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Abstract

We study the interacting homogeneous Bose gas in two spatial dimensions in the thermody-
namic limit at fixed density. We shall be concerned with some mathematical aspects of this
complicated problem in many-body quantum mechanics. More specifically, we consider
the dilute limit where the scattering length of the interaction potential, which is a measure
for the effective range of the potential, is small compared to the average distance between
the particles. We are interested in a setting with positive (i.e., non-zero) temperature.

After giving a survey of the relevant literature in the field, we provide some facts and
examples to set expectations for the two-dimensional system. The crucial difference to
the three-dimensional system is that there is no Bose–Einstein condensate at positive
temperature due to the Hohenberg–Mermin–Wagner theorem. However, it turns out that
an asymptotic formula for the free energy holds similarly to the three-dimensional case.
We motivate this formula by considering a toy model with δ interaction potential. By
restricting this model Hamiltonian to certain trial states with a quasi-condensate we obtain
an upper bound for the free energy that still has the quasi-condensate fraction as a free
parameter. When minimizing over the quasi-condensate fraction, we obtain the Berezinskii–
Kosterlitz–Thouless critical temperature for superfluidity, which plays an important role in
our rigorous contribution.

The mathematically rigorous result that we prove concerns the specific free energy in the
dilute limit. We give upper and lower bounds on the free energy in terms of the free energy
of the non-interacting system and a correction term coming from the interaction. Both
bounds match and thus we obtain the leading term of an asymptotic approximation in the
dilute limit, provided the thermal wavelength of the particles is of the same order (or larger)
than the average distance between the particles. The remarkable feature of this result is
its generality: the correction term depends on the interaction potential only through its
scattering length and it holds for all nonnegative interaction potentials with finite scattering
length that are measurable. In particular, this allows to model an interaction of hard disks.
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1 Introduction to dilute Bose gases

In this chapter we give an overview of the mathematical literature
on dilute Bose gases and present the statement of the main theorem
concerning an asymptotic expansion of the free energy of a two-
dimensional Bose gas in the dilute limit. To motivate the formula
appearing in the theorem, we consider a toy model with δ interaction.
Restricting this model Hamiltonian to a certain class of trial states
that have a coherent state in the p = 0 mode, we obtain an upper
bound on its free energy. When minimizing this upper bound over
the condensate fraction, the Berezinskii–Kosterlitz–Thouless critical
temperature for superfluidity appears as the important temperature
scale. We further highlight the differences between the two- and
three-dimensional system and sketch the strategy that will be used
in Chapter 2 and 3 to give the proof of the main theorem.
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1 Introduction to dilute Bose gases

1.1 A survey of the literature

Einstein [24] reported already in 1924 and 1925 about the possibility of condensation of a
system of particles obeying Bose statistics into the ground state. His work was based on
Bose’s derivation [12] of Planck’s radiation law, and was long thought to be of academic
interest only. In fact, it took seventy years until Bose–Einstein condensation (BEC) could
be experimentally observed in dilute alkali gases [3, 18], which are however interacting
systems. Einstein’s original result was valid for an ideal Bose gas only and it is a famous
open problem in mathematical physics to show BEC for general interacting systems. There
is a vast body of works on BEC: see the reviews [15, 17, 33, 40, 80] and monographs [62,
63], for example. For an overview of some recent rigorous results, see [46], for a shorter
introduction see [72].

The first rigorous advances were made for proving the ground state energy of a dilute
three-dimensional Bose gas in the thermodynamic limit at fixed density. The leading order
of the ground state energy per unit volume is given by

e3D(ρ) = 4πaρ2(1 + o(1)), (1.1.1)

where ρ is the average density of the gas and a denotes the scattering length of the
interaction potential. This formula becomes exact in the dilute limit a3ρ → 0, where
the scattering length is small compared to the average interparticle distance. Dyson [23]
proved an upper bound for hard spheres but his lower bound was still off by a factor. The
correct lower bound was proved much later by Lieb and Yngvason [51], which now can be
considered a major mathematical breakthrough. An upper bound for general interaction
potentials was given in [47]. Remarkably, the ground state energy depends to leading order
only on the interaction potential through the scattering length.

The second order correction to the ground state energy in the dilute limit was also found
to depend only on the scattering length. Up to the order (a3ρ)1/2, the formula for the ground
state energy reads

e3D(ρ) = 4πaρ2
(︄
1 +

128
15
√
π

(a3ρ)1/2 + o((a3ρ)1/2)
)︄
. (1.1.2)

The form of the correction term was initially predicted by Lee, Huang and Yang [39] and
much effort has been put forward through the years to prove it rigorously. To mention
only a few, Lieb [42] obtained the LHY correction but used additional (non-rigorous)
assumptions, [25] still has a multiplicative factor in an upper bound on the correction term
and [29] shows the LHY correction in a high density regime. See [10] for related work
on the Gross–Pitaevskii limit. The first rigorous upper bound for the LHY correction was

2



1.1 A survey of the literature

proved by Yau and Yin [78] for smooth interaction potentials with fast decay, while the
lower bound was proved only recently by Fournais and Solovej in [28], building on the
work of [13, 14]. Since the authors of [28] assume the interaction potential to be of L1-type
with compact support (which is the most general proof yet), the LHY correction is still to
be proved for a hard sphere interaction. For predictions of even higher order corrections to
these formulas, we refer the reader to [43, 53, 77].

In the influential paper [11], Bogoliubov introduced his approximation scheme, which
yields the integral of the potential for the ground state energy in the dilute regime. It was
only due to Landau (whom Bogoliubov thanks in a footnote) that to obtain the correct
result one has to manually replace the integral of the potential by the scattering length.
For a modern review of the Bogoliubov theory, see [81]. There have been many works
on the validity of Bogoliubov’s approximation in a many-body setting: See, for example,
the articles [49, 50, 75], which studied the one- and two-component charged Bose gas.
In the case of an external trapping potential, even the excitation spectrum was analyzed,
see [19, 30, 41, 56, 71]. More recently, in a confined setting in combination with the
Gross–Pitaevskii limit, the ground state energy as well as the excitation spectrum could be
obtained [8–10].

At positive temperature, the analogous quantity to the ground state energy is the free
energy. In the thermodynamic limit the leading order contribution to the free energy in
three dimensions coming from the interaction has been found to be

f 3D(β, ρ) = f 3D
0 (β, ρ) + 4πaρ2

⎛⎜⎜⎜⎜⎜⎜⎝2 −
⎡⎢⎢⎢⎢⎢⎣1 − (︄

β3D
c (ρ)
β

)︄3/2⎤⎥⎥⎥⎥⎥⎦2

+

⎞⎟⎟⎟⎟⎟⎟⎠ (1 + o(1)). (1.1.3)

Here, f 3D
0 (β, ρ) is the free energy of non-interacting bosons in three dimensions, [ · ]+ =

max{0, · } denotes the positive part, β = 1/T is the inverse temperature and β3D
c =

ζ(3/2)2/3/(4πρ2/3) is the inverse critical temperature for BEC of the ideal Bose gas in
three dimensions. The form of the interaction term can be understood in an intuitive way
and results from the bosonic nature of the particles. Two bosons in different one-particle
wavefunctions feel an exchange effect that increases their interaction energy by a factor of
two compared to when they are in the same one-particle wavefunction. The [ · ]+ bracket
equals the condensate fraction of the ideal gas, which is to leading order also the fraction
of particles that do not feel an exchange effect.

See [79] for the proof of the upper bound and [70] for the proof of the lower bound. It is
valid in case βρ2/3 ≳ 1, i.e., if the temperature is of the order of the critical temeprature
of the ideal gas or lower. There is a recent result about the free energy asymptotics in the
Gross–Pitaevskii limit in a box [21], as well as in a trapped setting [22], where the limit is
a combined Gross–Pitaevskii and thermodynamic limit. The positive temperature situation
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1 Introduction to dilute Bose gases

was further studied in [27, 57–59], where the Hamiltonian was restricted to quasi-free
states. These articles contain formulas for the energy and critical temperature that are
conjecturally valid in a combined dilute and weak-coupling limit.

Finally, we discuss the two-dimensional system, which is the main point of interest of
this thesis. The leading order term for the ground state energy per unit volume in the dilute
limit is given by

e2D(ρ) =
4πρ2

| ln a2ρ|
(1 + o(1)). (1.1.4)

The error term is small in case the dimensionless parameter a2ρ is small or, in other words,
if the scattering length is small compared to the average interparticle distance. It was first
predicted by Schick [67], another derivation is due to Ovchinnikov [61] (using essentially
Lieb’s method [42]). However, it was not until 2001 that the asymptotics for the ground
state energy in the thermodynamic limit was proved rigorously by Lieb and Yngvason
[52]. In contrast to the three-dimensional case, the two-dimensional ground state energy is
not the sum of the ground state energy of N(N − 1)/2 pairs of particles and the coupling
parameter | ln a2ρ|−1 depends explicitly on the density. The next order correction to (1.1.4)
is predicted to be of the form

−4πρ2 ln | ln a2ρ|

| ln a2ρ|
, (1.1.5)

see, e.g., [2, 16].
At positive temperature, the situation for the two-dimensional system has until now

not been so well understood. Proving the leading order of the free energy asymptotics in
the thermodynamic limit has been an open problem and it is this gap that is closed below
in Chapters 2 and 3 of the present thesis. We show that the free energy per unit volume
satisfies

f 2D(β, ρ) = f 2D
0 (β, ρ) +

4πρ2

| ln a2ρ|

⎛⎜⎜⎜⎜⎜⎝2 − [︄
1 −

β2D
c (ρ, a)
β

]︄2

+

⎞⎟⎟⎟⎟⎟⎠ (1 + o(1)), (1.1.6)

where f 2D
0 is the free energy of non-interacting bosons in two dimensions and β2D

c (ρ, a) is
defined by

β2D
c (ρ, a) =

ln | ln a2ρ|

4πρ
. (1.1.7)

We note that (the inverse of) β2D
c (ρ, a) coincides with the Berezinskii–Kosterlitz–Thouless

critical temperature for superfluidity found in the physics literature, see [6, 7, 36, 37] for
the original publications. The term ρ[1 − β2D

c (ρ, a)/β]+ has the physical interpretation of a
superfluid density [26]. For a discussion of the physics of the superfluid phase transition
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1.2 Presentation of the main theorem

in the two-dimensional Bose gas we refer to [64]. It should be noted that the inverse
critical temperature β2D

c (ρ, a) depends directly on the interaction potential via its scattering
length as opposed to in three dimensions, where the critical temperature for BEC of the
ideal gas appears in the formula for the free energy. In fact, since the Mermin–Wagner–
Hohenberg theorem [32, 55] excludes Bose–Einstein condensation at positive temperatures,
we cannot expect a similar behavior in our case. There is a rigorous upper bound [73]
on the critical temperature of a dilute two-dimensional Bose gas which coincides with
the critical temperature for superfluidity to leading order. The definition of criticality in
that article is the condition that the decay of correlations changes from exponential decay
above the critical temperature to power law decay below it. To the best of our knowledge,
the formula for the free energy asymptotics of the two-dimensional system (1.1.6) does
not seem to have appeared explicitly in the literature before. It should be possible to obtain
it from the analysis in [26], however.

We give explicit bounds on the o(1) correction in (1.1.6) below in case a2ρ ≪ 1 and βρ
of order one or larger, see the statement of Theorem 1. In other words, the free energy
is given to leading order as above when the scattering length is small compared to the
average interparticle distance and the thermal wavelength of the particles is larger than or
equal to the average interparticle distance. See [20] and [54] for the original works this
thesis is based on.

As a side remark we mention that there are also several works on interacting fermionic
systems. The ground state energy in the dilute limit has been analyzed in [45] and the
free energy at positive temperature was studied in [69] (actually the main result in [69] is
stated for the pressure but in a corollary it is shown that this implies the asymptotics for
the free energy as well). While [45] studied also the two-dimensional system, in [69] only
the three-dimensional system was considered. Proving the free energy correction for a
dilute two-dimensional Fermi gas is still an open problem.

1.2 Presentation of the main theorem

In this section, we present the main result of this thesis, Theorem 1. In the following we
will deal only with the two-dimensional system and therefore we drop the superscript “2D”
on the two-dimensional free energies f 2D, f 2D

0 and the critical temperature β2D
c . In order

to precisely state the result, we first discuss the necessary preliminaries. We specify the
model that we use, define the specific free energy in the thermodynamic limit (for the
interacting system as well as the free gas) and define the scattering length.

5



1 Introduction to dilute Bose gases

We consider the Hamiltonian for N bosons in a two-dimensional torus Λ, given by

HN = −

N∑︂
i=1

∆i +

N∑︂
i< j

v(d(xi, x j)), (1.2.1)

where ∆i is the Laplacian on Λ for the i-th particle, d(x, y) is the distance function on the
torus and v ≥ 0 is a nonnegative two-body interaction potential with finite scattering length
a (to be defined properly below), which we assume to be measurable. The interaction
potential is allowed to take the value +∞ (on a set of nonzero measure), which in particular
permits to model an interaction of hard disks. This Hamiltonian acts on the symmetric
tensor product of square integrable functions on the torus

HN =

N⨂︂
sym

L2(Λ). (1.2.2)

We will describe the torus Λ as a square of side length L embedded in the plane with
opposing sides identified, i.e., we have Λ = [0, L]2 ⊂ R2. Then ∆ is the usual Laplacian
on [0, L]2 with periodic boundary conditions and the distance function d(x, y) is explicitly
given as

d(x, y) = min
k∈Z2
|x − y − kL|. (1.2.3)

The quantity of interest is the free energy per unit volume of the system as a function of
the inverse temperature β = 1/T and density ρ defined by

f (β, ρ) = −
1
β

lim
N,L→∞
N/L2=ρ

1
L2 ln TrHN e−βHN . (1.2.4)

The limit is the usual thermodynamic limit1 of large particle number and large volume
while keeping the density fixed. The free energy asymptotics we will give applies to the
setting of a dilute gas, where the parameter a2ρ is small while βρ is of order one or larger.
In other words, the scattering length is supposed to be small compared to the average
particle distance while the thermal wave length of the particles is of the same order as the
average particle distance or larger.

For non-interacting bosons, the free energy can be calculated explicitly. One has to
solve the maximization problem

f0(β, ρ) = sup
µ≤0

{︄
µρ +

1
4π2β

∫︂
R2

ln
(︂
1 − e−β(p2−µ)

)︂
dp

}︄
. (1.2.5)

1Existence of this limit (and independence of the boundary conditions used) can be shown by standard
techniques, see, e.g., [65, 66].
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1.2 Presentation of the main theorem

The chemical potential µ0 that maximizes the free energy satisfies the equation

1
4π2

∫︂
R2

dp
eβ(p2−µ0) −1

= ρ (1.2.6)

and therefore
µ0(β, ρ) =

1
β

ln
(︂
1 − e−4πβρ

)︂
. (1.2.7)

This corresponds to the following explicit form of the free energy

f0(β, ρ) = ρ2
[︄

1
βρ

ln
(︂
1 − e−4πβρ

)︂
−

1
4π(βρ)2 Li2

(︂
1 − e−4πβρ

)︂]︄
, (1.2.8)

where
Li2(z) = −

∫︂ z

0

ln(1 − t)
t

dt (1.2.9)

is the polylogarithm of order 2 (also called the dilogarithm). From this expression for the
free energy of free bosons we directly obtain the scaling relation

f0(β, ρ) = ρ2 f0(βρ, 1). (1.2.10)

In particular, we see that for the free system the dimensionless parameter βρ completely
determines (up to a factor of ρ2) the free energy. We have the asymptotic behavior

f0(x, 1) = −
π

24x2

(︂
1 + O(e−4πx)

)︂
as x→ ∞,

f0(x, 1) = −
1
x

(1 − ln(4πx)) − π + O(x) as x→ 0. (1.2.11)

The scattering length a is defined by a variational principle, see [52, Appendix A]. We
will assume here that the potential is non-negative and has a finite range R0, i.e., we have
v(r) = 0 for r > R0. Then for R > R0, we define the scattering length of v by

2π
ln(R/a)

= inf
g

{︄∫︂
BR

|∇g|2 +
v
2
|g|2

}︄
, (1.2.12)

where the infimum is taken over functions g ∈ H1(BR) with value one on the boundary,
i.e., they satisfy g||x|=R = 1. Here, BR ⊂ R

2 denotes the disk of radius R centered at the
origin. The unique function g0 that attains the infimum on the right-hand side of (1.2.12)
is nonnegative, radially symmetric and satisfies the equation

−2∆g0 + vg0 = 0 (1.2.13)
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1 Introduction to dilute Bose gases

in the sense of distributions on BR. Outside the range of the potential, i.e., for R0 < r < R,
the minimizer g0 is explicitly given by

g0(r) =
ln(r/a)
ln(R/a)

. (1.2.14)

As noted in the remark after the proof of [52, Lemma A.1], the definition of the scattering
length can be extended to potentials of infinite range by cutting off the potential at a finite
range and then letting the cutoff grow to infinity. From [38, Lemma 1], we know that
finiteness of the scattering length is equivalent to a certain integrability condition of the
potential. More precisely, if a < ∞, then∫︂

|x|>a
v(|x|) ln2(|x|/a) dx < ∞ (1.2.15)

holds. Conversely, if (1.2.15) holds with a replaced by some b > 0, then the scattering
length of the potential is finite.

We remark also that defining the scattering length via this variational principle makes
sense for potentials that are not necessarily nonnegative. One has to assume that −∆ + v/2
as an operator on L2(R2) has no negative spectrum, however.

The main result of this thesis is an asymptotic expansion of the free energy in terms of
the free energy of non-interacting bosons and a correction term coming from the interaction
as stated in (1.1.6). This is the two-dimensional analogue of (1.1.3), which itself can be
obtained by combining [70, Theorem 1] (lower bound) and [79, Theorem 1] (upper bound).
The expansion is meaningful for small a2ρ and βρ fixed or large. We introduce here the
notation x ≲ y to indicate that there exists a constant C > 0, independently of x and y, such
that x ≤ Cy (and analogously for “≳”). If x ≲ y and y ≲ x we write x ∼ y.

Theorem 1 (Free energy asymptotics of dilute two-dimensional Bose gas). Assume that
the interaction potential satisfies v ≥ 0 and has a finite scattering length a. In the limit
a2ρ→ 0 where βρ ≳ 1 is fixed or large, we have

f (β, ρ) = f0(β, ρ) +
4πρ2

| ln a2ρ|

⎛⎜⎜⎜⎜⎝2 − [︄
1 −

βc(ρ, a)
β

]︄2

+

⎞⎟⎟⎟⎟⎠ (1 + o(1)), (1.2.16)

with

o(1) ∼
ln ln | ln a2ρ|

ln | ln a2ρ|
. (1.2.17)

Here, [ · ]+ = max{ · , 0} denotes the positive part and the inverse critical temperature
βc(ρ, a) is defined in (1.1.7).
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1.2 Presentation of the main theorem

We have the following remarks about the main theorem.

1. The lower bound is joint work with Andreas Deuchert and Robert Seiringer [20],
while the upper bound is joint work with Robert Seiringer [54].

2. The statement on the o(1) error term is uniform in βρ as long as βρ ≳ 1. The
proof of the lower bound will show that the actual error rate is much better for βρ
some distance away from βcρ (either above or below), see (2.18.16). For very low
temperatures, we utilize the proof method of [52] and in this way recover the ground
state energy error rate | ln a2ρ|−1/5 for very low temperatures, which was proved for
T = 0 in [52].

3. The statement is uniform in the interaction potential in the following sense. In case
of finite range potentials the error term depends on the interaction potential only
through its scattering length a and its range R0. This dependence could be displayed
explicitly. To prove the theorem for infinite range potentials with a finite scattering
length one has to cut the potential at some radius R0, which results in an error term
(contained in the o(1) in (1.2.16)) of the form

1
| ln a2ρ|

∫︂
|x|>R0

v(|x|) ln2(|x|/aR0) dx, (1.2.18)

where aR0 is the scattering length of the potential with cutoff. When R0 is chosen
such that aR0 ≠ 0, this term is much smaller than the main error term (1.2.17), but
is non-uniform in the potential since aR0 depends on v. Note that in contrast to the
three-dimensional case one does not need to choose R0/a ≫ 1. How one obtains
(1.2.18) is explained in detail in Lemma 2 below.

4. Even though the temperature dependence of the correction term in (1.2.16) looks
very similar to the three-dimensional case, the situation is actually rather different
here. While it is possible in three dimensions to obtain a term of the correct form
by naive perturbation theory only (with (8π)−1

∫︁
v in place of the scattering length),

this method fails in two dimensions. One would similarly obtain the integral of the
potential as a factor in the correction term, which does not yield the correct behavior
in the density (namely the inverse logarithmic factor | ln a2ρ|). Furthermore, the
temperature dependence in the correction term would come out wrong, as the critical
temperature for Bose–Einstein condensation (of the non-interacting system) is equal
to zero in two dimensions, hence a factor of two (compared with at zero temperature)
would appear at any T > 0. In other words, in two dimensions a naive perturbation

9



1 Introduction to dilute Bose gases

theory would yield

f0(β, ρ) + 2ρ2
∫︂

v(|x|) dx, (1.2.19)

which is far from the truth. We note that the second term is infinite in the case of
hard disks.

5. The main ingredient to obtain the temperature dependence in the interaction term in
(1.2.16) is the variational principle

inf
0≤ρ0≤ρ

{︄
f0(β, ρ − ρ0) +

4π
| ln a2ρ|

(︂
2ρ2 − ρ2

0

)︂}︄
= f0(β, ρ) +

4π
| ln a2ρ|

(︂
2ρ2 − ρ2

s

)︂
(1 − o(1)) (1.2.20)

as a2ρ → 0. To leading order, the optimal choice of ρ0 turns out to be ρs =

ρ[1 − βc(ρ, a)/β]+, which coincides with the superfluid density of the system [26].
One key ingredient of the proof of the lower bound for the free energy is a c-number
substitution for low momentum modes. These modes are described by coherent
states that do not experience an exchange effect, which decreases their energy relative
to the energy of the high momentum modes that have not been substituted. The
c-number substituted modes take the role of ρ0 and one obtains a formula for the
energy that is approximately given by the left-hand side of (1.2.20). In the proof
of the upper bound the variational principle (1.2.20) emerges by construction of a
suitable trial state that is inserted into the free energy functional.

6. It is possible to extend the theorem to particles with internal degrees of freedom.
However, we consider here for simplicity the case of spinless bosons only.

The proof of Theorem 1 is given in two parts below, see Chapter 2 for the lower bound
and Chapter 3 for the upper bound. In the remainder of this chapter, we will give a brief
sketch of the strategy that will be used to prove the main theorem. Following that we
show how a term on the left-hand side (inside the infimum) of (1.2.20) can be obtained by
considering a toy model with delta interaction and how to minimize over ρ0 to obtain the
right-hand side in the dilute limit. We conclude by presenting calculations for the ground
state energy and scattering length of the finite potential well in two dimensions (to set the
stage for what can be expected in the two-dimensional system) and finally summarize the
differences between the two- and three-dimensional system.
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1.3 Sketch of the proof of the main theorem

1.3 Sketch of the proof of the main theorem

In this section we give a brief sketch of the proof of the lower and upper bound, respectively.
Below, in Sections 2.2 and 3.2, we will give an extended proof sketch with more details
for the proof of the lower and upper bound.

The proof of the lower bound is based on the fact that the free energy of the non-
interacting system f0(β, ρ) is much bigger than the interaction energy (which is the second
term on the right-hand side of (1.2.16) and is proportional to ρ2/| ln a2ρ|) in the dilute
limit. However, as explained in Remark 4 above, one cannot apply a simple version of
perturbation theory to obtain the result. The interaction potential is so strong such that a
Gibbs state of the ideal gas would have an energy that is too large and furthermore simple
perturbation theory does not give the desired temperature dependence of the interaction
term (compare (1.2.16) with (1.2.19)). Therefore, a version of Dyson’s Lemma [23] is used
to replace the strong potential by a softer one with longer range. Then we apply a rigorous
version of first order perturbation theory at positive temperature (which was developed
in [70] and is based on a correlation inequality from [68]) after suitably adapting it to
the two-dimensional system. This method requires that highly occupied low momentum
modes have to be treated with a c-number substitution: Creation and annihilation operators
of the low momentum modes are replaced by complex numbers using coherent states on
the bosonic Fock space. These modes then lead to the correct temperature dependence of
the interaction term, as described in Remark 5 above.

For the proof of the upper bound we employ a variational principle for the free energy.
We use the fact that any admissible state leads to an upper bound and insert a particular
trial state into the free energy functional. The trial state we are going to use consists of
three parts: The thermal Gibbs state of the non-interacting system, a coherent state and
a product function (Jastrow factor [34]) that adds a correlation structure to the system.
We are then able to extract the two terms occurring on the left-hand side of (1.2.20) and
by minimizing over ρ0 (whose origin is again the coherent states), we obtain the desired
temperature dependence of the interaction term. Furthermore, we use a box method and
construct a trial state that is a tensor product of identical copies (up to translation) of the
above trial state, which effectively decouples the thermodynamic limit and the dilute limit
in our estimates. It should be noted that the proof of the upper bound in two dimensions is
conceptually simpler than the corresponding proof of [79, Theorem 1] in three dimensions.
The reason for this is based on the fact that in two dimensions it is easier to control the
norm of the trial state. The error terms related to this norm being close to one are much
smaller than the scale of the interaction energy, which is not the case in three dimensions.
There it was critical that the terms coming from such norm estimates remain on a smaller
scale than the interaction energy.

11



1 Introduction to dilute Bose gases

1.4 Toy model with δ interaction potential

In this section we show how to obtain an upper bound on the free energy that has the same
form as the left-hand side of (1.2.20) (without the infimum). We do this by considering a
toy model Hamiltonian H′ with a density-dependent δ interaction potential,

H′ = −
N∑︂

i=1

∆i +
8π
| ln a2ρ|

N∑︂
i< j

δ(xi − x j) =: H0 + V, (1.4.1)

where in the last equality we split the Hamiltonian in the free part H0, which contains the
kinetic energy and the interacting part V . Strictly speaking, this can only be well-defined
in the sense of quadratic forms on a domain of sufficiently nice functions. As we are only
interested in expectation values of H′ in a particular trial state (see (1.4.4) below), this
shall not concern us further.

The definition of H′ is motivated by perturbation theory: If we perform a first order
perturbation theory for the ground state of H0, we obtain for the change in energy

∆H
|Λ|
=

1
|Λ|
⟨V⟩H0 =

8π
| ln a2ρ||Λ|3

N∑︂
i< j

∫︂
Λ×Λ

δ(xi − x j) dxi dx j =
4πρ2

| ln a2ρ|
+ o(1) (1.4.2)

in the thermodynamic limt. Here we have used the fact that the ground state of H0 is a
(suitably normalized) constant and that its ground state energy is zero. The term obtained
in the last equality above is exactly the leading order term of the ground state energy (1.1.4)
in the dilute limit and therefore H′ is a plausible candidate for determining an asymptotic
formula for the free energy.

Denote for a density matrix ρ̃ the von Neumann entropy by S (ρ̃) = −Tr ρ̃ ln ρ̃. By
the Gibbs variational principle, we obtain the upper bound for the free energy (in finite
volume)

F = −
1
β

ln Tr e−βH′ = min
τ

[︄
Tr H′τ −

1
β

S (τ)
]︄

≤ Tr H′ρ̃ −
1
β

S (ρ̃) = Tr H0ρ̃ + Tr V ρ̃ −
1
β

S (ρ̃), (1.4.3)

where the minimum is taken over all density matrices τ such that 0 ≤ τ ≤ 1, Tr τ = 1 as
well as Tr Nτ = ρL2 and the inequality holds for all ρ̃ satisfying the same condition. We
pick ρ̃ to be equal to

ρ̃ = D(λ)†ρ̃µ0D(λ), (1.4.4)
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1.4 Toy model with δ interaction potential

whereD(λ) = eλa†0−λ
∗a0 is the unitary coherent state operator of the p = 0 mode for λ ∈ C

(with |λ|2 = ρ0L2) and ρ̃µ0 is the grand canonical density matrix for the non-interacting
system

ρ̃
µ
0 =

1
Z0

e−β(H0−µN), Z0 = Tr e−β(H0−µN), (1.4.5)

where µ is chosen such that the expected number of particles in the state ρ̃µ0 is equal to

⟨N⟩ρ̃µ0 = (ρ − ρ0)L2. (1.4.6)

By a direct calculation, the expected number of particles in the state ρ̃µ0 is given by

⟨N⟩ρ̃µ0 = Z−1
0

∑︂
p∈(2π/L)Z2

Tr np e−β(H0−µN) =
1
β

∂

∂µ
ln Z0. (1.4.7)

Here, Z0 is the (grand canonical) partition sum of a free Bose gas, which is given by

Z0 = Tr e−β(H0−µN)

=
∑︂
{np}

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣−β ∑︂
p∈(2π/L)Z2

(︂
p2 − µ

)︂
np

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

∏︂
p

∞∑︂
np=0

exp
[︂
−β

(︂
p2 − µ

)︂
np

]︂
=

∏︂
p

(︂
1 − e−β(p2−µ)

)︂−1
. (1.4.8)

Thus, we have

(ρ − ρ0)L2 =
∑︂

p

(︂
eβ(p2−µ) −1

)︂−1

=
L2

4βπ

∫︂ ∞

0

(︂
eu e−βµ −1

)︂−1
du + o(L2)

= −
L2

4βπ
ln

(︂
1 − eβµ

)︂
+ o(L2), (1.4.9)

where o(L2) refers to the limit L→ ∞. In the calculation we used the integral∫︂ ∞

0

(︂
eu a−1 − 1

)︂−1
du = − ln(1 − a), 0 < a < 1. (1.4.10)
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1 Introduction to dilute Bose gases

Inverting (1.4.9), we have
eβµ = 1 − e−4πβ(ρ−ρ0), (1.4.11)

ignoring terms that give no contribution in the thermodynamic limit. Recalling our previous
choice of |λ|2 = ρ0L2, we have that the state ρ̃ defined in (1.4.4) has an expected number of
particles

⟨N⟩ρ̃ = Tr Nρ̃ = Tr ND(λ)†ρ̃µ0D(λ) = |λ|2 + (ρ − ρ0)L2 = ρL2, (1.4.12)

which makes it thus an admissible trial state for the canonical Gibbs functional. Note that
the right hand side of (1.4.3) can be written as

Tr H0ρ̃ −
1
β

S (ρ̃) + Tr V ρ̃ = Tr H0ρ̃
µ
0 −

1
β

S (ρ̃µ0) + Tr V ρ̃, (1.4.13)

where we used the fact thatD and H0 commute as well as the equality S (ρ̃) = S (ρ̃µ0). Now
we note that the first two terms in the equality above constitute part of the non-interacting
grand canonical Gibbs functional. In particular, if we add the term −µTr Nρ̃µ0, these
three terms together give exactly the free energy2 of the non-interacting grand canonical
ensemble. Therefore, we have

F ≤ Tr(H0 − µN)ρ̃µ0 −
1
β

S (ρ̃µ0) + µTr Nρ̃µ0 + Tr V ρ̃ = F0 + µ(ρ − ρ0)L2 + Tr V ρ̃. (1.4.14)

The first term can be evaluated explicitly as

F0 = −
1
β

ln Z0 = −
1
β

ln
∏︂

p

∞∑︂
np=0

e−β(p2−µ)np

=
1
β

∑︂
p

ln
(︂
1 − e−β(p2−µ)

)︂
=

L2

4β2π

∫︂ ∞

0
ln

(︂
1 − e−u eβµ

)︂
du + o(L2)

=
L2

4β2π

∫︂ ∞

0
ln

(︂
1 − e−u

(︂
1 − e−4πβ(ρ−ρ0)

)︂)︂
du + o(L2), (1.4.15)

2Actually, if we consider the three terms

Tr(H0 − µN)ρ̃µ0 −
1
β

S (ρ̃µ0)

as a function of β and µ this is nothing else but the grand canonical pressure functional of ρ̃µ0 (up to an
area factor) for the non-interacting system. Since we insert the value of the chemical potential from
(1.4.11), we effectively perform the Legendre transform and end up with the free energy.
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1.4 Toy model with δ interaction potential

where we inserted in the last equality the value of the chemical potential from (1.4.11)
needed to achieve an expected number of particles (ρ − ρ0)L2 in the state ρ̃µ0.

Let us discuss the evaluation of the term ⟨V⟩ρ̃. We consider general states in Fock space
of the form

|nλ⟩ = |λ, n0, n1, . . . ⟩ = Cn e−|λ|
2/2

[︃
eλa†0(a†0)n0(a†1)n1 · · ·

]︃
|vac⟩ . (1.4.16)

In second quantization, we can write the expectation value of the δ potential for a many-
body wave function Φ in the following way∑︂

i< j

⟨Φ, δ(xi − x j)Φ⟩ =
1

2L2

∑︂
α,β,γ,δ

δα+β,γ+δ ⟨nλ|a†αa†βaγaδ|nλ⟩ (1.4.17)

and by a direct calculation, we obtain for the Fock space expectation (using the fact that
a0 eλa†0 = eλa†0(λ + a0))

⟨nλ|a†αa†βaγaδ|nλ⟩ = δδ0λ ⟨nλ|a
†
αa†βaγ|nλ⟩ +

√
nδ ⟨nλ|a†αa†βaγ|nδ − 1, λ⟩

= δδ0λ
[︂
δγ0λ ⟨nλ|a†αa†β|nλ⟩ +

√
nγ ⟨nλ|a†αa†β|nγ − 1, λ⟩

]︂
+
√

nδ
[︂
δγ0λ ⟨nλ|a†αa†β|nδ − 1, λ⟩

+ δγδ
√︁

nδ − 1 ⟨nλ|a†αa†β|nδ − 2, λ⟩

+(1 − δγδ)
√

nγ ⟨nλ|a†αa†β|nδ − 1, nγ − 1, λ⟩
]︂

= δδ0δγ0δα0δβ0|λ|
4 + δδ0λ

√
nγ

[︂
δβ0λ

∗δαγ
√

nγ + δα0λ
∗δβγ
√

nγ
]︂

+
√

nδδγ0λ
[︂
δβ0λ

∗δαδ
√

nδ + δα0λ
∗δβδ
√

nδ
]︂

+
√

nδδγδ
√︁

nδ − 1δβδδαδ
√︁

nδ − 1
√

nδ

+ (1 − δγδ)
√

nδ
√

nγ
[︂
δβδδαγ

√
nδ
√

nγ + δβγδαδ
√

nδ
√

nγ
]︂

= δδ0δγ0δα0δβ0|λ|
4 + δδ0|λ|

2nγ
[︂
δβ0δαγ + δα0δβγ

]︂
+ δγ0|λ|

2nδ
[︂
δβ0δαδ + δα0δβδ

]︂
+ δγδδβδδαδnδ(nδ − 1)

+ (1 − δγδ)nδnγ
[︂
δβδδαγ + δβγδαδ

]︂
= δδ0δγ0δα0δβ0|λ|

4 + 4δαγδβ0δδ0|λ|
2nα

+ δαβδαγδαδnα(nα − 1)
+ 2δαγδβδ(1 − δγδ)nδnγ. (1.4.18)
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1 Introduction to dilute Bose gases

Statistical averaging with respect to the state ρ̃ gives (setting |λ|2 = N0 = ρ0L2)

⟨V⟩ρ̃ =
8π

| ln a2ρ|L2

⎛⎜⎜⎜⎜⎜⎜⎝1
2
|λ|4 + 2|λ|2

∑︂
p

⟨np⟩ρ̃µ0
+

1
2

∑︂
p

⟨np(np − 1)⟩ρ̃µ0 +
∑︂
p≠k

⟨npnk⟩ρ̃µ0

⎞⎟⎟⎟⎟⎟⎟⎠
=

8π
| ln a2ρ|L2

⎛⎜⎜⎜⎜⎜⎜⎝1
2
N2

0 + (2N0 − 1/2)N> −
1
2

∑︂
p

⟨n2
p⟩ρ̃µ0
+N2

>

⎞⎟⎟⎟⎟⎟⎟⎠
=

8π
| ln a2ρ|L2

(︄
N2
> +

1
2
N2

0 + (2N0 − 1)N> + r
)︄

=
8π

| ln a2ρ|L2

(︄
(ρ − ρ0)2L4 +

1
2
ρ2

0L4 + 2ρ0L2(ρ − ρ0)L2 − (ρ − ρ0)L2 + r
)︄

=
8πL2

| ln a2ρ|

(︄
ρ2 −

1
2
ρ2

0 −
ρ − ρ0

L2 +
r
L4

)︄
, (1.4.19)

where r is a correction term. Explicitly, r is given by r = 1 − e4πβ(ρ−ρ0) and it is clear that it
gives no contribution in the limit L→ ∞ as it comes with a factor of L−4. Suppressing the
terms of lower order, we thus obtain the result

⟨V⟩ρ̃ =
8πL2

| ln a2ρ|

(︄
ρ2 −

1
2
ρ2

0

)︄
=

8πL2

| ln a2ρ|
ρ2

(︄
1 −

ρ2
0

2ρ2

)︄
. (1.4.20)

Alternatively, this result could have been obtained by writing ⟨V⟩ρ̃ = ⟨D(λ)VD(λ)†⟩ρ̃µ0 .
Using the fact that the coherent state operator acts as a shift operator on the p = 0 mode
creation/annihilation operators, i.e., we have

D(λ)a0D(λ)† = a0 + λ (1.4.21)

and its conjugate, we get∑︂
i< j

⟨δ(xi − x j)⟩ρ̃ =
1

2L2

∑︂
α,β,γ,δ

δα+β,γ+δ ⟨D(λ)a†αa†βaγaδD(λ)†⟩
ρ̃
µ
0

=
1

2L2

∑︂
α,β,γ,δ

δα+β,γ+δ ⟨(a†α + λ
∗)(a†β + λ

∗)(aγ + λ)(aδ + λ)⟩
ρ̃
µ
0
. (1.4.22)

Since the state ρ̃µ0 is quasi-free and particle number conserving, we can apply Wick’s rule
to obtain the result (1.4.20).

Combining both the expression for the free energy of the free Bose gas from (1.4.15)
and the result for the expectation of the δ interaction from (1.4.20) and dividing by L2, we
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1.5 Minimizing over the quasi-condensate fraction

have the following upper bound to the free energy per unit volume of the Hamiltonian with
δ interaction. Denoting the quasi-condensate fraction by s = ρ0/ρ, the bound takes the
form

f ≤ 4πρ2
[︄

1
(4πβρ)2

∫︂ ∞

0
ln

(︂
1 − e−u

(︂
1 − e−4πβρ(1−s)

)︂)︂
du

+
1 − s
4πβρ

ln
(︂
1 − e−4πβρ(1−s)

)︂
+

1
| ln a2ρ|

(︂
2 − s2

)︂]︄
, (1.4.23)

where we suppressed the terms that vanish in the thermodynamic limit.

1.5 Minimizing over the quasi-condensate fraction

In this section we show how to obtain the right-hand side of (1.2.20) to leading order in the
dilute limit. Recall that we obtained the left-hand side of (1.2.20) (without the infimum)
as the result of the previous Section 1.4, i.e.,

f0(β, ρ(1 − s)) +
4πρ2

| ln a2ρ|

(︂
2 − s2

)︂
= right-hand side of (1.4.23) (1.5.1)

for s = ρ0/ρ. Based on the different monotonicity of the free energy and the interaction
term on the left-hand side in (1.5.1) it is possible to guess that there is a non-trivial (i.e.,
not zero or one) optimum when minimizing over s. Indeed, the result of the minimization
in Lemma 1 below is (to leading order)

ρs = ρ

[︄
1 −

ln | ln a2ρ|

4πβρ

]︄
+

= ρ

[︄
1 −

βc

β

]︄
+

, (1.5.2)

where we recall that the inverse critical temperature was defined in (1.1.7) as βc =
ln | ln a2ρ|

4πρ
and [ · ]+ = max{0, · } denotes the positive part.

Introducing the function

gs(ϵ, λ) :=
1

ln2 ϵ

∫︂ ∞

0
ln

(︂
1 − e−u

(︂
1 − ϵ1−s

)︂)︂
du −

1 − s
ln ϵ

ln
(︂
1 − ϵ1−s

)︂
+ λ

(︂
2 − s2

)︂
, (1.5.3)

we have that gs(ϵ, λ) with ϵ = e−4πβρ and λ = 1/| ln a2ρ| is equal (up to a factor of 4πρ2) to
the left-hand side of (1.5.1). When minimizing gs(ϵ, λ) over s ∈ [0, 1] we thus obtain the
best upper bound for the leading order term. Note that using the series expansion of the
logarithm, gs can be rewritten as

gs(ϵ, λ) = −
1

ln2 ϵ
Li2(1 − ϵ1−s) −

1 − s
ln ϵ

ln(1 − ϵ1−s) + λ(2 − s2), (1.5.4)
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where Lin(z) is the polylogarithm defined by

Lin(z) =
∞∑︂

k=1

zk

kn (1.5.5)

and for n = 2 it can also be written as

Li2(z) = −
∫︂ z

0

ln(1 − t)
t

dt. (1.5.6)

We have the following lemma about the minimum of the function gs(ϵ, λ).

Lemma 1. In the region L = {(ϵ, λ) : λ ≤ ϵ}, the function gs(ϵ, λ) defined by (1.5.3) is
minimized at s = 0 with minimal value

g0(ϵ, λ) = g0(ϵ, 0) + 2λ. (1.5.7)

In the region U = {(ϵ, λ) : λ > ϵ} we have a statement only in the limit λ → 0 (which
means that also ϵ → 0 since we are in a region where ϵ < λ). We have that gs(ϵ, λ) is
minimized at smin = 1 − ln λ/ ln ϵ + o(1) > 0 with minimal value

gsmin(ϵ, λ) = g0(ϵ, 0) + λ
⎛⎜⎜⎜⎜⎝2 − (︄

1 −
ln λ
ln ϵ

)︄2⎞⎟⎟⎟⎟⎠ + o(λ) (1.5.8)

as λ→ 0. Combining the two cases λ ≤ ϵ and λ > ϵ into a single formula, we write λ = ϵκ

for any 0 < κ < ∞ and have that the minimum of gs is given by

min
0≤s≤1

gs(ϵ, ϵκ) = g0(ϵ, 0) + ϵκ(2 − [1 − κ]2
+) + o(ϵκ) (1.5.9)

as ϵ → 0. Here, [ · ]+ denotes the positive part.

Proof. Parametrize a point p in L = {λ ≤ ϵ} as p = (ϵ, ϵκ) with κ ≥ 1 and 0 ≤ ϵ ≤ 1.
Then we show that gs(ϵ, ϵκ) is a strictly increasing function in s and therefore attains the
minimum at s = 0. In other words, we should show

∂

∂s
gs(ϵ, ϵκ) =

ln(1 − ϵ1−s)
ln ϵ

− 2sϵκ > 0. (1.5.10)

Using the inequality ln(1 − x) ≤ −x for x < 1, it is enough to show

−ϵκ+s−1 ln ϵ <
1
2s

(1.5.11)
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1.5 Minimizing over the quasi-condensate fraction

to obtain (1.5.10). An explicit calculation shows that the function ϵ ↦→ −ϵα ln ϵ is maxi-
mized at 1/(α e) and thus we have, plugging in α = κ + s − 1,

−ϵκ+1−s ln ϵ ≤
1

(κ + s − 1) e
≤

1
e s

<
1
2s

(1.5.12)

which proves that gs(ϵ, ϵκ) is strictly increasing in s and that the minimum is attained at
s = 0 in the case κ ≥ 1.

To minimize gs in the regionU = {λ > ϵ}, we first note that the partial derivative of gs

with respect to s,
∂

∂s
gs(ϵ, λ) := h(s) =

ln(1 − ϵ1−s)
ln ϵ

− 2λs, (1.5.13)

is a convex function of s. This can be easily checked by computing the second derivative
of h(s), which is indeed positive for 0 < ϵ < 1:

h′′(s) = − ln ϵ
ϵ s+1

(ϵ − ϵ s)2 > 0 (1.5.14)

Thus we deduce that the equation h(s) = 0 has at most two solutions. Since h(0) > 0,
the first zero (counting from the left) of h is a maximum of gs, while the second zero is
a minimum of gs. The equation h(s) = 0 can be rewritten (by taking the logarithm) for
λ = ϵκ with 0 < κ < 1 as

s = 1 − κ −
ln(2s| ln ϵ |)

ln ϵ
. (1.5.15)

By examination, one sees that this equation can have up to two solutions: As it is of the
form s = a + b ln s, we see that the line through the origin with slope one can intersect up
to two times with the shifted logarithm. If it has in fact two solutions, we are looking for
the second solution away from zero in the sense that ln s stays bounded as ϵ → 0. But then
we have already found the solution approximately, since we have

smin = 1 − κ + O
(︄
ln | ln ϵ|
| ln ϵ |

)︄
. (1.5.16)

Inserting this into gs, we find

gsmin(ϵ, ϵ
κ) = gsmin(ϵ, 0) + ϵκ(2 − s2

min)

= gsmin(ϵ, 0) + ϵκ(2 − (1 − κ)2) + O
⎛⎜⎜⎜⎜⎝ϵκ (︄ ln | ln ϵ|

| ln ϵ|

)︄2⎞⎟⎟⎟⎟⎠ . (1.5.17)
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1 Introduction to dilute Bose gases

It remains to check that the error we make by replacing gsmin(ϵ, 0) by g0(ϵ, 0) is of lower
order than the error term we have already written. We have

gsmin(ϵ, 0) = −
1

ln2 ϵ
Li2(1 − ϵ1−smin) −

1 − smin

ln ϵ
ln(1 − ϵ1−smin)

= −
1

ln2 ϵ

(︄
π2

6
+ (ln ϵ1−smin − 1)ϵ1−smin

)︄
+

1 − smin

ln ϵ
ϵ1−smin + O

(︄
ϵ2(1−smin)

| ln ϵ |

)︄
= −

1
ln2 ϵ

(︄
π2

6
− ϵ1−smin

)︄
+ O

(︄
ϵ2(1−smin)

| ln ϵ |

)︄
. (1.5.18)

For g0(ϵ, 0) we find similarly

g0(ϵ, 0) = −
1

ln2 ϵ

(︄
π2

6
− ϵ

)︄
+ O

(︄
ϵ2

| ln ϵ |

)︄
. (1.5.19)

Therefore, we find that in the difference of gsmin(ϵ, 0) and g0(ϵ, 0) the leading order term
proportional to 1/ ln2 ϵ cancels. The next order term in the expansion for gsmin(ϵ, 0) propor-
tional to ϵ1−smin/ ln2 ϵ is much bigger than the next order term in the expansion for g0(ϵ, 0)
and in conclusion we have

gsmin(ϵ, 0) − g0(ϵ, 0) =
ϵ1−smin

ln2 ϵ
+ O

(︄
max

{︄
ϵ2(1−smin)

| ln ϵ |
,
ϵ

ln2 ϵ

}︄)︄
= O

(︄
ϵκ

ln2 ϵ

)︄
. (1.5.20)

Thus, we can replace gsmin(ϵ, 0) by g0(ϵ, 0) in (1.5.17) and obtain

gsmin(ϵ, ϵ
κ) = g0(ϵ, 0) + ϵκ(2 − (1 − κ)2) + O

⎛⎜⎜⎜⎜⎝ϵκ (︄ ln | ln ϵ|
| ln ϵ |

)︄2⎞⎟⎟⎟⎟⎠ . (1.5.21)

Finally, we combine both cases, 0 < κ < 1 and κ ≥ 1, into a single formula

gsmin(ϵ, ϵ
κ) = g0(ϵ, 0) + ϵκ(2 − [1 − κ]2

+) + O
⎛⎜⎜⎜⎜⎝ϵκ (︄ ln | ln ϵ|

| ln ϵ |

)︄2⎞⎟⎟⎟⎟⎠ . (1.5.22)

Now we are done, since the error term in (1.5.22) is indeed o(ϵκ) (albeit with a very slow
convergence rate). □

See Figure 1.1 for a numerical evaluation of the statement of Lemma 1. One recognizes
the exact minimum s = 0 in the lower region L as well as the approximate minimum
smin = 1 − κ in the upper regionU. In the upper bound in Chapter 3 below, we therefore
directly work with a trial state that has density ρs in the coherent state of the p = 0 mode.
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1.6 The finite potential well in two dimensions: ground state energy and scattering length

Figure 1.1: The color marks the numerically determined position s of the minimum of
gs(ϵ, λ) in the (ϵ, λ)-plane on a doubly logarithmic scale. The red line is
ln λ = ln ϵ.

1.6 The finite potential well in two dimensions: ground
state energy and scattering length

In Lemma 5 in Section 2.9 below we will prove an inequality for a one-body Schrödinger
operator with a finite potential well. The method used in the proof is quite general and
uses [74, Theorem 3.4] about the scaling behavior (for a small coupling constant) of the
ground state energy of Schrödinger operators. In this section we will see that for the finite
potential well it is possible to obtain the scaling behavior of the ground state energy (as
well as the scattering length) in a shorter and more direct way using some algebra and
physical intuition.

We consider for λ > 0 the Hamiltonian

h = −∆ − λθ(R0 − |x|) (1.6.1)

acting on L2(R2), which describes a single particle interacting with an attractive potential
well of radius R0 and coupling strength λ. Our goal is to obtain the scaling behavior of the
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1 Introduction to dilute Bose gases

ground state energy as well as the scattering length. The stationary Schrödinger equation
at energy E in polar coordinates reads(︄

−
∂2

∂r2 −
1
r
∂

∂r
−

1
r2

∂2

∂φ2 − λθ(R0 − r)
)︄
ψ(r, φ) = Eψ(r, φ). (1.6.2)

By separation of variables and solving the equation for the angular variable, we find the
ODE (︄

−
d2

dr2 −
1
r

d
dr
+

m2

r2 − E − λθ(R0 − r)
)︄

R(r) = 0 (1.6.3)

for m an integer. Rescaling ρ = r
√

E + λθ(R0 − r) leads to the equation(︄
ρ2 d2

dρ2 + ρ
d

dρ
+ ρ2 − m2

)︄
R(ρ) = 0, (1.6.4)

which is Bessel’s equation for R(ρ). Strictly speaking we have two equations, one for
r < R0 and one for r > R0 (since the rescaling we did was discontinuous), and we have
to patch together the solutions in a suitable way (by matching the solutions and their
derivatives). To find the ground state energy we can assume m = 0 (as the ground state
wave function will have no angular momentum). Denoting

k =
√︁
λ − |E|, κ =

√︁
|E|, (1.6.5)

we solve (1.6.4) by

R(ρ) ∼

⎧⎪⎪⎨⎪⎪⎩J0(kr) if 0 ≤ r < R0,

K0(κr) if r > R0.
(1.6.6)

Here, J0 is the Bessel function of the first kind and K0 is the modified Bessel function of
the second kind. This ansatz is regular inside the potential well and decays exponentially
outside, as is appropriate for a bound state with E < 0. Matching the two functions and
their derivatives at r = R0 (as well as eliminating the normalization factor) leads to the
equation

k
J′0(kR0)
J0(kR0)

= κ
K′0(κR0)
K0(κR0)

. (1.6.7)

The smallest E that solves (1.6.7) is then the ground state energy E0 that we are searching
for. Since we are only interested in the scaling behavior of E0 for small λ (which means
E0 → 0), we can insert the asymptotic form of the Bessel functions around zero into this
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1.6 The finite potential well in two dimensions: ground state energy and scattering length

equation. We have3, as x→ 0,

J0(x) ≈ 1 −
x2

4
, J′0(x) ≈ −

x
2
,

K0(x) ≈ − ln x, K′0(x) ≈ −
1
x
. (1.6.8)

Therefore, the asymptotic form of (1.6.7) is

−
R2

0

2
(λ − |E0|) =

1
ln(
√
|E0|R0)

, (1.6.9)

which is equivalent to

|E0| −
4

R2
0 ln(|E0|R2

0)
= λ. (1.6.10)

We solve it to leading order by

E0 = −
1
R2

0

exp
(︄
−

4
λR2

0

)︄
. (1.6.11)

To determine the scattering length of this potential we have to search for solutions of
(1.6.4) with E > 0 (so called scattering solutions). For this purpose we need to introduce
the concept of s-wave scattering (see, for example, [76]).

The general solution to (1.6.4) outside the range of the potential for any angular momen-
tum m is a superposition of the two linearly independent solutions Jm and Ym (which is the
Bessel function of the second kind):

Rm(ρ) ∼ AmJm(
√

Er) + BmYm(
√

Er). (1.6.12)

Rewriting Am = am cos δm and Bm = −am sin δm, with δm the phase shift, we have

Rm(ρ) ∼ am

(︂
cos δmJm(

√
Er) − sin δmYm(

√
Er)

)︂
∼ Jm(

√
Er) − tan δmYm(

√
Er). (1.6.13)

This definition of δm can be understood in the following way. The only difference between
the scattered wave and the free particle is a phase eiδm . In the low-energy limit, only
the m = 0 contribution to the whole scattering process matters, which is called s-wave
scattering. From [35], we obtain the relation between the s-wave phase shift δ0 and the
scattering length as

a = lim
E→0

2
√

E
exp

(︄
π

2 tan δ0
− γ

)︄
, (1.6.14)

3See, for example, [1] for the asymptotic form of the Bessel functions for small arguments.
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1 Introduction to dilute Bose gases

where γ ≈ 0.577 is the Euler–Mascheroni constant.
To obtain the s-wave phase shift δ0, we have to search for solutions of (1.6.4) with

E > 0. We denote
k =
√
λ + E, κ =

√
E (1.6.15)

and propose the ansatz

R(ρ) ∼

⎧⎪⎪⎨⎪⎪⎩J0(kr) if 0 ≤ r < R0,

J0(κr) + B/AY0(κr) if r > R0.
(1.6.16)

Inside the range of the potential we use again a regular function and discard Y0, while
outside the range we have to superpose the two linearly independent solutions J0 and Y0

with coefficients A and B and have only retained the ratio between the two. As before, we
have to patch together the solutions and their derivatives at r = R0. This leads to

κ
AJ1(κR0) + BY1(κR0)
AJ0(κR0) + BY0(κR0)

= k
J1(kR0)
J0(kR0)

. (1.6.17)

This implies
B
A
=
κJ1(κR0)J0(kR0) − kJ0(κR0)J1(kR0)
kJ1(kR0)Y0(κR0) − κY1(κR0)J0(kR0)

, (1.6.18)

which allows us to eliminate the ratio B/A from (1.6.16). We can now rewrite the solution
R(ρ) for r > R0 in the desired form to read off the s-wave phase shift as

R(ρ) ∼ J0(κr) − tan δ0Y0(κr), (1.6.19)

where
tan δ0 =

kJ0(κR0)J1(kR0) − κJ1(κR0)J0(kR0)
kJ1(kR0)Y0(κR0) − κY1(κR0)J0(kR0)

. (1.6.20)

Expanding this for small E and plugging back the values of k and κ from (1.6.15), we
obtain for the s-wave phase shift

tan δ0 =
π

2

⎛⎜⎜⎜⎜⎝ln ⎛⎜⎜⎜⎜⎝ √ER0

2

⎞⎟⎟⎟⎟⎠ + γ + J0(
√
λ + ER0)

√
λ + ER0J1(

√
λ + ER0)

⎞⎟⎟⎟⎟⎠−1

, (1.6.21)

Inserting this into (1.6.14), we obtain for the scattering length of the finite potential well

a = lim
E→0

2
√

E
exp

(︄
π

2 tan δ0
− γ

)︄
= R0 exp

⎛⎜⎜⎜⎜⎝ J0(
√
λR0)

√
λR0J1(

√
λR0)

⎞⎟⎟⎟⎟⎠ . (1.6.22)
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1.7 Important differences between the two- and three-dimensional system

Note that into this formula one can also plug negative values of λ and by analytic continua-
tion obtain the scattering length for a repulsive potential as well.

For the special case of a logarithmic scaling of the coupling strength that we will need
later in the proof of Lemma 5 in Section 2.9,

λ =
1

R2
0 ln(R/R0)

, (1.6.23)

for R such that R/R0 → ∞, we obtain for the ground state energy and the scattering length

E0 ∼ −
1
R2

(︃R0

R

)︃2

, a ∼ R
(︃R0

R

)︃3

. (1.6.24)

The scaling behavior of E0 is indeed (up to an ϵ in the exponent) the same as in (2.9.12).

1.7 Important differences between the two- and
three-dimensional system

In this section we list some of the apparent differences between the two- and three-
dimensional system. Perhaps the most important one is the size of the interaction term for
the ground state energy. In contrast to three dimensions, it is not given by N(N−1)/2 times
the energy of two particles, but is much larger. As remarked in [46, Chapter 3], to obtain
the correct logarithmic factor one has to replace L, the linear size of the system (which
goes to∞ in the thermodynamic limit), by ρ−1/2, the average distance between particles.

The next difference lies in the solution to the zero-energy scattering equation. In
three dimensions that solution is given asymptotically by g0(r) = 1 − a/r with boundary
condition 1 at∞, while for the two-dimensional equation we have the asymptotic solution
g0(r) = ln(r/a)/ ln(R/a) with boundary condition 1 at r = R. The parameter R has to
be introduced since g0 grows logarithmically and is not normalizable on the full space.
Therefore, g0 can only be well-defined in a finite area. In the proof of the main theorem
below, we will see that

1
ln(R/a)

∼
1

| ln a2ρ|
, (1.7.1)

which means that up to logarithmic corrections R has to be chosen proportional to the
average particle distance ρ−1/2.

Finally, we remark on the difference between the critical temperature that was found in
Section 1.5 and the critical temperature in the three-dimensional setting. Their inverses are
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β3D
c =

ζ(3/2)2/3

4πρ2/3 , β2D
c =

ln | ln a2ρ|

4πρ
. (1.7.2)

We note that β3D
c is the inverse critical temperature for Bose–Einstein condensation of the

ideal gas, which would be equal to ∞ in the two-dimensional setting. Additionally, the
inverse critical temperature for superfluidity β2D

c depends directly on the interaction and is
not related to the non-interacting system.
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2 Lower bound on the free energy

Andreas Deuchert, SimonMayer and Robert Seiringer

We prove a lower bound on the free energy of an interacting two-
dimensional Bose gas in a homogeneous, dilute setting in the ther-
modynamic limit. We show that the free energy differs from the
free energy of the non-interacting system by a correction term
4πρ2| ln a2ρ|−1(2 − [1 − βc/β]2

+), where a is the scattering length
of the interaction potential, ρ is the density, β is the inverse tempera-
ture and βc is the inverse critical Kosterlitz–Thouless temperature for
superfluidity. The result becomes useful in the dilute limit a2ρ→ 0
and if the dimensionless parameter βρ is of order one or larger.
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2 Lower bound on the free energy

2.1 Statement of the lower bound

Theorem 2 (Lower bound on the free energy). Assume that the interaction potential
satisfies v ≥ 0 and has a finite scattering length. As a2ρ→ 0 with βρ ≳ 1, we have

f (β, ρ) ≥ f0(β, ρ) +
4πρ2

| ln a2ρ|

⎛⎜⎜⎜⎜⎝2 − [︄
1 −

βc

β

]︄2

+

⎞⎟⎟⎟⎟⎠ (1 − o(1)), (2.1.1)

where

o(1) ≲
ln ln | ln a2ρ|

ln | ln a2ρ|
. (2.1.2)

Here, [ · ]+ = max{ · , 0} denotes the positive part and the inverse critical temperature
βc(ρ, a) is defined in (1.1.7).

2.2 Sketch of the proof

A key ingredient in the proof of the lower bound on the free energy of the interacting gas
is the observation that the second term on the right-hand side of (2.1.1) (the interaction
energy) is, in the dilute limit, much smaller than the first term f0(β, ρ). As remarked above
(in Section 1.2), a naive version of first order perturbation theory fails, however, for two
reasons. First, the interaction potential is so strong that the interaction energy of the Gibbs
state of the ideal gas is too large (it is even infinite in the case of hard disks). Secondly, the
temperature dependence of the interaction term comes out wrong, as ρ[1 − βc/β]+ depends
on the scattering length, which clearly cannot be captured by an ideal gas state.

The first problem is overcome with the aid of a version of the Dyson Lemma [23]. This
Lemma allows to replace the strong interaction potential v by a softer potential with a
longer range that can later be treated using a rigorous version of first order perturbation
theory. The price one has to pay is a certain amount of the kinetic energy. It is important
that only modes with momenta much larger than β−1/2 are used in this procedure because
the other modes are needed to build up the free energy f0(β, ρ) of the ideal gas. A version
of the Dyson Lemma fulfilling such requirements was for the first time proved in [45] to
treat the ground state energy of the dilute Fermi gas.

After this replacement we utilize a rigorous version of first order perturbation theory at
positive temperature, which was developed in [70]. The method is based on a correlation
inequality [68] that applies to fermionic systems at all temperatures and to bosonic systems
at sufficiently large temperatures. The main ingredient needed for this method to work
is that the reference state in the perturbative analysis (usually the Gibbs state of the
corresponding ideal gas) shows an approximate tensor product structure with respect to
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2.3 Reduction to integrable potentials with finite range

localization in different regions in space. In case of a quasi-free state this is true if its
one-particle density matrix shows sufficiently fast decay (in position space). In order
to overcome this restriction, highly occupied low momentum modes leading to long-
range correlations have to be treated with a c-number substitution. I.e., coherent states
on the bosonic Fock space are used to replace creation and annihilation operators of
the low momentum modes by complex numbers. Since coherent states show an exact
tensor product structure with respect to localization in different regions in space they fit
seamlessly into the framework. Although there is no Bose–Einstein condensation in the
two-dimensional Bose gas, we are also faced with highly occupied low momentum modes
at very low temperatures. As explained in Remark 5 in Section 1.2 above, the use of
coherent states for the low momentum modes naturally leads to the correct temperature
dependence of the interaction energy in (2.1.1), whose origin is non-perturbative.

In order to be able to use a Fock space formalism, which is essential for the formalism
of the c-number substitution, it will be necessary to replace the interaction potential v by
an integrable potential ṽ with uniformly bounded Fourier transform. In contrast to the
three-dimensional case, we will need that the integral of ṽ is suitably small in order to
control various error terms. This replacement will be done in the first step of the proof.

We will frequently use the Heaviside step function in the proof and use the convention

θ(x) =

⎧⎪⎪⎨⎪⎪⎩1 if x ≥ 0,
0 if x < 0.

(2.2.1)

Note in particular that θ(0) = 1.

2.3 Reduction to integrable potentials with finite range

The statement of Theorem 2 is general in the sense that it allows interaction potentials
that are infinitely ranged and possibly have infinite integral (e.g., in the case of a hard disk
potential), while still having finite scattering length. In the following it will be convenient
to work with integrable potentials with finite range. The first condition is of importance
because for the Fock space formalism we need to assume that the interaction potential has
a bounded Fourier transform. Since we want to prove a lower bound we can replace the
original potential by a smaller one. The scattering length of the new potential is smaller,
however. The following two lemmas quantify the change of the scattering length if we
do such a replacement. We start with a lemma that quantifies the change of the scattering
length when the potential is replaced by one that is cut off at some finite radius R0.
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2 Lower bound on the free energy

Lemma 2. Let v be a nonnegative radial potential with finite scattering length a. We
denote by vR0 the potential with cutoff at R0 > 0 (i.e., vR0(r) = θ(R0 − r)v(r)) and its
scattering length by aR0 . Then

1
ln(R/aR0)

≥

(︄
ln(R/a) +

1
4π

∫︂
|x|>R0

v(|x|) ln2(|x|/aR0) dx
)︄−1

(2.3.1)

for all R > R0.

Proof. The claim is equivalent to the inequality

ln(aR0/a) ≥ −
1

4π

∫︂
|x|≥R0

v(|x|) ln2(|x|/aR0) dx. (2.3.2)

To show (2.3.2), we use the variational principle of the scattering length for the potential
with cutoff at R1, where R1 is such that R0 < R1 < R. Denote ϕvR0

the minimizer of the
energy functional (1.2.12) with potential vR0 . Then we have

2π
ln(R/aR1)

≤

∫︂
BR

(︃
|∇ϕvR0

|2 +
vR1

2
|ϕvR0
|2
)︃
=

2π
ln(R/aR0)

+ π

∫︂ R1

R0

v(r)|ϕvR0
(r)|2r dr

=
2π

ln(R/aR0)

(︄
1 +

1
2 ln(R/aR0)

∫︂ R1

R0

v(r) ln2(r/aR0)r dr
)︄
. (2.3.3)

This implies

− ln aR1 ≥
ln(R/aR0)

1 + 1
2 ln(R/aR0 )

∫︁ R1

R0
v(r) ln2(r/aR0)r dr

− ln R (2.3.4)

and by taking the limit R→ ∞, we obtain

ln(aR0/aR1) ≥ −
1
2

∫︂ R1

R0

v(r) ln2(r/aR0)r dr. (2.3.5)

Now we can take the limit R1 → ∞ and obtain (2.3.2). This completes the proof. □

When we apply Lemma 2, the cutoff parameter R0 has to be chosen such that aR0 > 0,
which is the case if vR0 ≢ 0. We shall choose R such that ln(R/a) ∼ | ln a2ρ| ≫ 1, hence the
second term on the right side of (2.3.1) is indeed a small correction to the first term. The
relative error term we obtain this way is proportional to

1
| ln a2ρ|

∫︂
|x|>R0

v(|x|) ln2(|x|/aR0) dx, (2.3.6)
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2.3 Reduction to integrable potentials with finite range

which is much smaller than other error terms we shall obtain below, see (2.18.16).
From now on we can thus assume that the interaction potential v has a fixed finite range

R0. For simplicity of notation, we shall drop the subscript R0 from v and a.
The next lemma quantifies the change of the scattering length if we replace the potential

v with finite range R0 by a smaller potential ṽ whose integral is bounded by some number
4πφ > 0. The error term we obtain is small as long as φ is much greater than 1/ ln(R/a). In
particular, φ can be chosen as a small parameter, which is different from the corresponding
three-dimensional case.

Lemma 3. Let v be a nonnegative radial potential with finite range R0 and scattering
length a. For any 0 < δ < 1 and any φ > 0, there exists a potential ṽ with 0 ≤ ṽ ≤ v such
that

∫︁
R2 ṽ(|x|) dx ≤ 4πφ and the scattering length ã of ṽ satisfies

1
ln(R/ã)

≥
1

ln(R/a)

⎛⎜⎜⎜⎜⎜⎝1 − 1√︁
φ ln(R/a)

+
ln(1 − δ)
ln(R/a)

⎞⎟⎟⎟⎟⎟⎠ (2.3.7)

for all R > R0.

Proof. Let

t = inf
{︄

s :
∫︂ ∞

s
rv(r) dr < ∞

}︄
. (2.3.8)

and note that t ≤ a holds. To see this let s > a and bound∫︂ ∞

s
rv(r) dr ≤

1
ln2(s/a)

∫︂ ∞

s
rv(r) ln2(r/a) dr

≤
1

ln2(s/a)

∫︂ ∞

a
rv(r) ln2(r/a) dr ≤

4π ln(R0/a)
ln2(s/a)

, (2.3.9)

where the last inequality follows from an easy calculation, compare with [38, Eqs. (34)–
(36)]. From this calculation we see that

∫︁ ∞
s

rv(r) dr is finite for all s with s > a.
Now we distinguish two cases. Assume first that

∫︁ ∞
t

rv(r) dr ≥ 2φ (which includes the
possibility that v→ ∞ in a non-integrable sense as r → t). Then we choose s ≥ t such that∫︁ ∞

s
rv(r) dr = 2φ and define ṽ(r) = v(r)θ(r − s). Denote ϕv the solution to the zero-energy

scattering equation (−∆ + v
2 )ϕv = 0 (or equivalently the minimizer of the energy functional

(1.2.12)) on BR = {x ∈ R2 : |x| ≤ R} with boundary condition ϕv||x|=R = 1. Define the
function

ϕ(r) =
(︄
ϕṽ(r) − ϕṽ(s)

ln(R/r)
ln(R/s)

)︄
θ(r − s), (2.3.10)

31



2 Lower bound on the free energy

which is non-negative and continuous. We use ϕ as test function in the variational principle
for the scattering length and obtain the upper bound

2π
ln(R/a)

≤

∫︂
BR

(︃
|∇ϕ|2 +

v
2
|ϕ|2

)︃
=

∫︂
BR

ϕ
(︃
−∆ +

v
2

)︃
ϕ +

∫︂
∂BR

ϕ∇ϕ · n

= −
ϕṽ(s)

2 ln(R/s)

∫︂
BR

ϕ(|x|)v(|x|) ln(R/|x|)θ(|x| − s) dx +
∫︂
∂BR

ϕ∇ϕ · n, (2.3.11)

where we integrated by parts and used the zero-energy scattering equation for ṽ as well
as the fact that the function r ↦→ ln(R/r) is harmonic away from zero. In the boundary
integral, we denoted by n the outward facing unit normal vector of the disk (which is in
this case just the unit vector pointing in the radial direction). We note that the first term on
the right-hand side is negative and can be dropped for an upper bound. Since R > R0, the
boundary term can be explicitly computed as∫︂

∂BR

ϕ∇ϕ · n =
2π

ln(R/ã)
+

2πϕṽ(s)
ln(R/s)

. (2.3.12)

Hence,
1

ln(R/a)
≤

1
ln(R/ã)

+
ϕṽ(s)

ln(R/s)
. (2.3.13)

Using the fact that ϕṽ(s) is always greater or equal than the asymptotic solution given by
ln(s/ã)/ ln(R/ã), we obtain

ϕṽ(s)
ln(R/s)

≤
1

ln(R/ã)
·

1
1/ϕṽ(s) − 1

. (2.3.14)

We get an upper bound on ϕṽ(s) via the monotonicity of ϕṽ(r):

1
ln(R/a)

≥
1

ln(R/ã)
≥

1
2

∫︂ ∞

s
rv(r)ϕṽ(r)2 dr ≥ ϕṽ(s)2φ. (2.3.15)

Therefore,

ϕṽ(s) ≤
1√︁

φ ln(R/a)
. (2.3.16)

In conclusion, we have shown that

1
ln(R/ã)

≥
1

ln(R/a)

⎛⎜⎜⎜⎜⎜⎝1 − 1√︁
φ ln(R/a)

⎞⎟⎟⎟⎟⎟⎠ , (2.3.17)

which proves the statement (for δ = 0) in the first case.
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2.3 Reduction to integrable potentials with finite range

It remains to consider the second case: Assume
∫︁ ∞

t
rv(r) dr = 2φ − T for some T > 0.

We may assume further that t > 0, since if t = 0 we can take ṽ = v and there is nothing to
prove. By the definition of t, we have that for any 0 < δ < 1∫︂ t

(1−δ)t
rv(r) dr = ∞. (2.3.18)

Therefore there exists a τ = τ(T, δ) such that∫︂ t

(1−δ)t
r min{v(r), τ} dr = T. (2.3.19)

We define

ṽ(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v(r) if r ≥ t,
min{v(r), τ} if (1 − δ)t ≤ r < t,
0 else.

(2.3.20)

Note that ∫︂ ∞

0
rṽ(r) dr =

∫︂ ∞

(1−δ)t
rṽ(r) dr = 2φ. (2.3.21)

By the same argument as before (cf. equation (2.3.13) with s = t) and with this definition
of ṽ, we obtain

1
ln(R/a)

≤
1

ln(R/ã)
+

ϕṽ(t)
ln(R/t)

. (2.3.22)

Similarly to (2.3.15), we have

1
ln(R/a)

≥
1

ln(R/ã)
≥

1
2

∫︂ ∞

(1−δ)t
rṽ(r)ϕṽ(r)2 dr ≥ ϕṽ((1 − δ)t)2φ. (2.3.23)

Therefore,

ϕṽ((1 − δ)t) ≤
1√︁

φ ln(R/a)
. (2.3.24)

Using Gauss’ theorem, we have∫︂
|x|≤r
∆ϕṽ =

∫︂
|x|=r
∇ϕṽ · n = 2πrϕ′ṽ(r). (2.3.25)

Since the integrand on the left-hand side is nonnegative pointwise, we have that r ↦→ rϕ′ṽ(r)
is monotone increasing. This implies for any s ≤ r and for r ≥ R0

sϕ′ṽ(s) ≤ rϕ′ṽ(r) =
1

ln(R/ã)
. (2.3.26)
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2 Lower bound on the free energy

Thus, using the fundamental theorem of calculus,

ϕṽ(t) − ϕṽ((1 − δ)t) = δt
∫︂ 1

0
ϕ′ṽ((1 − δw)t) dw

≤
δ

ln(R/ã)

∫︂ 1

0

dw
1 − δw

= −
ln(1 − δ)
ln(R/ã)

. (2.3.27)

Putting (2.3.22), (2.3.24) and (2.3.27) together as well as using t ≤ a and ã ≤ a, we obtain

1
ln(R/a)

≤
1

ln(R/ã)
+

ϕṽ(t)
ln(R/t)

≤
1

ln(R/ã)
+

1
ln(R/t)

(ϕṽ(t) − ϕṽ((1 − δ)t)) +
1

ln(R/t)
1√︁

φ ln(R/a)

≤
1

ln(R/ã)
−

ln(1 − δ)
ln(R/a)2 +

1
ln(R/a)

1√︁
φ ln(R/a)

. (2.3.28)

Rearranging the terms, we obtain (2.3.7). □

In the following we denote by ṽ the interaction potential that is obtained from v (which
is assumed to have finite range R0 as discussed after Lemma 2) by cutting it as indicated
by Lemma 3, such that its integral is bounded by 4πφ > 0. As mentioned already before
we have HN ≥ H̃N , where H̃N denotes the Hamiltonian with v replaced by ṽ.

2.4 Fock space

In our proof we relax the restriction on the number of particles, which is possible for
a lower bound and is motivated by the fact that this allows us to use the formalism of
c-number substitution, as detailed in the next section. We denote by F the bosonic Fock
space and define the Fock space Hamiltonian

H = T + V + K + µ0N (2.4.1)

with
T =

∑︂
p

(︂
p2 − µ0

)︂
a†pap, V =

1
2|Λ|

∑︂
p,k,ℓ

v̂(p)a†k+pa†ℓ−pakaℓ (2.4.2)

and
K =

4πC
|Λ|| ln a2ρ|

(N − N)2 . (2.4.3)
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2.5 Coherent states

Here, the chemical potential µ0 is given by (1.2.7) and a†p and ap are the usual creation and
annihilation operators on Fock space that create or annihilate a plane wave with momentum
p, respectively. The sums over p, k and ℓ are taken over 2π

L Z
2. By v̂ we denote the Fourier

transform of ṽ (we drop the ~ in the Fourier transform for notational clarity), which is
given by v̂(p) =

∫︁
Λ

ṽ(d(x, 0)) e−ipx dx =
∫︁
R2 ṽ(|x|) e−ipx dx. Here and in the following we

assume that L > 2R0, which is no restriction since we are interested in the thermodynamic
limit L→ ∞. Note that v̂ is uniformly bounded, which is one reason we introduced ṽ: We
have

|v̂(p)| ≤ v̂(0) ≤ 4πφ. (2.4.4)

The number operator is defined by

N =
∑︂

p

a†pap (2.4.5)

and the operator K was introduced in order to control the number of particles in the system
after the extension to Fock space.

Recall that we defined the total Hamiltonian for N particles by HN (in Eq. (1.2.1))
and that we denote by H̃N the operator HN where v is replaced by ṽ. We then have
HN ≥ H̃N = HPN , where PN is the projection on the Fock space sector with N particles.
This implies in particular that

TrHN exp(−βHN) ≤ TrHN exp(−βH̃N) ≤ TrF exp(−βH). (2.4.6)

We will proceed deriving an upper bound for the expression on the right-hand side.

2.5 Coherent states

We use the method of coherent states (see, e.g., [48]) in order to obtain an upper bound on
the partition function TrF exp(−βH). This method is based on the fact that coherent states
are eigenfunctions of the annihilation operators, which can be used to replace the operators
ap and a†p by complex numbers. This procedure is also called c-number substitution.
Although we have no condensate in our system, this separate treatment of a certain number
of low momentum modes is necessary for low temperatures, as pointed out in the proof
strategy in Section 2.2. We start by introducing the necessary notation related to the
c-number substitution.

Pick some pc ≥ 0 and write F = F< ⊗ F>. Here F< and F> denote the Fock spaces
corresponding to the modes |p| < pc and |p| ≥ pc, respectively. We define M =

∑︁
|p|<pc

1 =
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2 Lower bound on the free energy

#{p ∈ 2π
L Z

2 : |p| < pc} and introduce for z ∈ CM the coherent state |z⟩ ∈ F< by

|z⟩ = exp

⎛⎜⎜⎜⎜⎜⎜⎝ ∑︂
|p|<pc

zpa†p − z̄pap

⎞⎟⎟⎟⎟⎟⎟⎠Π0 =: U(z)Π0. (2.5.1)

Here Π0 is the vacuum state in F< and last equality defines the Weyl operator U(z). The
lower symbol Hs(z) of H is the operator on F> given by the partial inner product

Hs(z) = ⟨z|H|z⟩ . (2.5.2)

We can use the fact that ap |z⟩ = zp |z⟩ and obtain the lower symbol by simply replacing all
ap by zp and a†p by z̄p for |p| < pc. The upper symbol of an operator is the operator-valued
function that is obtained by starting from the anti-normal ordered form of the operator
and then replacing ap by zp and a†p by z̄p for |p| < pc. This implies that the upper symbol
can be calculated from the lower symbol by replacing for example |zp|

2 by |zp|
2 − 1 and

similarly for other polynomials in zp (see [48] for more details). The upper symbol Hs(z)
of H satisfies

H =

∫︂
CM
Hs(z)|z⟩⟨z| dz, (2.5.3)

where dz =
∏︁M

i=1
dzi
π

, dzi = dxi dyi is the product measure of the real and imaginary part
of zi ∈ C. The Berezin–Lieb inequality [4, 5, 44, 48] implies

TrF exp(−βH) ≤
∫︂
CM

TrF exp(−βHs(z)) dz. (2.5.4)

We prefer to work with the lower symbol instead, and therefore will replace the upper
by the lower symbol on the right-hand side of (2.5.4). Let ∆H(z) = Hs(z) − Hs(z) be the
difference between the two symbols, which reads

∆H(z) =
∑︂
|p|<pc

(︂
p2 − µ0

)︂
+

1
2|Λ|

[︃
v̂(0)

(︂
2MNs(z) − M2

)︂
(2.5.5)

+ 2
∑︂

|ℓ|<pc,|k|≥pc

v̂(ℓ − k)a†kak +
∑︂
|ℓ|,|k|<pc

v̂(ℓ − k)
(︂
2|zk|

2 − 1
)︂ ]︃

+
4πC

|Λ|| ln a2ρ|

[︂
2|z|2 + M (2Ns(z) − 2N − M)

]︂
.

We therefore have (using the uniform bound |v̂(p)| ≤ v̂(0) ≤ 4πφ)

∆H(z) ≤ M
(︂
p2

c − µ0

)︂
+

8πφ
|Λ|

MNs(z) +
8πC

|Λ|| ln a2ρ|

[︂
|z|2 + M (Ns(z) − N)

]︂
. (2.5.6)
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2.5 Coherent states

The lower symbol of K reads

Ks(z) =
4πC

|Λ|| ln a2ρ|

(︂
(Ns(z) − N)2 + |z|2

)︂
≥

4πC
|Λ|| ln a2ρ|

(Ns(z) − N)2 (2.5.7)

and allows us to estimate

1
2Ks(z) − ∆H(z) ≥ −M(p2

c − µ0) −
8πN
|Λ|

(︄
φM +

C
| ln a2ρ|

)︄
−

32πC(M + 1)2

|Λ|| ln a2ρ|

(︄
1 +

φ| ln a2ρ|

C

)︄2

=: −Z(1). (2.5.8)

Note that M ∼ p2
c |Λ| in the thermodynamic limit. We will choose the parameters pc, φ and

C such that Z(1) ≪ |Λ|ρ2/| ln a2ρ| for small a2ρ. We also define

Fz(β) = −
1
β

ln TrF> exp
(︂
−β

(︂
Ts(z) + Vs(z) + 1

2Ks(z)
)︂)︂
. (2.5.9)

Eq. (2.5.4) and the above estimates imply the bound

−
1
β

ln TrF exp (−βH) ≥ µ0N −
1
β

ln
∫︂
CM

exp (−βFz(β)) dz − Z(1). (2.5.10)

In the following subsections we will derive a lower bound on Fz(β).
The free energy Fz(β) can also be written in terms of the free energy of a Gibbs state. In

fact, let Γz be the Gibbs state of Ts(z) + Vs(z) + 1
2Ks(z) on F>, i.e.,

Γz =
exp

(︂
−β

[︂
Ts(z) + Vs(z) + 1

2Ks(z)
]︂)︂

TrF> exp
(︂
−β

[︂
Ts(z) + Vs(z) + 1

2Ks(z)
]︂)︂ (2.5.11)

and define
Υz = U(z)Π0U(z)† ⊗ Γz (2.5.12)

on F . With these definitions we obtain the identity

Fz(β) = TrF
[︂(︂
T + V + 1

2K
)︂
Υz

]︂
−

1
β

S (Υz), (2.5.13)

where S (Υz) = −TrF [Υz lnΥz] is the von Neumann entropy of the state Υz (which equals
the one of Γz).
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2 Lower bound on the free energy

2.6 Relative entropy and a priori bounds

To prove a lower bound on Fz(β) we will need some information on the state Υz defined
in (2.5.12) above. The a priori information that is being used is a bound on the relative
entropy (to be defined below) of Υz with respect to a suitable reference state describing
non-interacting bosons and a bound on the expected number of particles in the system.
To obtain this a priori information we will assume that a certain upper bound on Fz(β)
holds. This does not lead to a loss of generality because there will be nothing to prove
if the assumption is not fulfilled. That is, the statement will hold independently of the
assumptions.

Let Γ0 be the Gibbs state on F> for the kinetic energy operator Ts(z) (which is indepen-
dent of z) and define the state Ωz

0 on F by Ωz
0 = U(z)Π0U(z)† ⊗ Γ0. Since V ≥ 0 we have

Fz(β) ≥ −
1
β

ln
(︂
TrF>

[︂
e−βTs(z)

]︂)︂
+

1
2

TrF [KΥz] +
1
β

S (Υz,Ωz
0), (2.6.1)

where
S (Υz,Ωz

0) = TrF
[︂
Υz

(︂
lnΥz − lnΩz

0

)︂]︂
(2.6.2)

denotes the relative entropy of Υz with respect to Ωz
0. Since Υz and Ωz

0 are equal on F< we
have S (Υz,Ωz

0) = S (Γz,Γ0). We distinguish two cases: Either

Fz(β) ≥ −
1
β

ln
(︂
TrF>

[︂
e−βTs(z)

]︂)︂
+

8π|Λ|ρ2

| ln a2ρ|
(2.6.3)

holds or it does not hold. In the latter case we have

S (Υz,Ωz
0) = S (Γz,Γ0) ≤

8π|Λ|βρ2

| ln a2ρ|
(2.6.4)

as well as

TrF [KΥz] ≤
16π|Λ|ρ2

| ln a2ρ|
. (2.6.5)

From now on we will assume to be in the second case. The lower bound we are going to
derive on Fz(β) will actually be worse than (2.6.3) above, that is, the bound is true in any
case, irrespective of whether the assumptions (2.6.4) and (2.6.5) hold.

Eq. (2.6.5) implies the following upper bound on |z|2:

|z|2 − N ≤ TrF [(N − N)Υz] ≤
(︂
TrF

[︂
(N − N)2Υz

]︂)︂1/2
(2.6.6)

=

(︄
|Λ|| ln a2ρ|

4πC

)︄1/2

(TrF [KΥz])1/2
≤

2
√

C
|Λ|ρ.
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2.7 Replacing vacuum

In other words,

ρz :=
|z|2

|Λ|
≤ ρ

(︄
1 +

2
√

C

)︄
. (2.6.7)

We will choose C ≫ 1 below.

2.7 Replacing vacuum

In this section, we replace the vacuum state Π0 in the definition of Υz in (2.5.12) by a
more general quasi-free state Π on F< and estimate the effect of this replacement on
(2.5.13). The replacement will become relevant in Section 2.15 when we estimate the
relative entropy of the above state with respect to a certain quasi-free state describing
non-interacting bosons. For that purpose we require the momentum distribution to be
sufficiently smooth and do not want it to jump to zero for momenta less than pc.

Let Π be the unique quasi-free state on F< whose one-particle density matrix is given by

π =
∑︂
|p|<pc

πp|p⟩⟨p|. (2.7.1)

The coefficients πp will be chosen later. We denote the trace of π by P. Define the state Υz
π

on F by
Υz
π = U(z)ΠU(z)† ⊗ Γz. (2.7.2)

Using |v̂(p)| ≤ 4πφ, we see that

TrF
[︁
V

(︁
Υz
π − Υ

z)︁]︁ = 1
2|Λ|

v̂(0)
(︂
P2 + 2P TrF> [Ns(z)Γz]

)︂
+

1
2|Λ|

∑︂
|k|,|ℓ|<pc

v̂(k − ℓ)
[︂
πkπℓ + 2|zk|

2πℓ
]︂

+
1
|Λ|

∑︂
|k|<pc,|ℓ|≥pc

v̂(k − ℓ)πk TrF>
[︂
a†ℓaℓΓ

z
]︂

≤
4πφ
|Λ|

(︂
P2 + 2P TrF [NΥz]

)︂
. (2.7.3)

To obtain the first equality1 we split the sum over p into two terms, one with p = 0 and the

1We note that in [70, first line of (2.5.4)] there is an erroneous term −2
∑︁
|k|<pc

πk |zk |
2. Since it is negative it

was dropped for the following estimate, which resulted in an analogous upper bound on TrF [V(Υz
π−Υ

z)].
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2 Lower bound on the free energy

other one with p ≠ 0. The p = 0 contribution is given by

1
2|Λ|

∑︂
k,ℓ

v̂(0) TrF
[︂
a†ka†ℓakaℓ

(︂
U(z)(Π − Π0)U(z)† ⊗ Γz

)︂]︂
=

v̂(0)
2|Λ|

⎛⎜⎜⎜⎜⎜⎜⎝P2 + 2P TrF>[Ns(z)Γz] +
∑︂
|k|<pc

(π2
k + 2πk|zk|

2)

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.7.4)

The p ≠ 0 contribution on the other hand is given by

1
2|Λ|

∑︂
k,ℓ
p≠0

v̂(p) TrF
[︂
a†k+pa†ℓ−pakaℓ

(︂
U(z)(Π − Π0)U(z)† ⊗ Γz

)︂]︂
(2.7.5)

=
1

2|Λ|

∑︂
|k|,|ℓ|<pc

k≠ℓ

v̂(ℓ − k)(πℓπk + 2πℓ|zk|
2) +

1
|Λ|

∑︂
|ℓ|<pc
|k|≥pc

v̂(ℓ − k)πℓ TrF>
[︂
a†kakΓ

z
]︂
.

If we now put back the k = ℓ term into the first sum of the right side of (2.7.5) we have to
subtract exactly the last sum of the right side of (2.7.4) and arrive thus at the first equality
of (2.7.3). In (2.6.6) we have shown that TrF [NΥz] ≤ N(1 + 2/

√
C) and we therefore

obtain from (2.7.3)
TrF [VΥz] ≥ TrF

[︁
VΥz

π

]︁
− Z(2) (2.7.6)

with

Z(2) :=
4πφP2

|Λ|
+

8πPφ
|Λ|

N
(︄
1 +

2
√

C

)︄
. (2.7.7)

We will choose φ ≫ | ln a2ρ|−1 and C ≫ 1. Hence, Z(2) ≪ |Λ|ρ2/| ln a2ρ| as long as
φP ≪ N/| ln a2ρ|.

The replacement of Υz by Υz
π causes also a change in the kinetic energy that is given by

TrF [TΥz] = TrF
[︁
TΥz

π

]︁
−

∑︂
|p|<pc

(︂
p2 − µ0

)︂
πp. (2.7.8)

By combining (2.5.13), (2.7.6) and (2.7.8) we therefore obtain the lower bound

Fz(β) ≥ TrF
[︁
(T + V)Υz

π

]︁
+

1
2

TrF [KΥz] −
1
β

S (Υz) −
∑︂
|p|<pc

(︂
p2 − µ0

)︂
πp − Z(2). (2.7.9)
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2.8 Dyson Lemma

2.8 Dyson Lemma

As already mentioned in the proof strategy in Section 2.2, in order to be in a perturbative
regime we have to replace the short ranged and possibly very strong interaction potential ṽ
by a softer interaction potential with longer range. To achieve this goal we have to pay
with a certain amount of kinetic energy. More precisely, we will only use modes with
momenta much larger than β−1/2 for this proecedure because the other momentum modes
are needed to obtain the free energy f0(β, ρ) of the ideal gas.

To separate the high momentum part of the kinetic energy (which is the relevant part
contributing to the interaction energy) from the low momentum part, we choose a radial
cutoff function χ : R2 → [0, 1] and define

h(x) =
1
|Λ|

∑︂
p

(1 − χ(p)) e−ipx . (2.8.1)

We assume that χ(p)→ 1 sufficiently fast as |p| → ∞ so that h ∈ L1(Λ) ∩ L∞(Λ). Define
further for R0 < R < L/2

fR(x) = sup
|y|≤R
|h(x − y) − h(x)| and wR(x) =

2
π

fR(x)
∫︂
Λ

fR(y) dy. (2.8.2)

Finally, we introduce the soft potential UR which is a nonnegative function supported on
the interval [R0,R]. Its integral should satisfy∫︂ R

R0

UR(t) ln(t/ã)t dt ≤ 1. (2.8.3)

We then have the following statement.

Lemma 4. Let y1, . . . , yn be n points in Λ and denote by yNN(x) the nearest neighbor of
x ∈ Λ among the points yi. Then for any ϵ > 0, we have

−∇χ(p)2∇ +
1
2

n∑︂
i=1

ṽ(d(x, yi)) ≥ (1 − ϵ)UR(d(x, yNN(x))) −
1
ϵ

∫︂
R+

UR(t)t dt
n∑︂

i=1

wR(x − yi).

(2.8.4)

We remark that yNN(x) is well defined except on a set of zero measure. The Lemma
above is a two-dimensional version of [70, Lemma 2]. It is referred to as Dyson Lemma
because Dyson was the first to prove a statement of this kind in his treatment of the dilute
Bose gas at T = 0 in [23]. A version of the Dyson Lemma for two and three space
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2 Lower bound on the free energy

dimensions, where only the high momentum modes are used to replace the interaction
potential by a softer one, appeared for the first time in [45]. The proof of Lemma 4 can be
obtained by combining the ideas of the proofs of [70, Lemma 2] and [45, Lemma 7]. The
main differences between Lemma 4 and [45, Lemma 7] are the boundary conditions for
the Laplacian and the fact that we do not assume a minimal distance between the particles
here. Since the proof of [45, Lemma 7] was not spelled out in detail, we include a proof of
Lemma 4 in Appendix 2.A.

We will use Lemma 4 for a lower bound on the operator T +V. In the Fock space sector
with n particles this operator reads

H̃n =

n∑︂
j=1

[︄
−∆ j +

1
2

∑︂
i

i≠ j

ṽ(d(xi, x j))
]︄
. (2.8.5)

We want to keep a small part of the total kinetic energy for later use and therefore write for
0 < κ < 1

p2 = p2
(︂
1 − (1 − κ)χ(p)2

)︂
+ (1 − κ)p2χ(p)2. (2.8.6)

The kinetic term in H̃n will be split accordingly and we apply Lemma 4 to the last part of
the kinetic term plus the potential term. Using also the positivity of ṽ, we obtain for any
subset J j ⊂ {1, . . . j − 1, j + 1, . . . , n}

−∆ j +
1
2

∑︂
i≠ j

ṽ(d(xi, x j)) ≥ −∇ j(1 − (1 − κ)χ(p j)2)∇ j (2.8.7)

+ (1 − ϵ)(1 − κ)UR

(︂
d
(︂
x j, x

J j

NN(x j)
)︂)︂
−

1
ϵ

∫︂
R+

UR(t)t dt
∑︂
i∈J j

wR(x j − xi).

Here xJ j

NN(x j) denotes the nearest neighbor of x j among the points xi whose index i is
contained in J j, and interaction terms for particles k ∉ J j are simply dropped for a lower
bound. The subset J j is defined via the following construction (which is not unique). Fix x j

and consider those xi whose distance to the nearest neighbor (among all other xk, k ≠ i, j)
is at least R/5, and add the corresponding index i to the set. Next, we go in some order
through the set {x1, . . . , x j−1, x j+1, . . . , xn} and add i to the set if d(xi, xk) ≥ R/5 for all k
that are already in the set J j. Note that this last step depends on the ordering of the xi and
therefore J j will depend on the ordering as well. Hence, the right side of (2.8.7) is not
permutation symmetric and strictly speaking it should be replaced by its symmetrization.
We do not need to do this, however, as we are only interested in expectation values of this
potential in bosonic (permutation symmetric) states anyway.
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2.9 Filling the holes

The motivation to introduce J j is the following. By definition, all particles whose index
is contained in J j have a minimum distance R/5 to their nearest neighbor, which is needed
in order to control the error terms coming from wR. On the other hand, the set J j is
constructed to be maximal in the sense that if l ∉ J j, then there exists a particle xk with
k ∈ J j such that d(xl, xk) < R/5. In other words, we need the disks of radius R centered at
the particle coordinates to be able to have sufficient overlap in order to obtain the desired
lower bound. For certain values of z the system could be far from homogeneous2 and many
particles could cluster in a relatively small volume; we want to be able to detect this as an
increase in the interaction energy.

2.9 Filling the holes

After having applied Lemma 4 we want to replace the resulting interaction potential UR

by a potential without a hole of radius R0 at the origin because it will be advantageous
to work with a potential of positive type. To obtain such a potential we use Lemma 5
below. Its proof requires a different technique than the corresponding Lemma in the three-
dimensional case [70, Lemma 3], due to the fact that a sufficiently weak attractive potential
in three dimensions has no bound state, while it always does in one or two dimensions.

For some unit vector e ∈ R2 we define the function j : R+ → R+ by

j(t) =
32
π

∫︂
R2
θ

(︄
1
2
− |y|

)︄
θ

(︄
1
2
− |y − te|

)︄
dy. (2.9.1)

Note that the support of the function j is given by the interval [0, 1] and that we have∫︁ 1

0
j(t)t dt = 1. An explicit computation yields

j(t) =
16
π

[︂
arccos(t) − t

√
1 − t2

]︂
1[0,1](t), (2.9.2)

where 1[0,1] denotes the characteristic function of the interval [0, 1]. The potential we
intend to work with is ŨR(t) = R−2 ln(R/ã)−1 j(t/R). To obtain this potential we choose
UR(t) = ŨR(t)θ(t − R0) when we apply the Dyson Lemma. This choice indeed satisfies the
integral condition (2.8.3), since∫︂ R

R0

UR(t) ln(t/ã)t dt =
1

R2 ln(R/ã)

∫︂ R

R0

j(t/R) ln(t/ã)t dt

≤
1
R2

∫︂ R

R0

j(t/R)t dt =
∫︂ 1

R0/R
j(t)t dt ≤

∫︂ 1

0
j(t)t dt = 1. (2.9.3)

2Recall that z = (z1, . . . , zM) ∈ CM is the complex vector introduced in Section 2.5.
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2 Lower bound on the free energy

The following lemma will allow us to quantify the error we make when we replace UR by
ŨR.

Lemma 5. Let y1, . . . , yn denote n points in Λ, with d(yi, y j) ≥ R/5 for i ≠ j and let
R0 < R/10. Then

−∆ −
1

R2
0 ln(R/R0)

n∑︂
i=1

θ (R0 − d(x, yi)) ≥ −
C̃
R2

n∑︂
i=1

θ (R/10 − d(x, yi)) (2.9.4)

holds for a universal constant C̃ > 0.

Proof. It is sufficient to prove that∫︂
|x|≤R/10

(︄
|∇ϕ(x)|2 −

1
R2

0 ln(R/R0)
θ (R0 − |x|) |ϕ(x)|2

)︄
dx (2.9.5)

≥ −
C̃
R2

∫︂
|x|≤R/10

|ϕ(x)|2 dx

holds for any function ϕ ∈ H1(R2) with C̃ > 0 being independent of that function. In other
words, we need to show that the lowest eigenvalue of the quadratic form on the left-hand
side of Eq. (2.9.5) is bounded from below by a constant times −R−2.

Denote by EN
R this lowest eigenvalue and by ϕN

R the corresponding normalized eigen-
function. We will bound EN

R from below in terms of E0, the lowest eigenvalue of the
Schrödinger operator

h = −∆ −
1

R2
0 ln(R/R0)

θ (R0 − |x|) (2.9.6)

acting on L2(R2). By rearrangement ϕN
R is a radial decreasing function, satisfying Neumann

boundary conditions. Choose λ ∈ C∞ ([0,∞)) such that λ(0) = 1, λ′(0) = 0, λ(t) = 0 for
t ≥ 1 and |λ′(t)|2 ≤ 2, |λ(t)| ≤ 1 for all t ≥ 0. We define

ϕ̃R(x) =

⎧⎪⎪⎨⎪⎪⎩ϕN
R (x) if |x| ≤ R/10,
ηλ

(︂
|x|−R/10

R

)︂
if |x| > R/10,

(2.9.7)

where η is chosen such that ϕ̃R(x) is continuously differentiable, that is, η = ϕN
R (eR/10)

with e ∈ R2 a unit vector. We have

E0 ≤

⟨︂
ϕ̃R, hϕ̃R

⟩︂⟨︂
ϕ̃R, ϕ̃R

⟩︂ = 1⟨︂
ϕ̃R, ϕ̃R

⟩︂ ⎛⎜⎜⎜⎜⎜⎝EN
R +

η2

R2

∫︂
|x|>R/10

⃓⃓⃓⃓⃓
⃓λ′

(︄
|x| − R/10

R

)︄⃓⃓⃓⃓⃓
⃓2 dx

⎞⎟⎟⎟⎟⎟⎠ . (2.9.8)
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2.9 Filling the holes

With |λ′(t)|2 ≤ 2 and λ′(t) = 0 for t ≥ 1 we see that the second integral on the right-hand
side of Eq. (2.9.8) is bounded from above by 12πR2/5. We therefore have

EN
R ≥ E0

⃦⃦⃦
ϕ̃R

⃦⃦⃦2
−

12π
5
η2. (2.9.9)

With the definition of λ we conclude⃦⃦⃦
ϕ̃R

⃦⃦⃦2
≤ 1 + 2πη2

∫︂ R/10+R

R/10
r dr = 1 +

6π
5
η2R2 (2.9.10)

and since E0 < 0, we have

EN
R ≥ E0

(︄
1 +

6π
5
η2R2

)︄
−

12π
5
η2. (2.9.11)

It remains to derive upper bounds for η and |E0|.
Since ϕN

R is symmetrically decreasing and has L2-norm equal to one its value at the
boundary {x : |x| = R/10} is at most (π(R/10)2)−1/2, that is, η ≤ 10/(

√
πR). On the other

hand, we know from [74, Theorem 3.4] that

E0 ∼ −
1
R2

0

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝ −4π
1

R2
0 ln(R/R0)

∫︁
R2 θ (R0 − |x|) dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (2.9.12)

Here E0 ∼ − exp(−b/δ) means that for all ϵ > 0 there exists a δ0 > 0 such that exp(−(b +
ϵ)/δ) ≤ −E0 ≤ exp(−(b − ϵ)/δ) for all 0 < δ < δ0. Together with Eq. (2.9.11) and the
upper bound on η, this shows that for all ϵ > 0 there exists a δ0 > 0 such that

EN
R ≥ −

121
R2

(︃R0

R

)︃2−ϵ

−
240
R2 (2.9.13)

holds as long as R0/R < δ0.
If this is not the case we use the simple bound

EN
R ≥ −

1
R2

0 ln(R/R0)
. (2.9.14)

Since R0 < R/10 by assumption we know that ln(R/R0) > ln(10). On the other hand,
R2

0 ≥ R2δ2
0 implies that

EN
R ≥ −

1
R2δ2

0 ln(10)
(2.9.15)

for R0/R ≥ δ0. This proves the claim (2.9.4). □
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2 Lower bound on the free energy

Note that for the simple step function potential in Lemma 5 we can also compute the
scaling behavior of the lowest eigenvalue explicitly in terms of Bessel functions (see
Section 1.6) or via the Sobolev inequality in two dimensions. The method of proof given
here is more general, however.

Recall that d(xi, xk) ≥ R/5 for i, k ∈ J j. With ŨR(t) ≤ j(0)/(R2 ln(R/ã)) = 8/(R2 ln(R/ã)),
as well as using ã < R0, we see that Lemma 5 implies(︂

ŨR − UR

)︂ (︂
d
(︂
x j, x

J j

NN

(︂
x j

)︂)︂)︂
≤ θ

(︂
R0 − d

(︂
x j, x

J j

NN

(︂
x j

)︂)︂)︂ 8
R2 ln(ã/R)

= 8
(︃R0

R

)︃2 ∑︂
i∈J j

θ
(︂
R0 − d

(︂
xi, x j

)︂)︂ 1
R2

0 ln(ã/R)

≤ 8
(︃R0

R

)︃2
⎡⎢⎢⎢⎢⎢⎢⎢⎣−∆ j +

C̃
R2

∑︂
i∈J j

θ
(︂
R/10 − d(xi, x j)

)︂⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 8

(︃R0

R

)︃2 [︄
−∆ j +

C̃
R2 θ

(︂
R/10 − d

(︂
x j, x

J j

NN

(︂
x j

)︂)︂)︂]︄
. (2.9.16)

The constant C̃ > 0 is determined by Lemma 5. On the other hand, we have that ŨR(t) can
be bounded from below as ŨR(t) ≥ j(1/10)/(R2 ln(R/ã)) for t ≤ R/10 and this implies

θ
(︂
R/10 − d

(︂
x j, x

J j

NN

(︂
x j

)︂)︂)︂
≤

ŨR

(︂
d
(︂
x j, x

J j

NN

(︂
x j

)︂)︂)︂
R2 ln(R/ã)

j(1/10)
. (2.9.17)

Eqs. (2.9.16) and (2.9.17) together show that(︂
ŨR − UR

)︂ (︂
d
(︂
x j, x

J j

NN

(︂
x j

)︂)︂)︂
≤ −8

(︃R0

R

)︃2

∆ j +
8C̃

j(1/10)

(︃R0

R

)︃2

ln(R/ã)ŨR

(︂
d
(︂
x j, x

J j

NN

(︂
x j

)︂)︂)︂
. (2.9.18)

Define a′ by the equation (assuming that the last factor on the right side is positive)

1
ln(R/a′)

=
1

ln(R/ã)
(1 − ϵ)(1 − κ)

(︄
1 −

8C̃
j(1/10)

(︃R0

R

)︃2

ln(R/ã)
)︄

(2.9.19)

and let
Ũ′R(t) =

j(t/R)
R2 ln(R/a′)

. (2.9.20)

We also define

κ′ = κ − 8
(︃R0

R

)︃2

(2.9.21)
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2.9 Filling the holes

and write the remaining kinetic energy as (compare with (2.8.7))

− ∇ j(1 − (1 − κ)χ(p)2)∇ j + (1 − ϵ)(1 − κ)
(︄
8
(︃R0

R

)︃2

∆ j

)︄
(2.9.22)

≥ −∇ j(1 − (1 − κ)χ(p)2)∇ j + 8
(︃R0

R

)︃2

∆ j

= −∆ jκ
′ − (1 − κ)∇ j

(︂
1 − χ(p)2

)︂
∇ j.

In the following, we will choose κ ≫ R2
0/R

2, which, in particular, implies κ′ > 0. Concern-
ing the attractive part of the interaction potential that we obtain after applying Lemma 4,
we use the definition of UR to see that∫︂

R+

UR(t)t dt ≤
1

ln(R/ã)
. (2.9.23)

Eqs. (2.8.7), (2.9.18), (2.9.22) and (2.9.23) then imply

T + V ≥ Tc +W, (2.9.24)

where

Tc =
∑︂

p

ϵ(p)a†pap and ϵ(p) = κ′p2 + (1 − κ)p2
(︂
1 − χ(p)2

)︂
− µ0. (2.9.25)

In the Fock space sector with particle number n, the operator W is given by the (sym-
metrization of the) multiplication operator

n∑︂
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣Ũ′R (︂
d
(︂
x j, x

J j

NN

(︂
x j

)︂)︂)︂
−

1
ϵ ln(R/ã)

∑︂
i∈J j

wR(x j − xi)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (2.9.26)

We note again that the set J j depends on all particle coordinates xi, i ≠ j.
We conclude this section with the choice of the cutoff function χ. Let ζ : R2 → R+ be

a smooth radial function with ζ(p) = 0 for |p| ≤ 1, ζ(p) = 1 for p ≥ 2, and 0 ≤ ζ(p) ≤ 1
in-between. For some s ≥ R we choose

χ(p) = ζ(sp). (2.9.27)

We will choose pc ≤ 1/s below. This implies in particular that ϵ(p) = (1 − κ + κ′)p2 − µ0

for |p| < pc. We therefore have

TrF
[︁
TcΥz

π

]︁
= TrF

[︁
TcΥz]︁ + ∑︂

|p|<pc

(︂
(1 − κ + κ′)p2 − µ0

)︂
πp. (2.9.28)
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2 Lower bound on the free energy

Using Eqs. (2.7.9), (2.9.24), (2.9.28) and further

TrF
[︁
TcΥz]︁ − 1

β
S (Υz) ≥ −

1
β

ln TrF> exp
(︁
−βTc

s(z)
)︁
, (2.9.29)

we conclude that

Fz(β) ≥ −
1
β

ln TrF> exp
(︁
−βTc

s(z)
)︁
+ TrF

[︁
WΥz

π

]︁
+ 1

2 TrF [KΥz] (2.9.30)

− (κ − κ′)
∑︂
|p|<pc

p2πp − Z(2).

The first term on the right-hand side of (2.9.30) can be computed explicitly and reads

−
1
β

ln TrF> exp
(︁
−βTc

s(z)
)︁

=
∑︂
|p|<pc

(︂(︁
1 − κ + κ′

)︁
p2 − µ0

)︂
|zp|

2 +
1
β

∑︂
|p|≥pc

ln
(︁
1 − exp (−βϵ(p))

)︁
. (2.9.31)

In the following, we will derive a lower bound on TrF
[︁
WΥz

π

]︁
.

2.10 Localization of relative entropy

In order to compute TrF [WΥz
π] we will replace the unknown state Γz in the definition of

Υz
π = U(z)ΠU(z)† ⊗ Γz by the quasi-free state Γ0, the Gibbs state for the kinetic energy

operator Ts(z). The error resulting from this replacement will be controlled via the a priori
bound on the relative entropy (2.6.4). For that purpose we need a local version of the
relative entropy bound, which will be derived in this section.

Let us denote by Ωπ the quasi-free state whose one-particle density matrix is given by

ωπ =
∑︂

p

ωπ(p)|p⟩⟨p| =
∑︂

p

1
eℓ(p) −1

|p⟩⟨p|, (2.10.1)

where

ℓ(p) =

⎧⎪⎪⎨⎪⎪⎩ln(1 + 1/πp) if |p| < pc,

β(p2 − µ0) if |p| ≥ pc.
(2.10.2)

In other words,
Ωπ = Π ⊗ Γ0. (2.10.3)

We will choose πp such that ℓ(p) ≥ β(p2 − µ0) holds for all p. Let η : R+ → [0, 1] be a
function with the following properties:
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2.10 Localization of relative entropy

• η ∈ C∞(R+)

• η(0) = 1, and η(x) = 0 for x ≥ 1

• η̂(p) =
∫︁
R2 η(|x|) e−ipx dx ≥ 0 for all p ∈ R2.

Such a function can be obtained by choosing a smooth radial and nonnegative function on
R2 with compact support and then convolving it with itself. Given a function with these
properties, we define ηb(x) = η(x/b) for some b ≤ L/2. We also define the one-particle
density matrix ωb be defined by its integral kernel

ωb(x, y) = ωπ(x, y)ηb(d(x, y)). (2.10.4)

The unique quasi-free state related to ωb will be denoted by Ωb and we define

Ωz
b = U(z)ΩbU(z)†. (2.10.5)

We also introduce ρω = ωb(x, x) = ωπ(x, x).
To state the inequality we are looking for, we need to define spatial restriction of states.

To that end, we denote for r < L/2 by χr,ξ(x) = θ(r − d(x, ξ)) the characteristic function
of a disk of radius r centered at ξ ∈ Λ. Since χr,ξ defines a projection on the one-particle
Hilbert spaceH = L2(Λ), the Fock space F overH is unitarily equivalent to the product
of two Fock spaces

F (H) ≅ F (χr,ξH) ⊗ F ((χr,ξH)⊥). (2.10.6)

Any state on F can be restricted to the Fock space over χr,ξH by taking the partial trace
over the second tensor factor in (2.10.6). The restriction of the state Γ will be denoted by
Γχr,ξ .

If d(ξ, ζ) > 2r the multiplication operator χr,ξ + χr,ζ defines a projection and using the
fact that ωb(x, y) = 0 as long as d(x, y) > b we easily check that

Ωb,χr,ξ+χr,ζ ≅ Ωb,χr,ξ ⊗Ωb,χr,ζ (2.10.7)

holds if d(ξ, ζ) > 2r + b. More precisely, we use that the one-particle density matrix of
Ωb,χr,ξ+χr,ζ is given by (χr,ξ +χr,ζ)ωb(χr,ξ +χr,ζ) = χr,ξωbχr,ξ +χr,ζωbχr,ζ . The right-hand side
is nothing else but the one-particle density matrix of Ωb,χr,ξ plus the one of Ωb,χr,ζ , which
proves the claim. The above identity also holds for Ωz

b because U(z) has the same product
structure.

Concerning spatial localization, the relative entropy is superadditive in the following
sense.
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2 Lower bound on the free energy

Lemma 6. Let Xi, 1 ≤ i ≤ k, denote k mutually orthogonal projections onH . Let Ω be a
state on F which factorizes under restrictions as Ω∑︁

i Xi = ⊗iΩXi . Then, for any state Γ, we
have

S (Γ,Ω∑︁
i Xi) ≥

∑︂
i

S (ΓXi ,ΩXi). (2.10.8)

The proof of Lemma 6 can be found in [70, Section 2.8], see also [68, Section 5.1]. We
emphasize that the factorization property of Ω is crucial, the relative entropy need not be
superadditive, in general. This is the reason for introducing the cutoff b. Without it, the
state Ωz

b would not factorize as in (2.10.7).
We apply Lemma 6 with Ω = Ωz

b and Xi multiplication operators of characteristic
functions of balls with radius r that are separated by a distance 2b. When we average
over the position of the balls (see [68, Section 5.1] for details), we obtain for r ≤ 2b and
L/(2b) ∈ N the inequality

S (Γ,Ωz
b) ≥

1
(2b)2

∫︂
Λ

S
(︂
Γχr,ξ ,Ω

z
b,χr,ξ

)︂
dξ. (2.10.9)

That is, the integral over local relative entropies of Γ with respect to Ωz
b can be estimated

from above by their global relative entropy. The restriction L/(2b) ∈ N is of no further
importance since we take the thermodynamic limit. From (2.10.9) for Γ = Υz

π, we infer∫︂
Λ

⃦⃦⃦⃦
Υz
π,χr,ξ
−Ωz

b,χr,ξ

⃦⃦⃦⃦
1

dξ ≤ |Λ|1/2
(︄∫︂
Λ

⃦⃦⃦⃦
Υz
π,χr,ξ
−Ωz

b,χr,ξ

⃦⃦⃦⃦2

1
dξ

)︄1/2

≤
√

2|Λ|1/2
(︄∫︂
Λ

S (Υz
π,χr,ξ

,Ωz
b,χr,ξ

) dξ
)︄1/2

≤ 23/2b|Λ|1/2S (Υz
π,Ω

z
b)1/2 (2.10.10)

for any b ≥ 2r. This estimate follows from using the Cauchy-Schwarz inequality for the
integral over ξ and the fact that the relative entropy of two states Γ and Γ′ is bounded
from below by the square of the trace norm distance, by Pinsker’s inequality (see [60,
Theorem 1.15]),

S (Γ,Γ′) ≥
1
2
∥Γ − Γ′∥21. (2.10.11)

In Section 2.15, we will estimate the effect of the cutoff b and obtain a bound on (2.10.10)
in terms of the a priori bound (2.6.4) on the relative entropy. We remark that Pinsker’s
inequality could not be used with benefit for the global relative entropy. This is because
the relative entropy is an extensive quantity while the trace norm difference of two states is
always bounded by two.
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2.11 Interaction energy, part I

2.11 Interaction energy, part I

In the following three subsections we shall derive a lower bound on TrF [WΥz
π]. The

estimate (2.10.10) will play an important role in this analysis. We start by giving a bound
on the first term in (2.9.26) in this section, and postpone the analysis of the second term to
Section 2.12. In Section 2.13 we combine these bounds to obtain the final bound. A main
difficulty is related to the fact that the vector z is rather arbitrary, and hence the density of
the particles described by the coherent states can be far from homogeneous.

Let us give a name to the positive and the negative part of the interaction energy. We
write

W =W1 −W2, (2.11.1)

where

W1 =

∞⨁︂
n=0

n∑︂
j=1

Ũ′R
(︂
d
(︂
x j, x

J j

NN(x j)
)︂)︂

(2.11.2)

and

W2 =

∞⨁︂
n=0

n∑︂
j=1

∑︂
i∈J j

1
ϵ ln(R/ã)

wR(x j − xi). (2.11.3)

We start by giving a lower bound to the expectation of W1 in the state Υz
π. First of all,

recalling the definition of j from (2.9.1), we note that since L ≥ 2R we can write

j(d(x, y)/R) =
32
πR2

∫︂
Λ

θ(R/2 − d(ξ, x))θ(R/2 − d(ξ, y)) dξ (2.11.4)

for x, y ∈ Λ. Inserting this into (2.9.20), we have

Ũ′R (d(x, y)) =
32

π ln(R/a′)R4

∫︂
Λ

θ(R/2 − d(ξ, x))θ(R/2 − d(ξ, y)) dξ. (2.11.5)

This gives rise to a similar decomposition ofW1 which we write as

W1 =
32

π ln(R/a′)R4

∫︂
Λ

w(ξ) dξ, (2.11.6)

with

w(ξ) =
∞⨁︂

n=0

n∑︂
j=1

θ
(︂
R/2 − d

(︂
ξ, x j

)︂)︂
θ
(︂
R/2 − d

(︂
ξ, xJ j

NN(x j)
)︂)︂
. (2.11.7)

For r > 0, define nr,ξ as the number operator of a ball of radius r centered at ξ ∈ Λ, which
is nothing else but the second quantization of the multiplication operator θ(r − d(ξ, · )) on
L2(Λ). We claim

w(ξ) ≥ nR/10,ξθ(nR/10,ξ − 2), (2.11.8)
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2 Lower bound on the free energy

which is the second quantized version of

θ(R/2 − d(ξ, x j))θ
(︂
R/2 − d

(︂
ξ, xJ j

NN(x j)
)︂)︂

≥ θ(R/10 − d(ξ, x j))

⎛⎜⎜⎜⎜⎜⎜⎝1 −∏︂
i≠ j

θ(d(ξ, xi) − R/10)

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.11.9)

which can be shown using the defining property of J j. More precisely, (2.11.9) says that if
x j and some xk with k ≠ j are in a disk of radius R/10 centered at ξ (i.e., if the right-hand
side is equal to one), then the nearest neighbor of x j in the set J j is in a disk of radius R/2
with the same center (i.e., the left-hand side equals one). Assume therefore that x j and xk

are in a disk of radius R/10 centered at ξ and k ∈ J j. Then we have

d
(︂
x j, x

J j

NN(x j)
)︂
≤ d(x j, xk) ≤

R
5
, (2.11.10)

which implies d(ξ, xJ j

NN(x j)) ≤ 3R/10. Conversely, if k ∉ J j, then by definition of J j, there
exists l ∈ J j such that d(xl, xk) < R/5. Therefore

d
(︂
x j, x

J j

NN(x j)
)︂
≤ d(x j, xl) <

2R
5
, (2.11.11)

which implies d(ξ, xJ j

NN(x j)) < R/2 and proves (2.11.9).
In particular, the above implies

w(ξ) ≥ w(ξ) := w(ξ)θ
(︂
2 − n3R/2,ξ

)︂
+ nR/10,ξθ

(︂
nR/10,ξ − 2

)︂
θ
(︂
n3R/2,ξ − 3

)︂
. (2.11.12)

We also have

w(ξ)θ
(︂
2 − n3R/2,ξ

)︂
= nR/2,ξ

(︂
nR/2,ξ − 1

)︂
θ
(︂
2 − n3R/2,ξ

)︂
, (2.11.13)

which can be seen from the following consideration. Assume two particles xi and x j are
in a disk of radius R/2 and no other particle is in the bigger disk of radius 3R/2 (with the
same center), then these two particles must be nearest neighbors and by construction i ∈ J j

and j ∈ Ji, which implies (2.11.13).
We note that the operator in (2.11.13) is bounded. Its operator norm equals two and in

combination with nR/10,ξ ≤ n3R/2,ξ, this implies that

|w(ξ) − nR/10,ξ | ≤ 2, (2.11.14)
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2.11 Interaction energy, part I

as can be seen using (2.11.12) and an easy counting argument. Eqs. (2.11.6), (2.11.12)
and (2.11.14) imply that

TrF
[︁
W1Υ

z
π

]︁
≥

32
π ln(R/a′)R4

∫︂
Λ

TrF
[︁
w(ξ)Υz

π

]︁
dξ

≥
32

π ln(R/a′)R4

∫︂
Λ

TrF
[︂
w(ξ)Ωz

b + nR/10,ξ

(︂
Υz
π −Ω

z
b

)︂]︂
dξ

−
64

π ln(R/a′)R4

∫︂
Λ

⃦⃦⃦⃦
Υz
π,χ3R/2,ξ

−Ωz
b,χ3R/2,ξ

⃦⃦⃦⃦
1

dξ. (2.11.15)

The second term on the right-hand side of (2.11.15) can be written as∫︂
Λ

TrF
[︂
nR/10,ξ

(︂
Υz
π −Ω

z
b

)︂]︂
dξ = π

(︃ R
10

)︃2

TrF
[︂
N

(︂
Υz
π −Ω

z
b

)︂]︂
. (2.11.16)

On the other hand, Eq. (2.10.10) implies that∫︂
Λ

⃦⃦⃦⃦
Υz
π,χ3R/2,ξ

−Ωz
b,χ3R/2,ξ

⃦⃦⃦⃦
1

dξ ≤ 23/2b|Λ|1/2S (Υz
π,Ω

z
b)1/2 (2.11.17)

holds as long as 3R ≤ b.
In the following we will derive two different lower bounds to TrF [w(ξ)Ωz

b] in order to
have a good bound for all values of z. To obtain the first bound, we use (2.11.12) (where
we drop the last term for a lower bound) and (2.11.13). This implies

TrF
[︂
w(ξ)Ωz

b

]︂
≥

[︂
TrF

[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωz

b

]︂
(2.11.18)

− TrF
[︂
n3R/2,ξ

(︂
n3R/2,ξ − 1

)︂ (︂
n3R/2,ξ − 2

)︂
Ωz

b

]︂ ]︂
+
,

where we take the positive part of this bound since the right-hand side can become negative,
in which case we simply estimate the left-hand side by zero. The advantage of the
right-hand side of (2.11.18) is that all terms can be evaluated explicitly because Ωz

b is a
combination of a coherent and a quasi-free state. Let Φz denote the one-particle wave
function |Φz⟩ =

∑︁
|p|<pc

zp|p⟩. We write

n3R/2,ξ =

∫︂
B3R/2(ξ)

a†xax dx. (2.11.19)

By abuse of notation, we use the same letter for the plane wave expansion of the cre-
ation/annihilation operators, given by

ax :=
1
L

∑︂
p

ap eipx, (2.11.20)
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2 Lower bound on the free energy

and analogously for a†x. The following identity is a direct consequence of (2.11.19) and
the canonical commutation relations:

n3R/2,ξ

(︂
n3R/2,ξ − 1

)︂ (︂
n3R/2,ξ − 2

)︂
=

∫︂
B3R/2(ξ)3

a†xa
†
ya†z azayax d(x, y, z). (2.11.21)

We have

U(z)†axU(z) = ax +
∑︂
|p|<pc

zp
eipx

L
= ax + Φz(x), (2.11.22)

which means that conjugation by the unitary U(z) shifts the annihilation operators by Φz.
Inserting this as well as (2.11.21) we have

TrF
[︂
n3R/2,ξ

(︂
n3R/2,ξ − 1

)︂ (︂
n3R/2,ξ − 2

)︂
Ωz

b

]︂
=

∫︂
B3R/2(ξ)3

d(x, y, z)

×
⟨︂
(a†x + Φ

†
z (x))(a†y + Φ

†
z (y))(a†z + Φ

†
z (z))(az + Φz(z))(ay + Φz(y))(ax + Φz(x))

⟩︂
Ωb
.

(2.11.23)

Now we multiply out the terms in the expectation and use Wick’s theorem. It is helpful to
introduce the short hand notation n̄x = ⟨a

†
xax⟩Ωb

. Renaming integration variables to collect
similar terms, we arrive at

(2.11.23) =
∫︂

B3R/2(ξ)3
d(x, y, z)

[︂
n̄xn̄yn̄z + 3n̄x|Φz(y)|2|Φz(z)|2 + 3n̄xn̄y|Φz(z)|2

+ |Φz(x)|2|Φz(y)|2|Φz(z)|2 + 2ωb(x, y)ωb(y, z)ωb(z, x) + 6Φ†z (x)Φz(z)ωb(x, y)ωb(y, z)

+ 6n̄xΦ
†
z (y)Φz(z)ωb(y, z) + 6|Φz(x)|2Φ†z (y)Φz(z)ωb(y, z)

+ 3n̄xωb(y, z)ωb(z, y) + 3 |Φz(x)|2ωb(y, z)ωb(z, y)
]︂
. (2.11.24)

This can be rewritten as

TrF
[︂
n3R/2,ξ

(︂
n3R/2,ξ − 1

)︂ (︂
n3R/2,ξ − 2

)︂
Ωz

b

]︂
(2.11.25)

=
(︂
TrF

[︂
n3R/2,ξΩ

z
b

]︂)︂3
+ 2 tr

(︂
χ3R/2,ξωb

)︂3
+ 6⟨Φz

⃓⃓⃓ (︂
χ3R/2,ξωbχ3R/2,ξ

)︂2 ⃓⃓⃓
Φz⟩

+ 3 TrF
[︂
n3R/2,ξΩ

z
b

]︂ (︃
2⟨Φz

⃓⃓⃓
χ3R/2,ξωbχ3R/2,ξ

⃓⃓⃓
Φz⟩ + tr

(︂
χ3R/2,ξωb

)︂2
)︃

≤ 6
(︂
TrF

[︂
n3R/2,ξΩ

z
b

]︂)︂3
.

Here the symbol tr denotes the trace over the one-particle Hilbert space L2(Λ). Therefore,
the first lower bound is

TrF [w(ξ)Ωz
b] ≥

[︃
TrF

[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωz

b

]︂
− 6

(︂
TrF

[︂
n3R/2,ξΩ

z
b

]︂)︂3
]︃
+
. (2.11.26)
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The second lower bound to TrF [w(ξ)Ωz
b] can be obtained using

TrF
[︂
w(ξ)Ωz

b

]︂
≥ TrF

[︂
nR/10,ξθ

(︂
nR/10,ξ − 2

)︂
Ωz

b

]︂
, (2.11.27)

which follows from (2.11.8). Let us denote by ΠF0 the vacuum state on F . The state
Ωb,χR/10,ξ is a particle number conserving quasi-free state, whose vacuum expectation is
given by

TrF (χR/10,ξH)[Ωb,χR/10,ξΠ
F

0,χR/10,ξ
] = exp

(︂
− tr ln

(︂
1 + χR/10,ξωbχR/10,ξ

)︂)︂
≥ exp

(︂
− tr χR/10,ξωbχR/10,ξ

)︂
= exp

(︂
−π(R/10)2ρω

)︂
, (2.11.28)

where ρω was defined after (2.10.5) to be the density of Ωb. Hence,

Ωb,χR/10,ξ ≥ exp
(︂
−π(R/10)2ρω

)︂
ΠF0,χR/10,ξ

, (2.11.29)

as well as
Ωz

b,χR/10,ξ
≥ exp

(︂
−π(R/10)2ρω

)︂ (︂
U(z)ΠF0 U(z)†

)︂
χR/10,ξ

. (2.11.30)

This in particular implies

TrF
[︂
w(ξ)Ωz

b

]︂
≥ e−π(R/10)2ρω TrF

[︂
nR/10,ξθ

(︂
nR/10,ξ − 2

)︂
U(z)ΠF0 U(z)†

]︂
. (2.11.31)

The state U(z)ΠF0 U(z)† as well as its restriction to the Fock space over χR/10,ξH are coherent
states. In the Fock space sector with n particles, the latter is given by the projection onto
the n-fold tensor product of the wave function χR/10,ξΦz times a normalization factor. We
therefore have

TrF
[︂
nR/10,ξθ

(︂
nR/10,ξ − 2

)︂
U(z)ΠF0 U(z)†

]︂
= e−⟨Φz |χR/10,ξ |Φz⟩

∑︂
n≥2

n
⟨Φz|χR/10,ξ |Φz⟩

n

n!

= ⟨Φz|χR/10,ξ |Φz⟩
(︂
1 − e−⟨Φz |χR/10,ξ |Φz⟩

)︂
≥
⟨Φz|χR/10,ξ |Φz⟩

2

1 + ⟨Φz|χR/10,ξ |Φz⟩
. (2.11.32)

To arrive at the last line, we used the estimate x(1 − e−x) ≥ x2/(1 + x) for x ≥ 0.
Summarizing the results of this section, we combine the estimates from Eqs. (2.11.15),

(2.11.17), (2.11.18), (2.11.25), (2.11.31) as well as (2.11.32) and have thus shown that for
any 0 ≤ λ ≤ 1,

TrF
[︁
W1Υ

z
π

]︁
≥

8
25 ln(R/a′)R2 TrF

[︂
N

(︂
Υz
π −Ω

z
b

)︂]︂
−

128
√

2b|Λ|1/2

π ln(R/a′)R4 S (Υz
π,Ω

z
b)1/2

+
32λ

π ln(R/a′)R4

∫︂
Λ

[︃
TrF

[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωz

b

]︂
− 6

(︂
TrF

[︂
n3R/2,ξΩ

z
b

]︂)︂3
]︃
+

dξ

+
32(1 − λ) e−π(R/10)2ρω

π ln(R/a′)R4

∫︂
Λ

⟨Φz|χR/10,ξ |Φz⟩
2

1 + ⟨Φz|χR/10,ξ |Φz⟩
dξ. (2.11.33)
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The choice of λ will depend on the function |Φz|. If it is approximately a constant, in a
sense to be defined in Section 2.13 below, we will choose λ = 1, otherwise we choose
λ = 0.

2.12 Interaction energy, part II

In this section we give an upper bound on the expectation value ofW2 in (2.11.3). The
two-dimensional version of [70, Lemma 5] is the following statement3.

Lemma 7. Let o : R2 → C be a smooth function, supported in a cube of side length 4, and
for s > 0, let u(x) = |Λ|−1 ∑︁

p o(sp) e−ipx. Then for any nonnegative integer n there exists a
constant Cn such that

|u(x)| ≤
(︄

s
d(x, 0)

)︄2n

Cn max
|α|=2n
∥∂αo∥∞

(︄
2
πs
+

2n + 1
L

)︄2

. (2.12.1)

Here ∂αo denotes the partial derivative of o with respect to the multiindex α.

Proof. For x ∈ R2 we write x = (x1, x2). We have

u(x)L2
(︄
4 − 2 cos

(︄
2πx1

L

)︄
− 2 cos

(︄
2πx2

L

)︄)︄
=

∑︂
p

o(sp) e−ipx
(︂
4 − ei2πx1/L − e−i2πx1/L − ei2πx2/L − e−i2πx2/L

)︂
=

∑︂
p

o(sp)
(︂
4 e−ipx − e−i(p1−2π/L)x1−ip2 x2 − e−i(p1+2π/L)x1−ip2 x2

− e−ip1 x1−i(p2−2π/L)x2 − e−ip1 x1−i(p2+2π/L)x2
)︂

=
∑︂

p

e−ipx
(︂
4o(sp) − o(s(p1 + 2π/L), sp2) − o(s(p1 − 2π/L), sp2)

− o(sp1, s(p2 + 2π/L)) − o(sp1, s(p2 − 2π/L))
)︂

=
1
|Λ|

∑︂
p

e−ipx(−∆d)[o(sp)], (2.12.2)

3In [70, proof of Lemma 5] it is claimed that the discrete Laplacian can be bounded by the continuous one
with constant one, which is not correct, since also the mixed derivatives have to be taken into account.
The correct version of that estimate is given in (2.12.4) below.
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where (−∆d) f (p) = L2(4 f (p) −
∑︁
|e|=1 f (p + 2πe/L)) denotes the discrete Laplacian in

momentum space. Therefore,

u(x)
(︄
2L2

(︄
2 − cos

(︄
2πx1

L

)︄
− cos

(︄
2πx2

L

)︄)︄)︄n

=
1
|Λ|

∑︂
p

e−ipx(−∆d)n[o(sp)]. (2.12.3)

It is easy to check that the discrete Laplacian can be estimated by maximizing over the
second partial derivatives as

|(−∆d)n f (p)| ≤ Cn max
|α|=2n
∥∂α f ∥∞ (2.12.4)

for an n-dependent constant Cn independent of f . Note also that if f is supported in a
square of side length ℓ, then after n-fold application of −∆d the support is contained in a
square of side length ℓ + 4πn/L. An easy counting argument then allows us to estimate

|(2.12.3)| ≤
Cn

|Λ|
max
|α|=2n
∥∂αo(s · )∥∞

∑︂
p

1supp(−∆d)no(sp)

≤
Cns2n

|Λ|
max
|α|=2n
∥∂αo∥∞

(︄
1 +

2L
πs
+ 2n

)︄2

= Cns2n max
|α|=2n
∥∂αo∥∞

(︄
2
πs
+

2n + 1
L

)︄2

. (2.12.5)

We also estimate

1 − cos
(︄
2πxi

L

)︄
≥

8
L2 min

k∈Z
|xi − kL|2 (2.12.6)

and obtain

2L2
(︄
2 − cos

(︄
2πx1

L

)︄
− cos

(︄
2πx2

L

)︄)︄
≥ 16d(x, 0)2. (2.12.7)

Absorbing the factor 16 into the constant Cn, we arrive at (2.12.1) and have completed the
proof. □

We note that (by the definition of fR in (2.8.2))

fR(x) ≤ R sup
d(x,y)≤R

|∇h(y)| ≤ R sup
d(x,y)≤s

|∇h(y)|, (2.12.8)

where we used R ≤ s and conclude by applying Lemma 7 to ∇h that there exists a smooth
function g of rapid decay (i.e., g decays like an arbitrary power) that is independent of L
for large L such that the function wR defined in (2.8.2) satisfies

wR(x − y) ≤
R2

s4 g(d(x, y)/s). (2.12.9)
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2 Lower bound on the free energy

ForW2 this implies

W2 ≤

∞⨁︂
n=0

n∑︂
j=1

∑︂
i∈J j

1
ϵ ln(R/ã)

R2

s4 g
(︄
d(x j, xi)

s

)︄
. (2.12.10)

Next we decompose the function g into an integral over characteristic functions of balls.
For this purpose, we use [31, Theorem 1] which allows us to write

g(t) =
∫︂ ∞

0
m(r) j(t/r) dr (2.12.11)

with
m(r) = −

r
16

∫︂ ∞

r
g′′′(s)s

(︂
s2 − r2

)︂−1/2
ds (2.12.12)

and j defined in (2.9.1). Since the third derivative of g, denoted here by g′′′, is of rapid
decay, the same is true for m. As j is a decreasing function, we have

g(t) ≤ j(t)
∫︂ 1

0
|m(r)| dr +

∫︂ ∞

1
|m(r)| j(t/r) dr, (2.12.13)

which implies

g
(︄
d(xi, x j)

s

)︄
≤

(︄∫︂ 1

0
|m(r)| dr

)︄ ∫︂ ∞

s
j
(︄
d(xi, x j)

r

)︄
δ(r − s) dr (2.12.14)

+ s−1
∫︂ ∞

s
|m(r/s)| j

(︄
d(xi, x j)

r

)︄
dr.

Note that the integral over the δ function is understood as evaluation at r = s. As noted
before in (2.11.4), we can write

j(d(xi, x j)/r) =
32
πr2

∫︂
Λ

χr/2,ξ(xi)χr/2,ξ(x j) dξ (2.12.15)

as long as L ≥ 2r. Eqs. (2.12.10) and (2.12.14) together with Eq. (2.12.15) show that

W2 ≤
32

πϵ ln(R/ã)
R2

s6

∫︂ b

s
dr

{︄
δ(r − s)

∫︂ 1

0
|m(t)| dt + s−1|m(r/s)|

}︄
(2.12.16)

×

∫︂
Λ

dξ
∞⨁︂

n=0

n∑︂
j=1

∑︂
i∈J j

χr/2,ξ(x j)χr/2,ξ(xi)

+
1

ϵ ln(R/ã)
R2

s4

∫︂ ∞

b
s−1|m(r/s)|

∞⨁︂
n=0

n∑︂
j=1

∑︂
i∈J j

j
(︄
d(xi, x j)

r

)︄
dr
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2.12 Interaction energy, part II

holds. Here, we have split the integral over r into two parts, one with s ≤ r ≤ b and one
with b ≤ r. We note that in the second part we do not have the same representation of j
as in (2.12.15) as eventually 2r ≥ L. The cutoff parameter b is chosen the same as in the
definition of Ωz

b from (2.10.5).
Let vr(ξ) denote the integrand of the integral over ξ in (2.12.16). Because d(xi, xk) ≥ R/5

for i, k ∈ J j, the number of xi inside a disk of radius r/2 is bounded from above by
(1 + 5r/R)2. Hence,

vr(ξ) ≤ nr/2,ξ

(︄
1 +

5r
R

)︄2

. (2.12.17)

On the other hand, we trivially have

vr(ξ) ≤ nr/2,ξ

(︂
nr/2,ξ − 1

)︂
. (2.12.18)

Combining these two bounds gives

vr(ξ) ≤ f
(︂
nr/2,ξ

)︂
where f (n) = n min

⎧⎪⎪⎨⎪⎪⎩(n − 1),
(︄
1 +

5r
R

)︄2
⎫⎪⎪⎬⎪⎪⎭ . (2.12.19)

We use the above bounds and | f (n) − n(1 + 5r
R )2| ≤ (1 + (1 + 5r

R )2)2/4 to estimate

TrF
[︁
vr(ξ)Υz

π

]︁
≤ TrF

[︂
f
(︂
nr/2,ξ

)︂
Υz
π

]︂
(2.12.20)

≤ TrF
[︂
f
(︂
nr/2,ξ

)︂
Ωz

b

]︂
+

(︄
1 +

5r
R

)︄2

TrF
[︂
nr/2,ξ

(︂
Υz
π −Ω

z
b

)︂]︂
+

1
4

⎛⎜⎜⎜⎜⎝1 + (︄
1 +

5r
R

)︄2⎞⎟⎟⎟⎟⎠2 ⃦⃦⃦⃦
Υz
π,χr/2,ξ

−Ωz
b,χr/2,ξ

⃦⃦⃦⃦
1
.

When integrated over ξ, the second and the third term on the right-hand side of (2.12.20)
can be estimated as in (2.11.16) and (2.11.17), respectively. Using a similar estimate as in
(2.11.25), we bound the first term from above by

TrF
[︂
f
(︂
nr/2,ξ

)︂
Ωz

b

]︂
≤ min

⎧⎪⎪⎨⎪⎪⎩TrF
[︂
nr/2,ξ

(︂
nr/2,ξ − 1

)︂
Ωz

b

]︂
,

(︄
1 +

5r
R

)︄2

TrF
[︂
nr/2,ξΩ

z
b

]︂⎫⎪⎪⎬⎪⎪⎭
≤ min

⎧⎪⎪⎨⎪⎪⎩2
(︂
TrF

[︂
nr/2,ξΩ

z
b

]︂)︂2
,

(︄
1 +

5r
R

)︄2

TrF
[︂
nr/2,ξΩ

z
b

]︂⎫⎪⎪⎬⎪⎪⎭
≤

4
(︂
TrF

[︂
nr/2,ξΩ

z
b

]︂)︂2

1 + 2 TrF
[︂
nr/2,ξΩ

z
b

]︂
/ (1 + 5r/R)2

. (2.12.21)
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2 Lower bound on the free energy

Moreover,

TrF
[︂
nr/2,ξΩ

z
b

]︂
=
πr2

4
ρω + ⟨Φz|χr/2,ξ |Φz⟩. (2.12.22)

Using convexity of the function x ↦→ x2/(1 + x), we obtain

TrF
[︂
f
(︂
nr/2,ξ

)︂
Ωz

b

]︂
≤

1
2

(︂
πr2ρω

)︂2
+

8⟨Φz|χr/2,ξ |Φz⟩
2

1 + 4⟨Φz|χr/2,ξ |Φz⟩/ (1 + 5r/R)2 . (2.12.23)

Putting these considerations together and using the assumption R ≤ s ≤ r ≤ b, we find∫︂
Λ

TrF
[︁
vr(ξ)Υz

π

]︁
dξ ≤

|Λ|

2

(︂
πr2ρω

)︂2
+

∫︂
Λ

8⟨Φz|χr/2,ξ |Φz⟩
2

1 + 4⟨Φz|χr/2,ξ |Φz⟩/ (1 + 5r/R)2 dξ

+
9πr4

R2 TrF
[︂
N

(︂
Υz
π −Ω

z
b

)︂]︂
+

b|Λ|1/2
√

2
372

(︃ r
R

)︃4
S

(︂
Υz
π,Ω

z
b

)︂1/2
. (2.12.24)

This is the equivalent of [70, Eq. (2.10.20)].
In order to be able to compare the second term on the right-hand side of the above

inequality to the last term in (2.11.33), we use the pointwise bound

χr/2,ξ(x) ≤
(1 + 5r/R)2

π(r/2 + R/10)2

∫︂
|a|≤r/2+R/10

χR/10,ξ+a(x) da. (2.12.25)

We first use the monotonicity of the map x ↦→ x2/(1 + x) to replace χr/2,ξ(x) by the right-
hand side of the above equation in the second term on the right-hand side of (2.12.24).
Afterwards we use the convexity of the same map and Jensen’s inequality to see that

8⟨Φz|χr/2,ξ |Φz⟩
2

1 + 4⟨Φz|χr/2,ξ |Φz⟩/ (1 + 5r/R)2

≤
(1 + 5r/R)4

π(r/2 + R/10)2

∫︂
|a|≤r/2+R/10

8⟨Φz|χR/10,ξ+a|Φz⟩
2

1 + 4⟨Φz|χR/10,ξ+a|Φz⟩
da (2.12.26)

holds. Now we integrate in ξ over Λ and obtain

(1 + 5r/R)4

π(r/2 + R/10)2

∫︂
Λ

∫︂
|a|≤r/2+R/10

8 ⟨Φz|χR/10,ξ+a|Φz⟩
2

1 + 4 ⟨Φz|χR/10,ξ+a|Φz⟩
da dξ

= (1 + 5r/R)4
∫︂
Λ

8⟨Φz|χR/10,ξ |Φz⟩
2

1 + 4⟨Φz|χR/10,ξ |Φz⟩
dξ ≤ (6r/R)4

∫︂
Λ

8⟨Φz|χR/10,ξ |Φz⟩
2

1 + ⟨Φz|χR/10,ξ |Φz⟩
dξ. (2.12.27)
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2.12 Interaction energy, part II

The integral in the first term on the right-hand side of (2.12.16) is therefore bounded from
above by∫︂ b

s

{︄
δ(r − s)

∫︂ 1

0
|m(t)| dt + s−1|m(r/s)|

}︄∫︂
Λ

TrF
[︁
vr(ξ)Υz

π

]︁
dξ dr (2.12.28)

≤ c
[︄
π

4
s2

(︄
6s
R

)︄2

TrF
[︂
N

(︂
Υz
π −Ω

z
b

)︂]︂
+

b|Λ|1/2
√

2
372

(︃ s
R

)︃4
S

(︂
Υz
π,Ω

z
b

)︂1/2

+

(︄
6s
R

)︄4 ∫︂
Λ

8⟨Φz|χR/10,ξ |Φz⟩
2

1 + ⟨Φz|χR/10,ξ |Φz⟩
dξ +

|Λ|

2

(︂
πs2ρω

)︂2
]︄
,

where

c =
∫︂ 1

0
|m(t)| dt +

∫︂ ∞

1
|m(t)|t4 dt. (2.12.29)

It remains to bound the second term on the right-hand side of (2.12.16) where r ≥ b.
We use (2.9.2) and the same argument that led to (2.12.17) to see that

∑︂
i∈J j

j
(︄
d(xi, x j)

r

)︄
≤ 8

(︄
1 +

5r
R

)︄2

. (2.12.30)

This implies∫︂ ∞

b
s−1|m(r/s)|

∞⨁︂
n=0

n∑︂
j=1

∑︂
i∈J j

j
(︄
d(xi, x j)

r

)︄
dr ≤ N

(︄
6s
R

)︄2

8
∫︂ ∞

b/s
|m(r)|r2 dr. (2.12.31)

In the following we denote

J(b/s) =
∫︂ ∞

b/s
|m(r)|r2 dr. (2.12.32)

Since |m| decays faster than any power, the same holds true for J. The contribution to
TrF

[︁
W2Υ

z
π

]︁
from this part (again except for the prefactor) is therefore bounded from above

by (︄
6s
R

)︄2

8J(b/s)
{︂
TrF

[︂
N

(︂
Υz
π −Ω

z
b

)︂]︂
+ TrF

[︂
NΩz

b

]︂}︂
. (2.12.33)
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2 Lower bound on the free energy

Eqs. (2.12.16), (2.12.28) and (2.12.33) together show that

TrF
[︁
W2Υ

z
π

]︁
≤

32R2

ϵπs2 ln(R/ã)

{︄9πTrF
[︂
N

(︂
Υz
π −Ω

z
b

)︂]︂
R2

(c + J(b/s))

+
9πTrF

[︂
NΩz

b

]︂
R2 J(b/s) +

372cb
√

2R4
|Λ|1/2S (Υz

π,Ω
z
b)1/2 +

|Λ|cπ2ρ2
ω

2

+

(︄
6
R

)︄4

8c
∫︂
Λ

⟨Φz|χR/10,ξ |Φz⟩
2

1 + ⟨Φz|χR/10,ξ |Φz⟩
dξ

}︄
(2.12.34)

holds. This is the equivalent4 of [70, Eq. (2.10.27)].

2.13 Interaction energy, part III

In this section we will put the bounds of the previous two sections together in order
to obtain the final lower bound on TrF

[︁
WΥz

π

]︁
. To do so we will distinguish two cases

depending on the value of a certain function of Φz.
Assume first that ∫︂

Λ

⟨Φz|χR/10,ξ |Φz⟩
2

1 + ⟨Φz|χR/10,ξ |Φz⟩
dξ ≥

π2

8
|Λ|

(︂
R2ρ

)︂2
(2.13.1)

holds. Essentially, this conditions means that Φz is far from being a constant. In this case,
we choose λ = 0 in (2.11.33). Using the condition (2.13.1), we check that the difference
of the last term in (2.11.33) and the last term in (2.12.34) are bounded from below by

4π|Λ|ρ2

ln(R/a′)

{︄
1 − π

(︃ R
10

)︃2

ρω − 8c
64R2 ln(R/a′)
ϵs2 ln(R/ã)

}︄
. (2.13.2)

Here we used that for our choice of parameters the term in parentheses will be positive (in
fact, close to 1).

Next we consider the case when (2.13.1) does not hold, in which case we choose λ = 1
in (2.11.33). We start by proving some bounds that will turn out to be helpful below. Using
(2.12.25) with the choice r = 3R and the monotonicity as well as the convexity of the map
x ↦→ x2/(1 + x), we see that∫︂

Λ

⟨Φz|χ3R/2,ξ |Φz⟩
2

1 + 16−2⟨Φz|χ3R/2,ξ |Φz⟩
dξ ≤ 164π

2

8
|Λ|

(︂
R2ρ

)︂2
(2.13.3)

4We note that in [70, Eq. (2.10.27)] the first factor J(b/s) on the right side is missing. This is of no
consequence, however, as J(b/s) is small for s ≪ b.
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2.13 Interaction energy, part III

holds in this case. Pick some D > 0 and let B ⊂ Λ be the set

B =
{︂
ξ ∈ Λ

⃓⃓⃓
⟨Φz|χ3R/2,ξ |Φz⟩ ≥ 162DR2ρ

}︂
. (2.13.4)

Using (2.13.3) as well as monotonicity of the map x ↦→ x/(1 + x), we obtain∫︂
B

⟨Φz|χ3R/2,ξ |Φz⟩ dξ ≤ 32π2|Λ|R2ρ

(︄
1
D
+ R2ρ

)︄
. (2.13.5)

We proceed similarly to find an estimate for the volume of B:

|B| ≤
π2|Λ|

8D2

(︂
1 + DR2ρ

)︂
. (2.13.6)

We choose λ = 1 in (2.11.33) and estimate the relevant term from below by∫︂
Λ

[︃(︂
TrF

[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωz

b

]︂)︂
− 6

(︂
TrF

[︂
n3R/2,ξΩ

z
b

]︂)︂3
]︃
+

dξ (2.13.7)

≥

∫︂
Λ\B

(︃(︂
TrF

[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωz

b

]︂)︂
− 6

(︂
TrF

[︂
n3R/2,ξΩ

z
b

]︂)︂3
)︃

dξ.

Recall that we defined Ωz
b = U(z)ΩbU(z)†, where U(z) is the Weyl operator from (2.5.1)

and Ωb is the quasi-free state with one-particle density matrix ωb defined in (2.10.4).
In order to derive a bound on the second term on the right-hand side, we note that
TrF

[︂
n3R/2,ξΩ

z
b

]︂
= π(3R/2)2ρω + ⟨Φz|χ3R/2,ξ |Φz⟩. Together with the convexity of the map

x ↦→ x3 and (2.13.4) we conclude that∫︂
Λ\B

(︂
TrF

[︂
n3R/2,ξΩ

z
b

]︂)︂3
dξ ≤ 4|Λ|

(︂
π(3R/2)2ρω

)︂3
+ 4

∫︂
Λ\B

⟨Φz|χ3R/2,ξ |Φz⟩
3 dξ

≤ 4|Λ|
(︂
π(3R/2)2ρω

)︂3
+

(︂
162DR2ρ

)︂2
9πR2|z|2 (2.13.8)

holds.
Now we investigate the first term on the right-hand side of (2.13.7). As in the computa-

tion that led to (2.11.25), we write

nR/2,ξ

(︂
nR/2,ξ − 1

)︂
=

∫︂
BR/2(ξ)2

a†xa
†
yayax d(x, y) (2.13.9)

which implies

TrF
[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωz

b

]︂
= TrF

[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωb

]︂
(2.13.10)

+ 2⟨Φz|χR/2,ξωbχR/2,ξ |Φz⟩ +
π

2
R2ρω⟨Φz|χR/2,ξ |Φz⟩ + ⟨Φz|χR/2,ξ |Φz⟩

2.
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2 Lower bound on the free energy

Note that we have used the translation invariance of the state Ωb. Since Ωb is quasi-free
the first term on the right-hand side can be expressed in terms of the one-particle density
matrix ωb. It reads

TrF
[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωb

]︂
=

(︂
tr

[︂
χR/2,ξωb

]︂)︂2
+ tr

[︂
χR/2,ξωbχR/2,ξωb

]︂
(2.13.11)

= (πR2ρω/4)2 + tr
[︂
χR/2,ξωbχR/2,ξωb

]︂
.

In order to quantify how much the integral of the first term on the right-hand side of
(2.13.7) differs from the one with Λ\B replaced by Λ, we estimate

∫︂
B

TrF
[︂
nR/2,ξ

(︂
nR/2,ξ − 1

)︂
Ωb

]︂
dξ ≤ 2|B|(πR2ρω/4)2. (2.13.12)

To arrive at the right-hand side, we used that the second term in the second line of (2.13.11)
is bounded from above by the first one. Since ⟨Φz|χR/2,ξωbχR/2,ξ |Φz⟩ ≤ tr χR/2,ξωb⟨Φz|χR/2,ξ |Φz⟩,
we also have ∫︂

B

(︃
2⟨Φz|χR/2,ξωbχR/2,ξ |Φz⟩ +

π

2
R2ρω⟨Φz|χR/2,ξ |Φz⟩
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dξ

≤ πR2ρω

∫︂
B

⟨Φz|χR/2,ξ |Φz⟩ dξ

≤ πR2ρω32π2|Λ|R2ρ

(︄
1
D
+ R2ρ

)︄
. (2.13.13)

For the last inequality, we used (2.13.5) and the fact that
∫︁
B
⟨Φz|χR/2,ξ |Φz⟩ dξ is bounded

from above by
∫︁
B
⟨Φz|χ3R/2,ξ |Φz⟩ dξ. For the last term in (2.13.10) we use Schwarz’s

inequality and (2.13.5) to estimate

∫︂
Λ\B

⟨Φz|χR/2,ξ |Φz⟩
2 dξ ≥

1
|Λ|

(︄∫︂
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⟨Φz|χR/2,ξ |Φz⟩ dξ
)︄2

≥ |Λ|
π2

16
R4

[︄
ρ2

z − πρzρ
162

D

(︂
1 + DR2ρ

)︂]︄
. (2.13.14)

Here we have again used the notation ρz = |z|2/|Λ|. Putting all these estimates together, we
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have the lower bound∫︂
Λ\B
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We denote ωb(x) = ωb(x, 0) = ωπ(x, 0)ηb (d(x, 0)). The first term in the second line of
(2.13.15) can be written as∫︂

Λ3
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An application of the Cauchy-Schwarz inequality implies
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where we defined
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We note that γb ∼ ρω for b ≫ R and β1/2 ≫ R and we will give more precise estimates
below (see (2.13.29)). It remains to give a lower bound on the second term in the second
line of (2.13.15). We claim that∫︂
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To see this, we write

32
πR2

∫︂
Λ

⟨Φz|χR/2,ξωbχR/2,ξ |Φz⟩ dξ − |z|2
∫︂
Λ

ωb(x) j
(︄
d(x, 0)

R

)︄
dx

=

∫︂
Λ×Λ

(︂
Φ†z (x + y) − Φ†z (y)

)︂
Φz(y)ωb(x) j

(︄
d(x, 0)

R

)︄
d(x, y)

≥ − ∥Φz∥2

∫︂
Λ

∥Φz(x + ·) − Φz(·)∥2 |ωb(x)| j
(︄
d(x, 0)

R

)︄
dx. (2.13.20)

65



2 Lower bound on the free energy

We estimate |ωb(x)| ≤ ωb(0) = ρω. Moreover, writing the 2-norm in momentum space one
easily checks that ∥Φz(x + ·) − Φz(·)∥2 ≤ ∥Φz∥2 pcd(x, 0). Since the support of j(·/R) is the
interval [0,R], the integral over Λ can be estimated as∫︂

Λ

j(d(x, 0)/R)d(x, 0) dx ≤ 2πR3. (2.13.21)

This proves (2.13.19). Combining these estimates with (2.13.8) and (2.13.15) we see that
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Now we put together the results of this subsection and the two previous ones. More
precisely, we combine the estimates from Eqs. (2.11.33), (2.12.34), (2.13.2) and (2.13.22)
to obtain
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To arrive at this result we have used that a′ ≤ ã, and we defined
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and
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2.13 Interaction energy, part III

Below we will choose the parameters such that ln(R/ã) and ln(R/a′) are equal to leading
order in the dilute limit. We will also choose ϵs2/R2 large enough such that the factor
multiplying TrF

[︂
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Υz
π −Ω

z
b

)︂]︂
in (2.13.23) is positive. Hence, it will be sufficient to give

a lower bound on the difference of the expected particle numbers of Υz
π and Ωz

b, which will
be done in the next section.

To simplify the expressions, we make a choice of the parameters ϵ and D and restrict
the range of R. We claim that all the terms with a negative sign appearing inA1 andA2

(together with the prefactor) can be bounded from below by
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To see this we employ the bound on ρz derived in (2.6.7) as well as the following bound on
ρω. Recall that ℓ(p) was defined in (2.10.2) and satisfies ℓ(p) ≥ β(p2 − µ0) for all p. This
implies
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in the thermodynamic limit. In order to minimize the error terms in A2, we choose
D = (R2ρ)−1/3. On the other hand, note that in the definition of 1/ ln(R/a′) in (2.9.19)
there is a factor 1 − ϵ, which means there is competition between ϵ and R2/(ϵs2) to leading
order and thus the optimal choice is ϵ = R/s. We also use that a′ ≤ ã ≤ a and make the
assumption

1
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In combination, these considerations prove the claim. Now we give upper and lower
bounds on γb in terms of ρω as promised above. We claim that
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where the o(1) contribution vanishes in the thermodynamic limit. The upper bound
can be obtained by noting that |ωb(x)| ≤ ωb(0) = ρω. For the lower bound, recall that
ωb(x) = ωπ(x, 0)ηb(d(x, 0)). We use cos(x) ≥ 1 − 1
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We further use that |η| ≤ 1 and η(t) ≥ 1−const. t2. The support of j being contained in a disk
of radius one, we can estimate d(x, 0) ≤ R inside the integral in (2.13.18). Additionally,
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2 Lower bound on the free energy

we use ℓ(p) ≥ βp2. In combination, the above facts allow us to bound
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This proves (2.13.29).
To estimate the terms inA1 andA2 with a positive sign, we apply the lower bound from

(2.13.29) to γb and find
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In combination, our considerations imply
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Here, we can drop the terms R2/b2 and R2/(β2ρ) as they are dominated by R/s and (R2ρ)1/3,
respectively. This follows from the assumptions b > s > R, βρ ≳ 1 and R2ρ ≪ 1. Using
Lemma 3 with the choice δ =
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We will choose R2ρ ≪ 1 and, in parcitular, R2ρ ≤ 1, i.e.,

1
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. (2.13.35)
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2.14 A bound on the number of particles

Note the factor two on the right side which is important to give the correct leading order
contribution for the terms with positive sign below. We thus finally arrive at
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2.14 A bound on the number of particles

In this section we give a lower bound on the terms involving the number operator and its
square. More precisely, we consider the sum of the first term from (2.13.23) and the term
1
2 TrF [KΥz] from (2.9.30). Recalling that we already chose ϵ = R/s and that K was defined
in (2.4.3), we seek a lower bound on the expression
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The fact that we need to give a bound for the first term on the right-hand side is one of the
reasons for introducing the operator K in Section 2.4.

Using the definition of Ωb and Ωπ in (2.10.3)–(2.10.5) and the fact that they have the
same density, we conclude

TrF [N(Υz
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where
N> =

∑︂
|p|≥pc

a†pap. (2.14.3)

For the quadratic term, we use the inequality
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This implies
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2 Lower bound on the free energy

Hence, we obtain the following expression as a lower bound
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We will choose the parameters R, s and C satisfying the conditions C ≪ 1/(R2ρ) and
R ≪ s such that the term in square brackets on the right-hand side of (2.14.6) is always
positive (for any value of |z|) and therefore we need a lower bound on the expression
TrF>[N>(Γz − Γ0)].
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By the variational principle for the free energy, we have for any µ ≤ 0

S (Γz,Γ0) − βµTrF>[N>Γz] ≥ β( f̃ (µ) − f̃ (0)). (2.14.8)

From the absolute monotonicity5 of f̃ (i.e., all derivatives being negative), we obtain
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(2.14.12)
5The term absolute monotonicity is often used if all derivatives of a function f share the same sign, f (n) ≷ 0.

In contrast, the term complete monotonicity (or total monotonicity) is often used to indicate that the
derivatives switch sign at every order, (−1)n f (n) ≷ 0.
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2.14 A bound on the number of particles

Since µ ≤ 0, this can be rewritten as
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Optimizing the right-hand side over µ, we find
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We can use the a priori bound from (2.6.4) to bound the relative entropy, while for the
sum over p we use the bound cosh x − 1 ≥ x2/2. Thus,∑︂
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In conclusion, we have shown that
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We now apply this to (2.14.6) and obtain
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Note that we used (2.6.7) to bound ρz as well as |Λ|−1 TrF>[N>Γ0] ≤ ρω. Using also
(2.13.27), the assumption (2.13.28) on R and choosing C ≪ 1/(R2ρ), this simplifies to
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2.15 Relative entropy, effect of cutoff

In this section we quantify the effect of the cutoff parameter b on the relative entropy
S (Υz

π,Ω
z
b) appearing in (2.13.23). The goal is to estimate S (Υz

π,Ω
z
b) in terms of S (Π ⊗

Γz,Ωπ) = S (Γz, Γ0). For the latter expression we have the a priori bound (2.6.4). To obtain
such an estimate it will be important that the vacuum state Π0 has been replaced by the
more general quasi-free state Π in Section 2.7.

For any quasi-free state Ωω with one-particle density matrix ω and any state Γ it is easy
to check that the relative entropy S (Γ,Ωω) is convex in ω. The one-particle density matrix
of Ωb is given by the following convex combination
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Convexity of the map ω ↦→ S (Γ,Ωω) therefore implies
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, (2.15.2)

where Ωq is the quasi-free state corresponding to the one-particle density matrix with
eigenvalues 1

2 (ωπ(p + q) + ωπ(p − q)). Further arguments based on convexity (see [68,
Eqs. (5.15) and (5.16)]) yield
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To estimate (2.15.3) from above, we require the following lemma. Since the proof of the
analogous [70, Lemma 6] does not explicitly depend on the dimension of the configuration
space it translates to the two-dimensional case without changes. We therefore omit the
proof of Lemma 8.

Lemma 8. Let ℓ : R2 → R+, and let L± = ± supp sup|q|=1 ±(q∇)2ℓ(p) denote the supremum
(infimum) of the largest (smallest) eigenvalue of the Hessian of ℓ. Let ωπ(p) = [eℓ(p) −1]−1,
and let hq(p) be given as in (2.15.4). Then

hq(p) − h0(p) ≤ L+q2, (2.15.5)
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and
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Recall that the ℓ(p) in question was defined in (2.10.2). Now we choose the parameters
πp which determine ℓ(p) for |p| < pc. For that purpose let g : R2 → [0, 1] be a smooth
radial function that is supported in a disk of radius one and assume that g(p) ≥ 1
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Note that this choice indeed satisfies our earlier assumption on ℓ(p), which was ℓ(p) ≥
β(p2 − µ0). Furthermore, we can estimate πp ≲ 1/(β(p2

c − µ0)). This can be seen by
considering |p| ≥ pc/2 and |p| < pc/2 separately and using ℓ(p) ≥ β(p2 − µ0) in the first
case and g(p/pc) ≥ 1/2 in the second case. Using this and M ≲ p2

c |Λ|, we can bound P
from Section 2.7 as

P =
∑︂
|p|≤pc

πp ≲
M

β(p2
c − µ0)

≲
|Λ|p2

c

β(p2
c − µ0)

, (2.15.9)

The bound on P is needed for estimating the term Z(2) in (2.7.7).
For our choice of ℓ it is easy to see that both L+/β and L−/β are bounded independently

of all parameters. We further have the bounds |∇ℓ(p)| ≲ β|p| and ωπ(p) ≤ ℓ(p)−1 ≤ (βp2)−1,
and together with Lemma 8, this implies

−Bβq2
(︂
1 + β (|p| + |q|)2

)︂
≤ hq(p) − h0(p) ≤ Bβq2 (2.15.10)

for some B > 0. Using sinh(x)/x ≤ cosh(x) for x ∈ R, we estimate(︂
hq(p) − h0(p)

)︂ (︄ 1
eh0(p)+t(h0(p)−hq(p)) −1

−
1

ehq(p) −1

)︄
≤

1
2

(1 + t)
(︂
hq(p) − h0(p)

)︂2 e−hq(p) + e−h0(p)+t(hq(p)−h0(p))(︁
1 − e−h0(p)+t(hq(p)−h0(p)))︁ (︁1 − e−hq(p))︁ . (2.15.11)
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2 Lower bound on the free energy

We use (︂
hq(p) − h0(p)

)︂2
≤ B2

(︂
βq2

)︂2 (︂
1 + β (|p| + |q|)2

)︂2
(2.15.12)

as well as the fact that the last fraction on the right-hand side of (2.15.11) is bounded from
above by

e−hq(p) + e−h0(p)+tβBq2(︂
1 − e−h0(p)+tβBq2

)︂ (︁
1 − e−hq(p))︁

= ωt(p) +
1
2

(ωπ(p + q) + ωπ(p − q))
(︁
1 + 2ωt(p)

)︁
, (2.15.13)

where ωt(p) = [eh0(p)−Bβtq2
−1]−1. To obtain this result, we assumed that t is small enough

such that h0(p)−Bβtq2 > 0 for all p. Since sums converge to integrals in the thermodynamic
limit we need to bound∫︂

R2

(︂
1 + β (|p| + |q|)2

)︂2
(︄
ωt(p) +

1
2

(ωπ(p + q) + ωπ(p − q))
(︁
1 + 2ωt(p)

)︁)︄
dp. (2.15.14)

We replace ωπ(p − q) by ωπ(p + q) without changing the value of the integral. Then we
use ωπ(p) ≤ ωt(p), change variables p→ p − q and use Schwarz’s inequality to see that
(2.15.14) is bounded from above by

(2.15.14) ≤
∫︂
R2

(︂
1 + β(|p| + |q|)2

)︂2 (︁
ωt(p) + ωt(p + q)(1 + 2ωt(p))

)︁
dp

≤ 2
∫︂
R2

(︂
1 + β(|p| + 2|q|)2

)︂2
ωt(p) dp

+

(︄∫︂
R2

(︂
1 + β(|p| + |q|)2

)︂2
(ωt(p + q))2 dp

)︄1/2

×

(︄
4
∫︂
R2

(︂
1 + β(|p| + |q|)2

)︂2
(ωt(p))2 dp

)︄1/2

≤ 2
∫︂
R2

(︂
1 + β (|p| + 2|q|)2

)︂2
ωt(p)

(︁
1 + ωt(p)

)︁
dp. (2.15.15)

We choose t = min{1, (b2q2)−1}. We then have tq2 ≤ b−2 and further

ℓ(p) − Bβtq2 ≥ β

[︄
p2

2
− µ0 + p2

c

(︄
1
8
−

B
b2 p2

c

)︄]︄
≥ β

[︄
p2

2
− µ0 +

p2
c

16

]︄
, (2.15.16)

which can be seen by considering, similarly to before when estimating P in (2.15.9),
|p| ≥ pc/2 and |p| < pc/2 separately. For the last inequality, we already assumed that b and
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2.15 Relative entropy, effect of cutoff

pc will be chosen in such a way that b2 p2
c ≫ 1 and, in particular, B/(b2 p2

c) ≤ 1/16 holds.
Denoting

τ = −βµ0 +
βp2

c

16
, (2.15.17)

we thus have the bound

ωt ≤
(︂
eτ+βp2/2 −1

)︂−1
≤ e−τ−βp2/2

[︄
1 +

1
τ + βp2/2

]︄
. (2.15.18)

Inserting (2.15.18) into (2.15.15), we find

(2.15.15) ≤ 2
∫︂
R2

(︂
1 + β(|p| + 2|q|)2

)︂2
e−τ−βp2/2

[︄
1 +

1
τ + βp2/2

]︄
×

(︄
1 + e−τ−βp2/2

[︄
1 +

1
τ + βp2/2

]︄)︄
dp

≲
e−τ

β

(︂
1 + β2q4

)︂ ∫︂
R2

(︂
1 + p4

)︂
e−p2/2

[︄
1 +

1
(τ + p2/2)2

]︄
dp

≲
e−τ

β

(︂
1 + β2q4

)︂ (︂
1 + τ−1

)︂
. (2.15.19)

We combine the above equations and use t−1 ≤ 1 + b2q2 to see that

S (Π ⊗ Γz,Ωq) ≲
(︂
2 + b2q2

)︂
S (Γz,Γ0) +

|Λ|

τ
βq4

(︂
1 + β2q4

)︂
+ o(|Λ|) (2.15.20)

holds. Using (2.15.2) and ηb(0) = 1, we therefore have

S (Π ⊗ Γz,Ωb) ≲ S (Γz,Γ0) +
β

τ

∑︂
q

η̂b(q)q4
(︂
1 + β2q4

)︂
+ o(|Λ|). (2.15.21)

We will choose b such that b2 ≫ β and this implies, in particular, that βb−2 ≲ 1. We
therefore have

S (Π ⊗ Γz,Ωb) ≲ S (Γz,Γ0) +
β|Λ|

τb4 + o(|Λ|). (2.15.22)

The above inequality quantifies the effect of the cutoff. From (2.13.23), we know that
we still have to multiply the relative entropy term by b2. Using also the a priori bound from
(2.6.4), we obtain

b2S (Υz
π,Ω

z
b) ≲ b2

(︄
S (Γz,Γ0) +

β|Λ|

τb4 + o(|Λ|)
)︄

≲ β|Λ|

(︄
b2ρ2

| ln a2ρ|
+

1
τb2 + o(1)

)︄
. (2.15.23)
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2 Lower bound on the free energy

From this expression it is easy to read off the optimal choice of b which is given (up to a
constant factor) by

b =
(︄
| ln a2ρ|

τρ2

)︄1/4

. (2.15.24)

The result of this section is therefore the following bound on the relative entropy

b2S (Υz
π,Ω

z
b) ≲ |Λ|

(︄
βρ

(τ| ln a2ρ|)1/2 + o(1)
)︄
. (2.15.25)

2.16 Final lower bound

In this section we collect the above estimates to give a lower bound on Fz(β), which in turn
will give a lower bound on the free energy. Recall from Sections 2.5 and 2.5 that

1
|Λ|

F(β,N, |Λ|) = −
1
β|Λ|

ln TrN e−βHN ≥ −
1
β|Λ|

ln TrN e−βH̃N

≥ −
1
β|Λ|

TrF e−βH ≥ −
1
β|Λ|

ln
∫︂
CM

TrF e−βH
s(z) dz

≥
1
|Λ|

[︄
µ0N −

1
β

ln
∫︂
CM

e−βFz(β) dz − Z(1)
]︄
, (2.16.1)

where Z(1) was defined in (2.5.8). Now we combine the estimates from (2.9.30), (2.13.23),
(2.13.36) as well as (2.14.18) and (2.15.25) to obtain the final lower bound to Fz(β) as

Fz(β) ≥ −
1
β

ln TrF>[e−βT
c
s(z)] − Z(2) − Z(3) − Z(4) − o(|Λ|)

+
2πC

|Λ|| ln a2ρ|

(︂
|z|2 + TrF>[N>Γ0] − N

)︂2
+

4π|Λ|
| ln a2ρ|

min
{︂
ρ2

z + 4ρzρω + 2ρ2
ω, 2ρ

2
}︂
.

(2.16.2)

Here, the error terms Z(2) and Z(3) are defined in (2.7.7) and (2.14.19), respectively. The
error term Z(4) contains the remaining errors and is defined by

Z(4) := const.
|Λ|ρ2

| ln a2ρ|

(︄
1

R4ρ2

(βρ)1/2

τ1/4| ln a2ρ|1/4
+

1
Rsρ

J
(︄
| ln a2ρ|1/4

τ1/4ρ1/2s

)︄
+

R
s

+ (R2ρ)1/3 + pcR + κ +
1√︁

φ| ln a2ρ|
+

R2
0

R2 | ln a2ρ|

⎞⎟⎟⎟⎟⎟⎠ + const.
|Λ|p2

c

β

R2
0

R2 . (2.16.3)

76



2.16 Final lower bound

To obtain this form of the error term we also used (2.13.28) to replace the logarith-
mic factors ln(R/a) by the desired factor | ln a2ρ| and inserted the choices ϵ = R/s
and b = (| ln a2ρ|/(τρ2))1/4 made earlier. The last term in Z(4) originates from the term
(κ − κ′)

∑︁
p p2πp in (2.9.30) using (2.9.21) and (2.15.9).

Let us have a closer look at the two terms in the second line of (2.16.2). We define

ρ0 =
1
|Λ|

TrF>[N>Γ0] = ρω −
P
|Λ|
, (2.16.4)

where P = tr π =
∑︁
|p|<pc

πp was defined in Section 2.7. Using ρ0 ≤ ρω, we replace ρω in
the second term in the second line of (2.16.2) by ρ0 for a lower bound. When we minimize
over ρz we find

C
2

(︂
ρz − (ρ − ρ0)

)︂2
+ ρ2

z + 4ρzρ
0 + 2(ρ0)2

≥
1

1 + 2/C

(︄
2ρ2 − (ρ − ρ0)2 −

4
C

(ρ0)2
)︄
, (2.16.5)

Note that the right-hand side of (2.16.5) is bounded by 2ρ2. This implies in particular
that the minimum in (2.16.2) will be attained by the first term when we minimize over ρz.
Therefore, we have the lower bound

Fz(β) ≥ −
1
β

ln TrF> e−βT
c
s(z) −

4∑︂
i=1

Z(i) − o(|Λ|)

+
4π|Λ|
| ln a2ρ|

(︄
2ρ2 − (ρ − ρ0)2 −

4
C
ρ2

)︄
, (2.16.6)

where we used
ρ0 =

1
4π2

∫︂
|p|>pc

dp
eβ(p2−µ0)

+ o(1) ≤ ρ(1 + o(1)) (2.16.7)

in the 1/C correction term. The only remaining z dependence is then in the first term

−
1
β

ln TrF> e−βT
c
s(z) =

∑︂
|p|<pc

ϵ(p)|zp|
2 +

1
β

∑︂
|p|≥pc

ln
(︂
1 − e−βϵ(p)

)︂
, (2.16.8)

where ϵ(p) was defined in (2.9.25) as ϵ(p) = κ′p2 + (1 − κ)p2(1 − χ(p)2) − µ0, with χ a
cutoff function at the scale s ≥ R. We evaluate the integral over CM in (2.16.1) to give∫︂

CM
e−β

∑︁
|p|<pc ϵ(p)|zp |

2
dz =

∏︂
|p|<pc

∫︂
C

e−βϵ(p)|zp |
2

dzp =
∏︂
|p|<pc

1
βϵ(p)

. (2.16.9)
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2 Lower bound on the free energy

Now we estimate the term that contributes to the free part of the free energy. Using the
fact that x ≥ 1 − e−x for x ≥ 0, we find

1
β|Λ|

∑︂
|p|<pc

ln(βϵ(p)) +
1
β|Λ|

∑︂
|p|≥pc

ln
(︂
1 − e−βϵ(p)

)︂
≥

1
β|Λ|

∑︂
p

ln
(︂
1 − e−βϵ(p)

)︂
≥

1
4βπ2

∫︂
R2

ln
(︂
1 − e−βϵ(p)

)︂
dp − o(1). (2.16.10)

We split the integral into two parts |p| ≤ s−1 and |p| ≥ s−1. In the first part we have
ϵ(p) = (1 − κ + κ′)p2 − µ0, while in the second part we have the bound ϵ(p) ≥ κ′p2. Hence,∫︂

R2
ln

(︂
1 − e−βϵ(p)

)︂
dp

≥
1

1 − κ + κ′

∫︂
R2

ln
(︂
1 − e−β(p2−µ0)

)︂
dp +

1
κ′β

∫︂
|p|2≥κ′β/s2

ln
(︂
1 − e−p2)︂

dp. (2.16.11)

The parameter s will be chosen such that s2 ≪ κ′β; the second integral is then exponentially
small in the parameter s2/(κ′β).

Define

ρs := ρ
[︄
1 −

ln | ln a2ρ|

4πβρ

]︄
+

. (2.16.12)

Our goal is to bound ρ − ρ0 by ρs plus an error term. This will be achieved by introducing
a new parameter p̃c that satisfies

1
4π2

∫︂
|p|≤ p̃c

dp
eβ(p2−µ0) −1

= ρs. (2.16.13)

By an explicit computation, we find

β p̃2
c =

1
e4πβρ −1

[︄
e4πβρ

| ln a2ρ|
− 1

]︄
+

. (2.16.14)

We remark that pc will be chosen such that pc ≥ p̃c holds, and we use (2.16.7) to write

ρ − ρ0 = ρs +
1

4π2

∫︂
p̃c≤|p|≤pc

dp
eβ(p2−µ0) −1

+ o(1). (2.16.15)

The remaining correction term can be estimated as

1
4π2

∫︂
p̃c≤|p|≤pc

dp
eβ(p2−µ0) −1

≲
1
β

∫︂ βp2
c

βp̃2
c

dq
q − βµ0

=
1
β

ln
(︄
βp2

c − βµ0

βp̃2
c − βµ0

)︄
. (2.16.16)
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2.17 Minimizing the error terms

In combination, the above estimates show that

1
|Λ|

F(β,N, |Λ|) ≥ µ0ρ +
1

4βπ2

∫︂
R2

ln
(︂
1 − e−β(p2−µ0)

)︂
dp −

1
|Λ|

5∑︂
i=1

Z(i) − o(1)

+
4π
| ln a2ρ|

(︂
2ρ2 − ρ2

s

)︂
, (2.16.17)

where

Z(5) := − const. (κ − κ′)
|Λ|

β

∫︂
R2

ln
(︂
1 − e−β(p2−µ0)

)︂
dp

−
|Λ|

κ′β2

∫︂
|p|2≥κ′β/s2

ln
(︂
1 − e−p2)︂

dp

+
const. |Λ|ρ2

| ln a2ρ|

(︄
1
C
+

1
βρ

ln
(︄
βp2

c − βµ0

β p̃2
c − βµ0

)︄
+

1
(βρ)2 ln2

(︄
βp2

c − βµ0

β p̃2
c − βµ0

)︄)︄
. (2.16.18)

Note that the right-hand side of (2.16.17) has the desired form: The sum of the first two
terms on the right-hand side equals the free energy of non-interacting bosons f0(β, ρ) since
µ0 is given by (1.2.7). The last term in (2.16.17) is the desired interaction energy. It
remains to choose the parameters in the error terms and show that they are of lower order
than this interaction energy.

2.17 Minimizing the error terms

In this section we show how to choose the parameters in order to optimize the error terms
of the lower bound.

To simplify the notation, we replace the factor 1/16 in the definition of τ from (2.15.17)
by one, i.e., we redefine

τ = −βµ0 + βp2
c and denote τ̃ = −βµ0 + β p̃2

c . (2.17.1)

For brevity, let us introduce the notation

σ := | ln a2ρ|. (2.17.2)

Similarly as in the three-dimensional case the following terms are relevant for the mini-
mization: p4

c from Z(1), ρ2σ−1(κ + R/s) and ρ2σ−1(βρ)1/2(R2ρ)−2(τσ)−1/4 from Z(4) as well
as

−
1
κ′β2

∫︂
|p|2≥κ′β/s2

ln
(︂
1 − e−p2)︂

dp (2.17.3)
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2 Lower bound on the free energy

from Z(5). It turns out, however, that in the two-dimensional case the additional error terms
ρ2σ−1(R2ρ)1/3 from Z(4) and ρ2σ−1 ln(τ/τ̃)/(βρ) from Z(5) are also relevant for choosing
the parameters. The constraints on the parameters, that is, pc ≤ 1/s, s ≫ R, s2 ≪ κβ,
R2

0/R
2 ≪ κ, b ≫ 1/pc, b ≫ R and b ≫ β1/2 will be automatically satisfied with the choice

of the parameters below. The same is true for (2.13.28) and (2.13.35), which have to be
obeyed by the parameter R. Since R appears in these expressions only in the argument of
the logarithm, we still have quite some freedom in its choice.

In order for (2.17.3) to be small, we require that s2 ≪ κ′β, with κ′ defined in (2.9.21).
This is equivalent to s2 ≪ κβ, since we will choose R2

0/R
2 ≪ κ. If we take κ′ =

(1 + δ)s2β−1 lnσ for some δ > 0, (2.17.3) is bounded by (s2β)−1σ−1 − δ, which will
be negligible compared to the other terms. We can now optimize the term ρ2σ−1(κ + R/s)
over s resulting in the choice

s =
(︃
βR

lnσ

)︃1/3

. (2.17.4)

With this choice of s the error term becomes

ρ2

σ

(︄
(1 + δ)

s2 lnσ
β
+

R
s

)︄
∼
ρ2

σ

(︄
R2 lnσ
β

)︄1/3

. (2.17.5)

Among the main terms there are now only three terms left that depend on R, namely
(2.17.5), ρ2σ−1(R2ρ)1/3 and ρ2σ−1(βρ)1/2(R2ρ)−2(τσ)−1/4. Denoting

d = 1 +
(︄
lnσ
βρ

)︄1/3

∼ 1 +
(︄
βc

β

)︄1/3

, (2.17.6)

we write the sum of the first two terms as ρ2σ−1(R2ρ)1/3d. Hence, the optimal choice of R
is

(R2ρ)1/3 =
(βρ)1/14

d1/7(τσ)1/28 (2.17.7)

and the resulting error term reads

ρ2

σ
(R2ρ)1/3d =

ρ2

σ
d6/7

(︄
(βρ)2

τσ

)︄1/28

. (2.17.8)
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2.17 Minimizing the error terms

We are thus left with the following three error terms

A1 =
ρ2

σ

1
βρ

ln
(︃
τ

τ̃

)︃
=
ρ2

σ

1
βρ

ln
(︄
βp2

c − ln(1 − e−4πβρ)
βp̃2

c − ln(1 − e−4πβρ)

)︄
,

A2 = p4
c ,

A3 =
ρ2

σ
d6/7

(︄
(βρ)2

τσ

)︄1/28

=
ρ2

σ

⎛⎜⎜⎜⎜⎝1 + (︄
βc

β

)︄1/3⎞⎟⎟⎟⎟⎠6/7 (︄
(βρ)2

(βp2
c − ln(1 − e−4πβρ))σ

)︄1/28

. (2.17.9)

They depend solely on pc, βρ and σ, as p̃c is given explicitly in (2.16.14). By minimizing
over pc we therefore obtain the final error rate minpc{A1 + A2 + A3}, which depends only
on βρ and σ. Optimization turns out to lead to the choice

βp2
c =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if 1 ≲ 4πβρ ≤ ln

(︂
σ

(lnσ)30

)︂
,

(βρ)30

σ ln28((βρ)30/(στ̃))
if ln

(︂
σ

(lnσ)30

)︂
≤ 4πβρ ≲ σ1/59,(︂

(βρ)2

σ

)︂29/57
if σ1/59 ≲ βρ ≲ σ1/2.

(2.17.10)

The upper limit βρ ≲ σ1/2 is a natural restriction, since the interaction term is comparable
to the non-interacting free energy if βρ ∼ σ1/2 (compare with (1.2.11)), and hence the
perturbative argument, on which the proof of the lower bound is based, cannot be expected
to work anymore in this regime. For βρ of the order σ1/2 or larger an additional argument
using the result at T = 0 [52] as a crucial ingredient will be given in Section 2.18 to
complete the proof of the lower bound.

The parameters φ and C in the remaining error terms (which we did not need to consider
for the choice of pc) may be chosen according to

1
σ
≪ φ ≪

βρ

σ
, 1 ≪ C ≪ σ (2.17.11)

if βρ is such that pc ≠ 0. In case βρ is so small that pc = 0, we find that the upper
restrictions to φ and C do not apply anymore and the choice only needs to satisfy the lower
ones.

We now explain how to arrive at the choice (2.17.10) of pc. We start by discussing what
can be expected. For βρ far below βcρ, in a sense to be made precise below, we have that
the (absolute value of the) chemical potential −βµ0 is large enough compared to σ−1 to
control the term A3 and even allows for the choice pc = 0, which means that A1 and A2
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2 Lower bound on the free energy

both vanish. This changes when βρ comes close to βcρ, where we need that βp2
c is larger

than σ−1. Here, only A1 and A3 have to be considered for the optimization, while A2 is
subleading. For βρ far above βcρ, the optimal error rate changes as the term A1 becomes
irrelevant and we optimize using the terms A2 and A3.

Consider first the case pc = 0, which means p̃c = 0 by the assumption pc ≥ p̃c, which
also means e4πβρ ≤ σ or β ≤ βc. This implies A1 = A2 = 0 as well as τ = −βµ0 =

− ln(1 − e−4πβρ). The remaining error term is given by

A3 ≲
ρ2

σ

(︄
βc

β

)︄2/7 (︄
(βρ)2

σ e−4πβρ

)︄1/28

. (2.17.12)

It can be read off that e4πβρ ≲ σ/(lnσ)2 is the upper limit for this error to be smaller
than the interaction scale, which is much smaller than the critical inverse temperature,
e 4πβcρ = σ. Hence, we need to choose a non-zero pc already well above the critical
temperature.

Next, we consider the case pc ≠ 0. This will be the case only in the regime β ≳ βc,
hence d in (2.17.6) satisfies d ∼ 1. Since we have three main error terms to consider, there
are three different possibilities of how to obtain the optimal pc, out of which only two will
be relevant. The first way of choosing pc is obtained by optimizing A1 and A3. This leads
to the equation

1
βρ

ln
(︃
τ

τ̃

)︃
=

(︄
(βρ)2

στ

)︄1/28

, (2.17.13)

which, to leading order, is solved by

τ = βp2
c − βµ0 =

(βρ)30

σ ln28
(︂

(βρ)30

στ̃

)︂ . (2.17.14)

As mentioned before, the reason for switching to pc ≠ 0 is that −βµ0 becomes too small
in order to control the term A3 (i.e., to ensure that A3 is smaller than the interaction scale
ρ2/σ). Therefore, we can take the right-hand side of (2.17.14) as the defining equation for
βp2

c and neglect the term −βµ0. The error terms with this choice of pc become

A1 ∼ A3 ≲
ρ2

σ

1
βρ

ln
(︄

(βρ)30

στ̃ ln28((βρ)30/(στ̃))

)︄
,

A2 ≲
ρ2

σ

(βρ)58

σ ln56((βρ)30/(στ̃))
. (2.17.15)

Note that A3 = A1 to leading order by our choice of pc and that A2 is indeed of lower order
than A1 or A3 for βρ ∼ βcρ.
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2.18 Uniformity in the temperature

Now we can compare the term A1 from (2.17.15) to the term A3 we obtained by choosing
pc = 0 (from (2.17.12)) to determine the point at which we switch to pc ≠ 0 as given in
(2.17.14). This gives (︄

(βρ)2

σ e−4πβρ

)︄1/28

=
1
βρ

ln
(︄

(βρ)30

στ̃ ln28((βρ)30/(στ̃))

)︄
, (2.17.16)

which we solve to leading order by

4πβρ = ln
(︄

σ

(lnσ)30

)︄
. (2.17.17)

For this value of βρ we switch to pc as given in (2.17.14).
It is clear, however, that for larger βρ the term A2 from (2.17.15) will become larger than

A1 or A3 as it is increasing in βρ. The point at which this happens is given by the solution
of the equation

1
βρ

ln
(︄

(βρ)30

ln28(βρ)30

)︄
=

(βρ)58

σ ln56(βρ)30
. (2.17.18)

To leading order we solve it by βρ = σ1/59. From here on, we use the second way of
optimizing pc by considering the terms A2 and A3 with the result

βp2
c =

(︄
(βρ)2

σ

)︄29/57

. (2.17.19)

The error terms then become

A1 ≲
ρ2

σ

1
βρ

ln
(︂
(βρ)58/57σ28/57

)︂
,

A2 ≲
ρ2

σ

(︄
(βρ)2

σ

)︄1/57

. (2.17.20)

Note that from this form of A2 we can also read off the natural upper limit βρ ≪ σ1/2 for
the error terms to be small.

2.18 Uniformity in the temperature

For βρ of the order σ1/2 or larger we apply a technique that uses in an essential way the
result for the ground state energy [52]. This will allow us to obtain the desired uniformity
in βρ, as already mentioned in the previous section.
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2 Lower bound on the free energy

Starting from the original Hamiltonian with potential v (which we denoted by HN), we
use Lemma 4 to obtain

HN ≥

N∑︂
j=1

[︂
−∇ j(1 − (1 − κ))χ(p j)2)∇ j + (1 − ϵ)(1 − κ)UR(d(x j, x

J j

NN(x j)))

−
1
ϵ

∫︂
R+

UR(t)t dt
∑︂
i∈J j

wR(x j − xi)
]︂
. (2.18.1)

Strictly speaking we should work with a symmetrization of the right-hand side of (2.18.1)
since the potential that we obtained from Lemma 4 is not permutation symmetric. As
already mentioned before, this does not need to concern us since we only consider expecta-
tion values in bosonic states. The last term in (2.18.1) can be estimated using the integral
condition on UR (from (2.8.3)), the decay property of g (which was introduced in (2.12.9))
as well as the definition of J j:

N∑︂
j=1

1
ϵ

∫︂
R+

UR(t)t dt
∑︂
i∈J j

wR(x j − xi)

≤
1

ϵ ln(R/a)

N∑︂
j=1

∑︂
i∈J j

R2

s4 g(d(xi, x j)/s) ≲
N

ϵ ln(R/a)s2 . (2.18.2)

More precisely, in order to obtain the second inequality we partition space into annuli Ωk,
k = 0, 1, 2, . . . , centered at x j of radius (k + 1)s and thickness s. Then we estimate the
particle number in each annulus by using d(xi, xk) ≥ R/5 for i, k ∈ J j and an easy counting
argument. For Ω0 (which is just the disc of radius s), we find as an upper bound for the
particle number

(s + R/10)2

(R/5)2 ≲
(︃ s
R

)︃2
. (2.18.3)

Here, we also used R/5 ≤ s. For k ≠ 0, the corresponding expression is

((k + 1)s + R/10)2 − (ks − R/10)2

(R/5)2 = 5
(1 + 2k)s(R + 5s)

R2 ≤ 50
(1 + 2k)s2

R2

≲ k
(︃ s
R

)︃2
. (2.18.4)

The decay property of g says that for fixed α > 0 and for x ∈ Ωk we have g(d(x, x j)/s) ≲ k−α.
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2.18 Uniformity in the temperature

Hence, we obtain

∑︂
i∈J j

g(d(xi, x j)/s) =
∞∑︂

k=0

∑︂
i∈J j,xi∈Ωk

g(d(xi, x j)/s)

≤

∞∑︂
k=0

#{i ∈ J j : xi ∈ Ωk} sup
x∈Ωk

g(d(x, x j)/s)

≲
∞∑︂

k=0

k
(︃ s
R

)︃2 1
kα
≲

(︃ s
R

)︃2
. (2.18.5)

To find a lower bound for the remaining terms we use the main result from [52] (for the
choice κ = σ−1/5,Rρ1/2 = σ−1/10) and find

N∑︂
j=1

(︃
−
κ

2
∆ j + (1 − ϵ)(1 − κ)UR(d(x j, x

J j

NN(x j)))
)︃
≥

4πNρ
σ

(︃
1 − ϵ −

const
σ1/5

)︃
. (2.18.6)

Even though the result in [52] was for Neumann boundary conditions and the full nearest-
neighbor interaction, it is straight-forward to check that it also holds in our case. The
ground state of the non-interacting system for periodic boundary conditions is also a
constant, and the difference between the nearest-neighbor interaction in that paper and
our interaction can be bounded by a constant times N2(R2/L2)2∥UR∥∞. A term like this
is already contained in the original estimate in [52, Eqs. (3.18) and (3.19)]. In [52] the
potential UR(d(x j, xNN(x j))) is used, where the nearest neighbor was determined among all
other particles while here we only look for the nearest neighbor in the set J j. The related
error can be controlled with an estimate for the probability of finding a particle coordinate
that is not contained in the set J j. It is straight-forward to check that this probability is
bounded by a constant times N2(R2/L2)2 times the L∞ norm of the potential UR.

The above considerations allow us to show that

HN ≥

N∑︂
j=1

ℓ
(︃√︂
−∆ j

)︃
+

4πNρ
σ

(︄
1 − ϵ −

const.
σ1/5 −

const.
ϵs2ρ

)︄
, (2.18.7)

where ℓ(p) = p2(1 −σ−1/5/2 − (1 −σ−1/5)χ(p)2). We already inserted the choice κ = σ−1/5

from above. Next, we consider the free energy related to HN , introduce the chemical
potential µ0 and drop the restriction on the particle number. When we also take the
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2 Lower bound on the free energy

thermodynamic limit we find

f (β, ρ) ≥ f0(β, ρ) + const.
1

βσ1/5

∫︂
R2

ln
(︂
1 − e−β(p2−µ0)

)︂
dp

+
1

β2σ1/5

∫︂
p2≥β/(s2σ1/5)

ln
(︂
1 − e−p2/2

)︂
dp +

4πρ2

σ

(︄
1 − ϵ −

const.
σ1/5 −

const.
ϵs2ρ

)︄
.

(2.18.8)

As before, we require s2σ1/5/β ≪ 1 for the correction term to the non-interacting free
energy to be small. If we choose

s2

β
=

1
2δσ1/5 lnσ

(2.18.9)

for some δ > 0 this error term is bounded from above by a constant times β−2σ−1/5−δ and
will be negligible compared to other terms. Optimization over ϵ yields

ϵ =

√︄
1

s2ρ
. (2.18.10)

Therefore, we have

f (β, ρ) ≥ f0(β, ρ) +
4πρ2

σ

(︄
1 − const.

[︄
σ4/5

(βρ)2 +
1
σ1/5 +

σ1/10(lnσ)1/2

(βρ)1/2

]︄)︄
. (2.18.11)

It remains to estimate the term depending on the critical temperature as

4πρ2

σ

⎛⎜⎜⎜⎜⎝1 − [︄
1 −

βc

β

]︄2

+

⎞⎟⎟⎟⎟⎠ ≲ ρ2

σ

βc

β
. (2.18.12)

Hence, the total error to consider is bounded from above by a constant times

ρ2

σ

(︄
σ4/5

(βρ)2 +
1
σ1/5 +

lnσ
βρ
+
σ1/10(lnσ)1/2

(βρ)1/2

)︄
. (2.18.13)

The optimal point at which we switch from the error given in (2.17.20) to this error is
determined by comparing the term A2 with the first term in (2.18.13). This leads to the
equation

σ4/5

(βρ)2 =

(︄
(βρ)2

σ

)︄1/57

, (2.18.14)
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2.A Proof of Dyson Lemma in two dimensions

which is solved by βρ = σ233/580. If βρ is larger than or equal to this value we use the result
derived in this section.

In conclusion, by combining the results from the previous estimates in (2.17.12),
(2.17.15), (2.17.20) and (2.18.13), we have shown that the bound

f (β, ρ) ≥ f0(β, ρ) +
4πρ2

σ

⎛⎜⎜⎜⎜⎝2 − [︄
1 −

βc

β

]︄2

+

⎞⎟⎟⎟⎟⎠ (1 − o(1)) (2.18.15)

holds uniformly in βρ ≳ 1, where

o(1) ≲

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂
lnσ
βρ

)︂2/7 (︂
(βρ)2

−σ ln(1−e−4πβρ)

)︂1/28
if 1 ≲ 4πβρ ≤ ln(σ/(lnσ)30),

1
βρ

ln
(︃

(βρ)30

στ̃ ln28((βρ)30/(στ̃))

)︃
+

(βρ)58

σ ln56((βρ)30/(στ̃))
if ln(σ/(lnσ)30) ≤ 4πβρ ≲ σ1/59,

1
βρ

ln
(︂
(βρ)58/57σ28/57

)︂
+

(︂
(βρ)2

σ

)︂1/57
if σ1/59 ≲ βρ ≲ σ233/580,

σ4/5

(βρ2) +
1

σ1/5 +
σ1/10(lnσ)1/2

(βρ)1/2 if σ233/580 ≲ βρ.
(2.18.16)

The largest error occurs in the second regime if βρ ∼ βcρ, and is given by

1
lnσ

ln
(︄

(lnσ)30

ln28((lnσ)30)

)︄
+

(lnσ)58

σ ln56((lnσ)30)
≲

ln lnσ
lnσ

(2.18.17)

for σ large. We note that τ̃ ∼ σ−1 in this case, which follows from (1.2.7), (2.16.14) and
(2.17.1). This concludes the proof of Theorem 2.

2.A Proof of Dyson Lemma in two dimensions

The proof of Lemma 4 can be obtained by combining the ideas of the proofs of [45,
Lemma 7] and [70, Lemma 2]. Since the proof of the two-dimensional version of the
relevant Lemma in [45] is not spelled out explicitly, we give the proof of Lemma 4 here.
For simplicity of the notation, we shall drop the ~ for v and a.

Proof of Lemma 4. Given the points yi, we partition the torus Λ into Voronoi cells

Bi = {x ∈ Λ : d(x, yi) ≤ d(x, yk) for all k ≠ i}. (2.A.1)

For any ψ ∈ H1(Λ) denote by ξ the function with Fourier transform ξ̂(p) = χ(p)ψ̂(p). To
obtain (2.8.4) it is enough to show that∫︂

Bi

|∇ξ(x)|2 +
1
2

v(d(x, yi))|ψ(x)|2 dx ≥ (1 − ϵ)
∫︂
Bi

UR(d(x, yi))|ψ(x)|2 dx (2.A.2)

−
1
ϵ

∫︂
R+

UR(t)t dt
∫︂
Λ

wR(x − yi)|ψ(x)|2 dx.
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2 Lower bound on the free energy

Using the positivity of v and summing over i, as well as realizing that for x ∈ Bi we have
yi = yNN(x), we obtain (2.8.4):∫︂
Λ

|∇ξ(x)|2 +
1
2

∑︂
i

v(d(x, yi))|ψ(x)|2 dx =
∑︂

i

∫︂
Bi

(︄
|∇ξ(x)|2 +

1
2

v(d(x, yi))|ψ(x)|2
)︄

dx

≥
∑︂

i

(1 − ϵ)
∫︂
Bi

UR(d(x, yi))|ψ(x)|2 dx −
1
ϵ

∫︂
R+

UR(t)t dt
∑︂

i

∫︂
Λ

wR(x − yi)|ψ(x)|2 dx

= (1 − ϵ)
∫︂
Λ

UR(d(x, yNN(x)))|ψ(x)|2 dx −
1
ϵ

∫︂
R+

UR(t)t dt
∫︂
Λ

∑︂
i

wR(x − yi)|ψ(x)|2 dx.

(2.A.3)

Figure 2.A.1: An example of a partition of a subset of Λ into Voronoi cells given by the yi

for n = 8. For one of the yi the region BR is shaded. Note that this image
does not show the whole of Λ but merely a cutout (that does not respect the
periodic boundary conditions).

We shall show that (2.A.2) actually holds with Bi replaced by the smaller set BR =

Bi ∩ {x ∈ Λ : d(x, yi) ≤ R} on the left-hand side of the inequality. Since the support of UR

is contained in the interval [R0,R], the integral over Bi on the right-hand side is also over
BR. See Figure 2.A.1 for an illustration of the case n = 8. Take ζ to be a complex-valued
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2.A Proof of Dyson Lemma in two dimensions

function on the circle with L2-norm one and by abuse of notation we shall use the same
letter for the funtion on R2 taking values ζ(x/|x|). Recall the notation ϕv for the solution to
the zero-energy scattering equation (−∆ + v

2)ϕv = 0 on {|x| ≤ R} with boundary condition
ϕv||x|=R = 1.

Consider now the expression

A =
∫︂
BR

ζ(x − yi)
(︄
∇ξ̄(x) · ∇ϕv(x − yi) +

1
2

v(d(x, yi))ψ̄(x)ϕv(x − yi)ζ(x − yi)
)︄

dx. (2.A.4)

An application of the Cauchy-Schwarz inequality gives

|A|2 ≤
∫︂
BR

(︄
|∇ξ(x)|2 +

1
2

v(d(x, yi))|ψ(x)|2
)︄

dx

×

∫︂
BR

(︄
|∇ϕv(x − yi)|2 +

1
2

v(d(x, yi))|ϕv(x − yi)|2
)︄
|ζ(x − yi)|2 dx. (2.A.5)

In the second integral, we can replace the region BR by the bigger one {d(x, yi) ≤ R} for an
upper bound. Since ϕv is radial, the angular integration over ζ contributes a factor of one.
Using the definition of the scattering length, the remaining radial integration gives a factor
1/ ln(R/a). Thus,

|A|2 ln(R/a) ≤
∫︂
BR

(︄
|∇ξ(x)|2 +

1
2

v(d(x, yi))|ψ(x)|2
)︄

dx, (2.A.6)

which holds for any ζ with
∫︁
S1 |ζ |

2 = 1.
For a lower bound, we note first that by integrating by parts we obtain∫︂

BR

ζ(x − yi)∇ξ̄(x) · ∇ϕv(x − yi) dx = −
∫︂
BR

ξ̄(x)ζ(x − yi)∆ϕv(x − yi) dx (2.A.7)

+

∫︂
∂BR

ξ̄(x)ζ(x − yi)n · ∇ϕv(x − yi) dωR,

where we used the fact ∇ζ(x) · ∇ϕv(x) = 0 (since ζ is defined on the circle and ϕv is radial),
dωR is the surface measure of the boundary of BR and n is the outward unit normal. Note
that ξ(x) = ψ(x)− (2π)−1h∗ψ(x), where h∗ψ(x) =

∫︁
Λ

h(x−y)ψ(y) dy, as an easy calculation
using the definition of h shows. If we insert this as well as (2.A.7) into the definition of A
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2 Lower bound on the free energy

and use the zero-energy scattering equation for ϕv, we obtain

A =
∫︂
∂BR

[︂
ψ̄(x) − (2π)−1(h ∗ ψ)(x)

]︂
ζ(x − yi)n · ∇ϕv(x − yi) dωR

+
1

2π

∫︂
BR

(h ∗ ψ)(x)ζ(x − yi)∆ϕv(x − yi) dx

=

∫︂
∂BR

ψ̄(x)ζ(x − yi)n · ∇ϕv(x − yi) dωR +
1

2π

∫︂
Λ

ψ̄(x)
∫︂
BR

h(y − x) dµ(y) dx, (2.A.8)

where

dµ(x) = ζ(x − yi)∆ϕv(x − yi) dx − n · ∇ϕv(x − yi)ζ(x − yi) dωR (2.A.9)

is a measure supported in BR. It satisfies∫︂
BR

dµ(x) =
∫︂
BR

ζ(x− yi)∆ϕv(x− yi) dx−
∫︂
∂BR

n · ∇ϕv(x− yi)ζ(x− yi) dωR = 0, (2.A.10)

as can be seen using again integration by parts. Moreover,∫︂
BR

d|µ| = 2
∫︂
BR

∆ϕv(x − yi) dx ≤ 2
(︄∫︂
S1
|ζ |

)︄ ∫︂ R

0
∆ϕv(r)r dr ≤

2
√

2π
ln(R/a)

, (2.A.11)

where we used the Cauchy-Schwarz inequality in the last step. Therefore, by invoking the
definition of fR from (2.8.2), we obtain⃓⃓⃓⃓⃓

⃓
∫︂
BR

h(y − x) dµ(y)

⃓⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓⃓
⃓
∫︂
BR

(h(y − x) − h(x − yi)) dµ(y)

⃓⃓⃓⃓⃓
⃓ ≤ 2

√
2π

ln(R/a)
fR(x − yi). (2.A.12)

This enables us to estimate the second term in (2.A.8) from below as

−
1

2π

⃓⃓⃓⃓⃓
⃓
∫︂
Λ

ψ̄(x)
∫︂
BR

h(y − x) dµ(y) dx

⃓⃓⃓⃓⃓
⃓ ≥ − 1

2π
2
√

2π
ln(R/a)

∫︂
Λ

|ψ(x)| fR(x − yi) dx

≥ −
1

ln(R/a)

(︄∫︂
Λ

|ψ(x)|2wR(x − yi) dx
)︄1/2

, (2.A.13)

where we used again the Cauchy-Schwarz inequality as well as the definition of wR from
(2.8.2). Note that this bound is also independent of ζ, provided its L2-norm equals one.

It remains to estimate the first term in (2.A.8). We define the set ∂B̃R to be the part of
∂BR that is at a distance R from yi and assume that it is non-empty. In Figure 2.A.1 this
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2.A Proof of Dyson Lemma in two dimensions

set would correspond to the dashed arc. After the previous estimates, the second term in
(2.A.8) is the only place where ζ is still present. For ω ∈ S1, we choose

ζ(ω) =

⎧⎪⎪⎨⎪⎪⎩
√

R
(︂∫︁
∂B̃R
|ψ(x)|2 dωR

)︂−1/2
ψ(Rω) if Rω ∈ ∂B̃R,

0 otherwise,
(2.A.14)

which satisfies
∫︁
S1 |ζ(ω)|2 dω = 1. In other words, we choose ζ to attain the value of ψ at

those boundary points which are at a distance of R and zero elsewhere, while maintaining
the proper normalization. Inserting this choice of ζ as well as the asymptotic solution for
ϕv, we have

∫︂
∂BR

ψ̄(x)ζ(x − yi)n · ∇ϕv(x − yi) dωR =
1

√
R ln(R/a)

(︄∫︂
∂B̃R

|ψ(x)|2 dωR

)︄1/2

. (2.A.15)

Therefore,

|A| ≥
1

ln(R/a)

⎡⎢⎢⎢⎢⎣ 1
√

R

(︄∫︂
∂B̃R

|ψ(x)|2 dωR

)︄1/2

−

(︄∫︂
Λ

|ψ(x)|2wR(x − yi) dx
)︄1/2⎤⎥⎥⎥⎥⎦ . (2.A.16)

Another application of the Cauchy-Schwarz inequality gives for any ϵ > 0

|A|2 ln(R/a) ≥
1

ln(R/a)

[︄
1 − ϵ

R

∫︂
∂B̃R

|ψ(x)|2 dωR −
1
ϵ

∫︂
Λ

|ψ(x)|2wR(x − yi) dx
]︄
. (2.A.17)

Hence, combining (2.A.6) and (2.A.17), we obtain∫︂
BR

|∇ξ(x)|2 +
1
2

v(d(x, yi))|ψ(x)|2 dx

≥
1

ln(R/a)

[︄
1 − ϵ

R

∫︂
∂B̃R

|ψ(x)|2 dωR −
1
ϵ

∫︂
Λ

|ψ(x)|2wR(x − yi) dx
]︄
. (2.A.18)

In case ∂B̃R is empty, the above inequality holds also true. Therefore we can relax the
assumption on ∂B̃R. This proves the lemma for the special case of UR being a radial
δ function supported on the circle of radius R, i.e., UR(r) = (R ln(R/a))−1δ(r − R). By
replacing in the above inequality R by r, multiplying by UR(r)r ln(r/a) and then finally
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integrating in r from R0 to R, we obtain∫︂
BR

|∇ξ(x)|2 +
1
2

v(d(x, yi))|ψ(x)|2 dx (2.A.19)

≥

∫︂ R

R0

UR(r)r ln(r/a)
[︄∫︂
Br

|∇ξ(x)|2 +
1
2

v(d(x, yi))|ψ(x)|2 dx
]︄

dr

≥

∫︂ R

R0

UR(r)r
[︄
1 − ϵ

r

∫︂
∂B̃r

|ψ(x)|2 dωr −
1
ϵ

∫︂
Λ

|ψ(x)|2wr(x − yi) dx
]︄

dr

≥ (1 − ϵ)
∫︂ R

R0

UR(r)
∫︂
∂B̃r

|ψ(x)|2 dωr dr −
1
ϵ

∫︂
R+

UR(t)t dt
∫︂
Λ

|ψ(x)|2wR(x − yi) dx

= (1 − ϵ)
∫︂
BR

UR(d(x, yi))|ψ(x)|2 dx −
1
ϵ

∫︂
R+

UR(t)t dt
∫︂
Λ

|ψ(x)|2wR(x − yi) dx,

where we used (2.8.3) in the first inequality and the fact that wr is monotone increasing in
r in the last inequality. □
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3 Upper bound on the free energy

SimonMayer and Robert Seiringer

We prove an upper bound on the free energy of an interacting two-
dimensional homogeneous Bose gas in a dilute setting. We show
that for a2ρ ≪ 1 and βρ of order one or larger the free energy
differs from the free energy of the non-interacting system by a cor-
rection term 4πρ2| ln a2ρ|−1(2− [1−βc/β]2

+), where a is the scattering
length of the two-body interaction potential, ρ is the density, β is
the inverse temperature and βc is the inverse critical Berezinskii–
Kosterlitz–Thouless temperature for superfluidity. Together with
the corresponding matching lower bound proved in Chapter 2 this
shows equality in the asymptotic expansion.
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3.1 Statement of the upper bound

Theorem 3 (Upper bound on the free energy). Assume that the interaction potential
satisfies v ≥ 0 and has a finite scattering length. As a2ρ→ 0 with βρ ≳ 1, we have

f (β, ρ) ≤ f0(β, ρ) +
4πρ2

| ln a2ρ|

⎛⎜⎜⎜⎜⎝2 − [︄
1 −

βc(ρ, a)
β

]︄2

+

⎞⎟⎟⎟⎟⎠ (1 + o(1)), (3.1.1)

where

o(1) ≲
ln ln | ln a2ρ|

ln | ln a2ρ|
. (3.1.2)

Here, [ · ]+ = max{ · , 0} denotes the positive part and the inverse critical temperature
βc(ρ, a) is defined in (1.1.7).

3.2 Sketch of the proof

The basis of the proof of Theorem 3 is the variational principle for the free energy,
which is presented in Section 3.3 below. An upper bound is obtained by inserting a
suitable admissible trial state into the free energy functional that gives us the leading order
contribution f0(β, ρ − ρ0) + 4π| ln a2ρ|−1(2ρ2 − ρ2

0) for any 0 ≤ ρ0 ≤ ρ. As mentioned in
Remark 5 in Section 1.2 and explained in more detail in Section 1.5, the optimal choice
for ρ0 turns out to be

ρs = ρ

[︄
1 −

βc

β

]︄
+

, (3.2.1)

which in turn leads to the form of the upper bound as given in Theorem 3.
The trial state that we are going to insert into the free energy functional is built up

out of three parts. The first part is the thermal Gibbs state of the non-interacting system
at density ρ − ρ0, the second part is a coherent state of the p = 0 mode with density ρ0

and the third part is a product function, where each factor is given by the solution to the
zero-energy scattering equation evaluated at the distance between all pairs of particles (so
called Jastrow factor [34]). We remark that compared to the proof of the lower bound in
Chapter 2, it is not necessary here to use a c-number substitution for more than one mode
to obtain the correct contribution for the interaction term. We then partition the square
[0, L]2 into (L/ℓ)2 smaller boxes of size ℓ and construct a state on the box of size L that is
a tensor product of identical copies of the above trial state (up to translation) on the small
boxes of size ℓ. This enables us to effectively decouple the thermodynamic limit and the
dilute limit.
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We remark that this strategy of proving the upper bound of the dilute asymptotics in the
two-dimensional setting is simpler than the proof of [79, Theorem 1] in three dimensions.
In our case it turns out that the parameters that appear in correction terms coming from
estimating the norm of the trial state can be chosen in a way such that they are smaller than
the scale of the interaction energy, ρ2| ln a2ρ|−1. This was much harder to achieve in the
three-dimensional case.

3.3 Preliminary tools

In this subsection we present a few tools that will be essential to the method of proof. First
we present a lemma for approximating sums by integrals, then a lemma about properties of
the scattering solution and finally we discuss the variational definition of the free energy in
the canonical and grand canonical setting, as well as a lemma that proves equality of these
two definitions in the thermodynamic limit.

Lemma 9 (Two-dimensional version for periodic boundary conditions of Lemma 4 in
[69]). Let f : R+ → R+ be a monotone decreasing function and −∆ the Laplacian with
periodic boundary conditions on the square of side length ℓ. Then we have

ℓ2

4π2

∫︂
R2

(︄
1 −

4
ℓ|p|

)︄
f (p2) dp ≤ Tr f (−∆) ≤

ℓ2

4π2

∫︂
R2

(︄
1 +

4
ℓ|p|

)︄
f (p2) dp + f (0). (3.3.1)

Proof. Note that
Tr f (−∆) =

∑︂
p∈(2π/ℓ)Z2

f (p2) (3.3.2)

since the spectrum of the Laplacian with periodic boundary conditions is σ(−∆) =
[(2π/ℓ)Z]2. Consider a decomposition of the plane into squares of side length 2π/ℓ.
Since f is monotone decreasing, we have that the smallest value of f (p2) for p in such a
square is obtained at the corner that is farthest away from the origin. Thus we see that the
sum over the points p that do not lie on a coordinate axis (i.e., the points p = (p1, p2) for
which neither p1 ≠ 0 nor p2 ≠ 0) is the lower Riemann sum to the integral of f over the
plane: ∑︂

p∈(2π/ℓ)Z2

f (p2) ≤
ℓ2

4π2

∫︂
R2

f (p2) dp +
∑︂

p∈axes

f (p2). (3.3.3)

Similarly, we can estimate the sum over the axes by a one-dimensional integral as∑︂
p∈axes

f (p2) = f (0) + 4
∑︂

p∈(2π/ℓ)N

f (p2) ≤ f (0) +
2ℓ
π

∫︂ ∞

0
f (p2) dp = f (0) +

ℓ

π2

∫︂
R2

f (p2)
|p|

dp.

(3.3.4)
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In conclusion, we have

∑︂
p∈(2π/ℓ)Z2

f (p2) ≤
ℓ2

4π2

∫︂
R2

(︄
1 +

4
ℓ|p|

)︄
f (p2) dp + f (0). (3.3.5)

For the lower bound, we proceed in a similar fashion. We use that f (p2) attains its
largest value at the corners that lie closest to the origin and have that the sum over all
points is the upper Riemann sum to the integral over the plane without the region

G =

{︄
(p1, p2) ∈ R2 : 0 < p1 <

2π
ℓ

or −
2π
ℓ
< p2 < 0

}︄
(3.3.6)

which means∫︂
R2

f (p2) dp =
∫︂
R2\G

f (p2) dp+
∫︂
G

f (p2) dp ≤
4π2

ℓ2

∑︂
p∈(2π/ℓ)Z2

f (p2)+
∫︂
G

f (p2) dp. (3.3.7)

See figure 3.3.1 for an illustration. Then we estimate the integral over G by four times the

p2

p1

2π/`

2π/`

Figure 3.3.1: Illustration of the method of proof of Lemma 9. For the upper bound we use
the points that do not lie on a coordinate axis, while for the lower bound we
estimate the sum over all points by the integral over the plane without the
gray region.
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integral over the strip {0 < p1 < 2π/ℓ and p2 > 0}:∫︂
G

f (p2) dp ≤ 4
∫︂ 2π/ℓ

0

∫︂ ∞

0
f (p2

1 + p2
2) dp2 dp1

≤
8π
ℓ

∫︂ ∞

0
f (p2

2) dp2 =
4
ℓ

∫︂
R2

f (p2)
|p|

dp. (3.3.8)

Combining the two previous estimates, we have∑︂
p∈(2π/ℓ)Z2

f (p2) ≥
ℓ2

4π2

∫︂
R2

(︄
1 −

4
ℓ|p|

)︄
f (p2) dp. (3.3.9)

□

As mentioned in Section 1.2, the definition of the scattering length makes sense for an
infinitely ranged potential as well. In that case, (1.2.12) is replaced by

2π
ln(R/aR)

=

∫︂
BR

(︃
|∇g0|

2 +
v
2
|g0|

2
)︃
, (3.3.10)

where aR is the scattering length for the potential with cutoff at R and we already inserted
g0, the solution to (1.2.13), on the right-hand side. It is known from [52, Appendix A] that
aR → a in a monotonically increasing way as R→ ∞, where a is the scattering length of
the infinitely ranged potential. This implies in particular that

1
ln(R/aR)

≤
1

ln(R/a)
. (3.3.11)

For the purpose of proving an upper bound on the free energy, the above inequality will
turn out to be useful. In the following, we will work with a potential that satisfies the
assumptions of the theorem, i.e., it is nonnegative, possibly infinitely ranged and has a
finite scattering length. We recall that in this case (1.2.15) holds, which we will use to
estimate terms containing the tail of the potential.

Lemma 10 (Properties of the scattering solution). Let g0 be the solution to the zero-energy
scattering equation (1.2.13) with boundary condition g0(R) = 1. Then the following holds:

1. For all 0 < r ≤ R

g0(r) ≥
ln(r/aR)
ln(R/aR)

. (3.3.12)

2. The scattering solution g0 is a monotonically nondecreasing function of r.
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3. The integral of the derivative of g0 satisfies the bound∫︂
BR

g′0(|x|) dx ≤
2πR

ln(R/aR)
. (3.3.13)

Proof. For the proof of the first two properties see [52, proof of Lemma A.1]. For the third
one note that since g0 is a radial function we can just do integration by parts in the radial
variable and use that g0 is always larger than the asymptotic solution. We have∫︂ R

0
rg′0(r) dr = Rg0(R) −

∫︂ R

0
g0(r) dr ≤ R −

∫︂ R

aR

ln(r/aR)
ln(R/aR)

dr

= R −
1

ln(R/aR)
(R ln(R/aR) − R + aR) =

R − aR

ln(R/aR)

≤
R

ln(R/aR)
. (3.3.14)

Note that for r < aR in the first inequality above we have estimated g0(r) ≥ 0. Since the
angular integration only gives a factor of 2π, we arrive at the result. □

The last tool we require is a variational formulation of the free energy. For the purpose
of proving an upper bound this will turn out to be very useful as we can insert a suitable
trial state into the functional. We define the free energy functional first in the canonical
setting, then in the grand canonical setting and lastly prove that their thermodynamic limit
yields the same free energy. The canonical free energy in finite volume is defined by

Fc(β,N, L) = inf
Γ

{︂
TrHN HNΓ − β

−1S (Γ)
}︂
, (3.3.15)

where the infimum is taken over density matrices Γ with N particles. Here, S (Γ) is the von
Neumann entropy defined by

S (Γ) = −TrHN Γ lnΓ. (3.3.16)

On the other hand, the grand canonical free energy in finite volume is defined by

Fgc(β,N, L) = inf
Γ

{︂
TrF HΓ − β−1S (Γ)

}︂
, (3.3.17)

where the infimum is taken over density matrices Γ with expected number of particles
N and H is the Hamiltonian on bosonic Fock space, H =

⨁︁∞

N=0 HN . In this expression,
H0 = 0, H1 = −∆ and HN as defined in (1.2.1) for N ≥ 2. Note the slight abuse of notation
for the entropy term in (3.3.17): For a state Γ on Fock space it is understood that the trace
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in S (Γ) is also taken on the Fock space F , but we use the same symbol for both entropies.
For both the definitions of the free energy in finite volume we can take the thermodynamic
limit to obtain the free energy per unit volume as a function of the inverse temperature β
and the density ρ

fc(β, ρ) = lim
N,L→∞
N/L2=ρ

Fc(β,N, L)
L2 , fgc(β, ρ) = lim

N,L→∞
N/L2=ρ

Fgc(β,N, L)
L2 . (3.3.18)

Note that by the Gibbs variational principle the canonical free energy per unit volume
is equal to the free energy defined in (1.2.4), as can be seen by inserting the minimizing
Gibbs state Γ = e−βHN /TrHN e−βHN into the canonical free energy functional.

Lemma 11. We have equality of the canonical and the grand canonical free energy per
unit volume in the thermodynamic limit:

fc(β, ρ) = fgc(β, ρ). (3.3.19)

In particular, they are both equal to f (β, ρ) defined in (1.2.4).

Proof. First of all, we trivially have fgc(β, ρ) ≤ fc(β, ρ), since the set which we have to take
the infimum of in fc is a subset of the one for fgc. Denote F β,L(Γ) the grand canonical free
energy functional (i.e., the right-hand side of (3.3.17) without the infimum) and further
introduce the grand canonical pressure functional in finite volume

−L2P
β,µ
L (Γ) = TrF (H − µN)Γ − β−1S (Γ), (3.3.20)

where N is the grand canonical particle number operator on Fock space and µ ∈ R is the
chemical potential. Maximizing this functional over all density matrices Γ, we obtain the
grand canonical pressure in finite volume

PL(β, µ) = sup
Γ

P
β,µ
L (Γ) (3.3.21)

and, finally, the thermodynamic pressure is defined by

p(β, µ) = lim
L→∞

PL(β, µ). (3.3.22)

Now we can relate our definition of the grand canonical free energy to the pressure. Let
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µ ∈ R and write

fgc(β, ρ) = lim
L→∞

L−2 inf
Γ,⟨N⟩Γ=ρL2

F β,L(Γ)

= lim
L→∞

L−2 inf
Γ,⟨N⟩Γ=ρL2

(︂
TrF (H − µN)Γ − β−1S (Γ) + µρL2

)︂
≥ lim

L→∞
L−2 inf

Γ

(︂
−L2P

β,µ
L (Γ) + µρL2

)︂
= µρ − lim

L→∞
sup
Γ

P
β,µ
L (Γ) = µρ − p(β, µ).

(3.3.23)

In the inequality above we relaxed the condition on the expectation of the particle number
operator and thus have obtained the pressure. This holds for every µ and we can take
the supremum over all µ of the right-hand side above. It is a well-known fact (see, e.g.,
Theorem 3.5.8 in [66]) that the canonical free energy is the Legendre transform of the
pressure and thus we have shown

fgc(β, ρ) ≥ sup
µ

(µρ − p(β, µ)) = fc(β, ρ) (3.3.24)

and consequently fc(β, ρ) = fgc(β, ρ). □

3.4 Changing boundary conditions

In this subsection, we present a method that relates Hamiltonians with different boundary
conditions. We need some arguments from [65] which we repeat here for the reader’s
convenience. Let us put the center of the box at the origin and denote the size of the box
via subscript:

ΛL =

{︃
x = (x(1), x(2)) ∈ R2 : −

L
2
< x(i) <

L
2
, i = 1, 2

}︃
(3.4.1)

We define a reflection mapping from Λ3L to ΛL as follows. Geometrically speaking, for
x ∈ Λ3L\ΛL we associate to it the point xR obtained via reflection along the edge (or edges)
of ΛL such that xR ∈ ΛL and for x ∈ ΛL, we set xR = x. See figure 3.4.2 for an illustration.
More formally, we note that for every x ∈ Λ3L\ΛL there exists a unique1 ℓx ∈ R

2 that is of
the form ℓx = (n(1)

x L, n(2)
x L) with n(i)

x ∈ {0,±1} and satisfies x + ℓx ∈ ΛL. We then define

xR =

(︃
−n(1)

x L + (−1)n(1)
x x(1),−n(2)

x L + (−1)n(2)
x x(2)

)︃
. (3.4.2)

1Note that the boundary of ΛL has to be excluded in order to make ℓx unique. Since the set has zero measure
in Λ3L, this is of no consequence, however.
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xR

x

x

x

x x

x

x

x

ΛL

Λ3L

Figure 3.4.2: Illustration of the reflection mapping: Each point x has the point xR as image.

For wave functions ψ ∈ HN(ΛL) we define the reflected wave function on the larger box
ψR ∈ HN(Λ3L) by

ψR(x1, . . . , xN) = ψ(xR
1 , . . . , x

R
N). (3.4.3)

Finally, for 0 < b < L/2, we introduce a cutoff function h on the real line with the following
properties.

1. h is real, even and continuously differentiable

2. h(x) = 0 for |x| > L/2 + b

3. h(x) = 1 for |x| < L/2 − b

4. |h(x)|2 + |h(−x − L)|2 = 1 for −L/2 − b ≤ x ≤ −L/2

5. |h′(x)|2 ≤ 1/b2, |h(x)|2 ≤ 1 for all x ∈ R

Condition 4. is nothing else but the fact that y ↦→ 1/2 − |h(y − L/2)|2 is antisymmetric
on [−b, b]. For points in the plane, x = (x(1), x(2)) ∈ R2, we set by abuse of notation
h(x) = h(x(1))h(x(2)) and lastly define

V : HN(ΛL)→ HN(ΛL+2b),

ψ(x1, . . . , xN) ↦→ (Vψ)(x1, . . . , xN) = ψR(x1, . . . , xN)
N∏︂

i=1

h(xi). (3.4.4)

Lemma 12 (Lemma 2.1.12 from [65]). The mapping V introduced in (3.4.4) is an isometry.
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Proof. We need to show for all ϕ and ψ that

⟨Vϕ,Vψ⟩HN (ΛL+2b) = ⟨ϕ, ψ⟩HN (ΛL) . (3.4.5)

The left-hand side is given explicitly by

⟨Vϕ,Vψ⟩HN (ΛL+2b) =

∫︂
ΛN

L+2b

(Vϕ)(x1, . . . , xN)(Vψ)(x1, . . . , xN) dXN

=

∫︂
[−L/2−b,L/2+b]2N

ϕR(x1, . . . , xN)ψR(x1, . . . , xN)
N∏︂

i=1

|h(xi)|2 dXN . (3.4.6)

Recall that by definition of h we have for x ∈ R2 that h(x) = h(x(1))h(x(2)) and this means
the last part of the integrand (without ϕ and ψ) factorizes completely. Thus we consider
the integral over one component of one coordinate only. Say we fix (x2, . . . , xN) and
additionally the second component of x1, such that the integrand is a function of x(1)

1 only.
Then we consider

F(Y) =
∫︂ L/2+b

−L/2−b
ϕR(t,Y)ψR(t,Y)|h(t)|2 dt, (3.4.7)

where we introduced the shorthand Y = (x(2)
1 , x2, . . . , xN). By construction, we have∫︂

F(Y)
∏︂
y∈Y

|h(y)|2 dY = ⟨Vϕ,Vψ⟩ . (3.4.8)

The one-dimensional integral in F(Y) can now be evaluated. We have

F(Y) =
∫︂ L/2+b

−L/2−b
ϕ(tR,YR)ψ(tR,YR)|h(t)|2 dt

=

[︄∫︂ −L/2

−L/2−b
+

∫︂ −L/2+b

−L/2
+

∫︂ L/2−b

−L/2+b
+

∫︂ L/2

L/2−b
+

∫︂ L/2+b

L/2

]︄
ϕ(tR,YR)ψ(tR,YR)|h(t)|2 dt

= S (1)
E + S (1)

I + I + S (2)
I + S (2)

E . (3.4.9)

We consider each term in the sum above separately. First, we note that in the region
[−L/2, L/2] (so for the three middle terms) the reflection mapping acts as an identity, such
that tR = t there. Second, the function h is equal to one in [−L/2 + b, L/2 − b] and thus

I =
∫︂ L/2−b

−L/2+b
ϕ(t,YR)ψ(t,YR) dt. (3.4.10)
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Now we consider the term S (1)
E . We want to perform a coordinate transformation such that

we integrate over [−L/2,−L/2 + b] instead of [−L/2 − b,−L/2] (which is the integration
region of S (1)

I ). This is done exactly via the reflection mapping defined above and hence
we obtain for the sum of S (1)

E and S (1)
I

S (1)
E + S (1)

I =

∫︂ −L/2

−L/2−b
ϕ(tR,YR)ψ(tR,YR)|h(t)|2 dt +

∫︂ −L/2+b

−L/2
ϕ(t,YR)ψ(t,YR)|h(t)|2 dt

=

∫︂ −L/2+b

−L/2
ϕ(t,YR)ψ(t,YR)|h(tR)|2 dt +

∫︂ −L/2+b

−L/2
ϕ(t,YR)ψ(t,YR)|h(t)|2 dt

=

∫︂ −L/2+b

−L/2
ϕ(t,YR)ψ(t,YR)(|h(tR)|2 + |h(t)|2) dt

=

∫︂ −L/2+b

−L/2
ϕ(t,YR)ψ(t,YR) dt. (3.4.11)

The last equality follows because of the antisymmetry of h specified in condition 4. We
proceed analogously for the term S (2)

I + S (2)
E and obtain

F(Y) =
∫︂ L/2

−L/2
ϕ(t,YR)ψ(t,YR) dt. (3.4.12)

Repeating this procedure for all other coordinates, we arrive at the result. □

Lemma 13. Assume that the interaction v is nonnegative. Then define the Dirichlet and
Neumann Hamiltonians on the boxes of size L + 2b and L, respectively, by

HDirichlet
N,ΛL+2b

= −

N∑︂
i=1

∆Dirichlet
i,L+2b +

N∑︂
i< j

v(d(xi, x j)),

HNeumann
N,ΛL

= −

N∑︂
i=1

∆Neumann
i,L +

N∑︂
i< j

v(d(xi, x j)), (3.4.13)

where the Laplacians are to be taken with the indicated boundary conditions and sizes of
the boxes. Then for ψ in the domain of HNeumann

N,ΛL
we have the estimate

⟨Vψ,HDirichlet
N,ΛL+2b

Vψ⟩ ≤ ⟨ψ,HNeumann
N,ΛL

ψ⟩ +
4N
b2 ∥ψ∥

2

+
1
2

∫︂
Bb

L

v(d(x, y))ρ(2)
ψ (xR, yR)h(x)h(y) dx dy. (3.4.14)

103



3 Upper bound on the free energy

Here, Bb
L = Λ

2
L+2b\Λ

2
L and ρ(2)

ψ denotes the two-particle density of ψ defined by

ρ(2)
ψ (x1, x2) = N(N − 1)

∫︂
ΛN−2

L

|ψ(XN)|2 dx3 · · · dxN . (3.4.15)

Proof. Let ψ be a bosonic wave function on ΛL obeying Neumann boundary conditions.
The left-hand side is then given by

⟨Vψ,HDirichlet
N,ΛL+2b

Vψ⟩ =
∫︂
ΛN

L+2b

|(∇ψR(XN))h(XN) + ψR(XN)∇h(XN)|2 dXN

+
∑︂
i< j

∫︂
ΛN

L+2b

v(d(xi, x j))|(Vψ)(XN)|2 dXN . (3.4.16)

By expanding the square in the first term we obtain three terms. The first one is∫︂
ΛN

L+2b

|∇ψR(XN)|2|h(XN)|2 dXN =

∫︂
ΛN

L

|∇ψ(XN)|2 dXN , (3.4.17)

where we applied Lemma 12 to ∇ψ to change the integration region and eliminate the
factors of |h|2. The second term is given by∫︂

ΛN
L+2b

|ψR(XN)|2|∇h(XN)|2 dXN . (3.4.18)

The square of the gradient is a sum of 2N terms. Consider the first one of these where the
gradient acts on the x(1)

1 coordinate and denote again Y = (x(2)
1 , x2, . . . , xN). The derivative

of h in the first variable (call it t) can be estimated using condition 5 in the definition of h
and the remaining factors of h will be used again to change the region of integration in the
Y variables:∫︂

[−L/2−b,L/2+b]2N−1

∫︂ L/2+b

−L/2−b
|ψR(t,Y)|2|h′(t)|2 dt

∏︂
y∈Y

|h(y)|2 dY

=

∫︂
[−L/2−b,L/2+b]2N−1

∫︂ L/2

−L/2
|ψ(t,YR)|2

(︂
|h′(t)|2 + |h′(tR)|2

)︂
dt

∏︂
y∈Y

|h(y)|2 dY

≤
2
b2

∫︂
[−L/2−b,L/2+b]2N−1

∫︂ L/2

−L/2
|ψ(t,YR)|2 dt

∏︂
y∈Y

|h(y)|2 dY

=
2
b2

∫︂
ΛN

L

|ψ(XN)|2 dXN =
2
b2 ∥ψ∥

2. (3.4.19)
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3.4 Changing boundary conditions

We apply this bound to every term in the sum and obtain the upper bound 4N∥ψ∥2/b2 for
(3.4.18). The third and last term is the mixed term appearing in the square of the gradient
above. It can be written as

1
2

∫︂
ΛN

L+2b

∇|ψR(XN)|2 · ∇|h(XN)|2 dXN . (3.4.20)

Since the gradient of h vanishes on [−L/2 + b, L/2 − b] in every coordinate, the integral is
only over the two remaining end intervals. We want to argue now that both of these terms
vanish due to the symmetry properties of the integrand. One of the terms that appear in the
integral above is

1
2

∫︂ −L/2+b

−L/2−b

⎛⎜⎜⎜⎜⎜⎝ ∂

∂x(1)
1

|ψR(XN)|2
⎞⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎜⎝ ∂

∂x(1)
1

|h(XN)|2
⎞⎟⎟⎟⎟⎟⎠ dx(1)

1 . (3.4.21)

Now it is easy to see that since |ψR|2 is an even function of x(1)
1 on the interval [−L/2 −

b,−L/2 + b] (with respect to −L/2, by definition of the reflection mapping), the derivative
in that direction will be an odd function. Similarly, since |h|2 − 1/2 is an odd function
on [−L/2 − b,−L/2 + b] (with respect to −L/2), the derivative will be an even function.
Consequently, the integral over the product of an odd with an even function must vanish.
This holds true for every term in the sum and thus the third term is identically zero.

Finally, we consider the term involving the interaction. Note that v(d(x, y)) = v(d(xR, yR))
whenever x and y both lie within ΛL, which implies∫︂
Λ2

L+2b

(︂
v(d(x, y)) − v(d(xR, yR))

)︂
f (x, y) dx dy =

∫︂
Bb

L

(︂
v(d(x, y)) − v(d(xR, yR))

)︂
f (x, y) dx dy

(3.4.22)
for some function f and where we defined Bb

L = Λ
2
L+2b\Λ

2
L to be the set of (x, y) in Λ2

L+2b
with those points removed that lie both within ΛL. We have

N∑︂
i< j

∫︂
ΛN

L+2b

v(d(xi, x j))|(Vψ)(XN)|2 dXN =

N∑︂
i< j

∫︂
ΛN

L

v(d(xi, x j))|ψ(XN)|2 dXN

+

N∑︂
i< j

∫︂
ΛN

L+2b

(︂
v(d(xi, x j)) − v(d(xR

i , x
R
j ))

)︂
|(Vψ)(XN)|2 dXN , (3.4.23)

where we used Lemma 12 to obtain the first term on the right-hand side. We denote in the
following calculation by X̂

i, j
N−2 the (N − 2)-tuple (x1, . . . , xN) where xi and x j are missing.
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3 Upper bound on the free energy

By the symmetry of ψ and using (3.4.22), we can rewrite the second term on the right-hand
side above as

N∑︂
i< j

∫︂
ΛN

L+2b

(︂
v(d(xi, x j)) − v(d(xR

i , x
R
j ))

)︂
|(Vψ)(XN)|2 dXN

=

N∑︂
i< j

∫︂
Λ2

L+2b

(︂
v(d(xi, x j)) − v(d(xR

i , x
R
j ))

)︂ ⎛⎜⎜⎜⎜⎝∫︂
ΛN−2

L+2b

|(Vψ)(XN)|2 dX̂
i, j
N−2

⎞⎟⎟⎟⎟⎠ dxi dx j

=
N(N − 1)

2

∫︂
Bb

L

(︂
v(d(x1, x2)) − v(d(xR

1 , x
R
2 ))

)︂ ⎛⎜⎜⎜⎜⎝∫︂
ΛN−2

L+2b

|(Vψ)(XN)|2 dX̂
1,2
N−2

⎞⎟⎟⎟⎟⎠ dx1 dx2

=
1
2

∫︂
Bb

L

(︂
v(d(x, y)) − v(d(xR, yR))

)︂
ρ(2)

Vψ(x, y) dx dy

≤
1
2

∫︂
Bb

L

v(d(x, y))ρ(2)
Vψ(x, y) dx dy

=
1
2

∫︂
Bb

L

v(d(x, y))ρ(2)
ψ (xR, yR)h(x)h(y) dx dy. (3.4.24)

In the calculation, we recognized the two-particle density ρ(2)
Vψ of Vψ, in the inequality

we simply threw away the negative term and then used once again Lemma 12 to obtain
ρ(2)
ψ . The first term on the right-hand side of (3.4.23) constitutes the interaction part of
⟨ψ,HNeumann

N,ΛL
ψ⟩, while using the calculation in (3.4.24) for the second term leads directly to

the term in the second line of (3.4.14). Combining the estimates for the gradient and the
interaction terms, we obtain the result. □

Remark. If the interaction were decreasing, the statement of Lemma 13 would be different:
We would not obtain the term in the second line of (3.4.14). Instead, when starting from
the left-hand side of (3.4.23), we simply use that the reflection mapping x ↦→ xR is a
contraction and apply Lemma 12 to obtain

N∑︂
i< j

∫︂
ΛN

L+2b

v(d(xi, x j))|(Vψ)(XN)|2 dXN ≤

N∑︂
i< j

∫︂
ΛN

L+2b

v(d(xR
i , x

R
j ))|(Vψ)(XN)|2 dXN

=

N∑︂
i< j

∫︂
ΛN

L

v(d(xi, x j))|ψ(XN)|2 dXN . (3.4.25)

Below, in the application of Lemma 13, we will have more information about ψ and its
two-particle density ρ(2)

ψ and are able to estimate the term on the right-hand side in (3.4.24).
It can then be seen that thanks to the small volume of Bb

L the whole term is small.
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3.5 Box method and strategy of proof

Furthermore, we can replace Neumann boundary conditions by periodic boundary
conditions in Lemma 13 since we have

⟨ψ,HNeumann
N,ΛL

ψ⟩ ≤ ⟨ψ,Hperiodic
N,ΛL

ψ⟩ (3.4.26)

for any wave function ψ obeying Neumann boundary conditions, see [65, Proof of Proposi-
tion 2.3.7].

3.5 Box method and strategy of proof

We now explain in more detail the strategy we use to prove Theorem 3. As is appropriate
for an upper bound, we will construct a trial state that we insert into the grand canonical
free energy functional. Consider a partition of the square of size L into (L/ℓ)2 smaller boxes
of size ℓ, and define the trial state Γ to be a tensor product of identical (up to translation)
states Γi that only live on each small box and obey Dirichlet boundary conditions there,
i.e.,

Γ =
⨂︂

i

Γi. (3.5.1)

Strictly speaking, we can only partition the square into ⌊L2/ℓ2⌋ (the largest integer smaller
than L2/ℓ2) boxes and will have some space left over at the boundary of the box. As we
take the limit L→ ∞ this effect will become negligible.

By the variational principle we then have

f (β, ρ) = lim
L→∞

L−2Fgc(β, ρL2, L) ≤ lim
L→∞

L−2F β,L(Γ) (3.5.2)

under the condition that Γ has to have N = ρL2 particles. Since the states Γi are identical
up to translation, we can evaluate F β,L(Γ) further as

F β,L(Γ) =
L2

ℓ2 F
β,ℓ(Γ1) + TrF

⎡⎢⎢⎢⎢⎢⎢⎣⨁︂
N≥2

N∑︂
i< j

v(d(xi, x j))1i, j

⨂︂
k

Γk

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.5.3)

where the second term is due to the infinite range of the potential and 1i, j is the characteristic
function of two particles being in different boxes. This term can be estimated simply
assuming we have a bound on the two-particle density of Γ:

TrF

⎡⎢⎢⎢⎢⎢⎢⎣⨁︂
N≥2

N∑︂
i< j

v(d(xi, x j))1i, j

⨂︂
k

Γk

⎤⎥⎥⎥⎥⎥⎥⎦ ≲ L2ρ2
∫︂
|x|>R

v(|x|) dx

≤
L2ρ2

ln2(R/a)

∫︂
|x|>a

v(|x|) ln2(|x|/a) dx. (3.5.4)
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3 Upper bound on the free energy

Using (1.2.15), we have the bound

r.h.s. of (3.5.4) ≤
CL2ρ2

ln2(R/a)
(3.5.5)

for a constant C > 0.
Let the Dirichlet trial state be given as Γ1 = V∗Γ1

PV for a periodic trial state density
matrix Γ1

P =
∑︁
α να |ϕα⟩ ⟨ϕα|, where V is as defined in (3.4.4). Note that Γ1 is defined on a

box of linear size ℓ and Γ1
P is defined on a box of linear size ℓ − 2b, which requires to plug

in L = ℓ − 2b into the definition of V . Then we apply Lemma 13 (and the remark (3.4.26))
to obtain

TrF HDirΓ1 = TrF
(︂
HDirV∗Γ1

PV
)︂
= TrF

⎛⎜⎜⎜⎜⎜⎝HDirV∗
∑︂
α

να |ϕα⟩ ⟨ϕα|V

⎞⎟⎟⎟⎟⎟⎠
=

∑︂
α

να ⟨Vϕα,HDir
Nα

Vϕα⟩

≤
∑︂
α

να

(︄
⟨ϕα,H

per
Nα
ϕα⟩ +

4Nα

b2 ∥ϕα∥
2

+
1
2

∫︂
Bb
ℓ−2b

v(d(x, y))ρ(2)
ϕα

(xR, yR)h(x)h(y) dx dy
⎞⎟⎟⎟⎟⎠

= TrF HperΓ1
P +

4
b2ρℓ

2 +
1
2

∑︂
α

να

∫︂
Bb
ℓ−2b

v(d(x, y))ρ(2)
ϕα

(xR, yR)h(x)h(y) dx dy. (3.5.6)

We use further that the von Neumann entropy is invariant under isometries (i.e., S (ρ) =
S (V∗ρV) for an isometry V) to obtain

f (β, ρ) ≤ ℓ−2F β,ℓ−2b(Γ1
P) +

4ρ
b2 +

Cρ2

ln2(R/a)

+
1

2ℓ2

∑︂
α

να

∫︂
Bb
ℓ−2b

v(d(x, y))ρ(2)
ϕα

(xR, yR)h(x)h(y) dx dy. (3.5.7)

We are left with the task of finding an upper bound to the free energy of a periodic trial
state which we do in the next section. The trial state that we will use consists of a Gibbs
state, a manually tuned quasi-condensate and a product function that adds correlations to
the system, see (3.6.1) below.

A small caveat of this method is that the constructed trial state Γ is not symmetrical
under exchange of the particles as would be appropriate for bosons. This is not a problem
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3.6 Estimate on finite box for periodic trial state

though, as the following example shows. Consider two one-particle wave functions ϕ1 and
ϕ2 that have disjoint support, i.e., we have ϕ1ϕ2 = 0. A symmetric state built out of ϕ1 and
ϕ2 is

ψ(x1, x2) =
1
√

2
(ϕ1(x1)ϕ2(x2) + ϕ2(x1)ϕ1(x2)) . (3.5.8)

Take O to be a local two-particle observable. This means that ϕ1Oϕ2 = ϕ2Oϕ1 = 0. Then
we have

⟨ψ|O|ψ⟩ =
1
2

(︂
⟨ϕ1 ⊗ ϕ2|O|ϕ1 ⊗ ϕ2⟩ + ⟨ϕ1 ⊗ ϕ2|O|ϕ2 ⊗ ϕ1⟩

+ ⟨ϕ2 ⊗ ϕ1|O|ϕ1 ⊗ ϕ2⟩ + ⟨ϕ2 ⊗ ϕ1|O|ϕ2 ⊗ ϕ1⟩
)︂

= ⟨ϕ1 ⊗ ϕ2|O|ϕ1 ⊗ ϕ2⟩ , (3.5.9)

where we used in the calculation that O is symmetric under exchange of coordinates. Thus,
it is enough to consider ϕ1 ⊗ ϕ2 if one is interested in local expectation values of the
symmetric state ψ.

3.6 Estimate on finite box for periodic trial state

We now construct a periodic trial state on the box of size ℓ̃ = ℓ − 2b with expected number
of particles n = ρℓ2 and subsequently give an upper bound on its free energy. For this
purpose we present lemmas that estimate the norm, particle number, energy and entropy
of the trial state. The basic ingredients we need to build up the trial density matrix are
a product function (that introduces correlations), the grand canonical Gibbs state of the
non-interacting system and a coherent state operator representing the quasi-condensate.
More precisely, our trial state is

Γ =
∑︂
α∈A

λ̃α
| f Dzψα⟩⟨ f Dzψα|

∥ f Dzψα∥2
. (3.6.1)

where the meaning of the symbols is as follows. The f is an operator on Fock space, the
ψα and λα are the eigenfunctions and eigenvalues of the grand canonical Gibbs state of the
non-interacting system and Dz is the coherent state (Weyl) operator for the p = 0 mode.
More precisely, f is an operator on Fock space that acts in the sector of particle number
k ≥ 2 as

fk = Pk f Pk =

k∏︂
i< j

g(d(xi, x j))Pk, (3.6.2)
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3 Upper bound on the free energy

where Pk is the projector to particle number k, g(x) = g0(x) for 0 ≤ x ≤ R, g(x) = 1 for
x > R and g0 solves (1.2.13) in the sense of distributions on BR with boundary condition
g0(R) = 1. For k = 0 or k = 1 we define fk to be the identity operator. The parameter R
will be chosen to satisfy the conditions

a ≪ R ≪ ρ−1/2, (3.6.3)

i.e., it should be much larger than the scattering length of the potential yet much smaller
than the average inter-particle distance. The objects with index α are related to the Gibbs
state of the non-interacting system, which we write as

ΓG =
∑︂
α

λα|ψα⟩⟨ψα|, (3.6.4)

where the ψα are the (orthonormal) eigenfunctions of the grand canonical Laplacian (i.e.,
the direct sum of the N-particle Laplacian in every particle number sector) with periodic
boundary conditions on the box and λα the eigenvalues of the Gibbs state. Explicitly,

λα =
e−β(Eα−µ0Nα)∑︁
α′ e−β(Eα′−µ0Nα′ )

, (3.6.5)

where µ0 is chosen such that ΓG has density ρG = nG/ℓ
2 (which is achieved by inserting

ρ = ρG into µ(β, ρ) from (1.2.7)) and Eα are the corresponding eigenvalues to ψα. For
reasons that will become apparent when we estimate the norm ∥ f Dzψα∥

2, we introduce a
cutoff on the number of particles in Γ by restricting the sum in (3.6.1) to the set

A = {α : Nα < N}. (3.6.6)

Here, Nα is the number of coordinates (particles) of ψα and N is a parameter to be chosen
later. In order for the trial state Γ to still have trace one, we need to modify the coefficients
λα and use instead

λ̃α =
λα∑︁

α′∈A λα′
. (3.6.7)

This ensures TrF Γ =
∑︁
α∈A λ̃α = 1.

We use the notation ap and a†p for the annihilation and creation operators of a plane wave
of momentum p on Fock space. By abuse of notation, we shall use the same symbol for
the plane wave expansion of the annihilation and creation operators and we change only
the letter of the subscript as long as no confusion arises, i.e.,

ax :=
∑︂

p

ap
eipx

ℓ̃
, (3.6.8)
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3.6 Estimate on finite box for periodic trial state

and analogously for a†x.
Finally, for z ∈ C, Dz is the coherent state (Weyl) operator for the p = 0 mode

Dz = exp
(︂
za†0 − za0

)︂
. (3.6.9)

It acts as a shift operator on the p = 0 mode creation/annihilation operators and as identity
on the other modes in the momentum space representation,

D†z apDz = ap + zδp,0. (3.6.10)

This implies

D†z axDz =
∑︂

p

D†z apDz
eipx

ℓ̃
=

∑︂
p

ap
eipx

ℓ̃
+

z
ℓ̃
δp,0 = ax +

z
ℓ̃
. (3.6.11)

Furthermore, Γ needs to have expected number of particles equal to n to be admissible.
This means

⟨N⟩Γ = TrF NΓ =
∑︂
α∈A

λ̃α
∥ f Dzψα∥2

⟨ f Dzψα|N| f Dzψα⟩

=
∑︂
α∈A

λ̃α(Nα + |z|2) =
∑︂
α∈A

λ̃αNα + |z|2
!
= n. (3.6.12)

The total particle number is given as the sum of particles in the (modified) thermal Gibbs
state, ñG =

∑︁
α∈A λ̃αNα, and particles in the added condensate, n0 = |z|2, as n = ñG + n0.

Therefore, we have the following relation between nG and ñG:

nG = ñG

∑︂
α∈A

λα +
∑︂
α∉A

λαNα = (n − n0)
∑︂
α∈A

λα +
∑︂
α∉A

λαNα. (3.6.13)

Below, we will see that approximately nG ≈ n − n0.
We divide the calculation for the upper bound of the free energy of the trial state Γ

into four lemmas which we prove separately. We start with an estimate about the norm
appearing in the denominator of Γ.

Lemma 14 (Norm estimate). Independently of α ∈ A, we have the lower bound

∥ f Dzψα∥
2 ≥ 1 −

πR2

2ℓ̃2

(︂
|z|4 + 4|z|2N + 2N2

)︂
=:

1
B1
. (3.6.14)
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3 Upper bound on the free energy

Proof. First of all, we observe that the function g is equal to one except in a region of size
R (by definition). In other words, we can write

g(x)2 = 1 − η(x), (3.6.15)

where η has support in a disk of radius R and takes values between zero and one. Thus we
have

∥ f Dzψα∥
2 =

∑︂
m

∫︂
|(Dzψα)m|

2
m∏︂

i< j

g(xi − x j)2 dXm

=
∑︂

m

∫︂
|(Dzψα)m|

2
m∏︂

i< j

(1 − η(xi − x j)) dXm. (3.6.16)

The product in the integral can be estimated as follows. It is easy to show that if ak are
numbers between zero and one we have

n∏︂
k=1

(1 − ak) ≥ 1 −
n∑︂

k=1

ak (3.6.17)

for n ∈ N. Then we use that the ψα are normalized and Dz as a unitary operator does not
change that. Hence

∥ f Dzψα∥
2 ≥ 1 −

∑︂
m

m∑︂
i< j

∫︂
|(Dzψα)m|

2η(xi − x j) dXm. (3.6.18)

We can now perform the integration over all but two coordinates of |(Dzψα)m|
2 to write∑︂

m

m∑︂
i< j

∫︂
|(Dzψα)m|

2η(xi − x j) dXm

=
∑︂

m

m∑︂
i< j

∫︂
η(xi − x j)

(︄∫︂
|(Dzψα)m|

2 dX̂i, j

)︄
dxi dx j

=
1
2

∫︂
η(x − y)ρ(2)

α,z(x, y) dx dy, (3.6.19)

where dX̂i, j as before denotes integration over all variables except xi and x j and we used
the permutation symmetry of ψα. In the last step we recognized the two-particle density of
the state Dzψα

ρ(2)
α,z(x, y) = ⟨a†xa

†
yayax⟩Dzψα

. (3.6.20)
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3.6 Estimate on finite box for periodic trial state

Using (3.6.11), this can be evaluated as

ρ(2)
α,z(x, y) = ⟨D†z a†xDzD†z a†yDzD†z ayDzD†z axDz⟩ψα

= ⟨(a†x + z/ℓ̃)(a†y + z/ℓ̃)(ay + z/ℓ̃)(ax + z/ℓ̃)⟩
ψα

= |z|4ℓ̃
−4
+ |z|2ℓ̃

−2
(︃
⟨a†xay⟩ψα

+ ⟨a†xax⟩ψα + ⟨a
†
yay⟩ψα

+ ⟨a†yax⟩ψα

)︃
+ ⟨a†xa

†
yayax⟩ψα

= |z|4ℓ̃
−4
+ |z|2ℓ̃

−2 (γα(x, y) + ρα(x) + ρα(y) + γα(y, x)) + ρ(2)
α (x, y). (3.6.21)

The one- and two-particle densities of the state ψα appearing in the calculation can be
estimated explicitly. By inserting the plane wave expansion ax =

∑︁
p ap eipx ℓ̃

−1, we find
for the one-particle density

ρα(x) = ⟨a†xax⟩ψα =
∑︂
p,q

eix(p−q)

ℓ̃
2 ⟨a†paq⟩ψα

=
∑︂

p

1

ℓ̃
2 ⟨np⟩ψα

=
Nα

ℓ̃
2 . (3.6.22)

Since γα(x, y) ≤ γα(x, x) = ρα(x), we also have a bound on the one-particle density matrix.
Similarly, the two-particle density is estimated as

ρ(2)
α (x, y) = ⟨a†xa

†
yayax⟩ψα

=
1

ℓ̃
4

∑︂
p1,p2,p3,p4

eip1 x eip2y e−ip3y e−ip4 x ⟨a†p4
a†p3

ap2ap1⟩ψα

=
1

ℓ̃
4

∑︂
p

⟨a†pa†papap⟩ψα
+

1

ℓ̃
4

∑︂
p1≠p2

⟨a†p1
a†p2

ap2ap1⟩ψα

+
1

ℓ̃
4

∑︂
p1≠p2

eip1(x−y) eip2(y−x) ⟨a†p1
a†p2

ap1ap2⟩ψα

≤
1

ℓ̃
4

∑︂
p

np(np − 1) +
2

ℓ̃
4

∑︂
p1≠p2

np1np2

≤
2

ℓ̃
4

∑︂
p1,p2

np1np2 = 2
N2
α

ℓ̃
4 . (3.6.23)

For α ∈ A, we use the uniform bound Nα < N and hence

∥ f Dzψα∥
2 ≥ 1−

1

2ℓ̃2

∫︂
η
(︂
|z|4 + 4|z|2N + 2N2

)︂
≥ 1−

πR2

2ℓ̃2

(︂
|z|4 + 2|z|2N + 2N2

)︂
. (3.6.24)

In the last inequality we estimated η ≤ 1 on the disk of radius R. □

The second lemma is about the setA that was introduced to be able to give a uniform
bound in the norm estimate.
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3 Upper bound on the free energy

Lemma 15 (Particle number estimate). We have for any 0 < k < 1 the following estimates∑︂
α∈A

λα ≥ 1 − exp
[︁
−kβ|µ0|N + τ(βµ0, k)nG

]︁
=:

1
B2∑︂

α∉A

λαNα ≤ nG exp
[︁
−kβ|µ0|N + τ(βµ0, k)nG

]︁
. (3.6.25)

Here, τ is given by

τ(βµ0, k) = −
(︂
e−βµ0 −1

)︂
ln

(︄
1 −

e−kβµ0 −1
e−βµ0 −1

)︄
. (3.6.26)

Proof. We have ∑︂
α∈A

λα = 1 −
∑︂
α∉A

λα = 1 − ⟨χN≥N⟩ΓG
. (3.6.27)

The characteristic function can be estimated by an exponential function with parameter
κ > 0 as

⟨χN≥N⟩ΓG
≤ ⟨eκ(N−N)⟩ΓG . (3.6.28)

Furthermore, the expectation is immediately obtained as

⟨eκ(N−N)⟩ΓG = e−κN
TrF e−β(H0−µ0N)+κN

TrF e−β(H0−µ0N)

= exp
(︂
βℓ̃

2 [︁
Pℓ̃(β, µ0 + κ/β) − Pℓ̃(β, µ0)

]︁
− κN

)︂
. (3.6.29)

Here, Pℓ̃(β, µ0) is the grand canonical pressure of the Gibbs state in finite volume. It can
be explicitly computed as

Pℓ̃(β, µ0) =
1

βℓ̃
2 ln Z0 =

1

βℓ̃
2 ln TrF e−β(H0−µ0N)

= −
1

βℓ̃
2

∑︂
p∈(2π/ℓ̃)Z2

ln
(︂
1 − e−β(p2−µ0)

)︂
. (3.6.30)

We find for the difference

Pℓ̃(β, µ0 + κ/β) − Pℓ̃(β, µ0) = −
1

βℓ̃
2

∑︂
p∈(2π/ℓ̃)Z2

ln
⎛⎜⎜⎜⎜⎝1 − e−β(p2−µ0)+κ

1 − e−β(p2−µ0)

⎞⎟⎟⎟⎟⎠
= −

1

βℓ̃
2

∑︂
p∈(2π/ℓ̃)Z2

ln
(︄
1 −

eκ −1
eβ(p2−µ0) −1

)︄
. (3.6.31)
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3.6 Estimate on finite box for periodic trial state

We see that κ has to be in the range 0 < κ < −βµ0 = β|µ0| in order for the p = 0 term not
to blow up. Therefore, we parametrize κ as κ = −kβµ0 for 0 < k < 1. It will be convenient
to estimate − ln(1 − x) ≤ ηx where η is chosen such that equality occurs for the biggest x
considered. In our case that means

η = −

(︄
e−kβµ0 −1
e−βµ0 −1

)︄−1

ln
(︄
1 −

e−kβµ0 −1
e−βµ0 −1

)︄
. (3.6.32)

The benefit of doing this estimate is that the sum over p can then be evaluated as the density
of the Gibbs state:

Pℓ̃(β, µ0(1 − k)) − Pℓ̃(β, µ0) ≤
1

βℓ̃
2

∑︂
p∈(2π/ℓ̃)Z2

η
e−kβµ0 −1

eβ(p2−µ0) −1

= η
(︂
e−kβµ0 −1

)︂ nG

βℓ̃
2 = τ(βµ0, k)

nG

βℓ̃
2 . (3.6.33)

Hence ∑︂
α∈A

λα ≥ 1 − e−kβ|µ0 |(N−τ(βµ0,k)nG) . (3.6.34)

To show the second inequality, one only needs to realize that

TrF
[︂
N e−β(H−µ0N)+κN

]︂
=

∂

∂κ
TrF

[︂
e−β(H−µ0N)+κN

]︂
(3.6.35)

and can then follow the same arguments as above. □

Remark. It should be noted that, according to the definition of nG in (3.6.13), the quantities
on the left-hand side of (3.6.25) reappear on the right-hand side. Using

∑︁
α∈A λα ≤ 1 as

well as assuming that the first term in the exponential, −kβ|µ0|N , dominates the second
term, τ(βµ0, k)nG, we see that this recursion leads to a tower of exponentials with negative
exponent.

In the third lemma of this subsection we estimate the expectation value of the Hamil-
tonian, i.e., the energy TrF HΓ, where H is the Fock space Hamiltonian with periodic
boundary conditions. We have

TrF HΓ =
∑︂
α∈A

λ̃α
∥ f Dzψα∥2

⟨ f Dzψα|H| f Dzψα⟩

=
∑︂
α∈A

λ̃α
∥ f Dzψα∥2

∑︂
m

∫︂
fm(Dzψα)mHm fm(Dzψα)m dXm, (3.6.36)
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3 Upper bound on the free energy

where we introduced the shorthand Xm = (x1, . . . , xm). Here, Hm is the restriction of H to
the sector of particle number m. In evaluating this integral, we find∫︂

fm(Dzψα)mHm fm(Dzψα)m dXm

=

∫︂
fm(Dzψα)m

⎛⎜⎜⎜⎜⎜⎜⎝− m∑︂
i=1

∆i +

m∑︂
i< j

v(d(xi, x j))

⎞⎟⎟⎟⎟⎟⎟⎠ fm(Dzψα)m dXm

=

∫︂
|∇ fm(Dzψα)m|

2 dXm +

m∑︂
i< j

∫︂
v(d(xi, x j))| fm(Dzψα)m|

2 dXm. (3.6.37)

We used integration by parts and the fact that the boundary terms vanish due to periodic
boundary conditions. The first term can be rewritten as∫︂

|∇ fm(Dzψα)m|
2 dXm =

∫︂
|(∇ fm)(Dzψα)m + fm∇(Dzψα)m|

2 dXm

=

∫︂ (︂
|∇ fm|

2|(Dzψα)m|
2 + f 2

m|∇(Dzψα)m|
2
)︂

dXm

+ 2 Re
∫︂

fm(Dzψα)m∇ fm · ∇(Dzψα)m dXm

=

∫︂ (︂
|∇ fm|

2|(Dzψα)m|
2 − f 2

m(Dzψα)m∆(Dzψα)m

)︂
dXm, (3.6.38)

where we again used integration by parts. The first term on the right-hand side, together
with the potential term in (3.6.37), will be used to obtain the correction to the free energy,
while the second term will be used to obtain the leading order contribution coming from
the free Bose gas. We define

E :=
∑︂
α∈A

λ̃α
∥ f Dzψα∥2

∑︂
m

∫︂
f 2
m(Dzψα)m(−∆)(Dzψα)m dXm. (3.6.39)

Observe that the free Hamiltonian H0 does not “see” the difference between a state with or
without added quasi-condensate (since this carries no kinetic energy). This means that if
Eα is the eigenvalue of ψα, then we have

H0Dzψα = EαDzψα. (3.6.40)

Hence

E =
∑︂
α∈A

λ̃α
∥ f Dzψα∥2

∑︂
m

∫︂
f 2
m(Dzψα)mEα(Dzψα)m dXm =

1∑︁
α′∈A λα′

∑︂
α∈A

λαEα. (3.6.41)
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3.6 Estimate on finite box for periodic trial state

Now we evaluate the gradient term on the right-hand side of (3.6.38). We have

∇xk fm = ∇xk

m∏︂
i< j

g(xi − x j) =
∑︂
l,l≠k

fm

g(xl − xk)
∇xkg(xl − xk), (3.6.42)

where we used that g is even in the last equality. Note that the sum in the last line of
(3.6.42) is not a double sum. Thus, the square of the gradient of fm is given by

|∇ fm|
2 =

∑︂
k

∑︂
l,l′≠k

(︁
∇xkg

)︁
(xl − xk) ·

(︁
∇xkg

)︁
(xl′ − xk)

f 2
m

g(xl − xk)g(xl′ − xk)
. (3.6.43)

We split this sum into a diagonal and an off-diagonal part:

|∇ fm|
2 = 2

∑︂
l<k

(︄(︁
∇xkg

)︁
(xl − xk)

fm

g(xl − xk)

)︄2

+
∑︂

k

∑︂
l,l′≠k
l≠l′

(︁
∇xkg

)︁
(xl − xk) ·

(︁
∇xkg

)︁
(xl′ − xk)

f 2
m

g(xl − xk)g(xl′ − xk)
. (3.6.44)

The diagonal part contains the squared gradient of g and that is exactly what we need to
extract the interaction term. Note that we changed the condition on the first sum to l < k
and obtained a factor of two. We define further

I :=
∑︂
α∈A

2λ̃α
∥ f Dzψα∥2

∑︂
m

∑︂
i< j

×

∫︂ (︂
|∇x jg(xi − x j)|2 + v(xi − x j)g(xi − x j)2

)︂ f 2
m

g(xi − x j)2 |(Dzψα)m|
2 dXm,

R :=
∑︂
α∈A

λ̃α
∥ f Dzψα∥2

∑︂
m

∑︂
k

∑︂
l,l′≠k
l≠l′

×

∫︂
(∇xkg)(xl − xk) · (∇xkg)(xl′ − xk)

f 2
m

g(xl − xk)g(xl′ − xk)
|(Dzψα)m|

2 dXm.

(3.6.45)

Lemma 16 (Energy estimate). With the definitions above, we have

TrF HΓ = E + I + R. (3.6.46)
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3 Upper bound on the free energy

We define |z|2 = n0 and give bounds for each term separately. For the first one, we have

E ≤ B2 TrF H0ΓG, (3.6.47)

where H0 is the non-interacting Hamiltonian on Fock space with periodic boundary
conditions and ΓG is the grand canonical Gibbs state introduced above. For the second
term we have

I ≤
2πB1B2

ln(R/a)ℓ̃2

(︂
n2

0 + 4n0nG + 2n2
G

)︂ (︄
1 +

C
ln(R/a)

)︄
(3.6.48)

and for the third one

R ≤ 34B1B2
n3

ℓ̃
4

R2

ln2(R/a)
. (3.6.49)

The multiplicative errors B1 and B2 are given in Lemma 14 and 15.

Proof. For the first inequality we continue the calculation from (3.6.41) and simply add
back the missing terms to the sum to obtain the expectation of the free Hamiltonian in the
Gibbs state as well as use Lemma 15

E =
1∑︁

α′∈A λα′

∑︂
α∈A

λαEα ≤ B2

∑︂
α

λαEα = B2 TrF H0ΓG. (3.6.50)

For the second inequality, we introduce the function

ξ(x) = |∇g(d(x, 0))|2 +
1
2

v(d(x, 0))g(d(x, 0))2. (3.6.51)

Similarly as in the proof of the norm estimate, we integrate out all but two variables to find
the two-particle density. To do so, we estimate the remaining factors of g in the integral by
one:

I =
∑︂
α∈A

2λ̃α
∥ f Dzψα∥2

∑︂
m

∑︂
i< j

∫︂ (︄
ξ(xi − x j)

∫︂
f 2
m

g(xi − x j)2 |(Dzψα)m|
2 dX̂i, j

)︄
dxix j

≤
∑︂
α∈A

2λ̃α
∥ f Dzψα∥2

∑︂
m

∑︂
i< j

∫︂ (︄
ξ(xi − x j)

∫︂
|(Dzψα)m|

2 dX̂i, j

)︄
dxix j

≤ B1B2

∑︂
α

λα

∫︂
ξ(x − y)ρ(2)

α,z(x, y) dx dy

= B1B2

∫︂
ξ(x − y)ρ(2)

z (x, y) dx dy. (3.6.52)
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3.6 Estimate on finite box for periodic trial state

In the last inequality, we have used Lemma 14 and 15 as well as added back the missing
terms to the sum in order to obtain the full two-particle density of the Gibbs state with
manually added condensate ρ(2)

z (x, y) in the last equality. We have

ρ(2)
z (x, y) = ⟨a†xa

†
yayax⟩DzΓGD†z

. (3.6.53)

Since ΓG is quasi-free, we can apply Wick’s theorem. It states that for any quasi-free
state the expectation value of products of creation/annihilation operators is zero for an odd
number of factors and for an even number of factors it is given by a sum of terms that
contain only expectation values of two operators,

⟨c1 · · · c2n⟩ΓG =
∑︂
π

⟨cπ(1)cπ(2)⟩ΓG
· · · ⟨cπ(2n−1)cπ(2n)⟩ΓG

, (3.6.54)

where the sum runs over all ordered permutations π of the set {1, . . . , 2n} and the c j are
either creation or annihilation operators. Ordered permutations are those permutations π
such that

π(2 j − 1) < π(2 j + 1), j = 1, . . . , n − 1 and π(2 j − 1) < π(2 j), j = 1, . . . , n. (3.6.55)

Using Wick’s theorem and (3.6.11), we calculate

⟨a†xa
†
yayax⟩DzΓGD†z

= ⟨D†z a†xa
†
yayaxDz⟩ΓG

= ⟨(a†x + z/ℓ̃)(a†y + z/ℓ̃)(ay + z/ℓ̃)(ax + z/ℓ̃)⟩
ΓG

= |z|4ℓ̃
−4
+ |z|2ℓ̃

−2(ρ(x) + ρ(y) + γ(x, y) + γ(y, x)) + |γ(x, y)|2 + ρ(x)ρ(y). (3.6.56)

Similarly as before (compare the estimates following (3.6.20)), we estimate this by

ρ(2)
z (x, y) ≤

1

ℓ̃
4

(︂
|z|4 + 4|z|2nG + 2n2

G

)︂
, (3.6.57)

where nG is the number of particles in the Gibbs state, see (3.6.13). Now we use (3.3.10)
and write ∫︂

|x|≤ℓ̃
ξ =

∫︂
BR

(︄
|∇g0|

2 +
1
2

v|g0|
2
)︄
+

1
2

∫︂
R≤|x|≤ℓ̃

v(|x|) dx

=
2π

ln(R/aR)
+

1
2

∫︂
R≤|x|≤ℓ̃

v(|x|) dx.
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3 Upper bound on the free energy

The first term on the right-hand side can be estimated using (3.3.11), while the second
term can be bounded using (1.2.15) as

1
2

∫︂
R≤|x|≤ℓ̃

v(|x|) dx ≤
1

2 ln2(R/a)

∫︂
|x|≥R

v(|x|) ln2(|x|/a) dx ≤
2πC

ln2(R/a)
, (3.6.58)

where C > 0 is a constant. Then we continue the estimate from (3.6.52) as

I ≤ B1B2ℓ̃
−2 (︂
|z|4 + 4|z|2nG + 2n2

G

)︂ ∫︂
|x|≤ℓ̃

ξ

≤ B1B2ℓ̃
−2 (︂
|z|4 + 4|z|2nG + 2n2

G

)︂ (︄ 2π
ln(R/a)

+
2πC

ln2(R/a)

)︄
. (3.6.59)

Inserting now |z|2 = n0, this becomes

I ≤
2πB1B2

ln(R/a)ℓ̃2

(︂
n2

0 + 4n0nG + 2n2
G

)︂ (︄
1 +

C
ln(R/a)

)︄
. (3.6.60)

Lastly, we estimate the three-particle term R. The remaining factors of g are bounded
by one and we insert the definition of the three-particle density:

R =
∑︂
α∈A

λ̃α
∥ f Dzψα∥2

∑︂
k

∑︂
l,l′≠k
l≠l′

×

∫︂
(∇xkg)(xl − xk) · (∇xkg)(xl′ − xk)

f 2
m

g(xl − xk)g(xl′ − xk)
|(Dzψα)nα |

2 dXm

≤ B1B2

∫︂
(∇xg)(x − z) · (∇yg)(y − z)ρ(3)

z (x, y, z) dx dy dz. (3.6.61)

The three-particle density is estimated as2

ρ(3)
z (x, y, z) = ⟨a†xa

†
ya†z azayax⟩DzΓGD†z

= ⟨(a†x + z/ℓ̃)(a†y + z/ℓ̃)(a†z + z/ℓ̃)(az + z/ℓ̃)(ay + z/ℓ̃)(ax + z/ℓ̃)⟩
ΓG

= ⟨a†xa
†
ya†z azayax⟩ΓG

+
|z|4

ℓ̃
4

(︂
⟨a†xax⟩ΓG

+ 8 other terms
)︂
+
|z|6

ℓ̃
6

+
|z|2

ℓ̃
2

(︂
⟨a†xa

†
yayax⟩ΓG

+ 8 other terms
)︂
. (3.6.62)

2Beware of the slight abuse of notation: the index z refers to the coherent state parameter, while the
arguments of ρ(3)

z are the coordinates (x, y, z) in Λℓ̃
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3.6 Estimate on finite box for periodic trial state

The first term is the three-particle density of the Gibbs state and is evaluated using again
Wick’s theorem, the resulting bound is ρ(3) ≤ 6n3

G/ℓ̃
6. If we insert now |z|2 = n0 and

estimate all occurrences of n0 and nG by n, we find that

ρ(3)
z (x, y, z) ≤ 34

n3

ℓ̃
6 . (3.6.63)

Thus, for a simple bound, we can apply part 3 of Lemma 10 (and then (3.3.11)) and
estimate R further as

R ≤ 34B1B2ℓ̃
2 n3

ℓ̃
6

R2

ln2(R/a)
. (3.6.64)

□

Finally, we need to estimate the entropy of the trial state Γ in order to obtain a bound on
the free energy. We relate the entropy of Γ to the entropy of the Gibbs state ΓG such that
adding to it the energy TrF H0ΓG we obtain the free energy of ΓG.

Lemma 17 (Entropy estimate). We have

S (Γ) − B2S (ΓG) ≥ −B2 ln B2 − ln B1, (3.6.65)

where B1 and B2 are defined in Lemma 14 and 15.

Proof. The proof relies on [69, proof of Lemma 2] and for the reader’s convenience
we repeat it here. For {Pα} a family of rank one projections (not necessarily mutually
orthogonal) set Γ̂ =

∑︁
α∈A λ̃αPα and Γ̃ a density matrix with eigenvalues λ̃α, α ∈ A. Then

we have by the concavity of the logarithm that

S (Γ̂) − S (Γ̃) = −
∑︂
α∈A

λ̃α TrF Pα ln
(︂
λ̃
−1
α Γ̂

)︂
≥ −

∑︂
α∈A

λ̃α ln TrF Pαλ̃
−1
α Γ̂

≥ − ln TrF

⎛⎜⎜⎜⎜⎜⎝∑︂
α∈A

PαΓ̂

⎞⎟⎟⎟⎟⎟⎠ ≥ − ln

⃦⃦⃦⃦⃦
⃦⃦∑︂
α∈A

Pα

⃦⃦⃦⃦⃦
⃦⃦ . (3.6.66)
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3 Upper bound on the free energy

Then we calculate

S (Γ̃) = −
∑︂
α∈A

λ̃α ln λ̃α

= −
∑︂
α∈A

λα∑︁
α′∈A λα′

ln
(︄

λα∑︁
α′∈A λα′

)︄
≥ −B2

∑︂
α∈A

λα

⎛⎜⎜⎜⎜⎜⎝ln λα − ln
∑︂
α′∈A

λα′

⎞⎟⎟⎟⎟⎟⎠
≥ −B2

∑︂
α

λα ln λα − B2 ln B2

= B2S (ΓG) − B2 ln B2. (3.6.67)

In the last inequality we have recognized S (ΓG), the entropy of the full Gibbs state with
eigenvalues λα. We used Lemma 15 to estimate the sum

∑︁
α′∈A λα′ .

Analogously as in [69, discussion after Lemma 2], we then find for our trial state
(inserting Γ̂ = Γ)

S (Γ) − B2S (ΓG) ≥ −B2 ln B2 − ln

⃦⃦⃦⃦⃦
⃦⃦∑︂
α∈A

| f Dzψα⟩ ⟨ f Dzψα|

∥ f Dzψα∥2

⃦⃦⃦⃦⃦
⃦⃦ . (3.6.68)

Define χ = maxα∈A ∥ f Dzψα∥
−2. Using the fact that fk ≤ 1 and the orthonormality of Dzψα

(which follows from the orthonormality of ψα and the unitarity of Dz), we have

∑︂
α∈A

| f Dzψα⟩ ⟨ f Dzψα|

∥ f Dzψα∥2
≤ χ

∑︂
α∈A

| f Dzψα⟩ ⟨ f Dzψα| ≤ χ. (3.6.69)

Since χ ≤ B1 (from Lemma 14), we obtain

S (Γ) − B2S (ΓG) ≥ −B2 ln B2 − ln B1. (3.6.70)
□

3.7 Final upper bound

Now that we have an estimate for every term appearing in the free energy functional, we
are ready to state the upper bound on the free energy. Using Lemmas 14–17, we have the
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3.7 Final upper bound

following upper bound on the free energy in finite volume of the trial state Γ:

F β,ℓ̃(Γ) ≤ B2

⎛⎜⎜⎜⎜⎜⎜⎜⎝1
β

∑︂
p∈(2π/ℓ̃)Z2

ln
(︂
1 − e−β(p2−µ0)

)︂
+ µ0(ρ − ρ0)ℓ̃2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ B1B2

4πℓ̃2
ρ2

ln(R/a)

(︄
1 −

ρ2
0

2ρ2

)︄
+ 34B1B2

ℓ̃
2
ρ3R2

ln2(R/a)
+

1
β

B2 ln B2 +
1
β

ln B1. (3.7.1)

We have used the fact that

TrF H0ΓG −
1
β

S (ΓG) =
1
β

∑︂
p∈(2π/ℓ̃)Z2

ln
(︂
1 − e−β(p2−µ0)

)︂
+ µ0nG. (3.7.2)

When replacing the discrete version of the free energy by its continuum version, we obtain
another error term. This finite size effect can be estimated using Lemma 9, with the result

1

ℓ̃
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝1
β

∑︂
p∈(2π/ℓ̃)Z2

ln(1 − e−β(p2−µ0)) + µ0(ρ − ρ0)ℓ̃2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ − f0(β, ρ − ρ0)

≤ −
1
βℓ̃π

∫︂
R2

1
|p|

ln
(︂
1 − e−β(p2−µ0)

)︂
dp =

const.
β3/2ℓ̃

(3.7.3)

for some positive constant.
We still have to estimate the term involving the two-particle density appearing on the

right-hand side of (3.5.7). Now that we have chosen the trial state (in (3.6.1)) and have
estimates for the two-particle density (from (3.6.57)), we apply Lemmas 14 and 15 to
obtain

1
2ℓ2

∑︂
α∈A

λ̃α
∥ f Dzψα∥

∫︂
Bb
ℓ̃

v(d(x, y))ρ(2)
f Dzψα

(xR, yR)h(x)h(y) dx dy

≤
B1B2

2ℓ2

∑︂
α

λα

∫︂
Bb
ℓ̃

v(d(x, y))g2(d(x, y))ρ(2)
α,z(xR, yR) dx dy

≤
bB1B2

2ℓ2ℓ̃
3

(︂
n2

0 + 4n0nG + 2n2
G

)︂ (︄ 2π
ln(R/a)

+
2πC

ln2(R/a)

)︄
. (3.7.4)
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3 Upper bound on the free energy

Therefore, we find for the upper bound on the free energy from (3.5.7) using the
estimates from (3.7.1), (3.7.3) and (3.7.4)

f (β, ρ) ≤ B2 f0(β, ρG) +
const.B2

β3/2ℓ
+

2πB1B2

ln(R/a)ℓ2ℓ̃
2

(︂
n2

0 + 4n0nG + 2n2
G

)︂ (︄
1 +

C
ln(R/a)

)︄
+

34B1B2n3R2

ℓ2ℓ̃
4 ln2(R/a)

+
1
βℓ2 (B2 ln B2 + ln B1) +

4ρ2

b2ρ
+

Cρ2

ln2(R/a)

+
bπB1B2

ℓ2ℓ̃
3 ln(R/a)

(︂
n2

0 + 4n0nG + 2n2
G

)︂ (︄
1 +

C
ln(R/a)

)︄
. (3.7.5)

Here, we have used ℓ̃/ℓ ≤ 1 to simplify the bound. To simplify it even further, we perform
the following replacements. We write B1 = 1 + b1 and B2 = 1 + b2 as well as expand the
terms with ℓ̃ = ℓ− 2b. We will choose R in the next section on a scale relative to ρ−1/2 such
that

ln(R/a) =
1
2

(︂
| ln a2ρ| − | ln R2ρ|

)︂
. (3.7.6)

Furthermore, we insert the value for nG = (n − n0)
∑︁
α∈A λα +

∑︁
α∉A λαNα from (3.6.13).

We use
∑︁
α∈A λα ≤ 1 and the second inequality in Lemma 15. After having done these

replacements, we find

f (β, ρ) ≤ f0(β, ρ − ρ0) +
4π
| ln a2ρ|

(︂
2ρ2 − ρ2

0

)︂
+ b2ℓ

2ρ f0(β, ρ − ρ0) +
const.
β3/2ℓ

+
ρ2

| ln a2ρ|
(b1 + b2) +

4π| ln R2ρ|

| ln a2ρ|2

(︂
2ρ2 − ρ2

0

)︂
+

1
βℓ2

(b1 + b2) +
4ρ2

b2ρ
+

ρ2b
| ln a2ρ|ℓ

+ higher order terms. (3.7.7)

The first two terms on the right-hand side are the free energy of the ideal gas and the desired
interaction energy, while the remaining terms are error terms. Here, we have suppressed
all higher order terms that are not relevant for choosing the optimal error rate. We optimize
over all error terms in the next section.

3.8 Choice of parameters

Throughout this section, we use the short hand notation

σ := | ln a2ρ|. (3.8.1)
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3.8 Choice of parameters

For the optimal choice of the error terms, only the scaling behavior of the parameters is
important and we therefore ignore constant factors for these terms. The main terms we
have to consider for the minimization are

ρ2

σ

(︄
b1 + b2 +

| ln R2ρ|

σ
+

σ

βρℓ2ρ
(b1 + b2) +

b
ℓ
+

σ

b2ρ
+

σ

(βρ)3/2ℓρ1/2

)︄
. (3.8.2)

The parameter b is immediately optimized since there are only two terms among the main
terms containing b. The result is

b2ρ = σ2/3(ℓ2ρ)1/3. (3.8.3)

The resulting error term containing b is then proportional to ρ2σ−2/3(ℓ2ρ)−1/3. We note
that τ(βµ0, k) defined in (3.6.26) can be expanded around zero (in both arguments) with
the result τ(βµ0, k) ≈ −βµ0k, which implies b2 ≈ e−kβ|µ0 |(N−n). To guarantee exponential
decay, we may choose N as a multiple of n = ℓ2ρ. We use that b2 can be bounded as
b2 ≤ e−k̃β|µ0 |ρℓ

2
for a constant k̃ > 0 and b1 ∼ (R/ℓ)2(ℓ2ρ)2 to see that b2 is irrelevant for

choosing ℓ (as long as ℓ2ρ ≫ σ in the final choice). Therefore we have only two terms that
determine how to optimally choose ℓ, which leads to the equation

ρ2

σ

σ

(ℓ2ρ)1/2 =
ρ2

σ
R2ρℓ2ρ. (3.8.4)

This is equivalent to

ℓ2ρ =

(︄
σ

R2ρ

)︄2/3

(3.8.5)

and the resulting error term is proportional to ρ2σ−1(R2ρσ2)1/3. Finally, we are able to
choose R since there are only the two terms ρ2σ−1(R2ρσ2)1/3 and ρ2σ−2| ln R2ρ| to consider.
This leads to

(R2ρσ2)1/3 =
| ln R2ρ|

σ
, (3.8.6)

from which we read off that R2ρ has to be chosen on a power law scale of σ such that
| ln R2ρ| ≃ lnσ to leading order. We therefore choose

R2ρ =
ln3 σ

σ5 . (3.8.7)

Then the main relative error term is proportional to lnσ/σ.
As discussed in Remark 5 in Section 1.2, we now insert for ρ0 the density

ρs = ρ

[︄
1 −

βc

β

]︄
+

. (3.8.8)
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3 Upper bound on the free energy

Furthermore, we use f0(β, ρ − ρs) ≤ f0(β, ρ) and continue the estimate from (3.7.7) as

f (β, ρ) ≤ f0(β, ρ) +
4πρ2

σ

⎛⎜⎜⎜⎜⎝2 − [︄
1 −

βc

β

]︄2

+

⎞⎟⎟⎟⎟⎠ + Cρ2

σ

lnσ
σ

. (3.8.9)

This concludes the proof of Theorem 3.
We remark that the proof is uniform in the potential in a certain sense. When doing

estimates over the tail of the potential, one finds a relative error term (relative to the scale
of the interaction ρ2/σ)

1
σ

∫︂
|x|>a

v(|x|) ln2(|x|/a) dx, (3.8.10)

which can be bounded from above by C/σ using (1.2.15), with a constant C that depends
on the potential. We tracked these terms throughout the proof and present them in the
estimate in (3.7.5). It turns out that these terms are not relevant for choosing the optimal
error rate since they are on a much smaller scale.
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