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Uncoupling endosomal CLC chloride/proton
exchange causes severe neurodegeneration
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Abstract

CLC chloride/proton exchangers may support acidification of
endolysosomes and raise their luminal Cl� concentration. Disrup-
tion of endosomal ClC-3 causes severe neurodegeneration. To
assess the importance of ClC-3 Cl�/H+ exchange, we now generate
Clcn3unc/unc mice in which ClC-3 is converted into a Cl� channel.
Unlike Clcn3�/� mice, Clcn3unc/unc mice appear normal owing to
compensation by ClC-4 with which ClC-3 forms heteromers. ClC-4
protein levels are strongly reduced in Clcn3�/�, but not in
Clcn3unc/unc mice because ClC-3unc binds and stabilizes ClC-4 like
wild-type ClC-3. Although mice lacking ClC-4 appear healthy, its
absence in Clcn3unc/unc/Clcn4�/� mice entails even stronger
neurodegeneration than observed in Clcn3�/� mice. A fraction of
ClC-3 is found on synaptic vesicles, but miniature postsynaptic
currents and synaptic vesicle acidification are not affected in
Clcn3unc/unc or Clcn3�/� mice before neurodegeneration sets in.
Both, Cl�/H+-exchange activity and the stabilizing effect on ClC-4,
are central to the biological function of ClC-3.
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Introduction

Ion homeostasis of intracellular organelles like endosomes, lyso-

somes, and synaptic vesicles (SVs) is important for luminal enzyme

activity, ligand–receptor interactions, transmembrane voltage, trans-

port of neurotransmitters, and other substrates across their limiting

membranes, as well as vesicle budding, fusion, and trafficking. To

date, most studies concentrated on luminal pH that drops along the

endosomal/lysosomal pathway. This acidification is driven by the

proton pump activity of V-type ATPases that need a neutralizing

counter current. This current is believed to be carried mainly by

chloride ions, although acidification of lysosomes prominently

depends on cation channels (Steinberg et al, 2010; Weinert et al,

2010). The Cl�-dependent shunt was previously thought to be medi-

ated by CLC Cl� channels (Günther et al, 1998; Piwon et al, 2000;

Kornak et al, 2001), but the vesicular ClC-3 to ClC-7 proteins, in

contrast to the plasma membrane Cl� channels (ClC-1, ClC-2, and

ClC-K), are rather 2Cl�/H+-exchangers (Picollo & Pusch, 2005;

Scheel et al, 2005; Neagoe et al, 2010; Weinert et al, 2010; Leisle

et al, 2011; Rohrbough et al, 2018). Both, CLC channels and

exchangers function as dimers with two independent ion perme-

ation pathways that are entirely contained within each CLC

monomer (Ludewig et al, 1996; Middleton et al, 1996; Weinreich &

Jentsch, 2001; Dutzler et al, 2002; Zdebik et al, 2008; Jentsch &

Pusch, 2018).

The physiological importance of vesicular CLCs is highlighted by

mouse models and patients carrying CLCN mutations. Their patholo-

gies range from impaired renal endocytosis and kidney stones (ClC-

5) (Lloyd et al, 1996; Piwon et al, 2000; Wang et al, 2000) to severe

neurodegeneration (ClC-3) (Stobrawa et al, 2001), intellectual

disability and epilepsy (ClC-4) (Veeramah et al, 2013; Hu et al,

2016; Palmer et al, 2018), to lysosomal storage disease (ClC-6) (Poët

et al, 2006) or osteopetrosis associated with lysosomal storage and

neurodegeneration (ClC-7) (Kornak et al, 2001; Kasper et al, 2005).

A gain-of-function mutation in CLCN7 causes lysosomal storage

disease and hypopigmentation without osteopetrosis (Nicoli et al,

2019).

Not only Cl� channels, but also electrogenic 2Cl�/H+-exchan-

gers are able to shunt proton pump currents. Indeed, the 2Cl�/H+-

exchanger ClC-5 may support the acidification of renal endosomes

(Günther et al, 2003; Hara-Chikuma et al, 2005a; Novarino et al,
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2010) and ClC-7 is required to acidify the resorption lacuna of osteo-

clast (Kornak et al, 2001). However, more recent experiments

demonstrate that the exchange activity, rather than the provision of

an electrical shunt, is crucial for most biological roles of ClC-5 and

ClC-7 (Novarino et al, 2010; Weinert et al, 2010). Clcn5unc and

Clcn7unc/unc knock-in mice which carry uncoupling point mutations

in the “gating glutamate”, a pore residue critically involved in 2Cl�/
H+-exchange (Accardi & Miller, 2004), revealed that the conversion

of 2Cl�/H+-exchange into a pure Cl� conductance causes similar

pathologies as the disruption of Clcn5 and Clcn7, respectively

(Novarino et al, 2010; Weinert et al, 2010). Comparable uncoupling

mutations in CLCN5 were subsequently identified in patients with

Dent’s disease (Sekine et al, 2014; Bignon et al, 2018). These obser-

vations suggest an important role for proton-driven endosomal–

lysosomal Cl� accumulation. Indeed, lysosomal Cl� concentration,

but not luminal pH, was reduced in both Clcn7�/� and Clcn7unc/unc

mice (Weinert et al, 2010).

The transport properties of ClC-3 had been highly controversial

(for review, see (Jentsch, 2008; Jentsch & Pusch, 2018)), but it is

now established that ClC-3 is a vesicular 2Cl�/H+-exchanger (Mat-

suda et al, 2008; Guzman et al, 2013; Jentsch & Pusch, 2018; Rohr-

bough et al, 2018) like the close homologs ClC-4 and ClC-5 (Picollo

& Pusch, 2005; Scheel et al, 2005) and the other vesicular CLCs. In

addition to its presence on endosomes, ClC-3 may also be found on

SVs (Stobrawa et al, 2001; Salazar et al, 2004; Seong et al, 2005;

Grønborg et al, 2010) and synaptic-like microvesicles (SLMVs) of

neuroendocrine cells (Salazar et al, 2004; Maritzen et al, 2008).

However, more recent work questioned a significant presence of

ClC-3 on SVs (Schenck et al, 2009). Furthermore, these authors

suggested that the reduced acidification of SVs from Clcn3�/� mice

(Stobrawa et al, 2001) rather results from a secondary decrease in

the vesicular glutamate transporter VGLUT1 which may also

conduct chloride (Schenck et al, 2009).

We now asked whether the biological role of ClC-3 depends on

its Cl�/H+ exchange activity or on its electrical conductance and

whether ClC-3 is important for SV function. In stark contrast to the

severe neurodegeneration of Clcn3�/� mice (Stobrawa et al, 2001;

Dickerson et al, 2002; Yoshikawa et al, 2002), newly generated

Clcn3unc/unc mice carrying an uncoupling mutation in ClC-3 lacked

detectable phenotypes. This could be explained by a compensation

by ClC-4 with which ClC-3 forms heteromers in vivo. Disruption of

ClC-3 leads to increased ER retention and degradation of ClC-4,

suggesting that a reduction of ClC-4 levels contributes to the severe

neurodegeneration of Clcn3�/� mice. We also demonstrated that

ClC-3 is expressed on a fraction of SVs and that miniature postsy-

naptic currents and SV acidification were not affected in young

Clcn3�/� mice before the onset of neurodegeneration. Proton-driven

Cl� transport by ClC-3, if not compensated by ClC-4, is crucial for

the integrity of the CNS. ClC-3 overwhelmingly localizes to endo-

somes and apparently has no significant role in SVs.

Results

Clcn3unc/unc mice do not display neurodegeneration

To elucidate whether the electrical conductance or the Cl�/H+-

exchange activity of ClC-3 is crucial for its biological role, we

generated Clcn3unc/unc knock-in mice carrying the E224A mutation

in the “gating glutamate” (Appendix Fig S1A–D). When studied in a

ClC-3 construct that partially localizes to the plasma membrane

(Zhao et al, 2007) (Fig EV1A), this mutation linearized the normally

strongly outwardly rectifying ClC-3 currents (Fig EV1B and C). As

previously observed with the bacterial ecClC exchanger (Accardi &

Miller, 2004) and mammalian ClC-4 through ClC-7 (Picollo & Pusch,

2005; Scheel et al, 2005; Neagoe et al, 2010; Leisle et al, 2011), this

mutation also uncouples Cl� currents from H+ countertransport

(Rohrbough et al, 2018). “Uncoupled” CLC exchangers mediate

channel-like Cl� conductances without appreciable transport of H+.

Clcn3unc/unc mice were viable and expressed the mutant ClC-3unc

protein at wild-type (WT) levels (Appendix Fig S1E). These mice

were born at Mendelian ratios, were fertile, and had no obvious

phenotype. Even at 20 months of age, they neither displayed the

severe degeneration of the CNS nor of the retina (Fig 1A and B) that

is observed in Clcn3�/� mice (Stobrawa et al, 2001; Dickerson et al,

2002; Yoshikawa et al, 2002). This contrasts with findings for

Clcn5unc and Clcn7unc/unc mice (Novarino et al, 2010; Weinert et al,

2010) which phenotypically largely resemble the respective null

mice (Piwon et al, 2000; Kornak et al, 2001). These observations

raised the possibility that another vesicular CLC protein might

compensate for the loss of ClC-3 2Cl�/H+-exchange in Clcn3unc/unc,

but not in Clcn3�/� mice.

ClC-4 levels are reduced in Clcn3�/�, but not in Clcn3unc/unc mice

We therefore examined the expression levels of ClC-4 and ClC-5, the

closest homologs of ClC-3 (~ 76% identity), in tissues of Clcn3unc/unc

and Clcn3�/� mice. Although ClC-4 mRNA levels are not changed in

the brain of Clcn3�/� mice (Stobrawa et al, 2001), ClC-4 protein

levels were strongly and more moderately decreased in brain and

kidney of Clcn3�/� mice, respectively (Fig 1C–E). Depending on the

tissue and experimental conditions, the ClC-4 band often appeared

as doublet in Clcn3�/� mice (Fig EV2B). Western blot quantifications

of the upper band, which likely reflects the mature glycosylated form

of ClC-4 (see below), revealed that it was reduced down to 30 and

60% in brain and kidney of Clcn3�/� mice, respectively (Fig 1E). In

heterozygous Clcn3+/� mice, ClC-4 protein amounts were reduced

down to ~ 65% in brain and ~ 80% in kidney (Fig 1C and D).

Expression of ClC-5, which is found in kidney but is almost absent

from brain, appeared unchanged upon Clcn3 disruption (Fig 1C).

ClC-4 protein levels were markedly reduced in all other Clcn3�/�

tissues examined, including liver, pancreas, adrenal gland, spleen,

lung, skeletal muscle, and heart (Fig EV2B). Treatment with PNGase

F, which removes all N-linked glycans, showed that differences in

size of ClC-4 were due to differential glycosylation (Fig EV2C). In

contrast to the larger ClC-4 species, the lower band, which was much

more prominent in most Clcn3�/� tissues, was sensitive to digestion

with Endo H that cleaves oligosaccharides of core-glycosylated ER-

resident membrane proteins (Fig EV2D). This indicated that in

Clcn3�/� mice, a sizeable portion of ClC-4 does not leave the ER,

where it is subject to degradation. Importantly, no reduction of ClC-4

protein levels was observed in brain or kidney of Clcn3unc/unc mice

(Figs 1C and EV2A) which express an “uncoupled”, but otherwise

intact ClC-3 protein. Importantly, whereas ClC-4 levels depended on

ClC-3, ClC-3 levels were unchanged in both brain and kidney of

Clcn4�/� mice (Fig EV2A).
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Figure 1. Hippocampal morphology and expression of intracellular CLC proteins of Clcn3 mouse models.

A Nissl-stained sagittal brain sections reveal no change in hippocampal morphology between Clcn3unc/unc and Clcn3+/+ mice at P45 or after 20 months. In contrast, the
hippocampus was absent (indicated by asterisk) in 3-month-old Clcn3�/� mice (scale bar: 200 lm).

B Nissl-stained paraffin sections show intact retinal layers in 20-month-old Clcn3unc/unc mice. Neurodegeneration in Clcn3�/� mice, however, results in a loss of retinal
structure already at 11 weeks of age (scale bar: 100 lm). GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; IS, photoreceptor inner
segments; ONL, outer nuclear layer; OPL, outer plexiform layer; OS, photoreceptor outer segments; RPE, retinal pigment epithelium.

C Immunoblots for ClC-3, ClC-4, and CIC-5 of membrane fractions of WT (+/+), Clcn3unc/unc (unc/unc), Clcn3unc/+ (unc/+), and Clcn3�/� (�/�) mice. b-Actin, loading
control.

D Representative Western blot for ClC-4 of membrane fractions from brain and kidney of WT (+/+), Clcn3+/� (+/�), and Clcn3�/� (�/�) mice. b-Actin, loading control.
E Quantification of ClC-4 immunoblots including those shown in (C, D) (normalized to actin). Mean values � SEM. Average from ≥ 5 animals per genotype and at ≥ 2

immunoblots per animal. ***P < 0.0005, **P < 0.005, *P < 0.05 (two-tailed unpaired t-test).

Source data are available online for this figure.
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ClC-3 and ClC-3unc heteromerize with ClC-4

CLC proteins function as dimers (Ludewig et al, 1996; Middleton

et al, 1996; Dutzler et al, 2002). With the exception of ClC-6 and

ClC-7, heterodimers have been observed upon heterologous co-

expression of members of the same homology branch (Lorenz et al,

1996; Weinreich & Jentsch, 2001; Mohammad-Panah et al, 2003;

Suzuki et al, 2006; Guzman et al, 2017). We therefore suspected

that ClC-3 stabilizes ClC-4 by forming heterodimers in vivo. Indeed,

ClC-3 antibodies co-immunoprecipitated ClC-4 from both WT and

Clcn3unc/unc brain and vice versa (Fig 2A). These results were

corroborated by Förster resonance energy transfer (FRET) measure-

ments with fluorescently tagged ClC-3 and ClC-4 in transfected COS-

7 cells (Fig 2B). Agreeing with previous results obtained with over-

expressing HEK cells (Okkenhaug et al, 2006; Guzman et al, 2017),

ClC-4 showed typical ER-like reticular staining when expressed in

COS-7 cells (Fig 2C). In contrast, ClC-3 localized to vesicular struc-

tures, which were partially positive for the late endosomal/lysoso-

mal marker Lamp-1 (Fig 2C). When both CLCs were co-transfected,

ClC-4 co-localized with ClC-3 in vesicles (Fig 2D) (Guzman et al,

2017). A similar change in ClC-4 localization was observed upon co-

expression with the ClC-3unc mutant (Fig 2D), as expected from our

observation that the mutant ClC-3 protein retains its physical inter-

action with ClC-4 (Fig 2A). Hence, both WT ClC-3 and ClC-3unc

associate with ClC-4 and thereby promote the transport of ClC-4

from the ER to endosomal–lysosomal compartments and protects it

from degradation.

Severe neurodegeneration in Clcn3unc/unc/Clcn4�/� mice

The above experiments suggested that ClC-4 may compensate for a

loss of ClC-3 function in Clcn3unc/unc, but not in Clcn3�/� mice in

which brain ClC-4 levels are decreased to ~ 30% of WT (Fig 1E). To

completely eliminate this potential compensation, we crossed

Clcn3unc/unc mice with Clcn4�/� mice. Although Clcn4�/� mice

appear to be normal (Rickheit et al, 2010), we reassessed potential

effects of Clcn4 disruption because mutations in CLCN4 were

recently associated with X-linked intellectual disability and epileptic

encephalopathy (Veeramah et al, 2013; Hu et al, 2016; Palmer et al,

A

B

C

D

Figure 2. Formation of ClC-3/ClC-4 heteromers.

A Co-immunoprecipitation reveals a ClC-3–ClC-4 complex. Ten percent of
solubilized brain membranes of WT and Clcn3unc/unc mice were directly
loaded on the gel (input, or first immunoprecipitated (IP) with antibodies
against ClC-3 or ClC-4). Western blots were probed for ClC-3 and ClC-4.
Equivalent amounts of lysates and precipitates were loaded. * unspecific
band/contamination.

B FRET experiments show homo- and heteromerization of ClC-3 and ClC-4
constructs [fused to yellow fluorescent protein (YFP) and cyan fluorescent
protein (CFP)] overexpressed in COS-7 cells. Co-expressed constructs are
indicated. Graph represents energy transfer efficiencies from acceptor
photobleaching, depicted as bleach corrected values (subtraction of ClC-
4CFP alone). Mean values � SEM. N = 20 (ClC-3YFP/ClC-4CFP); 33 (ClC-
3YFP/ClC-3CFP); 26 (ClC-4YFP/ClC-4CFP); 42 (ClC-3YFP/Lamp-1CFP) cells.
***P < 0.0005 (two-tailed unpaired t-test).

C Immunolabeling shows subcellular localization of hClC-4 (top, green in
merge), hClC-3 (middle, green in merge), and hClC-3unc (bottom, green in
merge) of transiently transfected COS-7 cells, in comparison with either PDI
or Lamp-1 (both red) as marker for the ER and late endosomes/lysosomes,
respectively.

D Co-localization of hClC-3 and hClC-4 in cytoplasmic vesicles of COS-7 cells
transfected with hClC-4 cDNA [hemagglutinin (HA) tagged] together with
either hClC-3 or hClC-3unc. Immunostaining used antibodies against ClC-3
and HA tag (green and red in merge, respectively).

Data information: DNA stained with DAPI in (C) and (D), [scale bar in (C) and
(D): 20 lm].
Source data are available online for this figure.
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2018). However, Clcn4�/� mice neither displayed discernible

anatomical changes in the brain (Appendix Fig S2), nor obvious

behavioral abnormalities.

Clcn3unc/unc/Clcn4�/� mice were born at Mendelian ratio. Similar

to Clcn3�/� mice (Stobrawa et al, 2001; Dickerson et al, 2002; Yoshi-

kawa et al, 2002), they were growth-retarded. Most died within

5 weeks after birth and only ~ 20% became older than 10 weeks

(Fig 3A). Brains from Clcn3unc/unc/Clcn4�/� mice displayed severe

neurodegeneration (Fig 3B). Like in Clcn3�/� mice (Stobrawa et al,

2001), degeneration became first apparent in the hippocampus, but

progressed much faster. Whereas the hippocampus began to show

mild degeneration at P21 and almost totally disappeared at 10 weeks

of age in Clcn3�/� mice (Stobrawa et al, 2001), Clcn3unc/unc/Clcn4�/�

mice showed severe hippocampal degeneration at P21 and mice had

lost their hippocampi already 4 weeks after birth (Fig 3B). Again simi-

lar to Clcn3�/� mice, neurodegeneration in Clcn3unc/unc/Clcn4�/� mice

was accompanied by an activation of astrocytes as indicated by GFAP

staining. Clcn3unc/unc/Clcn4�/� mice showed severe retinal degenera-

tion (Fig 3C), similar to Clcn3�/� mice (Stobrawa et al, 2001).

The more severe phenotype of Clcn3unc/unc/Clcn4�/� compared

to Clcn3�/� mice suggested that the severity of neurodegeneration

depends on the expression levels of ClC-4. Clcn3unc/unc/Clcn4+/�

mice, in which ClC-4 protein levels are reduced to 75% of normal,

did not show neurodegeneration even at 12 weeks of age

(Appendix Fig S3A). Likewise, on a Clcn4�/� background, heterozy-

gous Clcn3unc alleles did not cause pathologies (Appendix Fig S3B).

In contrast, only very few Clcn3�/�/Clcn4�/� mice were born and

then died shortly after birth (Fig 3A). Hence, ClC-3 and ClC-4 have

partially overlapping functions. The occurrence of neurodegenera-

tion in Clcn3�/�, but not Clcn4�/� mice might be largely explained

by the fact that ClC-4 levels are strongly decreased in Clcn3�/� mice,

whereas ClC-3 abundance does not depend on ClC-4. As revealed

only in the absence of ClC-4, the pure Cl� conductance of ClC-3unc

cannot functionally replace the 2Cl�/H+-exchange of WT ClC-3.

However, this conductance may substitute for some aspect of ClC-3

function as revealed by the milder phenotype of Clcn3unc/unc/

Clcn4�/� compared to Clcn3�/�/Clcn4�/� mice. However, we

cannot exclude that the more severe phenotype of the double

knock-out is in part owed to the lack of the ClC-3 protein that might

bind to unknown interaction partners.

Subcellular localization of ClC-3 and ClC-4 in brain

Because available ClC-3 antibodies are of limited use for immuno-

histochemistry (IHC) of native tissue, we generated knock-in mice

in which we epitope-tagged ClC-3 (Appendix Fig S4A and B). We

A

B

C

Figure 3. Life span and neurodegeneration of Clcn3/Clcn4mousemodels.

A Clcn3unc/unc/Clcn4�/� and Clcn3�/� mice died within 3–4 weeks after birth.
Approximately 20% of the animals survived in either line (Clcn3unc/unc/
Clcn4�/�, n = 136, and Clcn3�/�, n = 187). All Clcn3�/�/Clcn4�/� mice
(n = 4) died within 1–2 weeks after birth.

B Nissl-stained paraffin sections show progressive neuronal cell loss (arrows)
that begins in hippocampal CA1 region of P14 Clcn3unc/unc/Clcn4�/� mice
and results in a complete loss of the hippocampus at P28.
Neurodegeneration progresses slower in Clcn3�/� mice (Stobrawa et al,
2001) (scale bar: 200 lm).

C Semi-thin sections of P28 retinae revealed degeneration of photoreceptor
cells in the outer nuclear layer and outer and inner segment of Clcn3unc/unc/
Clcn4�/�, but not of Clcn3unc/unc or Clcn4�/� mice (scale bar: 50 lm). GCL,
ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; IS,
photoreceptor inner segments; ONL, outer nuclear layer; OPL, outer
plexiform layer; OS, photoreceptor outer segments; RPE, retinal pigment
epithelium.

Source data are available online for this figure.
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opted for a Venus tag (ven), a fast-maturing and brightly fluores-

cent variant of the green fluorescent protein (GFP) (Nagai et al,

2002), which we fused to the N-terminus of ClC-3. Homozygous

Clcn3ven/ven mice were born at Mendelian ratio, had a normal life

expectancy and did not show neurodegeneration even at

10 weeks of age (Appendix Fig S4C). Clcn3ven/ven/Clcn4�/� mice

did not display hippocampal degeneration either (Appendix Fig

S4C), suggesting that the VenusClC-3 fusion protein functions

normally. VenusClC-3 protein levels were undistinguishable from

ClC-3 levels in WT mice (Appendix Fig S4D). Since low fluores-

cence intensities precluded direct imaging of VenusClC-3 fluores-

cence in tissue sections, we used anti-GFP antibodies in IHC. In

brain, VenusClC-3 was most prominently expressed in the hilus

and stratum lucidum of the hippocampus and in the cerebellum

(Appendix Fig S5A and B). IHC for ClC-4 revealed a similar distri-

bution (Appendix Fig S5C). The absence of signals for VenusClC-3

and ClC-4 in tissue from WT and Clcn4�/� mice, respectively,

validated the specificity of our labeling (Appendix Figs S5B and

C, and Fig 4A).

Compatible with the formation of ClC-3/4 heteromers in vivo,
VenusClC-3 and ClC-4 co-localized in punctate pattern in cell bodies

and neurites of hippocampal pyramidal neurons (Fig 4B). Both in

brain sections and in cultured hippocampal neurons of Clcn3ven/ven

mice, ClC-3 localized to compartments that were positive for the

endosomal marker EEA1 or for Lamp-1, a marker of late endosomes

and lysosomes (Fig 4C and D). Roughly 30, 20, and 10% of
VenusClC-3-positive structures in somata of cultured hippocampal

neurons were co-labeled for transferrin receptor (TfR), EEA1, and

Lamp-1, respectively (Appendix Fig S6). We also found VenusClC-3

in astrocytes and oligodendrocytes (Fig EV3A) where it co-localized

with rab4, EEA1, and TfR, but not significantly with Lamp-1

(Fig EV3B). Neither VGLUT1 nor synaptophysin, both markers for

SVs, showed significant co-localization with ClC-3 (Fig 4C and D).

However, ClC-3 was described to also localize to SVs (Stobrawa

et al, 2001; Salazar et al, 2004; Seong et al, 2005; Grønborg et al,

2010) and SLMVs (Salazar et al, 2004; Maritzen et al, 2008) and to

affect synaptic physiology (Wang et al, 2006; Riazanski et al, 2011;

Guzman et al, 2014). Based on comparisons of ClC-3 with VGLUT1

levels in quantitative Western blots, however, Schenck et al (2009)

reported that ClC-3 was present on only every 2,000th SV. We there-

fore re-examined this important issue. Immunoblots detected ClC-3

and ClC-4 in the LP2 fraction of brain membranes, which is enriched

for SVs as indicated by the accumulation of synaptophysin

(Fig EV4A and B) and the virtual absence of postsynaptic PSD95

(Fig EV4A). Using our KO-controlled ClC-3 antibody (Stobrawa

et al, 2001) and a VGLUT1 construct that was epitope-tagged at the

N-terminus for antibody calibration, quantitative Western blot

analysis suggested that the copy number ratio of ClC-3/VGLUT1 in

the LP2 fraction is ~ 1/250 (Fig EV4C–E). This value is much higher

than the ClC-3/VGLUT1 ratio of ~ 1/5,000 in the SV fraction

reported by Schenck et al who have used a similar approach but

had tagged VGLUT1 at the C-terminus. Taking into account the typi-

cal SV content of the LP2 fraction (~ 50%) (Huttner et al, 1983) and

the number of VGLUT1 on SVs (~ 10) (Takamori et al, 2006), our

results yielded the rough estimate of one ClC-3 protein on every 25th

SV (Fig EV4C–E). The expression of ClC-3 on endosomes, the pres-

ence of endosomal structures in synaptic boutons (Watanabe et al,

2014; Milosevic, 2018), and the presence of the endosomal marker

rab4 and lysosomal cathepsin D in LP2 fractions (Fig EV4B) suggest

that the abundance of ClC-3 on SVs might even be lower.

We further examined the presence of ClC-3 on SVs by single-

vesicle imaging (Farsi et al, 2016). Venus-tagged SVs purified from

brain of Clcn3ven/ven mice (Fig 4E) were immobilized on coated

glass cover slips at low density and imaged using total-internal

reflection fluorescence (TIRF) microscopy (Fig 4F). The well-sepa-

rated vesicles allowed to correlate the expression of ClC-3 with

those of the SV marker proteins synaptophysin or VGLUT1 by

immunofluorescence (IF). Roughly 10% of vesicles stained for

either VGLUT1 or synaptophysin showed Venus-ClC-3 fluorescence

(Fig 4G). This value may underestimate the proportion of SVs

containing ClC-3 since the procedures needed to detect VGLUT1 and

synaptophysin by IF affected Venus fluorescence. Sixty and

eighty percent of Venus-ClC-3 containing vesicles were labeled for

VGLUT1 or synaptophysin, respectively (Fig 4H and I), suggesting

that the remainder might represent GABAergic SVs or endosome-

like vesicles.

Collectively, these data show that ClC-3 is present on a consider-

ably larger fraction of SVs than reported by Schenck et al (2009).

Although both types of experiments (Figs EV4 and 4F–H) gave

quantitatively different results, they suggest that maybe 5–15% of

SVs contain ClC-3. As indicated by IHC of brain sections, however,

the bulk of ClC-3 is rather found on endosomes.

Acidification of synaptic vesicles and neuronal endosomes

ClC-3 was reported to support the acidification of endosomes

(Yoshikawa et al, 2002; Hara-Chikuma et al, 2005b; Weylandt et al,

2007) and SVs (Stobrawa et al, 2001; Riazanski et al, 2011) by

providing an electric shunt for proton pumping. However, more

recent work (Schenck et al, 2009) suggested that impaired SV acidi-

fication in Clcn3�/� mice may rather be due to the observed reduc-

tion in the levels of VGLUT1 (Stobrawa et al, 2001), which, in

addition to its role as glutamate transporter, may also conduct Cl�

(Schenck et al, 2009; Preobraschenski et al, 2014; Eriksen et al,

2016; Martineau et al, 2017).

Since the impairment of SV acidification in Clcn3�/� mice may

be age-dependent (Schenck et al, 2009), expression levels of ClC-3,

ClC-4, and key synaptic proteins in the brain of WT and Clcn3�/�

mice were examined as function of age (Fig 5A). In WT mice, ClC-3

and ClC-4 expression remained constant over the time span investi-

gated (2–12 weeks), as did the changes in ClC-4 observed in

Clcn3�/� mice (Figs 1C–E and 5A). Protein levels of the vesicular

GABA transporter VGAT, the a1 subunit of the GABAA receptor, and

the GluR4 subunit of the glutamate receptor did not change with age

and were not affected by Clcn3 disruption. By contrast, VGLUT1

expression markedly increased between 2 and 6 weeks of age,

whereas VGLUT2 levels declined over the entire time span. In line

with our previous observations (Stobrawa et al, 2001), VGLUT1

levels were markedly reduced compared to WT in 6- and 12-week-

old Clcn3�/� mice (Fig 5A) which already display overt neurodegen-

eration (Stobrawa et al, 2001).

ATP-driven luminal acidification of SV-enriched LP2 fractions

was assessed by acridine orange quenching (Fig 5B). Correlating

with the decrease of VGLUT1, Clcn3 disruption decreased ATP-

driven acidification of LP2 vesicles at 6 and 12, but not at 2 weeks

of age (Fig 5C). LP2 fractions from either Clcn3unc/unc or Clcn4�/�
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Figure 4. Subcellular localization of VenusClC-3 and ClC-4 in neurons.

A GFP antibodies immunolabel VenusClC-3 (green) in the somata of CA1 pyramidal neurons of Clcn3ven/ven, but not Clcn3+/+ brain sections. sp, stratum pyramidale
(scale bar: 20 lm).

B Co-immunolabeling of VenusClC-3 (green) with ClC-4 (red) in the CA3 region of Clcn3ven/ven mice (scale bar: 20 lm). sl, stratum lucidum; sp, stratum pyramidale.
C Co-immunostaining of VenusClC-3 (green) with EEA1 (red, left panel), Lamp-1 (red, middle panel), or synaptophysin (red, right panel) in either CA1 or CA3 region of

Clcn3ven/ven mice. Arrows indicate structures of overlap (scale bar: 5 lm).
D GFP antibody immunolabels VenusClC-3 (green) in neurites of cultured neurons. EEA1 and VGLUT1 are co-stained (both in red; left and right panel, respectively). The

dendritic marker MAP2 is stained in blue (right panel; scale bars: 10 lm). DNA stained with DAPI.
E Immunoblot analysis of fractions collected during preparation of SVs from brain of Clcn3ven/ven mice. VenusClC-3 (detected with GFP antibody) co-purified with SV

marker protein synaptophysin.
F Fluorescence of immobilized Venus-tagged SVs imaged with TIRF microscopy. Scale bar, 2 lm.
G, H Co-localization between the Venus-tagged vesicles with antibodies against VGLUT1 and synaptophysin was analyzed. (G) 11.4 � 0.6 (SD) of VGLUT1-labeled SVs

and 8.2 � 2 (SD) of synaptophysin-labeled SVs showed Venus fluorescence (n = 6). (H) 65 � 5.4 (SD) and 79.4 � 3.8 (SD) of Venus-tagged SVs showed co-
localization with VGLUT1 and synaptophysin, respectively (n = 6).

I Co-immunolabeling of VenusClC-3 (green) with synaptophysin (red) of immobilized SVs imaged with TIRF microscopy. Vesicle in quadrant delimited by dashed line
is shown in higher magnification in merge. Scale bar, 2 lm.

Source data are available online for this figure.
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Figure 5. ATP-induced acidification of synaptic vesicle-enriched LP2 fraction derived from different Clcn3 and Clcn4 mouse models.

A Immunoblots for ClC-3, ClC-4, VGLUT1, VGLUT2, VGAT, GluR4, and GABAA-R-a1 of whole lysates from brain of Clcn3+/+ and Clcn3�/� mice at 2, 6, and 12 weeks of age.
B Acidification of synaptic vesicle LP2 fractions from Clcn3unc/unc and Clcn3+/+ mice at 1 year of age (upper panel, n = 2 animals each and ≥ 3 measurements per

animal), 10-week-old Clcn4�/� and WT mice (middle panel, n = 3 animals each and ≥ 3 measurements per animal), and 4- to 6-week-old Clcn3unc/unc/Clcn4�/� and
control mice (lower panel, six animals each with ≥ 2 measurements per animal). A decrease in fluorescence reflects acidification. The protonophore FCCP dissipated
the pH gradient. Mean values � SEM.

C Quantification of ATP-induced acidification of LP2 fractions derived from 2, 6, and 10- to 12-week-old Clcn3�/� compared to wild-type mice. Acidification measured
by acridine orange fluorescence in the presence of 60 mM KCl. At least two animals in at least two independent experiments were pooled. Each measurement was
performed at least three times. Mean � SEM is shown.*P < 0.05, ***P < 0.0005 (two-tailed unpaired t-test).

D Immunoblot revealed strong reduction of VGLUT1 levels in the homogenate (H) and LP2 fraction of Clcn3unc/unc/Clcn4�/� mice.
E Endosomal pH of Clcn3+/+ and Clcn3�/� primary hippocampal neurons determined with a pH-sensitive transferrin conjugate. N = 5 independent cell lines with at

least two live cell dishes per cell line with about 10 images each and ≥ 10 Tfn-positive compartments per image and genotype were analyzed. Mean � SEM is
shown.

Source data are available online for this figure.
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mice, which do not show neurodegeneration, exhibited normal

ATP-driven acidification. However, acidification of vesicles obtained

from Clcn3unc/unc/Clcn4�/� mice with fast progressing neurodegen-

eration and strong reduction of VGLUT1 levels (Fig 5D) was mark-

edly reduced even at 4–6 weeks of age when compared to control

littermates (Fig 5B).

We also determined luminal pH of TfR-positive endosomal

compartments in cultured neurons by ratiometric imaging. pH-sensi-

tive and pH-insensitive transferrin-coupled conjugates Tfn-FITC and

Tfn-546, respectively, were chased into recycling endosomes after

endocytosis. Immunolabeling showed that roughly 80% of TfR-expres-

sing compartments contained VenusClC-3 (Appendix Fig S6). There was

no significant difference in average pH between WT [5.36 � 0.07

(SEM)] and Clcn3�/� endosomes (pH 5.48 � 0.11; Fig 5E), suggesting

that ClC-3 does not provide the main shunt conductance for the acidifi-

cation of TfR-positive neuronal compartments.

Effect of ClC-3 on synaptic function and structure

The failure of Clcn3 disruption to impair SV acidification before the

onset of neurodegeneration questioned a role of ClC-3 in loading SVs

with neurotransmitters. Indeed, in our previous work (Stobrawa

et al, 2001), Clcn3 disruption did not affect the amplitude or

frequency of miniature inhibitory postsynaptic currents (mIPSCs)

which are elicited by spontaneous exocytosis of GABA-containing

SVs. We had only detected marginal effects on miniature excitatory

(glutamatergic) postsynaptic currents (mEPSCs), which, however,

may have been caused by incipient neurodegeneration at P13–P15,

the time window of our experiments (Stobrawa et al, 2001). By

contrast, Nelson and co-workers more recently reported markedly

reduced frequencies and amplitudes of mIPSCs in Clcn3�/� mice

(Riazanski et al, 2011) and Fahlke’s group stated that Clcn3 disrup-

tion increased frequencies and amplitudes of mEPSCs in primary

neuronal cultures (Guzman et al, 2014). We re-investigated mIPSCs

and mEPSCs in CA1 hippocampal pyramidal neurons at P14–16,

now including also Clcn3unc and Clcn4� alleles (Fig 6A–G). Again no

differences in mIPSCs between Clcn3�/� and Clcn3+/+ mice were

found (Fig 6A and B). We neither observed differences in mIPSCs

between Clcn3unc/unc and Clcn3+/+ mice (Fig 6C), nor between

Clcn4+/+ and Clcn4�/� mice (Fig 6D). Compared to Clcn4�/� mice,

the mIPSC interevent intervals, but not amplitudes, appeared longer

in Clcn3unc/unc/Clcn4�/� mice (Fig 6E). However, these mice have

the most severe neurodegeneration among the investigated geno-

types. In these mice, there also appeared to be a marginal increase in

mEPSC frequency, but not amplitudes, when compared to Clcn4

mice (Fig 6F and G). Guzman et al (2014) reported that the area of

SVs was increased by ~ 30% in Clcn3�/� versus WT mice. However,

we did not observe significant changes either in the number nor the

size of SVs and endosome-like vacuoles of glutamatergic spine

synapses in Clcn3�/� compared to WT brain sections (Fig EV5).

We further investigated whether ClC-3 is exocytosed together

with SV markers upon electrical stimulation of primary hippocam-

pal neurons. These neurons were transfected with a construct in

which the genetically encoded pH-sensitive indicator pHluorin

(Miesenböck et al, 1998) was fused to a luminal loop of ClC-3 (ClC-

3-pHluorin). The fluorescence of the fusion protein is expected to

increase upon exocytosis from an acidic SV because it then faces the

more alkaline extracellular medium. Subsequent endocytosis and

vesicular acidification again reduce fluorescence. pH-sensitive

synaptobrevin 2-mOrange reported SV exocytosis. In contrast, co-

transfected ClC-3-pHluorin fluorescence did not increase in response

to action potential firing (Fig 6H), suggesting that exocytosis-compe-

tent SVs express only low amounts of ClC-3.

Discussion

The biological importance of particular ion transport processes is

most impressively demonstrated by phenotypes resulting from their

genetic manipulation in animal models, as reported here for ClC-3

and ClC-4. Our work demonstrates that the exchange of Cl� for H+,

rather than the provision of a conductance, is crucial for the biologi-

cal role of ClC-3. This role became only apparent in the absence of

ClC-4 because the exchange activity of ClC-4 (Picollo & Pusch, 2005;

Scheel et al, 2005) compensated for the loss of ClC-3 Cl�/H+-

exchange in Clcn3unc/unc mice in which ClC-3 mediates a Cl�

conductance. In vivo, the stability of ClC-4 depends on ClC-3 with

which it forms heterodimers. The bulk of ClC-3 resides on endo-

somes and to a minor degree also on SVs. However, we could not

confirm reports suggesting an important role of ClC-3 in synaptic

physiology (Riazanski et al, 2011; Guzman et al, 2014).

Heteromeric CLCs

CLC Cl� channels and transporters (Jentsch, 2008; Jentsch & Pusch,

2018) function as dimers with one permeation pathway per CLC

monomer (Ludewig et al, 1996; Middleton et al, 1996; Weinreich &

Jentsch, 2001; Dutzler et al, 2002). In addition to homodimers,

some CLC proteins can form heterodimers (Lorenz et al, 1996;

Mohammad-Panah et al, 2003; Suzuki et al, 2006; Guzman et al,

2017) which may display novel properties (Lorenz et al, 1996). It

has remained unclear whether CLC heterodimers exist in vivo and

whether they are biologically important. We found that in vivo a

substantial portion of ClC-4 is found in physical association with

ClC-3. Whereas ClC-3 reaches endosomes without ClC-4, the pres-

ence of ClC-4 in endosomes largely depends on ClC-3. In the

absence of the ClC-3 binding partner, a large fraction of ClC-4

remains in the ER where it is probably degraded. As indicated by

the even more severe pathology of Clcn3�/�/Clcn4�/� compared to

Clcn3�/� mice, the reduced ClC-4 levels in Clcn3�/� mice likely

contribute to their neurodegeneration (Stobrawa et al, 2001; Yoshi-

kawa et al, 2002). The reason for the ER retention of ClC-4 remains

unclear. Several membrane proteins display arginine-based reten-

tion motifs that are shielded by interaction partners to facilitate ER

exit (Zerangue et al, 1999; Michelsen et al, 2005). However, no

functional arginine-based or other linear signal sequence could be

identified in the N-terminus of ClC-4 that reportedly localizes it to

the ER (Okkenhaug et al, 2006).

Although both ClC-3 and ClC-4 are widely expressed across

tissues, their relative expression levels vary (Fig EV2B). Expression

databases (https://gtexportal.org/) suggest that both isoforms are

expressed to roughly similar levels in brain and muscle, but that the

ClC-3/ClC-4 mRNA ratio is markedly higher in most other tissues.

Cells probably co-express heteromeric and homomeric ClC-3 and

ClC-4 exchangers since ClC-3 does not require ClC-4 for ER exit, and

because a fraction of ClC-4 can leave the ER without ClC-3. This is
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Figure 6. Impact of Clcn3 and Clcn4 genotypes on synaptic vesicle exocytosis.

A–E Miniature inhibitory postsynaptic currents (mIPSCs) measured in CA1 pyramidal neurons in different mouse models at P14–P16. (A) Example mIPSCs of WT (left)
and Clcn3�/� neurons. (B–E) Mean values � SEM and cumulative histogram of amplitude (top) and frequency/interevent–interval (bottom) of mIPSCs in different
mouse models as indicated. Several cells of three mice of each genotype were analyzed. Compared genotypes were siblings. No difference in amplitude or
frequency/interevent–interval distribution of mIPSCs was found in (B) Clcn3�/� and Clcn3+/+ (Clcn3+/+: 16 cells, Clcn3�/�: 15 cells; mean amplitude: P > 0.8, t-test;
mean frequency: P > 0.4, MW test), in (C) Clcn3unc/unc and Clcn3+/+ (Clcn3+/+: 21 cells, Clcn3unc/unc: 13 cells; mean amplitude: P > 0.7; mean frequency: P = 0.3, t-
test), and in (D) Clcn4�/� and Clcn3+/+ (Clcn3+/+: 18 cells, Clcn4�/�: 18 cells; mean amplitude: P > 0.3, t-test; mean frequency: P = 0.6, MW test). (E) No difference in
mean amplitude (P > 0.5, t-test), in cumulative amplitude and mean frequency of mIPSCs (P > 0.1, t-test) was found in Clcn3unc/unc/Clcn4�/� and Clcn3+/+/Clcn4�/�.
The interevent–interval distribution was shifted to the right, indicating a reduced frequency of mIPSCs in Clcn3unc/unc/Clcn4�/� (KS test, P < 0.05; Clcn3+/+/Clcn4�/�:
16 cells, Clcn3unc/unc/Clcn4�/�: 12 cells).

F, G Miniature excitatory postsynaptic currents (mEPSCs). (F) Example traces of mEPSCs in WT and Clcn3�/� neurons. (G) No significant difference between Clcn3unc/unc/
Clcn4�/� and Clcn3+/+/Clcn4�/� mEPSCs in mean amplitudes (P > 0.9, t-test) or in the distribution of amplitudes (Clcn4�/�: 12 cells, 2 mice; Clcn3unc/unc/Clcn4�/�:
eight cells, two mice).

H Primary hippocampal neurons co-transfected with ClC-3 and synaptobrevin (syb2), both luminally tagged with pHluorin or the pH-sensitive mOrange (Ramirez
et al, 2012), respectively, were stimulated by 200 action potentials (APs) at 20 Hz (indicated by bar). Vesicle exocytosis was monitored by fluorescence increase
upon exposure to extracellular neutral pH. Note that only Syb2 and not ClC-3 shows signs of exocytosis. Traces were corrected for photobleaching. The initial decay
of the pHluorin signal is probably due to the high light exposure, which forces the fluorophores into a transient dark state (Dean et al, 2011). Averaged fluorescence
traces (n = 10), error bars, SEM.

Source data are available online for this figure.
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indicated by the mature ClC-4 band in Western blots of Clcn3�/�

tissue and by robust plasma membrane currents upon ClC-4 overex-

pression (Friedrich et al, 1999; Picollo & Pusch, 2005; Scheel et al,

2005).

Transport properties of ClC-3 and ClC-3/-4 heteromers

Due to difficulties in obtaining sizeable plasma membrane currents

with ClC-3, various endogenous and mutually exclusive currents

were assigned to ClC-3 (Kawasaki et al, 1994, 1995; Duan et al,

1997; Huang et al, 2001). However, analysis of splice variants and

mutants with increased surface expression have firmly established

that ClC-3 generates strongly outwardly rectifying currents (Li et al,

2000; Picollo & Pusch, 2005; Matsuda et al, 2008; Guzman et al,

2013, 2015; Okada et al, 2014; Rohrbough et al, 2018) resembling

those of the closely related ClC-4 and ClC-5 exchangers (Steinmeyer

et al, 1995; Friedrich et al, 1999). Neutralizing the “gating gluta-

mate” linearizes the current/voltage relationship of ClC-3

(Fig EV1B) (Matsuda et al, 2008; Okada et al, 2014; Rohrbough

et al, 2018) and abolishes the coupling of Cl� flux to H+-counter-

transport like in other vesicular CLCs (Friedrich et al, 1999; Picollo

& Pusch, 2005; Scheel et al, 2005; Neagoe et al, 2010; Leisle et al,

2011), as convincingly shown for a chimera in which the ClC-3

N-terminus was replaced by ClC-5 (Rohrbough et al, 2018). The

hypothesis that ClC-3 facilitates acidification of endosomes by

increasing the capacitance of their membrane (Guzman et al, 2013)

is not viable when luminal buffering of H+ is taken into account

(Jentsch & Pusch, 2018).

We do not know whether the ion transport properties of ClC-3/

ClC-4 heteromers differ in detail from a superposition of those from

the respective homodimers. Currents elicited by co-expressing ClC-3

and ClC-4 are overwhelmingly mediated by ClC-4 because ClC-3

current amplitudes are very low. The Cl�/H+-exchange of ClC-4 is

almost certainly maintained in a heterodimer with the uncoupled

ClC-3unc protein because ion translocation pathways of CLC proteins

are entirely enclosed in each individual subunit (Ludewig et al,

1996; Weinreich & Jentsch, 2001; Dutzler et al, 2002). Protonation

of the side chain of the “gating glutamate”, which protrudes into the

permeation pathway, is thought to underlie gating of CLC channels

and Cl�/H+-exchange of CLC exchangers like ClC-3 (Dutzler et al,

2002, 2003; Accardi & Miller, 2004). Hence not only ion selectivity

and single channel conductance (Ludewig et al, 1996; Weinreich &

Jentsch, 2001), but also other pore properties such as Cl�/H+-

coupling are independent from the other subunit of the dimer, as

demonstrated with concatemers linking WT and uncoupled ClC-5

subunits (Zdebik et al, 2008). The changed properties of ClC-1/

ClC-2 (Lorenz et al, 1996) and ClC-0/ClC-1 (Weinreich & Jentsch,

2001) Cl� channels or ClC-7/ClC-7mutant chloride/proton exchangers

(Ludwig et al, 2013) are caused by altered common gating that

acts on both subunits (Ludwig et al, 2013). Since ClC-3 and ClC-4

currents display similar activation kinetics, no effect of

heteromerization is expected.

ClC-3 localizes predominantly to endosomes rather than SVs

Although initially thought to be a plasma membrane Cl� channel

(Kawasaki et al, 1994, 1995; Duan et al, 1997; Huang et al, 2001), it

is now established that ClC-3 is a Cl�/H+-exchanger that resides

almost exclusively on intracellular membranes. Upon overexpres-

sion in COS-7 cells, only ~ 6% of the protein was found at the

plasma membrane where it was rapidly endocytosed and targeted to

endosomes (Zhao et al, 2007). We expect native plasma membrane

expression to be even much lower. In any case, ClC-3 is unlikely to

be active at the plasma membrane because its currents are only

observed at non-physiological cytoplasm-positive voltages.

Most groups now concur that ClC-3 is expressed on endosomes,

but almost all studies relied on heterologous overexpression (e.g., Li

et al, 2002; Hara-Chikuma et al, 2005b; Suzuki et al, 2006;

Weylandt et al, 2007; Zhao et al, 2007). Anti-ClC-3 antibodies were

often used without KO controls and can show significant cross-reac-

tivity (Jentsch et al, 2010). Our own anti-ClC-3 antibody has been

validated by using Clcn3�/� tissue, but gives only faint signals in

IHC. To unambiguously localize ClC-3 in native tissues, we newly

generated knock-in mice expressing a Venus-ClC-3 fusion protein.

Clcn3ven/ven mice revealed that native ClC-3 is found on intracellular

punctate structures, which mainly represent early, recycling and

partially late endosomes.

Several groups, including our own (Stobrawa et al, 2001;

Maritzen et al, 2008), have suggested the presence of ClC-3 on SVs

(Salazar et al, 2004; Seong et al, 2005; Grønborg et al, 2010;

Riazanski et al, 2011; Guzman et al, 2014) or synaptic-like

microvesicles of neuroendocrine cells (Salazar et al, 2004; Maritzen

et al, 2008). However, it was later reported that only every 2,000th

SV may contain a ClC-3 molecule (Schenck et al, 2009). One

proteomic study found ClC-3 on SVs (Grønborg et al, 2010),

whereas three others did not (Takamori et al, 2006; Boyken et al,

2013; Biesemann et al, 2014), and reports concerning effects of ClC-

3 disruption on SV function are contradictory (Stobrawa et al, 2001;

Schenck et al, 2009; Riazanski et al, 2011; Guzman et al, 2014).

We therefore used multiple approaches to re-investigate a poten-

tial role of ClC-3 in SVs. Calibrated Western blots from SV-enriched

LP2 fractions suggested the presence of one ClC-3 protein per ~ 25

SVs (4%) in mouse brain, considerably higher than 1 ClC-3 per

2,000 SVs as reported by Schenck et al (2009). These authors have

overestimated VGLUT1 levels due to an inadvertent epitope shield-

ing in their antibody calibration procedure that used C-terminally

tagged VGLUT1 (S. Takamori, personal communication). Quantita-

tive single-vesicle imaging of SVs from Clcn3ven/ven mice yielded an

even higher estimate (≥ 10% ClC-3 expressing SVs), whereas electri-

cally stimulated exocytosis of SVs from ClC-3-phluorin transfected

neurons failed to provide evidence for a significant presence of ClC-

3 on SVs. Each of these techniques is fraught with potential pitfalls

such as epitope shielding with epitope-tagged proteins, or effects of

epitope addition or overexpression on the trafficking of ClC-3. With

these caveats in mind, our experiments suggest that SVs do express

ClC-3, with about 4–15% of SVs being positive. ClC-3-positive SVs

may represent a functionally distinct subpopulation of SVs, such as

endosomal intermediates in SV reformation after endocytosis.

However, we did not observe an impact of the loss of ClC-3 on

synaptic function before the onset of neurodegeneration and the

concomitant loss of VGLUT1.

ClC-3 was proposed to support SV acidification by shunting H+-

ATPase currents (Stobrawa et al, 2001). Indeed, acidification of SV

preparations from Clcn3�/� mice was reduced (Fig 5C) as reported

before (Stobrawa et al, 2001; Riazanski et al, 2011). However, one

previous study (Riazanski et al, 2011) based this conclusion in part
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on a so-called “rat ClC-3 KO model” in which ClC-3-containing vesi-

cles were immuno-depleted from SV preparations. Obviously, the

ClC-3-depleted vesicle population is not equivalent to SVs from

Clcn3�/� mice. Our present work supports the suggestion of Taka-

mori and colleagues (Schenck et al, 2009) that the reduced acidifi-

cation of SVs from Clcn3�/� mice (Stobrawa et al, 2001) can be

attributed to a reduction of the vesicular glutamate transporter

VGLUT1 which we had observed earlier (Stobrawa et al, 2001).

VGLUT1 appears to operate in several modes which includes a Cl�

conductance (Schenck et al, 2009; Preobraschenski et al, 2014;

Martineau et al, 2017). The fact that > 65% of purified SVs are gluta-

matergic (Takamori et al, 2006) is compatible with this hypothesis.

The impairment of SV acidification correlated with a reduction of

VGLUT1 levels during neurodegeneration in both Clcn3�/� and

Clcn3unc/unc/Clcn4�/�mice. Although ClC-3 and ClC-4 are expressed

from birth on, no acidification defect was observed in Clcn3�/� mice

before the onset of neurodegeneration. Since the loss of VGLUT1

roughly correlated with the degree of neurodegeneration, it might be

owed to a preferential loss of mainly glutamatergic hippocampal

neurons or, less likely, from a trafficking defect of VGLUT1.

The previously proposed role of ClC-3 in SV acidification

suggested that it might affect SV neurotransmitter uptake. Depend-

ing on the particular neurotransmitter transporter, this uptake is

driven by DpH and/or the transmembrane voltage (Dw). Glutamate

uptake depends mainly on Dw, whereas the activity of the vesicular

GABA transporter VGAT depends on both parameters (Hnasko &

Edwards, 2012). If ClC-3 provides a significant SV conductance, one

would expect that Clcn3 disruption increases Dw and hence gluta-

mate uptake. This should translate into larger miniature excitatory

postsynaptic currents (mEPSCs) that are proportional to the vesicu-

lar glutamate content. Since disruption of a SV Cl� conductance

would not only increase Dw, but also decrease DpH, an effect on

GABA loading and mIPSCs is difficult to predict. In general, mPSCs

must be interpreted cautiously because degenerative changes in

Clcn3�/� neurons may begin earlier than is apparent from light

microscopy and since the lack of the overwhelmingly endosomal

ClC-3 protein may affect intracellular trafficking of key proteins.

We previously measured mIPSCs and mEPSCs in CA1 pyramidal

neurons of WT and Clcn3�/� mice before the onset of neuronal cell

loss (P13–P15) (Stobrawa et al, 2001). We found no differences of

mIPSC amplitudes or frequencies and only a slight increase in

mEPSCs that was apparent in the amplitude distribution, but not in

their mean values (Stobrawa et al, 2001). In contrast, Riazanski et al

(2011) more recently described significantly lower mIPSC ampli-

tudes and a ~ 40% decrease in their frequency, and Guzman and

colleagues reported a 20% increase in mean mEPSC amplitudes and

an ~ 80% increase in mEPSC frequencies in hippocampal neurons

cultured from WT and Clcn3�/� mice (Guzman et al, 2014).

We re-investigated this issue and measured mIPSCs in hippocam-

pal slices from 13- to 15-day-old mice. mIPSC amplitudes or frequen-

cies were neither changed in Clcn3�/�, nor in Clcn3unc/unc or

Clcn4�/� mice. Only Clcn3unc/unc/Clcn4�/� mice, which show the

strongest neurodegeneration, displayed reduced mIPSC frequencies.

The effects reported by Riazanski et al (2011), who studied Clcn3�/�

mice (Dickerson et al, 2002) at P18–P25, might thus be due to incipi-

ent neurodegeneration. We examined mEPSCs in Clcn3unc/unc/

Clcn4�/� mice and again found no differences in mEPSC amplitudes.

In conclusion, our data neither support a significant presence of

ClC-3 on SVs, nor a degeneration-independent role in synaptic trans-

mission. Our data do not support the influence of Clcn3 disruption

on SV size described by Guzman et al (2014) either.

Biological roles of ClC-3 and ClC-4

The strong reduction of ClC-4 in Clcn3�/� mice likely contributes to

their severe neurodegeneration although Clcn4�/� mice lack obvi-

ous phenotypes (Rickheit et al, 2010; Hu et al, 2016). In humans,

CLCN4 mutations were identified in patients with mental retardation

and sometimes seizures (Veeramah et al, 2013; Hu et al, 2016;

Palmer et al, 2018), but no overt neurodegeneration was reported.

Primary cultures of hippocampal neurons from Clcn4�/� mice

showed borderline reductions in dendritic branching (Hu et al,

2016), but no changes in brain morphology were observed here

(Appendix Fig S2).

Our work suggests that the neurodegeneration of Clcn3�/� mice is

owed to a decrease of endosomal Cl�/H+ exchange below a critical

threshold which is passed because loss of ClC-3 also entails a marked

decrease of ClC-4. When endosomal Cl�/H+ exchange is further

reduced (and possibly abolished, if no other CLCs are present in the

relevant compartments) as in Clcn3unc/unc/Clcn4�/� or Clcn3�/�/
Clcn4�/� mice, the ensuing pathology is even more pronounced

(Fig 3A and B). Comparison of Clcn3unc/unc/Clcn4�/� with Clcn3�/�/
Clcn4�/� mice suggests that the uncoupled ClC-3unc Cl� conductance

might partially substitute for cellular functions of ClC-3 Cl�/H+

exchange. Alternatively or additionally, a lack of ClC-3 protein interac-

tions, which will be retained with the ClC-3unc mutant, might account

for the more severe phenotype of Clcn3�/�/Clcn4�/� mice. Indeed,

we previously found partial rescues of Clcn7�/� phenotypes (Kornak

et al, 2001; Kasper et al, 2005) both by the uncoupled conductance of

ClC-7unc in Clcn7unc/unc mice (Weinert et al, 2010) and by the mere

presence of the ClC-7 protein in Clcn7td/td mice that express a trans-

port-deficient mutant (Weinert et al, 2014).

As repeatedly shown for ClC-5 (Günther et al, 2003; Hara-

Chikuma et al, 2005a; Novarino et al, 2010; Gorvin et al, 2013),

endosomal/lysosomal CLCs may support vesicular acidification by

neutralizing H+-ATPase currents. Steady-state pH (Yoshikawa et al,

2002) and active acidification (Hara-Chikuma et al, 2005b) of endo-

somes from Clcn3�/� hepatocytes were reported to be more alkaline

and reduced, respectively. As both ClC-3 and ClC-4 are expressed in

liver, a reduction of ClC-4 may have contributed to this effect. A

mild alkalinization (pH 6.6 vs. 6.1) was reported for transferrin-

positive compartments of Clcn3�/� hepatocytes (Hara-Chikuma

et al, 2005b), but we found no significant change in the pH of these

compartments in cultured Clcn3�/� neurons. Acidification of intra-

cellular compartments does not always depend on Cl�. For instance,
lysosomes lacking ClC-7 display normal steady-state pH (Kasper

et al, 2005; Weinert et al, 2010, 2014) because their acidification

depends largely on cation counterflux (Steinberg et al, 2010).

Given that Cl�/H+-exchange accumulates Cl� in acidic vesicles

in a secondary active process, we expect that luminal Cl� concentra-

tions in Clcn3�/� and Clcn3unc/unc/Clcn4�/�endosomes are

decreased. Lower Cl� concentrations have been measured in lyso-

somes of cells derived from Clcn7�/� and Clcn7unc/unc mice (Wein-

ert et al, 2010, 2014) and in Caenorhabditis elegans lysosomes

lacking the ClC-7 ortholog (Chakraborty et al, 2017). Whereas lyso-

somes can be easily loaded with dextran-coupled indicators, we are
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currently unable to specifically target Cl� sensors to endosomes.

ClC-3 may also influence the voltage across endosomal membranes.

Model calculations predict more negative luminal voltages with

2Cl�/H+-exchangers than with Cl� channels (Weinert et al, 2010),

but no reliable methods to quantitatively measure endosomal volt-

age exist. In conclusion, disruption of ClC-3 may affect the luminal

pH and Cl� concentration and the transmembrane voltage of ClC-3-

expressing vesicles. However, for Clcn3unc/unc/Clcn4�/� mice,

which display more severe pathology than Clcn3�/� mice, no

change in luminal pH is expected because the ClC-3unc Cl� conduc-

tance may support acidification as observed in ClC-5unc mice

(Novarino et al, 2010).

Our work suggests that the severe neurodegeneration observed

in Clcn3�/� mice or Clcn3unc/unc/Clcn4�/� mice is due to an impair-

ment of endosomal, rather than SV function. The loss of ClC-3,

together with the concomitant substantial reduction of its

heteromerization partner ClC-4, may alter intracellular trafficking as

in other neurodegenerative diseases caused by mutations in

endolysosomal ion transport proteins (LaPlante et al, 2006; Ouyang

et al, 2013). The observation that the replacement of the Cl�/H+-

exchange activity of ClC-3 by a Cl� conductance leads to severe

pathology when not compensated by ClC-4 generalizes the emerging

picture (Jentsch, 2007; Braun et al, 2010; Novarino et al, 2010;

Weinert et al, 2010) that the function of endosomes and lysosomes

depends on Cl� accumulation or changes in membrane potential

brought about by CLC Cl�/H+ exchangers.

Materials and Methods

Mice

The generation of Clcn3�/� and Clcn4�/� mice (Stobrawa et al,

2001) has been described. For the generation of Clcn3unc/unc mice

11.7 kb of mouse genomic sequence extending from exon 2 to 6 of

Clcn3 were amplified from R1 ES cells and cloned into pKO Scram-

bler plasmid 901 (Lexicon Genetics Incorporated) containing a dtA

cassette (diphtheria toxin A cassette). A neomycin (neo) resistance

cassette flanked by FRT sites was introduced between exon 5 and 6

to select for recombination in embryonic stem (ES) cells. Exon 5

was modified by insertion of the E224A mutation. Targeted R1 ES

cells were screened by Southern blot (SB) analysis using EcoRV and

an external 1.2-kb probe. Correctly targeted ES cells were injected

into C57Bl/6 blastocysts. Chimeric animals were crossed with FLPe

recombinase-expressing “deleter” mice (Farley et al, 2000) and

resulting heterozygous animals (Clcn3+/unc) were inbred to yield

Clcn3unc/unc. Exon 5 of the genomic Clcn3unc/unc gene was amplified

with intronic primers and sequenced. To obtain double genetically

modified Clcn3unc/unc/Clcn4�/� mice, heterozygous Clcn3+/unc/

Clcn4+/� mice were inbred.

To generate Clcn3ven/ven mice, 14.3 kb of mouse genomic

sequence extending from exon 1 to 3 of Clcn3 was subcloned into

pKO Scrambler plasmid 901 (Lexicon Genetics) containing a dtA

cassette from a murine Clcn3 k clone 7 isolated from a 129SVJ

mouse genomic library cloned into pBlue. A puromycin (puro) resis-

tance cassette flanked by loxP sites was introduced between exon 1

and 2 to select for recombination in ES cells. Venus cDNA was

inserted by recombinant PCR onto the start ATG of the Clcn3 ORF

which codes for the transcript variant a (NM_007711.3). Addition-

ally, a silent point mutation was introduced to obtain an NcoI

restriction site for subsequent SB analysis. The Venus and Clcn3

sequences were separated by a 12-bp linker. Correctly targeted ES

cells were injected into C57Bl/6 blastocysts. Chimeric animals were

crossed with Cre-recombinase-expressing “deleter” mice (Schwenk

et al, 1995), and resulting heterozygous animals (Clcn3+/ven) were

inbred to yield Clcn3ven/ven. All experiments were performed with

mice in a mixed C57Bl/6-129/Svj genetic background, always using

littermates as controls. Animals were housed under standard condi-

tions in the animal facility of the MDC according to institutional

guidelines and kept on a 12-h light/dark cycle. LAGeSo, Berlin,

Germany, approved all experimental procedures.

Antibodies

Primary antibodies were as follows: anti-ClC-3 and rabbit anti-ClC-4

(Maritzen et al, 2008), rabbit anti-ClC-5 (Günther et al, 1998),

rabbit anti-synaptophysin (#101 002, Synaptic Systems), chicken

anti-GFP (#1020 Aves lab), mouse anti-GFP (#A-11120, Life Tech-

nologies), rabbit anti-GFP (#A-11122, Life Technologies), rat anti-

Lamp-1 (#553792, BD Pharmingen; clone 1D4B; BD Biosciences),

mouse anti-Lamp-1 (clone H4A3, DHSB), rabbit anti-EEA1 (#PA1-

063A, Thermo Scientific), mouse anti-EEA1 (#610457, Transduction

Laboratories), mouse anti-TfR (#13-6890, Zymed), guinea pig anti-

VGLUT1 (#135 304, Synaptic Systems), mouse anti-VGLUT1 (#135

311, Synaptic Systems), rabbit anti-VGLUT1 (#135 303, Synaptic

Systems), guinea pig anti-VGLUT2 (#135 404, Synaptic Systems),

mouse anti-VGAT (#131 011, Synaptic Systems), rabbit anti-clathrin

heavy chain (ab21679, Abcam), rabbit anti-LC3 (#AP1802a,

Abgent), rabbit anti-GluR4 (#06-308, Millipore), rabbit anti-GABAA-

receptor a1 (#06-868, Millipore), mouse anti-MAP2 (#MAB3418,

Millipore), mouse anti-PSD95 (#MA1-046/CP35, Thermo Scientific/

Calbiochem), mouse anti-GFAP (#G3893, Roche), mouse anti-APC

(#OP80, Calbiochem), mouse anti-GM130 (#610823, BD Bios-

ciences), mouse anti-rab4 (#610889, BD Biosciences), mouse anti-

rab3 (#107 011, Synaptic Systems), mouse anti-adaptin Ƴ (AP-1,

#610385, BD Transduction) mouse anti-PDI (#SPA-891, StressGen),

mouse anti-cathepsin D (#28-0002, Zymed), rabbit anti-b-actin
(#A2066, Sigma-Aldrich), rabbit anti-a-tubulin (#ab15246, Abcam),

rat anti-HA (3F10, #118676423001, Roche). Secondary antibodies

were coupled to Alexa Fluor 488, 546, 633 (Invitrogen) or HRP

(Jackson ImmunoResearch).

Biochemical methods

For membrane preparation, tissues were homogenized in PBS with

protease inhibitors (Complete�, Roche) and cleared two times by

centrifugation at 1,000 g for 10 min. Membranes were pelleted at

270,000 g for 30 min and subsequently resuspended in PBS supple-

mented with protease inhibitors and 2% (w/v) SDS. For whole

tissue homogenates, organs were homogenized in PBS with 1% (v/

v) NP-40 and protease inhibitors (Complete�, Roche) and incubated

for 30 min on ice. After centrifugation for 10 min at 20,800 g, the

supernatant was used for SDS–PAGE. Equal amounts of protein

were separated by SDS–PAGE and blotted onto nitrocellulose.

For deglycosylation, 60 lg of lysate was denatured at 65°C

for 5 min in 0.5% (w/v) SDS for PNGase F (Roche) or in 0.5%
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SDS, 40 mM DTT and 50 mM Na-acetate pH 5.2 for EndoH

(Roche) treatment. After adjusting to 1% (v/v) NP-40 and

1.3 mM EDTA, 1 unit of PNGase F and 0.015 units of EndoH

were added and samples incubated at 37°C for 2 h. For

immunoprecipitation experiments, ClC-3 and ClC-4 antibodies

were bound to protein A sepharose (GE Healthcare). Brain

membranes were pelleted and solubilized in homogenization

buffer (150 mM NaCl, 25 mM MES pH 6.5) containing 1%

Triton X-100. Non-solubilized material was removed by a

20,360 g spin. After incubation with the protein A sepharose–

antibody complexes for 12 h at 4°C and washing, samples were

eluted in 2× SDS sample buffer at 75°C.

Quantification of ClC-3/VGLUT1 ratio in LP2 fraction

To estimate ClC-3 copy number relative to VGLUT1, we tran-

siently expressed mVGLUT1 and hClC-3 in HEK cells, both of

which were N-terminally tagged with EGFP. The cells were lysed

in equal volumes of 1× PBS containing 1% Triton X-100 and

protease inhibitors (Complete�, Roche), and soluble supernatant

was used as standard for calibrating VGLUT1 and ClC-3

antibodies. Probing with GFP allowed us to directly compare the

relative amounts of VGLUT1 and ClC-3 in the lysates. On average,

we found that the GFP-hClC-3 lysate contained about 4.33 × more

ClC-3 molecules than the GFP-VGLUT1 lysate contains VGLUT1

molecules. We then compared the two standards with different

amounts of LP2 fractions (see below for LP2 preparation) from

mouse brain by using our KO-controlled ClC-3 antibody and a

VGLUT1 antibody directed opposite the GFP tag against the very

C*terminus of VGLUT1 (see above). While the standard for

VGLUT1 roughly corresponds to 2.5 lg of that LP2 fraction, the

signal of the standard for ClC-3 corresponds to ~ 140 lg. There-

fore, the amount of VGLUT1 and ClC-3 standards compared to

LP2 fraction differs by a factor of 56. Given that the standard for

ClC-3 contains 4.33 times more ClC-3-molecules than the standard

for VGLUT1, the actual copy number of ClC-3 in the LP2 fraction

is about 13 times lower.

Fluorescence resonance energy transfer (FRET) microscopy

COS-7 cells were transfected as described above. Imaging was

performed in physiological solution (in mM: 115 NaCl, 3 KCl, 1

MgSO4, 1 MgCl2, 1 CaCl2, 20 HEPES, 10 glucose, pH 7.4), using a

LSM 510 META microscope (Carl Zeiss) equipped with a 40× oil-

immersion objective (numerical aperture = 1.3), an argon laser

(k = 514 nm), and an infrared laser (k = 810 nm, two photon).

Donor (ECFP) emission spectra were recorded at 810 nm (two

photon) excitation before and after acceptor photobleaching (EYFP,

514 nm laser).

Förster resonance energy transfer efficiencies were calculated

from the donor emission at k = 436 - 500 nm before and after

photobleaching, using the following equation:

E ¼ 1� I0
Ipb

E: energy transfer efficiency; I0 = donor intensity before accep-

tor photobleaching; Ipb = donor intensity after acceptor

photobleaching.

LP2 preparations and SV fraction acidification

Crude SVs (LP2) were purified as described (Huttner et al, 1983;

Takamori et al, 2000). LP2 were resuspended in homogenization

buffer [320 mM sucrose, 4 mM HEPES-KOH (pH 7.4)]. Acidification

was measured with 100 lg LP2 by acridine orange quenching in

0.8 ml of assay buffer (115 mM sucrose, 60 mM KCl, 4 mM K2SO4,

200 lM acridine orange, 1.2 mM K-ATP, 10 mM MOPS, pH 7.3) in

a Safas fluorometer (excitation, 492 nm, emission, 520 nm) at 32°C.

The addition of 5 mM MgCl2 after 60 s started the reaction. FCCP

(10 lM) addition after 4 min dissipated the H+-gradient and termi-

nated the reaction. Traces were normalized to the fluorescence at

t = 60 s.

Single-vesicle imaging of venus-tagged SVs

Synaptic vesicles were purified from the brain of adult

Clcn3ven/ven mice and immobilized on poly-L-lysine coated glass

cover slips as previously described (Farsi et al, 2016). To perform

IF imaging, primary labeled antibodies against VGLUT1 (Oyster-

650 labeled, Cat. #135 303C5, Synaptic Systems) or synaptophysin

(Oyster-650 labeled, Cat. #101 011C5, Synaptic Systems) were

used. Prior to IF, immobilized SVs were fixed using 4%

paraformaldehyde and blocked by 30-min incubation with phos-

phate-buffered saline (PBS) containing 5% bovine serum albumin

(BSA). Imaging of SVs was performed using a Nikon Eclipse Ti-

inverted microscope equipped with iLAS2 TIRF (Visitron Systems)

and an EM-CCD camera (iXon+ DU-897E-BV; Andor Technology).

Excitation was performed at 488 nm (for Venus imaging) and

640 nm (for IF imaging), and emission of SVs was collected

through a quadband (405/488/561/647 nm, Chroma 89902) emis-

sion filter.

Histology and electron microscopy

Deeply anesthetized mice were perfused with 4% (w/v) PFA in

PBS, and isolated tissues were postfixed overnight at 4°C. Three-

micrometer paraffin sections of retina were used for H&E and Nissl

staining, 8-lm paraffin sections of the brain for Nissl staining, and

8-lm cryosections for IHC. For IHC, sections were postfixed with

4% (w/v) PFA, permeabilized using 0.2% (v/v) Triton X-100 in PBS

and blocked with 3% (w/v) BSA in PBS. Antibody incubation was

in blocking buffer overnight at 4°C. For some ClC-3 labeling experi-

ments, an antigen retrieval step (10 min in sodium citrate buffer,

pH 6.0, at 95°C) was included after fixation.

For DAB peroxidase staining on paraffin sections, HRP-conju-

gated secondary antibodies were used (DAKO Envision+ HRP

system). The peroxidase reaction was started using 500 mg/ml

diaminobenzidine, 10 mM imidazole, 0.3% ammonium nickel

sulfate, 0.003% H2O2 in 50 mM Tris; pH 7.6. Sections were washed

and mounted in Kaiser’s glycerol gelatine (Merck). Sections were

then examined with a Zeiss Axiophot.

For electron microscopy, mice were perfused with 4% (w/v)

PFA and 2.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer

(pH 7.4). Brains were cut in 200-lm sections with a vibratome,

postfixed in 1% osmium tetroxide and 1.5% potassium hexa-

cyanoferrat, and embedded in epoxy resin. Layer 4–5 of

secondary visual cortex just above hippocampus was trimmed
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and ultrathin sectioned. Glutamatergic synapses were identified

by presence of their prominent postsynaptic densities and spine

heads. Images were done using Zeiss EM 900 microscope and

Morada G2 camera. Four pairs of wild-type and ClCn3�/�

animals were acquired with 20–25 boutons per animals analyzed

for vesicle number. Vesicle sizes were analyzed in more than

700 vesicles per genotype.

Clcn3ven/ven and wild-type mice were perfused with 4% PFA and

0.1% glutaraldehyde, postfixed overnight at 4°C. CA3 areas of hippo-

campi were dissected and formed into 1-mm³ blocks that have been

cryoprotected in 2.1 M sucrose solution overnight and frozen in liquid

propane on pins. Modified Tokuyasu sectioning was performed as

described elsewhere. Sections were blocked with 10% BSA and

stained with Invitrogen mouse anti-GFP antibodies (1:50) and

secondary 10 nm gold coupled goat-anti-mouse antibodies (1:50;

Dianova). Sections were embedded and contrasted using a mix of

polyvinyl alcohol/sodium silicotungstate/sodium orthovanadate.

Golgi-Cox staining

Animals were sacrificed by cervical dislocation; brains were

dissected, processed, and stained using FD Rapid Golgi Stain Kit

according to the manufacturer’s instructions. 100-lm sections were

cut, stained, and examined using a Zeiss Axiophot. Clcn4+/+ and

Clcn4�/� 8-week-old male littermates and 24-week-old female litter-

mates were analyzed.

Expression constructs

For cell culture expression, human ClC-3 (transcript variant a,

NM_001243372.1, but N-terminally lacking 58 amino acids) was

cloned into pCIneo (Promega) and an HA epitope was inserted

between amino acids Gly406 and Ala407 of hClC-4 (Friedrich et al,

1999) (extracytosolic loop) by PCR mutagenesis. The point mutation

to generate hClC-3unc (E224A) was introduced by PCR with primers

carrying the mutation. For whole-cell patch-clamp studies, human

ClC-3 (see above) was cloned into pEGFP-C1 (Clontech) with the

linker sequence SGLRSRE. The point mutations 4xLA (in which all

four leucines of the N-terminal dileucine cluster were mutated to

alanine) were introduced by PCR with primers carrying the mutations.

All constructs were confirmed by sequencing the complete ORF.

For pHluorin experiments in hippocampal neurons, pHluorin

was inserted by recombinant PCR into pCIneo-hClC-3 between

membrane helices L and M with linker sequences GA and TG N-

and C-terminally, respectively.

For FRET experiments, human ClC-3 and ClC-4 (see above) were

cloned into pECFP-C1 and pEYFP-C1 (Clontech). The linker

sequences were SGLRSREL and SGLRSRAQASNSVET for ClC-3 and

ClC-4, respectively.

For antibody calibration, VGLUT1 (NP_892038.2) was amplified

from mouse cDNA and cloned into pEGFP-C3 (Clontech). All

constructs mentioned above were confirmed by sequencing the

complete ORF.

Expression in cell culture and fluorescence microscopy

Plasmid DNA was transfected into cells using the PEI method (Bris-

sault et al, 2003) or FuGENE6 (Roche Applied Science) according to

the manufacturer’s instruction. Cells were grown for further 24–

48 h before fixation with 4% paraformaldehyde in PBS for 10 min.

For immunostaining, cells were incubated with 30 mM glycine in

PBS for 5 min and permeabilized with 0.1% saponin in PBS for

10 min. Both primary and AlexaFluor-coupled secondary (Molecular

Probes) antibodies were applied in PBS, 0.05% saponin supple-

mented with 3% BSA. Images were acquired with an LSM510 laser

scanning confocal microscope equipped with a 63× 1.4 NA oil-

immersion lens (Zeiss).

Primary cell culture and transfection

Hippocampi were dissected from P0 to P2 mice, dissociated with

papain (20 units/ml) at 37°C for 30 min, and triturated by pipetting.

Hippocampal neurons were placed on life cell dishes or six-well

chamber slides coated with poly-D-lysine at a cell density of

1 × 105 cells/dish. For neuronal cycling experiments, neurons were

transfected at 9–10 days in vitro (DIV) with the respective plasmid

DNA using the Calcium Phosphate Transfection Kit (Promega Inc.).

Primary cortical astrocyte cultures were prepared from P0 to P2

mouse pups of mixed sex. After dissection and removal of meninges

and blood vessels, cortices were sliced and incubated with trypsin–

EDTA (0.05%) for 30–40 min at 37°C. Tissue was triturated and

suspended in DMEM (PAN Biotech) supplemented with 10% fetal

bovine serum (Invitrogen) and 1× penicillin/streptomycin (Invitro-

gen). Cells were plated at a density of 1 × 107 cells in a 75-cm2 flask

and maintained in a 5% CO2 incubator at 37°C. The growth medium

was exchanged with fresh medium twice a week. At 7DIV or when

cells becoming ~ 90% confluent, cell culture container was vortexed

at full speed just prior to cell dissociation for further propagation of

astrocytes without contaminating oligodendrocytes.

Immunofluorescence of primary neurons and glial cells

On DIV14–18, primary neurons or glial cells were fixed with 4%

PFA/PBS for 10 min at room temperature. Fixed cells were washed,

incubated with 30 mM glycine in PBS for 5 min, and permeabilized

with 0.1% saponin in PBS for 10 min. Both primary and AlexaFlu-

or-coupled secondary (Molecular Probes) antibodies were applied in

PBS, 0.05% saponin supplemented with 3% BSA. Cells were

washed again and mounted in ImmunMount (Thermo Scientific).

Electrically stimulated SV exo- and endocytosis by
pHluorin imaging

Live imaging of primary hippocampal neurons was performed

using a sCMOS camera (Neo, Andor) on an inverted microscope

(Eclipse Ti, Nikon) with a 40× oil-immersion objective and a 200-

Watt mercury lamp (Lumen 200, Prior) under the control of

lManager (Edelstein et al, 2010). Images were acquired every 2 s

with 300 ms excitation using a filter set for pHluorin or mOrange

(F36-526/F26-518, AHF Analysentechnik). Measurements were

conducted at room temperature in physiological buffer [in mM: 170

NaCl, 3.5 KCl, 0.4 KH2PO4, 20 TES (2-[(2-hydroxy-1,1 bis(hydroxyl-

methyl)ethyl)amino]ethanesulfonic acid), 5 NaHCO3, 5 glucose, 1.2

Na2SO4, 1.2 MgCl2, 1.3 CaCl2 (pH 7.4). Osmolarity was adjusted

with mannitol to the osmolarity of the growth medium. Ten micro-

molar CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, Sigma-Aldrich)

ª 2020 The Authors The EMBO Journal e103358 | 2020 15 of 19

Stefanie Weinert et al The EMBO Journal



and 50 lM APV (2-amino-5-phosphonovalerianacid, Sigma-Aldrich)

were added as specific AMPA and NMDA receptor antagonists,

respectively. Neurons were stimulated by electric field stimulation

with 200 action potentials (at 20 Hz, 100 mA) in a stimulation

chamber (RC-47FSLP, Warner Instruments), and stimulation-

induced pHluorin and mOrange responses were recorded. Only

boutons showing mOrange responses upon electrical stimulation

and pHluorin unquenching upon addition of basic buffer (physio-

logical buffer with 50 mM NaCl replaced by NH4Cl) were used for

analysis.

Unquenching of mOrange causes a much weaker fluorescence

increase than unquenching of pHluorin (mOrange2: 3.5-fold, super-

ecliptic pHluorin: 50-fold) (Lin & Schnitzer, 2016). We intentionally

fused the stronger pH sensor to ClC-3, in order to be able to see also

weak signs of exocytosis. We used strong illumination schemes and

therefore had to correct for photobleaching by fitting a monoexpo-

nential decay function (equation 1) to the signal. Bleach rates were

calculated from the lifetime of mOrange decay (equation 2). Bleach

rates were used to correct for bleaching of synaptic mOrange inten-

sity traces (equation 3).

Exponential Decay : I(t) ¼ bgþ a � e�t=s (1)

I(t): intensity at time t; bg : background signal; a: intensity at time

0; s : lifetime.

Bleach rate : k ¼ e�1=s (2)

k: bleach rate; s : lifetime.

BleachCorrection : IbcðtÞ ¼ I (t)þ Rt
i¼0ð1� kÞ � ðI(i)� bgÞ (3)

Ibc(t): bleach corrected intensity at time t; I(t): intensity at time t;

k: bleach rate; bg: background.

Measurement of endosomal pH

Endosomal pH was measured by ratiometric fluorescence imaging

of the pH-sensitive fluorescein-conjugated transferrin and the pH-

stable Alexa546-conjugated transferrin. Primary hippocampal

neurons were plated onto live cell dishes. When older than DIV14,

they were incubated with 200 lg/ml FITC-Tfn and 100 lg/ml Alexa-

546-Tfn at 37°C for 20 min in growth medium. FITC-Tfn acts as a pH

sensor, whereas the Alexa546-Tfn acts as an internal standard for

uptake. Cells were washed twice with imaging solution (in mM: 140

NaCl, 2.5 KCl, 1.8 CaCl2, 1 MgCl2, 20 HEPES) supplemented with 1%

BSA and 20 mM glucose) and imaged using a Zeiss LSM510 confocal

laser scanning microscope under 40 × 1.4 NA oil-immersion lens.

Using ImageJ regions of interest (ROI) were defined as areas above a

fixed fluorescence threshold. Endosomal pH was calculated from the

ratio of fluorescence intensity (Alexa546/FITC). At the end of each

experiment, in situ calibration curves were obtained in isotonic K+-

based solution (125 mM KCl, 25 mM NaCl, 20 mM HEPES for pH 7.4,

5.4, and MES for pH 4.4) supplemented with 10 lM of both nigericin

and monensin (both Sigma-Aldrich). Cells were equilibrated for at least

2 min for each pH value. The resulting fluorescence intensity ratio as a

function of pH was fit to a sigmoid and used to interpolate pH values

from the experimental ratio data.

Hippocampal slice recordings

Horizontal hippocampal slices (300 lm) were prepared from juvenile

mice (P14–P16) using standard methods. Recordings of CA1 pyrami-

dal neurons were conducted at 34°C. Extracellular solution was artifi-

cial cerebrospinal fluid (ACSF) containing (in mM): NaCl 131,

NaHCO3 29, glucose 11, KCl 2.8, CaCl2 2.5, MgSO4 1.3, NaH2PO4 1.1,

osmolarity 320 mosml/l, saturated with 95% O2/5% CO2 (pH 7.4).

Patch pipettes (2.5–4 MΩ) were filled with (in mM): CsCl 130, HEPES

10, MgATP 2, MgCl2 2, EGTA 0.2, osmolarity 280–290 mosml/l, pH

7.3. Cells were held at �70 mV and miniature IPSCs were isolated by

bath application of 1 lM TTX, 10 lM NBQX, and 50 lM D-AP5.

Miniature EPSCs were isolated by 20 lM bicuculline and 1 lM TTX.

The low frequency of spontaneous mEPSCs (� 1/min) was increased

by adding 200 mM sucrose to the bath. The currents were recorded

after an equilibration time of 2 min, low-pass-filtered at 2 kHz,

sampled at 8 kHz, and visualized by pClamp 10.2 (Molecular Devices,

Sunnyvale). Recordings were only used as long as regularly applied

voltage pulses revealed stable series resistance. pClamp 10.2 and Mini

Analysis Program (Synaptosoft, Decatur) were used for data analyses.

Patch-clamp measurements of transfected cells

Whole-cell patch-clamp experiments on HeLa cells used patch

pipettes of 3–5 MΩ resistance filled with (in mM) 110 CsCl, 10

NaCl, 0.5 CaCl2, 1 EGTA, 2 MgATP, 40 HEPES, pH 7.4. The

bath solution contained (in mM) 130 NaCl, 5 KCl, 1 MgCl2, 1

CaCl2, 10 glucose, 20 HEPES, pH 7.4. Osmolarity was adjusted

with sucrose to 280–290 mOsmol/l for the pipette solution and

to 300–310 mOsmol/l for the extracellular solution. Cells were

held at �30 mV upon reaching the whole-cell configuration and

currents were elicited using 1-s pulses ranging from �80 mV to

+140 mV. Data were acquired with an EPC-10 double amplifier

using Pulse software (HEKA).

Data analysis

Values are presented as mean � SEM (standard error of the

mean). Statistical difference between means was assessed by

the two-tailed t-test for two groups using the GraphPad Prism

software. Specific details are given in the respective figure

legends. To evaluate the statistical difference of the miniature

inhibitory postsynaptic currents, mean amplitudes and frequen-

cies were first assessed for the presence of a normal distribu-

tion using the Shapiro–Wilk test followed by the two-tailed t-

test for two groups. If the values were not normally distributed,

the Mann–Whitney test was applied. The statistical difference

between the cumulative amplitudes and cumulative interevent

intervals was assessed by the Kolmogorov–Smirnov test. Statisti-

cally significant values are indicated by *P < 0.05, **P < 0.01,

and ***P < 0.001.

Expanded View for this article is available online.
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