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Abstract
We consider a system of N bosons in the limit N → ∞, interacting through singular
potentials. For initial data exhibiting Bose–Einstein condensation, the many-body
time evolution is well approximated through a quadratic fluctuation dynamics around
a cubic nonlinear Schrödinger equation of the condensate wave function. We show
that these fluctuations satisfy a (multi-variate) central limit theorem.
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1 Introduction

We consider a system of N bosons with Hamilton operator

HN =
N∑

j=1

−Δx j + 1

N

∑

1≤ j<k≤N

VN (x j − xk) (1.1)

acting on L2
s (R

3N ), the subspace of L2(R3N ) consisting of functions which are sym-
metric with respect to permutations. The N -dependent two-body interaction potential
is given through
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2144 S. Rademacher

VN (x) = N 3βV (Nβx).

In the following, we assume V ≥ 0 to be smooth, spherically symmetric, and com-
pactly supported. For β = 0, the Hamiltonian (1.1) describes the mean-field regime
characterized by a large number of weak collisions, whereas for β > 1/3 the colli-
sions of the particles are rare but strong. In the Gross–Pitaevskii regime (β = 1), pair
correlations play a crucial role. Here, we study intermediate regimes β ∈ (0, 1) in the
limit N → ∞ where the particles interact through singular potentials.

The time evolution is governed by the Schrödinger equation

i∂tψN ,t = HNψN ,t . (1.2)

For β = 0 (mean-field regime), the solution of (1.2) can be approximated by products
of solutions of the Hartree equation

i∂tϕt = −Δϕt +
(
V ∗ |ϕt |2

)
ϕt

with initial data ϕ0 ∈ L2(R3). See, for example, [1–5,10,16,20–22,25,26,34]. For
0 < β ≤ 1, on the other hand, the solution ψN ,t of (1.2) can be approximated by the
nonlinear Schrödinger equation

i∂tϕt = −Δϕt + σϕt (1.3)

with σ = V̂ (0) if β < 1 and σ = 8πa0 if β = 1 (Gross–Pitaevskii regime). Hereafter,
a0 denotes the scattering length associated with the potential V defined through the
solution of the zero-energy scattering equation

[
−Δ + 1

2
V

]
f = 0 (1.4)

with boundary condition f (x) → 1 as |x | → ∞. Then, outside the support of V , the
solution f is given through

f (x) = 1 − a0/|x |, (1.5)

where a0 is defined as the scattering length of the potential V . In [17–19], it is shown
that if the one-particle reduced density γN associated with ψN satisfies

γN → |ϕ0〉〈ϕ0|

in the trace norm topology and

〈ψN , HNψN 〉 ≤ CN , (1.6)
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Central limit theorem for Bose gases… 2145

then the one-particle reduced density γN ,t associated with the solution ψN ,t of (1.2)
obeys

γN ,t → |ϕt 〉〈ϕt | (1.7)

where ϕt denotes the solution of (1.3). In fact, in [17] considering the case β < 1, the
energy condition (1.6) on the initial data is not needed. For more results in the Gross–
Pitaevskii regime, see [7,12,15,30,31]. An overview on the derivation of the nonlinear
Schrödinger equation from many-body quantum dynamics is given in [8,23,33].

1.1 Norm approximation

Besides the convergence of the one-particle reduced density γN ,t associatedwithψN ,t ,
the norm approximation ofψN ,t has been studied for different settings of β ∈ (0, 1) in
[11,24,28,29]. Our result is based on the norm approximation obtained in [11] covering
β < 1 whose ideas we explain in the following.

Truncated Fock space. As first step toward the norm approximation in [11], the con-
tribution of the Bose–Einstein condensate is factored out. This is realized through the
unitary UϕN ,t : Ls

(
R
3N

) → F≤N
⊥ϕN ,t

. It maps the N -particle sector of the bosonic
Fock space

F =
⊕

n≥0

Ls

(
R
3n

)

into the truncated Fock space

F≤N
⊥ϕN ,t

=
N⊕

n=0

L2⊥ϕN ,t

(
R
3
)⊗sn

defined over the orthogonal complement L2⊥ϕN ,t

(
R
3
)
of the subspace of L2(R3)

spanned by the condensate wave function ϕN ,t . This unitary has first been used in
[27] in the mean-field regime. Its definition is based on the observation that every
ψN ∈ L2

s (R
3N ) has a unique decomposition

ψN =
N∑

n=0

α(n) ⊗s ϕN−n
N ,t ,

where α(n) ∈ L2⊥ϕN ,t
(R3)⊗sn for all n = 1, . . . , N . Then,

UϕN ,tψN = {α(0), α(1), . . . , α(n)}.

This unitary satisfies the following properties proven in [27]
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2146 S. Rademacher

UϕN ,t a
∗(ϕN ,t )a(ϕN ,t )U

∗
ϕN ,t

= N − N+(t)

UϕN ,t a
∗(ϕN ,t )a( f )U ∗

ϕN ,t
= √

N − N+(t)a( f )

UϕN ,t a
∗( f )a(ϕN ,t )U

∗
ϕN ,t

= a∗( f )
√
N − N+(t)

UϕN ,t a
∗( f )a(g)U ∗

ϕN ,t
= a∗( f )a(g) (1.8)

for all f , g ∈ L2⊥ϕN ,t
(R3). Here a∗( f ), a( f ) denote the standard creation and annihi-

lation operators on the bosonic Fock spaceF . On the truncated Fock space, we define
modified creation and annihilation operators

b∗( f ) = a∗( f )
√

N − N+(t)

N
, b( f ) =

√
N − N+(t)

N
a( f ). (1.9)

The modified creation operator b∗( f ) excites one particle from the condensate into
its complement, while b( f ) annihilates an excitation into the condensate. We define
the vector ξN ,t := UϕN ,tψN ,t representing the fluctuation outside the condensate and
observe

i∂tξN ,t = LN ,t ξN ,t , with LN ,t = UϕN ,t HNU
∗

ϕN ,t
+ (

i∂tUϕN ,t

)
U ∗

ϕN ,t
(1.10)

with initial data ξN ,0 = UϕN ,0ψN ,0.

From the truncated Fock space to the bosonic Fock space. We approximate the gen-
erator LN ,t acting on the truncated Fock space only with a modified generator L̃N ,t

defined on the whole bosonic Fock space. We consider regimes with a small number
of excitations N+(t). For this reason, we realize the approximation of LN ,t through
L̃N ,t by replacing

√
N − N+(t) with

√
NGM (N+(t)/N ), where

GM (τ ) :=
M∑

n=0

(2n)!
(n!)24n(1 − 2n)

tn

is the M th Taylor polynom of
√
1 − τ expanded at the point τ0 = 0. For a precise

definition, see [11, eq. (54)].

Correlation structure through Bogoliubov transformation. In the intermediate regime,
correlations are important (at least if β > 1/2). For their implementation, we consider
for fixed 
 > 0 the ground state of the scattering equation

[
−Δ + 1

2N
VN

]
fN = λN fN (1.11)

withNeumann boundary conditions on the ball B
(0).We fix fN (x) = 1 for all |x | = 


and extend fN to R3 by setting fN (x) = 1 for all |x | ≥ 
.
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In [10], the nonlinear Schrödinger equation (1.3) is replaced by the N -dependent
Hartree equation

i∂tϕN ,t = −ΔϕN ,t + (VN fN ∗ |ϕN ,t |2)ϕN ,t (1.12)

with initial data ϕN ,0 = ϕ0 (the condensate wave function at time t = 0) to approx-
imate the time evolved condensate wave function. The well-posedness of (1.12) is
shown in [10, Appendix B].

The correlation structure is implemented through the Bogoliubov transformation

TN ,t = exp

(
1

2

∫
dxdy

[
ηN ,t (x, y)axay − h.c.

])
, (1.13)

where ηN ,t denotes the Hilbert–Schmidt operator with integral kernel

ηN ,t (x; y) = − (qN ,t ⊗ qN ,t )NωN (x − y)ϕ2
N ,t ((x + y)/2).

Here, ωN = 1 − fN and ϕN ,t are as defined in (1.11) resp. (1.12) and qN ,t = 1 −
|ϕN ,t 〉〈ϕN ,t |. The Bogoliubov transformation acts on the creation and annihilation
operators as

TN ,t a( f )T ∗
N ,t = a

(
coshηN ,t ( f )

) + a∗ (
sinhηN ,t f )

)

TN ,t a
∗( f )T ∗

N ,t = a∗ (
coshηN ,t ( f )

) + a
(
sinhηN ,t ( f )

)
(1.14)

for all f ∈ L2(R3). The operators sinhηN ,t and coshηN ,t are defined through the
absolutely convergent series of products of the operator ηN ,t

coshηN ,t =
∑

n≥0

1

(2n)!
(
ηN ,tηN ,t

)n
, sinhηN ,t =

∑

n≥0

1

(2n + 1)!
(
ηN ,tηN ,t

)n
ηN ,t .

(1.15)

Let GN ,t be the generator given through

GN ,t = (
i∂t TN ,t

)
T ∗
N ,t + TN ,tL̃N ,t T

∗
N ,t . (1.16)

In fact, the special choice of (1.11) and (1.12) allows crucial cancellations in the
generator GN ,t . Note that GN ,t consists of terms which are quadratic in creation and
annihilation operators and of terms of higher order. Nevertheless, in [11, Lemma 5],
it is shown that GN ,t can be approximated through the generator G2,N ,t containing
quadratic terms only.

Limiting quadratic dynamics.We are interested in the limit N → ∞ of G2,N ,t defined
in (1.16). In order to replace the Bogoliubov transformation TN ,t defined in (1.13)
with a limiting one, we define the limiting kernel ω∞ of ωN through
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2148 S. Rademacher

ω∞(x) = b0

8π

[
1

|x | − 3

2

+ x2

3
3

]
(1.17)

for |x | ≤ 
 and ω∞(x) = 0 otherwise. Here, we used the notation b0 = ∫
dx V (x).

Furthermore, the solution ϕN ,t of the modified Hartree equation (1.12) with initial
data ϕ0 ∈ H4(R3) can be approximated with the solution ϕt of (1.3) with σ = V̂ (0)
and with initial data ϕ0. To be more precise, [10, Proposition B.1] shows that there
exists a constant C > 0 (depending on ‖ϕ0‖H4 ) such that

‖ϕt − ϕN ,t‖2 ≤ CN−γ exp (C exp (C |t |)) (1.18)

with γ = min{β, 1−β}. Standard arguments (see, for example, [10, Proposition B.1])
imply that there exists a constant C > 0 such that

‖ϕt‖2 ≤ C, ‖ϕt‖∞ ≤ C exp(C |t |)), ‖ϕt‖Hn ≤ C exp(C |t |)) (1.19)

for all n ∈ N. The approximations (1.17) and (1.18) lead to a limiting kernel

ηt (x; y) = − (qt ⊗ qt ) ω∞(x − y)ϕ2
t ((x + y)/2). (1.20)

We define the limiting Bogoliubov transformation

Tt = exp

(
1

2

∫
dxdy

[
ηt (x, y)axay − h.c.

])
. (1.21)

In fact, (1.17) and (1.18) yield that there exists a constant C > 0 such that

‖ηN ,t − ηt‖2 ≤ CN−γ exp (C exp (C |t |)) , (1.22)

where γ = min{β, 1 − β}.
In order to define the limiting dynamics, we introduce some more notation. We use

the shorthand notation jx (·) = j(·, x) for any j ∈ L2(R3 × R
3). Furthermore, we

decompose shηt = ηt + rt , chηt = 1 + pt and

ηt (x; y) = −ω∞(x − y)ϕ2
t ((x + y)/2) + μt (x; y) = kt (x; y) + μt (x; y)

for all x, y ∈ R
3.

A slight modification of the arguments in [10, Appendix C] shows some properties
of the kernels. For these, we consider initial data ϕ0 ∈ H4(R3) of (1.3). There exist a
constant C > 0 (depending only on ‖ϕ0‖H4(R3) and on V ) such that on the one hand

‖chηt ‖ ≤ C, and ‖kt‖2, ‖ηt‖2, ‖shηt ‖2, ‖pt‖2, ‖rt‖2, ‖μt‖2 ≤ C, (1.23)
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where ‖ · ‖ denotes the operator norm. On the other hand, denoting with ∇1kt and
∇2kt the operator with the kernel ∇x kt (x; y)

‖∂tηt‖2 ≤ CeC|t |, max

{
sup
x

∫
dz |∇1kt (x; z)|, sup

y

∫
dz |∇1kt (z; y)|

}
≤ C .

(1.24)

Furthermore, let Δ1rt resp. Δ2rt be the operator having the kernel Δx rt (x; y) resp.
Δyrt (x; y), then for all i = 1, 2

‖Δi rt‖2, ‖Δipt‖2, ‖Δiμt‖2 ≤ CeC|t |. (1.25)

In order to simplify notation, we write in the following shηt = sh, chηt = ch resp.
rt = r, kt = k, pt = p.

Definition 1 We define the limiting dynamics U2(t; s) satisfying

i∂tU2(t; s) = G2(t)U2(t; s) and U2(s; s) = 1 (1.26)

where G2,t is given by

G2,t := (i∂t Tt ) T
∗
t + G V

2,t + GK
2,t + G λ

2,t (1.27)

with

G V
2,t = b0

∫
dx |ϕt (x)|2

[
a∗(chx )a(chx ) + a∗(shy)a(shx )

+a∗(chx )a∗(shx ) + a(chx )a(shx )
]

+
∫

dxdy K1,t (x; y)
[
a∗(chx )a(chy) + a∗(shx )a(shy)

+a∗(chx )a∗(shy) + a(chy)a(shx )
]

+
∫

dxdy K2,t (x; y)
[
a∗(chx )a(shy) + a∗(chy)a(shx )

+a∗(chx )a∗(chy) + a(shx )a(shy) + h.c.
]

+ 1

2

[
‖ϕ2

t ‖22 a∗(ϕt )a(ϕt ) − 2a∗(ϕt )a(|ϕt |2ϕt ) + h.c.
]

=
4∑

i=1

G V ,(i)
2,t (1.28)

and

G λ
2,t = 3b0

8π
3

∫
dxdy χ (|x − y| ≤ 
) ϕ2

t ((x + y)/2)a∗
x a

∗
y + h.c. (1.29)
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2150 S. Rademacher

and

GK
2,t − K =

∫
dx

[
a∗
x a(−Δxpx ) + a∗(−Δxpx )a(chx ) + a∗(kx )a(−Δx rx )

+ a∗(∇xkx )a(∇xkx ) + a∗(−Δx rx )a(rx )
]

+
∫

dx
[
a∗
x a

∗(−Δxμx ) + a∗
x a

∗(−Δx rx ) + a∗(−Δxpx )a
∗(shx )

+ a(−Δx rx )ax + a(−Δxμx )ax

+ a(shx )a(−Δxpx ) + a∗(−Δx rx )a(kx )
]

+ 1

2

∫
dxdy ω∞(x − y)ϕt ((x + y)/2) Δϕt ((x + y)/2)a∗

x a
∗
y + h.c.

+ 1

2

∫
dxdy ω∞(x − y)∇ϕt ((x + y)/2) · ∇ϕt ((x + y)/2)a∗

x a
∗
y + h.c.

(1.30)

Here, we used the notationK = ∫
dx a∗

x (−Δx ) ax and K1,t = qt K̃1,t qt and K2,t =
(qt ⊗ qt ) K̃2,t where K̃1,t is the operator with integral kernel

K̃1,t (x, y) = b0ϕt (x)δ(x − y)ϕt (y)

and K2,t is the function given through

K̃2,t (x, y) = b0ϕt (x)δ(x − y)ϕt (y).

Note that (1.19) implies K1,t , K2,t ∈ L∞(R6)∩ L2(R6) with norms uniform in N .
Norm approximation.We consider the solutionψN ,t of the Schrödinger equation (1.2)
with initial data ψN ,0 = U∗

ϕ0
1≤N T ∗

N ,0Ω . It is proven in [11, Theorem 2] that for all
α < min{β/2, (1 − β)/2} there exists a constant C > 0 such that

‖UϕN ,tψN ,t − e−i
∫ t
0 dτ ηN (τ )T ∗

N ,tU2(t; 0)Ω‖2 ≤ CN−α exp(C exp(C |t |)) (1.31)

for all N sufficiently large and all t ∈ R.

1.2 Bogoliubov transformation

The limiting dynamics U2(t; s) defined in (1.26) is quadratic in creation and anni-
hilation operators. As the following proposition shows, it gives rise to a Bogoliubov
transformation defined in the following. For this, we first define

A ( f , g) = a∗ ( f ) + a (g) for f , g ∈ L2
(
R
3
)

. (1.32)
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On the one hand,

A∗ ( f , g) = A
(
g, f

) + A
(
J ( f , g)

)
with J =

(
0 J
J 0

)
. (1.33)

Here, J : L2
(
R
3
) → L2

(
R
3
)
denotes the anti-linear operator defined by J f =

f for all f ∈ L2
(
R
3
)
. On the other hand, the commutation relations imply for

f1, f2, g1, g2 ∈ L2(R3)

[
A ( f1, g1) , A∗ ( f2, g2)

]=〈( f1, g1), S( f2, g2)〉L2(R3)⊕L2(R3) with S=
(
1 0
0 −1

)
.

(1.34)

Definition 2 A Bogoliubov transformation is a linear map ν : L2
(
R
3
) ⊕ L2

(
R
3
) →

L2
(
R
3
) ⊕ L2

(
R
3
)
preserving the relations (1.33) and (1.34), i.e. ν∗Sν = S and

J ν = νJ .

It turns out that a Bogoliubov transformation ν is of the form

ν =
(
U JV J
V JU J

)

for linear operators U , V : L2
(
R
3
) → L2

(
R
3
)
satisfying U∗U − V ∗V = 1 and

U∗ JV J − V ∗ JU J = 0.
The following proposition is proven in Sect. 2.2.

Proposition 1 LetU2(t; s) be the dynamics defined in (1.27). For every t, s ∈ R, there
exists a bounded linear map

Θ(t; s) = L2(R3) ⊕ L2(R3) → L2(R3) ⊕ L2(R3),

such that

U ∗
2 (t; s)A( f , g)U2(t; s) = A (Θ(t; s)( f , g))

for all f , g ∈ L2(R3). The map Θ(t; s) satisfies

Θ(t; s)J = JΘ(t; s), S = Θ(t; s)∗SΘ(t; s), (1.35)

where J and S are defined in (1.33) resp. (1.34). The Bogoliubov transformation
Θ(t; s) can be written as

Θ(t; s) =
(
U (t; s) JV (t; s)J
V (t; s) JU (t; s)J

)

123



2152 S. Rademacher

for bounded linear maps U (t; s), V (t; s) : L2(R3) → L2(R3) satisfying

U∗(t; s)U (t; s) − V ∗(t; s)V (t; s)=1, U∗(t; s)JV (t; s)J = V ∗(t; s)JU (t; s)J .

(1.36)

1.3 Central limit theorem

From a probabilistic point of view, (1.7) implies a law of large numbers, in the sense
that for a one-particle self-adjoint operator O on L2(R3) and for every δ > 0

lim
N→∞PψN ,t

⎛

⎝

∣∣∣∣∣∣
1

N

N∑

j=1

(
O( j) − 〈ϕt , Oϕt 〉

)
∣∣∣∣∣∣
> δ

⎞

⎠ = 0. (1.37)

Here O( j) denotes the operator on L2(R3N ) acting as O on the j th particle and as
identity elsewhere. The proof of (1.37) follows from Markov’s inequality (see [13]).
As a next step, we are interested in a central limit theorem. For this, we consider the
rescaled random variable

ON ,t = 1√
N

N∑

j=1

(
O( j) − 〈ϕN ,t , OϕN ,t 〉

)
, (1.38)

where ϕN ,t denotes the solution of (1.12) with initial data ϕN ,0 = ϕ0.
We consider initial dataψN ,0 of the formψN ,0 = U ∗

ϕ0
1≤N T ∗

N ,0Ω exhibiting Bose–
Einstein condensation [11, Theorem 3]. As a consequence, such a initial data satisfy a
law of large numbers in the sense of (1.37). Moreover, such initial data obeys a central
limit theorem in the sense that

PψN ,0

(
ON ,0 ∈ [a; b]) → P (G0 ∈ [a, b]) as N → ∞ (1.39)

for every −∞ < a < b < ∞. Here, G0 denotes the centered Gaussian random
variable with variance ‖σ0‖22, where

σ0 = sinhη0 q0Oϕ0 + coshη0 q0Oϕ0 (1.40)

following from Theorem 1 for time t = 0.
Note that initial data of the form ψN ,0 = U ∗

ϕ0
1≤N T ∗

N ,0Ω describe approximate
ground states of trapped systems [9]. In experiments, such initial data are prepared by
trapping particles through external fields and by cooling them down to extremely low
temperatures so that the system essentially relaxes to its ground state.

The validity of a central limit theorem for the ground state of trapped systems has
already been addressed in [32]. To be more precise, [32] considers the ground state
of (1.1) for β = 1, i.e. in the Gross–Pitaevskii regime. The ground state is known
to exhibit Bose–Einstein condensation. It is proven that the ground state satisfies a
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central limit theorem. The arguments of the proof can be adapted to the intermediate
regime β < 1 using the norm approximation for the ground state obtained in [9].

Now,we consider the time evolution of the initial dataψN ,0 = U ∗
ϕ0
1≤N T ∗

N ,0Ω with
respect to the Schrödinger equation (1.2) and show the validity of a (multi-variate)
central limit theorem.

Theorem 1 Let β ∈ (0, 1) and assume V to be radially symmetric, smooth, compactly
supported and point-wise nonnegative. Furthermore, fix 
 > 0 (independent of N).
Let ϕt denote the solution of (1.3) and ϕN ,t the solution of (1.12) both with initial data
ϕ0 ∈ H4(R3). Moreover, we denote by ψN ,t the solution of the Schrödinger equation
(1.2) with initial data ψN ,0 = U ∗

ϕN ,0
1≤N T ∗

N ,0Ω (where UϕN ,0 and TN ,0 are defined

in (1.8) resp. (1.13)). For k ∈ N, let O1, . . . , Ok be bounded operators on L2(R3).
We define ν j,t ∈ L2(R3) through

ν j,t = (
U (t; 0) coshηt +V (t; 0) sinhηt

)
qt O jϕt

+ (
U (t; 0) sinhηt +V (t; 0) coshηt

)
qt O jϕt (1.41)

where the operators U (t; 0), V (t; 0) ∈ L2(R3 × R
3) are defined in Proposition 1,

qt = 1 − |ϕt 〉〈ϕt | and ηt as defined in (1.20).
Assume �t ∈ C

k×k , given through

(�t )i, j =
{

〈νi,t , ν j,t 〉 for i < j

〈ν j,t , νi,t 〉 otherwise

is invertible.
Furthermore, let g1, . . . gk ∈ L1(R) with ĝi ∈ L1(R, (1 + |s|)4ds) for all i ∈

{1, . . . k} and let O j,N ,t denote the random variable (1.38) associated with O j for all
j ∈ {1, . . . , k}. For every α < min{β/2, (1 − β)/2}, there exists C > 0 such that

∣∣EψN ,t

[
g1(O1,N ,t ) . . . gk(Ok,N ,t )

]

− 1√
(2π)k det�

∫
dx1 . . . dxk g1(x1) . . . gk(xk) e

− 1
2

∑k
i, j=1 �−1

i, j x j x j

∣∣∣∣∣

≤ C exp(exp(C |t |))N−α
k∏

j=1

∫
dτ |̂g j (τ )|

(
1 + Nα−γ |τ |2 + Nα−1/2|τ |3 + Nα−1|τ |4

)
,

where γ = min{β, (1 − β)}.
A similar result has been established in [6,13] for the mean-field regime charac-

terized through weak interaction of the particles. It is shown that fluctuations around
the nonlinear Hartree equation of bounded self-adjoint one-particle operators satisfy
a (multi-variate) central limit theorem. We show that this result is true in the inter-
mediate regime, where the interaction is singular, too. In particular, the correlation
structure which becomes of importance in the intermediate regime does not affect the
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validity of a central limit theorem. However, it affects the covariance matrix (1.41)
through the Bogolioubiv transform Tt .

Similarly as in [13, Corollary 1.3 ], Theorem 1 implies a Berry–Esséen-type central
limit theorem. To be more precise, we consider a bounded self-adjoint operator O on
L2(R3) and the random variable

ON ,t = 1√
N

N∑

i=1

(
O(i) − 〈ϕN ,t , OϕN ,t 〉

)
.

For every α < min{β/2, (1 − β)/2} and −∞ < a < b < ∞, there exists a constant
C > 0 such that

|PψN ,t

(
ON ,t ∈ [a; b]) − P (Gt ∈ [a; b]) | ≤ CN−α/2, (1.42)

where Gt is the centered Gaussian random variable with variance ‖σt‖22 and σt ∈
L2(R3) is defined through

σt=
(
U (t; 0) coshηt +V (t; 0) sinhηt

)
qt Oϕt+

(
U (t; 0) sinhηt +V (t; 0) coshηt

)
qt Oϕt .

(1.43)

Note that Theorem 1 resp. (1.42) implies that fluctuations around the nonlinear
Hartree equation with singular interaction satisfy a (multi-variate) central limit theo-
rem. Comparing with σ0 from (1.40), the fluctuations enter in the variance σt through
the operatorsU (t; 0), V (t; 0) as defined in Proposition (1) and the Bogoliubov trans-
formation (1.21).

Moreover, note that the covariance matrix (1.41) resp. the variance (1.43) are com-
pletely determined by the Bogoliubov transform Tt defined in (1.21) and the quadratic
fluctuation dynamicsU2(t; 0) defined in (1.27). Theorem 1 resp. the properties (1.36)
of the operators U (t; 0), V (t; 0) show that the solution of the Schrödinger equation
(1.2) modulo the extraction of the condensate is approximately a quasi-free state for
quasi-free initial data. This observation coincides with results in [24,28,29].

2 Proof of results

2.1 Preliminaries

The proof of Theorem 1 is based on the norm approximation (1.31) from [11]. In the
following, we collect useful properties of the unitaries used therein.

To this end, we define the more general quadratic dynamics Ugen(t; s).

Definition 3 Let Ugen(t; s) be the dynamics satisfying

i∂tUgen(t; s) = Ggen,tUgen(t; s), (2.1)
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where the generator Ggen,t is of the form

Ggen,t =
∫

dx ∇xa
∗
x∇xax +

∫
dxdy H (1)

t (x; y)a∗
x ay

+
∫

dxdy

(
H (2)
t (x, y)a∗

x a
∗
y + H (2)

t (x, y)axay

)
+ c (2.2)

with

‖H (1)
t ‖ ≤ CeC|t |, ‖H (2)

t ‖2 ≤ CeC|t | (2.3)

for constants c,C > 0.

In the following, we prove the results for the dynamics Ugen(t; s). As the next
Lemma shows, the results then apply to U2(t; s), too.
Lemma 1 The dynamics U2(t; s) defined in Definition 1 is of the form of Ugen(t; s)
defined in Definition 3.

Proof By the definition (1.27) of G2,t , we split

G2,t − K = (i∂t Tt ) T
∗
t + G V

2,t +
(
GK
2,t − K

)
+ G λ

2,t (2.4)

and consider each of the summands separately. First, we considerG V
2,t defined in (1.28),

which is again split into four terms. The first one, G V ,1
2,t of the r.h.s. of (1.28), satisfies

assumption (2.3) since on the one hand

‖chηt |ϕt |2chηt ‖2 ≤ ‖ϕt‖24 ≤ CeC|t |, ‖shηtϕt |2shηt ‖2 ≤ ‖ϕt‖2∞‖shηt ‖22 ≤ CeC|t |

and

‖chηt |ϕt |2shηt ‖2 ≤ C‖ϕt‖2‖ϕt‖∞‖shηt ‖2 ≤ CeC|t |

following from (1.19) and (1.23). For the same reasons, the second term G V ,2
2,t of the

r.h.s. of (1.28) satisfies assumption (2.3), too. For the third term G V ,3
2,t , the definition

of K2,t implies

‖K2,t shηt ‖2 ≤ ‖ϕt‖1/24 ‖shηt ‖2 ≤ CeC|t |,

‖pt K2,t shηt ‖ ≤ ‖shηt ‖2‖pt‖2‖ϕt‖1/24 ≤ CeC|t |

again from (1.19) and (1.23). The fourth term G V ,4
2,t satisfies the assumption (2.2) due

to (1.19).
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Furthermore, a transformation of variables shows

∫
dxdy χ(|x − y| ≤ 
) |ϕt ((x + y)/2))|4

=
∫

dxdy χ(|x | ≤ 
) |ϕt (y)|4 = C‖ϕt‖44 ≤ CeC|t |.

Therefore, G λ
2,t is of form (2.2).

Moreover, for the term GK
2,t − K , we observe with (1.23) and (1.25)

‖Δ1 pt‖2 ≤ CeC|t |, ‖Δ1μt‖2 ≤ CeC|t |, ‖Δ1rt‖2 ≤ CeC|t |.

The remaining bounds follow in the same way. Note that (1.24) implies the bound

‖∇1kt∇1kt‖ ≤ max

{
sup
x

∫
dz |∇1k(x; z)|, sup

y

∫
dz |∇1k(z; y)|

}
≤ C .

Moreover, by definition (1.17) of the limiting kernel, ω∞ ∈ L p(R3) for all p < 3.
Hence, the remaining terms of GK

2,t satisfy the assumptions, too.

We are left with the first term of the r.h.s. of (2.4). We write Tt = e−B(ηt ). The
properties (1.14) of the Bogoliubov transformation lead to

(∂t Tt ) T
∗
t = −

∫ 1

0
ds e−sB(ηt ) (∂t B(ηt )) e

sB(ηt )

=
∫ 1

0
ds

∫
dxdy e−sB(ηt )

(
η̇t (x; y)a∗

x a
∗
y + h.c.

)
esB(ηt )

=
∫

dxdy η̇t (x; y)
(
a∗(chx )a∗(chy) + a(shx )a(shy)

) + h.c.

+
∫

dxdy η̇t (x; y)
(
a∗(chx )a(shy) + a∗(chy)a(shx )

) + h.c.

+
∫

dxdy η̇t (x; y) shxchy .

Since ‖η̇t‖2 ≤ CeC|t | from (1.24), these terms satisfy assumption (2.3), too. ��
As proven in [11, Proposition 8], any moments of the number of particles operator

are approximately preserved with respect to conjugation with the Bogoliubov trans-
formation TN ,t . To be more precise for every fixed k ∈ N and δ > 0, there exists
C > 0 such that

±
(
TN ,tN

kT ∗
N ,t − N k

)
≤ δN k + C . (2.5)

As the following Lemma shows, the moments of number of particles operator are
propagated in time with respect to the quadratic Ugen(t; 0).

123



Central limit theorem for Bose gases… 2157

Lemma 2 Let Ugen(t; s) be as defined in Definition 3 and ψ ∈ F . For every k ∈ N,
there exists a constant C > 0 such that for all t ∈ R

〈ψ,Ugen(t; s)∗(N + 1)k Ugen(t; s)ψ〉≤C exp(C exp(C |t − s|)) 〈ψ, (N + 1)k ψ〉.

Proof We compute the derivative

i
d

dt

〈
ψ,U ∗

gen(t; s)(N + 1)kUgen(t; s)ψ
〉

=
〈
ψ,U ∗

gen(t; s)
[
Ggen,t , (N + 1)k

]
Ugen(t; s)ψ

〉

=
k∑

i=1

〈
ψ,U ∗

gen(t; s)(N + 1)i−1 [
Ggen,t ,N

]
(N + 1)k−iUgen(t; s)ψ

〉
.

Using the commutation relations and the definition (2.2), we find

i
d

dt
〈ψ,U ∗

gen(t; s)(N + 1)kUgen(t; s)ψ〉

= 2
k∑

i=1

∫
dxdy H (2)

t (x, y) 〈ψ, U ∗
gen(t; s)(N + 1)i−1a∗

x a
∗
y(N + 1)k−iUgen(t; s)ψ〉

+ 2
k∑

i=1

∫
dxdy H (2)

t (x, y) 〈ψ, U ∗
gen(t; s)(N + 1)i−1axay(N + 1)k−iUgen(t; s)ψ〉.

(2.6)

For the first term of the right-hand side, the commutation relations yield

∣∣∣∣
∫

dxdyH (2)
t (x; y)〈ψ,U ∗

gen(t; s)(N + 1)i−1a∗
x a

∗
y(N + 1)k−iUgen(t; s)ψ〉

∣∣∣∣

≤
∫

dxdy|H (2)
t (x; y)| ‖(N + 1)(k+1)/2−i a∗

x (N + 1)i−1Ugen(t; s)ψ‖
× ‖(N + 1)i−(k−1)/2ay(N + 1)k−iUgen(t; s)ψ‖

≤ C‖H (2)
t ‖2 ‖(N + 1)k/2Ugen(t; s)ψ‖2 ≤ CeC |t | 〈ψ,U ∗

gen(t; s)(N + 1)kUgen(t; s)ψ〉,

where C depends on k ∈ N. The second of the r.h.s. of (2.6) follows in the same way.
Hence, there exists C > 0 such that

∣∣∣∣
d

dt
〈ψ,U ∗

gen(t; s)(N + 1)kUgen(t; s)ψ〉
∣∣∣∣ ≤ CeC |t |〈ψ,U ∗

gen(t; s)(N + 1)kUgen(t; s)ψ〉.

Hence, the Gronwall inequality implies

〈ψ,U ∗
gen(t; s)(N + 1)kUgen(t; s)ψ〉 ≤ C exp (C exp (C |t − s|)) 〈ψ, (N + 1)kψ〉.

��
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For f ∈ L2(R3), let φa( f ) = a∗( f ) + a( f ). In [13, Proposition 3.4], it is shown
that for every k ∈ N and δ ∈ R, there exists a constant C > 0 such that

〈ψ, e−is(φa( f )+δdΓ (H))(N +1)keis(φa( f )+δdΓ (H))ψ〉≤C〈ψ, (N + α + s2‖ f ‖2)kψ〉
(2.7)

for all ψ ∈ F and α ≥ 1. Hereafter, we denote dΓ (H) = ∑N
j=1 H

( j) for a bounded

operator H on L2(R3). A similar estimate holds true for when replacing the creation
and annihilation operators a( f ), a∗( f ) with the modified ones b∗( f ), b( f ) defined
in (1.9). Let φb( f ) = b∗( f ) + b( f ). In fact, as proven in [32, Lemma 3.2], for every
k ∈ N, there exists a constant C > 0 such that

〈ξ, e−iφb(h) (N+(t) + 1)k eiφb(h)ξ 〉 ≤ C〈ξ,
(
N+(t) + α + ‖ f ‖2

)k
ξ 〉 (2.8)

for all ξ ∈ F≤N
+ (t) and α ≥ 1.

2.2 Proof of Proposition 1

It follows from Lemma 1 that it is enough to prove Proposition 1 with respect the
dynamics Ugen(t; s).

First, we prove that for f ∈ L2(R3) the Fock space vectors U ∗
gen(t; s)a∗( f )Ugen

(t; s)Ω and U ∗
gen(t; s)a( f )Ugen(t; s)Ω are elements of the one-particle sector. The

following Lemma is a generalization of [14, Lemma 8.1].

Lemma 3 LetUgen(t; s) be the dynamics definedDefinition 3. Then for all f ∈ L2(R),

U ∗
gen(t; s)a�( f )Ugen(t; s)Ω = P1U

∗
gen(t; s)a�( f )Ugen(t; s)Ω,

where either a�( f ) = a( f ) or a�( f ) = a∗( f ) and where P1 denotes the projection
onto the one-particle sector of the Fock space F .

Proof The proof follows the arguments of the proof of [14, Lemma 8.1]. For m ∈ N,
m �= 1, we define for arbitrary m-particle wave function ψ ∈ F with ‖ψ‖ = 1 the
function

F(t) = sup
‖ f ‖2≤1

|〈ψ,U ∗
gen(t; s)a( f )Ugen(t; s)Ω〉|

+ sup
‖ f ‖2≤1

|〈ψ,U ∗
gen(t; s)a∗( f )Ugen(t; s)Ω〉|.

Since m �= 1, we observe that F(s) = 0 and furthermore

eiK t a( f )e−iK t = a(e−iΔt f ) = a( ft ),
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using the notation ft = e−i tΔ f . Since e−iΔt is a unitary operator, we find

F(t) = sup
‖ f ‖2≤1

|〈ψ,U ∗
gen(t; s)eiK t a( f )e−iK tUgen(t; s)Ω〉|

+ sup
‖ f ‖2≤1

|
〈
ψ,U ∗

gen(t; s)eiK t a∗( f )e−iK tUgen(t; s)Ω
〉
|.

Then,

i
d

dt

〈
ψ,U ∗

gen(t; s)eiK t a( f )e−iK tUgen(t; s)Ω
〉

=
〈
ψ,U ∗

gen(t; s)
[
a( ft ),Ggen,t − K

]
Ugen(t; s)Ω

〉
,

and the definition of Ggen,t in (2.2) leads to

[
a( ft ),Ggen,t − K

] =
∫

dxdy
(
ft (x)H

(1)
t (x; y)

)
ay

+
∫

dxdy
(
H (2)
t (x; y) ft (x) + H (2)

t (y; x) ft (x)
)
a∗
y .

The assumption (2.3) implies on the one hand

‖H (1)
t ft‖2 ≤ CeC|t | ‖ ft‖2,

and on the other hand

‖H (2)
t ft‖2 ≤ ‖ ft‖2‖H (2)

t ‖2 ≤ CeC|t | ‖ ft‖2.

Hence,

∣∣∣
〈
ψ,U ∗

gen(t; s)eiK t a( f )e−iK tUgen(t; s)Ω
〉∣∣∣ ≤ C

∫ t

0
dτ eC|τ | F(τ ),

and analogously,

∣∣∣
〈
ψ,U ∗

gen(t; s)eiK t a∗( f )e−iK tUgen(t; s)Ω
〉∣∣∣ ≤ C

∫ t

0
dτ eC|τ | F(τ ).

Note that these bounds are independent of f ∈ L2(R3). Thus,

0 ≤ F(t) ≤ C
∫ t

0
dτ eC|τ | F(τ ).

Using the bounds ‖a�( f )ψ‖ ≤ ‖ f ‖2‖(N + 1)1/2ψ‖, we obtain

F(t) ≤ 2‖(N + 1)1/2Ugen(t; s)Ω‖ ≤ C exp (exp(C |t − s|)) 〈ψ, (N + 1)ψ〉.
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Here, we used Lemma 2 for the last estimate. Since F(s) = 0, the Gronwall inequality
implies F(t) = 0 for all t ∈ R. ��
Proof of Proposition 1 Weprove thePropositionwith respect to thedynamicsUgen(t; s)
defined in Definition 3. Then, Proposition 1 follows from Lemma 1.

The proof follows the arguments of the proof of [6, Theorem 2.2]. Let Pk denote
the projection onto the k-particle sectorFk of the Fock space. It follows from Lemma
that 3

PkU
∗
gen(t; s)a∗( f )Ugen(t; s)Ω = 0, PkU

∗
gen(t; s)a∗( f )Ugen(t; s)Ω = 0

for all f ∈ L2(R3) and k �= 1. Thus, there exist linear operators U (t; s), V (t; s) :
L2(R3) → L2(R3) such that

U ∗
gen(t; s)a∗( f )Ugen(t; s)Ω = a∗ (U (t; s) f )Ω,

U ∗
gen(t; s)a∗( f )Ugen(t; s)Ω = a∗ (JV (t; s) f ) Ω,

where J : L2(R3) → L2(R3) denotes the anti-linear operator defined by J f = f
for all f ∈ L2(R3). The operators U (t; s) and V (t; s) are bounded in L2(R3). This
follows from Lemma 2, since

‖U (t; s) f ‖ = ‖a∗ (U (t; s) f ) Ω‖ = ‖a∗( f )Ugen(t; s)Ω‖
≤ ‖ f ‖ ‖(N + 1)1/2Ugen(t; s)Ω‖ ≤ C exp(c|t |)

and

‖V (t; s) f ‖ = ‖a∗ (JV (t; s) f ) Ω‖ = ‖a( f )Ugen(t; s)Ω‖
≤ ‖ f ‖ ‖N 1/2Ugen(t; s)Ω‖ ≤ CeK |t |.

We define the bounded operator Θ on L2(R3) ⊕ L2(R3) through

Θ(t; s) =
(
U (t; s) JV (t; s)J
V (t; s) JU (t; s)J

)
.

Then

U ∗
gen(t; s)A( f , g)Ugen(t; s)Ω = A (Θ(t; s)( f , g))Ω (2.9)

for all f , g ∈ L2(R3). For fixed ψ ∈ D(K + N ), g ∈ L2(R3), s ∈ R and any
bounded operatorM onF withMD(K +N ) ⊂ D(K +N ), we define further-
more

F(t) =
∑

�

sup
‖ f ‖2≤1

∥∥∥
[[
U ∗

gen(t; s)a�( f )Ugen(t; s), a�(h)
]
, M

]
ψ

∥∥∥ .
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Here, a�, a� are either creation or annihilation operators. Since e−iK t a�( f )eiK t =
a�(eitΔ f ) and ‖eitΔ f ‖2 = ‖ f ‖2 for all f ∈ L2(R3), we can write

F(t) =
∑

�

sup
‖ f ‖2≤1

∥∥∥
[[
U ∗

gen(t; s)e−iK (t−s)a�( f )eiK (t−s)Ugen(t; s), a�(h)
]
, M

]
ψ

∥∥∥ .

The commutation relations imply that F(s) = 0. Furthermore,

i
d

dt

[[
U ∗

gen(t; s)e−iK (t−s)a�( f )eiK (t−s)Ugen(t; s), a�(h)
]
, M

]
ψ

=
[[
U ∗

gen(t; s)
[
(Ggen,t − K ), e−iK (t−s)a�( f )eiK (t−s)

]
Ugen(t; s), a�(h)

]
, M

]
ψ

=
[[
U ∗

gen(t; s)
[
(Ggen,t − K ), a�(e−iΔ(t−s) f )

]
Ugen(t; s), a�(h)

]
, M

]
ψ,

using the notation ft = e−iΔt f . Analogous calculations as in the proof of Lemma 3
show that

[
(Ggen,t − K ), a�( ft )

] = a(h1,t ) + a∗(h2,t ).

The assumption (2.3) implies ‖hi,t‖2 ≤ CeC|t |‖ f ‖2 for i = 1, 2. Thus,

∥∥∥
[[
U ∗

gen(t; s)a�( f )Ugen(t; s), a�(g)
]
, M

]
ψ

∥∥∥ ≤ C
∫ t

0
dτ eC|τ | F(τ )

for all f ∈ L2(R3) and therefore

0 ≤ F(t) ≤ C
∫ t

0
dτ eC|τ | F(τ ).

Since F(s) = 0, the Gronwall inequality implies F(t) = 0 for all t ∈ R. Hence,

[[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
, M

]
= 0 (2.10)

for every f1, f2, h1, h2 ∈ L2(R3) and every bounded operator M on the Fock space
F such that MD (K + N ) ⊂ D (K + N ). We claim that

〈
ψ,

[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
ψ

〉

=
〈
Ω,

[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
Ω

〉
(2.11)

for all ψ ∈ D (K + N ) with ‖ψ‖ = 1. Combining (2.9) with (2.11), we find

〈
ψ,

[
Ugen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)

]
ψ

〉

= 〈Ω, [A (Θ(t; s)( f1, h1)) , A( f2, h2)]Ω〉
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= (Θ(t; s)( f1, h1), S( f2, h2))L2⊕L2

where S is defined in 1.34. It follows that
[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s) − A (Θ( f1, h1)) , A( f2, h2)
]

= 0, (2.12)

for all f1, h1, f2, h2 ∈ L2(R3). Consider now

R := U ∗
gen(t; s)A( f1, h1)Ugen(t; s) − A (Θ( f1, h1)) .

On the one hand, (2.9) shows that RΩ = 0, and on the other hand, it follows from
(2.12), that R commutes with any creation and annihilation operator. Since states of
the form a∗( f1) . . . a∗( fn)Ω build a basis of the Fock space F , we conclude

U ∗
gen(t; s)A( f , h)Ugen(t; s) = A (Θ(t; s)( f , h))

for all f , g ∈ L2(R3).
Now, we are left with proving (2.11). For this, note that (2.10) implies

[[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
, Pψ

]

=
[[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
, PΩ

]
= 0,

where Pψ resp. PΩ denote the projection on the subspace of F spanned by ψ resp.
Ω . Therefore, on the one hand

〈
ψ,

[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
Ω

〉

=
〈
ψ,

[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
PψΩ

〉

=
〈
ψ,

[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
ψ〉 〈ψ,Ω

〉
,

and on the other hand,

〈
ψ,

[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
Ω

〉

= 〈ψ,Ω〉
〈
Ω,

[
U ∗

gen(t; s)A( f1, h1)Ugen(t; s), A( f2, h2)
]
Ω

〉
.

Assuming that 〈ψ,Ω〉 �= 0, claim (2.11) follows. If 〈ψ,Ω〉 = 0, we repeat the same
arguments with ψ̃ = 1√

2
(ψ + Ω). This leads to (2.11).

It remains to prove the properties (1.35). Since for all f , g ∈ L2(R3)

(A(Θ(t; s)( f , h)))∗ =
(
U ∗

gen(t; s)A( f , h)Ugen(t; s)
)∗

= U ∗
gen(t; s)A( f , h)∗Ugen(t; s)
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= U ∗
gen(t; s)A(J f , Jh)Ugen(t; s)

= A(Θ(t; s)(J f , Jh)),

the first property follows. Furthermore, from

[A(Θ(t; s)( f1, h1)), A(Θ(t; s)( f2, h2))]
=

[
U ∗

gen(t; s)A( f1, h2)Ugen(t; s),U ∗(t; s)A( f2, h2)U (t; s)
]

= U ∗
gen(t; s) [A( f1, h1), A( f2, h2)]Ugen(t; s)

= 〈( f1, h1), S( f2, h2)〉,

we deduce the second property. ��

2.3 Proof of Theorem 1

The proof uses ideas introduced in [32]. We consider the expectation value

EΨN ,t

[
g1(O1,N ,t ) . . . gk(Ok,N ,t )

]

= 〈ΨN ,t , g1(O1,N ,t ) . . . gk(Ok,N ,t )ΨN ,t 〉
=

∫
ds1 . . . dsk ĝ1(s1) . . . ĝk(sk) 〈ΨN ,t , eis1O1,N ,t . . . eiskOk,N ,tΨN ,t 〉.

The norm approximation (1.31) from [11] implies that for every α < min{β/2, (1 −
β)/2} there exists C > 0 such that

∣∣∣∣EΨN ,t

[
g1(O1,N ,t ) . . . gk(Ok,N ,t )

]

−
∫

ds1 . . . dsk ĝ1(s1) . . . ĝk(sk)

× 〈U ∗
ϕN ,t

T ∗
N ,tU2(t; 0)Ω, eis1O1,N ,t . . . eiskOk,N ,tU ∗

ϕN ,t
T ∗
N ,tU2(t; 0)Ω〉

∣∣∣∣

≤ CN−γ
k∏

j=1

‖ĝ j‖1. (2.13)

We are hence left with computing the expectation value

〈U ∗
ϕN ,t

T ∗
N ,tU2(t; 0)Ω, eis1O1,N ,t . . . eiskOk,N ,tU ∗

ϕN ,t
T ∗
N ,tU2(t; 0)Ω〉.

We split this computation in several Lemmata.

Lemma 4 (Action of the unitaryUϕN ,t ) Let TN ,t andU2(t; 0) be as defined in (1.13)
resp. (1.26). Moreover, let ξN ,t = T ∗

N ,tU2(t; 0)Ω . Then, using the same notations as
in Theorem 1, there exists C > 0 such that
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2164 S. Rademacher

∣∣∣∣〈UϕN ,t ξN ,t , eis1O1,N ,t . . . eiskOk,N ,tUϕN ,t ξN ,t 〉

− 〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉
∣∣∣∣

≤ C√
N

k∑

m=1

|sm |‖Om‖
⎛

⎝1 +
k∑

j=m

s2j ‖Oj‖2
⎞

⎠ .

Proof We recall that for f ∈ L2(R3) we denote φb( f ) = b∗( f ) + b( f ) with the
modified creation and annihilation operators b∗( f ), b( f ) defined in (1.9).

In order to show Lemma 4, we define for j ∈ {1, . . . , k}

Õ j,N ,t = Oj − 〈ϕN ,t , OjϕN ,t 〉.

We observe that

O j,N ,t = 1√
N

[
dΓ

(
qN ,t Õ j,N ,t qN ,t

) + dΓ
(
pN ,t O jqN ,t

) + dΓ
(
qN ,t O j pN ,t

)]
,

where pN ,t = |ϕN ,t 〉〈ϕN ,t | and qN ,t = 1 − pN ,t . The properties (1.8) of the unitary
UϕN ,t imply

U ∗
ϕN ,t

O j,N ,tUϕN ,t = 1√
N
dΓ

(
qN ,t Õ j,N ,t qN ,t

) + φb
(
qN ,t O jϕN ,t

)
.

Hence,

〈
UϕN ,t ξN ,t , e

is1O1,N ,t . . . eiskOk,N ,tUϕN ,t ξN ,t

〉

=
〈
ξN ,t ,

k∏

j=1

e
is j

(
1√
N
dΓ (qN ,t Õ j,N ,t qN ,t)+φb(qN ,t O jϕN ,t)

)

ξN ,t

〉
.

We compute

〈UϕN ,t ξN ,t , eis1O1,N ,t . . . eiskOk,N ,tUϕN ,t ξN ,t 〉
−〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉

=
k∑

m=1

〈
ξN ,t ,

m−1∏

j=1

e
is j

(
1√
N
dΓ (qN ,t Õ j,N ,t qN ,t)+φb(qN ,t O jϕN ,t)

)

×
(
e
ism

(
1√
N
dΓ (qN ,t Õm,N ,t qN ,t)+φb(qN ,t OmϕN ,t)

)

− eismφb(qN ,t OmϕN ,t)
)

×
k∏

j=m+1

eis jφb(qN ,t O jϕN ,t )ξN ,t

〉
.
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Using the fundamental theorem of calculus, we can write the difference as an integral

〈UϕN ,t ξN ,t , eis1O1,N ,t . . . eiskOk,N ,tUϕN ,t ξN ,t 〉
− 〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉

= 1√
N

k∑

m=1

∫ sm

0
dτ

〈
ξN ,t ,

m−1∏

j=1

e
is j

(
1√
N
dΓ (qN ,t Õ j,N ,t qN ,t)+φb(qN ,t O jϕN ,t)

)

× e
iτ

(
1√
N
dΓ (qN ,t Õm,N ,t qN ,t)+φb(qN ,t OmϕN ,t)

)

dΓ
(
qN ,t Õm,N ,t qN ,t

)

×ei(1−τ)φb(qN ,t OmϕN ,t)
k∏

j=m+1

eis jφb(qN ,t O jϕN ,t )ξN ,t

〉
.

The estimate ‖dΓ (A)ψ‖ ≤ ‖A‖ ‖N ψ‖ leads to

∣∣∣∣〈UϕN ,t ξN ,t , eis1O1,N ,t . . . eiskOk,N ,tUϕN ,t ξN ,t 〉

− 〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉
∣∣∣∣

≤ 1√
N

k∑

m=1

∫ sm

0
dτ ‖qN ,t Õm,N ,t qN ,t‖

×
∥∥∥∥∥∥
N ei(1−τ)φb(qN ,t OmϕN ,t)

k∏

j=m+1

eis jφb(qN ,t O jϕN ,t )ξN ,t

∥∥∥∥∥∥
.

Since ‖qN ,t Õm,N ,t qN ,t‖ ≤ ‖Om‖ and ‖qN ,t O jϕN ,t‖ ≤ ‖Oj‖, we find with (2.8)

∣∣∣∣〈UϕN ,t ξN ,t , eis1O1,N ,t . . . eiskOk,N ,tUϕN ,t ξN ,t 〉

− 〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉
∣∣∣∣

≤ 1√
N

k∑

m=1

‖Om‖
∫ sm

0
dτ

∥∥∥∥∥∥

⎛

⎝N++(1 − τ)2‖Om‖2+
k∑

j=m+1

s2j ‖Oj‖2+α

⎞

⎠ ξN ,t

∥∥∥∥∥∥

for α ≥ 1. Recall that ξN ,t = T ∗
N ,tU2(t; 0)Ω . It follows from (2.5) and Lemma 2 that

〈ξN ,t ,N
2+ ξN ,t 〉 ≤ C
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for a constant C > 0 uniform in N . Hence,

∣∣∣∣〈UϕN ,t ξN ,t , eis1O1,N ,t . . . eiskOk,N ,tUϕN ,t ξN ,t 〉

− 〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉
∣∣∣∣

≤ C√
N

k∑

m=1

|sm |‖Om‖
⎛

⎝1 +
k∑

j=m

s2j ‖Oj‖2
⎞

⎠ .

��
Lemma 5 ( Replace modified creation and annihilation operators with standard ones)
Let TN ,t and U2(t; 0) be as defined in (1.13) resp. (1.26). Moreover, let ξN ,t =
T ∗
N ,tU2(t; 0)Ω . Then, with the same notations as in Theorem 1, there exists C > 0

such that

∣∣∣∣〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉

− 〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξN ,t 〉
∣∣∣∣

≤ C

N

k∑

m=1

‖Om‖|sm |
⎛

⎝1 +
k∑

j=m

s2j ‖Oj‖
⎞

⎠
3/2

.

Proof Recall that

φa( f ) = a∗( f ) + a( f )

with the standard creation and annihilation operators a∗( f ), a( f ), while

φb( f ) = b∗( f ) + b( f )

with the modified creation and annihilation operators defined in (1.9). To this end, we
compute

〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉
− 〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξ

(1)
N ,t 〉

=
k∑

m=1

〈
ξN ,t ,

m−1∏

j=1

eis jφb(qN ,t O jϕN ,t)

×
(
eismφb(qN ,t OmϕN ,t) − eismφa(qN ,t OmϕN ,t)

)
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×
k∏

j=m+1

eis jφa(qN ,t O jϕN ,t)ξN ,t

〉

=
k∑

m=1

∫ sm

0
dτ

〈
ξN ,t ,

m−1∏

j=1

eis jφb(qN ,t O jϕN ,t)eiτφb(qN ,t OmϕN ,t)

× (
φb

(
qN ,t OmϕN ,t

) − φa
(
qN ,t OmϕN ,t

))

×ei(1−τ)φa(qN ,t OmϕN ,t)
k∏

j=m+1

eis jφa(qN ,t O jϕN ,t)ξN ,t

〉
.

By definition of the modified creation and annihilation operators (1.9), we obtain

〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉
− 〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξN ,t 〉

=
k∑

m=1

∫ sm

0
dτ 〈ξ (1)

N ,t ,

m−1∏

j=1

eis jφb(qN ,t O jϕN ,t)eiτφb(qN ,t OmϕN ,t)

× a∗ (
qN ,t OmϕN ,t

) (√
1 − N+/N − 1

)

× ei(1−τ)φa(qN ,t OmϕN ,t)
k∏

j=m+1

eis jφa(qN ,t O jϕN ,t)ξN ,t 〉

+
k∑

m=1

∫ sm

0
dτ 〈ξN ,t ,

m−1∏

j=1

eis jφb(qN ,t O jϕN ,t)eiτφb(qN ,t OmϕN ,t)

×
(√

1 − N+/N − 1
)
a

(
qN ,t OmϕN ,t

)

× ei(1−τ)φa(qN ,t OmϕN ,t)
k∏

j=m+1

eis jφa(qN ,t O jϕN ,t)ξN ,t 〉.

Since ‖a∗( f )ξ‖ ≤ ‖ f ‖2 ‖(N + 1)1/2ξ‖ resp. ‖a( f )ξ‖ ≤ ‖ f ‖2 ‖N 1/2ξ‖ and
‖qN ,t OmϕN ,t‖2 ≤ ‖Om‖, we find

∣∣∣∣〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉

− 〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξN ,t 〉
∣∣∣∣

≤ 2

N

k∑

m=1

‖Om‖
∫ sm

0
dτ ‖(N + 1)3/2ei(1−τ)φa(qN ,t OmϕN ,t)

k∏

j=m+1

eis jφa(qN ,t O jϕN ,t)ξN ,t‖.
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Now, Lemma 2 together with (2.7) and (2.5) implies

∣∣∣∣〈ξN ,t , eis1φb(qN ,t O1ϕN ,t) . . . eiskφb(qN ,t OkϕN ,t)ξN ,t 〉

− 〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξN ,t 〉
∣∣∣∣

≤ C

N

k∑

m=1

‖Om‖|sm |
⎛

⎝1 +
k∑

j=m

s2j ‖Oj‖
⎞

⎠
3/2

.

��
Lemma 6 (Replace modified Hartree equation with nonlinear Schrödinger equation)
Let TN ,t and U2(t; 0) be as defined in (1.13) resp. (1.26). Moreover, let ξN ,t =
T ∗
N ,tU2(t; 0)Ω . Then, with the same notations as in Theorem 1, there exists C > 0

such that
∣∣∣∣〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξN ,t 〉

− 〈ξ (1)
N ,t , eis1φa(qt O1ϕt ) . . . eiskφa(qt Okϕt )ξ

(1)
N ,t 〉

∣∣∣∣

≤ CN−γ
k∑

m=1

|sm | ‖Om‖
⎛

⎝1 +
k∑

j=m

s2j ‖Oj‖2
⎞

⎠
1/2

exp (exp (C |t |)) .

Proof By linearity of the operator φa( f ), we compute

〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξN ,t 〉
− 〈ξN ,t , eis1φa(qt O1ϕt ) . . . eiskφa(qt Okϕt )ξN ,t 〉

=
k∑

m=1

〈
ξN ,t ,

m−1∏

j=1

eis jφa(qN ,t O jϕN ,t)
(
eismφa(qN ,t OmϕN ,t) − eismφa(qt Omϕt )

)

×
k∏

j=m+1

eis jφa(qN ,t O jϕN ,t)ξN ,t

〉

=
k∑

m=1

∫ sm

0
dτ

〈
ξN ,t ,

m−1∏

j=1

eis jφa(qN ,t O jϕN ,t)

× eiτφa(qN ,t OmϕN ,t)φa
(
qN ,t OmϕN ,t − qt Omϕt

)
ei(1−τ)φa(qt Omϕt )

×
k∏

j=m+1

eis jφa(qN ,t O jϕN ,t)ξN ,t

〉
.
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As

‖qN ,t OmϕN ,t − qt Omϕt‖2 ≤ ‖Om‖ (‖qN ,t − qt‖2 + ‖ϕN ,t − ϕt‖2
)

≤ 2‖Om‖‖ϕN ,t − ϕt‖,

the estimate (1.18) implies

‖qN ,t OmϕN ,t − qt Omϕt‖2 ≤ C‖Om‖N−γ exp (exp (C |t |))

with γ = min{β, 1 − β}. Hence, the bound

‖φa( f )ψ‖ ≤ 2‖ f ‖2 ‖ (N + 1)1/2 ψ‖

leads to
∣∣∣∣〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξN ,t 〉

− 〈ξN ,t , eis1φa(qt O1ϕt ) . . . eiskφa(qt Okϕt )ξN ,t 〉
∣∣∣∣

≤ CN−γ exp (exp (C |t |))
k∑

m=1

‖Om‖
∫ sm

0
dτ

× ‖ (N + 1)1/2 ei(1−τ)φa(qt Omϕt )

k∏

j=m+1

eis jφa(qN ,t O jϕN ,t)ξN ,t‖.

We conclude again with Lemma (2.7), Lemma (2.5), and Lemma 2

∣∣∣∣〈ξN ,t , eis1φa(qN ,t O1ϕN ,t) . . . eiskφa(qN ,t OkϕN ,t)ξN ,t 〉

− 〈ξ (1)
N ,t , eis1φa(qt O1ϕt ) . . . eiskφa(qt Okϕt )ξ

(1)
N ,t 〉

∣∣∣∣

≤ CN−γ
k∑

m=1

|sm | ‖Om‖
⎛

⎝1 +
k∑

j=m

s2j ‖Oj‖2
⎞

⎠
1/2

exp (exp (C |t |)) .

��
Lemma 7 (Action of TN ,t ) Let TN ,t and U2(t; 0) be as defined in (1.13) resp. (1.26).
Moreover, let ξN ,t = T ∗

N ,tU2(t; 0)Ω and ξt = TN ,tξN ,t = U2,tΩ . Then, using the
same notations as in Theorem 1, there exists C > 0 such that
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∣∣∣∣〈ξN ,t , eis1φa(qt O1ϕt ) . . . eiskφa(qt Okϕt )ξN ,t 〉 − 〈ξt , eis1φa(h1,t) . . . eiskφa(hk,t)ξt 〉
∣∣∣∣

≤ CN−γ
k∑

m=1

|sm |‖Om‖
⎛

⎝1 +
k∑

j=m

s2j ‖Oj‖2
⎞

⎠
1/2

exp (exp (C |t)) .

with h j,t = cosh(ηt )qt Oϕt + sinh(ηt )qt O jϕt and ηt as defined in (1.20).

Proof We compute using the properties (1.14) of the Bogoliubov transformation

T ∗
N ,tφa

(
qt O jϕt

)
TN ,t = φa

(
cosh(ηN ,t )qt O jϕt + sinh(ηN ,t )qt O jϕt

)
,

withηN ,t as defined in (1.20). In the following,wedenote h j,N ,t = cosh(ηN ,t )qt Oϕt+
sinh(ηN ,t )qt O jϕt . Since

〈ξN ,t , eis1φa(qt O1ϕt ) . . . eiskφa(qt Okϕt )ξN ,t 〉 = 〈ξt , eis1φa(h1,N ,t) . . . eiskφa(hk,N ,t)ξt 〉,

we need to consider

〈ξt , eis1φa(h1,N ,t) . . . eiskφa(hk,N ,t)ξt 〉 − 〈ξt , eis1φa(h1,t) . . . eiskφa(hk,t)ξt 〉.

We observe using (1.24)

‖h j,N ,t − h j,t‖2 ≤ ‖Om‖ (‖ cosh(ηt ) − cosh(ηN ,t )‖2 + ‖ sinh(ηt ) − sinh(ηN ,t‖2
)

≤ 2‖Om‖ cosh((ηN ,t + ηt )/2) sinh((ηN ,t − ηt )/2)‖2
+ 2‖Om‖ sinh((ηN ,t + ηt )/2) sinh((ηN ,t − ηt )/2)‖2

≤ C‖Om‖‖ηN ,t − ηt‖2.

Thus, the estimate (1.22) leads to

‖h j,N ,t − h j,t‖2 ≤CN−γ exp (exp (C |t |)) .

Using ‖h j,t‖2 ≤ C‖Oj‖, the same arguments as in step 3 lead to

∣∣∣∣〈ξN ,t , eis1φa(qt O1ϕt ) . . . eiskφa(qt Okϕt )ξN ,t 〉 − 〈ξt , eis1φa(h1,t) . . . eiskφa(hk,t)ξt 〉
∣∣∣∣

≤ CN−γ
k∑

m=1

|sm |‖Om‖
⎛

⎝1 +
k∑

j=m

s2j ‖Oj‖2
⎞

⎠
1/2

exp (exp (C |t)) .

��
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Lemma 8 (Computing the expectation value) LetU2(t; 0) be as defined in (1.26). Let
ξt = U2,tΩ . Then, using the same notations as in Theorem 1,

〈ξt , eis1φa(h1,t) . . . eiskφa(hk,t)ξt 〉
= 1√

(2π)k det�t

∫
dx1 . . . dxk g1(x1) . . . gk(xk) e

− 1
2

∑k
i, j=1(�t )

−1
i, j xi x j .

Proof Since ξt = U2,tΩ , we are left with computing

〈ξt , eis1φa(h1,t) . . . eiskφa(hk,t)ξt 〉 = 〈Ω,U ∗
2,t e

is1φa(h1,t) . . . eiskφa(hk,t)U2,tΩ〉.
(2.14)

As proven in Proposition 1, the unitaryU2,t gives rise to a Bogoliubov transformation.
Hence, there exists bounded operators U (t; 0), V (t; 0) on L2(R3) such that

U ∗
2,tφa

(
h j,t

)
U2,t = φa

(
U (t; 0)h j,t + V (t; 0)h j,t

)
.

In the following, we denote

ν j,t = U (t; 0)h j,t + V (t; 0)h j,t

=
(
U (t; 0) cosh ηt + V (t; 0) sinh ηt

)
qt O jϕt

+
(
U (t; 0) sinh ηt + V (t; 0) cosh ηt

)
qt O jϕt .

Note that the Baker–Campbell–Hausdorff formula implies on the one hand

eiφa( f )eiφa(g) = eiφa( f +g)e−iIm〈 f ,g〉

for f , g ∈ L2(R3), i.e.,

k∏

j=1

eis jφa(ν j,t ) = eiφa(νt )
k∏

i< j

e−isi s j Im〈νi,t ,ν j,t 〉

with νt = ∑k
j=1 ν j,t . On the other hand, the Baker–Campbell–Hausdorff formula

applied to the creation and annihilation operator implies

k∏

j=1

eis jφa(ν j,t ) = e−‖νt‖22/2ea∗(νt )ea(νt )
k∏

i< j

e−isi s j Im〈νi,t ,ν j,t 〉.
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Hence, we write the expectation value (2.14) as

〈ξt , eiφa(h1,t ) . . . eiskφa(hk,t )ξt 〉 = e−‖νt‖22
k∏

i< j

e−isi s j Im〈νi,t ,ν j,t 〉〈Ω, ea
∗(νt )ea(νt )Ω〉

= e−‖νt‖22
k∏

i< j

e−isi s j Im〈νi,t ,ν j,t 〉.

Let �t ∈ C
k×k be given through

(�t )i, j =
{

〈νi,t , ν j,t 〉, if i < j

〈ν j,t , νi,t 〉, otherwise

then

〈ξt , eis1φa(h1,t ) . . . eiskφa(hk,t )ξt 〉 = e− 1
2

∑k
i, j=1(�t )i, j si s j .

By assumption, the matrix �t is invertible. Hence,

∫
ds1 . . . dsk ĝ1(s1) . . . ĝk(sk) 〈ξt , eis1φa(h1,t ) . . . eiskφa(hk,t )ξt 〉

=
∫

ds1 . . . dsk ĝ1(s1) . . . ĝk(sk) e
− 1

2

∑k
i, j=1(�t )i, j si s j

= 1√
(2π)k det�t

∫
dx1 . . . dxk g1(x1) . . . gk(xk) e

− 1
2

∑k
i, j=1(�t )

−1
i, j xi x j .

��

Summarizing the results from Lemmas 4–8, we finally obtain

∣∣∣∣EΨN ,t

[
g1(O1,N ,t ) . . . gk(Ok,N ,t )

]

− 1√
(2π)k det�t

∫
dx1 . . . dxk g1(x1) . . . gk(xk) e

− 1
2

∑k
i, j=1(�t )

−1
i, j xi x j

∣∣∣∣

≤ CN−γ exp(C exp(C |t |))

×
k∏

j=1

∫
dτ |̂g j (τ )|

(
1 + |τ |2‖Oj‖2 + N γ−1/2|τ |3‖Oj‖3 + N γ−1|τ |4‖Oj‖4

)
.

with γ = min{β, 1 − β}. This proves Theorem 1.
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17. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from
quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)
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19. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of
Bose–Einstein condensate. Ann. Math. 172(1), 291–370 (2010)
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