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Abstract

Weak convergence of inertial iterative method for solving variational inequali-
ties is the focus of this paper. The cost function is assumed to be non-Lipschitz
and monotone. We propose a projection-type method with inertial terms and
give weak convergence analysis under appropriate conditions. Some test re-
sults are performed and compared with relevant methods in the literature to
show the efficiency and advantages given by our proposed methods.

1 Introduction

Suppose C is a nonempty, closed and convex subset of a real Hilbert space H and
F : C → H a continuous mapping. The variational inequality problem (for short,
VI(F,C)) is defined as: find x ∈ C such that

〈F (x), y − x〉 ≥ 0, ∀y ∈ C. (1)

We shall denote by SOL the solution set of VI(F,C) in (1). Various applications of
variational inequality can be found in [7, 8, 23–25,33–35,43].

Projection-type method for solving VI(F,C) (1) have been considered severally in
the literature (see, for example, [16–18,22,29,40–42,45,48,56]). Several other related
methods to extragradient method and (2) for solving VI(F,C) (1) in real Hilbert
spaces when F is monotone and L-Lipschitz-continuous mapping have been studied
in the literature (see, for example, [16–18, 22, 29, 36, 40–42, 45, 56]). Some of these
methods involve computing projection onto the feasible set C twice per iteration
and this can affect the efficiency of the methods.
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In [19], Censor et al. introduced the subgradient extragradient method: x1 ∈ H,
yn = PC(xn − λF (xn)),
Tn := {w ∈ H : 〈xn − λF (xn)− yn, w − yn〉 ≤ 0},
xn+1 = PTn(xn − λF (yn))

(2)

and gave weak convergence result when F is monotone and L-Lipschitz-continuous
mapping where λ ∈ (0, 1

L
).

In order to accelerate the convergence of subgradient extragradient method (2) and
using the idea of in [2–6,10,12,13,20,37,38,46,47], Thong and Hieu [55] introduced
the following inertial subgradient extragradient method: x0, x1 ∈ H,

wn = xn + αn(xn − xn−1),
yn = PC(wn − λF (wn)),
Tn := {w ∈ H : 〈wn − λF (wn)− yn, w − yn〉 ≤ 0},
xn+1 = PTn(wn − λF (yn))

(3)

and proved that {xn} generated by (3) converges weakly to a solution of VI(F,C)
(1) when F is monotone and L-Lipschitz-continuous mapping F where 0 < λL ≤
1
2
−2α− 1

2
α2−δ

1
2
−α+ 1

2
α2 for some 0 < δ < 1

2
− 2α − 1

2
α2 and {αn} is a non-decreasing sequence

with 0 ≤ αn ≤ α <
√

5− 2.

The step-sizes in above methods (2) and (3) are bounded by the inverse of the
Lipschitz constant and this is quite inefficient, since in most applications a global
Lipschitz constant (if it indeed exists at all) of F cannot be accurately estimated,
and is usually overestimated. This leads to too small step-sizes, which, of course,
is not practical. Therefore, algorithms (2) and (3) are not applicable in most cases
of interest. This can be overcome by using an Armijo type line search procedure
(see [33, 43,53]).

We provide a simple example of a variational inequality problem where the method
(2) proposed in [19] and method (3) proposed in [55] cannot be applied.

Example 1.1. Suppose F : [0,∞) → R is defined by F (x) := ex, x ∈ [0,∞). It
is easy to see that F is not Lipschitz continuous on [0,∞). By the mean value
theorem, one has for an arbitrary r > 0,

|F (x)− F (y)| ≤ er|x− y|

with |x|, |y| ≤ r. Hence, F is uniformly continuous on bounded subsets of C :=
[0,∞). Consequently, one can easily see that F is monotone on [0,∞) since

〈F (x)− F (y), x− y〉 = (F (x)− F (y))(x− y) ≥ 0, ∀x, y ∈ [0,∞).

Finally, SOL of VI(F,C) is nonempty since 0 ∈ SOL.

Motivated by Example 1.1, it would be of interest to propose an iterative method for
solving VI(F,C) (1) for which the underline cost function F is uniformly continuous
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on bounded subsets of C but not Lipschitz continuous on C.

Our interest in this paper is to obtain weak convergence results using inertial
projection-type algorithm for VI(F,C) (1) when the underline operator F is mono-
tone and uniformly continuous. We do not assume the cost function to be Lipschitz
continuous as assumed in [18,19,22,40,41,55]. Our proposed method is much more
practical and outperforms the methods (2) and (3) numerically.

We organize the paper as follows: Basic definitions and results are given in Section 2
and the proposed method is introduced in Section 3. We give weak convergence
analysis of the proposed method in Section 4 and give some numerical comparisons
of our method with methods (2) and (3) in Section 5. Finally, we some concluding
remarks in Section 6.

2 Preliminaries

Suppose we take H as a real Hilbert space and X ⊆ H be a nonempty subset.

Definition 2.1. A mapping F : X → H is called

(a) monotone on X if 〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ X;

(b) Lipschitz continuous on X if there exists a constant L > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ X.

(c) sequentially weakly continuous if for each sequence {xn} we have: {xn} con-
verges weakly to x implies {F (xn)} converges weakly to F (x).

Given any point u ∈ H, there exists a unique point PCu ∈ C (see, e.g., [9]) such
that

‖u− PCu‖ ≤ ‖u− y‖, ∀y ∈ C.

This PC is called the metric projection of H onto C. It is known that PC is a
nonexpansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H. (4)

In particular, we get from (4) that

〈x− y, x− PCy〉 ≥ ‖x− PCy‖2, ∀x ∈ C, y ∈ H. (5)

Another property of PCx is :

PCx ∈ C and 〈x− PCx, PCx− y〉 ≥ 0, ∀y ∈ C. (6)

More details on PC can be found, for example, in Section 3 of [26].

The following results are needed in the next section.
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Lemma 2.2. The following statements hold in H:

(a) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 for all x, y ∈ H;

(b) 2〈x− y, x− z〉 = ‖x− y‖2 + ‖x− z‖2 − ‖y − z‖2 for all x, y, z ∈ H;

(c) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2 for all x, y ∈ H
and α ∈ R.

Lemma 2.3. (see [1, Lem. 3]) Let {ψn}, {δn} and {αn} be the sequences in [0,+∞)
such that ψn+1 ≤ ψn + αn(ψn − ψn−1) + δn for all n ≥ 1,

∑∞
n=1 δn < +∞ and there

exists a real number α with 0 ≤ αn ≤ α < 1 for all n ≥ 1. Then the following hold:
(i)

∑
n≥1[ψn − ψn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists ψ∗ ∈ [0,+∞) such that limn→+∞ ψn = ψ∗.

Lemma 2.4. (see [9, Lem. 2.39]) Let C be a nonempty set of H and {xn} be a
sequence in H such that the following two conditions hold:
(i) for any x ∈ C, limn→∞ ‖xn − x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.

Lemma 2.5. ( [28]) Let C be a nonempty closed and convex subset of H. Let h be
a real-valued function on H and define K := {x : h(x) ≤ 0}. If K is nonempty and
h is Lipschitz continuous on C with modulus θ > 0, then

dist(x,K) ≥ θ−1 max{h(x), 0}, ∀x ∈ C,

where dist(x,K) denotes the distance function from x to K.

Lemma 2.6. Let C be a nonempty closed and convex subset of H, y := PC(x) and
x∗ ∈ C. Then

‖y − x∗‖2 ≤ ‖x− x∗‖2 − ‖x− y‖2. (7)

Lemma 2.7. ( [31, Prop. 2.11], [30, Prop. 4]) Let H1 and H2 be two real Hilbert
spaces. Suppose F : H1 → H2 is uniformly continuous on bounded subsets of H1

and M is a bounded subset of H1. Then F (M) is bounded.

Lemma 2.8. ( [54, Lem. 7.1.7]) Let C be a nonempty, closed, and convex subset of
H. Let F : C → H be a continuous, monotone mapping and z ∈ C. Then

z ∈ SOL⇐⇒ 〈F (x), x− z〉 ≥ 0 for all x ∈ C.

3 Proposed Method

We give some assumptions on the feasible set C, the cost fucntion F and the iterative
parameter {αn} below.

Assumption 3.1. Suppose that the following hold:

(a) The feasible set C is a nonempty closed affine subset of the real Hilbert space
H.
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(b) F : C → H is monotone and uniformly continuous on bounded subsets of H.

(c) The solution set SOL of VI(F,C) is nonempty.

Assumption 3.2. Suppose the real sequence {αn} satisfy the following condition:

• {αn} ⊂ (0, 1) with 0 ≤ αn ≤ αn+1 ≤ α < 1
3

for all n.

Suppose we define
r(x) := x− PC(x− F (x))

as the residual equation. Then if y = x− F (x) in (5), we obtain

〈F (x), r(x)〉 ≥ ‖r(x)‖2, ∀x ∈ C. (8)

We next give our proposed inertial projection-type method.

Algorithm 1 Inertial Projection Method

1: Choose sequence {αn} and σ ∈ (0, 1) such that the conditions from Assump-
tion 3.2 hold, and take γ ∈ (0, 1). Let x0 = x1 ∈ H be a given starting point.
Set n := 1.

2: Set
wn := xn + αn(xn − xn−1).

Compute zn := PC(wn − F (wn)). If r(wn) = wn − zn = 0: STOP.
3: Compute yn = wn − γmnr(wn), where mn is the smallest nonnegative integer

satisfying

〈F (yn), r(wn)〉 ≥ σ

2
‖r(wn)‖2. (9)

Set ηn := γmn .
4: Compute

xn+1 = PCn(wn), (10)

where Cn = {x : hn(x) ≤ 0} and

hn(x) := 〈F (yn), x− yn〉. (11)

5: Set n← n+ 1 and goto 2.

If r(wn) = 0, then wn is a solution of VI(F,C) (1). In the analysis we assume that
r(wn) 6= 0 for infinitely many iterations, so that Algorithm 1 generates an infinite
sequence satisfying r(wn) 6= 0 for all n ∈ N.

Remark 3.3. (a) Our proposed Algorithm 1 requires, at each iteration, only one
projection onto the feasible set C and another projection onto the half-space Cn
(which has a closed form solution, [15]) and this is numerically less expensive than the
twice computation of projection onto C per iteration in extragradient method [36].

(b) As we have mentioned before, Algorithm 1 is much more applicable than (2)
and (3) because the Lipschtz constant of the cost function F is not needed during
implementations. ♦
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Lemma 3.4. Let the function hn be defined by (11). Then

hn(wn) ≥ σηn
2
‖wn − zn‖2.

In particular, if wn 6= zn, then hn(wn) > 0. If x∗ ∈ SOL, then hn(x∗) ≤ 0.

Proof. Since yn = wn − ηn(wn − zn), using (9) we have

hn(wn) = 〈F (yn), wn − yn〉

= ηn〈F (yn), wn − zn〉 ≥ ηn
σ

2
‖wn − zn‖2 ≥ 0.

If wn 6= zn, then hn(wn) > 0. Furthermore, suppose x∗ ∈ SOL. Then by Lemma 2.8
we have 〈F (x), x − x∗〉 ≥ 0 for all x ∈ C. In particular, 〈F (yn), yn − x∗〉 ≥ 0 and
hence hn(x∗) ≤ 0.

4 Convergence Analysis

Let us give weak convergence analysis of our proposed Algorithm 1 in this section.

Lemma 4.1. Let {xn} be generated by Algorithm 1. Then under Assumptions 3.1
and 3.2, we have that
(i) {xn} is bounded, and
(ii) limn→∞ ‖xn+1 − wn‖ = 0.

Proof. Let x∗ ∈ SOL. By Lemma 2.6 we get (since x∗ ∈ Cn) that

‖xn+1 − x∗‖2 = ‖PCn(wn)− x∗‖2 ≤ ‖wn − x∗‖2 − ‖xn+1 − wn‖2 (12)

= ‖wn − x∗‖2 − dist2(wn, Cn).

Now, using Lemma 2.2 (c), we have

‖wn − x∗‖2 = ‖(1 + αn)(xn − x∗)− αn(xn−1 − x∗)‖2

= (1 + αn)‖xn − x∗‖2 − αn‖xn−1 − x∗‖
+αn(1 + αn)‖xn − xn−1‖2. (13)

Also,

‖xn+1 − wn‖2 = ‖xn+1 − (xn + αn(xn − xn−1))‖2

= ‖xn+1 − xn‖2 + α2
k‖xn − xn−1‖2 − 2αn〈xn+1 − xn, xn − xn−1〉

≥ ‖xn+1 − xn‖2 + α2
k‖xn − xn−1‖2 − 2αn‖xn+1 − xn‖‖xn − xn−1‖

≥ ‖xn+1 − xn‖2 + α2
k‖xn − xn−1‖2 − αn‖xn+1 − xn‖2

−αn‖xn − xn−1‖2

= (1− αn)‖xn+1 − xn‖2 + (α2
n − αn)‖xn − xn−1‖2. (14)

Combining (12), (13) and (14), we get

‖xn+1 − x∗‖2 ≤ (1 + αn)‖xn − x∗‖2 − αn‖xn−1 − x∗‖2
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+αn(1 + αn)‖xn − xn−1‖2 − (1− αn)‖xn+1 − xn‖2

−(α2
n − αn)‖xn − xn−1‖2

= (1 + αn)‖xn − x∗‖2 − αn‖xn−1 − x∗‖2

−(1− αn)‖xn+1 − xn‖2 + (αn(1 + αn)− (α2
n − αn))‖xn − xn−1‖2

= (1 + αn)‖xn − x∗‖2 − αn‖xn−1 − x∗‖2

−(1− αn)‖xn+1 − xn‖2 + 2αn‖xn − xn−1‖2. (15)

Using the fact that αn ≤ αn+1, we obtain from (15) that

‖xn+1 − x∗‖2 ≤ (1 + αn+1)‖xn − x∗‖2 − αn‖xn−1 − x∗‖2

−(1− αn)‖xn+1 − xn‖2 + 2αn‖xn − xn−1‖2. (16)

By (16), we get

‖xn+1 − x∗‖2 − αn+1‖xn − x∗‖2 + 2αn+1‖xn+1 − xn‖2 ≤ ‖xn − x∗‖2 − αn‖xn−1 − x∗‖2

+2αn‖xn − xn−1‖2 + 2αn+1‖xn+1 − xn‖2 − (1− αn)‖xn+1 − xn‖2

= ‖xn − x∗‖2 − αn‖xn−1 − x∗‖2 + 2αn‖xn − xn−1‖2 + (2αn+1 − 1 + αn)‖xn+1 − xn‖2.

Therefore,

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − αn‖xn−1 − x∗‖2 + 2αn‖xn − xn−1‖2

+(2αn+1 − 1 + αn)‖xn+1 − xn‖2. (17)

Let us define

Γn := ‖xn − x∗‖2 − αn‖xn−1 − x∗‖2 + 2αn‖xn − xn−1‖2.

Then we have from (17) that

Γn+1 − Γn ≤ (2αn+1 − 1 + αn)‖xn+1 − xn‖2. (18)

Since 0 ≤ αn ≤ αn+1 ≤ α < 1
3
, we get −2αn+1 ≥ −2α and −αn ≥ −α. This implies

that −(2αn+1−1+αn) = −2αn+1 +1−αn ≥ −2α+1−α ≥ 1−3α > 0 since α < 1
3
.

Now, let us define σ := 1− 3α. Then

2αn+1 − 1 + αn ≤ −σ. (19)

Putting (19) into (18), we have

Γn+1 − Γn ≤ −σ‖xn+1 − xn‖2. (20)

From (20), we see that {Γn} is monotone nonincreasing. Furthermore,

Γn = ‖xn − x∗‖2 − αn‖xn−1 − x∗‖2 + 2αn‖xn − xn−1‖2

≥ ‖xn − x∗‖2 − αn‖xn−1 − x∗‖2. (21)

So,

‖xn − x∗‖2 ≤ αn‖xn−1 − x∗‖2 + Γn
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≤ α‖xn−1 − x∗‖2 + Γ1

...

≤ αk‖x0 − x∗‖2 + (1 + α + α2 + . . .+ αk−1)Γ1

= αk‖x0 − x∗‖2 +
Γ1

1− α
. (22)

From (22), we can infer that {xn} is bounded. Using the definition of Γn, we have

Γn+1 = ‖xn+1 − x∗‖2 − αn+1‖xn − x∗‖2 + 2αn+1‖xn+1 − xn‖2

≥ −αn+1‖xn − x∗‖2. (23)

Using (22) in (23), we get

−Γn+1 ≤ −αn+1‖xn − x∗‖2 ≤ α‖xn − x∗‖2

≤ αk+1‖x0 − x∗‖2 +
αΓ1

1− α
. (24)

From (20), we get
σ‖xn+1 − xn‖2 ≤ Γn − Γn+1

and so

σ
n∑
j=1

‖xj+1 − xj‖2 ≤ Γ1 − Γn+1

≤ Γ1 + αn+1‖x0 − x∗‖2 +
αΓ1

1− α

≤ αn+1‖x0 − x∗‖2 +
Γ1

1− α

≤ ‖x0 − x∗‖2 +
Γ1

1− α
.

Therefore, since x0 = x1, we get

∞∑
k=1

‖xn+1 − xn‖2 ≤
1

σ

(
‖x0 − x∗‖2 +

Γ1

1− α

)
=

1

σ
‖x0 − x∗‖2 +

1− α1

1− α
‖x0 − x∗‖2

=
( 1

1− 3α
+

1− α1

1− α

)
‖x0 − x∗‖2 <∞.

Observe that

‖xn+1 − wn‖ = ‖xn+1 − xn − αn(xn − xn−1)‖
≤ ‖xn+1 − xn‖+ αn‖xn − xn−1‖
≤ ‖xn+1 − xn‖+ α‖xn − xn−1‖. (25)

Using (25), we obtain
lim
n→∞

‖xn+1 − wn‖ = 0. (26)
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Lemma 4.2. Let {xn} generated by Algorithm 1 above and Assumptions 3.1 and
3.2 hold. Then

(a) lim
n→∞

ηn‖wn − zn‖2 = 0;

(b) lim
n→∞

‖wn − zn‖ = 0.

Proof. Let x∗ ∈ SOL. Since F is uniformly continuous on bounded subsets of
X, then {F (xn)}, {zn}, {wn} and {F (yn)} are bounded. In particular, there exists
M > 0 such that ‖F (yn)‖ ≤M for all n ∈ N. Combining Lemma 2.5 and Lemma 3.4,
we get

‖xn+1 − x∗‖2 = ‖PCn(wn)− x∗‖2 ≤ ‖wn − x∗‖2 − ‖xn+1 − wn‖2

= ‖wn − x∗‖2 − dist2(wn, Cn)

≤ ‖wn − x∗‖2 −
( 1

M
hn(wn)

)2
≤ ‖wn − x∗‖2 −

( 1

2M
σηn‖r(wn)‖2

)2
= ‖wn − x∗‖2 −

( 1

2M
σηn‖wn − zn‖2

)2
. (27)

Since {xn} is bounded, we obtain from (27) that( 1

2M
σηn‖wn − zn‖2

)2
≤ ‖wn − x∗‖2 − ‖xn+1 − x∗‖2

=
(
‖wn − x∗‖ − ‖xn+1 − x∗‖

)(
‖wn − x∗‖+ ‖xn+1 − x∗‖

)
≤ ‖wn − x∗‖ − ‖xn+1 − x∗‖M1

≤ ‖wn − xn+1‖M1, (28)

where M1 := supn≥1{‖wn − x∗‖+ ‖xn+1 − x∗‖}. This establishes (a).

To establish (b), We distinguish two cases depending on the behaviour of (the
bounded) sequence of step-sizes {ηn}.
Case 1: Suppose that lim infn→∞ ηn > 0. Then

0 ≤ ‖r(wn)‖2 =
ηn‖r(wn)‖2

ηn

and this implies that

lim sup
n→∞

‖r(wn)‖2 ≤ lim sup
n→∞

(
ηn‖r(wn)‖2

)(
lim sup
n→∞

1

ηn

)
=

(
lim sup
n→∞

ηn‖r(wn)‖2
)

1

lim infn→∞ ηn

= 0.

Hence, lim supn→∞ ‖r(wn)‖ = 0. Therefore,

lim
n→∞

‖wn − zn‖ = lim
n→∞

‖r(wn)‖ = 0.
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Case 2: Suppose that lim infn→∞ ηn = 0. Subsequencing if necessary, we may
assume without loss of generality that limn→∞ ηn = 0 and limn→∞ ‖wn−zn‖ = a ≥ 0.

Define ȳn := 1
γ
ηnzn +

(
1− 1

γ
ηn

)
wn or, equivalently, ȳn − wn = 1

γ
ηn(zn − wn). Since

{zn − wn} is bounded and since limn→∞ ηn = 0 holds, it follows that

lim
n→∞

‖ȳn − wn‖ = 0. (29)

From the step-size rule and the definition of ȳk, we have

〈F (ȳn), wn − zn〉 <
σ

2
‖wn − zn‖2, ∀n ∈ N,

or equivalently

2〈F (wn), wn − zn〉+ 2〈F (ȳn)− F (wn), wn − zn〉 < σ‖wn − zn‖2, ∀n ∈ N.

Setting tn := wn − F (wn), we obtain form the last inequality that

2〈wn − tn, wn − zn〉+ 2〈F (ȳn)− F (wn), wn − zn〉 < σ‖wn − zn‖2, ∀n ∈ N.

Using Lemma 2.2 (b) we get

2〈wn − tn, wn − zn〉 = ‖wn − zn‖2 + ‖wn − tn‖2 − ‖zn − tn‖2.

Therefore,

‖wn − tn‖2 − ‖zn − tn‖2 < (σ − 1)‖wn − zn‖2 − 2〈F (ȳn)− F (wn), wn − zn〉 ∀n ∈ N.

Since F is uniformly continuous on bounded subsets of H and (29), if a > 0 then
the right hand side of the last inequality converges to (σ−1)a < 0 as n→∞. From
the last inequality we have

lim sup
n→∞

(
‖wn − tn‖2 − ‖zn − tn‖2

)
≤ (σ − 1)a < 0.

For ε = −(σ − 1)a/2 > 0, there exists N ∈ N such that

‖wn − tn‖2 − ‖zn − tn‖2 ≤ (σ − 1)a+ ε = (σ − 1)a/2 < 0 ∀n ∈ N, n ≥ N,

leading to
‖wn − tn‖ < ‖zn − tn‖ ∀n ∈ N, n ≥ N,

which is a contradiction to the definition of zn = PC(wn − F (wn)). Hence a = 0,
which completes the proof.

Lemma 4.3. Let Assumptions 3.1 and 3.2 hold. Furthermore let {xnk
} be a subse-

quence of {xn} converging weakly to a limit point p. Then p ∈ SOL.

Proof. By the definition of znk
together with (6), we have

〈wnk
− F (wnk

)− znk
, x− znk

〉 ≤ 0, ∀x ∈ C,
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which implies that

〈wnk
− znk

, x− znk
〉 ≤ 〈F (wnk

), x− znk
〉, ∀x ∈ C.

Hence,

〈wnk
− znk

, x− znk
〉+ 〈F (wnk

), znk
− wnk

〉 ≤ 〈F (wnk
), x− wnk

〉, ∀x ∈ C. (30)

Fix x ∈ C and let k →∞ in (30). Since limk→∞ ‖wnk
− znk

‖ = 0, we have

0 ≤ lim inf
k→∞

〈F (wnk
), x− wnk

〉 (31)

for all x ∈ C. It follows from (30) and the monotonicity of F that

〈wnk
− znk

, x− znk
〉+ 〈F (wnk

), znk
− wnk

〉 ≤ 〈F (wnk
), x− wnk

〉
≤ 〈F (x), x− wnk

〉 ∀x ∈ C.

Letting k → +∞ in the last inequality, remembering that limk→∞ ‖wnk
− znk

‖ = 0
for all k, we have

〈F (x), x− p〉 ≥ 0 ∀x ∈ C.
In view of Lemma 2.8, this implies p ∈ SOL.

Theorem 4.4. Let Assumptions 3.1 and 3.2 hold. Then the sequence {xn} generated
by Algorithm 1 weakly converges to a point in SOL.

Proof. We have shown that
(i) limn→∞ ‖xn − x∗‖ exists;
(ii) ωw(xn) ⊂ SOL, where ωw(xn) := {x : ∃xnj

⇀ x} denotes the weak ω-limit set
of {xn}.
Then, by Lemma 2.4, we have that {xn} converges weakly to a point in SOL.

Remark 4.5. (a) One can still obtain weak convergence for Algorithm 1 when C
is a nonempty, closed and convex subset of H.

(b) In finite-dimensional spaces, Theorem 4.4 holds when F is monotone and con-
tinuous.

(c) Lemmas 3.5, 4.1, 4.2 and Theorem 4.4 can be obtained when F pseudo-
monotone and weakly sequentially continuous (i.e., for all x, y ∈ H, 〈F (x), y− x〉 ≥
0 =⇒ 〈F (y), y − x〉 ≥ 0;). The reader can see, for example, [49]. ♦

Remark 4.6. Our proposed method in this paper gives weak convergence results in
infinite dimensional Hilbert space. There exists strong convergence methods in the
literature for solving variational inequality problem in infinite dimensional Hilbert
space (see, for example, [16, 18, 32, 39, 42, 44, 45, 52]). These methods use ideas of
viscosity terms, Halpern iterations and hybrid methods. It has been shown numer-
ically in [32] that viscosity and Halpern-type strongly convergent methods outper-
form those of hybrid methods. Nonetheless, proposed viscosity and Halpern-type
strongly convergent methods involve the iterative parameter that is both diminishing
and non-summable. These conditions on the iterative parameters make the viscos-
ity and Halpern-type strongly convergent methods to be slower than our proposed
method in this paper in terms number of iterations and CPU time.
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5 Numerical Experiments

In this section, we discuss the numerical behaviour of Algorithm 1 using different
test examples taken from the literature which are describe below and compare our
method with (2), (3) and Algorithm 3.2 of Shehu and Iyiola [51].

Example 5.1. Equilibrium-optimization Model
In this example, we consider an equilibrium-optimization model (see, for exam-
ple, [50]) which can be regarded as an extension of a Nash-Cournot oligopolistic
equilibrium model in electricity markets.

In this equilibrium model, we assume that there are m companies, each company i
may possess Ii generating units. Suppose we denote by x, the vector whose entry xj
stands for the power generating by unit j. Suppose the price pi(s) is a decreasing
affine function of s where s :=

∑N
j=1 xj where N is the number of all generating

units. Thus, pi(s) := α − βis. Then the profit made by company i is given by
fi(x) := pi(s)

∑
j∈Ii xj −

∑
j∈Ii cj(xj), where cj(xj) is the cost for generating xj

by generating unit j . Let us assume that Ki is the strategy set of company i,
which implies that

∑
j∈Ii xj ∈ Ki for each i. Then the strategy set of the model is

C := K1 ×K2 × . . .×Km.

A commonly used approach when each company wants to maximize its profit by
choosing the corresponding production level under the presumption that the pro-
duction of the other companies are parametric input is the Nash equilibrium concept.

We recall that a point x∗ ∈ C = K1 ×K2 × . . .×Km is an equilibrium point if

fi(x
∗) ≥ fi(x

∗[xi])∀xi ∈ Ki, i = 1, 2, . . . ,m,

where the vector x∗[xi] stands for the vector obtained from x∗ by replacing x∗i with
xi. Define

f(x, y) := ψ(x, y)− ψ(x, x)

with

ψ(x, y) := −
n∑
i=1

fi(x
∗[yi]).

Then the problem of finding a Nash equilibrium point of our model can be formulated
as

X∗ ∈ C : f(x∗, x) ≥ 0 ∀x ∈ C. (32)

Suppose for every j, the cost cj for production and the environmental fee g are
increasingly convex functions. The convexity assumption here means that both
the cost and fee for producing a unit production increases as the quantity of the
production gets larger. Under this convexity assumption, it is not hard to see that
(32) is equivalent to (see, [58])

x ∈ C : 〈Bx− a+∇ϕ(x), y − x〉 ≥ 0 ∀y ∈ C, (33)

12



where

a := (α, α, . . . , α)T

B1 =


β1 0 0 . . . 0
0 β2 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 0 βm

B =


0 β1 β1 . . . β1
β2 0 β2 . . . β2
. . . . . . . . . . . . . . .
βm βm βm . . . βm


ϕ(x) := xTB1x+

N∑
j=1

cj(xj).

Note that when cj is differentiable convex for every j.

We tested the proposed algorithm with the cost function given by

cj(xj) =
1

2
xTj Dxj + dTxj.

The parameters βj for all j = 1, . . . ,m, matrix D and vector d were generated ran-
domly in the interval (0, 1], [1, 40] and [1, 40] respectively.

We perform numerical implementations using different choices of 10, and 20, different
initial choices x1 generated randomly in the interval [1, 40] and m = 10 with the
stopping criterion as ‖xn+1 − xn‖ ≤ 10−2. Let us assume that each company have
the same lower production bound 1 and upper production bound 40, that is,

Ki := {xi : 1 ≤ xi ≤ 40}, i = 1, . . . , 10.

We compare our proposed Algorithm 1 with algorithm 3.2 proposed by Shehu and
Iyiola in [51].

Table 1: Example 5.1 Comparison: Proposed Alg. 1 and Shehu & Iyiola Alg. 3.2
(SI Alg.) for σ = 0.5

N=10 N=20

No. of Iter. CPU time (10−2) No. of Iter. CPU time (10−2)
γ Alg. 1 SI Alg. Alg. 1 SI Alg. Alg. 1 SI Alg. Alg. 1 SI Alg.

0.01 223 435 2.6822 8.8916 228 520 7.9536 22.352

0.1 38 518 1.4433 13.108 36 473 1.0797 14.871

0.5 10 434 0.8232 7.9301 9 285 0.4196 9.6452

0.8 9 514 12.3590 13.1390 8 320 0.4596 8.3524
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Figure 1: Example 5.1: γ = 0.01, N = 10

100 101 102 103

20

30

40

50

60

70

Figure 2: Example 5.1: γ = 0.1, N = 10
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Figure 3: Example 5.1: γ = 0.5, N = 10
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Figure 4: Example 5.1: γ = 0.7, N = 10
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Figure 5: Example 5.1: γ = 0.01, N = 20
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Figure 6: Example 5.1: γ = 0.1, N = 20
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Figure 7: Example 5.1: γ = 0.5, N = 20
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Figure 8: Example 5.1: γ = 0.7, N = 20

Example 5.2. This example is taken from [27] and has been considered by many
authors for numerical experiments (see, for example, [29, 42, 53]). The operator A
is defined by A(x) := Mx + q, where M = BBT + S + D, with B, S,D ∈ Rm×m

randomly generated matrices such that S is skew-symmetric (hence the operator
does not arise from an optimization problem), D is a positive definite diagonal
matrix (hence the variational inequality has a unique solution) and q = 0. The
feasible set C is described by linear inequality constraints Bx ≤ b for some random
matrix B ∈ Rk×m and a random vector b ∈ Rk with nonnegative entries. Hence
the zero vector is feasible and therefore the unique solution of the corresponding
variational inequality. These projections are computed using the MATLAB solver
fmincon. Hence, for this class of problems, the evaluation of A is relatively inexpen-
sive, whereas projections are costly. We present the corresponding numerical results
(number of iterations and CPU times in seconds) using six different dimensions m
and two different numbers of inequality constraints k.

We choose the stopping criterion as ‖xk‖ ≤ ε = 0.001. The size k = 30, 50 and
m = 10, 20, 30, 40, 50, 60. The matrices B, S,D and the vector b are generated ran-
domly. We choose γ = 0.8, σ = 0.5, αn = 0.2 in Algorithm (1). In (2), we choose
σ = 0.8, ρ = 0.1, µ = 0.2. In (3), we choose L = ‖M‖. Here, we compare our
proposed Algorithm 1 with the subgradient extragradient method (SEM) (2), and
the inertial subgradient extragradient method (Thong & Hieu) (3).

100 101 102 103 104
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100

Figure 9: Example 5.2:
k = 30, m = 10
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Figure 10: Example 5.2:
k = 30, m = 20
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Figure 11: Example 5.2:
k = 30, m = 30
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Figure 12: Example 5.2:
k = 30, m = 40
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Figure 13: Example 5.2:
k = 30, m = 50
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Figure 14: Example 5.2:
k = 30, m = 60
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Figure 15: Example 5.2:
k = 50, m = 10
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Figure 16: Example 5.2:
k = 50, m = 20
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Figure 17: Example 5.2:
k = 50, m = 30
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Figure 18: Example 5.2:
k = 50, m = 40
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Figure 19: Example 5.2:
k = 50, m = 50
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Figure 20: Example 5.2:
k = 50, m = 60

We give an example in infinite dimensional Hilbert spaces. We give comparison of
our proposed Algorithm 1 with Algorithm (2), Algorithm (3) and the non-inertial
case of Algorithm 1 (when αn = 0).

Example 5.3. Let H := L2([0, 1]) with norm and inner product given as ‖x‖ :=( ∫ 1

0
x(t)2dt

) 1
2

and 〈x, y〉 :=
∫ 1

0
x(t)y(t)dt, x, y ∈ H respectively. We define the

feasible set C as: C := {x ∈ L2([0, 1]) :
∫ 1

0
tx(t)dt = 2}. Let us define the Volterra

integral operator F : L2([0, 1])→ L2([0, 1]) by

Fx(t) :=

∫ t

0

x(s)ds, x ∈ L2([0, 1]), t ∈ [0, 1].
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Then, F is monotone, bounded and linear with L = 2
π

(see Exercises 20.12 of [9]).
Observe that SOL 6= ∅ since 0 ∈ SOL and that (see [15])

PC(x)(t) := x(t)−
∫ 1

0
tx(t)dt− 2∫ 1

0
t2dt

t, t ∈ [0, 1].

We set the stopping criterion to be en := ‖xn+1 − xn‖ < ε where ε = 10−3. In our
proposed algorithm (1), we choose γ = 0.2, σ = 0.05, αn = 0.3 and for subgradient
extragradient method (SEM) (i.e., Algorithm (2)), we choose λ = 1

2L
while for the

Thong and Hieu Algorithm (3), we choose αn = 0.3 and λ = 0.01
2L

. We compared all
four algorithms with different initial points.

Table 3: Example 5.3 Comparison: Proposed Alg. 1, Non-inertial Alg. (αn = 0),
SEM Alg., and Thong & Hieu (T & H) Alg.

x0 = x1 Alg. 1 Alg. 1 (αn = 0) SEM Alg. T & H Alg.

37
5
tet No. of Iter. 63 87 919 16902

CPU time 1.0443× 10−2 1.5735× 10−2 0.13886 2.5550

97
12

(t2 + 7t) No. of Iter. 69 97 912 16605

CPU time 9.8188× 10−3 1.0992× 10−2 0.13403 2.5040
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Figure 21: Ex. 5.3: x0 = x1 = 37
5
tet
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Figure 22: Ex. 5.3: x0 = x1 = 97
12

(t2 + 7t)

Clearly, from all the three Examples presented above, our proposed algorithm 1
outperforms and highly improves the non-inertial algorithm (αn = 0), Shehu and
Iyiola Algorithm (3.2) in [51], subgradient extragradient method (SEM) (2), and
the inertial subgradient extragradient method (Thong & Hieu) (3) with respect to
number of iterations required and CPU time and achieved norm of the solution. See
Tables 1 - 3 and Figures 1 - 22.
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6 Final Remarks

We propose an inertial projection method for solving variational inequality problem
and give weak convergence result. The cost function is assumed to be monotone and
non-Lipschitz continuous. Our numerical implementations show that our method is
more efficient and outperforms some other related methods in the literature. Our
result is more applicable than the results on variational inequality where the Lips-
chitz constant of the cost function is needed. Our future project is focused on how to
extend the range of inertial factor αn beyond 1/3 and extend our results to infinite
dimensional Banach spaces.
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