTIONARY Γ-CONVERGENCE FOR FOKKER-PLANCK EQUATIONS 37

such that (K,L) ∈ S. This is due to the fact that, whenever L,L′ ∈ T are such
that (K,L), (K,L′) ∈ S, then by the triangle inequality we deduce that

dL,L′ . [T ].

As a result, regularity implies the claim, which allows us to conclude the proof. �

The following lemma provides a crucial estimate needed to deduce L2-strong com-
pactness of sequences with bounded energy. A similar result has been obtained
in dimension d = 2, 3 in [EGH00, Lemma 3.3] with bounds in terms of discrete
Sobolev norms.
Lemma 8.4 (L2-Hölder continuity). Assume (lb). Fix A ∈ O(Ω) and set Aδ :=
{x ∈ A : dist(x, ∂Ω) > δ} for δ > 0. Let T be a ζ-regular mesh, let f ∈ L2(T |A)
and define ϕ := ιT f ∈ L2(A). For any h ∈ Rd we have the L2-bound

‖τhϕ− ϕ‖2L2(A|h|)
.

|h|
k

(
|h| ∨ [T ]

)
FT (f, A), (8.7)

where τhϕ(·) := ϕ(· − h) and k > 0 is the lower bound in (lb).
Proof. For any h ∈ Rd we have

‖τhϕ− ϕ‖2L2(A|h|)
=

ˆ
A|h|

(
ϕ(x− h)− ϕ(x)

)2
dx ≤

∑
K,L∈T |A

|SKL|
(
f(L)− f(K)

)2
,

(8.8)
where SKL = {x ∈ K : x − h ∈ L}. For K,L ∈ T |A we use Lemma 8.3 and the
Cauchy-Schwarz inequality to write(

fN(K)− fN(L)
)2 ≤ nKL

nKL∑
i=1

(
fN(Ki−1)− fN(Ki)

)2
, (8.9)

where K = K0 ∼ K1 ∼ . . . ∼ KnKL
= L and nKL . dKL

[T ]
. Observe that dKL .

[T ] ∨ |h|, whenever SKL 6= ∅.
To estimate the measure of SKL, we pick a hyperplane H that separates K and L

(which exists by the Hahn-Banach theorem, in view of the convexity of the cells). By
construction, SKL is contained in the strip between H and H+h. Moreover, we have
SKL ⊆ K, which means that SKL is contained in a ball of radius . [T ]. Combining
these two facts, we infer that |SKL| . [T ]d−1|h|; hence, |SKL| . [T ]d−1

(
|h| ∧ [T ]

)
by

ζ-regularity.
Putting these estimates together, we obtain

|SKL|
(
f(K)− f(L)

)2
. [T ]d−1|h|

nKL∑
i=1

(
f(Ki−1)− f(Ki)

)2
. (8.10)

Let αKL denote the left-hand side in (8.2). Using (8.8) and (8.10) we find that

‖τhϕ− ϕ‖2L2(A|h|)
. [T ]d−1|h|

∑
K,L∈T |A

L∼K

αKL
(
f(L)− f(K)

)2
.

On the other hand, since wKL & [T ]d−2 by ζ-regularity and rN ≥ k by assumption
(lb), we have

FT (f, A) & k[T ]d−2
∑

K,L∈T |A
L∼K

(
f(K)− f(L)

)2
.



38 DOMINIK FORKERT, JAN MAAS, AND LORENZO PORTINALE

The desired result follows since αKL ≤ 1 ∨ |h|
[T ]

by Lemma 8.3. �

The compactness result now follows easily.

Proposition 8.5 (Compactness). Fix A ∈ O(Ω) and assume that the lower bound
(lb) holds. Let (TN)N be a vanishing sequence of ζ-regular meshes. Let fN ∈
L2(TN |A) be such that

α := sup
N∈N

FN(fN , A) < +∞

and define ϕN := ιNfN ∈ L2(A). Then the sequence (ϕN)N is relatively compact in
L2(A). Moreover, any subsequential limit ϕ belongs to H1(A) and satisfies

‖∇ϕ‖L2(A) .

√
α

k
.

Proof. The L2(Ω)-compactness follows from (8.7) in view of the Kolmogorov-Riesz-
Frechét theorem [Bre10, Theorem 4.26]. Let ϕ be any subsequential limit point of
ϕN as [TN ] → 0. Another application of (8.7) yields for any h ∈ Rd and δ > 0,

‖τhϕ− ϕ‖2L2(Aδ)
= lim

N→∞
‖τhϕN − ϕN‖2L2(Aδ)

.
α

k
|h|2,

which implies that ϕ ∈ H1(A) by the characterization of H1(A) as the space of
functions which are Lipschitz continuous in L2-norm (see, e.g. [Bre10, Proposition
9.3]). �

Proof of Theorem 8.1. Proposition 8.5 shows that ϕ ∈ H1(Ω) whenever F0,ρ(ϕ) <
+∞. It follows from Proposition 8.5 that every L2-weakly convergent sequence
ϕN = ιNfN with bounded energy supN FN(fN , A) < +∞ converges strongly in L2.
Therefore, Mosco and Γ-convergence are equivalent in this situation. �

8.2. Sobolev bound and inner regularity. This second part focuses on the proof
of the Sobolev upper bound (iii) in Theorem 9.3, which turns out to be useful for
several results in the sequel.

Proposition 8.6 (Sobolev upper bound). Assume (ub). Then we have the Sobolev
upper bound

F0,ρ(ϕ,A) . k̄

ˆ
A

|∇ϕ|2 dm (8.11)

for any ϕ ∈ H1(Ω) and A ∈ O(Ω).

Proof. Let us first prove (8.11) for ϕ ∈ C∞
c (Rd). For N ∈ N, define fN : TN → R by

fN(K) := ϕ(xK) for K ∈ TN .
Clearly, ϕN := ιNfN converges uniformly to ϕ as N → ∞. Moreover, by smoothness
of ϕ and continuity of σ we also have

εN := sup
K,L∈TN

∣∣∣∣(fN(K)− fN(L)

dKL

)2

SKL − (∇ϕ(xK) · νKL)2σ(xK)
∣∣∣∣ → 0 (8.12)

as N → ∞. Similarly,∣∣∣∣ ∑
K∈TN |A

|∇ϕ(xK)|2σ(xK)|K| −
ˆ
A

|∇ϕ|2 dm
∣∣∣∣ ≤ εN . (8.13)
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Now we simply argue by ζ-regularity of the meshes (in particular we use the fact
that the number of neighbours is universally bounded) and (ub) to show that

k̄−1F̃N(ϕN , A) =
∑

K,L∈TN |A

(
fN(K)− fN(L)

dKL

)2

θlog(rN(K), rN(L))dKL|ΓKL|SKL

.
∑

K∈TN |A

dKL|ΓKL||∇ϕ(xK)|2σ(xK) + εN
∑

K∈TN |A

dKL|ΓKL|

.
∑

K∈TN |A

|∇ϕ(xK)|2σ(xK)|K|+ εNL d(A)

.
ˆ
A

|∇ϕ|2 dm+ εN(L
d(A) + 1),

where we used (8.12), the regularity of the mesh and (8.13). Passing to the limit
N → ∞ we obtain

F0,ρ(ϕ,A) ≤ lim sup
N→∞

F̃N(ϕN , A) . k̄

ˆ
A

|∇ϕ|2 dm,

which is the desired bound.
It remains to extend the result to H1(Ω) by a density argument. Indeed, for any

ϕ ∈ H1(Ω) there exists a sequence (ϕi)i ⊆ C∞
c (Rd) such that ϕi → ϕ in H1(Ω).

Using that F0,ρ is lower semicontinuous with respect to L2(Ω), we apply (8.11) to
ϕi to obtain

F0,ρ(ϕ,A) ≤ lim inf
i→∞

F0,ρ(ϕi, A) . k̄ lim inf
i→∞

ˆ
A

|∇ϕi|2 dm = k̄

ˆ
A

|∇ϕ|2 dm,

which shows (8.11) for ϕ ∈ H1(Ω). �

Remark 8.7. In the case when mN = πN (or more generally, when mN = PN(ρ dx)
for some continuous ρ), it is even possible to prove (iii) with a = 0 and c = 1. In
other words, the way one can prove (iii) is to give a proof of the limsup inequality.
Albeit simple, the proof of the existence of a recovery sequence reveals to be quite
insufficient for our purposes, due to the fact there is no simple way to obtain the
liminf inequality, which is the reason one has to pass through the compactness and
representation scheme.

We now focus on the inner regularity as set-valued limit functional of (F̃N(·, A))N
for every A ∈ O(Ω). Note that we prove something slightly stronger than the
classical inner regularity. More precisely, we are able to show an inner approximation
with sets of Lebesgue measure 0, which will be be particularly useful in the proof of
the locality in Proposition 9.5 below.

Proposition 8.8 (Inner regularity). Assume (ub). For any ϕ ∈ H1(Ω) the function
A 7→ F0,ρ(ϕ,A) is inner regular on O(Ω), in the sense that

sup
A′bA,

Ld(∂A′)=0

F0,ρ(ϕ,A
′) = sup

A′bA
F0,ρ(ϕ,A

′) = F0,ρ(ϕ,A), ∀A ∈ O(Ω). (8.14)

Proof. We adapt the proof for the cartesian grid as given in [AC04, Proposition
3.9]. Fix ϕ ∈ H1(Ω) and δ > 0 and consider a non-empty set A′′ ∈ O(Ω) such that
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A′′ b A (i.e. A′′ is relatively compact in A) and
ˆ
A\A′′

|∇ϕ|2 dx < δ.

Let εN := ιNeN be a recovery sequence for F0,ρ(ϕ,A \ A′′), i.e.

εN → ϕ in L2(Ω) and lim sup
N→∞

F̃N(εN , A \ A′′) ≤ F0,ρ(ϕ,A \ A′′) . k̄δ, (8.15)

where the last bound is a consequence of Proposition 8.6.
Take A′ ∈ O(Ω) such that A′′ b A′ b A and L d(∂A′) = 0. Note that this can

always be done since one can pick a compact set K satisfying A′′ ⊂ K b A and
then choose A′ as the union of any finite open cover of K by balls whose closures
are contained in A. Let ϕN := ιNfN be a recovery sequence for F0,ρ(ϕ,A

′) such that

ϕN → ϕ in L2(Ω) and lim sup
N→∞

F̃N(ϕN , A
′) ≤ F0,ρ(ϕ,A

′).

Fix M ∈ N and suppose that [TN ] < 1
5(M+1)

. Define A′′ ⊂ A1 ⊂ A2 ⊂ . . . ⊂
A5(M+1) ⊂ A′ by

Aj :=

{
x ∈ A′ : d(x,A′′) <

j

5(M + 1)
d((A′)c, A′′)

}
.

Moreover, for i ∈ {1, . . . ,M} we consider a cutoff function ρi ∈ C∞(Rd) satisfying

ρi|A5i+2
= 1, ρi|Ω\A5i+3

= 0, 0 ≤ ρi ≤ 1, |∇ρi| .M. (8.16)

Set riN := PNρi and define

f iN := riNfN + (1− riN)eN , so that ϕiN := ιNf
i
N → ϕ

as N → ∞. As [TN ] < 1
5(M+1)

, we have by (8.16),

ϕiN ≡ ϕN in A5i+1, ϕiN ≡ εN in A \ A5i+4. (8.17)

Using these identities and the inclusions A5i+1 ⊂ A′ and A′′ ⊂ A5i+4 we obtain

F̃N(ϕ
i
N , A) ≤ F̃N(ϕ

i
N , A5i+1) + F̃N(ϕ

i
N , A5(i+1) \ A5i) + F̃N(ϕ

i
N , A \ A5i+4)

≤ F̃N(ϕN , A
′) + F̃N(ϕ

i
N , A5(i+1) \ A5i) + F̃N(εN , A \ A′′)

(8.18)

To estimate the middle term, let ∇g(K,L) := g(L) − g(K) denote the discrete
derivative and observe that

∇f iN(K,L) = riN(L)∇fN(K,L) +
(
1− riN(L)

)
∇eN(K,L)

+
(
fN(K)− eN(K)

)
∇riN(K,L)

for any K,L ∈ TN . Consequently,

|∇f iN(K,L)|2 . |∇fN(K,L)|2 + |∇eN(K,L)|2 +M2d2KL|fN(K)− eN(K)|2.
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Using this bound and the ζ-regularity of the mesh we obtain

1

M

M∑
i=1

F̃N(ϕ
i
N , A5(i+1) \ A5i)

.
1

M

M∑
i=1

(
F̃N(ϕN , A5(i+1) \ A5i) + F̃N(εN , A5(i+1) \ A5i) + k̄M2‖ϕN − εN‖L2(Ω)

)
≤ 2

M

(
F̃N(ϕN , A

′ \ A′′) + F̃N(εN , A
′ \ A′′)

)
+ k̄M2‖ϕN − εN‖L2(Ω)

≤ 2E

M
+ k̄M2‖ϕN − εN‖L2(Ω),

where

E := E(δ, A) := sup
N∈N

(
F̃N(ϕN , A

′) + F̃N(εN , A \ A′′)
)
< +∞.

Inserting this error estimate into (8.18) we deduce that

1

M

M∑
i=1

F̃N(ϕ
i
N , A)− F̃N(ϕN , A

′)− F̃N(εN , A \ A′′) .
E

M
+ k̄M2‖ϕN − εN‖L2(Ω).

Next we pass to the limit N → ∞ for fixed M ∈ N. Since ϕN , εN → ϕ in L2, it
follows from (8.15) that

lim sup
N→∞

1

M

M∑
i=1

F̃N(ϕ
i
N , A)− F0,ρ(ϕ,A

′)− k̄δ .
E

M
. (8.19)

It remains to note that for any M ∈ N, there exists a subsequence (ϕiNN )N such that
ϕiNN → ϕ in L2(Ω) as N → ∞ and

F̃N(ϕ
iN
N , A) ≤

1

M

M∑
i=1

F̃N(ϕ
i
N , A) ∀N ∈ N.

Together with (8.19) this bound yields

F0,ρ(ϕ,A) ≤ lim sup
N→∞

F̃N(ϕ
iN
N , A) ≤ F0,ρ(ϕ,A

′) + C
(
δ +

E

M

)
,

where C = C(d, ζ) and E = E(δ, A). Taking the limit M → ∞ and then δ → 0 we
find

F0,ρ(ϕ,A) ≤ sup
A′bA,

Ld(∂A′)=0

F0,ρ(ϕ,A
′).

As the reverse inequality trivially holds, this concludes the proof. �

Proof of Theorem 8.2. By Proposition 8.8 and [BD98, Theorem 10.3], the sequence
(F̃N(·, A))N has a subsequence which is Γ-converging in L2(Ω)-topology to a limit
functional F0,ρ(·, A) for every A ∈ O(Ω). The fact that Γ-convergence implies Mosco
convergence, has already been observed in Theorem 8.1. �
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9. Representation and characterisation of the limit

In this section we show the following representation formula for the Γ-limits from
Section 8.

Theorem 9.1 (Representation of the Γ-limit). Let F0,ρ be as in Theorem 8.2, i.e.
suppose that for every A ∈ O(Ω), there exists a subsequence of (F̃N(·, A))N that is
L2(Ω)-Mosco convergent to F0,ρ(·, A). Then the functional F0,ρ can be represented
as

F0,ρ(ϕ,A) =

{´
A
fρ(x, ϕ,∇ϕ) dx if ϕ ∈ H1(Ω),

+∞, if ϕ ∈ L2(Ω) \H1(Ω),
(9.1)

for some measurable function fρ : Ω× R× Rd → [0,+∞).

Combined with the following result, this will complete the proof of Theorem 7.2.

Theorem 9.2 (Characterization of fρ). Suppose that σ ∈ Cb(Ω̄). Then the function
fρ : Ω× Rd → [0,+∞) defined in Theorem 9.1 is given by

fρ(x, u, ξ) = |ξ|2ρ(x)σ(x), ∀x ∈ Ω, u ∈ R, ξ ∈ Rd.

In particular, the sequence (F̃N(·, A))N is L2(Ω)-Mosco convergent to F0,ρ(·, A).

To prove Theorem 9.1, we use a representation result from [BFLM02] for func-
tionals on Sobolev spaces, which can be applied here in view of Theorem 8.1. For
our application, we have E(·, A) := F0,ρ(·, A) for any subsequential Γ-limit point
F0,ρ(·, A) of (F̃N(·, A))N .

Theorem 9.3. Let E : H1(Ω) × O(Ω) → [0,+∞] be a functional satisfying the
following conditions:

(i) locality: E is local, i.e. for all A ∈ O(Ω) we have E(ϕ,A) = E(ψ,A) if ϕ = ψ
a.e. on A.

(ii) measure property: For every ϕ ∈ H1(Ω) the set map E(ϕ, ·) is the restriction
of a Borel measure to O(Ω).

(iii) Sobolev bound: There exists a constant c > 0 and a ∈ L1(Ω) such that
1

c

ˆ
A

|∇ϕ|2 dx ≤ E(ϕ,A) ≤ c

ˆ
A

(
a(x) + |∇ϕ|2

)
dx

for all ϕ ∈ H1(Ω) and A ∈ O(Ω).
(iv) lower semicontinuity: E(·, A) is weakly sequentially lower semicontinuous in

H1(Ω).
Then E can be represented in integral form

E(ϕ,A) =

ˆ
A

f(x, ϕ,∇ϕ) dx,

where the measurable function f : Ω×R×Rd → [0,+∞) satisfies the self-consistent
formula

f(x, u, ξ) := lim sup
ε→0+

M(u+ ξ(· − x), Qε(x))

εd
, (9.2)

where Qε(x) is the open cube of side-length ε > 0 centred at x and
M(ψ,A) := inf

{
E(ϕ,A) : ϕ ∈ H1(Ω), ϕ− ψ ∈ H1

0 (A)
}

(9.3)
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for any ψ ∈ H1(Ω) and any open cube A ⊆ Ω.

Remark 9.4 (Equivalence of definitions). The paper [BFLM02] contains the state-
ment of Theorem 9.3 with M(ψ,A) replaced by

M̄(ψ,A) := inf
{
E(ϕ,A) : ϕ ∈ H1(Ω), ϕ = ψ in a neighbourhood of A

}
.

We claim that M = M̄ . As any competitor ϕ for M is a competitor for M̄ , it
is clear that M ≥ M̄ . To show the opposite inequality, we fix ε > 0 and take
ϕ ∈ H1(A) such that E(ϕ,A) ≤ M̄(ψ,A) + ε. It follows that ϕ − ψ ∈ H1

0 (A),
and there exists a sequence (ηn)n ⊆ C∞

c (A) such that ηn → ϕ − ψ in H1(Ω) as
n→ ∞. Set ϕn := ψ + ηn, so that ϕn → ϕ in H1(Ω). Note that ϕn is a competitor
for M(ψ,A) as it coincides with ψ on A \ spt(ηn). Hence, M(ψ,A) ≤ E(ϕn, A) for
all n ∈ N.

Using the continuity of E(·, A) with respect to the strong H1(Ω) convergence (as
follows from (iii)), we may pass to the limit to obtain

M(ψ,A) ≤ lim
n→∞

E(ϕn, A) = E(ϕ,A) ≤ M̄(ψ,A) + ε.

As ε > 0 is arbitrary, the claim follows.

In the remainder of this section we will verify that F0,ρ satisfies the conditions of
Theorem 9.3.

First we observe that the Sobolev upper bound (iii) has already been proved in
Proposition 8.6. Moreover, we claim that the corresponding lower bound follows
from Lemma 8.4. To prove this, take a recovery sequence ϕN → ϕ in L2(Ω) for
F̃N(·, A). For any h ∈ Rd and δ > 0 sufficiently small, it follows from Lemma 8.4
that

‖τhϕ− ϕ‖2L2(Aδ)
= lim

N→∞
‖τhϕN − ϕN‖2L2(Aδ)

.
|h|2

k
lim sup
N→∞

F̃N(ϕN , A) =
|h|2

k
Fρ(ϕ,A).

From the usual characterisation of Sobolev norms (see e.g. [Bre10, Proposition 9.3])
we infer that ‖∇ϕ‖2L2(Aδ)

. k−1Fρ(ϕ,A), which yields the result.
We also observe that (iv) follows immediately since any Γ-limit is lower semicon-

tinuous [Bra02, Proposition 1.28] with respect to the L2(Ω)-topology.
Thus, to verify that F0,ρ satisfies the conditions of Theorem 9.3, it remains to

prove the locality (Section 9.1) and the subadditivity (Section 9.2). The proof of
Theorem 9.2 is contained in Section 9.3.

9.1. Locality. A consequence of the inner regularity result from Proposition 8.8 is
the following simple proof of the locality of F0,ρ.

Proposition 9.5 (Locality). Assume that (ub) holds. Then F0,ρ is local, i.e. for
any A ∈ O(Ω) and ϕ, ψ ∈ L2(Ω) such that ϕ = ψ a.e. on A, we have F0,ρ(ϕ,A) =
F0,ρ(ψ,A).

Proof. Let A ∈ O(Ω) and take ϕ, ψ ∈ L2(Ω) such that ϕ = ψ a.e. on A. In view of
the inner regularity result from Proposition 8.8 we may assume that L d(∂A) = 0.
By symmetry, it suffices to prove that F0,ρ(ϕ,A) ≥ F0,ρ(ψ,A).
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Define CN :=
⋃
{K : K ∈ TN |A} and C :=

⋃
N CN , so that C ⊇ A. We claim

that

C \ A ⊆ BN , where BN :=
{
x ∈ Ω : d(x, ∂A) < 2[TN ]

}
. (9.4)

Indeed, for every x ∈ C \ A there exists N ≥ 1 and K ∈ TN such that x ∈ K \ A
and K̄ ∩ A 6= ∅. Therefore, d(x, ∂A) = d(x,A) ≤ diam(K) ≤ [TN ], which implies
(9.4).

Let (ϕN)N be a recovery sequence for F0,ρ(ϕ,A), i.e. ϕN → ϕ in L2(Ω) and

lim
N→∞

F̃N(ϕN , A) = F0,ρ(ϕ,A). (9.5)

Fix ψ̂N ∈ PCN such that ψ̂N → ψ in L2(Ω) as N → ∞ and define ψN : Ω → R by

ψN(x) :=

{
ϕN(x) if x ∈ C,

ψ̂N(x) if x ∈ Ω \ C.

We claim that ψN → ψ in L2(Ω) as N → ∞. Indeed, since ϕ = ψ a.e. on A, we
have

‖ψN − ψ‖2L2(Ω) = ‖ψ̂N − ψ‖2L2(Ω\C) + ‖ϕN − ψ‖2L2(C\A) + ‖ϕN − ϕ‖2L2(A). (9.6)

The first and the last term on the right-hand side vanish as N → ∞ since ϕN → ϕ
and ψ̂N → ψ in L2(Ω). On the other hand, (9.4) yields

lim sup
N→∞

‖ϕN − ψ‖L2(C\A) ≤ lim sup
N→∞

(
‖ϕ‖L2(BN ) + ‖ψ‖L2(BN )

)
= ‖ϕ‖L2(∂A) + ‖ψ‖L2(∂A) = 0,

since L d(∂A) = 0. Together with (9.6) we infer that ψN → ψ in L2(Ω) as N → ∞.
Using this fact, together with the Γ-convergence of F̃N in L2, the equality ϕN = ψN
a.e. on C and (9.5), we obtain

F0,ρ(ψ,A) ≤ lim sup
N→∞

F̃N(ψN , A) = lim sup
N→∞

F̃N(ϕN , A) = F0,ρ(ϕ,A),

which concludes the proof. �

9.2. Subadditivity. In this section we prove subadditivity of the functional A 7→
F0,ρ(ϕ,A) for any ϕ ∈ H1(Ω). This is the first step towards the verification of (ii)
in Theorem 9.3.

Proposition 9.6 (Subaddivity). Assume (ub). Then the functional F0,ρ(ϕ, ·) is
subadditive for any ϕ ∈ H1(Ω) in the sense that

F0,ρ(ϕ,A ∪B) ≤ F0,ρ(ϕ,A) + F0,ρ(ϕ,B), ∀A,B ∈ O(Ω). (9.7)

Proof. We prove that for all A′ b A, B′ b B, ϕ ∈ H1(Ω)

F0,ρ(ϕ,A
′ ∪B′) ≤ F0,ρ(ϕ,A) + F0,ρ(ϕ,B)

and deduce (9.7) from the inner regularity Proposition (8.8). Once again, the proof
is inspired by [AC04, Proposition 3.7] and follows similar ideas as in the proof of
Proposition (8.8). Pick A′ b A and B′ b B and let (ψN)N , (φN)N being recovery
sequences respectively for F0,ρ(ϕ,A) and F0,ρ(ϕ,B), which we can assume to be
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finite. Set d := d(A′, Ac) and pick any M ∈ N. Suppose that [TN ] < 1
5(M+1)

. We
define the sets

Aj :=

{
x ∈ A : d(x,A′) < j

d

5(M + 1)

}
⊂ A

for j ∈ {1, . . . , 5(M + 1)}. Moreover, for i ∈ {1, ...,M} let ρi be a cutoff function
ρi ∈ C∞(Rd) satisfying

ρi|A5i+2
= 1, ρi|Ω\A5i+3

= 0, 0 ≤ ρi ≤ 1, |∇ρi| .M.

Introduce sequences converging in L2(Ω) by

ϕiN := ιNPN

(
ρiψN + (1− ρi)φN

)
−−−→
N→∞

ϕ ∀i ∈ {1, . . . ,M}

and note that ϕiN ≡ ψN in A5i+1 and ϕiN ≡ φN in Ω\A5i+4. Arguing as in the proof
of Proposition (8.8), one deduces the bound
F̃N(ϕ

i
N , A

′ ∪B′) ≤ F̃N(ψN , A) + F̃N(ϕ
i
N , (A5(i+1) \ A5i) ∩B′) + F̃N(φN , B) (9.8)

for i ∈ {1, ...,M}, as well as the bound

1

M

M∑
i=1

F̃N(ϕ
i
N , (A5(i+1) \ A5i) ∩B′) .

E

M
+ k̄M2‖ψN − φN‖L2(Ω),

where we used that (A5(i+1) \A5i)∩B′ ⊂ A∩B and that the energy of the recovery
sequences ψN and φN is bounded from above. Thus,

sup
N∈N

F̃N(ψN , A) ∨ sup
N∈N

F̃N(φN , B) ≤ E = E(A,B) < +∞.

We may combine the error estimates above with (9.8) to deduce

1

M

M∑
i=1

F̃N(ϕ
i
N , A

′ ∪B′)− F̃N(ψN , A)− F̃N(φN , B) .
E

M
+ k̄M2‖ψN − φN‖L2(Ω).

Passing to the limit as N → ∞ for a fixed M ∈ N, from the previous bound and
the fact that both ψN , φN → ϕ, we obtain

lim sup
N→∞

1

M

M∑
i=1

F̃N(ϕ
i
N , A

′ ∪B′)− F0,ρ(ϕ,A)− F0,ρ(ϕ,B) .
E

M
. (9.9)

Once again, in order to conclude the proof we note that for any fixed M ∈ N, one
can find a sequence of ϕiNN such that ϕiNN → ϕ in L2(Ω) as N → ∞ and

F̃N(ϕ
iN
N , A

′ ∪B′) ≤ 1

M

M∑
i=1

F̃N(ϕ
i
N , A

′ ∪B′).

Together with (9.9), this yields

F0,ρ(ϕ,A
′ ∪B′) ≤ lim sup

N→∞
F̃N(ϕ

iN
N , A

′ ∪B′) ≤ F0,ρ(ϕ,A) + F0,ρ(ϕ,B) + C
E

M

for every M ∈ N and some constants C = C(d, ζ) > 0 and E = E(A,B) > 0.
Taking the limit M → ∞, we infer that

F0,ρ(ϕ,A
′ ∪B′) ≤ F0,ρ(ϕ,A) + F0,ρ(ϕ,B),

which completes the proof. �
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The following additivity property turns out to be much easier to prove than the
correspondent result on the grid in [AC04], due to inner regularity in combination
with the very short range of interaction (nearest neighbours on a scale of order [TN ]).

Proposition 9.7 (Additivity on disjoint sets). Assume (ub). For any ϕ ∈ H1(Ω)
the function F0,ρ(ϕ, ·) is additive on disjoint sets, i.e.

F0,ρ(ϕ,A ∪B) = F0,ρ(ϕ,A) + F0,ρ(ϕ,B) (9.10)

for all A,B ∈ O(Ω) such that A ∩B = ∅.

Proof. In view of the subadditivity result from Proposition 9.6, it remains to show
the superadditivity. Furthermore, by inner regularity (Proposition 8.8) we may
assume that d(A,B) > 0. Consequently, for N sufficiently large we have

F̃N(ϕ,A ∪B) = F̃N(ϕ,A) + F̃N(ϕ,B) ∀ϕ ∈ H1(Ω).

Fix ϕ ∈ H1(Ω) and let (ϕN)N be a recovery sequence for F0,ρ(ϕ,A ∪ B). Using
the previous identity we obtain

F0,ρ(ϕ,A) + F0,ρ(ϕ,B) ≤ lim inf
N→∞

F̃N(ϕN , A) + lim inf
N→∞

F̃N(ϕN , B)

≤ lim inf
N→∞

F̃N(ϕN , A) + F̃N(ϕN , B)

= lim inf
N→∞

F̃N(ϕN , A ∪B)

= F0,ρ(ϕ,A ∪B),

which is the desired superadditivity inequality. �

We are now in a position to collect all the pieces for the proof of Theorem 9.1.

Proof of Theorem 9.1. In view of Proposition 8.6, it suffices to check that F0,ρ(·, A)
satisfies the conditions of Theorem 9.3.

The locality (i) has been shown in Proposition 9.5.
To prove (ii), we apply the De Giorgi-Letta criterion; cf. [DGL77], [BD98]. For

any ϕ ∈ H1(Ω), it follows from Proposition 8.8, Proposition 9.6 and Proposition 9.7
that F0,ρ(ϕ, ·) is the restriction of a Borel measure to O(Ω).

The Sobolev bound (iii) has been proved in Proposition 8.6.
Finally, to prove the lower semicontinuity (iv) we note that the lower semicontinu-

ity with respect to strong L2(Ω)-convergence follows from the fact that any Γ-limit
is lower semicontinuous; see [Bra02, Proposition 1.28]. Since H1(Ω) is compactly
embedded in L2(Ω), the result follows. �

9.3. The characterization of the Γ-limit. To prove Theorem 7.2 it remains to
characterize the Γ-limit F0,ρ obtained in Theorem 9.1. Thus, we have to compute
the function fρ appearing in Theorem 9.1. From (9.2) it follows that for x ∈ Ω,
u ∈ R and ξ ∈ Rd,

fρ(x, u, ξ) = lim sup
ε→0+

M
(
u+ ξ(· − x);Qε(x)

)
εd

, (9.11)

where Qε(x) denotes the open cube of side-length ε centred at x and

M(φ,A) := inf
ψ
{F0,ρ(ψ,A) : ψ ∈ H1(Ω) s.t. ψ − φ ∈ H1

0 (A)}
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for any Lipschitz function φ : Ω → R and any open set A ⊆ Ω with Lipschitz
boundary.

In order to compute M by discrete approximation, we consider its discrete coun-
terpart MT defined by

MT (f, A) := inf
g
{FT (g, A) : g ∈ RT s.t. f = g on T |Ac} for f : T → R.

The following result is crucial for the proof of Theorem 9.2 below.

Lemma 9.8. Let A ⊆ Ω be an open set with Lipschitz boundary. For any Lipschitz
function φ : Ω → R we define fN : TN → R by fN(K) := φ(xK) for K ∈ TN .
Suppose that F̃N(·, A)

Γ−→ F0,ρ(·, A) in L2(Ω) as N → ∞ for any A ∈ O(Ω). Then
we have

MN(fN , A) → M(φ,A) (9.12)
as N → ∞.

Proof. First we embed the discrete functionals in the continuous setting. For any
Lipschitz function φ : Ω → R and any open set A ⊆ Ω we set

PCN(φ,A) := {ψ ∈ PCN : ψ(xK) = φ(xK) ∀K ∈ TN |Ac}. (9.13)

We consider the embedded discrete energies F̃φ
N : L2(Ω) → [0,+∞] defined by

F̃φ
N(ψ,A) :=

{
FN(PNψ,A), if ψ ∈ PCN(φ,A)

+∞ otherwise,

and their continuous counterpart Fφ
0,ρ : L

2(Ω) → [0,+∞] defined by

Fφ
0,ρ(ψ,A) :=

{
F0,ρ(ψ,A), if ψ − φ ∈ H1

0 (A),

+∞ otherwise.

We claim that
F̃φ
N(·, A)

Γ−→ Fφ
0,ρ(·, A), ∀A ⊆ Ω with Lipschitz boundary, φ ∈ Lip(Rd),

which implies, together with Proposition 8.5 and basic results from the theory of
Γ-convergence, the desired convergence of the minima in (9.12).

To prove the claim, we argue as in [AC04, Theorem 3.10].
To prove the liminf inequality, we consider a sequence ψN ⇀ ψ in L2(Ω) satisfying

supN F̃φ
N(ψN , A) < +∞. In particular, this implies that ψN ∈ PCN(PNφ,A) and

F̃φ
N(ψN , A) = F̃N(ψN , A). Since F̃N(·, A)

Γ−→ F0,ρ(·, A), it remains to prove that
ψ − φ ∈ H1

0 (A). In view of the boundary condition and the fact that φ ∈ Lip(Rd),
we have

F̃N(ψN ,Ω) ≤ F̃N(ψN , A) + F̃N(PNφ,Ω) . F̃N(ψN , A) + Lip(φ).

It follows from Proposition 8.5 that ψN → ψ strongly in L2(Ω) with ψ ∈ H1(Ω).
Moreover, by construction we have ψN → φ in L2(Ω \ A). Since A has a Lipschitz
boundary, we conclude that ψ − φ ∈ H1

0 (A).
Let us now prove the limsup inequality. Pick ψ ∈ L2(Ω) such that Fφ

0,ρ(ψ,A) <
+∞. In particular, ψ − φ ∈ H1

0 (A). Without loss of generality, we may assume
that supp(ψ−φ) b A, as the general case follows then by a density argument using
the continuity of F0,ρ in the strong H1(Ω)-topology. Consider a recovery sequence
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ψN → ψ in L2(Ω) such that F̃N(ψN , A) → F0,ρ(ψ,A) = Fφ
0,ρ(ψ,A) as N → +∞. As

in the proof of Proposition 8.8, one can find for any δ > 0 a cutoff function φδ with
the following properties:

(i) supp(ψ − φ) b suppφδ b A;
(ii) the functions ψδN := iN ◦ PN

(
φδψN + (1− φδ)φ

)
satisfy

lim sup
N→∞

F̃φ
N(ψ

δ
N , A) = lim sup

N→∞
F̃N(ψ

δ
N , A)

≤ lim sup
N→∞

F̃N(ψN , A) + δ = Fφ
0,ρ(ψ,A) + δ.

Passing to the limit along a diagonal subsequence ψδ(N)
N → ψ in L2(Ω) as δ → 0,

the result follows. �

Proof of Theorem 9.2. We split the proof into two parts.
Step 1. We first suppose that σ, ρ ≡ 1 and mN = πN and we fix ε > 0. For fixed

u ∈ R, z ∈ Ω, and ξ ∈ Rd we will compute
MN(f

ξ
u,z, Qε(z)), where f ξu,z(K) := φξu,z(xK) and φξu,z(·) := u+ ξ(· − z).

As a shorthand we write f := f ξu,z and Qε := Qε(z), suppressing the N -dependence
of f . Recall that

MN(f,Qε) = inf
g

{
FN(g,Qε) : g ∈ RTN and g(K) = f(K) for K ∈ TN |Qc

ε

}
.

In other words, we minimize the discrete Dirichlet energy localized on Qε with
Dirichlet boundary conditions given by the discretised affine function f .

By computing the first variation of the action, the unique minimizer is given by
the solution h : TN → R of the corresponding discrete Laplace equation{

LNh(K) = 0 for K ∈ TN \ TN |Qc
ε
,

h(K) = f(K) for K ∈ TN |Qc
ε
.

(9.14)

We claim that the function f solves (9.14). Indeed, the boundary conditions hold
trivially. Moreover, writing τKL := xK−xL

|xK−xL|
we obtain for any K ∈ TN \ TN |Qc

ε
,

πKLNf(K) =
∑
L∼K

wKL
(
f(L)− f(K)

)
=

∑
L∼K

|ΓKL|〈ξ, τKL〉

=

ˆ
∂K

〈ξ, νext〉 dH d−1 = 0,

where νext denotes the outward normal unit normal and in the last step we used
Stokes’ theorem. This computation shows the optimality of f and, hence,

MN(f,Qε) = FN(f,Qε).

For the asymptotic computation of FN(f,Qε) we use the average isotropy property
of any regular mesh (see [GKM18, Lemma 5.4]) to obtain∣∣FN(f,Qε)− εd|ξ|2

∣∣ = ∣∣∣∣(1

2

∑
K,L∈TN
K̄,L̄∩Qε 6=∅

dKL|ΓKL|〈ξ, τKL〉2
)
− |ξ|2|Qε|

∣∣∣∣
≤ |B(∂Qε, 5[TN ])| → 0 as N → ∞.
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Note that we get |B(∂Qε, 5[TN ])| instead of |B(∂Qε, 4[TN ])| as in [GKM18, Lemma
5.4] because we take into account all the cells whose closure intersects the cube Qε

and not only the ones contained in it. Together with Lemma 9.8, we obtain for all
ξ ∈ Rd and ε > 0,

M(φξu,z, Qε) = lim
N→∞

MN(f,Qε) = lim
N→∞

FN(f,Qε) = εd|ξ|2. (9.15)

Hence,

fρ(z, u, ξ) = lim sup
ε→0+

M(φξu,z, Qε)

εd
= |ξ|2,

which concludes the proof in the special case σ, ρ ≡ 1, mN = πN .

Step 2. Let us now consider the general case when σ ∈ Cb(Ω) and mN , ρ satisfy
(lb), (ub) and (pc). We write F̄N ,M̄N for the respective analogues of FN ,MN from
the special case σ, ρ ≡ 1 and mN = πN , which we considered in Step 1.

Fix u ∈ R, z ∈ Ω, ξ ∈ Rd and let Qε, φξu,z, f be as above.
For all g : TN → R we have by construction,(

inf
Q2ε

ρNσ
)
F̄N(g,Qε) ≤ FN(g,Qε) ≤

(
sup
Q2ε

ρNσ
)
F̄N(g,Qε).

Hence, in particular,(
inf
Q2ε

ρNσ
)
M̄N(f,Qε) ≤ MN(f,Qε) ≤

(
sup
Q2ε

ρNσ
)
M̄N(f,Qε).

As a consequence of the first part of the proof and (9.15), passing to the limit as
N → ∞ and applying (9.12), we deduce(

lim sup
N→∞

inf
Q2ε

ρN

)(
inf
Q2ε

σ
)
|ξ|2εd ≤ M(φξu,z, Qε)

≤
(
lim inf
N→∞

sup
Q2ε

ρN

)(
sup
Q2ε

σ
)
|ξ|2εd.

Passing to the limsup as ε→ 0, we deduce from (9.11), both the continuity of σ and
the (pc) condition

fρ(z, u, ξ) = lim sup
ε→0

M(φξu,z, Qε)

εd
= |ξ|2ρ(z)σ(z) for a.e. z ∈ Ω,

which concludes the proof. �
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PARABOLIC HARNACK INEQUALITIES FOR LINEAR
DIFFUSIONS WITH AN APPLICATION TO MARKOV CHAINS

ON LOCALLY FINITE GRAPHS

DOMINIK FORKERT, JAN MAAS, AND LORENZO PORTINALE

1. Introduction

This short note is devoted to the analysis of quadratic diffusion processes on
metric measure spaces, with particular attention to the case of locally finite graphs.
The main result shows that under a two-sided bounded horizon condition on the
associated jump process, a Poincaré inequality and a volume growth condition, one
can prove a parabolic Harnack inequality for the correspondent diffusion process.
The importance of such an inequality is well-established in the literature and its
origins go back to Carl Gustav Axel von Harnack in the 19th century, in the context
of harmonic functions in Euclidean domains. One particularly significant application
of Harnack inequalities is the Hölder continuity of the correspondent solution – a
parabolic version of the Harnack inequality even implies Hölder regularity of the
associated flow. We refer the reader to [Kas07] for a general introduction to the
topic.

Given their fundamental impact, Harnack inequalities have been widely studied.
Let us recall the works of Grigor’yan [Gri09] and Saloff-Coste [SC02] for Laplace-
Beltrami operators on Riemaniann manifolds, where equivalent characterizations for
parabolic Harnack inequalities have been investigated. In particular, they showed
that a parabolic Harnack inequality is equivalent to a Poincaré inequality together
with a doubling condition for the volume measure; thus, highlighting a deep connec-
tion between properties of solutions to the heat flow on a manifold and more geo-
metric and analytic aspects of the space itself. Similar results have been extended
to the case of symmetric diffusions on metric measure spaces by Sturm [Stu96] and
to random walks on graphs by Delmotte [Del99]. All these results concern a classi-
cal linear diffusion regime. Other regimes have been considered in [BBK09].

More recently, a more unifying picture for different diffusions on general met-
ric measure spaces has been proposed in a series of works by Chen, Kumagai and
Wand [CKW17],[CKW18],[CKW19a], [CKW19b], where the authors proposed sev-
eral equivalent conditions for parabolic Harnack inequalities, amongst them elliptic
Harnack inequalities, elliptic and parabolic Hölder regularity as well as upper and
lower bounds on the heat kernel.

Albeit the existence of such an involved history of works, the particular case
of linear diffusions on locally finite graphs appeared, to our knowledge, slightly
incomplete. In particular, the main reference work in this setting, given by [Del99],
deals with parabolic Harnack inequalities for diffusions where the reference measure
µ and the jump kernel j are related by the condition

µ(x) =
∑
y

j(x, y). (1)

53
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In [BBK09], the authors discuss similar problems with more flexibility, thus, not
assuming the previous condition; even though they assume two-sided bounds on µ
and j, which is a stricter condition not assumed in [Del99]. In [BBK09, Theorem 1.5]
the authors describe the connections between upper bounds on the jump kernel, the
doubling conditions and the Poincaré inequalities with parabolic Harnack inequal-
ities. Nonetheless, those results only apply to certain nonlinear diffusion regimes.
Indeed, the reason why the linear case is left out, is the presence of long-range in-
teractions, with consequent issues of integrability in a linear regime.

The same authors in [CKW17, Remark 1.7] discuss the possible application of
their general equivalence result to different diffusion regimes but they exclude the
linear case.

Another generalization of the results in [Del99] is also pursued in [ADS16]. In this
work elliptic and parabolic Harnack inequalities are established for locally finite
graphs satisfying volume regularity as well as a relative isoperimetric inequality
which is, for instance, satisfied on the Euclidean lattice. Despite working under
the assumption (1), the approach of the authors allows for more general reference
measures (cf. [ADS16, Remark 1.5]).

The goal of this short work is to fill this gap and prove, in the same spirit of
[CKW17, Remark 1.7], a parabolic Harnack inequality (and a Hölder regularity
result as a consequence) in the linear case for bounded-horizon jump processes,
where integrability issues as appearing in a long-range regime do not pose a problem.

Finally, we discuss an application of this result to a finite volume framework
and prove a Hölder regularity result for approximating solutions to a Fokker-Planck
equation in Rd. This turns out to be the key point in [FMP20], in order to obtain
evolutionary Γ-convergence of discrete gradient structures for the Fokker-Planck
equation in Rd with respect to the discrete optimal transport metric, introduced
independently by Maas in [Maa11] and Mielke in [Mie11].

2. Parabolic Harnack inequalities for linear diffusions on metric
measure spaces

Let (X, d, µ) be a metric measure space. Throughout these notes we assume that
(X, d) is a locally compact Polish space and µ is a positive Radon measure on X
with full support. In this section we present a result showing a Harnack inequality
for linear diffusions on a metric measure space, where the associated jump process
has a bounded horizon (both from below and above, see (9)).

We start with some definitions.

Definition 2.1. (X, d, µ) is said to satisfy (VG) (volume growth condition) with
parameter α > 0 if

C−1
V rα ≤ µ(B(x, r)) ≤ CV r

α, ∀x ∈ X, r ≥ 0.

We are interested in a regular Dirichlet form E with dense domain F in L2(X,µ),
with only pure-jump part as follows: For a symmetric Radon measure J on X×X \
diag (here diag denotes the diagonal set {(x, x) : x ∈ X}), we consider

E(f, g) :=
ˆ
X×X\diag

(f(x)− f(y))(g(x)− g(y)) dJ(x, y) ∀f, g ∈ F . (2)
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Associated to E , one can consider the corresponding carré du champ Γ, given for
each pair of functions f, g ∈ F , by the measure

Γ(f, g)(A) :=

ˆ
A×X\diag

(f(x)− f(y))(g(x)− g(y)) dJ(x, y) (3)

for all Borel sets A ⊆ X. By definition, we have E(f, g) = Γ(f, g)(X).

We want to describe some of the properties of the semigroup generated by E , in
particular, the validity of Harnack type inequalities and the Hölder regularity of the
solutions, in the specific case of a classical linear diffusion regime. Let φ : R+ → R+

be a strictly increasing continuous function with φ(0) = 0 and φ(1) = 1, satisfying

c1

(R
r

)β1

≤ φ(R)

φ(r)
≤ c2

(R
r

)β2

∀0 < r ≤ R (4)

for certain constants c1, c2 > 0 and β2 ≥ β1 > 0.
We make use of several abbreviations throughout the article, consistent with re-

spect to the works [CKW17],[CKW18],[CKW19a], [CKW19b] of Chen, Kumagai
and Wang.
Definition 2.2. We say Jφ,≤ (upper bound on the jump kernel) is satisfied if J is
absolutely continuous with respect to µ× µ with density j, satisfying

j(x, y) ≤ c

V (x, d(x, y))φ(d(x, y))
µ× µ-a.e. x, y ∈ X (5)

for a constant c > 0, where V (x, r) denotes the µ-volume of the closed ball centred
in x of radius r.

One of the key properties that is often used to obtain regularity estimates for the
solution of the correspondent heat flow, as introduced in [CKW17], reads as follows.
Definition 2.3. For Borel sets A,B ⊆ X such that Ā ⊂ B, we say that ϕ is a cut-
off function for A ⊂ B if 0 ≤ ϕ ≤ 1 on X such that ϕ = 1 on A and ϕ = 0 on
Bc.
Definition 2.4. We say that CSJ(φ) (cut-off Sobolev inequality for the jump kernel)
is satisfied if there exist C0 ∈ (0, 1] and C1, C2 > 0 such that for every 0 < r ≤ R,
almost every x0 ∈ X and any f ∈ F , there exists a cut-off function ϕ ∈ Fb :=
F ∩ L∞(X,µ) for B(x0, R) ⊂ B(x0, R + r), satisfyingˆ

Bx0 (R+(1+C0)r)

f 2 dΓ(ϕ, ϕ) ≤C1

ˆ
U×U∗

(f(x)− f(y))2 dJ(x, y) (6)

+
C2

φ(r)

ˆ
Bx0 (R+(1+C0)r)

f 2 dµ, (7)

where U = B(x0, R+ r) \B(x0, R) and U∗ = B(x0, R+(1+C0)r) \B(x0, R−C0r).
A substantially stronger version of the condition above is the following upper

bound on the carré du champ of E .
Definition 2.5. We say that UΓ(φ) (upper bound on the carré du champ) holds if
for every 0 < r ≤ R and every x0 ∈ X, there exist C2 > 0 and a cut-off function
ϕ ∈ Fb for B(x0, R) ⊂ B(x0, r +R) such that

dΓ(ϕ, ϕ)

dµ
(x) ≤ C2

φ(r)
µ-a.e. x ∈ X. (8)



56 DOMINIK FORKERT, JAN MAAS, AND LORENZO PORTINALE

Note that UΓ(φ) implies CSJ(φ) for any C0 and C1 = 0 (even stronger, the choice
of ϕ is uniform in f ∈ F).

In the following result we describe a particular setting where the UΓ(φ) condition
is indeed satisfied. For a general picture of the relations between various conditions,
amongst them the ones introduced above, we refer to the works [CKW17], [CKW18].

Theorem 2.6 (UΓ(φ) for linear diffusion with two-sided bounded horizon). Assume
φ(r) = r2 and suppose there exist α∗, α

∗ ∈ R+ such that

j(x, y) = 0 whenever d(x, y) ≤ α∗ or d(x, y) ≥ α∗. (9)

Then (VG) and Jφ,≤ imply UΓ(φ) with a constant C2 in (8) only depending on the
constants in (VG), Jφ,≤, α∗ and α∗.

Remark 2.7. A simple example of a metric measure space that satisfies (9) is given
by an unweighted directed graph where a jump occurs, i.e. j(x, y) > 0, if and only if
(x, y) is an edge. More generally, a graph setting with a more involved jump function
j has been extensively studied in [CKW17], [CKW18]. Nonetheless, in those works
only the case φ(r) = rβ with β < 2 has been investigated. In that case, no bounded
horizon condition like (9) is needed.

In [Del99],[BBK09] the case β = 2 is considered. Nevertheless, in the first work
the extra assumption (1) between µ and j is present, whereas in the second one, no
result concerning the direct connection between Jφ,≤ and PHI(φ) is present for such
a regime.

Proof of Theorem 2.6. The proof follows along the lines of [BBK09] and [CKW17,
Remark 1.7]. For given 0 < r ≤ R and x0 ∈ X, define ϕ(x) := h(d(x, x0)) for a
function h ∈ C1(R+

0 ; [0, 1]) satisfying

h(s) =

{
1 s ≤ R

0 s ≥ r +R
and |h′(s)| ≤ 2

r
∀s ≥ 0.

Then, by construction, we have

dΓ(ϕ, ϕ)

dµ
(x) =

ˆ
(ϕ(x)− ϕ(y))2j(x, y) dµ(y)

≤
ˆ
{d(x,y)≥r}

j(x, y) dµ(y) +
4

r2

ˆ
{d(x,y)≤r}

d(x, y)2j(x, y) dµ(y).
(10)

Step 1. We show that for any given r > 0, there exists C2 ∈ R+, only depending on
the constants in (VG), Jφ,≤, and (9), such that

ˆ
{d(x,y)≥r}

j(x, y) dµ(y) ≤ C2

φ(r)
. (11)
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Indeed, as a consequence of Jφ,≤, (4) and (VG), one getsˆ
{d(x,y)≥r}

j(x, y) dµ(y) ≤ c

ˆ
{d(x,y)≥r}

1

V (x, d(x, y))φ(d(x, y))
dµ(y)

= c

∞∑
i=0

ˆ
{2ir≤d(x,y)<2i+1r}

1

V (x, d(x, y))φ(d(x, y))
dµ(y)

≤ c
∞∑
i=0

1

V (x, 2ir)φ(2ir)
V (x, 2i+1r)

≤ C2

φ(r)

∞∑
i=0

2−iβ2 ≤ C2

φ(r)

for some constant C2, which shows (11).
Step 2. We show that for every r > 0, there exists C2 ∈ R+, only depending on the
constants in (VG), Jφ,≤ and (9), such thatˆ

{d(x,y)≤r}
d(x, y)2j(x, y) dµ(y) ≤ C2. (12)

Indeed, if r ≤ α∗, then the left-hand side of (12) simply vanishes. Hence, we may
assume without restriction that r ≥ α∗. As a consequence of Jφ,≤ and (VG), together
with φ(r) = r2 and (9), we may deduce in a similar spirit as aboveˆ

{d(x,y)≤r}
d2(x, y)j(x, y) dµ(y) ≤

ˆ
{d(x,y)≤r}

d2(x, y)j(x, y) dµ(y)

=
∞∑
i=0

ˆ
{2−i−1r<d(x,y)≤2−ir}

d2(x, y)j(x, y) dµ(y)

=

i∗(r)∑
i=i∗(r)

ˆ
{2−i−1r<d(x,y)≤2−ir}

d2(x, y)j(x, y) dµ(y)

≤ c

i∗(r)∑
i=i∗(r)

ˆ
{2−i−1r<d(x,y)≤2−ir}

1

V (x, d(x, y))
dµ(y)

≤ c

i∗(r)∑
i=i∗(r)∨0

1

V (x, 2−i−1r)
V (x, 2−ir)

≤ C2(i
∗(r)− i∗(r)),

where to pass from the second to the third line we used (9) for functions i∗(r) and
i∗(r) given by

i∗(r) :=
[
log2

( r

α∗

)]
and i∗(r) :=

[
log2

( r

α∗

)]
≥ 0,

respectively.
We end the proof of (12) by noticing that in fact i∗(r)− i∗(r) ≤ log2

(
α∗

α∗

)
+1 for

any r > 0. Finally plugging (11) and (12) into (10), we obtain UΓ(φ). �

Remark 2.8. Note that (11) neither relies on φ being quadratic nor on (9). However,
those two conditions are of fundamental importance in order to get (12).
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Remark 2.9. The UΓ(φ) condition is crucial for the choice of φ. Indeed, in a classical
diffusion setting, say on a Riemannian manifold (M, g), the quadratic choice is
natural for the specific choice of ϕ as in the proof of Theorem 2.6.

The UΓ(φ) condition is known to be related to a parabolic Harnack inequality and
Hölder regularity of the solution of the correspondent flow, as proved in [CKW17,
Theorem 1.20].

Definition 2.10 (Harnack Inequality). Let (X, d, µ) be a metric measure space, E
a pure-jump regular Dirichlet form with dense domain F in L2(X,µ) as defined in
(2), with a jump kernel given by a Radon measure J on X × X \ diag, absolutely
continuous with respect to µ× µ with symmetric density j(x, y) = j(y, x). Let L be
the associated generator, given by

Lf(x) :=
ˆ
X

j(x, y)(f(y)− f(x)) dµ(y) f ∈ F . (13)

We say that (X, d, µ, J) satisfies a continuous-time parabolic Harnack inequality (in
short PHI(φ)) if there exist parameters η ∈ (0, 1), 0 < θ1 < θ2 < θ3 < θ4 and a
constant cH > 0 such that for all x0 ∈ X, s ∈ R, r > 0 and every non-negative
solution of

∂tu = Lu, on Q = [s, s+ θ4φ(r)]×B(x0, r),

one has

sup
Q−

u ≤ cH inf
Q+

u (PHI(φ))

where Q− and Q+ are defined by

Q− := [s+ θ1φ(r), s+ θ2φ(r)]×B(x0, ηr)

and
Q+ := [s+ θ3φ(r), s+ θ4φ(r)]×B(x0, ηr),

respectively.

Remark 2.11. Fix η′ ∈ (0, 1) and 0 < θ′1 < θ′2 < θ′3 < θ′4 as above. One can show
that a Harnack inequality with respect to (η, θ1, θ2, θ3, θ4, cH) implies the existence
of a constant c′H > 1, only dependent on the aforementioned constants, such that
a Harnack inequality with respect to (η′, θ′1, θ

′
2, θ

′
3, θ4, c

′
H) holds as well; see [Del99,

Definition 1.6].

There are two more ingredients required to obtain a parabolic Harnack inequality:
a regularity property on the jump kernel and a (weak) Poincaré inequality.

Definition 2.12. We say that (UJS) (upper bound for jump kernel smoothness)
holds if J is absolutely continuous with respect to µ × µ with symmetric density
j(x, y) = j(y, x) and there exists a constant c > 0 such that for µ-a.e. x0 6= y in X,
we have

j(x0, y) ≤
c

V (x0, r)

ˆ
B(x0,r)

j(x, y) dµ(x) ∀r ≤ d(x0, y)

2
.
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Definition 2.13. We say that a weak-Poincaré inequality (in short PI(φ)) holds,
whenever there exist CP > 0 and c ≥ 1 such that for every x0 ∈ X and r > 0, the
inequalityˆ

B(x0,r)

|f(x)|2 dµ(x) ≤ CP φ(r)

ˆ
B(x0,cr)×B(x0,cr)

|f(x)− f(y)|2 dJ(x, y) (14)

holds for any given function f : B(x0, r) → R satisfying
´
B(x0,r)

f(x) dµ(x) = 0.

We are finally ready to state the main consequence of Theorem 2.6.
Corollary 2.14. Let (X, d, µ) be a metric measure space that satisfies (VG) and let
E be a regular Dirichlet form with dense domain F in L2(X,µ) as defined in (2).
Set φ(r) = r2 and suppose that

(i) Jφ,≤, (UJS) and PI(φ) are satisfied,
(ii) the density j satisfies the bounded horizon assumption (9).

Then a parabolic Harnack inequality PHI(φ) holds true. Moreover, one has Hölder
regularity for the associated heat flow, i.e. there exist λ, η ∈ (0, 1), and CH > 0
depending only on the constants in (VG), Jφ,≤, (UJS), PI(φ), and (9) such that
for all x0 ∈ X, s ∈ R, R > 0 and every continuous solution1 of ∂tvt = Lvt on
Q = [s−R2, s]×B(x0, R), it holds

|vt(x)− vt(y)| ≤ CH

(
d(x, y)

R

)λ

sup
Q

|v| ∀(t, x), (t, y) ∈ Q+,

where Q+ = [s− ηR2, s]×B(x0, ηR).
Proof. Apply Theorem 2.6 and [CKW18, Theorem 1.20]. �

Application to Markov chains on infinite graphs

A particular setting where the results of the previous section apply, is given by a
locally finite graph Γ = (V,E) where V denotes the set of vertices and E the set of
edges.

Write x ∼ y, whenever x and y are neighbouring vertices in Γ. Let dgra be the
graph distance induced by Γ and let Bgra(x, r) be the corresponding closed ball
centered in x of radius r > 0. Denote the corresponding volume with respect to µ
by V (x, r) := µ(Bgra(x, r)).

For notational simplicity, we use subscripts in form of µx and Jxy to denote the
respective expressions µ(x) and J({(x, y)}) in this section.
Proposition 2.15 (Quadratic Harnack inequality on infinite graphs). Let Γ =
(V,E) be a locally finite (unweighted) graph. Let µ ∈ M(V ) be a bounded mea-
sure on V , together with a measure J on V ×V such that Jxy = Jyx for all x, y ∈ V
and Jxy > 0, precisely, when x ∼ y. Assume that

Jxy ≤ CJµxµy ∀x, y ∈ V (15)
for some constant CJ > 0. Consider the corresponding generator LT , given by

LT f(x) :=
1

µx

∑
y∼x

Jxy(f(y)− f(x)). (16)

Suppose the following geometric assumptions hold:
1For general bounded measurable solutions see [CKW18, Definition 1.15].
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(i) Volume growth: There exists a constant CV > 0 such that

C−1
V rd ≤ V (x, r) ≤ CVr

d ∀x ∈ V, r > 0.

(ii) Weak Poincaré inequality: There exist CP > 0 and c ≥ 1 such that for all
x0 ∈ Γ and r > 0, the inequality∑

x∈Bgra(x0,r)

µx|f(x)|2 ≤ CP r
2
∑

x,y∈Bgra(x0,cr)

Jxy|f(x)− f(y)|2 (17)

holds for any function f : Bgra(x0, r) → R satisfying
∑

x∈Bgra(x0,r)
µxf(x) = 0.

(iii) 2-sided bounded horizon: There exist α∗, α
∗ > 0 such that the density j(x, y) :=

Jxy satisfies (9).
Then (Γ, dgra, µ, J) satisfies a parabolic Harnack inequality PHI(φ) for φ(r) = r2

with a constant cH only depending on CJ , CV and CP .

Remark 2.16. Note that, under the additional assumption of a bounded, nowhere
vanishing measure µ on V and the 2-sided bounded horizon condition (9), the setting
of [Del99] fits into the framework presented above with a constant in (15) given by
C−1

J = infx{µx}.

Proof of Proposition 2.15. We apply Theorem 2.6 to (X, d, µ) = (Γ, dgra, µ) and J
as given in this section. �

3. The finite volume framework

The aim of this section is to apply Proposition 2.15 to a finite volume framework;
see [EGH00], [FMP20] for a detailed description of the setup and related analysis.

Let T be a ζ-regular, finite partition (called mesh) of a domain with compact
closure Ω ⊂ Rd into sets (called cells) with nonempty and convex interior. Denote
by ε := [T ] := max{diam(K) : K ∈ T } the size of the mesh.

Assume a probability measure m on Ω, absolutely continuous with respect to the
d-dimensional Lebesgue measure, with a density σ := ZV e

−V for some potential
V ∈ C(Ω) ∩ C1(Ω) and a normalising constant ZV > 0.

We assume that T is admissible in the sense that each each cell K ∈ T contains
a point xK ∈ K such that xK − xL is orthogonal to the common interface ΓKL :=
∂K∩∂L for any neighbouring cell L of K, denoted by L ∼ K. Let dKL := |xK −xL|
be the Euclidean distance between reference points of any two cells K,L ∈ T .

We endow T with a graph structure with cells corresponding to vertices and pair
of adjacent cells in T corresponding to edges. As before, we denote by dgra(K,L)
the graph distance induced by the (unweighted) graph corresponding to T (not to
be confused with the Euclidean distance dKL). Denote by Bgra(K, r) a closed ball
centred in K ∈ T of radius r > 0 with respect to the graph metric dgra.

We consider a nearest-neighbour jump process, given by

JKL :=

{
ε−d

(
ε2wKL

)
if K ∼ L

0 otherwise
, (18)

where

wKL :=
Hd−1(ΓKL)

dKL

SKL and SKL := θ
(
σ(xK), σ(xL)

)
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for some mean θ : R+
0 × R+

0 → R+
0 satisfying min{a, b} ≤ θ(a, b) ≤ max{a, b}. The

corresponding reference measure µ ∈ P(T ) is given by
µK := µ({K}) := ε−dπ(K) with π(K) = m(K). (19)

Then (T , dgra, π) defines a metric measure space, where π and J induce a corre-
spondent regular Dirichlet form E on L2(T , π), given by

ET (f, g) =
∑
K∼L

JKL(f(L)− f(K))(g(L)− g(K)). (20)

Moreover, define
V (K, r) := µ(Bgra(K, r)) ∀K ∈ T .

Remark 3.1. The graph metric dgra satisfies a volume doubling condition which is
inherited from a comparison of metrics in form of

[T ]

C
dgra(K,L) ≤ dKL ≤ C[T ]dgra(K,L) ∀K,L ∈ T (21)

for some constant C > 0 only depending on Ω and ζ. Indeed, the first inequality
in (21) follows from [GKM18, Lemma 1.12], whereas the second inequality is due to
the fact that

∑
i dLi−1,Li

≤ dgra(K,L) for any path K = L0, L1, . . . LN = L along
neighbouring cells Li−1 ∼ Li.

A direct consequence of (21) are the following volume comparison bounds

Bgra(K, r[T ]/C) ⊆
⋃

B(K, r) ⊆ Bgra(xK , r[T ]C) ∀K ∈ T , r > 0. (22)

Consider the correspondent diffusion, given by

∂tvt(K) =
1

µK

∑
L∈T

(vt(L)− vt(K))JKL ∀K ∈ T . (23)

Our goal is to prove a Harnack-type inequality for solutions of (23). We remark
that it is not possible to directly apply [Del99, Theorem 1.7] to deduce such a result,
due to the fact that not all assumptions are satisfied, namely,

µK 6=
∑
L∼K

JKL.

Nonetheless, equality holds above up to a small correction term.

Given all considerations above, we aim to apply the results from the previous
section to T with measures J µ as defined in (18) and (19), respectively.

First we need to prove a weak Poincaré inequality relative to the finite volume
partition.

Proposition 3.2 (Weak discrete weighted Poincaré inequality). There exist con-
stants c0, c1 > 0, depending only on Ω and ζ such that all functions u : T → R satisfy∑

K,L∈Bgra(K0,r)

|u(K)− u(L)|2 π(K)π(L)

≤ c1d(K0, c0r)
2π(Bgra(K0, r))

∑
K,L∈Bgra(K0,c0r)

wKL |u(K)− u(L)|2
(24)

for any K0 ∈ T and r > 0, where d(K0, c0r) := diam(Bgra(K0, c0r)).
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In particular, whenever
∑

K∈Bgra(K0,r)
u(K)π(K) = 0, we have

∑
K∈Bgra(K0,r)

|u(K)|2 π(K) ≤ c1d(K0, c0r)
2
∑

K,L∈Bgra(K0,c0r)

wKL |u(K)− u(L)|2 .

The proof is based on arguments taken from [GKM18, Proposition 4.5] and
[EGH00, Lemma 3.7], adapted to account for a weight function as well as metric
balls Bgra which need not be convex.

Proof. Write ρ := ιT u and Br :=
⋃

Bgra(K0, r) for fixed K0 ∈ T and r > 0.
Given two cells K,L ∈ T , we define a function 1KL : Ω × Ω → {0, 1} as follows:

For any two points x, y ∈ Br, we set 1KL(x, y) = 1, whenever K ∼ L such that
the common interface ΓKL intersects the straight line segment from x to y and
(y − x) · (xL − xK) > 0. In all other cases, we set 1KL(x, y) = 0.

Note that the volume comparison bounds in (22) imply that the straight line
segment from x to y is included in a slightly larger ball Bgra(K0, c0r) for some
constant c0 ≥ 1 depending only on Ω and ζ. Therefore, we may use a telescopic sum
to infer the estimate

|ρ(x)− ρ(y)| ≤
∑

K,L∈Bgra(K0,c0r)

|u(L)− u(K)|1KL(x, y) a.e. x, y ∈ Br. (25)

Introduce

αKL(z) :=
z

|z|
· xL − xK

dKL

∀K,L ∈ T , z ∈ Rd

and notice that αKL(y − x) > 0 whenever 1KL(x, y) = 1. Hence, we may use the
Cauchy-Schwarz inequality to estimate (25) as

|ρ(x)− ρ(y)|2

≤
(∑

K,L

|u(L)− u(K)|2

αKL(y − x)

SKL

dKL

1KL(x, y)

)(∑
K,L

αKL(y − x)
dKL

SKL

1KL(x, y)

)
.

(26)

Notice that αKL(x, y) vanishes, unless K and L are neighbouring cells intersecting
the line segment from x to y. In particular, we may index subsequent intersecting
cells, say L0, L1, . . . LN , such that αKL(x, y) = 1 for any K,L ∈ T , precisely, when
(K,L) = (Li−1, Li). Thus, using that the regularity of the mesh implies the bound
1/C1 ≤ SKL ≤ C1 for some constant C1 > 0, we infer

∑
K,L

αKL(y − x)
dKL

SKL

1KL(x, y) ≤ C1

N∑
i=1

αLi−1Ki
(y − x)dLi−1Li

≤ C1

N∑
i=1

y − x

|y − x|
· (xLi

− xLi−1
) = C1

y − x

|y − x|
· (xLN

− xL0) ≤ C1d(K0, c0r).

(27)
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Using that the density of m is bounded from above, we invoke a change of variables
in form of z = y − x to estimateˆ

Bc0r

ˆ
Bc0r

1

αKL(y − x)
1KL(x, y) dm(x) dm(y)

≤ C1

ˆ
{−x}+Bc0r

1

αKL(z)

ˆ
Bc0r

1KL(x, x+ z) dx dm(z)

≤ C1

ˆ
{−x}+Bc0r

Hd−1(ΓKL) · |z| dm(z) ≤ C2d(K0, c0r)m(Bc0r)Hd−1(ΓKL),

(28)

for some constant C2 > 0, where we used the volume formulaˆ
Rd

1KL(x, x+ z) dx = z · (xL − xK)
Hd−1(ΓKL)

dKL

,

to pass from the second to the last line.

Collecting both estimates (27) and (28) above, we may further estimate (26) asˆ
Bc0r

ˆ
Bc0r

|ρ(x)− ρ(y)|2 dm(x) dm(y)

≤ C3d(K0, c0r)
2m(Bc0r)

∑
K,L∈Bgra(K0,c0r):

K∼L

|u(L)− u(K)|2wKL

(29)

for a constant C3 > 0.
Using the Euclidean doubling volume property in tandem with (22), as well as

the bounds on the density of m, we also have m(Bc0r) ≤ C4m(Br) for some C4 ≥ 1.
Consequently, (29) allows us to establish (24).

Finally, the second claim follows by an application of Jensen’s inequality to the
left-hand side of (24). �

Remark 3.3 (Ultracontractivity). Consider the generator LT as defined in (16) with
measures J and µ given by (19) and (18), respectively. A consequence of the Poincaré
inequality proved in Proposition 3.2 is the L1 → L∞ ultracontractivity property of
the flow associated to LT viz

|vt|L∞(T ,µ) ≤ Ct−
d
2 |vt|L1(T ,µ) . (30)

Indeed it is well-known (see e.g. [SC92]) that a Poincaré inequality as in (24) implies
the Nash inequality

‖f‖2+
4
d

2 ≤ CET (f, f)‖f‖
4
d
2 ,

which, in particular, yields the ultracontractivity property (30); see [CKS87, Theo-
rem 2.1] for a proof.

Note that the scaling property of (30) implies

|ut|L∞(T ,π) ≤ Ct−
d
2 |ut|L1(T ,π) ,

where ut is the flow associated with the rescaled generator ∆T := ε−2LT .

Now we are ready to prove the main result of this section.
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Proposition 3.4. Let T be an admissible and ζ-regular mesh of Ω ⊂ Rd. Then
(T , dgra, µ, J) with µ and J defined as in (19) and (18), respectively, satisfies a
continuous-time parabolic Harnack inequality with a constant cH depending only on
Ω, m and ζ.

Proof. We show that (T , dgra, µ, J) satisfies the assumptions of Proposition 2.15.
First of all, note that (15) is a straightforward consequence of the ζ-regularity of

the mesh. Thus, we have to check the three remaining geometric assumptions:

(i) Volume growth condition. The volume comparison bounds in (22) immediately
imply this condition.

(ii) Poincaré inequality. Fore every choice of K0 ∈ T and r > 0, we apply Propo-
sition 3.2 to the sub-problem

Ωr :=
⋃

Bgra(K0, r) and Tr := Bgra(K0, r),

in order to obtain∑
K∈Tr

|f(K)|2π(K) ≤ CP diam(Ωc0r)
2
∑

K,L∈Tc0r

wKL|f(K)− f(L)|2.

Recall that by ζ-regularity of the mesh, we know that (22) holds. In partic-
ular, there exists a constant C1 > 0 such that diam(Ωc0r) ≤ C1εr, which shows
that a weak local Poincaré inequality as in (17) holds.

(iii) 2-sided bounded horizon. This condition is a direct consequence of J being a
nearest-neighbour jump process.

�

As a corollary, we infer from the continuous-time parabolic Harnack inequality
above the Hölder regularity of solutions to the flow equation

∂tvt = LT vt,

where LT is a generator as defined in (16) with measures J and µ given by (18) and
(19), respectively.

Proposition 3.5 (Hölderianity of the rescaled discrete flow). There exists λ ∈ (0, 1)
such that for every η ∈ (0, 1), one can find CH = CH(η) > 0, depending only
on Ω, m and ζ by means of the constants in Proposition 2.15, such that for all
K0 ∈ T , s ∈ R, R > 0 and every non-negative solution of ∂tvt = LT vt on Q =
[s−R2, s]×Bgra(K0, R), there holds

|vt(K)− vt(L)| ≤ CH

(
dgra(K,L)

R

)λ

sup
Q

|u| ∀(t,K), (t, L) ∈ Q+, (31)

where Q+ = [s− ηR2, s]×B(K0, ηR).
Moreover, CH(η) satisfies the bound supη0≤η≤η1 CH(η) < +∞ for any η0, η1 ∈

(0, 1).

Proof. Apply Corollary 2.14 (see also [CKW18, Remark 1.16]). �

Finally, we rescale (31) to obtain Hölder regularity for the solutions to the discrete
Fokker-Planck equation ∂tut = ∆T ut with a rescaled generator ∆T := ε−2LT .
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Proposition 3.6 (Hölderianity of the discrete flow). Let T be an admissible and
ζ-regular mesh of Ω ⊂ Rd. Let (ut)t≥0 be the solution of the discrete Fokker-Planck
equation ∂tut = ∆T ut. Then for every time t > 0, the Hölder estimate

|ut(K)− ut(L)| . c(t)|xK − xL|λ sup
L0∈T

t
2
≤s<+∞

|us(L0)| ∀K,L ∈ T (32)

holds for some monotonically decreasing function c : R+ → R+ and some constant
λ > 0, only depending on Ω, m and ζ.

Proof. Note that, by unfolding the definitions, we have LT = ε2∆T for ε = [T ]
and LT as in Proposition 3.5. This means for a given common initial datum, one
has a scaling correspondence between the solutions (ut)t≥0 and (vt)t≥0 of the two
respective flows, given by

ut(K) = vt/ε2(K) ∀t > 0, K ∈ T . (33)
Pick η = η(t) ∈ (1/2, 1) such that

tη2

2(1− η)
≥ C2diam(Ω)2,

where C denotes the constant appearing in (21). Moreover, define

R2 :=
t

2(1− η)ε2
and s := ηR2 +

t

2ε2

in such a way that dgra(K,L) ≤ ηR for all K,L ∈ T .
Nowe we may apply Proposition 3.5 to every couple of cells K,L ∈ T , together

with

Q =
[

t
2ε2

, Cη
t
ε2

]
×Bgra(K,R), Q+ :=

[
t
ε2
, Cη

t

ε2
]
×Bgra(K, ηR) 3

(
t
ε2
, L

)
for a constant Cη ≥ 1, only depending on η. As a result,∣∣vt/ε2(K)− vt/ε2(L)

∣∣ ≤ c|xK − xL|λ sup
Q

|v| ≤ c|xK − xL|λ sup
L0∈T

t
2
≤s<+∞

|us(L0)| ,

with c only depending on η = η(t) and CH = CH(η). This bound, together with
(33), allows us conclude the proof. �
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GRADIENT FLOWS FOR METRIC GRAPHS

MATTHIAS ERBAR, DOMINIK FORKERT, JAN MAAS, AND DELIO MUGNOLO

1. Introduction

This article investigates the geometry of Wasserstein spaces over metric graphs and
the relation of corresponding energy functionals to Fokker-Planck equations.

A metric graph G may be understood as a (discrete) graph (V,E) with a weight
function m : E → R+, where each edge e ∈ E is identified with with an interval (0,me)
of length corresponding to the edge weight me := m(e).

We say that a point x belongs to G if either x corresponds to a node in V or there
exists an edge e ∈ E such that x ∈ {e} × (0,me).

Endowed with its natural metric d which measures the total length of the shortest
paths between any two points, G becomes a metric space. Hence, assuming that the
underlying graph (V,E) is finite and connected, we may define the Lp-Wasserstein
distance between two Borel probability measures µ and ν on G by means of the Kan-
torovich transport problem

W p
p (µ, ν) := min

σ

{∫
G×G

dp(x, y) dσ(x, y)
}
,

where the minimum (called optimal transport plan) is over all Borel probability mea-
sures σ on G×G with respective marginals µ and ν.

For p ≥ 1, the Wasserstein distance Wp metrises the topology of weak convergence of
Borel probability measures on G. The resulting metric space of probability measures
is then called Lp-Wasserstein space over G

In [MRT15] this Wasserstein distance was already studied on metric graphs for the
case of p = 1, making use of the additive property dp(x, z) = dp(x, y) + dp(y, z),
whenever a point y lies on a shortest path between x and y. Clearly, for any p > 1 this
property does not hold anymore and the approach of [MRT15] is not at one’s disposal.

Nevertheless, for p ≥ 1, the Lp-Wasserstein space is a geodesic space, i.e. any two
Borel probability measures µ0 and µ1 on G can be joined by a constant-speed geodesic;
that is a curve of probability measures (µt)t∈[0,1] satisfying

Wp(µs, µt) = |s− t|Wp(µ0, µ1) ∀s, t ∈ [0, 1].

A dynamic characterisation of the Wasserstein distance between Borel probability
measures on Euclidean space, going back to the works of Benamou and Brenier [BB99],
[BB00], makes use of the geodesic structure of the underlying metric space X. This
allows one to write

W 2
2 (µ, ν) = min

µt

{∫ 1

0

|µ̇t|2 dxt
}

with a minimum over all 2-absolutely continuous curves (µt)t∈[0,1] in the L2-Wasserstein
space over G, which means that the metric derivative t 7→ |ρ̇t| exists as a function

The work of D.M. was partially supported by the Deutsche Forschungsgemeinschaft (Grant
397230547). The work of M.E., J.M., and D.M. was partially supported by COST Association
(Grant CA18232).
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in L2(0, 1), connecting µ to ν. The so-called Benamou-Brenier formula asserts for
a.e. time t that |ρ̇t| ≤ ‖vt‖L2(µt)

for every vectorfield (vt)t∈[0,1] solving the continuity
equation

d

dt
µt +∇ · (vtµt) = 0 (1)

with no-flux boundary conditions in the distributional sense. In addition, there exists
a vectorfield achieving a.e. equality |ρ̇t| = ‖vt‖L2(µt)

; thus,

W 2
2 (µ, ν) = min

(µt,vt)

{∫ 1

0

‖vt‖2L2(µt)
dx

}
(2)

with a minimum over over all pairs (µt, vt)t∈[0,1] solving (1). The standard proofs of this
formula make use of the fact that under suitable regularity assumptions on the initial
measure µ0, the (then unique) solution (µt, vt)t∈[0,1] for (1) is completely characterised
by µ0 and a flow T on Rn, giving rise to the pair of solutions via the relations

T (t, ·)#µ0 = µt,
d

dt
T (t, x) = vt, T (0, x) = x.

Conversely, on a metric such a flow T typically fails to exist as a solution to the
continuity equation (1) is not even uniquely determined by an initial condition µ0

and a given vectorfield (vt)t∈[0,1] (note that on a metric graph the no-flux boundary
conditions have to be replaced by suitable conditions posed on every node in V ).

All the more so, on a metric graph G, a shortest path between any two points need
not be uniquely determined by its endpoints. This behaviour translates to constant-
speed geodesics of probability measures. In fact, even the more general notion of
non-branching geodesics typically fails for Wasserstein spaces over metric graphs in
the sense that one might find two distinct constant speed geodesics (µt)t∈[0,1] and
(νt)t∈[0,1], taking the same values for all times t ∈ [0, t0] up to some t0 ∈ (0, 1).

Despite this pathological behaviour of geodesics in Wasserstein spaces over metric
graphs, a Benamou-Brenier formula (2) is not forfeit. Indeed, in [GH15] Gigli and Han
established a notion for the continuity equation on metric measure spaces. Transferred
to the setting of metric graphs, those abstract results imply that solutions (µt, vt)t∈[0,1]
of the continuity equation (1) satisfy the inequality |ρ̇t| ≤ ‖vt‖L2(µt)

, under the addi-
tional assumption that µt is absolutely continuous with respect to the one-dimensional
Lebesgue measure on G for all times t ∈ [0, 1].

Whereas we show that geodesics satisfy this assumption as long as one verifies that
both end-points µ0 and µ1 are absolutely continuous with respect to the Lebesgue
measure, thus establishing the Benamou-Brenier formula between any two absolutely
continuous probability measures on G, we can push thing further: In fact, a delicate
regularisation step, tuned in line with the node-conditions which accompany the conti-
nuity equation (1) on a metric graph, allows for a Benamou-Brenier formula (2) of full
generality, i.e. valid between arbitrary Borel probability measures on a metric graph.

The continuity equation which forms the backbone of this Benamou-Brenier formula
will also serve as a crucial ingredient to investigate the convergence of the so-called JKO
scheme (named after Jordan, Kinderlehrer, and Otto for their seminal paper [JKO98])
for the combined energy functional F = Ent+V consisting of a logarithmic entropy
functional Ent(µ) =

∫
G
ρ log ρ dx and an internal energy functional V(µ) =

∫
G
V ρ dx,

whenever µ is absolutely continuous such that dµ = ρ dx. Then the JKO-scheme is
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defined by recursively solving the minimisation problem

µk+1 ∈ argmin
µ

F(µ) +
1

2τ
W 2

2 (µ, µk)

for all k ∈ N, some initial condition µ0, and a fixed parameter τ > 0.
The JKO-scheme is a crucial tool in the framework of generation results for gradient

flows in metric spaces as employed in [AGS08]. Typically, geodesic convexity of the
functional F , i.e. convexity of the function t 7→ F(µt) along geodesics (µt)t∈[0,1], is
exploited to show convergence of the JKO-scheme to a gradient flow for F .

However, on a Wasserstein space over a metric graph, functionals like the entropy
Ent or the squared metric W 2

2 (µ, ·) need not be geodesically (semi-)convex as we shall
see in several examples. Thus, the abstract generation results in [AGS08] are of limited
use in a metric graph setting. We will circumvent this issue by following a more direct
approach, already successfully employed in [San15] or [IPS19]. Hence, by means of
geodesic interpolation of the JKO-scheme (µk)k∈N, we may extract a limit curve which
may be identified as a solution to a particular continuity equation corresponding to a
Fokker-Planck equation

dµt
dt
µt = ∆µt +∇ · (∇V µ), (3)

together with suitable node conditions.
The goal of the final section is to identify solutions of the Fokker-Planck equation

(3) as gradient flows for the functional F on the L2-Wasserstein space over G. Inspired
by ideas from [Erb16], this is may be done without relying on results derived from
the JKO-scheme in the previous section. Instead, we make use of a weak chain rule
for the derivative t 7→ F(µt) along 2-absolutely continuous curves (µt)t∈[0,T ] in the L2-
Wasserstein space over G, proved by means of a regularised continuity equation.

In particular, a careful analysis based on interpolation arguments from [AG13] and
[AGS08], as well as results from semigroup theory on metric graphs (see e.g. [Mug14])
allow us to identify the limit curve as a gradient flow in the EDE (energy dissipation
equality) sense, a notion which does not rely on geodesic convexity of the involved
functional.

Organisation of the Paper. In Section 2 we recall the notion of absolutely contin-
uous curves taking values in metric spaces, accompanied by definitions for the metric
differential and the metric slope. This is followed by an introduction of Wasserstein
distances via the Kantorovich transport problem and its dual formulation as well as a
recap of geodesics in Wasserstein spaces.

Section 3 is about to the concept of metric graphs and the (non-)existence of trans-
port maps.

Section 4 is devoted to the continuity equation and the Benamou-Brenier formula
on metric graphs. To this aim, a regularisation procedure for solutions of the continuity
equation, defined in a way to be compatible with the node conditions of said continuity
equation, is introduced as well.

The concise Section 5 contains several counter-examples where geodesic convexity
along the entropy and the squared Wasserstein distance is not satisfied.

Section 7 covers gradient flows on metric graphs. We prove convergence of the
JKO-scheme for a typical energy functional consisting of a logarithmic entropy plus a
potential energy to a solution of the corresponding Fokker-Planck equation.

Finally, in the last section solutions of the Fokker-Panck equation are identified as
EDE gradient flows for the aforementioned energy functional F .
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2. Preliminaries on optimal transport

2.1. Absolutely continuous curves and gradient flows in metric spaces.

Definition 2.1. Let (X, d) be a metric space and (0, T ) be an open interval. We
say that a curve γ : (0, T ) → X is absolutely continuous if there exists a function
g ∈ L1(0, T ) such that

d(γs, γt) ≤
∫ t

s

g(r) dr ∀s, t ∈ (0, T ) : s ≤ t, (4)

where we adopted the notation γr := γ(r).

It turns out that for every absolutely continuous function there is a natural choice
of g which minimises the right-hand side of (4), the so-called metric derivative of γ.

Proposition 2.2. For every absolutely continuous curve γ : (0, T ) → X, the metric
derivative defined by the limit

|γ̇t| := lim
s→t

d(γs, γt)

|s− t|
exists for a.e. t ∈ (0, T ) and belongs to L1(0, T ). The metric derivative |γ̇t| may be
chosen as admissible integrand for the right-hand side of (4), minimal in the sense that

|γ̇t| ≤ g(t) a.e. t ∈ (0, T )

for every g ∈ L1(0, T ) satisfying (4).

Proof. See for instance Theorem 1.1.2 in [AGS08]. �

In addition to the metric derivative, we also introduce the notion of a metric slope.

Definition 2.3. Given a functional F : X → R ∪ {+∞}, we define the effective
domain of E as

domF := {x ∈ X : F (x) < +∞}.
The (descending) slope of F is defined as

|∂F |(x) :=


lim sup
y→x

(
F (x)− F (y)

)+
d(x, y)

if x ∈ domF,

0 if x is an isolated point in X,

+∞ otherwise,

where (·)+ := max{·, 0} denotes the positive part of a function.

Now we are in the position to introduce two closely related notions of gradient flows
in a metric space.

Definition 2.4. Let F : X → R ∪ {+∞} be a functional with non-empty effective
domain.

(1) We say that an absolutely continuous curve (γt)t≥0 starting from γ0 ∈ domF
satisfies the energy dissipation inequality if

F (γt) +
1

2

∫ t

s

|γ̇r|2 dr +
1

2

∫ t

s

|∂F |2(γr) dr ≤ F (γs)

for s = 0 and all t ≥ 0 as well as for a.e. s > 0 and all t ≥ s.
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(2) We say that (γt)t≥0 satisfies the energy dissipation equality if

F (γt) +
1

2

∫ t

s

|γ̇r|2 dr +
1

2

∫ t

s

|∂F |2(γr) dr = F (γs)

for all 0 ≤ s ≤ t.

2.2. Wasserstein spaces. In this section we collect some basic facts on the family
of Lp-Wasserstein distances on spaces of probability measures. We refer to Chapter 5
in [San15], Chapter 2 in [AG13], or Chapter 6 in [Vil08] for more details.

Let (X, d) be a Polish space, which we assume to be compact for simplicity. The
space of Borel probability measures on X is denoted by P(X). The pushforward
measure T#µ induced by a Borel map T : X → Y between two Polish spaces is
defined by (T#µ)(A) := µ(T−1(A)).

Definition 2.5 (Transport plans and maps). (1) A (transport) plan between prob-
ability measures µ, ν ∈ P(X) is a probability measure σ ∈ P(X × X) with
respective marginals µ and ν, i.e.

(proj1)#σ = µ and (proj2)#σ = ν,

where proji(x1, x2) := xi for i = 1, 2. The set of all transport plans between µ
and ν is denoted by Π(µ, ν).

(2) A transport plan σ ∈ Π(µ, ν) is said to be induced by a Borel measurable
transport map T : X → X if σ = (Id, T )#µ, where (Id, T ) denotes the mapping
x 7→ (x, T (x)).

Definition 2.6 (Kantorovich-Rubinstein-Wasserstein distance). For p ≥ 1, the Lp-
Kantorovich-Rubinstein-Wasserstein distance between probability measures µ, ν ∈ P(X)
is defined by an optimal transport problem with respect to the cost function dp viz.

Wp(µ, ν) := inf

{(∫
X×X

dp(x, y) dσ(x, y)

)1/p

: σ ∈ Π(µ, ν)

}
. (5)

The infimum above is always attained by some σmin ∈ Π(µ, ν); we call any such σmin

optimal (transport) plan between µ and ν. If a transport map T induces an optimal
transport plan, we call T optimal as well.

By compactness of (X, d), the Lp-Wasserstein distance metrises the weak conver-
gence in P(X) for any p ≥ 1. Moreover, (P(X),Wp) is a compact metric space as
well.

The following result, due to Brenier [Bre91], shows the uniqueness of an optimal
transport plan for a large class of measures in a Euclidean setting. We state it in a
simplified form.

Theorem 2.7 (Brenier’s Theorem). Let Ω ⊂ Rn be a compact and convex domain and
let µ, ν ∈ P(Ω). If µ � Ln, then for p = 2, the optimal transport plan σmin between
µ and ν in (5) is unique and of the form σmin = (Id, T )#µ for some µ-a.e. uniquely
determined map T : Ω → Ω which can be written as T = ∇φ for some convex function
φ on Ω.

We conclude this section with a dual formula for the Wasserstein distance (see,
e.g. [San15, Section 1.6.2]). To this aim, we recall that for c(x, y) := dp(x, y), the c-
transform of a function ϕ : X → R∪{+∞} is defined by ϕc(y) := infx∈X c(x, y)−ϕ(x).
A function ψ : X → R ∪ {+∞} is called c-concave if there exists a function ϕ : X →
R ∪ {+∞} such that ψ = ϕc.
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Proposition 2.8 (Kantorovich duality). For any two probability measures µ, ν ∈
P(X) we have

W p
p (µ, ν) = sup

ϕ,ψ∈C(X)

{∫
X

ϕ dµ+

∫
X

ψ dν : ϕ(x) + ψ(y) ≤ dp(x, y) ∀x, y ∈ X

}
.

Moreover, the supremum is attained by a maximising pair of the form (ϕ, ψ) = (ϕ, ϕc),
where ϕ is a c-concave function.

The maximiser ϕ is then called a Kantorovich potential.

3. Optimal transport on metric graphs

3.1. Metric graphs and function spaces on metric graphs. In this section, we
introduce the basic concepts around the notion of a metric graph, commonly found in
standard references like [MRT15], [BK13] or [Kuc08].
Definition 3.1. Let G = (V,E,m) be a orientated, weighted graph. We identify
each edge e = (einit, eterm) ∈ E with an interval (0,me) and the corresponding nodes
einit, eterm ∈ V with the respective end-points of the interval. Note that the orientation
of e plays a role in this definition.

The spaces of open and closed metric edges over G are defined as the respective
topological disjoint unions

E :=
∐
e∈E

(0,me) and E :=
∐
e∈E

[0,me],

together with the respective canonical injections ιe : (0,me) → E and ιe : [0,me] → E.
For a function ϕ on E or E, we will adopt the short-hand notations ϕe := ϕ ◦ ιe or
ϕe := ϕ ◦ ιe, respectively.

We define the metric graph over G as the topological quotient space
G := E/∼,

where we identify points x ∼ y whenever x = ιe(we) and y = ιf (wf ) for end-points
we, wf corresponding to a common node w ∈ V of respective edges e, f ∈ Ew.

In addition, we introduce orientation coefficients as follows: For w ∈ V and e ∈ Ew
we set σe(w) = 1 if ιe(0) = w and σe(w) = −1 if ιe(me) = w.
Definition 3.2. For any point x ∈ G with x belonging to an open metric edge (0,me)
for some e ∈ E, we call a graph G̃ the subdivision of G = (V,E,m) at x if G̃ =
(Ṽ , Ẽ, m̃) with node set Ṽ := V ∪{x}, edge set Ẽ := (E \{e})∪{(einit, x), (x, eterm))},
and weight function m̃ : E → R+ defined on each edge f ∈ E by

m̃f :=


mf if f 6= e,

x if f = (einit, x)

me − x if f = (x, eterm).

In case that x corresponds to a node in G, we simply set G̃ := G.

Note that the spaces of metric edges over G̃ differ from the corresponding spaces
over G. On the other hand, the metric graph G is invariant under subdivisions of the
underlying graph G.

Consecutive subdivisions at points x1, x2, . . . xk ∈ G always result in the same graph,
independent of the order of subdivisions.

The notion of subdivision of a metric graph allows us to metrise G.
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Definition 3.3. For any two points x, y ∈ G, denote by d(x, y) the node distance of
x and y in the underlying graph G̃ obtained by subdivision of G at x and y.

By construction, the distance function d metrises the topology of G.

In the following, we introduce several classes of function spaces on metric graphs.
Recall that the local Lipschitz constant of a function f : X → R is defined by

lip(f)(x) := lim sup
y→x

|f(y)− f(x)|
d(x, y)

,

whenever x is not isolated and 0 otherwise. We write lipx(f)(x, t) for the local Lipschitz
constant with respect to the spatial variable x of ψ.

The (global) Lipschitz constant is defined by

Lip(f) := sup
y 6=x

|f(y)− f(x)|
d(x, y)

.

Note that Lip(f) = supx lip(f)(x), provided that X is a geodesic space.

Definition 3.4. We denote by C(G) the space of continuous real-valued functions on
G, endowed with the uniform norm ‖·‖∞.

Likewise, we denote by Lip(G) the space of all Lipschitz functions on G and by
Ck(E) the space of all functions ϕ on E such that ϕe has continuous derivatives up to
order k ∈ N for each edge e ∈ E.

By λ we denote the 1-dimensional Lebesgue measure, lifted to the corresponding
spaces of metric edges E and E as pushforward measure with respect to the canonical
injections ιe and ιe, respectively. In a similar fashion, λ lifts to the metric graph G as
well.

Denote by Lp(G) the p-Lebesgue space over the measure space (G, λ).
For p ∈ [1,∞] and k ∈ N, we introduce the Sobolev space W k,p(G) as completion of

C(G) ∩ Ck(E) with respect to the norm

‖u‖Wk,p :=


( k∑
l=0

‖u(l)‖pLp

)1/p

if p <∞,

max
l≤k

‖u(l)‖L∞ if p = ∞.

Furthermore, we consider the set of test functions
D(G) :=

{
φ ∈ C1(E) : φ consistent with ∼

}
,

as well as the set of space-time test functions
D
(
(0, T )×G

)
:=

{
φ ∈ C1

c

(
(0, T )× E

)
: φ, ∂tφ consistent with ∼} .

We will view functions in D(G) and D
(
(0, T ) × G

)
also as a function on G = E/ ∼

and (0, T )×G, respectively.

3.2. Geodesics in Wasserstein Spaces.

Definition 3.5. We call a curve γ : [0, 1] → X a (constant-speed) geodesic if
d(γs, γt) = |s− t|d(γ0, γ1) ∀s, t ∈ [0, 1].

A metric space (X, d) is called geodesic if every pair of points in X can be connected
by a constant-speed geodesic.
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Denote by Geod(X) ⊆ C([0, 1];X) the space of all constant-speed geodesics in X.
The evaluation maps evalt : Geod(X) → X are defined by evalt(γ) := γt for every
time t ∈ [0, 1].

In addition, we introduce a Borel measurable geodesic selection map GeodSel :
X ×X → Geod(X), which assigns each pair of points (x, y) a geodesic connecting x
to y.

Existence of the map GeodSel follows from an application of the Kuratowski and
Ryll-Nardzewski measurable selection theorem (see e.g. Theorem 6.9.3 in [Bog07]) to
the multivalued function corresponding to the graph

Γ := {((x, y), γ) : γ is a constant-speed geodesic connecting x to y in X} ,

noting that Geod(X) is a compact metric space (see e.g. Section 2.3 in [Pap05]) and
Γ is closed in X2 ×Geod(X).

The following result relates geodesics in the Wasserstein space to geodesics in the
underlying metric space (see Theorem 2.10 in [AG13] or Corollary 7.22 in [Vil08] for
a proof).

Proposition 3.6. If (X, d) is a compact geodesic space, then, for p > 1, the Lp-
Wasserstein space (P(X),Wp) is a compact geodesic space as well. Any optimal trans-
port plan σ between µ and ν induces a constant-speed geodesic (µt)t∈[0,1] from µ to ν
viz

µt = (evalt)#µµµ, (6)
where µµµ := (GeodSel)#σ denotes the lift of the plan σ to the space of geodesics Geod(X)
via the Borel map GeodSel.

Conversely, every constant-speed geodesic (µt)t∈[0,1] in P(X) is of form (6) for some
geodesic selection map GeodSel and some optimal transport plan σ ∈ Π(µ0, µ1).

3.3. The Monge problem for Wasserstein spaces over metric graphs. Through-
out the remainder of this article, we will make the following assumptions on the un-
derlying discrete graph.

Assumptions 3.7. The oriented, weighted graph G = (V,E,m) is finite, connected
and contains neither loops nor multiple edges.

Remark 3.8. Note that the metric graph over some graph G stays invariant under
subdivions of edges in G. Therefore, we may always introduce additional subdivions,
in order to resolve loops and multiple edges in a given graph, thus, fulfilling the
assumptions stated above.

Due to our assumptions, the metric space G is compact, Polish, and geodesic. Since
Wasserstein spaces inherit those properties, the same holds true for (P(G),Wp). How-
ever, geodesics are not uniquely determined by their end-points and may branch, i.e.
there may exist two distinct geodesics (µt)t∈[0,1] and (νt)t∈[0,1], taking the same values
for all times t ∈ [0, t0] up to some t0 ∈ (0, 1).

The following simple example shows that one cannot expect optimal transport maps
to exist between measures which are absolutely continuous w.r.t. λ on G.

Example 3.9. Consider a metric graph as shown in Figure 1 with uniform weight
m = 1 on each edge.
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µ

ν ν

Figure 1. The support of probability measures µ and ν on a metric
graph induced by a star with 3 leaves.

Denote by µ and ν uniform probability measures on the designated edge segments
above. Due to a split of mass, there exists no optimal transport map from µ to ν for
any p > 1.

Nevertheless, it is possible characterise the Kantorovich transport problem on a
metric graph as a superposition of Monge transport problems, provided that we assume
some regularity on the probability measures as typically done on an Euclidean domain.
Indeed, we observe that, as soon as two probability measures µ and ν are concentrated
on a geodesic curve in G, the Kantorovich problem between µ and ν reduces two the
usual transport problem on the real line. In particular, monotone transport along the
geodesic curve provides an optimal solution which is described by an optimal transport
map whenever µ� λ.

We introduce the following notation.

Definition 3.10. Consider two edges e, f ∈ E as well as a shortest path {γi}Ni=1 of
edges γi ∈ E connecting an end-node of e to an end-node of f . Denote by

G
γ1...γN
e,f = (V γ1...γN

e,f , Eγ1...γN
e,f )

the subgraph of G with edge set

Ee,f := {e, f, } ∪ γ1 ∪ . . . ∪ γN ,

and node set V γ1,...γN
e,f consisting of all end-nodes of edges in Eγ1...γN

e,f .

Note that the definition above covers the case when the edges e and f agree.

Below as well as throughout the remainder of this article, we will usually consider
the p-Wasserstein distance for p > 1; we refer to [MRT15] for an extensive investigation
of the 1-Wasserstein distance on metric graphs.

Proposition 3.11. Let µ, ν be two probability measures on G such that µ � λ. For
p > 1, the p-Wasserstein distance between µ and ν is given by a superposition of Monge
transport problems viz.

W p
p (µ, ν) = min

{∑
i

∫
e

dp(x, Ti(x)) dµi(x)
}
, (7)

where the minimum is over all finite families (µi, Ti)i∈I of sub-measures µi of µ and
transport maps Ti : suppµi → f satisfying∑

i

µi = µ and
∑
i

(Ti)#µi = ν. (8)
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Proof. To show that the right-hand side of (7) is an upper bound for W p
p (µ, ν) it is

enough to note that, by virtue of (8), the probability measure σ ∈ P(G×G) given by

σ :=
∑
i

(Id, Ti)#µi

is an admissible plan between µ and ν.

In order to find an optimal family (µi, Ti)i∈I which achieves equality in (7), we make
use of Proposition 3.6 to represent a constant-speed geodesic (µt)t∈[0,1] from µ to ν as

µt = (evalt)#µµµ and µµµ := (GeodSel)#σ

for a fixed geodesic selection map GeodSel : G×G → G and an optimal plan σ between
µ and ν.

For every choice of edges e, f ∈ E and every shortest path γe→f := {γi}Ni=1 in G,
connecting an end-node of e to an end-node of f , we denote by G

γe→f

e,f the corresponding
subgraph as defined in Definition 3.10.

Consider the set of all constant-speed geodesics in G
γe→f

e,f connecting points on the
metric edge e to points on the metric edge f via the path γe→f . In order to avoid
measurability issues, we introduce this set as a measurable subset of Geod(G

γe→f

e,f ),
given by

Geod
γe→f

e,f := eval−1
0 (e) ∩ eval−1

1 (f) ∩
⋂

t∈Q∩(0,1)

eval−1
t (G

γe→f

e,f ). (9)

Note that this set may be identified as a measurable subset of Geod(G) as well.
Introduce the interpolation curve

µγe→f
t := (evalt)#µµµ|Geod

γe→f
e,f

,

which is of constant mass on G
γe→f

e,f for each time t ∈ [0, 1]. In particular, the measures
µγe→f
0 and µγe→f

1 are concentrated on the metric edges e and f , respectively. The curve
(µγe→f

t )t∈[0,1] is a constant-speed geodesic between those two measures.
For e 6= f , the subgraph G

γe→f

e,f is isometrically isomorph to a compact interval on
the real line. Therefore, the existence of a unique optimal transport map T γe→f for
the transport problem between the measures µγe→f

0 and µγe→f
1 with respect to the cost

function dp follows immediately (cf. e.g. Theorem 2.9 in [San15]).
In case e = f , the subgraph G

γe→f

e,f is isometrically isomorph to a 1-dimensional
torus. Again, we may appeal to classic results (cf. Theorem 1.25 in [San15])) to obtain
existence of a unique optimal transport map T γe→f for the transport problem between
the measures µγe→f

0 and µγe→f
1 with respect to the cost function dp.

As a result, the finite family{(
µγe→f
0 , T γe→f

)
: ∀γe→f s.t. e, f ∈ E

}
,

where γe→f denotes every shortest path in G, connecting an end-nodes of e to an end-
node of f , attains the minimum in (7). �

In addition to the families of sub-measures which appeared in Proposition 3.11,
we can also consider sub-measures which do not depend on any choice of a geodesic
selection map: Given two probability measures µ, ν ∈ W2(G) and an optimal transport
plan σ between µ and ν with respect to dp, set

µf := σ(·, f) and νe := σ(e, ·) e, f ∈ E.
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cut(x)

x

γ1 γ2

Figure 2. A subgraph consisting of a pair of disjoint edges connected
by two shortest paths γ1 and γ2. The pair of edges does not satisfy the
(CUT) condition, unless we impose a subdivision at the point x.

Note that we have ∑
f∈E

µf = µ and
∑
e∈E

νe = ν,

as well as µf (e) = νe(f) for all metric edges e, f in E. That means that (up to a
rescaling of µ and ν to probability measures) σ|e×f describes the optimal transport
between µf |e and νe|f .

To study the Monge transport problem between µf |e and νe|f , i.e. to investigate
whether σ|e×f may be represented by a (single) transport map, we introduce the
following geometric condition.

To this aim, recall that the cut locus cut(x) of a point x in a geodesic space X is the
set consisting of all points y ∈ X such that there exist at least two distinct constant-
speed geodesics connecting x to y.

Definition 3.12. For a pair of edges e, f ∈ E, we denote by G
γ1...γ4
e,f the metric graph

corresponding to a subgraph of G, consisting of the edges e and f together with
four shortest paths γ1, . . . γ4 in G, each connecting one of the four respective pair of
endpoints in {einit, eterm} × {finit, fterm}.

We say that a pair of open metric edges e and f in E (also denoted by e → f
below) satisfies the (CUT) condition if there does not exist any point x on f such that
λ(cut(x) ∩ e) > 0, where cut(x) denotes the cut locus of the point x in the geodesic
space G

γ1...γ4
e,f ; see also Figure 2.

The metric graph G
γ1...γ4
e,f in the definition above does not depend on any particular

choice of geodesic paths between each pair of end-nodes of e and f .

Remark 3.13. For any point x ∈ G
γ1...γ4
e,f , the cut locus cut(x) on G

γ1...γ4
e,f consists of the

union of single points and line segments, each where at least one end-point is a node.
Thus, whenever a graph does not satisfy (CUT), we may introduce a subdivision at

each point x ∈ int f where λ(cut(x)∩ e) > 0 on G
γ1...γ4
e,f (the number of those points is

finite). As a result, we obtain a new graph satisfying (CUT). By construction, both
the old and the new graph give rise to the same metric graph.

We collect some observations regarding the (CUT) condition.

Proposition 3.14. On a metric graph G, let e, f be metric edges in E such that
e→ f satisfies the (CUT) condition. Consider probability measures µ and ν on e and
f , respectively, such that µ � λ. Then there exists a unique optimal transport plan
between µ and ν for every p > 1. This plan arises from a transport map T e→f .

For λ-a.e. x on e, the point T e→f (x) does not belong to cut(x) on G.
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Proof. Note that the cut locus on G
γ1...γ4
e,f takes one of the following two forms:

Case 1: cut(x) ∩ int e is empty for all x ∈ f . We may remove edges from G
γ1...γ4
e,f

to end up with a path graph Gpath whose distance function agrees with the one on G

between points x on e and y on f .
By identifying Gpath with a compact interval, we may invoke existence results on the

real line (cf. e.g. Theorem 2.9 in [San15]). In particular, there exists a unique optimal
transport plan between µ and ν for the cost function dp with p > 1.

On the compact interval identified with Gpath, this plan arises from a monotone
transport map T e→f = F

[−1]
ν ◦ Fµ in terms of the cumulative distribution function Fµ

for µ and the pseudo-inverse F [−1]
ν of the cumulative distribution function for ν.

Case 2: cut(x)∩int e is not empty for some x ∈ f . In this case, the set cut(x)∩int e
is either empty or a singleton for each x ∈ f . Hence, we may remove edges from
G
γ1...γ4
e,f to end up at a 4-cycle Gcycle whose distance function agrees with the one on G

between points x on e and y on f .
By identifying Gcycle with a 1-dimensional torus, we may again appeal to correspond-

ing existence results (cf. e.g. Theorem 1.25 in [San15]). In particular, there exists a
unique optimal transport plan between µ and ν for the cost function dp with p > 1.
Moreover, this plan arises from an optimal transport map T e→f (x) = ∇ϕ(x) for λ-a.e.
x on e for some geodesically convex function ϕ on Gcycle. �

Proposition 3.14 immediately implies the following characterisation of the Lp-Wasser-
stein distance by means of a family of transport maps.
Corollary 3.15. Let σ be an optimal transport plan between two probability measures
µ and ν on G for p > 1. Assume that G satisfies the (CUT) condition and µ � λ.
Then the Lp-Wasserstein distance between µ and ν may be written as a superposition
of Monge transport problems viz.

W p
p (µ, ν) = min

{∑
f∈E

∫
G

dp(x, Tf (x)) dµf (x)
}
, (10)

where the minimum runs over all families (µf , Tf )f∈E of submeasures µf of µ and
transport maps Tf : G → f such that∑

f∈E

µf = µ and
∑
f∈E

(Tf )#µf = ν.

For every f ∈ E and λ-a.e. x ∈ G, the point T f (x) does not belong to cut(x) on G.
Remark 3.16. (i) Instead of dp, one can also consider a cost function on G×G which

is strictly convex along geodesics.
(ii) The optimal transport plans considered in the results above are usually not

unique. In particular, the underlying monotone transport maps depend on the
amount of mass to be transported between each pair of metric edges edges e, f
in E as prescribed by the optimal transport plan.

In the last part of this section we will address the issue whether the set of absolutely
continuous measures on a metric graph is geodesically convex. This question has
been answered positively for absolutely continuous measures on a manifold via the
construction of suitable locally Lipschitz continuous transport maps (see e.g. Corollary
2.24 in [AG13]). Let us recall this approach in the following setting of a constant speed
geodesic with initial absolutely continuous measure on the real line, which will be of
subsequent use.
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Lemma 3.17. Let (µt)t∈[0,1] be a constant-speed geodesic in Pp(R) such that µ0 � λ.
Then for any times t ∈ (0, 1), the unique optimal transport plan from µt to µ0 is
induced by a locally Lipschitz continuous transport map.

Proof. Recall that the absolute continuity of µ0 implies that the unique optimal trans-
port plan from µ0 to µ1 is induced by the nondecreasing monotone transport map
T0→1 := F

[−1]
µ1 ◦ Fµ0 in terms of cumulative distribution functions and their pseudo-

inverses. In particular, the constant-speed geodesic (µt)t∈[0,1] takes the form

µt =
(
(1− t)Id + tT0→1

)
#
µ0 ∀t ∈ [0, 1].

In order to obtain an optimal transport map from µt to µ0, it remains to show that(
(1 − t)Id + tT0→1

)−1 is a single-valued Lipschitz map with constant bounded from
above by 1/(1− t). Indeed, this claim follows directly from the monotonicity of T0→1

via the estimate
|(1− t)x+ tT0→1(x)− (1− t)y − tT0→1(y)|2

= (1− t)2|x− y|2 + t2|T0→1(x)− T0→1(y)|2 + 2t(1− t)(x− y)(T0→1(x)− T0→1(y))

≥ (1− t)2|x− y|2

for all x, y ∈ R, which allows us to conclude. �

Remark 3.18. It is easy to adapt the result above to probability measures on the
1-dimensional torus R \ (rZ) with perimeter r > 0, noting that the unique optimal
transport plan is induced by a geodesically convex transport map (see Section 1.3.2 in
[San15]).

The construction in the proof of Proposition 3.11 allows us to answer whether
constant-speed geodesics inherit absolute continuity from their end-points.

Proposition 3.19. Let σ be an optimal transport plan between two probability mea-
sures µ and ν on G for p > 1 such that µ � λ. Then every constant-speed geodesic
(µt)t∈[0,1] from µ to ν satisfies µt � λ for each time t ∈ (0, 1).

Proof. Fix a geodesic selection map GeodSel and a transport plan σ such that the
constant-speed geodesic (µt)t∈[0,1] is represented by formula (6). Following the proof
of Proposition 3.11, for every shortest path γe→f := {γi}Ni=1 in G, connecting an end-
node of e to an end-node of f , we obtain a constant speed geodesic (µγe→f

t )t∈[01,] on
the metric graph G

γe→f

e,f , satisfying∑
e,f∈E
γe→f

µγe→f
t = µt ∀t ∈ [0, 1]. (11)

In case e 6= f , the metric graph G
γe→f

e,f is isometrically isomorph to a compact interval
on the real line and we may apply Lemma 3.17 to obtain the existence of a unique
optimal transport map T γe→f

s→t from µγe→f
t to µγe→f

s , which is Lipschitz continuous with
a constant 1/(1− t) for any times t ∈ (0, 1) and s ∈ [0, 1].

If e = f , the existence of such a unique Lipschitz continuous optimal transport map
follows from Remark 3.18.

Note that for any Borel set A ⊆ G
γe→f

e,f , the inclusion A ⊆
(
T γe→f
s→t

)−1(
T γe→f
s→t (A)

)
implies the inequality

µγe→f
t (A) ≤ µγe→f

t

(
T γe→f
s→t

)−1(
T γe→f
s→t (A)

)
= µγe→f

s

(
T γe→f
s→t (A)

)
. (12)
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Recall that the Lipschitz continuity of the transport maps yields that every Borel null
set A is mapped again to a Borel null set T γe→f

s→t (A). In particular for s = 0, (12) and
the absolute continuity of µγe→f

0 imply that µγe→f
t is absolutely continuous as well; by

(11), we conclude. �

4. The continuity equation on a metric graph

In this section we fix a metric graph G and perform a detailed study of the continuity
equation

∂tµt +∇ · Jt = 0 (13)
in this context.

Definition 4.1 (Strong solution). A pair of measurable functions (ρ, U) with ρ :
(0, T )×G → R+ and U : (0, T )× E → R+ is said to be a strong solution to (13) if

(i) t 7→ ρ(t, x) is continuously differentiable for every x ∈ G;
(ii) x 7→ U(t, x) belongs to D(G) for every t ∈ (0, T );
(iii) the continuity equation d

dt
ρt +∇ · Ut = 0 holds for every t ∈ (0, T ) and x ∈ E;

(iv) for every t ∈ (0, T ) and w ∈ V we have
∑

e∈Ew
σe(w)Ut(we) = 0.

Here, we write ρt := ρ(t, ·) and Ut := U(t, ·). Ew denotes the set of all edges adjacent
to the node w ∈ V and we denotes the corresponding end-point of the metric edge e
which is identified with w.

To motivate the definition of weak solutions, suppose that we have a strong solu-
tion (ρt, Ut)t∈(0,T ) to the continuity equation (13). Let ψ ∈ D(G) be a test function.
Integrating by parts we obtain on every metric edge e gives

d

dt

∫ me

0

ψρt dx =

∫ me

0

∇ψ · Ut dx+ ψUt

∣∣∣me

0
.

Then summation over all e ∈ E yields
d

dt

∫
G

ψρt dx =

∫
E

∇ψ · Ut dx+
∑
w∈V

ψ(w)
∑
e∈Ew

σe(w)Ut(we) =

∫
E

∇ψ · Ut dx ,

where we used the continuity of ψ on G as well as the node condition (iv) above in
the last step. This ensures that the net ingoing momentum vanishes at every node in
V . In particular, choosing ψ ≡ 1 yields∫

G

ρs dx =

∫
G

ρt dx ,

for all s, t ∈ (0, T ), i.e. solutions to the continuity equation are mass-preserving. Here
condition (iv) is crucial to ensure that no creation or annihilation of mass occurs at
the nodes.

Definition 4.2 (Weak solution). A pair (µt, Jt)t∈(0,T ) consisting of Borel families of
probability measures µt on G and signed measures Jt on E is said to be a weak solution
to (13) if

(i) t 7→
∫
G
ψ dµt is absolutely continuous for every test function ψ ∈ D;

(ii)
∫ T
0
|Jt|(E) dt <∞;

(iii) for a.e. t ∈ (0, T ), we have
d

dt

∫
G

ψ dµt =

∫
E

∇ψ · dJt. (14)
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Whenever there exists a family (vt)t∈(0,T ) of vectorfields vt on E such that Jt = vt · µt,
then we will speak of (µt, vt)t∈(0,T ) as a weak solution to (13) as well.
Remark 4.3. If (µt, Jt)t∈(0,T ) is a weak solution to the continuity equation, then t 7→ µt
is weakly continuous. Thus, we can continuously extend (µt)t to the interval [0, T ].
Remark 4.4. Note that (µt, Jt)t∈(0,T ) is a weak solution if and only if the following
conditions hold: (i’) t 7→ µt is weakly continuous; (ii) from Definition 4.2 holds; and

(iii’) for every φ ∈ D
(
(0, T )×G

)
, we have∫ T

0

(∫
G

∂tφ dµt dt+

∫
E

∇φ · dJt
)
dt = 0. (15)

The next result asserts that the momentum field does not give mass to vertices for
a.e. time point. Hence, we can equivalently restrict the integral in (14) and (15) to
the space of open edges E.

Lemma 4.5. Let B := E \ E denote the set of all boundary points of edges. For any
weak solution to the continuity equation (µt, Jt)t∈(0,T ), we have∫ T

0

|Jt|(B) dt = 0 .

Proof. Fix a metric edge e in E and take any w ∈ {einit, eterm}. Fix a function η ∈
C1
c (R) satisfying η(0) = 0 and η′(0) = 1. For ε > 0, we define ϕε : E → R by ϕε(x) :=

1e(x)εη(d(x,w)/ε). Note that ϕε belongs to D(G) for ε small enough. Moreover,
|∇ϕε(w)| = 1. On the other hand, ϕε → 0 uniformly on G and ∇ϕε(x) → 0 for any
x 6= w as ε ↘ 0. Choosing ϕ = ϕε in (15), we obtain by passing to the limit that∫ T
0
Jt({w})dt = 0. �

Lemma 4.6 (Weak and strong solutions). The following assertions hold:
(1) If (ρt, Ut)t∈(0,T ) is a strong solution to the continuity equation, then the pair

(µt, Jt)t∈(0,T ) defined by µt = ρt · λ and Jt = Ut · λ is a weak solution to the
continuity equation.

(2) If (µt, Jt)t∈(0,T ) is a weak solution to the the continuity equation (14) such that
the densities ρt and Ut exist for all times t ∈ (0, T ) and satisfy the regularity
conditions (i) and (ii) of Definition 4.1. Then (ρt, Ut)t∈(0,T ) is a strong solution
to the continuity equation.

Proof. Both claims are straightforward consequences of integration-by-parts on each
metric edge in E. �

The next result relates the metric differential of t 7→ µt to the corresponding L2-
norm of the vectorfields vt.
Theorem 4.7 (Characterisation of absolutely continuous curves). The following state-
ments hold:

(i) If (µt)t∈(0,T ) is absolutely continuous in (P(G),W2), then for a.e. t ∈ (0, T ), there
exists a vectorfield vt ∈ L2(µt) such that ‖vt‖L2(µt) ≤ |µ̇t| and (µt, vt)t∈(0,T ) is a
weak solution to the continuity equation (14).

(ii) Conversely, if (µt, vt)t∈(0,T ) is a weak solution to the continuity equation (14) sat-
isfying

∫ 1

0
‖vt‖L2(µt) dt < +∞, then (µt)t∈(0,T ) is absolutely continuous in (P(G),W2)

and |µ̇|(t) ≤ ‖vt‖L2(µt) for a.e. t ∈ (0, T ).
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Proof of (i). For this part of the proof, we follow a strategy employed in Theorem
8.3.1 of [AGS08], modified accordingly to our setting of metric graphs.

The idea of the proof is as follows: On the space-time domain Q := (0, T ) × G

we consider the Borel measure µ :=
∫ T
0
δt ⊗ µt dt whose disintegration with respect

to the Lebesgue measure on (0, T ) is given by (µt)t∈(0,T ). To deal with the fact that
gradients of smooth functions are multi-valued at the nodes, we define µt ∈ M+(E)
by µt(A) :=

∑
e∈E µt(A ∩ e) for every Borel set A ⊆ E. We then set Q := (0, T ) × E

and define µ ∈ M+(Q) by µ :=
∫ T
0
δt ⊗ µt dt. Consider the linear spaces of functions

T and V given by

T := span

{
(0, T )×G 3 (t, x) 7→ a(t)ϕ(x) : a ∈ C1

c (0, T ), ϕ ∈ C(G) ∩ C1(E)

}
,

V :=

{
(0, T )× E 3 (t, x) 7→ ∇xΦ(t, x) : Φ ∈ T

}
.

The strategy is to show that the linear functional L : V → R given by

L(a⊗∇ϕ) := −
∫
Q

ȧ(t)ϕ(x) dµ(x, t),

is well-defined and L2(Q,µ)-bounded with ‖L‖2 ≤
∫ T
0
|µ̇t|2 dt. The existence of a

velocity vectorfield vvv ∈ L2(Q,µ) follows then by the Riesz representation theorem.
Once this is done, we show that the momentum vectorfield JJJ := vvv · µ does not assign
mass to boundary points in E, so that vvv can be interpreted as an element in L2(Q,µ)
and the integration over vectorfields can be restricted to E.

Step 1. Fix a test function ϕ ∈ C(G)∩C1(E) and consider the bounded and upper
semicontinuous function H : G×G → R given by

H(x, y) :=

lip(ϕ)(x) if x = y,
|ϕ(x)− ϕ(y)|

d(x, y)
if x 6= y,

for x, y ∈ G. For s, t ∈ (0, T ), let σs→t ∈ Π(µs, µt) be an optimal plan. The Cauchy–
Schwarz inequality yields∣∣∣∣ ∫

G

ϕ dµs −
∫
G

ϕ dµt

∣∣∣∣ ≤ ∫
G×G

d(x, y)H(x, y) dσs→t(x, y)

≤ W2(µs, µt)

(∫
G×G

H2(x, y) dσs→t(x, y)

)1/2

.

(16)

As ϕ is globally Lipschitz on G, we obtain∣∣∣∫
G

ϕ dµs −
∫
G

ϕ dµt

∣∣∣ ≤ Lip(ϕ)W2(µs, µt)

and infer that the mapping t 7→
∫
G
ϕ dµt is absolutely continuous, hence, differentiable

up to a null set Nϕ ⊆ (0, T ).
Fix t ∈ (0, T ) and take a sequence {sn}n∈N converging to t. Since {µsn} is weakly

convergent, this sequence is tight. Consequently, {σsn→t}n∈N is tight as well, and we
may extract a subsequence converging weakly to some σ̂ ∈ P(G×G). It readily follows



GRADIENT FLOWS FOR METRIC GRAPHS 83

that σ̂ ∈ Π(µt, µt). Moreover, along the convergent subsequence, we have∫
G×G

d2(x, y) dσ̂(x, y) ≤ lim inf
n→∞

∫
G×G

d2(x, y) dσsn→t(x, y) = lim inf
n→∞

W 2
2 (µsn , µt) = 0,

which implies that σ̂ = (Id, Id)#µt.
Using this result and the upper-semicontinuity of H, it follows from (16) that

lim sup
s→t

∣∣∣∣
∫
G
ϕ dµs −

∫
G
ϕ dµt

s− t

∣∣∣∣ ≤ |µ̇t| lim sup
s→t

(∫
G×G

H2(x, y) dσs→t(x, y)

)1/2

≤ |µ̇t| · ‖lip(ϕ)‖L2(µt)
.

(17)

Step 2. Take Φ ∈ T . Using dominated convergence, Fatou’s Lemma, and (17), we
obtain∣∣∣∣ ∫

Q

d

dt
Φ(x, t) dµ(x, t)

∣∣∣∣ = lim
h↘0

∣∣∣∣1h
∫
Q

Φ(x, t− h)− Φ(x, t) dµ(x, t)

∣∣∣∣
= lim

h↘0

∣∣∣∣1h
∫ T

0

(∫
G

Φ(x, t) dµt+h(x)−
∫
G

Φ(x, t) dµt(x)

)
dt

∣∣∣∣
≤

∫ T

0

|µ̇t| · ‖lipx(Φ)(·, t)‖L2(µt)
dt

≤
(∫ T

0

|µ̇t|2 dt
)1/2(∫

Q

|lipx(Φ)(x, t)|
2 dµ(x, t)

)1/2

.

(18)
Since

∫
Q
|lipx(Φ)(x, t)|2 dµ(x, t) ≤

∫
Q
|∇Φ(x, t)|2 dµ(x, t), we infer that L is well-

defined and extends to a bounded linear functional on the closure of V in L2(Q,µ)

with ‖L‖2 ≤
∫ T
0
|µ̇t|2 dt.

The Riesz representation theorem yields the existence of a vectorfield vvv in V ⊆
L2(Q,µ) such that ‖vvv‖2L2(µ) ≤

∫ T
0
|µ̇t|2 dt and

−
∫ T

0

ȧ(t)

∫
G

ϕ(x)dµt(x) dt = L(a⊗∇ϕ) =
∫ T

0

a(t)

∫
E

∇ϕ(x)vt(x) dµt(x) dt (19)

for vt := vvv(t, ·) and all a ∈ C1
c (0, T ) and ϕ ∈ C(G) ∩ C1(E).

Lemma 4.5 implies that for a.e. t the momentum field Jt := vt · µt does not give
mass to any boundary point in E Consequently, the spatial domain of integration on
the right-hand side of (19) may be restricted to E.

In particular, (19) implies that t 7→
∫
E
∇ϕ · vt dµt is a distributional derivative for

t 7→
∫
G
ϕ dµt. Since the latter function is absolutely continuous and, therefore, belongs

to the Sobolev space W 1,1(0, T ), we obtain
d

dt

∫
G

ϕ dµt =

∫
E

∇ϕ · vt dµt for a.e. t ∈ (0, T ). (20)

We conclude that (µt, vt)t∈(0,T ) solves the continuity equation in the weak sense.
Step 4. It remains to verify (by a standard argument) the inequality relating the

L2(µt)-norm of the vectorfield vt to the metric differential of µt.
To gain insight of this, fix a sequence ($$$i)i∈N of functions $$$i ∈ V converging to vvv

in L2(µ) as i → ∞. Then for every compact interval I ⊆ (0, T ) and a ∈ C1(0, T )
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satisfying 0 ≤ a ≤ 1 and supp a = I, we have∫
Q

a(t)|vvv(x, t)|2 dµ(x, t) = lim
i→∞

∫
Q

a(t)$$$i(x, t)vvv(x, t) dµ(x, t)

= lim
i→∞

L(a$$$i) ≤
(∫ T

0

1I |µ̇t|2 dt
)1/2

lim
i→∞

(∫
Q

1I |$$$i|2 dµ
)1/2

=
(∫ T

0

1I |µ̇t|2 dt
)1/2(∫

Q

1I |v|2 dµ
)1/2

.

Letting ‖a− 1I‖∞ → 0, this inequality implies∫
I

∫
E

|vt|2 dµt dt ≤
∫
I

|µ̇t|2 dt.

Since I ⊆ (0, T ) is arbitrary, this implies that ‖vt‖L2(µt)
≤ |µ̇t| for a.e. t ∈ (0, T ). �

4.1. Regularisation of solutions to the continuity equation. For the proof of
the second part of Theorem 4.7, we need to make use of the Hopf-Lax formula on
abstract metric spaces and its relation to the dual problem of optimal transportation.
Definition 4.8 (Hopf-Lax formula). For a real-valued function f on a Polish space
(X, d), we define Qtf : X → R ∪ {−∞} by

Qtf(x) := inf
y∈X

f(y) +
1

2t
d2(x, y)

for all t > 0 as well as Q0f := f .
The Hopf-Lax formula satisfies the following basic properties which were proven in

[AGS14].
Proposition 4.9 (Properties of the Hopf-Lax semigroup). For any Lipschitz function
f : X → R the following statements hold:

(i) For every t ≥ 0, we have Lip(Qtf) ≤ 2Lip(f).
(ii) For every x ∈ X, the mapping t 7→ Qtf(x) is continuous on R+

0 , locally semi-
concave on R+ and the inequality

d

dt
Qtf(x) +

1

2
lip(Qtf)

2(x) ≤ 0 (21)

holds for t ≥ 0 up to a countable number of exceptions.
(iii) The mapping (t, x) 7→ lip(Qtf)(x) is upper semicontinuous on R+ ×X.

In addition to the Hopf-Lax formula, we also need to regularise the solutions of the
continuity equation. To this aim, we adapt the standard procedure widely used for
regularisation for solutions of measures on bounded Euclidean domains to the settings
of metric graphs.

The node conditions in Definition 4.1.iv imply that we usually cannot expect the
momentum field Jt = vt · µt of any solution of the continuity equation (µt, vt)t∈(0,T )
to be continuous at nodes, regardless of regularity of µt and vt in the interior of each
edge.

Below, we develop a regularisation scheme for solutions of the continuity equation
under the following assumption on the regularisation parameter ε.
Assumption 4.10. In this section ε > 0 is chosen small enough such that 2ε is a
strict lower bound for both the length of any edge in E and the injectivity radius at
any point in G.
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Recall that on a metric graph The injectivity radius corresponds to half the total
length of the shortest embedded cycle.

This means that for any two points x, y ∈ G of distance less than 2ε, the geodesic
connecting x to y is uniquely defined.

We consider the supergraph Gext ⊇ G defined by adjoining an additional auxiliary
edge eextv of length ε to each node v ∈ V (see Figure 3). The corresponding set of metric
edges will be denoted by Eext ⊃ E. For the purpose of this definition below, we identify
each edge e = (einit, eterm) ∈ E with the interval (−me

2
, me

2
) instead of (0,me). Again,

the nodes einit, eterm ∈ V correspond to the respective end-points of the interval. For
each fixed edge e ∈ E we identify the auxiliary edges eexteinit

and eexteterm with the intervals
(−me

2
− 2ε,−me

2
) and (me

2
, me

2
+ 2ε), respectively.

We next define a regularisation procedure for functions based on averaging. To
obtain a continuous function, it will be crucial to use non-centred averages. For this
purpose, we set αεe := (me + 2ε)/me and αε(x) := αεe, whenever x is a point on the
metric edge e in E.

e

eexteinit
eexteterm

Figure 3. The construction of the supergraph Gext by means of ad-
joining an additional leaf at every node in V .

Definition 4.11 (Regularisation of functions). For ϕ ∈ L1(Gext), we define ϕε : G →
R by

ϕε(x) :=
1

2ε

∫ αε
ex+ε

αε
ex−ε

ϕ(y) dy for x ∈ [−me

2
, me

2
]. (22)

Note that the value of ϕε in the nodes does not depend on the choice of the edge,
so that ϕε indeed defines a function on G. We collect some basic properties of this
regularisation in the following result.

Proposition 4.12. The following properties hold for every ε > 0 be sufficiently small:
(i) Regularising effect: For any ϕ ∈ C(Gext) we have ϕε ∈ C(G) ∩ C1(E) and

∇ϕε(y) = αεe
2ε

(
ϕ(αεey + ε)− ϕ(αεey − ε)

)
(23)

for y ∈ [−me/2,me/2].
(ii) If ϕ belongs to C(Gext), then ϕε converges uniformly to ϕ|G as ε↘ 0.

Proof. The claim in (i) follows by a direct computation; the one in (ii) follows using
the uniform continuity of ϕ on Gext. �

As a first application of the regularisation procedure above, we state a useful lemma.

Lemma 4.13 (Weak continuity). Let (ρt, Jt)t∈(0,T ) be a weak solution to the continuity
equation on G. Then t 7→

∫
G
ϕ dµt is continuous for every ϕ ∈ C(G).

Proof. Take a continuous extension of ϕ to Gext and define ϕε accordingly. Proposition
4.12.ii then implies that ϕε converges uniformly to ϕ on G as ε ↘ 0. As a result,
the function t 7→

∫
G
ϕε dµt converges uniformly to t 7→

∫
G
ϕ dµt. Since ϕε belongs to
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C(G) ∩ C1(E) by Proposition 4.12.i, we conclude that the mapping t 7→
∫
G
ϕ dµt is

continuous, being a uniform limit of continuous functions. �

By duality, we obtain a natural regularisation for measures.

Definition 4.14 (Regularisation of measures). For µ ∈ M(G) we define µε ∈ M(Gext)
by ∫

Gext

ϕ dµε :=

∫
G

ϕε dµ. (24)

It is readily checked that the right-hand side defines a positive linear functional on
C(Gext), so that µε is indeed a well-defined measure.

Proposition 4.15. The following properties hold for any ε > 0:
(i) Mass preservation: µε(Gext) = µ(G) for any µ ∈ M(G).

(ii) Regularising effect: For any µ ∈ P(G), the measure µε is absolutely continuous
with respect to λ with density

ρε(x) =


1

2ε
µ
(
e ∩ Ie(x)

)
, for x on e in E,

1

2ε

(
1{d(x,w)≤2ε}µ({w}) +

∑
e∈E:w∈e

µ
(
e ∩ Ie(x)

))
for x on eextw , w ∈ V,

where
Ie(x) :=

(
x− ε

aεe
,
x+ ε

aεe

)
.

In particular, ρε(x) ≤ 1
2ε

for all x ∈ Gext.
(iii) Kinetic energy bound: For µ ∈ P(G) and v ∈ L2(µ), define J = v · µ ∈ M(G).

Consider the regularised measures µε ∈ P(Gext) and Jε ∈ M(Gext). Then Jε =
vε · µε for some vε ∈ L2(µε) and we have∫

Eext

|vε|2 dµε ≤
∫
E

|v|2 dµ. (25)

(iv) For any µ ∈ P(G) we have weak convergence µε ⇀ µ in P(Gext) as ε→ 0.
(v) For any µ ∈ P(G), absolutely continuous with respect to λ such that µ = ρ · λ,

we have convergence ρε → ρ in L1(Gext) as ε→ 0.
(vi) Let (µt, vt)t∈(0,T ) be a weak solution to the to the continuity equation (14). Then

the regularised pair (µεt , α
εvεt )t∈(0,T ), where the vectorfield vεt is defined as in (iii)

above, satisfies a weak continuity equation on Gext in the following sense:
For every absolutely continuous function ϕ on Gext, the function t 7→

∫
Gext

ϕ dµεt
is absolutely continuous and for a.e. t ∈ (0, T ) we have

d

dt

∫
Gext

ϕ dµεt =

∫
Eext

∇ϕ · (αεvεt ) dµεt . (26)

In order to prove (iii), we will make use of the so-called Benamou-Brenier functional
(cf. e.g. Section 5.3.1 in [San15] for corresponding results in a Euclidean setting).

Definition 4.16. Denote the set K2 := {(a, b) ∈ R × R : a + b2/2 ≤ 0}. The
Benamou-Brenier functional B2 : M(G)×M(E) → R ∪ {+∞} is defined by

B2(µ, J) := sup
(a,b)∈Cb(G,K2)

{∫
G

a dµ+

∫
E

b dJ
}
.

Lemma 4.17. The following statements hold:
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(i) The pointwise supremum over the set KG is characterised by the identity

sup
(a,b)∈K2

{az + by} =


|y|2

2z
if z > 0,

0 ifz = 0 and y = 0,

+∞ otherwise.

(27)

(ii) We have

B2(µ, J) = sup
(a,b)∈L∞(G,K2)

{∫
G

a dµ+

∫
E

b dJ
}
, (28)

where L∞(G, K2) denotes (by abuse of notation) the set of all bounded measur-
able functions a, b : G → R such that a+ b2/2 ≤ 0.

(iii) The functional B2 is convex and lower semicontinuous with respect to the topology
of weak convergence on M(G)×M(E).

(iv) If µ is non-negative such that J � µ, we may write J = v · µ and

B2(µ, J) =
1

2

∫
E

|v|2 dµ. (29)

Otherwise, we have B2(µ, J) = +∞.

Proof. For (i) we refer to the proof of Lemma 5.17 in [San15].
Regarding (ii), we note that the right-hand side of (28) is clearly bounded from above

by B2(µ, J). In order to prove equality of both sides, we show that any pair of bounded
measurable functions a, b : G → R satisfying a + b2/2 ≤ 0 can be approximated by
bounded continuous functions in a suitable way. Indeed, we may appeal to Lusin’s
theorem (see e.g. Theorem 7.1.13 in [Bog07]) to obtain functions aδ, bδ ∈ Cb(G, K2)
such that

µ({a 6= aδ}) ≤
δ

2
, sup |aδ| ≤ sup |a| and |J |({b 6= bδ}) ≤

δ

2
, sup |bδ| ≤ sup |b|.

Define ãδ := min{aδ,−|bδ|2/2} such that the inequality ãδ + b2δ/2 ≤ 0 is satisfied.
Hence, the pair (ãδ, bδ) is admissible for the supremum of the right-hand side of (28).

Since
∫
G
ãδ dµ +

∫
E
bδ dJ converges to

∫
G
a dµ +

∫
E
b dJ as δ ↘ 0, we infer that

equality holds in (28).
Now the convexity and lower semicontinuity in (iii) are an immediate consequence

of the definition of B2 as supremum over linear functionals.
It remains to prove (iv): At first, assume that µ is non-negative such that E � µ

with J = v · µ. Then we may infer the existence of a so-called lattice supremum in
F := {a + bv : (a, b) ∈ L∞(G, K2)}; that is a measurable function

∨
F : G → R

satisfying ∨
F(x) = sup

f∈F
{f(x)} µ-a.e. x ∈ G,

(cf. e.g. Theorem 5.7.1 in [Bog07] for a general existence result). Note that the point-
wise supremum on the right-hand side of this equation need not be a measurable
function in x.

Taking (28) and (27) into account, the considerations above yield

B2(µ, J) = sup
(a,b)∈L∞(G,K2)

{∫
G

a+ bv dµ
}
=

∫
G

∨
F dµ =

1

2

∫
E

|v|2 dµ,

where we used that B2(µ|V , J) ≡ 0 to pass from the first to the second equality above.
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Finally, we show that B2(µ, J) = +∞ whenever the above assumptions are not met.
Indeed, if there exists a Borel set A ⊆ G such that µ(A) < 0, then way may choose
a = k1A and b ≡ 0 for any k ≤ 0. Then the resulting bound B2(µ, J) ≥ kµ(A) gives
the claim as k → −∞.

In the remaining case, the signed measure J is not absolutely continuous with respect
to µ, i.e. there exits a µ-null set A ⊆ G such that E(A) 6= 0. Then we may take
a = −k2

2
1A and b = k1A for any k ∈ R. We infer B2(µ, J) ≥ −k2

2
J(A) → +∞ as

k → ∞, which allows us to conclude. �

Proof of Proposition 4.15. The claims in (i) and (ii) follow readily from the definitions.
To prove (iii), we first note that Jε � µε implies the existence of a vectorfields

v ∈ L2(µε) such that Jε = vε · µε.
We know from the results stated in Lemma 4.17 that the L2-norm of the vectorfield

v is related to the so-called Benamou-Brenier functional by means of the identity
1

2

∫
E

|v|2 dµ = sup
{∫

G

a dµ+

∫
E

b dJ
}
, (30)

where the supremum is over all bounded measurable functions a, b : G → R such that
a+ b2/2 ≤ 0.

For any two such a and b defined on Gext, we consider regularised functions aε and
bε as done for a function ϕ in (22). Using Jensen’s inequality and the fact that the
regularisation is linear and positivity-preserving, we obtain

aε(x) +
1

2
|bε(x)|2 ≤

(
a+ 1

2
|b|2

)ε
(x) ≤ 0 ∀x ∈ G

Consequently, the functions aε and bε belong to the admissible set for the supremum
on the right-hand side of (30); thus∫

G

aε dµ+

∫
E

bε dJ ≤ 1

2

∫
E

|v|2 dµ. (31)

At the same time, the identity∫
Gext

a dµε +

∫
Eext

b dJε =

∫
G

aε dµ+

∫
E

bε dJ (32)

allows us to pass to supremum over all admissible functions a and b in (31) to arrive
at (25).

(iv) is a direct consequence of the duality formula (24), together with the uniform
convergence of (ϕε)ε>0 on G, established in Proposition 4.12.ii.

The claim in (v) follows from the representation of the regularised densities ρε

as shown in Proposition 4.15.ii above, together with an Lp-version of the Lebesgue
differentiation theorem (see e.g. Theorem 1.34 in [EG15]), applied to each metric edge
in Eext separately.

It remains to prove (vi). Since ϕ is absolutely continuous, ϕ is differentiable a.e.
in Eext. Moreover, we recall from Proposition 4.12.i that the regularised function ϕε

actually belongs to C(G) ∩ C1(E) and satisfies the identity

∇ϕε(x) = αε(x)(∇ϕ)ε(x) ∀x ∈ E. (33)
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In particular, we may test the pair (µt, vt)t∈(0,T ) against ϕε, resulting in the claim as a
consequence of the computation

d

dt

∫
Gext

ϕ dµεt =
d

dt

∫
G

ϕε dµt =

∫
E

∇ϕε · vt dµt =
∫
Eext

∇ϕ · (αεvεt ) dµεt , (34)

where we used that αε is constant on each metric edge in E in the rightmost equality
above. �

Now we are ready to prove the second part of Theorem 4.7, adapting an approach
from [GH15]. In that work the authors prove an analogous result in more general metric
measure spaces, but they require a stronger assumption on the measures (namely,
a uniform bound on their densities with respect to the reference measure). Here we
consider more general measures as well using the regularisation procedure described
above.

Proof of (i) in Theorem 4.7. For simplicity, we consider only the case T = 1 as the
proof for arbitrary T > 0 follows along the very same lines below.

The main step of the proof is to show that

W 2
2 (µ0, µ1) ≤

∫ 1

0

‖vr‖2L2(µr)
dr. (35)

From there, a simple reparametrisation argument (see Lemma 1.1.4 and Lemma 8.1.3
in [AGS08]) yields

W 2
2 (µt, µs) ≤

1

|s− t|

∫ t

s

‖vr‖2L2(µr)
dr

for all 0 ≤ s < t ≤ 1, which implies the absolute continuity of the curve (µt)t∈(0,1)
in W2(G) as well as the desired bound |µ̇|(t) ≤ ‖vt‖L2(µt)

for every Lebesgue point
t ∈ (0, 1) of the mapping t 7→ ‖vt‖2L2(µt)

.

Thus, we have to show (35): To this aim, we will work on a supergraph Gext ⊇ G

satisfying Assumptions 4.10 for ε > 0 small enough.
By Kantorovich duality (Proposition 2.8), there exists ϕ ∈ C(G) satisfying

1

2
W 2

2 (µ0, µ1) =

∫
G

Q1ϕ dµ1 −
∫
G

ϕ dµ0. (36)

We consider continuous extensions of ϕ and Q1ϕ to Gext, both constant on each aux-
iliary metric edge in Eext. In particular, ϕ and Q1ϕ are continuous on Gext.

Set Jt := vt · µt and consider a regularised pair (µεt , Jεt )t∈(0,1) as defined by (24). We
write∫

Gext

Q1ϕ dµε1 −
∫
Gext

ϕ dµε0 =
n−1∑
i=0

(∫
Gext

Q(i+1)/nϕ−Qi/nϕ dµε(i+1)/n

+

∫
Gext

Qi/nϕ d
(
µε(i+1)/n − µεi/n

))
,

(37)

and bound the two terms on the right-hand side separately.

Bound 1. To estimate the first term on the right-hand side of (37), we use (21) to
obtain
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n−1∑
i=0

∫
Gext

Q(i+1)/nϕ−Qi/nϕ dµε(i+1)/n ≤ −1

2

n−1∑
i=0

∫
Gext

∫ (i+1)/n

i/n

lip2(Qtϕ) dt dµ
ε
(i+1)/n

= −1

2

∫
Gext×(0,1)

lip2(Qtϕ)(x) dµµµ
ε
n(x, t),

(38)
where the measures µµµεn :=

∑n−1
i=0 µ

ε
(i+1)/n ⊗ L1|(i/n,(i+1)/n) are defined on Gext × (0, 1).

To show weak convergence of the sequence (µµµεn)n∈N, we take ψ ∈ C(Gext × [0, 1]).
Note that t 7→ µt is weakly continuous by Lemma 4.13, hence t 7→ µεt is weakly
continuous as well. Consequently,

∫
Gext

ψ(·, t) dµεbtnc/n →
∫
Gext

ψ(·, t) dµεt for every fixed
t. Integrating in time over (0, 1), we infer, using dominated convergence, that µµµεn
converges weakly to µµµε :=

∫ 1

0
µεt ⊗ δt dt as n→ ∞.

As lip2(Qtϕ) is not necessarily continuous, an additional argument is required to
pass to the limit in (38). For this purpose, we observe that Proposition 4.15.ii yields
µµµεn � λ⊗L1 with a density ρεn(x, t) ≤ 1/(2ε) for x ∈ Gext and t ∈ (0, 1). In particular,
the family (ρεn)n∈N is uniformly integrable with respect to λ ⊗ L1. Consequently,
the Dunford-Pettis theorem (see e.g. Theorem 4.7.18 in [Bog07]) implies that (ρεn)n∈N
has weak∗-compact closure in L1(Gext × (0, 1)). Since lip2(Qtϕ) is bounded, we may,
therefore, pass to the limit in (38) and infer that

lim sup
n→∞

n−1∑
i=0

∫
Gext

Q(i+1)/nϕ−Qi/nϕ dµε(i+1)/n ≤ −1

2

∫
Gext×(0,1)

lip2(Qtϕ)(x) dµµµ
ε(x, t)

= −1

2

∫ 1

0

∫
Eext

lip2(Qtϕ) dµ
ε
t dt,

(39)
where we used that µεt � λ on Gext to remove the set of nodes V from the domain of
integration.

Bound 2. To treat the second term in (37), take a Lipschitz function ϕ : G → R.
As (µt)t∈(0,1) belongs to a weak solution to the continuity equation and we know from

Proposition 4.12.i that (Qi/nϕ)
ε belongs to C(G) ∩ C1(E), we infer that the mapping

t 7→
∫
G
(Qi/nϕ)

ε dµt is absolutely continuous. Therefore,
n−1∑
i=0

∫
Gext

Qi/nϕ d(µε(i+1)/n − µεi/n) =
n−1∑
i=0

∫
G

(Qi/nϕ)
ε d(µ(i+1)/n − µi/n)

=
n−1∑
i=0

∫ (i+1)/n

i/n

(∫
E

∇(Qi/nϕ)
εvt dµt

)
dt

=
n−1∑
i=0

∫ (i+1)/n

i/n

(∑
e∈E

αεe

∫
e

(∇Qi/nϕ)
εvt dµt

)
dt

=
n−1∑
i=0

∫ (i+1)/n

i/n

(∑
e∈E

αεe

∫
e

∇Qi/nϕ · vεt dµεt
)
dt

≤ αεmax

2

n−1∑
i=0

∫ (i+1)/n

i/n

∫
Eext

∣∣∇Qi/nϕ
∣∣2 dµεt dt+ αεmax

2

∫ 1

0

∫
Eext

|vεt |
2 dµεt dt,

(40)
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where αεmax := maxe∈E α
ε
e.

By Proposition 4.9.iii, we have the bound lim supn→∞ lip2(Qbntc/nϕ) ≤ lip2(Qtϕ). As
ϕ is Lipschitz continuous, (i) in the same proposition shows that supt,x lip(Qtϕ)(x) <
∞. Thus, we may invoke Fatou’s lemma to obtain

lim sup
n→∞

n−1∑
i=0

∫ (i+1)/n

i/n

∫
Eext

∣∣∇Qi/nϕ
∣∣2 dµεt dt ≤ ∫ 1

0

∫
Eext

lip2(Qtϕ) dµ
ε
t dt.

Using this estimate together with Proposition 4.15.iii, we obtain

lim sup
n→∞

n−1∑
i=0

∫
Gext

Qi/nϕ d
(
µε(i+1)/n − µεi/n

)
≤ αεmax

2

∫ 1

0

∫
Gext

lip2(Qtϕ) dµ
ε
t dt

+
αεmax

2

∫ 1

0

∫
E

|vt|2 dµt dt.

(41)

Combination of both bounds. Recalling (37), we use (39) and (41) to obtain∫
Gext

Q1ϕ dµε1 −
∫
Gext

ϕ dµε0 ≤
αεmax

2

∫ 1

0

∫
E

|vt|2 dµtdt+
1− αεmax

2

∫
Gext

∫ 1

0

lip2(Qtϕ) dµ
ε
t dt

Using Proposition 4.15(iv), the fact that αεmax → 1, and the bound supt Lip(Qtϕ) <∞,
we may pass to the limit to obtain∫

G

Q1ϕ dµ1 −
∫
G

ϕ dµ0 ≤
1

2

∫ 1

0

∫
E

|vt|2 dµt dt. (42)

In view of (36), this yields the result. �

Corollary 4.18 (Benamou–Brenier formula). For any µ, ν ∈ P(G), we have

W 2
2 (µ, ν) = min

{∫ 1

0

∫
E

|vt|2 dµt dt
}
, (43)

where the minimum runs over all weak solutions to the continuity equation (µt, vt)t∈[0,1]
satisfying µ0 = µ and µ1 = ν.

Proof. As (P(G),W2) is a geodesic space, we may write

W 2
2 (µ, ν) = min

{∫ 1

0

|µ̇|(t) dt
}
,

where the minimum is taken over all absolutely continuous curves (µt)t∈[0,1] connecting
µ to ν. By Theorem 4.7, we may replace |µ̇|(t) with ‖vt‖L2(µt)

in the formula above,
which allows us to conclude. �

Proposition 4.19. For i ∈ {1, 2}, let (µit, vit)t∈(0,T ) be two solutions to the continuity
equation on G in the weak sense. Under the assumption that both (µit)t∈(0,T ) are abso-
lutely continuous curves in W2(G) such that µit � λ with uniformly bounded densities
for all times t ∈ (0, T ), we have

1

2

d

dt
W 2

2 (µ
1
t , µ

2
t ) =

∫
G

∇ϕt · v1t dµ1
t +

∫
G

∇ψt · v2t dµ2
t for a.e. t ∈ (0, T ),

where (ϕt, ψt) denotes any pair of Kantorovich potentials for the dual transport problem
between µ1

t and µ2
t for the cost function 1

2
d2(·, ·) on G.
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For the proof we make use of the following lemma (see e.g. Lemma 2.3 in [DMM16]
or Proposition 3.6 in [GH15]).

Lemma 4.20. Let (µt, vt)t∈(0,T ) be a solution to the continuity equation such that
t 7→ ‖vt‖L2(µt)

belongs to L1(0, T ) and µit � λ with uniformly bounded densities for all
times t ∈ (0, T ). Then there exists a null set N ⊂ (0, T ) such that

d

dt

∫
G

ϕ dµt =

∫
G

∇ϕ · vt dµt ∀t ∈ (0, T ) \ N , ∀ϕ ∈ W 1,2(G). (44)

Proof. For every time t ∈ (0, T ), denote by Lt the linear functional on W 1,2(G) given
by the right-hand side of (44), i.e.

Lt(ϕ) :=

∫
G

∇ϕ · vt dµt ∀ϕ ∈ W 1,2(G).

By definition of Lt and Hölder’s inequality, we have the bound ‖Lt‖ ≤ ‖vt‖L2(µt)
,

which is finite for a.e. t ∈ (0, T ). Fix a countable dense family {ϕn}n∈N of functions
ϕn ∈ C(G) ∩ C1(E) in W 1,2(G).

For every n ∈ N, denote by In the set of Lebesgue points of the mapping t 7→ Lt(ϕn).
Then N := (0, T )\

⋂
n∈N In is a null set. We may assume that every time s ∈ (0, T )\N

is a Lebesgue point for t 7→ ‖vt‖L2(µt)
as well.

By assumption, we may test each ϕn against the weak continuity equation which,
when integrated over a time interval (s, s+ h) ⊂ (0, T ), takes the form∫

G

ϕn dµs+h −
∫
G

ϕn dµs =

∫ s+h

s

Lr(ϕn) dr ∀n ∈ N.

Since the family {ϕn}n∈N is dense in W 1,2(G), for every ϕ ∈ W 1,2(G) and the densities
of µt are uniformly bounded in t, we may find a sequence (ϕnk

)k∈N such that ϕnk
→ ϕ

and ∇ϕnk
→ ∇ϕ in L2(µt). In particular, we may pass to the limit in the equality

above to arrive at∫
G

ϕ dµs+h −
∫
G

ϕ dµs =

∫ s+h

s

Lr(ϕ)dr ∀ϕ ∈ W 1,2(G). (45)

Moreover, for every ϕ ∈ W 1,2(G), there is an index n ∈ N such that ‖ϕ− ϕn‖W 1,2 <
ε. For s ∈ (0, T ) \ N and h > 0 small enough, we compute

1

h

∫ s+h

s

|Lr(ϕ)− Ls(ϕ)| dr

≤ ε

(
‖Ls‖+

1

h

∫ s+h

s

‖Lr‖ dr
)
+

1

h

∫ s+h

s

|Lr(ϕn)− Ls(ϕn)| dr

≤ ε

(
‖vs‖L2(µs)

+
1

h

∫ s+h

s

‖vr‖L2(µr)
dr +

1

h
‖Ls‖

)
.

By arbitrariness of ε > 0 and boundedness of all terms in the parenthesis in the last
line, we conclude that s ∈ (0, T ) \ N is a Lebesgue point for t 7→ Lt(ϕ). Therefore,
we may differentiate with respect to time in (45) at each such s, in order to arrive at
(44). �

For the following proof we will follow along some lines of the one of Theorem 2.4 in
[DMM16].
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ν

µ µ

f

e1 e2

Figure 4. The support of probability measures µ and ν on a metric
graph induced by a oriented star with 3 leaves.

Proof of Proposition 4.19. Note that the pair (ϕt0 , ψt0) of Kantorovich potentials for
some fixed time t0 ∈ (0, T ) is at least admissible for the dual transport problem
between µ1

t and µ2
t for any other time t ∈ (0, T ); therefore,

1

2
W 2

2 (µ
1
t , µ

2
t )−

∫
G

ϕt0 dµ
1
t −

∫
G

ψt0 dµ
2
t ≥ 0. (46)

In particular, we have equality above when t = t0.
Fix t0 such that t 7→ W 2

2 (µ
1
t , µ

2
t ) differentiable at t0. By Lemma 4.20, we may assume

that t 7→
∫
G
ϕt0 dµ

1
t and t 7→

∫
G
ψt0 dµ

2
t are differentiable at t0 as well. This means that

the left-hand side of (46) is differentiable at t0; by optimality, its derivative vanishes
at t0. Henceforth, we have established the equality

1

2

d

dt0
W 2

2 (µ
1
t0
, µ2

t0
) =

d

dt0

∫
G

ϕt0 dµ
1
t0
+

d

dt0

∫
G

ψt0 dµ
2
t0

for a.e. t0 ∈ (0, T ).

In order to conclude,we apply the continuity equation in the weak sense to the right-
hand side above. �

5. Geodesic convexity of the entropy and curvature in the sense of
Alexandrov on W2(G)

In this section we consider entropy functionals on P(G) of the form

Ent(µ) :=


∫
G

ρ log ρ dx if µ = ρ · λ,

+∞ otherwise.
(47)

The results for semicontinuity of functionals of this type also hold for metric graphs
(cf. Proposition 7.2 below); in particular, the entropy functional Ent is lower semicon-
tinuous on W2(G).

The following example shows that for p ≥ 1, the entropy functional Ent on the
metric space (P(G),Wp) over a metric graph G induced by a graph with maximum
degree larger than 2 is not geodesically K-convex for any K ∈ R.

Example 5.1. Consider a metric graph induced by a graph with 3 leaves as shown in
Figure 4. We assume an edge weight of 1 on each of the edges e1, e2, f , as well as two
probability measures

µ :=
1

2ε

(
1[0,ε]

∣∣
e1
+ 1[0,ε]

∣∣
e2

)
and ν :=

1

ε
1[1−ε,1]

∣∣
f
.

It is straightforward to find an optimal transport map from µ to ν. Indeed, it is
optimal to transfer mass in a monotonic way from µ on each of the edges e1 and e2 to
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G R2

a b
ã b̃

x

y

x̃

ỹ

Figure 5. On the left a geodesic triangle between the highlighted nodes
of the metric graph and on the right the corresponding comparison tri-
angle in the Euclidean plane.

ν. Hence, the constant speed-geodesic from µ to ν is given by (Tt#µ)t∈[0,1] with

Tt(x) :=

{
x+ (2− ε)t ∈ ei if x ≤ 1− (2− ε)t

x+ (2− ε)t− 1 ∈ f if x ≥ 1− (2− ε)t

for x ∈ ei, i ∈ {1, 2}.
Now, the relative entropy of µt reads as follows on each edge:

Ent(µt|ei) =


1
2
log

(
1
2ε

)
if (2− ε)t ≤ 1− ε

(1− (2− ε)t)1
2
log

(
1
2ε

)
if 1− ε ≤ (2− ε)t ≤ 1

0 if 1 ≤ (2− ε)t

Ent(µt|f ) =


0 if (2− ε)t ≤ 1− ε

(2− ε)t log
(
1
ε

)
if 1− ε ≤ (2− ε)t ≤ 1

log
(
1
ε

)
if 1 ≤ (2− ε)t.

Note that the derivative along t 7→ Ent(µt) diverges to +∞ for ε ↘ 0 and any time
1 − ε < (2 − ε)t < 1, whereas the derivative along t 7→ Ent(µt) vanishes for a.e. any
other time t. We conclude that t 7→ Ent(µt) is not K-convex for any K ∈ R.

In the next example, we investigate whether G and W2(G) are CAT[0] spaces. To
this end, recall that we call a geodesic space (X, d) non-positively curved aka CAT[0]
if d(·, z) is 2-convex along geodesics in X for all z ∈ X. This is characterised by
the property that every geodesic triangle in X is thin when compared to an isometric
triangle in Euclidean space.

If d(·, z) is 2-concave along geodesics in X for all z ∈ X, then X is called positively
curved. This corresponds to the property that geodesic triangles in X are fat.

The comparision of geodesic triangles in Figure 5 shows that metric graphs are
usually neither positively nor non-positively curved. A similar behaviour is observed
for W2(G).

Example 5.2. Consider a metric graph with atomic probability measures as described
in Figure 6. Then t 7→ W 2

2 (µt, ν) is not convex. Hence, W2(G) cannot be CAT[0].
Similarly, we can consider a metric graph induced by a triangle with uniform edge

weights, which is then positively curved. Since this property is inherited by Wasserstein
spaces (cf. e.g. Theorem 2.20 in[AG13]), this means that the 2-Wasserstein space of
this uniform triangle is positively curved as well.

In particular, any metric graph which contains embeddings of both examples of
metric graphs above gives rise to a corresponding 2-Wasserstein space that is neither
positively nor non-positively curved.
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ν νµt

µt

Figure 6. A probability measure ν is concentrated with equal mass
on bottom left and bottom right node. For each time t ∈ [0, 1], the
probability measure µt is concentrated with equal mass on the top node
and {γt}, where γ : [0, 1] → G is a constant-speed geodesic connecting
the bottom left to the bottom right node.

6. Convergence of the JKO-scheme

6.1. Optimality conditions of the JKO-scheme at each time step. In this
section we show convergence of the JKO-scheme for the combination F := Ent+V of
an entropy functional as in (47) and a potential energy functional

V(µ) :=
∫
X

V dµ ∀µ ∈ P(G)

with respect to some potential V on G. In addition, we identify the limit curve as a
solution to the corresponding Fokker-Planck equation.

Assumptions 6.1. Throughout this section, we make the following assumptions:
(i) The potential function V : G → R is Lipschitz continuous.
(ii) The initial measure ρ0 ∈ P(G) satisfies F(ρ0) < +∞.

Below, we will denote, by abuse of notation, with L∞(G) ∩ P(G) the space of all
Borel probability measures which are absolutely continuous with respect to λ with
densities belonging to L∞(G).

Throughout this section, any (probability) measure, absolutely continuous w.r.t. λ,
will be identified with its density function.

Definition 6.2. We call ρ ∈ P(G) regular for a functional F : P(G) → R ∪ {+∞} if
F takes finite values only along any convex combination between ρ and ρ̃ ∈ L∞(G) ∩
P(G). In this case, we call every measurable function δF

δρ
(ρ), given by

d

dε

∣∣∣
ε=0

F (ρ+ εχ) =

∫
G

δF

δρ
(ρ) dχ with χ = ρ̃− ρ for some ρ̃ ∈ L∞(G) ∩ P(G),

the first variation of F at ρ.

Proposition 6.3. Let p > 1 and ν ∈ P(G).
(i) The functional µ 7→ W p

p (µ, ν) is convex on P(G).
(ii) The subdifferential of µ 7→ W p

p (µ, ν) at µ0 coincides with the set of Kantorovich
potentials for the dual transport problem from µ0 to ν with respect to the cost 1

2
d2.

(iii) In case, there is only one such Kantorovich potential ϕ which is dp-concave (up
to additive constants), we also have the first variation formula

δW p
p (·, ν)
δρ

(µ) :=
d

dε

∣∣∣
ε=0

W p
p (µ+ εχ) = ϕ

for any perturbation χ = µ̃− µ with µ̃ ∈ L∞(G) ∩ P(G).
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This is the case, when at least one of the measures µ or ν has full support on
G.

Proof. See the proofs of Propositions 7.17 and 7.18 in [San15] in a Euclidean setting,
which carry over straightforwardly. �

Proposition 6.4. Let F : P(G) → R ∪ {+∞} be a functional, minimised by ρ0,
regular for F such that the first variation of F at ρ0 exists.

(i) If δF
δρ
(ρ0) is a continuous function on G, then

δF

δρ
(ρ0) ≤ ess inf

δF

δρ
(ρ0) (48)

everywhere with equality on supp ρ0.
(ii) If ρ0 � λ, then (48) holds λ-a.e. with equality at λ-a.e. point where ρ0 does not

vanish.

Proof. See the proof of Proposition 7.20 in [San15] in a Euclidean setting, which carries
over mutatis mutandis. �

Proposition 6.5. For each τ > 0 and every initial measure ρτ0 := ρ0 satisfying As-
sumption 6.1.ii, the recursively defined optimisation problem

ρτk+1 ∈ argmin
ρ∈P(G)

F(ρ) +
1

2τ
W 2

2 (ρ, ρ
τ
k) (49)

has a unique minimiser at each step k ∈ N0.

Proof. Existence of a minimiser follows by the direct method in the calculus of varia-
tion, using that F is a lower semicontinuous functional on the compact space (P(G),W2).

Uniqueness of the minimiser is implied by convexity of W 2
2 (·, ρτk), together with

strict convexity of F (which is a sum of the a strictly convex functional Ent and linear
functional V); see also Proposition 7.2. �

In the next result we collect some properties of the minimiser in (49).

Proposition 6.6. For every k ∈ N0, the unique minimiser ρτk+1 in (49) is absolutely
continuous with respect to λ. Identified with its density function, ρτk+1 satisfies the
following properties:

(i) ρτk+1 > 0 λ-a.e. and log ρτk+1 ∈ L1(G).
(ii) Denote by ϕτk+1→k the (up to constants) unique Kantorovich potential from ρτk+1

to ρτk with respect to 1
2
d2. Then

ϕτk+1→k

τ
+ log ρτk+1 + V = constant λ-a.e. (50)

In particular, log ρτk+1 is Lipschitz continuous on G.
(iii) We have the identity

ϕτk+1→k

τ
= −∇

(
log ρτk+1 + V

)
λ-a.e. (51)

Proof. For (i) see the proof of Lemma 8.6 in [San15], which carries over to the setting
of metric graphs without any major modifications to speak of.

Regarding (ii), we compute the first variation of ρ→ F(ρ)+ 1
2τ
W 2

2 (ρ, ρ
τ
k) at ρ = ρτk+1:

Write ρε := (1 − ε)ρτk+1 + ερ̃ for some probability density ρ̃ ∈ L∞(G). By definition,
Ent(ρ) < ∞ for ρ ∈ {ρτk+1, ρ̃}. Due to the convexity of the entropy functional (which
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follows from the convexity of x 7→ x log x), Ent(ρε) takes finite values along t ∈ [0, 1]
as well. Therefore, the first variation of the entropy functional is expressed in terms
of∫

G

δ Ent

δρ
(ρτk+1) d(ρ

τ
k+1−ρ̃) :=

d

dε

∣∣∣∣
ε=0

∫
G

ρε log ρε dx =

∫
G

log ρτk+1+1d(ρτk+1−ρ̃), (52)

where we used dominated convergence in form of∣∣∣∣ ddε(ρε log ρε)
∣∣∣∣ ≤ (ρτk+1 + log ‖ρ̃‖∞)(| log ρτk+1|+ log ‖ρ̃‖∞ + 1) ∈ L1(G)

to differentiate under the integral sign in (52).
In a similar fashion, we obtain δV

δρ
(ρτk+1) = V , whereas the the first variation of ρ 7→

1
2
W 2

2 (ρ, ρ
τ
k) is known from Proposition 6.3 to be the (unique) Kantorovich potential

ϕ := ϕτk+1→k from ρτk to ρτk+1.
Altogether, the first variation of all terms involved takes the form

δ

δρ

(
F(ρ) +

1

2τ
W 2

2 (ρ, ρ
τ
k)

)
(ρτk+1) = log ρτk+1 + 1 + V +

ϕ

τ
. (53)

Due to Proposition 6.4, this expression is a.e. constant; hence (50) follows.
Since both ϕ and V are Lipschitz continuous functions on G, (50) implies that ρτk+1

and, therefore, also log ρτk+1 has a Lipschitz representative in L1(G). In particular, we
may assume that (50) is constant everywhere on G. Now (51) follows by taking the
derivative of both sides of this equality. �

6.2. Interpolation between time steps.
Definition 6.7. We define the piecewise constant interpolation curves for a time-
discrete sequence (ρτk)k∈N of minimisers in (49) and corresponding c-concave Kan-
torovich potentials from ρτk+1 to ρτk with respect to the cost function c := 1

2
d2 by

ρτt := ρτk+1, vτt :=
∇ϕτk+1→k

τ
, Jτt := vτt ρ

τ
t for t ∈ (kτ, (k + 1)τ ].

Likewise, we define the geodesic interpolation curves for a fixed geodesics selection
map GeodSel and optimal transport plans πτk+1→k from ρτk+1 to ρτk by

ρ̃τt := (GeodSelt̃)#π
τ
k+1→k, ṽτt :=

∇φt̃
τ
, J̃τt := ṽτt ρ̃

τ
t

for times
t̃ =

(k + 1)τ − t

τ
, t ∈ (kτ, (k + 1)τ ]

and a potential function given by φt̃ := −Q1−t̃(−ϕτk+1→k)
c, where Q denotes the Hopf-

Lax semigroup as given in Definition 4.8 and (·)c denotes the c-transform for the cost
c := 1

2
d2.

We collect some basic facts about (ρτk)k∈N0 and the interpolants introduced above.
Lemma 6.8. (i) The densities ρτk satisfy the following bounds in terms of the L2-

Wasserstein distance:
W 2

2 (ρ
τ
k+1, ρ

τ
k)

2τ
≤ F(ρτk)−F(ρτk+1) ∀k ∈ N0 (54)

and ∑
k

W 2
2 (ρ

τ
k+1, ρ

τ
k)

τ
≤ 2

(
F(ρτ0)− inf

ρ
{F(ρ)}

)
. (55)



98 MATTHIAS ERBAR, DOMINIK FORKERT, JAN MAAS, AND DELIO MUGNOLO

(ii) The family of interpolation densities (ρτ )τ>0 is equi-integrable on [0, T ]×G.
(iii) Both, the c-transform (−ϕτk+1→k)

c and the potential function φt̃ are Lipschitz
continuous, uniformly with respect to t. In particular,

∫ T
0
‖ṽτt ‖L2(ρ̃τt )

dt < ∞ for
all T > 0.

(iv) The pair (ρ̃τt , ṽ
τ
t )t∈[0,T ] satisfies the continuity equation in the weak sense for every

T > 0.

Proof. The first bound in (i) follows from a comparison of two successive opti-
misers in (49). Then we may sum over k ∈ N0 in (54) and use that the resulting
right-hand side is a telescopic sum to obtain the second bound (55).

For the proof of (ii), recall that (54) implies F(ρτk+1) ≤ F(ρτk) which, by
iteration over k ∈ N0, gives the uniform bound F(ρτk) ≤ F(ρ0) < +∞. By
definition of the piecewise constant interpolation, this implies F(ρτt ) ≤ F(ρ0); in
particular, we have Ent (ρτt ) ≤ F(ρ0).

Note that f(x) := x log x is actually a super-linear function, i.e. for every ε > 0
there exists a constant M > 0 such that f(x)/x = log(x) > 1/ε for all x > M .
In particular, we may assume that

f(x)

x
= log x >

2

ε
F(ρ0) ∀x > M.

Therefore, for every set A ⊆ [0, T ] × G such that (L1 × λ)(A) ≤ ε/(2M), we
obtain the estimate∫
A

ρτt (x) d(t, x) =

∫
A∩{ρτt ≤M}

ρτt (x) d(t, x) +

∫
A∩{ρτt>M}

ρτt (x)

f(ρτt (x))
f(ρτt (x)) d(t, x)

≤(L1 × λ)(A) +
ε

2F(ρ0)
F(ρ0) dt ≤ ε,

uniformly for all τ > 0; we conclude that the family (ρτ )τ>0 is equi-integrable.
Regarding (iii), the Lipschitz continuity of (−ϕτk+1→k)

c is inherited from the
one of the cost function c = 1

2
d2. Now the Lipschitz continuity of φt̃ is a direct

consequence of Proposition 4.9.
For the proof of the claim in (iv), we first note that every c-concave Kantorovich

potential ϕ satisfies

∇ϕ(x0) =
1

2
∇x0d

2(x0, y) = − d

dt0

∣∣∣
t0=0

GeodSelt0(x0, y) (56)

for (λ×λ)-a.e. (x0, y) in the support of an optimal transport plan corresponding
to ϕ. In particular, for the choice ϕ = (1− t̃)φt̃ (which is a Kantorovich potential
from ρ̃τt to ρ̃τkτ ), the formula above implies the continuity equation

d

dt

∫
G

ϕ dρ̃τt =
d

dt

∫
G×G

ϕ(GeodSelt̃(x, y)) dπ
τ
k+1→k

=− 1

(1− t̃)τ

d

dt0

∣∣∣
t0=0

∫
G×G

ϕ(GeodSelt̃+t0(1−t̃)(x, y)) dπ
τ
k+1→k

=
1

τ

∫
G×G

∇ϕ(GeodSelt(x, y)) · ∇φt(GeodSelt(x, y)) dπ
τ
k+1→k

=

∫
G

∇ϕ · ṽτt dρ̃τt ,
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where we used that ρ̃τt � λ and πτk+1→k � λ × λ; the former, due to Proposi-
tion 3.19 and the latter, due to both margins of πτk+1→k being absolutely contin-
uous with respect to λ.

�

Lemma 6.9. Up to subsequences, the interpolants ρτt , ρ̃τt and Jτt , J̃τt introduced above
converge weakly in the following sense as τ → 0:

(i) Jτ ⇀ J and J̃τ ⇀ J in M([0, T ]×G) for some signed limit measure J on space-
time.

(ii) W2(ρ
τ
t , ρt) → 0 and W2(ρ̃

τ
t , ρt) → 0 uniformly in t ∈ [0, T ] for some limit curve

(ρt)t∈[0,T ], both absolutely continuous and 1/2-Hölder continuous with respect to
W2.

Proof. We start with the proof of (i): As (ρ̃τt )t∈[0,T ] is defined via a geodesic interpo-
lation, its metric derivative is piecewise constant and equals to∣∣ ˙̃ρτt ∣∣ = 1

τ
W2(ρ̃

τ
k+1, ρ̃

τ
k) =

1

τ

∫
G

d2(x, y)dρ̃τk+1 = ‖vτt ‖L2(ρτt )
a.e. t ∈ (kτ, (k + 1)τ),

(57)
where we used the identity

|∇ϕ(x0)|2 = |∇x0d
2(x0, y)/2|2 = d2(x0, y) (λ× λ)-a.e. (x0, y) ∈ supp πτk+1→k,

(58)
which, in turn, is a consequence of (56).

Note that (57), together with (55), implies the total variation bound

|Jτ |([0, T ]×G) =

∫ T

0

∫
G

|vτt | dρτt dt ≤
∫ T

0

‖vτt ‖L2(ρτt )
dt

≤
√
T

∫ T

0

‖vτt ‖
2
L2(ρτt )

dt =
√
T

∞∑
k=0

τ

(
1

τ
W2(ρ

τ
k+1, ρ

τ
k)

)2

≤
√
TC

for some constant C > 0.
By means of Theorem 4.7,

∣∣ ˙̃ρτt ∣∣ = ‖ṽτt ‖L2(ρ̃τt )
for a.e. t ∈ [0, T ]. Hence, we also get

|J̃τ |([0, T ]×G) =

∫ T

0

∫
G

|ṽτt | dρ̃τt dt ≤
√
T

∫ T

0

‖ṽτt ‖
2
L2(ρ̃τt )

dt

=
√
T

∫ T

0

‖vτt ‖
2
L2(ρτt )

dt ≤
√
TC.

As a result, both (Jτ )τ>0 and (J̃τ )τ>0 are relative compact families of signed measures
in space-time with respect to the topology of weak convergence.

For this part of the proof it remains to show that the limit curves for (Jτ )τ>0 and
(J̃τ )τ>0 agree. To this aim, let f : [0, T ]×G → R be a Lipschitz function and set

χt̃(x, y) := f(x)vτt (x)− f(GeodSelt̃(x, y))ṽ
τ
t (GeodSelt̃).

We compute∣∣∣∫ T

0

∫
G

f d(Jτt − J̃τt )dt
∣∣∣ = ∣∣∣∑

k

∫ (k+1)τ

kτ

∫
G×G

χt̃(x, y) dπ
τ
k+1→k(x, y)dt

∣∣∣
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≤
∑
k

∫ (k+1)τ

kτ

∫
G×G

1d2(x,y)>τ (x, y)|χt̃(x, y)| dπτk+1→k(x, y) (59a)

+

∫
G×G

1d2(x,V )<τ/2(x, y)|χt̃(x, y)| dπτk+1→k(x, y) (59b)

+

∫
G×G

1GeodSel(x,y)⊆e(x, y)|χt̃(x, y)| dπτk+1→k(x, y)dt (59c)

Recalling the estimates above, we have
∫ T
0
‖ṽτt ‖

2
L2(ρ̃τt )

dt =
∫ T
0
‖vτt ‖

2
L2(ρτt )

dt ≤ C, which
in turn implies the bound∑

k

∫ (k+1)τ

kτ

∫
G×G

|χt̃(x, y)|
2 dπτk+1→k(x, y)dt ≤ 4‖f‖2∞C.

In particular, invoking Hölder’s inequality, this implies for the term in (59a) the esti-
mate ∑

k

∫ (k+1)τ

kτ

∫
G×G

1d2(x,y)>τ (x, y)|χt̃(x, y)| dπτk+1→k(x, y)

≤ 2‖f‖∞
√
C
(∑

k

∫
G×G

τ1d2(x,y)>τ (x, y) dπ
τ
k+1→k(x, y)

)1/2

≤ 2‖f‖∞
√
C
(∑

k

W 2
2 (ρ

τ
k+1, ρ

τ
k)
)1/2

,

which vanishes as τ → 0, due to (55).
In a similar fashion, we may estimate the term in (59b):∑

k

∫ (k+1)τ

kτ

∫
G×G

1d2(x,V )<τ/2(x)|χt̃(x, y)| dπτk+1→k(x, y)

≤ 2‖f‖∞
√
C
(∑

k

τ

∫
G×G

1d2(x,V )<τ/2(x) dπ
τ
k+1→k(x, y)

)1/2

= 2‖f‖∞
√
C
(∫ T

0

∫
G

1d2(x,V )<τ/2(x) dρ
τ
t (x)dt

)1/2

.

Recalling from Lemma 6.8.i that the family of densities (ρτt )τ>0 is equi-integrable on
[0, T ]× G, we may pass to the limit in the estimate above to conclude that the term
(59b) vanishes as τ → 0.

Turning to (59c), we first note that as long as GeodSel(x, y) belongs to a singe edge
e ∈ E, corresponding geodesics are uniquely determined by convex combinations, i.e.
GeodSelt̃ = (1− t̃)x+ t̃y. In particular, the speed d

dt̃
GeodSelt̃(x, y) equals to a constant

for all t̃ ∈ [0, 1]. Moreover, invoking (56) for the Kantorovich potential ϕ = (1− t̃)φt̃
at x0 = GeodSelt̃(x, y) yields

(1− t̃)∇φt̃(GeodSelt̃(x, y)) =
1

2
∇x0d

2(GeodSelt̃(x, y), y)

=
1− t̃

2
∇xd

2(x, y) = (1− t̃)
d

dt̃
GeodSelt̃(x, y)
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for every pair of end-points (x, y) in the support of πτk+1→k such that GeodSel(x, y)
belongs to a single edge. Likewise, (56) holds for ϕ = ϕτk+1→k at x0 = x, which,
combined with the formula above, results in

∇φt̃(GeodSelt̃(x, y)) =
d

dt̃
GeodSelt̃(x, y) = ∇ϕτk+1→k(x).

Thus, we may estimate the term |χt̃(x, y)| for all (x, y) ∈ supp πτk+1→k such that
GeodSel(x, y) belongs to a single edge as follows

|χt̃(x, y)| = |f(x)− f(GeodSelt̃(x, y))| · |vτt (x)|
≤ Lip(f)d(x,GeodSelt̃(x, y))|vτt (x)| = τLip(f)|vτt (x)|

2,

where we used (58) in form of the identity 1
τ
d(x, y) = |vτt (x)|.

With those considerations in mind, we may estimate (59c) as∑
k

∫ (k+1)τ

kτ

∫
G×G

1GeodSel(x,y)⊆e(x, y)|χt̃(x, y)| dπτk+1→k(x, y)dt

≤ τLip(f)

∫ T

0

‖vτt ‖
2
L2(ρτt )

dt ≤ τLip(f)
√
TC,

which allows us to conclude that
∫ T
0

∫
G
f d(Jτt − J̃τt )dt vanishes as τ → 0.

Moving on to (ii), the computations above also imply the bound
∫ T
0

∣∣ ˙̃ρτr ∣∣2 dr ≤ √
TC.

Thus, for all s, t ∈ [0, T ] such that s < t, we obtain

W2(ρ̃
τ
s , ρ̃

τ
t ) ≤

∫ t

s

∣∣ ˙̃ρτr ∣∣ dr ≤ (t− s)1/2
(∫ t

s

∣∣ ˙̃ρτr ∣∣2 dr)1/2

≤ C̃(t− s)1/2 (60)

for some constant C̃ > 0. In other words, the curve (ρ̃τt )t∈[0,T ] is uniformly 1/2-
Hölder continuous with respect to τ > 0. Since (ρ̃τt )t∈[0,T ] takes values in the compact
space (P(G),W2), we may invoke a metric version of the Arzelá-Ascoli theorem (see
e.g. Proposition 3.3.1 in [AGS08]) to extract the required subsequence, converging to
a limit curve (ρt)t∈[0,T ], both absolutely continuous and 1/2-Hölder continuous with
respect to W2.

Choosing s = kτ in (60), we obtain the bound W2(ρ
τ
t , ρ̃

τ
t ) ≤ C̃

√
τ , we conclude that

(up to a subsequence) ρτt converges as well uniformly in time to ρt as τ → 0. �

6.3. Passing to the limiting equation.

Proposition 6.10. The piece-wise constant interpolants ρτ and Jτ converge weakly
(up to some subsequences) to limit measures ρ and J , respectively, on space-time. The
pair (ρt, Jt)t∈[0,T ] satisfies in the weak sense of Definition 4.2 the continuity equation
d
dt
ρ+∇ · J = 0 with J = −∇ρ− ρ∇V .
In particular, for any initial value ρ0 ∈ P(G) with F(ρ0) < +∞, the curve t 7→ ρt

provides a weak solution to the Fokker-Planck equation d
dt
ρ = ∆ρ+∇ · (ρ∇V ).

Proof. The weak convergence of (ρτ , Jτ ) to (ρ, J) and the absolute continuity of ρ with
respect to W2 are consequences of Lemma 6.9.

Note that, according to Remark 4.4, the weak continuity equation may be equiva-
lently expressed in the following distributional form∫ T

0

∫
G

φ̇ dρτt +

∫
E

∇φ · dJτt dt = 0 ∀φ ∈ D((0, T )×G). (61)
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Hence, the weak convergence of (ρτ , Jτ ) implies that we (61) as τ → 0.
It remains to show that J = −∇ρ− ρ∇V in the sense of distributions: To this aim,

recall from Proposition 6.6 that Jτ = vτρτ = −∇ρτ − ρτ∇V , again in the sense of
distributions since both ρτ and ρτ∇V are L1-functions:∫ T

0

∫
G

φ · dJτt dt =
∫ T

0

∫
G

∇ · φ− φ · ∇V dρτt dt ∀φ ∈ D((0, T )×G). (62)

In order to conclude, we need pass to the limit in this equation as τ → 0. To this aim,
we already noted in Lemma 6.8 that the family of densities (ρτ )τ>0 is equi-integrable.
Therefore, we may invoke the Dunford-Pettis theorem (cf. e.g. Theorem 4.7.25 in
[Bog07]) to infer that (up to a subsequence) ρτ converges to ρ, not only in the weak
topology as τ → 0, but also in the topology of convergence w.r.t. bounded measurable
functions on (0, T )×G.

Since we have the bounds |∇ · φ| ≤ ‖φ‖L∞ and |φ · ∇V | ≤ ‖φ‖L∞‖∇V ‖L∞ on space-
time, we may pass to the the limit in (62) as ρτ → ρ in the topology of convergence
on bounded measurable functions. �

7. Gradient Flows in Wasserstein Spaces over Metric Graphs

In this section we consider a combination F := Ent+V of an entropy functional as
given in (47) and a potential energy functional as defined in (63) below.

Assumptions 7.1. Throughout this section, we make the following assumptions:
(i) The potential function V : G → R is Lipschitz continuous.
(ii) The initial measure ρ0 ∈ P(G) satisfies F(ρ0) < +∞.

Below convexity of a functional defined on a space of probability measures is always
understood with respect to convex combinations of measures (and not along geodesics
in some Wasserstein space).

Proposition 7.2. Let X be a Polish metric space.
(i) Let ν be a finite positive measure on X. If f : R+ → R is a convex and lower

semicontinuous function, then the internal energy functional

Fint(µ) :=

∫
X

f(ρ(x)) dν(x) + µsing(X) sup
t>0

f(t)

t
for µ = ρ · ν + µsing

is convex and lower semicontinuous with respect to the topology of weak conver-
gence on P(X).

If f is strictly convex such that limt→∞ f(t)/t = +∞, then Fint is strictly
convex as well.

(ii) Let V : X → R be a bounded function. V is (lower semi-)continuous, precisely,
when the potential energy functional

V(µ) :=
∫
X

V dµ (63)

is (lower semi-)continuous with respect to the topology of weak convergence on
P(X).

Proof. See Proposition 7.7 and Proposition 7.1 in [San15] (the results are stated in a
Euclidean setting; however the proofs carry over to the general setting above without
any modification). �



GRADIENT FLOWS FOR METRIC GRAPHS 103

Definition 7.3. Let V be a Lipschitz function on G. Define a functional IV on P(G)
by

IV (µ) :=


∫
E

∣∣∣∇ρ
ρ

+∇V
∣∣∣2 dµ if µ = ρ · λ for ρ ∈ W 1,1(E),

+∞ otherwise.

For the case V ≡ 0, this functional is the usual Fisher information.
Below we collect some basic facts about IV (see e.g. Lemma 2.2 in [GST09], where

IV is expressed in terms of a relative Fisher information).

Lemma 7.4. Let V be a Lipschitz function on G. For a probability measure µ =
ρ · λ ∈ P(G), the functional IV satisfies the following properties:

(i) IV (µ) <∞ iff √
ρ ∈ W 1,2(E).

(ii) For every sequence (µn)n∈N of probability measures µn = ρn · λ ∈ P(G) such that
supn IV (µn) <∞, there exists µ = ρ · λ such that (up to a subsequence):
(a) µn converges weakly in P(G) to µ,
(b) ρn converges strongly in L1(E) to ρ,
(c) ρn converges strongly in L∞(E) to ρ,
(d) the weak derivatives ∇ρn converge weakly in L1(E) to ∇ρ,
(e) √

ρn converges strongly in L2(E) to √
ρ,

(f) the weak derivatives ∇√
ρn converge weakly in L2(E) to ∇√

ρ,
(g) lim infn→∞ IV (µn) ≥ IV (µ).

(iii) If the sequence (µn)n∈N above satisfies lim supn→∞ IV (µn) ≤ IV (µ) as well, then
(up to a subsequence):
(a) the weak derivatives ∇ρn converge strongly in L1(E) to ∇ρ,
(b) the weak derivatives ∇√

ρn converge strongly in L2(E) to ∇√
ρ.

7.1. The Entropy-Fisher dissipation equality. The next result represents a chain
rule for the derivative of the functional IV along an absolutely continuous curve.

Proposition 7.5. Let (µt)t∈[0,T ] be a 2-absolutely continuous curve in (P(G),W2) with
µt = ρt · λ such that

∫ T
0
IV (µt) dt < +∞ and let Jt = Ut · λ be an optimal family

of momentum vectorfields such that (µt, Jt)t∈[0,T ] solves the continuity equation in the
weak sense. Then, t 7→ F(µt) is absolutely continuous and we have

d

dt
F(µt) =

∫
E

〈∇ log ρt +∇V, Ut〉 dx for a.e. t ∈ [0, T ]. (64)

In particular, the functional
√
IV is a strong upper gradient for F , i.e. for every

2-absolutely continuous curve (µt)t∈[0,T ] in (P(G),W2), the inequality

|F(µt)−F(µs)| ≤
∫ t

s

√
IV (µr)|µ̇r| dr ∀s, t ∈ [0, T ] : s ≤ t (65)

holds.

Proof. Theorem 4.7 implies the existence of a vectorfield (vt)t∈[0,T ] such that ‖vt‖L2(µt)
=

|µ̇t| for a.e. t.
At any time t ∈ [0, T ], we introduce the regularised measure µεt = ρεt ·λ of µt on Gext

by means of (24). Moreover, we write Jεt = vεt · µεt for a vectorfield vεt (x) ∈ L2(µεt) as
done in Section 4.1.

Using a family (ηε)ε>0 of even and smooth approximation kernels with compact
supports supp ηε[−ε, ε], we additionally employ a regularisation of the curves in time,
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given by

ρε,δ,γt :=

∫ T

0

ηδ(t− s)ρε,γs ds with ρε,γt :=
1

1 + γ

(
ρεt +

γ

λ(G)

)
for constants δ > 0 and γ > 0. Note that∣∣log ρε,δ,γt

∣∣ ≤ Cγ(1 + ρε,δ,γt ) ∀t ∈ [0, T ] (66)
for some constant Cγ ≥ 1 depending only on γ. This bound, in turn, yields the estimate∣∣∣ d

dt

(
ρε,δ,γt log ρε,δ,γt + V ρε,δ,γt

)∣∣∣ = ∣∣∣log ρε,δ,γt + 1 + V
∣∣∣ · ∣∣∣ d

dt
ρε,δ,γt

∣∣∣
≤ Cγ(2 + ‖V ‖∞ + sup

x,t
ρε,δ,γt ) sup

t

∣∣∣ d
dt
ηδ(t)

∣∣∣ ∫ T

0

ρεs ds.

Since the right-hand side belongs to L1(Gext), we may invoke the dominated conver-
gence theorem to take the time derivative inside the integral of the expression

d

dt
F(ρε,δ,γt ) =

d

dt

∫
Gext

ρε,δ,γt

(
log ρε,δ,γt + V

)
dx,

which shows that the mapping t 7→
∫
Gext

ρε,δ,γt

(
log ρε,δ,γt + V

)
dx is continuously dif-

ferentiable. In particular, integrating the resulting expression over the time interval
(s, t), we arrive at

F(ρε,δ,γt )−F(ρε,δ,γs ) =

∫ t

s

∫
Gext

(
log ρε,δ,γr + V

) d

dr
ρε,δ,γr dxdr

=−
∫ t

s

∫
Gext

(
log ρε,δ,γr + V

)(∫ T

0

d

dh
ηδ(h− r)ρε,γh dh

)
dxdr

=

∫ t

s

∫
Gext

(
log ρε,δ,γr + V

)(∫ T

0

ηδ(h− r)
d

dh
ρε,γh dh

)
dxdr

=
1

1 + γ

∫ t

s

∫ T

0

ηδ(h− r)
d

dh

(∫
G

ψ(r, x) dµεh

)
dhdr,

(67)

where we used the identity d
dr
ηδ(h − r) = − d

dh
ηδ(h − r), together with integration

by parts with respect to the time variable h and ψ := log ρε,δ,γr + V . Note that for
every time r ∈ [0, T ], the function ψ(r, ·) is absolutely continuous on Gext. Indeed,
µr � λ and so the regularised density ρε,δ,γr is absolutely continuous on Gext by the
regularising effect stated in Proposition 4.15.ii. Since ρε,δ,γr is bounded away from zero
by a constant c > 0 and log is Lipschitz continuous on (c,+∞), we infer that ψ(r, ·)
is absolutely continuous as well (see e.g. Lemma 5.3.2 in [Bog07]).

Therefore, we may invoke the continuity equation in form of (26), in order to express
d
dh

∫
G
ψε dµh in terms of the momentum field Jεh = αεvεh ·µεh. Hence, we may write (67)

as

F(ρε,δ,γt )−F(ρε,δ,γs ) =
1

1 + γ

∫ t

s

∫ T

0

ηδ(h− r)
d

dh

(∫
G

ψε dµh

)
dhdr

=− 1

1 + γ

∫ t

s

∫ T

0

ηδ(h− r)

∫
Eext

∇ψ dJεhdhdr.

(68)

In the next part of the proof, we will pass to the limits ε, δ, γ ↘ 0 in this equation.
We start with the right-hand side of (68):
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By weak continuity of (µt)t∈[0,T ], the regularised curve t 7→ ρεt(x) is continuous for
every x ∈ Gext. Therefore, ρε,δ,γt converges to ρε,γt , uniformly in t ∈ [0, T ] as δ ↘ 0.

In addition, |Jεh(x)| (as a density function) is uniformly bounded in (h, x) by the
term ‖∇ηε‖∞‖vt‖L2(µh)

and we have the estimate∣∣∣∣∇ρε,δ,γr

ρε,δ,γr

+∇V
∣∣∣∣ ≤ C

γ
‖∇ηε‖∞

for some constant C > 0. This means that we may invoke dominated converge to pass
to the limit in the right-hand side of (68) as δ ↘ 0; thus, yielding the expression

lim
δ↘0

∫ t

s

∫ T

0

ηδ(h− r)

∫
Eext

∇ψ dJεhdhdr =

∫ t

s

∫
Eext

∇ψ dJεrdr

Identifying the signed measure Jεh with its density, we may estimate the right-hand
side of the equality by means of Young’s inequality as

|∇ψ · Jεr |
1 + γ

=
|(∇ρε,γr + ρε,γr ∇V ) · Jεr |

(1 + γ)ρε,γr
≤ |∇ρε,γr |2

(1 + γ)ρε,γr
+|∇V |2(ρεr+γ/λ(G))+

|Jεh|
2

ρεr + γ/λ(G)
.

(69)
Since

|∇ρε,γr |2

(1 + γ)ρε,γr
=

1

(1 + γ)2
|∇ρεr|

2

ρεr + γ/λ(G)
,

the three terms in the right-hand side of (69) are either uniformly bounded or mono-
tonically increasing as γ ↘ 0. In particular,

|∇ψ · Jεr | ≤
|∇ρεr|

2

ρεr
+ |∇V |2ρεr + C +

|Jεr |
2

ρεr
(70)

for some constant C > 0.
Recalling the identity (33) and invoking Jensen’s inequality for the convex function

(a, b) 7→ a2/b, we obtain the estimate

|∇ρεr|
2

ρεr
≤ Cε

(
|∇ρr|2

ρr

)ε

. (71)

for some constant Cε ↘ 1 as ε↘ 0.
For the right-hand side of (65) to be finite (otherwise there is nothing to show), we

may assume IV (µr) to be finite for a.e. r ∈ (s, t). In particular, by Lemma 7.4.i, the
density function √

ρr belongs to W 1,2(E) for a.e. r. Fix any such r ∈ (s, t).
Hence, we may invoke Proposition 4.15.v to show that the right-hand side of (71)

converges to |∇ρr|2
ρr

in L1(Gext) as ε→ 0.
The same proposition implies that ρεr → ρr in L1(Gext) as ε → 0. Taking the

kinetic energy bound (25) into account as well, we infer that the right-hand side of
(70) converges not only in L1(Gext) for a.e. r ∈ (s, t) but also in L1((s, t)×G) as ε→ 0.

Consequently, ∇ψ · Jεr converges as well, due to (a variant) of the dominated con-
vergence theorem and we may pass to the limits ε, δ, γ ↘ 0 on the right-hand side of
(68).

It remains to pass to the limits on the left-hand side in (68). To this aim, we note
that for fixed ε > 0, the regularised density ρεr is bounded and ρε,δ,γr converges to ρεr as
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δ, γ ↘ 0, both uniformly for all r ∈ [0, T ]. Thus,

lim
ε→0

(
F(ρεt)−F(ρεs)

)
=

∫ t

s

〈∇ log ρr +∇V, Ut〉 dr. (72)

In order to remove the spatial regularisation on the left-hand side of this inequal-
ity, we note first note that the modulus of each side of this equation is bounded by∫ T
0

√
IV (µr)|µ̇r| dr < +∞ for all times s, t ∈ [0, T ] and all ε > 0.

Fix any time s ∈ [0, T ] such that ρs ∈ W 1,1(G). Then ρεs converges uniformly to ρs
and so Ent(ρεs) → Ent(ρs) < +∞ as well.

Together with the uniform bound for (72), this means that Ent(ρt) < +∞ for all
t ∈ [0, T ].

Jensen’s inequality implies for the convex integrand f(x) := x log x the estimate
f(ρεt) ≤ (f(ρt))

ε with a right-hand side converging to ρt log ρt in L1(Gext) as ε → 0.
As a result, we may again appeal to the dominated convergence theorem to obtain
Ent(ρεs) → Ent(ρs) for all times t ∈ [0, T ].

Since may pass to the limit in V(ρεr) as well, for we know from Proposition 4.15.iv
that ρεr ⇀ ρr for every time r ∈ [0, T ] as ε↘ 0, we conclude that

F(ρεt)−F(ρεs) =

∫ t

s

〈∇ log ρr +∇V, Ut〉 dr ∀s, t ∈ [0, T ] : s ≤ t. (73)

From this equation we easily infer that t 7→ Ent(µt) is absolutely continuous and (64)
holds. In addition, Hölder’s inequality implies the esimate in (65) as well. �

Corollary 7.6. Let (µt)t∈[0,T ] be a 2-absolutely continuous curve in (P(G),W2) with
F(µ0) <∞. Then (µt)t∈[0,T ] is a weak solution for the Fokker-Planck equation d

dt
µt =

∆µt +∇ · (µt∇V ) in the sense of Definition 4.2, precisely, when the Entropy-Fisher
dissipation equality

F(µt) +
1

2

∫ t

s

|µ̇r|2 dr +
1

2

∫ t

s

IV (µr) dr = F(µs) ∀s, t ∈ [0, T ] : s ≤ t (74)

holds.

Proof. Note that the right-hand side of (64) may be estimated by means of Hölder’s
and Young’s inequality as∫

E

〈∇ log ρt +∇V, Ut〉 dx ≤ 1

2

∫
E

|∇ log ρt +∇V |2 + |Ut|2 dx

with equality if and only if Ut = −∇ log ρt − ∇V for a.e. t ∈ [0, T ]. Thus, the claim
follows by integrating both sides of (64) over the time interval (s, t). �

Remark 7.7. In Theorem 8.1 of [AGS14] it was shown that the Entropy-Fisher dissi-
pation equality (74), together with uniform L∞-bounds on the probability densities
of (ρt)t≥0, implies that the curve (ρt)t≥0 is actually the unique gradient flow starting
form ρ0 with respect to Cheeger’s energy in L2(G). To this end, we recall one pos-
sible definition of Cheeger’s energy Ch∗ : L2(G) → [0,+∞], given by the relaxation
functional

Ch∗(f) :=
1

2
inf

{
lim inf
n→∞

∫
G

|∇fn| dx
}
,

where the infimum is taken over all sequences (fn)n∈N of Lipschitz functions fn : G →
R, converging to f with respect to ‖·‖L2 .
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Now, under the assumptions above, the curve of probability densities (ρt)t≥0 satisfies
the energy dissipation equality

Ch∗(ρt) +

∫ t

s

|ρ̇r|2 dr +
1

2

∫ t

s

|∂Ch∗|2(ρr) dr = Ch∗(ρs) ∀s, t ∈ R+
0 : s ≤ t,

where we emphasise that the underlying space for the metric derivative |ρ̇r| and the
metric slope |∂Ch∗| is actually L2(G) instead of (P(G),W2).

In particular, since L2(G) is a Hilbert space, it is also possible to characterise this
gradient flow by the notion of subdifferentials; see Section 4.2 in [AGS14] for details.

7.2. The energy-dissipation equality for the lower semicontinuous envelope
of the metric slope. The goal of this subsection is to identify the Fisher information
IV with the lower semicontinuous envelope |∂−F| along any solution of (74). Recall
that the lower semicontinuous envelope of |∂F| is given by

|∂−F|(µ) := inf
{
lim inf
n→∞

|∂F|(µn) : µn ⇀ µ, sup
n
{W2(µn, µ),F(µn)} < +∞

}
.

Moreover, recall from Proposition 7.2 that the functional F is (sequentially) lower
semicontinuous on P(G,W2). Due to our assumption on the potential V , the func-
tional V and, therefore, also F is bounded from below. Therefore, we may invoke
Theorem 2.3.3 in [AGS08] to obtain the following result.

Proposition 7.8. For every initial value µ0 ∈ P(G) with F(µ0) < ∞, there exists a
2-absolutely continuous curve (µt)t∈[0,T ] in (P(G),W2) satifying the energy dissipation
equality for |∂−F|, i.e.

F(µt) +
1

2

∫ t

s

|µ̇r|2 dr +
1

2

∫ t

s

∣∣∂−F∣∣2(µr) dr = F(µs) ∀s, t ∈ [0, T ] : s ≤ t. (75)

In order to identify the curves solving (74) and (75), the following result is vital.

Proposition 7.9. For any probability measure µ = ρ · λ ∈ P(G) with finite slope
|∂ Ent|(µ) < +∞, the density ρ belongs to W 1,1(G) such that ∇ρ/ρ ∈ L2(µ) and the
bound

IV (µ) ≤ |∂F|2(µ)
is satisfied.

In particular, both the metric slope |∂F| and its lower semicontinuous envelope
|∂−F| are strong upper gradients for F in the sense of (65).

For the proof of this statement, we need the following result which is an adaptation
of Lemma 10.4.4 in [AGS08] to the metric graph setting.

Lemma 7.10. Let µ = ρ · λ be a finite measure concentrated on a metric edge e in E,
satisfying F(µ) := Ent(µ) + V(µ) < +∞, together with rrr ∈ L2(µ) and t > 0 such that

(i) rrr − Id is a C∞-function on the interval [0,me] identified with the edge e;
(ii) the mapping rrrt := (1− t)Id + trrr takes values in [0,me] for all t ≤ t;

(iii) F((rrrt)#µ) < +∞.
Then the derivative of the functional F at µ in direction of rrr is given by the identity

lim
t↘0

F((rrrt)#µ)−F(µ)

t
=

∫ me

0

(rrr − Id)∇V −∇(rrr − Id) dµ. (76)
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Proof. We follow the proof of Lemma 10.4.4 in [AGS08] adapted to the functional
F = Ent+V :

Note that rrr is bounded on [0,me]; therefore, the mapping rrrt is actually injective for
every t small enough. Without loss of generalisation, we may choose t > 0 accordingly
so that |∇rrrt| > 0 for every t ≤ t. In particular, we may employ a change of variables
argument (see e.g. Lemma 5.5.3 in [AGS08]) to express the density of the pushforward
(rrrt)#µ by means of

(rrrt)#µ(A) =

∫
A∩ranrrrt

ρ ◦ rrr−1
t∣∣∇rrrt ◦ rrr−1
t

∣∣ dx
for every Borel set A and t ≤ t. Hence, using this representation for the density of
the pushforward, together with a change of variables under with respect to rrrt, we may
write

F((rrrt)#µ)−F(µ) =

∫
e

log
( ρ

∇rrrt

)
− log(ρ) dµ+

∫
e

V ◦ rrrt − V dµ

=−
∫
e

log(∇rrrt) dµ+

∫
e

V ◦ rrrt − V dµ.

Note that the functions
d

dt
log(∇rrrt) =

∇(rrr − Id)

rrrt
and d

dt
V (rrrt) = (rrr − V )∇V

are uniformly integrable in L1(µ) with respect to t ∈ [0, t]. Thus, we may pass to the
limit of 1

r

(
F((rrrt)#µ)−F(µ)

)
as t↘ 0 to arrive at (76). �

Proof of Proposition 7.9. In the first part of the proof, we assume that the measure µ
is concentrated on a single metric edge e in E. Fix a function ttt := rrr− Id ∈ C∞

c (0,me).
Then there exists a constant t > 0 such that the assumptions of Lemma 7.10 are
satisfied. In addition, we have

W 2
2 (µ, (rrrt)#µ) ≤

∫ me

0

|t(rrr − Id)|2 dµ = t2‖ttt‖2L2(µ).

This estimate, together with (76), implies∫ me

0

ttt∇V −∇ttt dµ ≤ |∂J |(µ)‖ttt‖L2(µ).

By linearity, this inequality generalises to probability measures µ with support in G

and functions ttt ∈ C∞
c (E) viz.∫

E

ttt∇V −∇ttt dµ ≤ |∂J |(µ)‖ttt‖L2(µ).

The integral on the left-hand side of this inequality defines a bounded linear functional;
by means of the Hahn-Banach theorem, we may be extend this linear functional to
L2(µ). Moreover, we may invoke the Riesz representation theorem to find w ∈ L2(µ)
such that ‖w‖L2(µ) ≤ |∂J |(µ) and∫

E

ttt∇V −∇ttt dµ =

∫
E

w · ttt dµ ∀ttt ∈ C∞
c (E).

Recalling that ∇V is λ-a.e. bounded, we infer that the weak derivative ∇ρ exists and
belongs to L2(E). In particular, ρ ∈ W 1,1(G) and

√
IV (µ) = ‖∇ρ/ρ+∇V ‖L2(µ) ≤

|∂J |(µ).
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Now, the last two claims now follow from (65) and the definition of the lower semi-
continuous envelope |∂−F|. �

Corollary 7.11. Let (µt)t∈[0,T ] be a 2-absolutely continuous curve in (P(G),W2) with
F(µ0) < +∞. If (µt)t∈[0,T ] satisfies the energy-dissipation equality (75), then it is also
a weak solution for the Fokker-Planck equation d

dt
µt = ∆µt +∇ · (µt∇V ) in the sense

of Definition 4.2.

Proof. Both (75) and Proposition 7.9 yield

F(µt) +
1

2

∫ t

s

|µ̇r|2 dr +
1

2

∫ t

s

IV (µr) dr ≤ F(µs) ∀s, t ∈ [0, T ] : s ≤ t.

Since the opposite inequality holds as a consequence of (65) and Young’s inequality,
we infer that the curve (µt)t∈[0,T ] satisfies the entropy-Fisher equality (74) as well. Now
the claim follows by Corollary 7.6. �

7.3. The energy-dissipation equality for the metric slope. This subsection is
mainly based on the following central result based on semi-group methods.

Proposition 7.12. For c ∈ L∞(G) with c ≥ C0 for some constant C0 > 0 and
f ∈ L∞(G), the initial value problem

d

dt
ut = ∇ · (c∇ut)− f · ut,

u0 = u ∈ L1(G) and 0 6= u ≥ 0,
(77)

together with standard node conditions is well-posed in L1(G) for all times t ≥ 0.
The unique solution (ut)t≥0 belongs to the class C∞(R+, L1(G)) ∩ C(R+, C∞(G)) and
satisfies ut > 0 for every time t > 0.

Proof. The first part of the statement is taken from section 6.5 in [Mug14]. Strict
positivity of ut for all times t > 0 follows from the fact that the underlying positive
contraction semi-group is irreducible, which in turn is deduced from connectedness of
the metric graph G; see Theorem 2.10 in [Ouh09] and the proof of Proposition 6.77 in
[Mug14]. �

Assume that the potential V belongs to W 2,∞(G), so that we may choose

c ≡ 1 and f =
1

4
(∇V )2 − 1

2
∆V

in (77). Let (ut)t≥0be the corresponding solution to (77) with the initial value u0 =
eV/2u for some probability density u on G. Then one may verify that (ρt)t≥0 with
ρt = e−V/2ut is the unique weak solution to the Fokker-Planck equation d

dt
ρt = ∆ρt +

∇ · (ρt∇V ) with initial value ρ0 = u.
The regularity of the solution (ρt)t≥0 allows us to directly compute the energy pro-

duction of F along the corresponding curve of probability measures µt = ρt · λ viz.

d

dt
F(µt) =

d

dt

(∫
G

ρt log ρt dx+

∫
G

V dρt

)
=

∫
G

(
log ρt + V

) d
dt
ρt dx

= −
∫
E

∇
(
log ρt + V

)
· (∇ρt + ρt∇V ) dx = −IV (µt).
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In particular, we may integrate both sides of this equality with respect to t and employ
the identity |µ̇t| = ‖vt‖L2(µt)

a.e. in time for the vectorfield vt = ∇ρt/ρt +∇V . Thus,
using Young’s inequality, we arrive at

F(µs)−F(µt) =

∫ t

s

IV (µr) dr =
∫ t

s

|µ̇r|2 dr ∀s, t ∈ R+
0 : s ≤ t. (78)

Note that, in contrast to the previous results, the semi-group approach illustrated
above requires the initial condition to be a density, not merely a measure. Nevertheless,
the solution obtained in Proposition 6.10 (for arbitrary initial condition in P(G))
immediately regularises to to probability measures µt which are absolutely continuous
with respect to λ for all times t > 0. Hence, we may identify this solution with the one
obtained in Corollary 7.6 via ρt = e−V/2ut for positive times t > 0, due to uniqueness
of the latter.

In order to identify the functional IV with the squared metric slope |∂F|2, we recall
Theorem 7.5 from [AGS14], taking the following form in our case of the compact metric
space (G, d) with finite volume λ(G) <∞.

Lemma 7.13. Let µ = ρ · λ ∈ P(G) with a Lipschitz continuous density ρ > 0. Then

|∂F|2(µ) ≤
∫
E

∣∣∣∇ρ
ρ

+∇V
∣∣∣2 dµ. (79)

Recalling from Proposition 7.12 that ut and, therefore, also ρt = e−V/2ut is strictly
positive for every time t > 0, we may infer that (79) holds along (µt)t>0. Combining
this inequality with Proposition 7.9, we obtain the identity |∂F|2(ρt) = IV (ρt) for
every t > 0. In view of (74), the following result is now a direct consequence.

Proposition 7.14. Assume that the potential V belongs to W 2,∞(G). Let (µt)t∈[0,T ]
be a 2-absolutely continuous curve in (P(G),W2) with F(µ0) < ∞. Then (µt)t∈[0,T ]
satisfies the entropy-Fisher equality (74), precisely, when the energy dissipation equal-
ity for the metric slope |∂F| holds, i.e.

F(µt) +
1

2

∫ t

s

|µ̇r|2 dr +
1

2

∫ t

s

|∂F|2(µr) dr = F(µs) ∀s, t ∈ [0, T ] : s ≤ t.
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A VARIATIONAL STRUCTURE FOR NON-REVERSIBLE
MARKOV CHAINS

DOMINIK FORKERT AND JAN MAAS

1. Introduction

Many classical applications of Markov chain theory – amongst them the celebrated
Metropolis-Hastings algorithm [MRR+53], [Has70] – are based on reversible Markov
chains, i.e. chains that satisfy so-called detailed balance conditions.

However, in more recent works, applications of Markov chains that violate those
detailed-balance conditions (then called non-reversible Markov chains) are studied
with the goal to exploit their favourable behaviour in terms of convergence to equi-
librium, when compared to their reversible counterparts. Indeed, amongst numer-
ous results, non-reversible Markov chains perform better with respect to the notions
of asymptotic variance [Bie16], [CH13], [SSG10], large deviations [RBS15], [RBS16]
and spectral gap [RBS16] [CLP99], [DHN00], [LP17].

The aim of this article is twofold: First, we briefly investigate how a non-reversible
perturbation of a reversible continuous-time Markov chain affects convergence to
equilibrium in terms of relative entropy. In particular, we give a numerical example
showing that such a perturbation may decrease the rate of convergence, in contrast
to the results above.

The main part is devoted to convergence to equilibrium in terms of a metric W
on the space of discrete probability measures P(X) over the finite state space X
of an irreducible continuous-time Markov chain. In the setting of reversible chains,
such a distance was introduced independently in the works [Maa11], [Mie13], and
[CHLZ12] as a discrete counterpart to the L2-Wasserstein distance. In particular,
W gives rise to discrete counterparts for two important applications of the L2-
Wasserstein distance: heat flows in Euclidean space corresponding to metric gradient
flows for entropy functionals on P(Rd) [JKO98] as well as a synthetic notion of lower
Ricci curvature bounds for metric measure spaces X based on geodesic convexity of
entropy functionals on P(X) [S+06], [LV09]; see also [EM12].

In this article, we generalise the notion of the metric W to irreducible continuous-
time Markov chains which need not satisfy the detailed-balance conditions. To
some extend, our approach can be seen as a discrete counterpart to [Ket16] where
the notion of synthetic lower Ricci curvature bounds is extended to non-symmetric
diffusion operators on metric measure spaces arising from Riemannian manifolds.

We characterise a local contraction estimate with respect to W for the evolution
of non-reversible Markov chains in terms of convexity of a one-parameter family of
energy functionals τ 7→ φτ on the space of geodesics in (P(X),W). Each of those
functionals consists of an entropy part plus a path-depending term Vτ . In the case
of a reversible Markov chain, Vτ depends only on the end-points of the geodesic
segment between times t = 0 and t = τ and may be expressed in terms of a discrete
potential energy functional on P(X).

113
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In both the settings of synthetic lower Ricci curvature bounds as well as reversible
Markov chains, contraction estimates and convexity of an entropy functional along
geodesics are linked to a notion of gradient flows in metric spaces via the so-called
evolution variational inequality. In the non-reversible context, we provide a simi-
lar characterisation in terms of a generalised inequality which already appeared in
[Ket16] for non-symmetric diffusions.

Similar to its classical counterpart, the generalised evolution variational inequality
is a valuable tool, in order to derive functional inequalities: We provide generalised
notions for HWI, logarithmic Sobolev, Talagrand, and Poincaré inequalities, based
on explicit path dependence of geodesics between the evaluation points and the
equilibrium of the Markov chain.

Open problem. It remains unclear whether (P(X),W) forms a uniquely geodesic
space, i.e. whether every constant-speed geodesic in (P(X),W) is uniquely defined
by its end-points. A positive result in this direction has direct consequences on
several results in this article which are currently limited to local versions; amongst
them the contraction estimate in Theorem 3.8 as well the Talagrand and Poincaré
inequalities in Section 7.

Organisation of the article. The first part of this article consists of Section 2
and is devoted to a brief numerical example illustrating the effect of a non-reversible
perturbation of a reversible continuous-time Markov chain on convergence to equi-
librium in terms of relative entropy.

In Section 3 we introduce the metric W defined on a space of discrete probability
measures on the state space of the corresponding non-reversible Markov chain. The
first main result gives a characterisation of a local contraction estimate with respect
to W in terms of convexity of a family of energy functionals on the space of geodesics
in (P(X),W) as well a generalised evolution variational inequality.

Section 4 covers lower bounds for the convexity parameter which appears in the
main result of the previous section.

In Section 5 we not only show that (P(X),W) is a complete metric space but
also that any two points in (P(X),W) may be joined by a constant-speed geodesic.

In Section 6 we derive bounds with respect to the L1- and L2-Wasserstein distances
corresponding to the graph metric induced by the Markov chain.

Several functional inequalities are derived in Section 7 by means of the generalised
evolution variational inequality which appeared in Section 3. In particular, we obtain
variants for the HWI, logarithmic Sobolev, Talagrand, and Poincaré inequalities.

Finally, Appendix 8 is devoted to the logarithmic mean and all its fundamental
properties which are used throughout this article.

Notation. Throughout this article, we will consider irreducible continuous-time
Markov chains on a finite state space [N ] = {1, . . . N}. We will assume that corre-
sponding infinitesimal generators, usually denoted by the letters A and Q, are row
stochastic, i.e. A1 = 0 and Q1 = 0 for 1 := {1, . . . N}>.

A steady state for the infinitesimal generator A will be denoted by the row vector
w. Irreducibility of the Markov chain implies that w is nowhere vanishing.

Throughout the text we will denote by ρ the density of a discrete probability
measure u on [N ] with respect to w, expressed in coordinates by ρi = ui/wi.
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2. Non-reversible perturbations of continuous-time Markov chains

In this section we are going to study time-continuous Markov chains with infini-
tesimal generators of the form

A = Q+ diag(w)−1Γ, (1)

were Q is the generator of an irreducible and reversible Markov chain with stationary
distribution w and a suitable anti-symmetric matrix Γ ∈ RN×N satisfying Γ1 = 0.
As direct consequence of this structure, w is a stationary distribution of A as well,
however A need not be reversible.

It is easy to see that a decomposition of the form (1) always exists, provided that
the infinitesimal generator A is irreducible. Indeed, in case of a finite state space, A
is then positive recurrent as well. In general, both irreducibility and positive recur-
rence of the Markov chain imply that there exists a unique and ergodic stationary
distribution w for A (see e.g. Theorem 12.25 in [Kal06]). This ensures that diag(w)
is regular and Q and Γ are obtained via the symmetric and anti-symmetric part of
the matrix diag(w)A respectively:

Q = diag(w)−1 Sym(diag(w)A) and Γ = Alt(diag(w)A).

As part of those considerations, it is clear that Γ vanishes, precisely, when the
infinitesimal generator A satisfies the detailed balance condition, i.e. diag(w)A is
symmetric.

A natural question is whether the non-reversible perturbation Γ influences the
(exponential) convergence behaviour of a solution to the Kolmogorv equation u̇(t) =
A>u(t) towards the steady state w.

As a warm-up, it is easy to see that perturbed generators of the form A = Q +
diag(w)−1Γ show the same `2-convergence behaviour as an unperturbed Q. Indeed,
for a solution u(t) as above, we have

d

dt

1

2

∑
i

|ρi(t)− 1|2wi =
∑
i,j

ρi(t)Qijwiρj +
∑
i,j

ρi(t)Γijρj(t) =
∑
i,j

ρtiQijwiρj. (2)

Next, we investigate the same question for convergence with respect to the log-
entropy relative to the stationary distribution w for Q, defined by

Ent(u) :=
∑
i

ui log(ρi) with ρi =
ui
wi

.

To this aim, we have to compute the entropy production for this entropy functional,
i.e. we consider a solution to the Kolmogorv equation u̇(t) = A>u(t) and write the
derivative of Ent along u(t) in the following way:

d

dt
Ent(u(t)) =

∑
i

(log ρi(t) + 1)u̇i(t) =
∑
i,j

log ρi(t)Qjiuj(t) +
∑
i,j

log ρi(t)Γjiρj(t)

=
1

2

∑
i,j

(log ρi(t)− log ρj(t))
2Qijwiθlog(ρij(t), ρj(t)) +

∑
i,j

log ρi(t)Γjiρj(t),
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where ρi(t) = ui(t)/wi and θlog denotes the logarithmic mean, defined for positive
a 6= b by

θlog(a, b) :=
a− b

log a− log b
=

∫ 1

0

arb1−r dr;

see Appendix 8 for properties of this mean. We identify the first term in the second
line of this computation as the entropy production for the reversible part Q of the
infinitesimal generator A.

In order to analyse the second term above more carefully, we write

T0(u) :=
∑
i,j

log ρiΓjiρj =
1

2

∑
i,j

(log ρi − log ρj)Γji(ρi + ρj)

=
∑
i,j
i<j

(log ρi − log ρj)Γji(ρi + ρj).

Note that this term usually does not vanish, in contrast to the entropy produc-
tion for solutions of a Fokker-Plank equations, where a divergence-free condition is
enough to ensure that the corresponding term vanishes (cf. [AAS15], [ACJ08]).

The following simple example allows us to get a glimpse of how a non-reversible
perturbation may influence convergence with respect to log-entropy.

Example 2.1. We consider an infinitesimal generator of form A = Q+diag(w)−1Γ
with

Q =

−2 1 1
1 −2 1
1 1 −2

 , Γ =
1

4

 0 −1 1
1 0 −1
−1 1 0

 , w =
1

3
(1, 1, 1),

in order to find optimal λQ > 0 and λA > 0 such that

Ent(u) ≤ − 1

2λQ

∑
i,j

log ρjQijui ∀u ∈ P3 (3)

and
Ent(u) ≤ − 1

2λA

∑
i,j

log ρjQijui +
∑
i,j

log ρiΓijρj ∀u ∈ P3, (4)

respectively.
Due to the particularly simple structure of (3), a numerical analysis of this in-

equality is rather straightforward: Indeed, for computation of the optimal values
we employ the fmincon function for numerical minimisation under constraints in
MATLAB. As a result, we obtain

λQ ≈ 2.94 attained at uQ ≈ 1

4
(2, 1, 1),

λA ≈ 2.83 attained at uA ≈ 1

100
(61, 14, 25).

(5)

We deduce that the perturbed infinitesimal generator A behaves worse with respect
to convergence in log-entropy when compared to the unperturbed Q.
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Figure 1. Rates of convergence along flows (ut)t>0 as given for
the entropy by −1

2
( d
dt
Ent(ut))/Ent(ut) and for the variance by

−1
2
( d
dt
varw(u

t))/ varw(u
t), respectively. The initial values u0 for the

flows along Q and A are given by the respective values uQ and uA as
defined in (5).
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3. The modified Onsager operator for non-reversible Markov chains

In this section, we investigate exponential convergence of a solution to the Kol-
mogorv equation u̇(t) = A>u(t) towards the steady state w with respect to the
distance W . To this aim, we will extend the framework of Ricci curvature from
reversible Markov chains to non-reversible ones, which allows us to obtain rates for
exponential convergence in terms of W .

Notation. Throughout the following sections, A denotes the infinitesimal gen-
erator of an irreducible continuous-time Markov chain on a finite state space [N ].
Moreover, we assume that A satisfies the following condition

∀i, j ∈ [N ] : Aij > 0 ⇒ Aji > 0. (6)
Note that (6) implies that the infinitesimal generator can be written in form

of a (usually non-unique) decomposition A = Q ◦ B, where Q denotes a reversible,
irreducible continuous-time Markov chain with unique nowhere-vanishing stationary
distribution w, B is a perturbation matrix with strictly positive elements, and Q◦B
is the Schur product of the matrices Q and B given by elementwise multiplication
(Q ◦B)ij := QijBij.

Indeed, starting with an infinitesimal generator of form (1), we see that

Bij = 1 +
1

wi

Γij

Qij

∀i, j ∈ [N ] : Qij 6= 0.

Moreover, for a discrete probability measure u on [N ], ρ denotes the corresponding
density function, given by ρi := ui/wi.

Definition 3.1. We define the Onsager operator with respect to a generator A =
Q ◦B as the symmetric matrix

Ǩ(u) :=
1

2

∑
i,j

Ǩij(u)(ei − ej)⊗ (ei − ej),

where the coefficients Ǩij(u) are given by the logarithmic mean

Ǩij(u) :=
Aijui − Ajiuj

log(Aijui)− log(Ajiuj)
= Qijwi

Bijρi −Bjiρj
log ρi − log ρj + logBij − logBji

. (7)

Here we made use of the detailed balance condition Qijwi = Qjiwj to establish the
second equality in (7). As a result, the Onsager operator Ǩ does not depend on the
particular decomposition of A in terms of Q and B.

For a matrix L ∈ RN×N we introduce the notation

Ǩ(u)[L] :=
1

2

∑
i,j

Ǩij(u)(Lij − Lji)(ei − ej).

Remark 3.2. For a vector ξ ∈ RN , the expression Ǩ(u)[L] is related to Ǩ(u) by the
identity

ξ>Ǩ(u)η = ξ>Ǩ(u)[L] (8)
with a matrix Lij =

1
2
(ηi − ηj).

Conversely, for every matrix L ∈ RN×N , the vector Ǩ(u)[L] belongs to span{1}⊥.
Hence, one may choose

ξ = Ǩ−1(u)Ǩ(u)[L] (9)
such that (8) holds. Note that the vector ξ in general depends on the point u.
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In addition, we introduce the following functionals:
First, we recall the log-entropy relative to the stationary distribution w for Q,

defined by

Ent(u) :=
∑
i

ui log(ui/wi).

Consider a pair (gt, ζt)t∈[0,1] of piecewise smooth curves of discrete probability
measures gt and vectorfields ζt in RN , satisfying the continuity equation

d

dt
gt = Ǩ(gt)ζt (CE)

for all times t ∈ [0, 1]. Then we define

Vτ (g) :=

∫ τ

0

(ζr)>Ǩ(gr)[L] dr with Lij = logBij ∀τ ∈ [0, 1].

Remark 3.3. In case, we have Lij = vi − vj for some vector v ∈ RN , the functional
V1 depends only on the end-points of the curve g. Indeed,

Vτ (g) =

∫ τ

0

(ζr)>Ǩ(gr)v dr =

∫ τ

0

(ġr)>v dr = (gτ − g0)>v.

Lemma 3.4. For every nowhere-vanishing probability measure u, the Onsager op-
erator Ǩ(u) is positive definite on span{1}⊥.
Proof. Given ζ ∈ span{1}⊥, we can find indices i1, jK such that ζi1 − ζjK does not
vanish. Additionally, the irreducibility of A implies that there exist (ik, jk) such
that Aik,jk > 0 for all 1 ≤ k ≤ K and jk = ik+1 for all 1 ≤ k < K. Note that we
also have Ajk,ik > 0, due to our assumption in (6). We infer that Ǩik,jk > 0 for all
1 ≤ k ≤ K. As ζik − ζjk 6= 0 for at least one k, we conclude that ζ>Ǩ(u)ζ > 0. �

Notation. Let us denote by PN the (discrete) probability measures on [N ]. Then
intPN is precisely the subset of nowhere-vanishing probability measures on [N ].

Now the preceding lemma tells us that Ǩ is invertible on intPN . Since Ǩ is
symmetric, we obtain the following result.
Corollary 3.5. The Onsager operator Ǩ(u) is symmetric and invertible for all
u ∈ intPN . In particular, G = Ǩ−1 defines a Riemannian metric on the embedded
submanifold intPN ⊆ RN .

As a consequence, intPN is endowed with a Riemannian distance W which in
terms of the Onsager operator may be expressed as

W2(u, v) := inf

∫ 1

0

(ζt)>Ǩ(gt)ζt dt (10)

where the infimum is taken over all pairs (gt, ζt)t∈[0,1] of piecewise smooth curves,
satisfying the continuity equation (CE) such that g joins u to v.
Remark 3.6. Note that Vτ depends on the parametrisation of the curve. In particular,
we have the following transformation rule as a consequence of the change of variables
formula: For every constant-speed geodesic g : [0, 1] → intPN with corresponding
reparametrised constant-speed geodesic segments ggs→gt : [0, 1] → intPN connecting
gs to gt for s, t ∈ [0, 1], we have

V1(g
gs→gt) = Vt(g)− Vs(g) ∀s, t ∈ [0, 1]. (11)
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In particular, this transformation rule implies for a change of orientation V1(gγ
0→γ1

) =

−V1(gγ
1→γ0

).

Lemma 3.7. Let (gt, ζt)t∈[0,1] be a pair of curves, satisfying (CE) with initial condi-
tions g0 = u and ζ0 = ξ. Then we have the identity

d

dτ

∣∣∣∣
τ=0

(Ent(gτ ) + Vτ (g)) =

1

2

∑
i,j

(ξi − ξj)Ǩij(u)(log ρi − log ρj + logBij − logBji) = −
∑
i,j

ξiAjiuj.
(12)

In perspective of the Kolmogorov forward equation
d

dt
ut = A>u in intPN , (13)

Lemma 3.7 states that (13) is actually equivalent to the variational equation
d

dt
ut = − gradG Ent(ut)− Ǩ(ut)[L] with Lij = logBij in intPN , (14)

where gradG Ent(ut) = Ǩ(ut)∇Ent(ut) denotes the gradient of Ent with respect to
the Riemannian metric G = Ǩ−1.

In order to verify (14), take geodesics pairs (gτ , ζτ )τ∈[0,1] with initial values g0 = ut

and ζ0 = ξ, such that equation (12) becomes

ξ>Ǩ(ut)∇Ent(ut) + ξ>Ǩ(ut)[L] = −(Aξ)>ut. (15)

Since this equality holds for all initial velocity vectors ξ ∈ RN , we infer the equiva-
lence of (13) and (14).

Proof of Lemma 3.7. The first equality in (12) follows directly from the chain rule
applied to τ 7→ Ent(gτ )+Vτ (g), together with application of the continuity equation
(CE).

For the second equality in (12), with the definition of the Onsager operator at
hand, we arrive at∑

i,j

(ξi − ξj)Ǩij(u)(log ρi − log ρj +Bij −Bji) =
1

2

∑
i,j

(ξi − ξj)(Aijui − Ajiuj).

To conclude, we use the fact that
∑
i

Aji = 0. �

For point (iv) in the theorem below, we recall that the upper right-hand Dini
derivative of a real-valued function f is defined as

d+

dt
f := lim sup

h↘0

f(t+ h)− f(t)

h
.

We present the main result of this section.

Theorem 3.8. For a constant λ ∈ R the following statements are equivalent:
(i) In the sense of positive semidefinite matrices,

M(u) ≥ λǨ(u) ∀u ∈ intPN , (16)
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where the matrix M(u) is given by

M(u) =Duχ(u)Ǩ(u)− 1

2
DuǨ(u)

(
χ(u)

)
(17)

=− A>Ǩ(u) +
1

2
DuǨ(u)

(
A>u

)
, (18)

where χ is a vectorfield given by
χ(u) = Ǩ(u)∇u Ent(u) + Ǩ(u)[L] = −A>u with Lij = logBij.

(ii) For every smooth constant-speed geodesic pair (gt, ζt)t∈[0,1] satisfying (CE) in
intPN ,

d2

dt2
(Ent(gt) + Vt(g)) ≥ λ(ζt)>Ǩ(gt)ζt. (19)

(iii) Along every constant-speed geodesic (gt)t∈[0,1] in intPN , the function t 7→ Ent(gt)+
Vt(g) is λ-convex.

(iv) Every solution (ut)t≥0 of the Kolmogorov forward equation
d

dt
uti =

∑
j

Ajiuj in intPN (20)

satisfies the modified evolution variational inequality
1

2

d+

dt
W2(ut, v) +

λ

2
W2(ut, v) ≤ Ent(v)− Ent(ut) + V1(g) ∀t > 0, (EVIλ,∞)

for all v ∈ intPN and every constant-speed geodesic (gt)t∈[0,1] joining ut to v
in intPN .

(v) For every point z ∈ intPn there exists a geodesic ball B centred at z such that
every two solutions (ut)t∈[0,ε], (vt)t∈[0,ε] ⊂ B of the Kolmogorov forward equation
(20) satisfies the local contraction property

W(ut, vt) ≤ e−λtW(u0, v0) ∀t ∈ [0, ε]. (21)

Remark 3.9. Note that the expression −A>Ǩ(u) appearing in the definition of M(u)
need not be symmetric, contrary to DuǨ(u)(χ(u)) which is symmetric by definition
of the modified Onsager operator Ǩ. Nevertheless, one may replace this expression
with with its symmetric part, that is − Sym

(
A>Ǩ(u)

)
, with no loss of generality.

In case, the infinitesimal generator A is reversible, say Bij = 1, the functional
Vτ vanishes for all τ . Then the expression M(u) corresponds to the so-called con-
travariant representation of the Hessian of the functional Ent(u) with respect to the
Riemannian metric G = Ǩ−1.

Proof of Theorem 3.8. (i ⇔ ii). By introducing the shorthand notation Yij(u) :=
1
2
(log ρi − log ρj) + logBij, we may express the vector field in (17) as χ(u) =

Ǩ(u)[Y (u)].
We start by computing the second derivative of r 7→ Ent(gr) + Vr(g) along a

constant-speed geodesic pair (gt, ζt)t∈[0,1] satisfying (CE) in intPN viz.
d2

dr2

(
Ent(gr) + Vr(g)

)
=

d

dr

(
Du Ent(g

r)Ǩ(gr)ζr + Ǩ(gr)[L]
)

=
d

dr

(
(ζr)>Ǩ(gr)[Y (gr)]

)
=

d

dr

(
(ζr)>χ(gr)

)
= (ζ̇r)>χ(gr) + (ζr)>Duχ(g

r)Ǩ(gr)ζr.
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By their very definition in terms of Riemannian geometry, constant-speed geodesics
satisfy d

dr
〈ġr, ġr〉G = 0, which expands into the geodesic equation

ζ̇r +
1

2

d

du

∣∣∣
u=gr

(ζr)>Ǩ(u)ζr = 0. (22)

Hence, using (22), we infer that
d2

dr2

(
Ent(gr) + Vr(g)

)
= −1

2
(ζr)>DuǨ(gr)

(
χ(gr)

)
ζr + (ζr)>Duχ(g

r)Ǩ(gr)ζr.

Evaluating this equation at time r = 0 for a geodesic gt starting from g0 = u,
establishes the expression for M(u) as in line (17). Finally, the expression in (18)
follows from the simple identity χ(u) = −A>u.

(ii⇒ iii). This is a standard argument of convex analysis (see e.g. Proposition 16.2
in [Vil08]).

(iii ⇒ iv). Let (gτ , ζτ )τ∈[0,1] be a smooth constant-speed geodesic pair joining ut
to v in intPN , satisfying (CE). Then by the first variational formula of Riemannian
geometry, we have

1

2

d+

dt
W2(ut, v) = −〈ġ0, u̇t〉G = −

∑
i,j

ξiAjiuj(t).

Together with (12), we arrive at
1

2

d+

dt
W2(ut, v) ≤ d

dτ

∣∣∣∣
τ=0

(Ent(gτ ) + Vτ (g)). (23)

To conclude, we note that λ-convexity of t 7→ Ent(gt) + Vt(g) in differential form
reads as

d

dτ

∣∣∣∣
τ=0

(Ent(gτ ) + Vτ (g)) ≤ Ent(v)− Ent(ut) + V1(g)−
λ

2
W2(ut, v),

which, together with (23), implies (EVIλ,∞).
(iv ⇒ v). Adding up (EVIλ,∞), once for a curve u1 at time t > 0 with v = us2,

and once for a curve u2 at time s > 0 with v = ut1, we arrive at the inequality
1

2

d+

dt
W2(ut1, u

s
2) +

1

2

d+

ds
W2(ut1, u

s
2) + λW2(ut1, u

s
2) ≤ V1(g

ut
1→us

2) + V1(g
ut
2→us

1). (24)

We may choose the initial conditions u01 and u02 close enough and ε > 0 small
enough such that for all t ≤ ε, both curves ut1 and ut2 belong to some geodesic
ball B. We may choose the radius of this geodesic ball B small enough such that
any two points in B are connected by a unique geodesic. Thus, gut

1→us
2 and gu

s
2→ut

1

describe the same curve up to parametrisation. In particular, the right-hand side of
this inequality cancels out, due to reparametrisation property (11) of the functional
V1. Moreover, setting s = t, we may invoke Lemma 4.3.4 in [AGS08] to estimate
the time derivative of 1

2
W2(ut1, u

t
2) in terms of the two upper-right Dini derivatives

appearing on the left-hand side of (24). Therefore, we arrive at
d

dt
W2(ut1, u

t
2) ≤ −2λW2(ut1, u

t
2) a.e. t ∈ [0, ε],

which in turn yields the contraction property via an application of Grönwall’s in-
equality (see e.g. Theorem 2.1.1 in [Qin17]).
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(v ⇒ ii). First we notice that the contraction property (21) implies the differential
inequality

d+

dt
W2(ut, vt)

∣∣∣
t=0

≤ −2λW2(u0, v0). (25)
Indeed, as equality holds in (21) for t = 0, we may pass to the upper right-hand
Dini derivative on both sides of the contraction estimate as t↘ 0 to arrive at (25).

Now we show that (25) actually implies (19). To this aim, we invoke the first
variational formula of Riemannian geometry for the geodesic gτ = expu0(ετy) joining
points u0 to v0 = expu0(εy) for some non-vanishing vector y in the tangent space at
u0. Hence, we compute

d+

dt
W2(ut, vt)

∣∣∣
t=0

=
1

2

(
〈ġ0, u̇0〉G − 〈ġ1, v̇0〉G

)
= −1

2

d

dτ

∣∣∣1
τ=0

(
Ent(gτ ) + Vτ (g)

)
= −ε

2

d

dτ

∣∣∣ε
τ=0

(
Ent(g̃τ ) + Vτ (g̃)

)
= −ε

2

∫ ε

0

d2

dτ 2
(
Ent(g̃τ ) + Vτ (g̃)

)
dτ,

where we used transformation rule (11) in form of Vτ (g) = Vετ (g̃) for the rescaled
geodesic g̃τ := expu0(τy). Combining this equation with (25) and using that
W(u0, v0) = ε|y|G, we arrive at

λ|y|2G =
λ

ε2
W2(u0, v0) ≤ 1

ε

∫ ε

0

d2

dτ 2
(
Ent(g̃τ ) + Vτ (g̃)

)
dτ. (26)

Passing to the limit in (26) as ε↘ 0, we conclude that

λ|y|2G ≤ d2

dτ 2

∣∣∣
τ=0

(
Ent(g̃τ ) + Vτ (g̃)

)
.

�

Example 3.10. Let A be the infinitesimal generator of a Markov chain which
satisfies one of the equivalent λ-convexity conditions in Theorem 3.8 for some λ ∈ R.
Then for κ > 0, the lazy Markov chain with infinitesimal generator Aκ := κA is
(κλ)-convex.

Indeed, this follows directly from (16), together with the 2-homogeneity of M(u)
and the 1-homogeneity of Ǩ(u), both in the variable κ for the underlying infinitesimal
generator Aκ.
Example 3.11. Let (Am)m≤m be a finite family of infinitesimal generators Am =
Qm ◦ Bm, each of an irreducible Markov chain on [Nm], satisfying (6) with sta-
tionary distribution wm for Qm. Let (κm)m≤M be positive weights. Consider the
product chain on

∏
m[N

m] with an infinitesimal generator given for multi-indices
i = (i1, . . . im) and j = (j1, . . . jm) by

Ai,j =


κmA

m
imjm if ik = jk for precisely one k = m,

−
∑

m κmA
m
imim if ik = jk for all k ∈ {1, . . . m},

0 otherwise.
Note that the product chain corresponding to A is again irreducible. Likewise, we
define

Qi,j =


κmQ

m
imjm if ik = jk for precisely one k = m,

−
∑

m κmQ
m
imim if ik = jk for all k ∈ {1, . . . m},

0 otherwise.
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Note that the product chain corresponding to Q is both irreducible and reversible
with unique stationary distribution w = w1 ⊗ . . .⊗ wm.

The following result clarifies how the product chain inherits λ-convexity from the
infinitesimal generators (Am)m≤m.

Proposition 3.12. Let (Am)m≤m be a finite family of infinitesimal generators as
in Example 3.11, together with corresponding Onsager operators (Ǩm)i≤m. Assume
for each m ∈ {1, . . . m}, there exits λm ∈ R such that Am satisfies the λm-convexity
condition

Mm(um) ≥ λmǨm(um) ∀um ∈ PNm (27)
of Theorem 3.8. Then the infinitesimal generator of the product chain is λ-convex
for λ := minm{λm} in the sense of Theorem 3.8.

Proof. We express the the corresponding terms for the product chain by

M(u) =
1

2
DuǨ(u)

(
A>u

)
− A>Ǩ(u)

with
1

2
DuǨ(u)

(
A>u

)
=

1

4

∑
i,j,l

(
∂1θlog(Aijui, Ajiuj)AijAli

+ ∂2θlog(Aijui, Ajiuj)AjiAlj

)
ul(ei − ej)⊗ (ei − ej)

(28)

and
A>Ǩ(u) =

1

2

∑
i,j,l

θlog(Aijui, Ajiuj)(Ali − Alj)el ⊗ (ei − ej). (29)

Due to the special structure of the infinitesimal generator of the product chain, we
note that, in order for a term inside the sum of either (28) or (29) not to vanish,
im 6= jm is required for at least one subindex m ∈ {1, . . . m}. As a result, using the
notation δi6=j := 1− δij, we may write

1

2
DuǨ(u)

(
A>u

)
=

∑
m,n
m6=n

∑
im,jm
im 6=jm

∑
in,ln
in 6=ln

Ξimjm
ininln

+
∑
m

∑
im,jm
im 6=jm

∑
lm

Ξimjm
imjmlm

(30)

with

Ξimjm
in,jn,ln

=
1

4

(
∂1θlog(A

m
imjmuim , A

m
jmimujm)A

m
imjmA

n
lninδln 6=in

+ ∂2θlog(A
m
imjmuim , A

m
jmimujm)A

m
jmimA

n
lnjnδln 6=jn

)
uln(eim − ejm)⊗ (eim − ejm)

and
A>Ǩ(u) =

∑
m,n
m6=n

∑
im,jm
im 6=jm

∑
in,ln
in 6=ln

Πimjm
ininln

+
∑
m

∑
im,jm
im 6=jm

∑
lm

Πimjm
imjmlm

(31)

with

Πimjm
in,jn,ln

=
1

2
θlog(A

m
imjmuim , A

m
jmimujm)(A

n
lninδln 6=in − An

lnjnδln 6=jn)eln ⊗ (eim − ejm).
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Due to (63) and (64), the expression Ξimjm
in,jn,ln

is always non-negative for any im 6= jm

or any in = jn 6= ln. In addition, Πimjm
in,jn,ln

vanishes when in = jn. Therefore, we may
ignore the respective sums with m 6= n in (30) and (31), which yields

M(u) ≥
∑
m

∑
im,jm
im 6=jm

∑
lm

(
Ξimjm
imjmlm

− Πimjm
imjmlm

)
=

∑
m

∑
im,jm

Mm
imjm(u

m)eim ⊗ ejm

≥
∑
m

λm
∑
im,jm

Ǩm
imjm(u

m)eim ⊗ ejm

≥ min
m

{λm}
∑
m

∑
im,jm

Ǩm
imjm(u

m)eim ⊗ ejm = min
m

{λm}Ǩ(u),

where we used (27) to pass from the first to the second line. This means that the
infinitesimal generator A of the product chain is λ-convex for λ := minm{λm} in the
sense of Theorem 3.8. �

4. Lower convexity bounds in terms of the infinitesimal generator

Lower bounds for the convexity parameter λ of Theorem 3.8 in terms of the
infinitesimal generator A are provided by the following technical result.

Proposition 4.1. Assume an infinitesimal generator A is given such that Aij > 0
for all off-diagonal entries i 6= j. Then the convexity parameter λ of Theorem 3.8
always belongs to R, satisfying the lower bound

λ ≥ −1

2
max
i,j

{
µij +

∑
n/∈{i,j}

µ̃n
ij

}
, (32)

where the constants µij and µ̃ijl are given by

µij := max{Aii, Ajj} − Aij − Aji −min{Aij, Aji},

and
µ̃n
ij := min{AijAni, AjiAnj}g̃(βmax

ijn /β
min
ijn )

respectively, with g̃(βn
ij) expressed in terms of the function g̃ as in (72) and constants

βmax
ijn := max

{
0, (Ani − Aji)Anj, (Ani − Aji)

Ajn

Aji
, (Anj − Aij)Ani, (Anj − Aij)

Ain

Aij

}
,

βmin
ijn := min{AijAni, AjiAnj}.

(33)

For the proof, we will make use of the following simple observation.

Lemma 4.2. The positive semidefiniteness condition
M(u) ≥ λǨ(u) ∀u ∈ intPN (34)

of Theorem 16.i holds for some constant λ ∈ R, provided that for every u ∈ intPN ,
the matrices M(u) and Ǩ(u) satisfy the elementwise relation

SymMij(u) ≤ −λǨij(u) ∀i, j ∈ [N ] : i 6= j. (35)
In the the vein of Remark 3.9, one may replace the matrix M(u) in (35) by its
symmetric part SymM(u).



126 DOMINIK FORKERT AND JAN MAAS

Proof. As all off-diagonal elements of Ǩ(u) are nonpositive, (35) implies that the
off-diagonal elements of the matrix

N(u) := SymM(u)− λǨ(u)

are nonpositive as well. Moreover, we recall that Ǩ(u)1 = 0; likewise SymM(u)1 =
0, due to DuǨ(u)1 = 0 and Ǩ(u)A1 = 0. This implies that the diagonal elements
of the matrix N(u) have to satisfy

Nii(u) = −
∑
j 6=i

Nij(u) =
∑
j 6=i

|Nij(u)|;

in other words, the symmetric matrix N(u) is weakly diagonally dominant, a notion
which is well-known to imply positive semidefiniteness of N(u) =M(u)−λǨ(u). �

Proof of Proposition 4.1. In order to apply Lemma 4.2, we have to establish (16) for
some appropriate constant λ ∈ R. To this aim, we notice that each element Ǩij(u)
depends only on ui and uj, whereas SymMij(u) may depend on all elements of u.
We will make use of this observation by writing SymM(u) in the form

SymMij(u) =
1

2
M ij(ui, uj) +

1

2

∑
n/∈{i,j}

M̃n
ij(ui, uj, un), (36)

which highlights the dependencies of SymM(u) on the specific elements of u in
detail.

In order to find suitable matrices M and M̃n, we examine the following expressions
involved in the definition of SymM(u). We start with

−2 Sym(A>Ǩ)ij(u) = −
∑
k,l

Ǩkl(u)
1

2

(
(Aki − Ali)(δjk − δjl) + (Akj − Alj)(δik − δil)

)
=

1

2

∑
k

(
Ǩkj(u)(Aki − Aji) + Ǩki(u)(Akj − Aij)

)
+
1

2

∑
l

(
Ǩjl(u)(Ali − Aji) + Ǩil(u)(Alj − Aij)

)
= Ǩij(u)(Aii + Ajj − Aij − Aji) +

∑
n/∈{i,j}

(
Ǩnj(u)(Ani − Aji) + Ǩni(u)(Anj − Aij)

)
,

(37)
where we used that Ǩij(u) = Ǩji(u).

In a similar spirit, we write

DuǨij(u)(A
>u) = −∂1θlog(Aijui, Ajiuj)Aij(A

>u)i − ∂2θlog(Aijui, Ajiuj)Aji(A
>u)j

= −∂1θlog(Aijui, Ajiuj)Aij(Aiiui + Ajiuj)− ∂2θlog(Aijui, Ajiuj)Aji(Aijui + Ajjuj)

−
∑

n/∈{i,j}

(∂1θlog(Aijui, Ajiuj)AijAniun + ∂2θlog(Aijui, Ajiuj)AjiAnjun)

(38)
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Now we collect all terms in (37) and (38), which only depend on ui and uj into
M ij, whereas the terms which depend on un as well are collected in M̃n

ij:

M ij(ui, uj) := Ǩij(u)(Aii + Ajj − Aij − Aji)

−∂1θlog(Aijui, Ajiuj)Aij(Aiiui + Ajiuj)− ∂2θlog(Aijui, Ajiuj)Aji(Aijui + Ajjuj),

M̃n
ij(ui, uj, un) := Ǩnj(u)(Ani − Aji) + Ǩni(u)(Anj − Aij)

−∂1θlog(Aijui, Ajiuj)AijAniun − ∂2θlog(Aijui, Ajiuj)AjiAnjun.

We control the the terms involving derivatives in M ij by means of (65) and (66)
in the forms of

−∂1θlog(Aijui, Ajiuj)Aijui − ∂2θlog(Aijui, Ajiuj)Ajiuj = −θlog(Aijui, Ajiuj)

and
−∂1θlog(Aijui, Ajiuj)Ajiuj − ∂2θlog(Aijui, Ajiuj)Aijui ≤ −θlog(Aijui, Ajiuj)

respectively. Hence, we may estimate M ij as

M ij(ui, uj) ≤ Ǩij(u)
(
Aii + Ajj − Aij − Aji −min{Aii, Ajj} −min{Aij, Aji}

)
= Ǩij(u)

(
max{Aii, Ajj} − Aij − Aji −min{Aij, Aji}

)
.

(39)

For an estimate of M̃n
ij, we first note that monotonicity of (a, b) 7→ θlog(a, b) implies

Ǩnj(u) ≤ max
{
Anj,

Ajn

Aji

}
θlog(un, Ajiuj)

Ǩni(u) ≤ max
{
Ani,

Ain

Aij

}
θlog(un, Aijui).

With those two inequalities at hand, we appeal to (71) to arrive at

M̃n
ij(ui, uj, un) ≤ min{AijAni, AjiAnj}βn

ij

(
Ǩnj(u) + Ǩni(u)

)
−min{AijAni, AjiAnj}

(
∂1θlog(Aijui, Ajiuj) + ∂2θlog(Aijui, Ajiuj)

)
un

≤ min{AijAni, AjiAnj}g̃(βn
ij)Ǩij(u),

where we used a constant βn
ij as given in (33). �

In the following, we consider an additive perturbation of the infinitesimal gener-
ator as described in Example 4.7 of [Mie13].

Example 4.3. For a fixed probability measure w ∈ PN and κ > 0, we define
Q = κ(1⊗ w − Id).

It is immediate to check that Q is the infinitesimal generator of a reversible and
irreducible Markov chain with unique steady state w. Consider a perturbation
matrix B ∈ RN×N such that B1 = 0 and supi |Bii| < ε. Provided that ε > 0
is chosen small enough, A = Q + B is again the infinitesimal generator of some
irreducible Markov chain.

In order to apply Proposition 4.1, we note that
µij = −κ− 2κmin{wi, wj}+O(ε),
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whereas all µ̃n
ij belong to O(ε) as ε ↘ 0. Therefore, the convexity parameter λ for

the perturbed infinitesimal generator A is bounded by

λ ≥ κ

2
+ κmin

i
{wi}+O(ε).

5. The complete geodesic space (PN ,W)

According to Corollary 3.5, we may define a Riemannian metric G(u) at every
point u ∈ intPN by inverting the Onsager operator Ǩ(u) on the tangent space (iden-
tified with) span{1}⊥. However, even in the case of a reversible Markov generator A,
this construction fails on the boundary ∂PN := PN \ intPN as the Onsager operator
Ǩ may not be regular anymore.

Nevertheless, the following result shows the Riemannian distance function W
defined by (10) defines a metric on PN

Theorem 5.1. PN together with the distance function W as defined in (10) forms a
complete geodesic space, whose topology agrees with the standard Euclidean topology
on PN .

For the proof of this result we require two lemmas.

Lemma 5.2 (characterisation of W). The distance function W as defined in (10)
is given by the convex minimisation problem

W2(u, v) = inf

∫ 1

0

∑
i,j

Aij>0

(V t
ij)

2/Ǩij(g
t) d, (40)

where the infimum is taken over the convex set of all pairs (gt, V t)t∈[0,1] of continuous
curves g : [0, 1] → RN and locally integrable V : [0, 1] → RN×N such that

d

dt
gt =

∑
i,j

V t
ij(ei − ej) (CE∗)

in the sense of distributions.

Remark 5.3. We note that the integrand of the functional

(g, V ) 7→ A(g, V ) :=

∫ 1

0

∑
i,j

Aij>0

(V t
ij)

2/Ǩij(g
t) dt (41)

is a lower semicontinuous and convex function. Indeed, this follows from a repre-
sentation of the integrand as a composition of the mapping (x, y) 7→ x2/y, which
is convex on the open half-plane R × R+, and the logarithmic mean θlog which is
concave on R+

0 × R+
0 . Semicontinuity of the integrand in both arguments follows

along the same lines.
As a consequence, A is semicontinuous convex as well.

Proof of Lemma 5.2. In order to show (40), we first note that the inequality W2(u, v) ≥
(RHS) follows from writing

V t
ij = (ζti − ζtj)Ǩij(g

t),

which shows that the minimisation problem in (40) corresponds to the one in (10)
over a larger set of admissible pairs of curves.
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The converse inequality W2(u, v) ≤ (RHS) will be subsequently shown by a
standard mollification argument. To this aim, we consider a non-negative mollifier
ηε on the real line with supp ηε ⊆ [−ε, ε] and ‖ηε‖1 = 1 for ε > 0 and set

(g̃t, Ṽ t) :=


(g0, 0) if t ∈ [−ε, ε),(
g(t−ε)/(1−2ε), 1

1−2ε
V (t−ε)/(1−2ε)

)
if t ∈ [ε, 1− ε),

(g1, 0) if t ∈ [1− ε, 1 + ε)

for an admissible pair (gt, V t)t∈[0,1]. Apparently, the pair (g̃t, Ṽ t) is admissible as
well.

Denoting by ∗ the convolution with respect to time t and extending the underlying
curves with zero outside of their domain [0, 1], we note that the mollified pair (g̃ ∗
ηε, Ṽ ∗ηε) is admissible as well. Hence, Jensen’s inequality with respect to the convex
integrand, followed by Young’s inequality for convolutions, implies∫ 1

0

(Ṽij ∗ ηε(t))2/Ǩij(g̃ ∗ ηε(t)) dt ≤
∫ 1

0

(
(Ṽij)

2/Ǩij(g̃)
)
∗ ηε(t) dt

≤
∫ 1+ε

−ε

(Ṽ t
ij)

2/Ǩij(g̃
t) dt =

1

1− 2ε

∫ 1

0

(V t
ij)

2/Ǩij(g
t) dt.

In order for the right-hand side of (40) to be finite, V t
ij needs to vanish for a.e.

times t ∈ [0, 1] whenever Ǩij(g
t) = 0. This means that the smooth function Ṽij ∗ ηε

may vanish only when Ǩij(g̃∗ηε) vanishes. Hence, there exists a measurable function
ψε : [0, 1] → RN×N such that

Ṽij ∗ ηε(t) = ψt
εǨij(g̃ ∗ ηε(t))

for all times t ∈ [0, 1].
Thus, it is enough to consider an admissible pair (g̃ ∗ ηε, ζε) for the continuity

equation (CE) by means of∑
i,j

Ṽij ∗ ηε(t)(ei − ej) =
d

dt
g̃ ∗ ηε(t) = Ǩ(g̃ ∗ ηε(t))ζtε.

Since
(ζtε)

>Ǩ(g̃ ∗ ηε(t))ζtε ≤
∑
i,j

Aij>0

(Ṽij ∗ ηε(t))2/Ǩij(g̃ ∗ ηε(t)),

we conclude∫ 1

0

(ζtε)
>Ǩ(g̃ ∗ ηε(t))ζtε dt ≤

∫ 1

0

∑
i,j

Aij>0

(Ṽij ∗ ηε(t))2/Ǩij(g̃ ∗ ηε(t)) dt

≤ 1

1− 2ε

∫ 1

0

∑
i,j

Aij>0

(V t
ij)

2/Ǩij(g
t) dt.

for arbitrarily small ε > 0. �

Lemma 5.4. A lower bound for the W-distance is provided by the standard Eu-
clidean distance | · |2 viz.

|u− v|2 ≤
√

‖Ǩ(1)‖W(u, v) ∀u, v ∈ PN , (42)
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where ‖Ǩ(1)‖ denotes the operator norm of Ǩ at 1 = (1, . . . 1) with respect to | · |2
on RN .

Proof. It suffices to consider the case when W(u, v) remains finite. Then, for every
ε we may find a pair of curves (gt, ζt)t∈[0,1] connecting u to v, admissible according
to the definition of the W-distance, such that∫ 1

0

(ζt)>Ǩ(gt)ζt dt ≤ W2(u, v) + ε. (43)

Now (CE) and the Cauchy-Schwarz inequality applied to the positive-semidefinite
bilinearform (ξ, ζ) 7→ ξ>Ǩζ imply for an arbitrary z ∈ RN that∑

i

zi(ui − vi) =

∫ 1

0

z>ġr dr =

∫ 1

0

z>Ǩ(gr)ζr dr (44a)

≤
(∫ 1

0

z>Ǩ(gr)z dr
)1/2(∫ 1

0

(ζr)>Ǩ(gr)ζr dr
)1/2

. (44b)

The first factor in the second line may be estimated by
z>Ǩ(gr)z ≤ z>Ǩ(1)z ≤ |z|22‖Ǩ(1)‖,

whereas the second factor is bounded by (43). Since ε > 0 is arbitrary, we arrive at∑
i

zi(ui − vi) ≤ |z|2
√
‖Ǩ(1)‖W(u, v).

Setting z = u− v in this inequality, we conclude. �

Proof of Theorem 5.1. We show that (PN ,W) is a metric space. In order to
check that the distance function W remains finite on all of PN , it is enough to find
an inward-pointing curve segment (gt, V t)t∈[0,1] for every initial point g0 = u ∈ ∂PN

such that (41) remains bounded along this segment. With no loss of generality, we
will assume that u vanishes precisely at the first k coordinates. Hence, we may
consider the curve

gti =


t2/N if 1 ≤ i ≤ k

1/N if k < i < N

(k + 1− kt2)/N if i = N

. (45)

Note that, according to (CE∗), all corresponding V t
ij belong to O(t) as t↘ 0. Thus,

the estimate
NǨij(g

t) ≥ θlog(Aijt
2, Ajit

2) = t2θlog(Aij, Aji) ∀i, j ∈ [N ],

implies that (V t
ij)

2/Ǩij(g
t) remains bounded as t↘ 0. As a result, A(g, V ), defined

in (41), is finite as well.
The triangle inequality follows from the fact that the reparametrised curve of

two geodesics, linked together at one common endpoint, is still admissible for the
minimisation problem in (10).

Finally, the lower bound in terms of the `p-distance provided in Lemma 5.4 shows
that W(u, v) vanishes, precisely, when u = v.

We show that the topology induced by W agrees with the Euclidean
subspace topology on PN . Clearly, the topology induced by W , restricted to
the interior of PN , agrees with the standard Euclidean topology on intPN , due
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to standard results of Riemannian geometry. Hence, it remains to show that a
sequence (un)n∈N in PN is converging to a limit point u on the boundary of PN

with respect to the Euclidean subspace topology, precisely, when W(un, u) → 0 as
n→ ∞.

The claim that convergence in Euclidean topology follows from W-convergence
is a direct consequence of Lemma 5.4. For the converse implication, it poses
no restriction to assume that (un)n∈N belongs to the interior of PN . Following a
construction similar to (45), we may construct an inward-pointing curve (g̃t)t∈[0,1]
with initial point g0 = u, reparametrised to constant-speed in such a way that
W2(u, gt) ≤ tA(g̃, Ṽ ) <∞. In particular, for every ε > 0 exists a time t0 such that
W(u, gt0) < ε/2. In addition, the aforestated equivalence of the Euclidean and the
W-induced topology in the interior of PN implies the existence of n0 ∈ N such that
W(un, gt0) < ε/2 for all n ≥ n0. Therefore, we conclude

W(un, u) ≤ W(un, gt0) +W(u, gt0) < ε ∀n ≥ n0.

We show that the metric space (PN ,W) is complete. By the considerations
above, this follows directly from the compactness of P with respect to the Euclidean
subspace topology.

We show that (PN ,W) is a geodesic space, i.e. that for any two points
u, v ∈ PN the infimum in the right-hand side of (40) is attained by a geodesic
pair (gt, V t)t∈[0,1] joining u to v. To this aim, we appeal to the direct method in the
calculus of variations:

Let (gn, Vn)n∈N be a sequence of admissible pairs as considered in Lemma 5.2,
minimising the functional A in (41). Since A only takes nonnegative values, we may
assume that A(gn, Vn) is uniformly bounded for all n ∈ N.

Extraction of a weakly-∗ converging subsequence. In order to obtain a subsequence
of (Vn)n∈N, weakly-∗ converging in the dual of C[0, 1], we invoke the Banach-Alaoglu
theorem. To this end, we show that the sequence of signed Borel measures corre-
sponding to the densities (Vn)ij is uniformly bounded in the total variation norm by
means of the estimate (∫

B

|(V t
n)ij| dt

)2

≤ L1(B)

∫ 1

0

(V t
ij)

2 dt (46a)

≤ L1(B)max
i,j

{Aij}
∫ 1

0

∑
i,j

Aij>0

(V t
n)

2
ij/Ǩij(g

t
n) dt (46b)

≤ L1(B)max
i,j

{Aij} sup
nıN

A(gn, Vn) (46c)

for all Borel subsets B ⊆ [0, 1], where we used the monotonicity of the logarithmic
mean in the form of the upper bound Ǩij(g

t
n) ≤ maxi,j{Aij}. As a result of this

uniform total variational bound, we may extract a subsequence ((Vnk
)ij)k∈N, con-

verging weakly-∗ to a signed measure on [0, 1]. Moreover, (46a) implies that this
measure is absolutely continuous with respect to the Lebesgue measure on [0, 1],
thus represented by a density which will be denoted by Vij.
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For (gn)n∈N we can even extract a subsequence, converging pointswise to a limit
function. Indeed, in integrated form, (CE∗) reads as

gtnk
− g0nk

=

∫ t

0

∑
i,j

(V r
nk
)ij(ei − ej) dr ∀t ∈ [0, 1]. (47)

Observing that the right-hand side of this equation converges as k → ∞ (see Propo-
sition 5.1.10 in [AGS08]) and the initial point g0nk

is the same for all k ∈ N, we
obtain a pointwise limit curve (gt)t∈[0,1]. In addition, the dominated convergence
theorem yields that (gnk

)k∈N converges weakly-∗ to g as k → ∞.
Now we may use the weak-∗ convergence of both ((Vnk

)ij)k∈N and (gnk
)k∈N to infer

that the limit pair (g, V ) satisfies (CE∗) in the sense of distributions as well. Passing
to the limit in (47) as k → ∞, we obtain the continuity of the limit curve (gt)t∈[0,1].
Hence, the pair (g, V ) is admissible for the minimisation problem in Lemma 5.2.

Lower semicontinuity of the action functional A. We recall that the integrand
(41) is jointly convex and lowersemicontinuous as stated in Remark 5.3. By means
of Theorem 5.19 in [FL07], this implies that the integral functional A is jointly
(sequently) lower semicontinuous with respect to weak-∗ convergence in the sense of
measures. As a result, we may pass to the limit

W2(u, v) = lim inf
n→∞

A(gn, Vn) ≥ A(g, V ), (48)

which means that the pair (gt, V t)t∈[0,1] corresponds to a length minimising geodesic
joinng u to v. �

6. Bounds for W in terms of Wasserstein distances

In order to consider a Wasserstein distance on PN , we need to endow [N ]with
some metric. Suitable candidates are:

(i) the graph metric on the graph induced by the infinitesimal generator A, i.e.
the vertex set [N ] together with edges {(i, j) : Aij > 0};

(ii) W restricted to Dirac measures, i.e. W(δi, δj) for the distance between vertices
i and j in [N ].

Notation. The Lp-Wasserstein distance with respect to the former metric will be
denoted by W gra

p , whereas the Lp-Wasserstein distance with respect to the latter
will be denoted by WW

p .

Proposition 6.1. W is bounded by Wasserstein distances in terms of
√
2
(
max

i

{√
|Aii|

})−1
W gra

1 (u, v) ≤ W(u, v) ≤ WW
2 (u, v) ∀u, v ∈ PN . (49)

Proof. We show the lower bound in terms of W gra
1 -distance. In contrast

to the second part of the proof, we will make use of the dual characterisation of
the L1-Wasserstein distance via the Kantorovich-Rubinstein theorem (cf. e.g. Theo-
rem 8.10.45 in vol. 2 of [Bog07]):

W gra
1 (u, v) = sup

{∑
i

zi(ui − vi)
}
, (50)

where the supremum is taken over all z ∈ RN with Lipschitz constant Cz < 1 with
respect to the graph metric induced by the infinitesimal generator A.
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Appealing to Theorem 5.1, for every pair of points u, v ∈ PN , we may find a
constant-speed geodesic pair (gt, ζt)t∈[0,1] joining u to v, minimising (10). Then, for
z ∈ RN , a computation in the vein of (44) shows∑

i

zi(ui − vi) ≤
(∫ 1

0

z>Ǩ(gr)z dr
)1/2

W(u, v). (51)

In order to estimate the first factor on the right-hand side of this inequality, we use
the fact that the graph metric between i 6= j equals to 1 whenever Aij > 0; therefore,

z>Ǩ(gr)z dr =
1

2

∑
i,j

(zi − zj)
2Ǩij(g

r) ≤ C2
z

1

2

∑
i,j
i6=j

Ǩij(g
r).

To estimate the sum on the right-hand side of this equation, we shall make use of
an upper bound of the logarithmic mean in terms of the arithmetic mean as stated
in (61). Thus,∑

i6=j

Ǩij(g
r) ≤ 1

2

∑
i,j
i6=j

Aijui + Ajiuj =
∑
i,j
i6=j

Aijui ≤ max
i

{∑
j 6=i

Aij

}
= max

i

{
|Aii|

}
.

Taking those estimates for (51) into account, we arrive at∑
i

zi(ui − vi) ≤
Cz√
2
max

i

{√
|Aii|

}
W(u, v).

Appealing to the Kantorovich-Rubinstein theorem (50), we conclude the first part
of the proof.

We show the upper bound in terms of WW
2 -distance. For every pair of

Dirac measures δi, δj ∈ PN , Theorem 5.1 allows us to find a constant-speed geodesic
pair (gi→j, V i→j) joining u to v, minimising (40). Consider an optimal plan q ∈
PN×N between probability measures u and v in PN . Now the crucial observation is
constituted by the fact that convex combinations of (gi→j, V i→j), weighted according
to q in form of

g =
∑
i,j

qijg
i→j and V =

∑
i,j

qijV
i→j

still satisfy (CE∗); thus the pair (g, V ) is admissible for the minimisation problem in
(40) and, invoking convexity of the functional A as noted in Remark 5.3, we infer

W(u, v)2 ≤ A(g, V ) ≤
∑
i,j

qijA(gi→j, V i→j) =
∑
i,j

qijW2(δi, δj) = WW
2 (u, v)2.

�

7. Functional inequalities

The first goal of this chapter is to prove a variant of the HWI -inequality which
has been established in [EM12] for reversible Markov chains. The crucial difference
between the argument in [EM12] and the one presented below consists of the fact that
we use the first variational formula of Riemannian geometry to estimate d+

dt
W(ut, v)

instead of a Benamou-Brenier-like argument.
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The rôle of the discrete Fisher information in the following inequality will be
taken over by |Y |G with a vectorfield Y on PN which, in addition to the logarithmic
entropy, also takes the functional Vτ into account:

Y (u) := gradG Ent(u) + Ǩ(u)[L] (52)

This definition is motivated by the fact that the vectorfield Y describes the evolution
of the Markov chain with an infinitesimal generator A as stated in (14).

Lemma 7.1. Let (ut)t≥0 be a solution of the Kolmogorov forward equation u̇t = A>u.
Denote by gε the constant-speed geodesic starting from ut in direction of εu̇t, i.e.
grε := exput(rεu̇t). Then we have the relation

d

dt
Ent(ut) + lim

ε→0

1

ε
V1(gε) = −|Y |2G(ut) ∀t > 0. (53)

Proof. The left-hand side of (53) takes the form

d

dt
Ent(ut) + lim

ε→0

1

ε
V1(gε) = (u̇t)>∇Ent(ut) + lim

ε→0

∫ 1

0

(
G(grε)

ġrε
ε

)>
Ǩ(grε)[L] dr.

By means of Markov chain theory, we can assume that gr takes values in the interior
of PN for all t ∈ (0, 1). Passing to the limit in the integral term on the right-hand
side of the equation above, we see that both Ǩ(grε) → Ǩ(ut) and G(grε) → G(ut)
as ε → 0. In addition, we have grε/ε → u̇t, due to the particular definition of the
geodesic gε. Therefore, appealing to the variational equation (14), we arrive at

d

dt
Ent(ut) + lim

ε→0

1

ε
V1(gε)

= (u̇t)>
(
G(ut) gradG Ent(ut) +G(ut)Ǩ(ut)[L]

)
= −|Y |2G(ut).

�

Proposition 7.2. Let A = Q ◦ B be an infinitesimal generator with stationary
distribution w for Q and λ ∈ R a convexity parameter as defined in Theorem 3.8.
Then we have the following discrete HWI -inequality:

Ent(u) + V1(g
u→w) ≤ W(u,w)|Y |G(u)−

λ

2
W2(u,w) ∀u ∈ intPN . (HWIλ)

Proof. Let (ut)t≥0 be the solution of the Kolmogorov forward equation u̇t = A>u
with initial condition u0 = u. As a result, choosing v = w in (EVIλ,∞) at time t = 0,
we obtain the inequality

Ent(u) + V1(g
u→w) ≤ −1

2

d+

dt

∣∣∣
t=0

W2(ut, w)− λ

2
W2(u,w). (54)

Now the first variational formula of Riemannian geometry, followed by an applica-
tion of the Cauchy-Schwarz inequality, implies the estimate

− 1

2

d+

dt
W2(ut, w) = 〈ġ0, u̇t〉G ≤ |ġ0|G|u̇t|G, (55)

where (gr)r∈[0,1] denotes a constant-speed geodesic joining ut to w. As exput(ġ0) =
g1 = w, we have |ġ0|G = W(ut, w). Hence, (54), together with (55) at time t = 0,
implies (HWIλ). �
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Corollary 7.3. Let A = Q◦B be an infinitesimal generator with stationary distribu-
tion w for Q and λ > 0 be a positive convexity parameter as defined in Theorem 3.8.
Then we have the following discrete modified logarithmic Sobolev inequality:

Ent(u) + V1(g
u→w) ≤ 1

2λ
|Y |2G(u) ∀u ∈ intPN . (MLSIλ)

Proof. We estimate the product term W(u,w)|Y |G(u) in (HWIλ) via Young’s in-
equality ab ≤ a2/2 + b2/2 with a =

√
λW(u,w) and b = |Y |G(u)/

√
λ as

W(u,w)|Y |G(u) ≤
λ

2
W2(u,w) +

1

2λ
|Y |2G(u).

As a result, this estimate, together with (HWIλ), implies (MLSIλ) as desired. �

For the following result, we consider a stationary distribution π for the non-
reversible generator A has, not necessarily agreeing with w for the reversible gener-
ator Q. As already pointed out in Section 2, imposing a decomposition of form (1)
forces both stationary distributions of A and B to coincide.

As usual, the entropy functional Ent is defined relative to w.

Proposition 7.4. Let A be an irreducible infinitesimal generator with stationary
distribution π. Provided that (EVIλ,∞) holds for some convexity parameter λ ∈ R,
we have the following discrete modified Talagrand inequality:

λ

2
W2(v, π) ≤ Ent(v)− Ent(π) + V1(g

π→v) ∀v ∈ Binj(π), (TW
λ )

where Binj(π) ⊆ PN denotes a geodesic ball of injectivity radius centred at π.
In particular, whenever π = w, the W-distance is bounded via

λ

2
W2(v, w) ≤ Ent(v) + V1(g

w→v) ∀v ∈ Binj(w). (56)

A proof following the approach of Otto and Villani in [OV00] for the statement
above is impeded by the fact that the functional V1 may also take negative values.
Instead, we will take a more direct approach, choosing (EVIλ,∞) as starting point.
Proof of Proposition 7.4. The central idea is to infer (TW

λ ) by passing to the limit in
(EVIλ,∞) as t→ ∞. To this aim, we need to show that limt→∞ Entut+V1(g

ut→v) =
Ent(π) + V1(g

π→v) and the upper-right Dini derivative of W2(ut, v) vanishes in the
limit. Indeed, the former claim follows directly from continuity of the entropy func-
tional Ent with respect to Euclidean topology and the equivalence of both topologies
as shown in Theorem 5.1.

In the same spirit, noting that the geodesic gz→v depends smoothly on v, z ∈
Binj(π), we infer that limt→∞ V1(g

ut→v) = V1(g
π→v).

For the latter claim we invoke the first variational formula of Riemannian geom-
etry in the form of

1

2

d+

dt
W2(v, ut) = −〈ġ0, u̇t〉G, (57)

where (gr)r∈[0,1] denotes a constant speed-geodesic joining ut to v. Note that ut
converges to π with respect to W as well. Hence, |ġ0|G = W(v, ut) remains bounded
as t → ∞. Moreover, this implies that there exist T > 0 and a geodesic ball
BW(π) ⊆ intPN such that (ut)t≥T stays inside BW(π). In particular, the metric
tensor G remains bounded along ut for all times t ≥ T .
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In addition, passing to the limit in the Kolmogorov forward equation (13) shows
that u̇t vanishes with respect to the Euclidean topology as t → ∞. Thus, we may
estimate (57) via Cauchy-Schwarz inequality as

1

2

∣∣∣∣ d+dtW2(v, ut)

∣∣∣∣ ≤ |ġ0|G|u̇t|G ≤ W(v, ut)‖G(ut)‖ · |u̇t|, (58)

which clearly vanishes in the limit as t→ ∞.
Finally, (56) follows from the fact that the entropy functional Ent vanishes at

w. �

Proposition 7.5. Let A = Q ◦ B be an infinitesimal generator with stationary
distribution w for both A and Q. Assume there is a positive λ > 0 such that (MLSIλ)
holds for all u inside a neighbourhood of w. Then we have the following discrete
Poincaré inequality:
5

3

∑
i

ϕ2
i

wi

− 1

3

∑
i,j

Aijwi

(ϕi

wi

− ϕj

wj

)
(ζi−ζj) ≤

1

λ
|A>ϕ|2G(w) ∀ϕ ∈ RN : ϕ⊥1, (Pλ)

where ζ = G(w)ϕ and the terms on the left-hand side satisfy the bound∑
i

ϕ2
i

wi

≤ 1

2

∑
i,j

Aijwi

(ϕi

wi

− ϕj

wj

)
(ζi − ζj), (59)

with equality achieved in (59) when the infinitesimal generator A is reversible.
In particular, (Pλ) together with (59) implies the weaker inequality∑

i

ϕ2
i

wi

≤ 1

λ
|A>ϕ|2G(w) ∀ϕ ∈ RN : ϕ⊥1. (P†

λ)

Either of the inequalities above holds when A satisfies one of the conditions for λ-
convexity stated in Theorem 3.8.

Proof. We follow a standard linearisation procedure of (MLSIλ). To this aim, con-
sider uε := expw(εϕ) ∈ intPn for any ϕ⊥1 and sufficiently small ε > 0. We have to
show:

(i) lim
ε→0

1

ε2
Ent(uε) = D2 Ent(w)(ϕ, ϕ) =

1

2

∑
i

ϕ2
i

wi

,

(ii) lim
ε→0

1

ε2
V1(g

uε→w) = ζ>DǨ(w)[L]ϕ =
1

3

∑
i

ϕ2
i

wi

− 1

6

∑
i,j

Aijwi

(ϕi

wi

− ϕj

wj

)
(ζi−ζj),

(iii) lim
ε→0

1

ε2
|Y |2G(uε) = |A>ϕ|2G(w).

The first equality in (i) follows from the fact that Ent(w) = 0 as well asDEnt(w)ϕ =∑
i ϕ = 0. Now the second equality boils down to a direct computation ofD2 Ent(w)(ϕ, ϕ).
Regarding (ii), we first note that reversibility of Q implies

Ǩ(w)[L] =
1

2

∑
i,j

Bij 6=Bji

Aijwi − Ajiwj

log(QijBijwi)− log(QjiBjiwj)
(logBij − logBji)(ei − ej)

=
1

2

∑
i,j

Bij 6=Bji

(Aijwi − Ajiwj)(ei − ej) =
1

2

∑
i,j

(Aijwi − Ajiwj)(ei − ej) = 0.
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Hence, using that both u 7→ Ǩ(u) and the exponential map are smooth in a neigh-
bourhood of w, we have

lim
ε→0

Ǩ(gw→uε

r )[L]/ε = lim
ε→0

Ǩ(expw(rεϕ))[L]/ε = rDǨ(w)[L]ϕ.

A direct computation shows

DǨ(w)[L]ϕ =
1

2

∑
i,j

Bij 6=Bji

(
Aijϕi − Ajiϕj − (Qijϕi −Qjiϕj)θlog(Bij, Bji)

)
(ei − ej)

=
1

2

∑
i,j

Aijwi

(ϕi

wi

− ϕj

wj

)
(ei − ej)−

1

2

∑
i,j

Ǩij(w)
(ϕi

wi

− ϕj

wj

)
(ei − ej),

where we used (70), the reversibility of Q and the identity Qijwiθlog(Bij, Bji) =
Ǩij(w); in particular, we have

ζ>DǨ(w)[L]ϕ =
1

2

∑
i,j

Aijwi

(ϕi

wi

− ϕj

wj

)
(ζi − ζj)−

∑
i

ϕ2
i

wi

.

Now the remaining first equality in (ii) follows from a change of orientation in form
of V1(gu

ε→w) = −V1(gw→uε
) as legitimised by (11), together with an application of

the dominated convergence theorem, viz.

lim
ε→0

1

ε2
V1(g

uε→w) = − lim
ε→0

∫ 1

0

(
G(gw→uε

r )ġw→uε

r /ε
)>Ǩ(gw→uε

r )[L]/ε dr

= −
∫ 1

0

r2ζ>DǨ(w)[L]ϕdr =
1

3

∑
i

ϕ2
i

wi

− 1

6

∑
i,j

Aijwi

(ϕi

wi

− ϕj

wj

)
(ζi − ζj).

For the proof of (59), we note that the right-hand of this inequality may be written
as

1

2

∑
i,j

Aijwi

(ϕi

wi

− ϕj

wj

)
(ζi − ζj) = 〈φ, Sζ〉

for a density given by φi := ϕi/wi and a symmetric matrix given by

S =:
1

2

∑
i,j

Aijwi + Ajiwj

2
(ei − ej)⊗ (ei − ej).

Note that by comparison of the logarithmic and the arithmetic mean as in (61),
we have that Ǩ(w) ≤ S in the sense of positive semidefinite matrices. By sym-
metry of all involved matrices, this also means that we have Ǩ(w)G(w) diag(w) ≤
SG(w) diag(w); in particular,

φ>Ǩ(w)G(w) diag(w)φ ≤ φ>SG(w) diag(w)φ,

which translates into inequality (59) as to be shown.
In order to check the equality in (iii), we compute

Y (uε) = Ǩ(uε)DEnt(uε) + Ǩ(uε)[L]

=
1

2

∑
i,j

Ǩij(u
ε)
(
log

uεi
wi

− log
uεj
wj

+ logBij − logBji

)
(ei − ej) = −A>uε.
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Since w as a stationary distribution for A satisfies A>w = 0, we may use the identity
in (15) to obtain

lim
ε→0

1

ε
Y (uε) = −A>ϕ.

Finally, Corollary 7.3 shows that (Pλ) is already implied by any of the λ-convexity
conditions in Theorem 3.8. �

Proposition 7.6. Let A = Q ◦ B be an infinitesimal generator with stationary
distribution w for both A and Q. If there is a positive λ > 0 such that (TW

λ )
holds for all u inside a neighbourhood of w, then also the following discrete Poincaré
inequality: ∑

i

φ2
iwi ≤

1

λ
φ>Ǩ(w)φ ∀φ ∈ RN : φ⊥w. (P∗

λ)

The inequality above holds when A satisfies one of the conditions for λ-convexity
stated in Theorem 3.8.

Proof. Denote by φ the density corresponding to ϕ, i.e. φi := ϕi/wi for some ϕ⊥1.
Let uε := expw(εφ) ∈ intPn for ε > 0, sufficiently small such that uε belongs to a
ball of injectivity radius centred at w.

We write ∑
i

φ2
iwi =

∑
i

ϕiφi =
∑
i

ϕi
uεi − wi

ε
+ χε

with an error term χε ∈ O(ε2). Following the notation of Lemma 5.2, consider a
geodesic pair (gt, V t)t∈[0,1] joining uε to w. Using (CE∗), we may write the difference
quotient in the equation above as∑

i

ϕi
uεi − wi

ε
=

1

ε

∑
i

∫ 1

0

ϕiġ
r
i dr =

1

ε

∑
i,j

∫ 1

0

V r
ij(ϕi − ϕj) dr

≤ 1

ε

(∑
i,j

∫ 1

0

(V r
ij)

2

Ǩij(gr)
dr

)1/2(∑
i,j

∫ 1

0

(ϕi − ϕj)
2Ǩij(g

r) dr

)1/2

=
1

ε
W(uε, w)

(∑
i,j

(ϕi − ϕj)
2

∫ 1

0

Ǩij(g
r) dr

)1/2

,

where we used Hölder’s inequality for the estimate in the second line and the fact
that (gt, V t)t∈[0,1] is length-minimising in the last line. In total, taking into account
(TW

λ ), we arrive at the estimate∑
i

φ2
iwi ≤

1

ε

(
2

λ
Ent(uε) + V1(g

w→uε

)

)1/2(∑
i,j

(ϕi − ϕj)
2

∫ 1

0

Ǩij(g
r) dr

)1/2

+ χε.

(60)
We already know from (i) and (ii) in the proof of Proposition 7.5 as well as (59)
that

lim
ε→0

1

ε2
(
(Ent(uε) + V1(g

w→uε

)
)

=
5

6

∑
i

φ2
iwi −

1

6

∑
i,j

Aijwi(φi − φj)(ζi − ζj) ≤
1

2

∑
i

φ2
iwi,
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where ζ = G(w)ϕ. Hence, it remains to show

lim
ε→0

∫ 1

0

Ǩij(g
r(ε)) dr = Ǩij(w) ∀i, j ∈ [N ],

in order to conclude. Indeed, this claim follows readily from Lemma 5.4 which – by
equivalence of norms in RN – implies the bound∑

i

|gri − wi| ≤ CW(gr, w) ≤ CW(uε, w) ∀r ∈ [0, 1]

for some constant C > 0. This estimate yields gr → w uniformly in r ∈ [0, 1] as
ε→ 0, which in turn implies the claim.

Finally, Proposition 7.4 shows that (P∗
λ) is already implied by any of the λ-

convexity conditions in Theorem 3.8. �
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8. Appendix: Properties of the logarithmic mean

In this appendix we collect some properties of the logarithmic mean, used through-
out the text. Most of the proofs may be found in Appendix A of [Mie13]; except for
the proofs of (67) and (71) to be found in [Mie13] (see Proposition 4.5) and [EM12]
(see Lemma 2.2), respectively.

Definition 8.1. The logarithmic mean θlog : R+
0 × R+

0 → R+
0 is defined by

θlog(a, b) :=

∫ 1

0

arb1−r dr.

Facts 8.2. The logarithmic mean θlog satisfies the following properties:
(i) Representation formula:

θlog(a, b) =
a− b

log a− log b
∀a, b > 0 : a 6= b.

(ii) Bounds by geometric and arithmetic means:
2ab

a+ b
≤

√
ab ≤ θlog(a, b) ≤

a+ b

2
. (61)

(iii) 1-homogeneity:
θlog(αa, αb) = αθlog(a, b) ∀α > 0. (62)

(iv) Non-vanishing behaviour in the interior:
θlog(a, b) > 0 and ∂1θlog(a, b) > 0 ∀a, b > 0. (63)

(v) Vanishing behaviour on the boundary:
θlog(a, 0) = θlog(0, a) = 0 and ∂1θlog(a, 0) = 0 ∀a > 0. (64)

(vi) Identities and bounds for the derivatives of θlog:
a∂1θlog(a, b) + b∂2θlog(a, b) = θlog(a, b), (65)
b∂1θlog(a, b) + a∂2θlog(a, b) ≥ θlog(a, b), (66)
s∂1θlog(a, b) + t∂2θlog(a, b) ≥ θlog(s, t), (67)

∂1θlog(a, b) + ∂2θlog(a, b) =
θ2log(a, b)

ab
≥ 1, (68)

a∂2θlog(a, b) = max
r>0

{θlog(r, a)− r∂1θlog(a, b)} , (69)

∂1θlog(a, b) =
1− θlog(a, b)/a

log a− log b
, (70)

(vii) For all β ≥ 0, we have the estimate
β
(
θlog(r, a) + θlog(a, b)

)
− s

(
∂1θlog(r, b) + ∂2θlog(r, b)

)
≤ g̃(β)θlog(r, b) ∀r, a, b > 0,

(71)
where

g̃ :=

{
2β if 0 ≤ β ≤ 1/2,

4β`(1/(4β)) if 1/2 ≤ β,
(72)

with a decreasing convex function `(t) := maxr>0{θlog(1, r)− rt}.



A VARIATIONAL STRUCTURE FOR NON-REVERSIBLE MARKOV CHAINS 141

References
[AAS15] Franz Achleitner, Anton Arnold, and Dominik Stürzer. Large-time behavior in non-

symmetric fokker-planck equations. Rivista di Matematica della Universita di Parma,
6, 06 2015.

[ACJ08] Anton Arnold, Eric Carlen, and Qiangchang Ju. Large-time behavior of non-symmetric
fokker-planck type equations. Communications on Stochastic Analysis, 2(1):11, 2008.

[AGS08] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces
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