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Abstract

We consider a system of N bosons in the limit N — oo, interacting through singular
potentials. For initial data exhibiting Bose—Einstein condensation, the many-body
time evolution is well approximated through a quadratic fluctuation dynamics around
a cubic nonlinear Schrédinger equation of the condensate wave function. We show
that these fluctuations satisfy a (multi-variate) central limit theorem.
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1 Introduction

We consider a system of N bosons with Hamilton operator

N
1
Hy=Y~dyty 3 Vet (1

=1 1<j<k<N

acting on L?(R”’ ), the subspace of L?(R3*") consisting of functions which are sym-
metric with respect to permutations. The N-dependent two-body interaction potential
is given through
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Vn(x) = NPV(NPx).
In the following, we assume V > 0 to be smooth, spherically symmetric, and com-
pactly supported. For 8 = 0, the Hamiltonian (1.1) describes the mean-field regime
characterized by a large number of weak collisions, whereas for g > 1/3 the colli-
sions of the particles are rare but strong. In the Gross—Pitaevskii regime (8 = 1), pair
correlations play a crucial role. Here, we study intermediate regimes 8 € (0, 1) in the

limit N — oo where the particles interact through singular potentials.
The time evolution is governed by the Schrodinger equation

iatWN,t = HNlﬂN,t- (1-2)

For = 0 (mean-field regime), the solution of (1.2) can be approximated by products
of solutions of the Hartree equation

i = — Ag; + (V x |(pt|2) @
with initial data g9 € L?(R?). See, for example, [1-5,10,16,20-22,25,26,34]. For
0 < B < 1, on the other hand, the solution ¥y ; of (1.2) can be approximated by the
nonlinear Schrodinger equation
10ipr = — Apy + o9y (1.3)
witho = V\(O) if 8 < land o = 8may if B = 1 (Gross—Pitaevskii regime). Hereafter,

ag denotes the scattering length associated with the potential V defined through the
solution of the zero-energy scattering equation

[—A—F%V}fzo (1.4)

with boundary condition f(x) — 1 as |x| — oo. Then, outside the support of V, the
solution f is given through

Sx)=1=ap/|x|, (1.5)

where ay is defined as the scattering length of the potential V. In [17-19], it is shown
that if the one-particle reduced density yx associated with ¥y satisfies

YN = 190) (@0l

in the trace norm topology and

(Yn, Hvyn) < CN, (1.6)
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then the one-particle reduced density yx ; associated with the solution ¥n ; of (1.2)
obeys

YNt = o) {orl (1.7)

where ¢; denotes the solution of (1.3). In fact, in [17] considering the case 8 < 1, the
energy condition (1.6) on the initial data is not needed. For more results in the Gross—
Pitaevskii regime, see [7,12,15,30,31]. An overview on the derivation of the nonlinear
Schrodinger equation from many-body quantum dynamics is given in [8,23,33].

1.1 Norm approximation

Besides the convergence of the one-particle reduced density yn ; associated with Y ;,
the norm approximation of vy ; has been studied for different settings of 8 € (0, 1) in
[11,24,28,29]. Our result is based on the norm approximation obtained in [11] covering
B < 1 whose ideas we explain in the following.

Truncated Fock space. As first step toward the norm approximation in [11], the con-
tribution of the Bose—Einstein condensate is factored out. This is realized through the
unitary %y, : Ly (R3) — ﬂfgv - It maps the N-particle sector of the bosonic
Fock space ’

7=PL, <R3")

n>0

into the truncated Fock space

s

g=<N
JJ-(/’N ' @ Ll(PN/ < )

defined over the orthogonal complement L2 (R3) of the subspace of L?(R?)
spanned by the condensate wave function goN ‘- Th1s unitary has first been used in
[27] in the mean-field regime. Its definition is based on the observation that every
YN € L?(Rm ) has a unique decomposition

xﬁN—Za(")@) oN.

n=0
where ™ e Lim (R*)®s" foralln =1, ..., N. Then,
Upy ,WN = (@, @ . a™),
This unitary satisfies the following properties proven in [27]
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Uyy @™ (on,Dalon Uy, = N — No(0)
Uy ,a* (NN U, , =N — Ny (Da(f)
Uy ,a*(Halon DU, , = a*(F)YN — A (6)
Uy " (Na QU = a*(f)alg) (1.8)

forall f, g € L? Lo (R3). Here a*(f), a(f) denote the standard creation and annihi-
lation operators on the bosonic Fock space .7 . On the truncated Fock space, we define
modified creation and annihilation operators

N — N, N — N,
b*(f)=a*(f>,/T+(’), b(f>=,/T+(”a<f). (19)

The modified creation operator b*(f) excites one particle from the condensate into
its complement, while b( f) annihilates an excitation into the condensate. We define
the vector &y ; := %,y , VN, representing the fluctuation outside the condensate and
observe

iBZSN), = D‘ZNJ EN,T» with g}\l’; = %(PNtHN%(;;V_, + (iat%(pNYt) %* (110)

PNt
with initial data &y .0 = %y YN .0-

From the truncated Fock space to the bosonic Fock space. We approximate the gen-
erator £ ; acting on the truncated Fock space only with a modified generator Ly ;
defined on the whole bosonic Fock space. We consider regimes with a small number
of excitations .44 (¢). For this reason, we realize the approximation of .y , through

XN ; by replacing /N — A, (1) with /NG y; (N (t)/N), where

M

. 2n)! n
Gu(7) := ,; 241 —2n)"

is the Mth Taylor polynom of /1 — t expanded at the point 7y = 0. For a precise
definition, see [11, eq. (54)].

Correlation structure through Bogoliubov transformation. In the intermediate regime,
correlations are important (at least if § > 1/2). For their implementation, we consider
for fixed £ > 0 the ground state of the scattering equation

1
[ A+ﬁVN] N =AnfN (1.11)

with Neumann boundary conditions on the ball By (0). We fix fy(x) = 1forall |x| = ¢
and extend fy to R3 by setting fy(x) = 1 for all [x| > £.
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In [10], the nonlinear Schrodinger equation (1.3) is replaced by the N-dependent
Hartree equation

idron: = — Apn .t + (Vi fv * lon o 1))on 1 (1.12)

with initial data ¢n 0 = ¢o (the condensate wave function at time ¢ = 0) to approx-
imate the time evolved condensate wave function. The well-posedness of (1.12) is
shown in [10, Appendix B].

The correlation structure is implemented through the Bogoliubov transformation

1
Ty =exp (5 / dxdy [nN,,(x, y)axay — hc]) , (1.13)
where 1y ; denotes the Hilbert—-Schmidt operator with integral kernel

N (x5 ) = — (@ne ® v Non (x — Yoy, ((x +)/2).

Here, oy = 1 — fn and ¢y, are as defined in (1.11) resp. (1.12) and gy s = 1 —
lon 1) (N :|. The Bogoliubov transformation acts on the creation and annihilation
operators as

Ty a(f)Ty , = a(cosh,y ,(f)) +a* (sinh,,, f))
Ty a*(f)Ty, =a (coshnNyz(f)) +a (sinh,,Nw[ (7)) (1.14)

for all f € L*(R%). The operators sinh;,, , and cosh,,, , are defined through the
absolutely convergent series of products of the operator ny ;

1 _ . 1 _
coshy , = 2(:) w (UN,rT’/N,z)n . sinhy, = Zo m (TIN,tUN,t)n NN,z
n> nz

(1.15)
Let 9y ; be the generator given through
Gy = ((8,Tn.) T, + Tn s L T - (1.16)

In fact, the special choice of (1.11) and (1.12) allows crucial cancellations in the
generator ¢y ;. Note that ¥y ; consists of terms which are quadratic in creation and
annihilation operators and of terms of higher order. Nevertheless, in [11, Lemma 5],
it is shown that ¢y ; can be approximated through the generator %, y ; containing
quadratic terms only.

Limiting quadratic dynamics. We are interested in the limit N — oo of % y ; defined

in (1.16). In order to replace the Bogoliubov transformation 7 ; defined in (1.13)
with a limiting one, we define the limiting kernel wo, of wy through
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2148 S.Rademacher

w=2(L_ 3, i (1.17)
Woo(X) = — | — — — + — .
o 87 | x| 2¢ ' 363

for |x| < £ and wso(x) = O otherwise. Here, we used the notation bg = f dx V(x).

Furthermore, the solution ¢y ; of the modified Hartree equation (1.12) with initial
data ¢y € H*(R?) can be approximated with the solution ¢; of (1.3) with o = V(O)
and with initial data ¢y. To be more precise, [10, Proposition B.1] shows that there
exists a constant C > 0 (depending on ||¢p|| z4) such that

lor — onill2 < CN7Y exp (Cexp (Clt])) (1.18)

with y = min{f, 1 — B}. Standard arguments (see, for example, [ 10, Proposition B.1])
imply that there exists a constant C > 0 such that

ol = €, llgrlloe < Cexp(CleD)),  llgrllan < Cexp(Clt])) (1.19)
for all n € N. The approximations (1.17) and (1.18) lead to a limiting kernel
(5 Y) = = (@ ® @) woo(x = Y7 ((x +3)/2). (1.20)

We define the limiting Bogoliubov transformation

T, = exp (% / dxdy [n,(x, y)axay — hc]) . (1.21)

In fact, (1.17) and (1.18) yield that there exists a constant C > 0 such that
Iy —nella < CNTV exp (Cexp (Clt])) (1.22)
where y = min{g, 1 — B}.
In order to define the limiting dynamics, we introduce some more notation. We use

the shorthand notation j,(-) = j(-, x) for any j € L%(R? x R3). Furthermore, we
decompose sh,, = n; +1;, ch,, =1+ p, and

(X5 ) = — woo(x — Y)P2((x + ¥)/2) 4 e (x5 ¥) = ke (x5 ¥) + pe (x5 y)

forall x, y € R3.

A slight modification of the arguments in [10, Appendix C] shows some properties
of the kernels. For these, we consider initial data o9 € H 4(R3) of (1.3). There exist a
constant C > 0 (depending only on ||¢p|| H4(R3) and on V') such that on the one hand

llchy I < €, and [k l2, lInell2, lshy ll2, P ll2, lIrell2, lliell < €, (1.23)
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where || - || denotes the operator norm. On the other hand, denoting with Vik; and
Vi k; the operator with the kernel V,k;(x; y)

[8:m]l2 < CeCMMl, max {SUP/dz |Vike (x; 2)1, supfdz IVike(z; y)|} <C.
X y
(1.24)

Furthermore, let A1, resp. Aar, be the operator having the kernel A,r,(x; y) resp.
Ayri(x;y), thenforalli =1, 2

I Aitellas 1A, l12, 1 Ailla < CeClil. (1.25)

In order to simplify notation, we write in the following sh,, = sh, ch,, = ch resp.
;=1 k =k, p,=p.

Definition 1 We define the limiting dynamics 7 (t; s) satisfying
i10:;2(t;8) =% ()U(t;s) and ZH(s;s) =1 (1.26)
where %, ; is given by
Gy = (T T + 95, + 95" + 92, (1.27)

with

9, =0 [ dx 0,00 [a”ehnlatehy) + aGhy)aGsh,)
+a*(chy)a*(shy) + a(chy)a(shy)]
+ f dxdy K1,(x; y) [a*(chy)a(chy) + a*(shy)a(shy)
+a*(chy)a*(shy) + a(chy)a(shy)]
+ / dxdy Ko, (x; y) [a*(chy)a(shy) 4+ a*(chy)a(sh,)
+a*(chy)a*(chy) + a(shy)a(shy) + h.c.]

1
+3 [ 1971B a*@naten) = 2a*allePen) + hc. |

4
- Z%ﬁ’@ (1.28)
i=1

and

3bo

@t = 29
20T 8n 3

/dxdy X (x =yl <097 (x + y)/Daia} + h.c. (1.29)
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2150 S.Rademacher

and

gi{_jfz_/dx [a;a(_AxPx)+a*(_AxPx)a(Chx)+a*(kx)a(_Axrx)
+a*(Viko)a(Viky) + a* (= Axry)a(ry) ]
4 f dr [afa* (= Agpy) +ala* (= Ayro) +a* (= Axpy)a*(shy)

+a(—=Axry)ax + a(—Axpux)ax
+ a(shy)a(—Axp,) + a*(_Axrx)a(kx ]

/dxdy Woo (X = Ve ((x +¥)/2) Agr((x + y)/2)aiay + h.c.

/dxdy Woo (X = V)V ((x +)/2) - Vo (x +y)/2)aiay + h.c.
(1.30)

Here, we used the notatlon% fdx ai (—Ay)acand Ky, = q,K] +qrand Ko ; =
(gr ® q1) K 2.+ Where K 1,; is the operator Wlth integral kernel

Kii(x,y) = bogr ()3 (x — y)gr (1)
and K> is the function given through
Kai(x, y) = bogi ()3 (x — )i ().
Note that (1.19) implies K1 ;, K2 ; € L% (R%) N L2(R®) with norms uniform in N.
Norm approximation. We consider the solution ¥ ; of the Schrodinger equation (1.2)

with initial data ¥y ,0 = Uy, 1=N Ty (2. It is proven in [11, Theorem 2] that for all
o <min{8/2, (1 — B)/2} there ex1sts a constant C > 0 such that

| Uy U — 7 I NOTE 75(1: 002> < CN~ exp(C exp(Cle]))  (131)
for all N sufficiently large and all # € R.
1.2 Bogoliubov transformation
The limiting dynamics % (t; s) defined in (1.26) is quadratic in creation and anni-

hilation operators. As the following proposition shows, it gives rise to a Bogoliubov
transformation defined in the following. For this, we first define

A(f, ) =a* (f)+a(@ for f,geL2<R3>. (1.32)
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On the one hand,
AL =A@ T)+A(F(f.9) with 7 = (3 g) (1.33)

Here, J : L? (]R3) — L? (R3) denotes the anti-linear operator defined by Jf =
f forall f e L? (R3). On the other hand, the commutation relations imply for
fii f2 81,82 € LP(RY)

[A(fi.80), A% (f2. 8] =((f1, 81, S(f2. 82)) 2 (®3)@L2(®3) With S:<(1) _01)
(1.34)

Definition 2 A Bogoliubov transformation is a linear map v : L? (]R3) ® L> (R3) —
L? (R®) @ L? (R?) preserving the relations (1.33) and (1.34), i.e. v*Sv = S and
Fv=v 7.

It turns out that a Bogoliubov transformation v is of the form
b= u JviJ
\V JuJ
for linear operators U, V : L? (R3) — L? (]R3) satisfying U*U — V*V = 1 and

u*Jjvjy—-v*JuJ =0.
The following proposition is proven in Sect. 2.2.

Proposition 1 Let 74 (t; s) be the dynamics defined in (1.27). For everyt, s € R, there
exists a bounded linear map

O@;5) =L R) & L*(R’) > L*(R%) & L*(RY),
such that
Uy (t; )A(f, ) (t; s) = A(O(t; 5)(f, 8))
forall f,g € L*>(R?). The map O(t; s) satisfies
Ot;s) F = 70O(t;s), S=0(;5"SO(t;s), (1.35)

where ¢ and S are defined in (1.33) resp. (1.34). The Bogoliubov transformation
O (t; s) can be written as

S _[Us) V(s s)d
o = (V(t;s) JU(t;s)J)
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2152 S.Rademacher

for bounded linear maps U (t; s), V(t; s) : L2(R3) — L2(R3) satisfying

Us(t; )U(t;8) = V@, )Vt s)=1, U@ s)JV(t; )T =V, 5)JU(t;s)J.
(1.36)

1.3 Central limit theorem

From a probabilistic point of view, (1.7) implies a law of large numbers, in the sense
that for a one-particle self-adjoint operator O on L?(RR3) and for every § > 0

N

. 1

Jim Py, 2(0“) (i, 001))| > 8 | =0. (137)
j=

Here O denotes the operator on L?(R3") acting as O on the jth particle and as
identity elsewhere. The proof of (1.37) follows from Markov’s inequality (see [13]).
As a next step, we are interested in a central limit theorem. For this, we consider the
rescaled random variable

N
> (09 =t Ogwa)). (1.38)

j=l1

ﬁN,t =

Els

where ¢y ; denotes the solution of (1.12) with initial data ¢ 0 = ¢o.

We consider initial data ¥y o of the form Yn o = 94;(‘)]15N T;\;,O‘Q exhibiting Bose—
Einstein condensation [11, Theorem 3]. As a consequence, such a initial data satisfy a
law of large numbers in the sense of (1.37). Moreover, such initial data obeys a central
limit theorem in the sense that

Pyyo (Ono € la; b]) = P(Go € [a,b]) as N — oo (1.39)

for every —oo < a < b < oo. Here, Gy denotes the centered Gaussian random
variable with variance ||og ||%, where

oo = sinhy, go O o + cosh;; go O o (1.40)

following from Theorem 1 for time r = 0.

Note that initial data of the form y¥n o = ?/w”(‘)]lfN Ty 052 describe approximate
ground states of trapped systems [9]. In experiments, such initial data are prepared by
trapping particles through external fields and by cooling them down to extremely low
temperatures so that the system essentially relaxes to its ground state.

The validity of a central limit theorem for the ground state of trapped systems has
already been addressed in [32]. To be more precise, [32] considers the ground state
of (1.1) for B = 1, i.e. in the Gross—Pitaevskii regime. The ground state is known
to exhibit Bose—FEinstein condensation. It is proven that the ground state satisfies a
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central limit theorem. The arguments of the proof can be adapted to the intermediate
regime B < 1 using the norm approximation for the ground state obtained in [9].

Now, we consider the time evolution of the initial data ¢y o = %(;g 1=N T;’O.Q with
respect to the Schrodinger equation (1.2) and show the validity of a (multi-variate)
central limit theorem.

Theorem 1 Let 8 € (0, 1) and assume V to be radially symmetric, smooth, compactly
supported and point-wise nonnegative. Furthermore, fix £ > 0 (independent of N ).
Let ¢, denote the solution of (1.3) and @n ;1 the solution of (1.12) both with initial data
@0 € H*(R3). Moreover, we denote by Y ¢ the solution of the Schrodinger equation
(1.2) with initial data ¥y o = %&,OHSNTITI,OQ (where %y, , and Ty o are defined
in (1.8) resp. (1.13)). For k € N, let Oy, ..., Or be bounded operators on L2(R3).
We define v; ; € L*(R3) through

vj ¢ = (U(t; 0)cosh,, +V(; 0)sinh,, ) g, 0;¢;
+ (U(t; 0) sinh,, +V (; 0) coshy, ) ¢: O ¢ (141)

where the operators U (t;0), V(¢;0) € L2(R3 x R3) are defined in Proposition 1,
qr = 1 — |@:){(@:| and n; as defined in (1.20).
Assume ¥, € C** | given through

() = Vi, vjg) for i<
o (Vs Vi) otherwise

is invertible.

Furthermore, let g1,...8x € LY(R) with g € LR, (1 + |s|)4ds) foralli €
{1,...k}andlet O y; denote the random variable (1.38) associated with O for all
jel{l,... k). Forevery o <min{f/2, (1 — B)/2}, there exists C > O such that

|E‘/f1v,z [gl(ﬁl,N,z) e gk(ﬁk,N,r)]

1k _—
e 2 ZI,./‘:I 2:i,j)‘/)‘/

1
- m/dxlu-dxk g1(x1) ... gr(xx)
T e

k
< Coxplexp(CIN T [[de o)1 (14N e N 24+ Ne )
=1

where y = min{g, (1 — B)}.

A similar result has been established in [6,13] for the mean-field regime charac-
terized through weak interaction of the particles. It is shown that fluctuations around
the nonlinear Hartree equation of bounded self-adjoint one-particle operators satisty
a (multi-variate) central limit theorem. We show that this result is true in the inter-
mediate regime, where the interaction is singular, too. In particular, the correlation
structure which becomes of importance in the intermediate regime does not affect the
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validity of a central limit theorem. However, it affects the covariance matrix (1.41)
through the Bogolioubiv transform T7;.

Similarly as in [13, Corollary 1.3 ], Theorem 1 implies a Berry—Esséen-type central
limit theorem. To be more precise, we consider a bounded self-adjoint operator O on
L2(R3) and the random variable

Onyi = (O(i) —{on.1 0§0N,z)> .

|
7R
For every « < min{g/2, (1 — 8)/2} and —oco0 < a < b < 00, there exists a constant
C > 0 such that

Pyy, (On: € la; b]) —P(G; € [a; b]) | < CN™/2, (1.42)

where G, is the centered Gaussian random variable with variance | o; ||% and o, €
L%(R3) is defined through

or=(U(t; 0) coshy, +V (t; 0) sinhy, ) g Og;+ (U (t; 0) sinhy, +V (¢; 0) coshy, ) g7 0((;)1, .43)

Note that Theorem 1 resp. (1.42) implies that fluctuations around the nonlinear
Hartree equation with singular interaction satisfy a (multi-variate) central limit theo-
rem. Comparing with o from (1.40), the fluctuations enter in the variance o; through
the operators U (t; 0), V (¢; 0) as defined in Proposition (1) and the Bogoliubov trans-
formation (1.21).

Moreover, note that the covariance matrix (1.41) resp. the variance (1.43) are com-
pletely determined by the Bogoliubov transform 7; defined in (1.21) and the quadratic
fluctuation dynamics % (¢; 0) defined in (1.27). Theorem 1 resp. the properties (1.36)
of the operators U (¢; 0), V(¢; 0) show that the solution of the Schrddinger equation
(1.2) modulo the extraction of the condensate is approximately a quasi-free state for
quasi-free initial data. This observation coincides with results in [24,28,29].

2 Proof of results

2.1 Preliminaries

The proof of Theorem 1 is based on the norm approximation (1.31) from [11]. In the
following, we collect useful properties of the unitaries used therein.

To this end, we define the more general quadratic dynamics Zgen(f; 5).

Definition 3 Let %gen(?; 5) be the dynamics satisfying

iat%gen(t§ 5) = ggen,t%gen(u s), 2.1
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where the generator Jge,, ; is of the form

Goen,t = /dx Vyia;Viay + / dxdy H,(l)(x; y)ayay
dxd H(z) * ok H(Z) 29
+ y | H7 (x, yayay + H 7 (x, y)axay | +¢ (2.2)
with
1| < ceM 5P |y < ceV 2.3)

for constants ¢, C > 0.

In the following, we prove the results for the dynamics %gen(t; s). As the next
Lemma shows, the results then apply to %5 (¢; s), too.

Lemma 1 The dynamics 7 (t; s) defined in Definition 1 is of the form of Ugen(t; s)
defined in Definition 3.

Proof By the definition (1.27) of % ;, we split
_ s * v H A
gz,[ - X = (latT}) Tl + gZ,t + (gz’t — %) + gz,l (24)

and consider each of the summands separately. First, we consider %1{; definedin (1.28),

which is again split into four terms. The first one, %A{/t’] of the r.h.s. of (1.28), satisfies
assumption (2.3) since on the one hand

Clt|
b

2 2 2 2 2 Clt
lchy, [¢:1“chy, ll2 < llg:llz < Ce lIshy, @ *shy, 12 < llg: 13 lIshy, I3 < CeCV!

and

lichy, l@i1*shy, 12 < Cllg:ll2ll@: lloolIshy, 2 < CeCll

following from (1.19) and (1.23). For the same reasons, the second term %Z/t’z of the

r.h.s. of (1.28) satisfies assumption (2.3), too. For the third term %21;3 the definition
of K> ; implies

1/2 C
1Ka.shy, 12 < llgelly/*lishy, ll2 < Ce€,

1/2
Ip; K2.shy, | < lishy, l2llp, ll2ll:[1}> < Ce€M

again from (1.19) and (1.23). The fourth term %ﬁ"‘ satisfies the assumption (2.2) due
to (1.19).
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Furthermore, a transformation of variables shows

/dxdy X(bx = y1 < 0 lgi ((c + ) /2)1*

= /dxdy x(xI < 0 lo:M* = Cllge Iy < CeCl.

Therefore, %z)tt is of form (2.2).
Moreover, for the term %{ — X, we observe with (1.23) and (1.25)

[A1pell2 < CeSM A ll2 < €€ A |2 < CeCl.

The remaining bounds follow in the same way. Note that (1.24) implies the bound

IVik;Vike]l < maX{SUP/dZ [Vik(x; 2)], SUP/dZ |Vik(z; y)l} <C.
x y

Moreover, by definition (1.17) of the limiting kernel, wso € L? (]R3) for all p < 3.
Hence, the remaining terms of %'%t/ satisfy the assumptions, too.

We are left with the first term of the r.h.s. of (2.4). We write T, = e B8 The
properties (1.14) of the Bogoliubov transformation lead to

1
& THTS =— / ds e—5B0n) (3 B(ny)) oS B
0

1
= / ds /dxdy e B (ﬁz(x; y)ayay + h.c.) S B
0

/dxdy 0 (x5 y) (a*(chx)a*(chy) + a(shx)a(shy)) +h.c.
+ fdxdy M (x; y) (a*(chy)a(shy) 4+ a*(chy)a(shy)) + h.c.
+ /dxdy 1:(x; y) shechy.

Since ||7; ]2 < Ce€!"! from (1.24), these terms satisfy assumption (2.3), too. O

As proven in [11, Proposition 8], any moments of the number of particles operator
are approximately preserved with respect to conjugation with the Bogoliubov trans-
formation T ;. To be more precise for every fixed k € N and § > 0, there exists
C > 0 such that

+ (TN,szTﬁ,, - JVk) <sH*+c. (2.5)

As the following Lemma shows, the moments of number of particles operator are
propagated in time with respect to the quadratic %gen (t; 0).
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Lemma2 Let %gen(t; s) be as defined in Definition 3 and € .#. For every k € N,
there exists a constant C > 0 such that for allt € R

(¥, %gen(t§ ) (AN + 1)k %gen(t; s)¥) <Cexp(Cexp(Clt — s])) (¥, (A + l)k V).
Proof We compute the derivative

Ay
i 2 (U D )N+ D 03570

= (V. e t:9) [Faen s, (N + DF] Zpentt: 539

k
S0 % A+ D [Gens A+ D U0 909).
i=1
Using the commutation relations and the definition (2.2), we find

i%(l//; %gtn(t; S)(JV + l)k%gen(t; V)W)

k
=2y / dxdy HP (x, y) (0, Uga 6 5) (AN + DI atali (N + D Ugen (1 5)9)
i=1

k _
+2) / dxdy H? (v, y) (0, %t )N + D agay (W + D Ugen (3. 5)9).
i=1

(2.6)

For the first term of the right-hand side, the commutation relations yield

‘ / dxdy H? (x: ) (W, g (6 ) (N + 17 alal (N + D Ugen (13 5)0)

< / dredy|H® (s | I+ DED2ZGE O 4 1) Yy (25 )|

< A+ 1D TED Ry (N + D Ugen (8 )Y
< CIHP 2 1A + D2 Ugon (63 )0 |1 < CeM (W0, U5 (15 5) (AN + DF Ugen (13 5)9),

where C depends on k € N. The second of the r.h.s. of (2.6) follows in the same way.
Hence, there exists C > 0 such that

0 Yt 9N+ D U6 99| = CEMN, D1 )N+ D 650,

Hence, the Gronwall inequality implies
(W, Ugsn (1) (N + D Ugen (13 5)Y) < Ceexp (Cexp (Clt — s) (W, (A + DFy).

O
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For f € L?>(R3), let ¢, (f) = a*(f) + a(f). In [13, Proposition 3.4], it is shown
that for every k € N and § € R, there exists a constant C > 0 such that

(v, e_is(d’”(f)""SdF(H))(JV—}—l)kei‘v('b"(f)"";dr(H))¢)§C(I/f, (N +a+ S2||f||2)k1ﬁ>
2.7

for all ¥ € . and o > 1. Hereafter, we denote dI"(H) = Z?’:l H) for a bounded

operator H on L?(R?). A similar estimate holds true for when replacing the creation
and annihilation operators a(f), a*(f) with the modified ones b*(f), b(f) defined
in (1.9). Let ¢ (f) = b*(f) + b(f). In fact, as proven in [32, Lemma 3.2], for every
k € N, there exists a constant C > 0 such that

6. (N + DF P OE) < Cle (M +atIfR) B @)

forall & € ﬁfN(t) and o > 1.

2.2 Proof of Proposition 1

It follows from Lemma 1 that it is enough to prove Proposition 1 with respect the
dynamics Zen(t; s).

First, we prove that for f € LZ(R3) the Fock space vectors gen(t 8)a* () Ugen
(t; 5)82 and gen(t 8)a(f)%gen(t; s)§2 are elements of the one-particle sector. The
following Lemma is a generalization of [14, Lemma 8.1].

Lemma 3 Let en(t; 5) be the dynamics defined Definition 3. Then forall f € L*(R),
U (15,9)a" (f) Upgen (15,.9)2 = P\ Upger (15 )a" () Ugen (15 5) 82,

where either a*(f) = a(f) or a®(f) = a*(f) and where 2| denotes the projection
onto the one-particle sector of the Fock space % .

Proof The proof follows the arguments of the proof of [14, Lemma 8.1]. For m € N,

m # 1, we define for arbitrary m-particle wave function ¢ € .% with ||/ || = 1 the
function

F(1) = Hfsﬁlp 1 (W, Ugen (13 )a(f ) Ugen (15 5)82)|
2=

+ Sup |<w gen(t s)a (f)%gen(t S)QH'
Ifl2=1

Since m # 1, we observe that F(s) = 0 and furthermore
¢ la(fre = ae M f) = a(fy),
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using the notation f; = e~/4 f. Since e ~'4' is a unitary operator, we find

F(t)y= sup (Y, U (t: )" a( e " Upgen(t: 5)2))]
Ifll2=<1

+sup (U Uea 6 906 @ (DT U 1:9)2) .
Ifl2=1

Then,

. d * . iHt —i Kt .

i (Vs Zen 6 ) (e Upen1:)2)

= (Wa %gtn(t; s) [a(ft)v ggen,t - %] %gen(t; S)Q> )
and the definition of %ey ; in (2.2) leads to
(o Gans = #] = [[aray (F0Hx59) a,
+ / dxdy (H 0 9) fi 00 + HP (0 fi(0)) a5
The assumption (2.3) implies on the one hand
1 Clt|
I1H; " filla = Cem ™ L fill2,

and on the other hand

2 2
IH2 filla < I fi 2l P 12 < CeCM ) £l

Hence,
t
(0 %967 0D Ui 12| = € [ ar e P,
0
and analogously,
t
\(w, Ugen (150 1 a* (e Ugen (1 sm)\ <C f dr “"VF(T).
0
Note that these bounds are independent of f € L?(R?). Thus,
t
0<F@) < c/ dr €l F (7).
0

Using the bounds [|@*()¥ ]l < | fll2I(.4 + 12|, we obtain

F(t) < 2N + D2 Upen(t; 5)82] < Cexp (exp(Clt — s))) (¢, (A + D).
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Here, we used Lemma 2 for the last estimate. Since F'(s) = 0, the Gronwall inequality
implies F(t) = O forallr € R. m|

Proof of Proposition 1T 'We prove the Proposition with respect to the dynamics %gen (; )
defined in Definition 3. Then, Proposition 1 follows from Lemma 1.
The proof follows the arguments of the proof of [6, Theorem 2.2]. Let &7 denote

the projection onto the k-particle sector .7 of the Fock space. It follows from Lemma
that 3

Pk Ugen (t; )a™ (f)Ugen (13 5)2 = 0, Py Upgen (t; )a™ (f) Uen (t:5)2 = 0

for all f € L2(R3) and k£ # 1. Thus, there exist linear operators U (¢; s), V(¢;5) :
L2(R?) — L%(R?) such that

Ugen (15 )™ () Ugen (13 $)2 = a™ (U (15 5) f) £2,
Ugen (t; )™ (f) Ugen (t55)2 = a* (JV (t;5) f) £2,
where J : L>(R*) — L?*(R?) denotes the anti-linear operator defined by Jf = f

forall f € L%(R3). The operators U (¢; s) and V (¢; s) are bounded in L2(R3). This
follows from Lemma 2, since

WU ) fll = la* (Ut 8) f) 21 = a*(f) Zaen (15 5)82]|
< IFI A 4+ DY2Ugen(t: )2]) < Cexplelt])

and

IV (t; ) fll = lla* (JV(t;5) f) 2 = lla(f)Xeen(t; $)82|
SN A2 Ugen (2 5)82]| < CeXN,

We define the bounded operator ® on L3R & LA(R3) through

oo (U@s) JV(Es)J
O(t’S)_<V(l§S) JU(t;s)J)'

Then
Ugen (15 VA, @) Ugen(t;5)2 = A(O(t55)(f, 8)) 2 (2.9)
for all f,g € L>(R%). For fixed y € 2(# + .#), g € L>(R%), s € R and any

bounded operator .# on .% with 4 (KX + N) C D(H + ), we define further-
more

Fo=3 s |[[%a 00D tentso @w]. 4] ]
P 2=
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Here, a®, a” are either creation or annihilation operators. Since e "4 a%(f)e! " =

a(e"® fyand |2 fllo = || f |2 for all f € L?(R?), we can write

F@) = Z sup
g 1fl=t

[[Q/* (t: $)e i G2 (e Oy (11 5), ab(h)], ///] 1//H

gen
The commutation relations imply that F'(s) = 0. Furthermore,

i [t 67 9 (D B0, @ )], ]

gen

- [[%g’gn(r;s) [(%gw —yzf),e*"f<’*~‘>aﬁ(f)e"9‘/<’*~‘>] Wgen (11 5). a“(h)], ///] "
= [[ %t 9) [ Geens = 5, €2 )| Unta: ), @), ] 0,

using the notation f, = e 4! f. Analogous calculations as in the proof of Lemma 3
show that

[(Geens — ), a*(f)] = a(hy ) + a*(hay).

The assumption (2.3) implies [|/; ;|2 < Ce€l|| f|l2 fori = 1, 2. Thus,
t
|[#n 96 Bntti o). @ (0)] ] w] < € [ ar e F
forall f € L?(R?) and therefore
t
0<F(r) < c/ dr Il F (7).

0

Since F(s) = 0, the Gronwall inequality implies F'(#) = 0 for all # € R. Hence,

([0 DA 1) Uaen(t: ), Al )|, ] =0 @210)

for every f1, f2, h1, ha € LQ(R3 ) and every bounded operator .Z on the Fock space
Z suchthat # 9 (H + N) C P (H + ). We claim that

(v [ %en 6 DA ) (0390, A2 )] W)
= (2. [#a A M Une9). AR | 2) @1
forall v € I (& + &) with ||| = 1. Combining (2.9) with (2.11), we find

(V. [%en (t: ) ACf1, h) Ugen (15 9), A(f2. h2) | W)
= (2, [A@: ) (fi.h) . A(fr. )] 2)
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= (O; 5)(f1, h1), S(f2, h2)) 1212

where S is defined in 1.34. It follows that
| %t DAL I Upen(t:5) = A©(fr b)) Al )] =0, 212)
for all f1, k1, f>, hy € L>(R?). Consider now
R = Upgen (13 )A(f1, h1) Ugen (15 5) — A (O(f1, h1)) .

On the one hand, (2.9) shows that R{2 = 0, and on the other hand, it follows from
(2.12), that R commutes with any creation and annihilation operator. Since states of
the form a*(f1) . ..a*(f,,)$2 build a basis of the Fock space .7, we conclude

Upgen (t; YAS , 1) Ugen (t55) = A (O(t; ) (f, 1)

forall f,g € L>(R?).
Now, we are left with proving (2.11). For this, note that (2.10) implies

[[#ntt: 9 A M) Zen(0: ). A )] Py ]
= [ %t AU ) Zgen(139), A2 h) |, Pa| =0,

where Py, resp. Pg denote the projection on the subspace of .% spanned by v resp.
§2. Therefore, on the one hand

(v [ %n(t: AU 1) Uen(039), A2 1) | 2)
= (. [ %06 DAL 1) Y (1:9), AS2, 1) | Py 2)
= (v [t DA B Zgen(0:9), A D] W) (0, 2).
and on the other hand,
(0 [ %t ) A 1) Un(0:9), A2 1) | 2)
= (0, 2) (2. [ %6 ) AU 1) Upen139), AS2, )| 2).

Assuming that (, §2) # 0, claim (2.11) follows. If (¢, £2) = 0, we repeat the same
arguments with ¢ = %(W + £2). This leads to (2.11).

It remains to prove the properties (1.35). Since for all f, g € L2(R3)

A@ @) ) = (Ut DAL D Ugen(t:5) )
= Upen 15 AL 1) Uen(155)

gen
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= %gtn(t; AW S, Jh) Ugen(t5 5)
=A@ s)(Jf, Jh),

the first property follows. Furthermore, from

[A© @ 9)(fi. ). A $)(f2. h2))]
= [Uen 0 )AL D) Ugen 15.5), U () A2, DU (835) |
= Ugen 1 ) LA ). Af20 1)) Zen 53 5)
= ((f1, h1), S(f2, h2)),

we deduce the second property. O

2.3 Proof of Theorem 1
The proof uses ideas introduced in [32]. We consider the expectation value

Ell’zv,z [gl(ﬁl,N,t) cee gk(ﬁk,N,t)]
= (Yn,, gl(ﬁl,N,t) .- ~gk(ﬁk,N,t)‘1/N,t>

= /dsl coodsg gi(st) .. gr(sk) (YN, eOING eiskﬁk-N”WN,,).

The norm approximation (1.31) from [11] implies that for every ¢ < min{8/2, (1 —
B)/2} there exists C > 0 such that

Eyy, [81(O1N.0) - 8k (O n0) ]

— /dsl ...odsg §1(S1) .. -/g\k(sk)

< AU, Ty (002, 100N SO TE 0 (1;0)82)

PNt
k
<CN I8 (2.13)
j=1

We are hence left with computing the expectation value

(U, Th (0082, e100N0 | %ONagyx T 97t 0)82).

PNt
We split this computation in several Lemmata.

Lemma4 (Action of the unitary %, ,) Let Ty ; and 7(t; 0) be as defined in (1.13)
resp. (1.26). Moreover, let £y s = T;\},t%z(t; 0)$2. Then, using the same notations as
in Theorem 1, there exists C > 0 such that
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'%N,tsw,t, N Oy, Ey )

— (N, ois196(an.i Oron.s) .ei3k¢b(QN,t0k<PN,t)€:N’Z)

k k
C
<— > lsallOnl | 14+ > 5710517
Nm:l j=m

Proof We recall that for f € L*(R3) we denote ¢p(f) = b*(f) + b(f) with the
modified creation and annihilation operators b*( f), b(f) defined in (1.9).
In order to show Lemma 4, we define for j € {1, ..., k}

~

Ojn:=0;—{on:, OjoN1)-

We observe that

1 ~
OiNi=—=[d" (gn.1OjN.1an.) + AT (PN Ojan) + AT (qn . Ojpn.e)]

VN

where py; = lon.){¢n | and gy = 1 — py;. The properties (1.8) of the unitary
Uy, imply

1 ~
U, O N1 Uy, = —ﬁdf (qn.:OjN.an.) + &b (an.cOjon ) -

Hence,
is1 O isy O
<%¢N‘1$N,tv e 1Y1,Nt e k k’N.t%‘/)N,IENJ)

k ~
— <$N,t» 1_[ elsj(mdr(QN,t0;,N,ﬂ1N,t)+¢h(‘1N,tOJSON,t))sN,t>'
Jj=1

We compute

%% isk O
<%WNJENJ’ eSIOLN  iSk k,N,t%{pN’téN’t)

—(Ens ois106(an.i Oron.1) _ei5k¢b(QN.t0k(ﬂN.t)£:N’t)

k m—1 . ~

_ <EN l_[ e”j(ﬁdr(lm,tOj,N.t‘JN,t)-HPb(l]N,rOjSONA,z))

- o
m=1 j=1

% <el'5m<\/Iﬁdr(qN.t5m,N,IqN,t)+¢h(qN.tOm‘pN.I‘)) _ ei5:n¢b(QN,t0m(ﬂN,t)>

k
x 1_[ ei5j¢b(¢1N,tOj§0N,t)éN’l>.

Jj=m+1
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Using the fundamental theorem of calculus, we can write the difference as an integral

is10 i sk O
(%‘/)N,thst’ eSIOLNG oISk k,N.z%(pNJéNﬂ

_ <‘;§N,17 eiSlde(qN,rOle,r) B .ei3k¢h(f1N,r0k§0N,r)§N’t>

1 k /S))l < m—1 . ( 1 dF( 5 )+¢ ( 0; ))
— Z dr é,-:N,ta 1_[ €lS] N gN,tUj N 14Nt b\ 4Nt UjON ¢
VN )0 j=1

% ei7<ﬁdr(qN,t5m,N,t‘1N,t)+¢’b((IN,tOm‘ﬂN,t)) dr (qN,tam,N,th,t)

k
el (1=D (4N 1 Omen 1) 1_[ ei5j¢b(QN‘10j(ﬂN,1)%-N’t>.
j=m+1

The estimate ||dI"(A)y || < ||A|| ||/ ¥ || leads to

510 i sk O]
‘<%¢N,;$N,t7 eS1OLN: oISk k,N,t%(pNYZEN,t)

— N eis196(ansOtony) el’Sk%(QN,rOk(ﬂN,:)EN ;)

k
1 '/‘Sm ~
< — E dz lgn . Om N .1qn ¢
VN ;= Jo "

k
x t/‘/el'(l—'l')¢h(qN,tOm‘ﬁN.t) 1_[ ei‘vjd)h(qN’[Oj(pN’[)éN,;
Jj=m+1

since gy .1 Om,n.1qn .|l < Ol and gy 0o sl < 10, we find with (2.8)

is1 O i sk O]
‘(%goN,t‘i:N,tv SIOLN sk k’N'I%QON,tSN,l)

—(EN o518 (aniO1ons) ei5k¢b(¢IN,10k‘ﬂN,t)%-N z)‘

k k
1 Sm
STZ||Om||/ dr || A4A=D0nlP+ Y 571017+ | én,
Nm:l 0 j=m+1

fora > 1. Recall that &y, = Tﬁ,x%Z (t; 0)£2. It follows from (2.5) and Lemma 2 that

(Ene, NPEN) < C
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for a constant C > 0 uniform in N. Hence,

is10 isk O]
‘( on i EN s €TTINE TN G EN )

— (€Nt eis19s(an.iOrons) 'eiskqbb(QN,tOk‘ﬂN,t)%-N’t)
C k k
<— > lsallOnll | 14+ 5710517
Wm:l j=m

m}

Lemma5 ( Replace modified creation and annihilation operators with standard ones)
Let Ty and 24(t; 0) be as defined in (1.13) resp. (1.26). Moreover, let &, =
Tlﬁ’ t%z (t;0)82. Then, with the same notations as in Theorem 1, there exists C > 0
such that

’(%-N,h eis196(an.i Oron.s) .eiskqbb(QN,lOk(/’N‘l)EN’t)

—(Eyy, e19a(aNO1eN) | piskba(ana Okena) gy )

32

ZIG

k k
Z||0m|||sm| 1+ > sll0

j=m
Proof Recall that

ba(f) =a*(f) +a(f)

with the standard creation and annihilation operators a*(f), a(f), while

op(f) =b*(f) +b(f)

with the modified creation and annihilation operators defined in (1.9). To this end, we
compute

G eis1p(an i O1on ) eixkfﬁh(‘IN.tOk(ﬁN.t)éN’l)
— (Ens £i51%a (an,: 019N 1) oSk a ((IN.t0k<ﬂN.t)§]2/1’)t>

m—1

= Z<§Nt 1_[ e”/¢h(QN/0/(.0Nt)

e (e”m(bb(qN.tOmWN.t) _ 615m¢z¢(qN,t0mWN.t)>
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k
x 1_[ &!5i%a (CIN,tOj(ﬂN,t)SN)t>

Jj=m+1
k Sm m—1
— Z/ dr <€N,t’ 1_[ eisj¢b(CIN,z0j<ﬂN,r)eiT¢b(4N‘10m<ﬂN,1)
m=179 =1

X ((bb (qN,t0m¢N,t) — Pa (QN,t0m¢N,t))

k
Xei(l_‘f)(lba(QN,zOm(ﬂN,t) l_[ eiSj¢a(qN,,Oj(pN,,)%.N’t>'
j=m+1

By definition of the modified creation and annihilation operators (1.9), we obtain

(En s o196 (an.sOrons) isk‘f’b(qN,tok‘/’N,t)%'N )
P £}

— (&n. oi519a(an i O1on ) isk¢n(‘1N,t0k(/)N,t)‘;;:N ;)
k m—1

= Z/ dr 51&/1)17 l_[eisjtbh(qzv,tOjsazv.t)eiwh(qzv.tOmsaN.t)
=1 =1

a* (qn. Omon..) (,/1 ~ /N — 1)

k
x ¢! 1=0)%a(qn.: Omen 1) l_[ ei%ia(ani0jena) gy )

j=m+1
+ Z / dr v, 1_[ 15190 (aN.1 09N 1) piTd6 (N OmoN.1)
j=1
X ( 1— A /N — l)a (QN,IOm(pN,t)
k
% el 1=0a(an .1 Onmen.1) 1‘[ eSi%aan . Ojon) gy .
j=m+1

Since [[a*(HEN < Ifll2 IV + DV2E| resp. la(HEN < I fll2 .41/2€] and
lgn.: Omonill2 < |Omll, we find

‘@N . o190 (an. Oron.) 'eiskdjb(QN.tOk‘ﬂN.t)gN ;)

— N ois10a(an. Oron) ei-Yk¢a(QN,r0k(PN<r)€:N ;)

k
32 |Om ”/ dr H(/V_|_1)3/2 i(1=7)¢a (N .1 Om9N.1) l_[ elS,cba(quO/wNz);;-N I.
N

m=1 Jj=m+1
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Now, Lemma 2 together with (2.7) and (2.5) implies

G ei5106(an.1 O10n.1) .ei5k¢b(‘1N,t0klﬂN,t)§N’t)

— (En 1, oi510a(an.i Oron.s) .eisk¢a(QN‘10k<PN‘1)%~N )

32

k k
C
=< Z 1Omllswl | 14+ 57105l

j=m
O

Lemma 6 (Replace modified Hartree equation with nonlinear Schrodinger equation)
Let Ty, and 24(t; 0) be as defined in (1.13) resp. (1.26). Moreover, let &En,; =
T;{,/Z/z (t; 0)82. Then, with the same notations as in Theorem 1, there exists C > 0
such that

(En.ts ei81¢a(qN,t01§0N,t) o eisk(Pa((IN,tOk(pN,t)gN’t)

_ (5;;1‘),, £i519a(q: O11) _,eisk(p”(q'Ok(pt)E’(\’l’)t)‘

1/2
k k
SCNT Y sml 10mll | 14+ Y sT10,17 | exp(exp (CleD)) .
m=1 j=m

Proof By linearity of the operator ¢, (f), we compute

En 1, oi519a(an. O1on.s) .ei3k¢a(4N,t0k¢N,t)€N ;)
— (En s e!$19a(q: O19) el’Skfba(QzOk(ot)é;N 0

m—1

k
— i5j¢a(qN,r0j¢7N,r) ismfpa("IN,tOm(PN,t) _ iSmPa(qr Omepr)
Nt e e e
m=1

j=1

k
X 1_[ ei5j¢a(qN.t0j(PN,r)%'N’t>

j=m+1

m—1

Ko g
— Zf dr <$N,t’ l_[ oi5i®a(an . 0jon.1)
m=1 0

j=1
X eif¢a(4N,tOm<ﬂN,t)¢a (QN tOm(PN PR Om(Pt) ei(l—f)¢a((h Omer)

k
> 1_[ ei-“j¢a(¢1N.tO_j‘ﬂN,t)%-N’l>.

Jj=m+1
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As

lgn,:Omen.t — @i Om@ellz < 110wl (llgne — qill2 + llon.e — @ill2)
< 2| Omlillon.c — @xlls

the estimate (1.18) implies
lgn .t Omon.t — Gr Om@ill2 < Cl|On||[N"7 exp (exp (C|t]))

with y = min{8, 1 — $}. Hence, the bound

Iga (W <201 Fll2 | (A + D2y

leads to

(En.s, 5194 (AN 019N ) Liska (qN.tOkwN.t)sNﬂ

— (Nt £i519a(q: Orer) eisk(ba(qtok(ﬂt)éth)‘

k Sm
< CN expexp(Cle) Y- 101 [ e

m=1
k
x | (AN + 1)1/2 & 1=0¢a(qr Omer) l_[ eisj(pa(‘]N,rOj(ﬂN,r)EN’t”.
j=m+1

We conclude again with Lemma (2.7), Lemma (2.5), and Lemma 2

(En 1 oi510a (AN 019N 1) piskda (‘IN,tOk(PN,t)é-N ;)

— (E](\Il’)ta eis1¢a(qf Olwt) e eiSkd)a(qt Ok(pt)gli/l?t)‘
172

k k
<CNT DY sl 10l | 14D sT10;17 | exp(exp (Cle])) .

m=1 j=m
(]

Lemma 7 (Action of Ty ;) Let Tn ; and 2 (t; 0) be as defined in (1.13) resp. (1.26).
Moreover, let £y, = T;\},t%z(t; 0)2 and & = Tn Nt = Y1 S2. Then, using the
same notations as in Theorem 1, there exists C > 0 such that
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‘(EN . ei$19a(@ 0191) ei5k¢a(lit0k¢7t)§-N ) — (&, eis1¢a(hie) ei5k¢a(hk,t)$t>

1/2
k k
<CNT Y sl Onll | 14 Y s710,17 | exp(exp (Cl)).

m=1 j=m
with hj ; = cosh(1,)q: O¢; + sinh(1,)q; O ¢, and n; as defined in (1.20).
Proof We compute using the properties (1.14) of the Bogoliubov transformation
Ty 9a (9 0jpr) Tn.i = da (cosh(ny 1)q: O; + sinh(in.)q: O r) .

withny ; as defined in (1.20). In the following, we denote /1 j y ; = cosh(ny /)q; O @;+
sinh(nn,/)q: O j¢;. Since

(En g, 519a@O10)  pisiba(@iOkogy ) — (g, ¢i19a(ing)  piskba(hens)g,y

we need to consider

(&, eis10a(hing) .ei5k¢a(hk,N,t)%-t) — (&, ois19a(hie) .ei5k¢a(hk,r)§t>.
We observe using (1.24)

Ijne = hjell2 < 110w (Il cosh(n,) — cosh(nw,)ll2 + |l sinh (1) — sinh(n «2)
< 2(|Onll cosh((nn, + n:)/2) sinh((n,r — 10)/2)1I2
+ 2[|On |l sinh((qn,¢ + 1:)/2) sinh((n,r — 1:)/2) 12
< CllOmlllnn.: = nell2-

Thus, the estimate (1.22) leads to
lhjne—hjilla <CNYexp(exp(Clt])).
Using ||k (ll2 < C|lOj |, the same arguments as in step 3 lead to
‘(EN,t’ £i519a(@O191) el’Sk(ba(tIrOk%)sN,t) — (&, eintba(hl,z) o eiSkt/)a(hk.z)st)

1/2

k k
<CNT Y sull Onll [ 14 ) 571017 | exp(exp (Cl0)).

m=1 j=m
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Lemma 8 (Computing the expectation value) Let 7> (t; 0) be as defined in (1.26). Let
& = U182 Then, using the same notations as in Theorem 1,

(&, eislqba(hl,t) o eisklﬁa(hk,r)é‘t)

1 k -1
k(g e 2 D=t FOL

1
— —/d)q oodxg gi(xy).
(2m)k det %,

Proof Since & = 7,52, we are left with computing

(&, ois10a(hie) ei5k¢a(hk,t)%-t> — (02, 02/2*lei51¢a(hl,t) . ei5k¢a(hk,t)02/2’[9)‘
(2.14)

As proven in Proposition 1, the unitary %5 ; gives rise to a Bogoliubov transformation.
Hence, there exists bounded operators U (¢; 0), V(¢; 0) on L?(R?) such that

U sba (1) s = da (U Oy + VOO ).
In the following, we denote

Vi =UE:0hj; + V(¢ 0hj,
- (U(t; 0) cosh 7, + V(z; 0) sinh n,) 3:0;0;

+ (U(t; 0) sinh 7, + V(z; 0) cosh n,) 200,

Note that the Baker—Campbell-Hausdorff formula implies on the one hand

oi%a() ida(®) _ ida(f+8) ,~ilm(f,g)

for f, g € L>(R%), i.e.,

k k
l_[ elSita(jn) — pida(vr) l_[ e isisiIm{vi v )
j=1 i<j

with v; = ZI;-=1 Vj . On the other hand, the Baker-Campbell-Hausdorff formula
applied to the creation and annihilation operator implies

k k
[Tt = e~ vi13/2 pa* ) ya(v) [esoitmbevia,
j=1 i<j
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Hence, we write the expectation value (2.14) as

k
(&, elPalhny ei5k¢a(hk.t)§l> — e—l\wl\% 1_[ e_iAYi~VjIm(Ui,thj,t>(Q’ ea*(vt)ea(vt)9>
i<j
k
— e lul3 1—[ o isisjIm (v, vj)
i<j

Let ¥, € CFK be given through

Vit Vi), i i<
(X ;=
i '
o/ (vji,vis), otherwise

then

(&, eS1¢aliny) ei5k¢a(hk.t)§t) — e—% Zf,j:](zt)i.jsisj.

By assumption, the matrix ¥; is invertible. Hence,

/ dsy...dsg Q1(s1) ... Qu(se) (&, e 19amn) - pisidalhin) g,y
L vk
N / dsp ... dsg B1(s1) ... Bilsy) e 2 =1 Figsis)
1 _Llyk ey
= Jonkdets, / dxy...dxg g1(x1) ... gk(xx) e 2 L= (B0 i

Vv Qm)k det &,

Summarizing the results from Lemmas 4-8, we finally obtain

‘]EWN,; [81(O1N.0) - - 8Ok nr)]

1 vk 1.
g g1(x1) . i (ag) @2 b=t i

1 /d
—— [ dx;.
vV @2m)k det Ty

< CN 77 exp(C exp(C|t]))

k
x ]"[/dr@(rn (141221012 + N7 212 P01 + N T e 0,14)
j=1

with y = min{8, 1 — B}. This proves Theorem 1.
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