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Abstract11

In evolutionary game theory interactions between individuals are often assumed obligatory. However, in many12

real-life situations, individuals can decide to opt out of an interaction depending on the information they have about13

the opponent. We consider a simple evolutionary game theoretic model to study such a scenario, where at each14

encounter between two individuals the type of the opponent (cooperator/defector) is known with some probability,15

and where each individual either accepts or opts out of the interaction. If the type of the opponent is unknown, a16

trustful individual accepts the interaction, whereas a suspicious individual opts out of the interaction. If either of17

the two individuals opt out both individuals remain without an interaction. We show that in the prisoners dilemma18

optional interactions along with suspicious behaviour facilitates the emergence of trustful cooperation.19

INTRODUCTION20

Evolutionary games provide a general framework to study frequency dependent selection, where the fitness (payoff) of21

each individual is determined by playing a game with other individuals in the population. In the standard formulation,22

games between individuals are considered compulsory in the sense that individuals have no choice of whom they23

encounter, and are then forced to execute their strategy with the encountered individual (e.g. Weibull 1995). In nature,24

however, this is usually not the case. Various models have accounted for this by allowing individuals to be selective25

about their opponents either in terms of partner choice (”pre-interaction decisions”, e.g. Hruschka and Henrich 2006,26

Fu et al. 2008) and/or partner switching (”post-interaction decisions”, e.g. Hruschka and Henrich 2006, McNamara27

et al. 2008, Fu et al. 2008, Fujiwara-Greve and Okuno-Fujiwara 2009, Izquierdo et al. 2010, Wubs et al. 2016, Zheng28

et al. 2017), or allowing individuals to opt out of interactions altogether (”optional interactions”, e.g. Miller 1967,29

Vanberg and Congleton 1992, Orbell and Dawes 1993, Stanley et al. 1995, Batali and Kitcher 1995, Sherratt and30

Roberts 1998, Hauert et al. 2002a, Mathew and Boyd 2009, Ghang and Nowak 2015). Some models make both31

assumptions, individuals have the ability to influence the choice of their opponents as well as have the option to opt32

out, or to be forced to opt out, of interactions (Noë and Hammerstein 1994, Batali and Kitcher 1995, Hruschka and33

Henrich 2006). Here, we focus on optional interactions whilst assuming that opponents are chosen at random.34

An extremely simple form of optional interactions is to accept no interactions, which is the so-called loners strat-35

egy (Hauert et al. 2002a,b, 2007, Fowler 2005, Brandt et al. 2006, Mathew and Boyd 2009, Cardinot et al. 2016).36

Individuals who adopt a loners strategy opt out of all interactions and receive a fixed ”loners payoff”. In evolutionary37

games with loners along with cooperators and defectors, where cooperators and defectors are assumed to accept every38

interaction, the evolutionary trajectories approach a cycle between the three strategies (Hauert et al. 2002a,b). This is39

an interesting result, particularly because in such models individuals have no information about their opponents.40
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While no information and no interaction represents an extreme scenario, in many situations individuals can base41

their decision to interact on partial information about their opponent. (deleted: In other words, individuals can predict42

with some accuracy the upcoming action of their opponent.) Classical examples where individuals in the population43

have at least some information about each other are as follows: (a) models of direct reciprocity: individuals have44

encountered their opponent in the past (Trivers 1971, Batali and Kitcher 1995, Sherratt and Roberts 1998, Castro45

and Toro 2008, Spichtig et al. 2013, Kurokawa 2017); (b) models of indirect reciprocity: the opponent has build a46

reputation of its past actions with other individuals (Nowak and Sigmund 1998a,b, Panchanathan and Boyd 2003,47

Nowak and Sigmund 2005, Fu et al. 2008, Ghang and Nowak 2015); or (c) the opponent appears or behaves a certain48

way before an interaction takes place that indicates its intended actions (Frank et al. 1993, Yamagishi et al. 1999, Reed49

et al. 2012, DeSteno et al. 2012). For example, the ability of correctly evaluating mate selection-related strategies50

of other individuals is common (Zahavi 1975, Iwasa et al. 1991, Jennions and Petrie 1997, Andersson and Simmons51

2006). In such situations, and in contrast to loners strategy of always opting out, the decision of opting out or accepting52

the interaction ought to depend on the available partial information.53

In this work we introduce a simple evolutionary game-theoretical model where the individuals encounter each54

other at random (no choice of opponents), but at each encounter they are given the option to either accept or opt out55

of the interaction based on partial information about their opponent. If either of the two individuals opt out, both56

individuals remain without an interaction. In our model the type of the opponent (cooperator or defector) is known57

with some fixed probability. If the type of the opponent is known, then individuals take a decision (accept or opt58

out) that yields a greater payoff. If the type of the opponent is unknown, then individuals can be either trustful or59

suspicious (Panchanathan and Boyd 2003, Sigmund 2010). A trustful individual accepts an interaction with the trust60

that the opponent will provide a greater payoff than opting out, and a suspicious individual opts out of an interaction61

suspecting that the opponent will provide a lesser payoff than what opting out yields. The strategy of an individual is62

thus a combination of its type (cooperator/defector) and a decision rule that dictates whether to accept or opt out of an63

interaction (trustful/suspicious).64

We formally introduce our modeling framework in the following section, and then as an example, study the evolu-65

tion of cooperation by working out the game of prisoners dilemma in detail. We succinctly summarize our key findings66

below.67

• First, if the probability of knowing the type of the opponent is above a certain threshold, a threshold that is68

given in terms of payoffs, then trustful cooperation is an ESS. A similar condition was derived in (Nowak and69

Sigmund 1998a,b, Suzuki and Toquenaga 2005, Ghang and Nowak 2015). Interestingly, and in contrast to the70

previous findings, if opting out yields an equal or greater payoff than mutual defection, then trustful cooperation71
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is a globally convergent ESS, i.e., trustful cooperation is reached from any initial state of the population. In72

particular, even an (almost) entirely defective population will be eventually replaced by trustful cooperators.73

• Second, we consider that the probability of knowing the type of the opponent is below the required threshold. If74

opting out is at least as beneficial as mutual defection, then the evolutionary dynamics approaches a rock-paper-75

scissors cycle of trustful cooperation, trustful defection and suspicious cooperation. However, if opting out is76

strictly better than mutual defection, then for a low probability of knowing the type of the opponent, trustful77

cooperation, trustful defection and suspicious cooperation coexist at a globally stable equilibrium. We note that78

suspicious defection is always (eventually) selected against and thus eradicated form the population.79

To summarize, we introduce a simple mathematically tractable model that enables us to study the interplay between80

social and non-social behavior. We apply our model to the game of prisoners dilemma where we show that the option81

of non-social behaviour of opting out of interactions, a ”natural precondition” of partner formation, allows for the82

emergence of (social and) cooperative behaviour. Moreover, we find that non-social behaviour together with the83

ability to recognise the behaviour of each other leads not only to stable cooperative populations but also to trustful84

behaviour that accepts interactions with potentially defective players.85

MODEL DESCRIPTION86

Consider a large and well-mixed population with two types of players, cooperators and defectors. Players are assumed87

to encounter each other at random, such that at each encounter they can either accept or reject each other for an88

interaction. If both players accept, a game is played and a payoff is received: if both players are cooperators both89

receive R, if both players are defectors both receive P , and if one is a defector and the other is a cooperator then the90

defector receives T and the cooperator S, such that S < P < R < T . A game is not played if at least one of the91

two players rejects the interaction (opt out), in which case both players receive a payoff L, where L can be any value92

relative to the payoffs S, P,R, T . Without loss of generality we set L = 0 and scale the other payoffs accordingly93

(SI). The payoffs S, P,R, T thus need to be reinterpreted as the difference between the particular social interaction94

and non-social behaviour. We note that each player knows its own type as well as the ordering of payoffs.95

The decision to accept or opt out of an interaction is made based on the type of the opponent, which is known96

to the player with some fixed probability q. If the type of the opponent is known the decision to interact is obvious97

– a game that yields a greater payoff than opting out will be accepted and with a smaller payoff rejected. This is98

illustrated with the left branch in Figure 1 where a player of typeA has identified the type of the encountered opponent99

B. The question is what to do when the opponent is unknown (the right branch in Figure 1). Since players have no100
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information about the composition of the population (frequency distribution of cooperators and defectors) they have101

only two options, either trust that by accepting the interaction the unknown player will yield them a greater payoff than102

if they chose to opt out, or be suspicious that the interaction will be advantageous and reject the unknown opponent103

(Panchanathan and Boyd 2003, Sigmund 2010). All in all we obtain four strategies, trustful cooperation, suspicious104

cooperation, trustful defection and suspicious defection, keeping in mind that for some payoff configurations not all105

strategies are rational and hence will not be considered. For example, if mutual defection yields greater payoff than106

non-social behaviour 0 < P , then defectors will always receive a greater payoff by accepting an interaction, known107

and unknown, and thus the strategy of suspicious defection will be disregarded.108

We immediately observe that the cases 0 ≤ S and R ≤ 0 lead to trivial evolutionary dynamics (Batali and Kitcher109

1995). If 0 ≤ S, then any interaction is at least as good as no interaction and thus all games should be accepted, and if110

R ≤ 0, then cooperators receive always the maximum payoff by not interacting and so all games end up being rejected.111

In the first case we recover the dynamics of the prisoners dilemma with obligatory interactions where defective strategy112

is the evolutionary outcome. In the latter case players of both types opt out of all interactions. Thus, the task is to113

work out the evolutionary dynamics for the two remaining cases, S < 0 ≤ P < R < T and S < P < 0 < R < T .114

We remark that the non-generic case P = 0 is of special interest and will be considered separately, not only due to115

its simple evolutionary dynamics but also because a donation game, the central model in the literature of evolution of116

cooperation (Sigmund 2010), falls into this category of models when the benefit of defection T − R and the cost of117

ACCEPT OPT OUT ACCEPT OPT OUT

PLAYER A 

ENCOUNTERS 

PLAYER B

1− qq

B’s TYPE 

IS KNOWN 

TO A

B’s TYPE 

IS UNKNOWN 

TO A

A’s payoff 
against B >0

A’s payoff 
against B <0
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U
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L
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Figure 1: Decision tree for a player of type A. At the top node (yellow dot) nature decides whether the player A identifies the type
of the encountered opponent B or not, which happens with probabilities q and 1 − q, respectively. If player A identifies the type
of the encountered opponent (left branch, blue node), the player chooses the action that maximizes its payoff. Thus player A will
accept the interaction if the payoff of A against B is greater than 0, otherwise player A will opt out of the interaction. If player A
doesn’t identify the type of its encountered opponent (right branch, red node), player A can either be trustful or suspicious and will
either accept or opt out of the interaction, respectfully.
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cooperation S − P are equal.118

We may interpret mutual defection as some social interaction that provides basic income P , where the potentially119

harmful effect of the interaction is already factored in the payoff. Depending on the level of harm defection causes120

to the co-player, the payoff for mutual defection may be greater or smaller than the payoff for non-social (solitary)121

behaviour. Equivalently, and this is the terminology we use throughout the paper, we say that opting out is costly when122

P > 0 and beneficial when P < 0.123

RESULTS124

We will first work out a model for the two limiting cases where players have either zero information q = 0 or perfect125

information q = 1 about their opponents. In the following sections we will consider games with partial information126

0 < q < 1 and first deal with the special case P = 0 where opting out and mutual defection results in equal payoff.127

Lastly we solve the two remaining cases, S < 0 < P where opting out is costly and P < 0 < R where opting out128

is beneficial. For each model we analyse the evolutionary dynamics represented with a continuous-time replicator129

equation130

ẋA = xA
(
EA − Ē

)
(1)

where the dot denotes a time derivative, xA is the frequency and EA is the expected payoff of strategy A, and131

Ē =
∑
B xBEB is the average payoff in the population.132

133

Games with zero and perfect information134

Let us first consider the case where players have zero information about the type of the opponent q = 0 and so all135

interactions are between unknown players. In both non-trivial cases S < 0 ≤ P < R < T and S < P < 0 < R < T136

we have S < 0 < R, and so the decision for a cooperator to accept or opt out of an interaction with an (always)137

unknown opponent depends whether the opponent is likely to be a cooperator or a defector. If the unknown opponent138

is likely to be a defector it pays off to opt out, but if the opponent is likely to be a cooperator it pays off to accept the139

interaction. We thus need to consider both suspicious and trustful cooperators, where suspicious cooperators opt out140

of all interactions, while trustful cooperators accept every interaction. Similarly, if P < 0 < R defectors may either141

be suspicious and opt out of all interactions or be trustful and always defect. However, for S < 0 ≤ P all defectors142

ought to be trustful and accept every interaction. In this case suspicious defectors will not be considered. We thus need143
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to consider only three simple strategies, suspicious strategies (i.e. suspicious cooperators and for P < 0 < R also144

suspicious defectors) who opt out of every interaction, trustful cooperators and trustful defectors who accept every145

interaction. The expected payoff for suspicious strategies is always 0 while for trustful strategies the payoffs are146

f1 = x1R+ y1S

g1 = x1T + y1P,

(2)

where f1, g1 are the expected payoffs and x1, y1 are the frequencies of trustful cooperators and trustful defectors,147

respectfully. We will use subscript 1 to denote trustful players, and we reserve subscript 0 to denote suspicious148

players. The subscripts can be thought of representing the probability of accepting unknown opponents.149

trustful
cooperation

trustful
defection

suspicious
strategies

(a)

x1 y1
trustful

cooperation
trustful
defection

suspicious
strategies

(b)

(d) (e)

x1 y1
trustful

cooperation
trustful
defection

suspicious
strategies

(c)

x1 y1

cooperation defection cooperation defection

Figure 2: Top row: Evolutionary dynamics (1) for a model (2) with zero information q = 0. In (a) 0 < P all trajectories approach
trustful defection (b) P = 0 all trajectories approach the line of equilibria spanned by suspicious strategies and trustful defection
(c) P < 0 all trajectories approach suspicious strategies. Note that the boundary is a heteroclinic cycle. Bottom row: Evolutionary
dynamics for a model with perfect information q = 1. In (d) 0 < P cooperation and defection are locally attracting, separated by
an unstable equilibrium. In (e) P ≤ 0 all trajectories approach cooperation.

The evolutionary dynamics of this model can be solved fully analytically and the results are depicted in Figure 2.150

In Figure 2(a) where 0 < P , all trajectories approach trustful defection. In Figure 2 (b) where P = 0, all trajectories151

approach the line of equilibria spanned by suspicious strategies and trustful defection, and in Figure 2(c) where P < 0,152

all trajectories approach suspicious strategies. Note that in the last case the boundary is a heteroclinic cycle. This model153

was analysed in the context of public goods game by Hauert et al. (2002a,b).154

If players have perfect information about the type of the opponent q = 1, it is nonsensical to distinguish between155

suspicious and trustful strategies as all opponents are known. In both non-trivial cases S < 0 ≤ P < R < T and156

S < P < 0 < R < T cooperators will only accept interactions with other cooperators, while defectors will accept157

defectors only if 0 < P . For all payoffs no games between defectors and cooperators are played. The analysis of158
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the evolutionary dynamics is straightforward. If 0 < P cooperation and defection are both locally attracting states159

separated by an unstable equilibrium (Figure 2(d)), and if P ≤ 0 cooperation is globally attracting (Figure 2(e)).160

161

Games with partial information162

In this section we consider models with partial information 0 < q < 1. The first model we analyze is where opting out163

of interactions yields no benefits nor costs to the player and so P = 0. We analyze this case first because of its simple164

evolutionary dynamics and because it contains the donation game, a version of prisoners dilemma that has a central165

role in the literature of the evolution of cooperation (Sigmund 2010).166

Opting out yields no benefits nor costs167

In this section we assume that opting out yields players the same payoff as mutual defection, i.e. P = 0. In such a168

case, defectors should always accept unknown players since accepting a game guarantees them a payoff that is at least169

0 (≤ P, T ). Suspicious defection is therefore not a rational strategy and will not be considered. Cooperators, however,170

may want to accept or opt out of an interaction with an unknown player: if the opponent is likely to be a cooperator,171

accepting is more beneficial than opting out 0 < R, but if the opponent is likely to be a defector it is better to opt172

out S < 0. We thus consider three strategies, trustful cooperators who accept a known cooperator and an unknown173

opponent but reject a known defector, suspicious cooperators who accept a known cooperator but reject everyone else,174

and trustful defectors who accept all opponents.175

To investigate the evolutionary dynamics (1) we calculate the expected payoffs for each strategy176

f0 =
(
x0q

2 + x1q
)
R

f1 = (x0q + x1)R+ y1(1− q)S

g1 = x1(1− q)T,

(3)

where similarly to previous section f0, f1, g1 are the expected payoffs and x0, x1, y1 are the frequencies of suspicious177

cooperators, trustful cooperators and trustful defectors, respectfully.178

The evolutionary dynamics (1) with the expected payoffs given in (3) can be analysed fully analytically (see SI)179

and the results are depicted in Figure 3. In Figure 3(a), where 0 < q < T−R
T , all trivial equilibria are saddles and180

because the interior trimorphic equilibrium (x0, x1, y1) is an unstable spiral all trajectories approach the heteroclinic181

cycle of trustful cooperation, trustful defection and suspicious cooperation (see SI for the exact expression of the182
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interior trimorphic equilibrium and the stability analysis). In Figures 3(b) where T−R
T < q < T

(R(1+ R
4T )

)+T
, trustful183

cooperation turns into a stable equilibrium, and so all trajectories approach the equilibrium of trustful cooperation. In184

Figure 3(c) where T
R(1+ R

4T )
)+T

< q < T+R
T , the interior trimorphic equilibrium (x0, x1, y1) changes from an unstable185

spiral to an unstable node, and in Figure 3 (d) where T+R
T < q < 1, the trimorphic equilibrium (x0, x1, y1) exits the186

interior. In both cases all trajectories approach the equilibrium of trustful cooperation. We remark that in the limiting187

cases where q approaches 0 or 1 we recover the model with zero q = 0 and perfect information q = 1, respectfully: as188

q approaches 0 the trimorphic equilibrium (x0, x1, y1) approaches the equilibrium of suspicious cooperation x0 and189

the line spanned by suspicious cooperators x0 and trustful defectors y1 turns into a line of equilibria (Figure 2(b)), and190

as q approaches 1 the unstable dimorphic equilibrium (x1, y1) approaches the equilibrium of trustful defection y1 and191

so all trajectories approach the equilibrium of trustful cooperation.192

The model (with partial information) contains two qualitatively different evolutionary outcomes. First, when193

trustful
cooperation

trustful
defection

suspicious
cooperation

(a)

x1 y1

x0

trustful
cooperation

trustful
defection

suspicious
cooperation

(b)

x1 y1

x0

trustful
cooperation

trustful
defection

suspicious
cooperation

(c)

x1 y1

x0

trustful
cooperation

trustful
defection

suspicious
cooperation

(d)

x1 y1

x0

Figure 3: Evolutionary dynamics (1) for a model (3) where opting out is not costly nor beneficial P = 0. The parameter values are
(a) 0 < q < T−R

T
(b) T−R

T
< q < T

(R(1+ R
4T )

)+T
(c) T

R(1+ R
4T )

)+T
< q < T+R

T
(d) T+R

T
< q < 1. In each panel in the top node

all the players are suspicious cooperators (x0 = 1), in the bottom left node all the players are trustful cooperators (x1 = 1) and in
the bottom right node all the players are trustful defectors (y1 = 1). The analytical expressions for the dimorphic and trimorphic
equilibria, and their stability conditions, are given in the SI. There are two qualitatively different evolutionary trajectories: In
panel (a) 0 < q < T−R

T
every trajectory approaches the rock-paper-scissors cycle of trustful cooperation, trustful defection and

suspicious cooperation, and in panels (b)-(d) T−R
T

< q < 1 all trajectories converge to a fully trustful cooperation.
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0 < q < T−R
T , the evolutionary dynamics approaches a heteroclinic rock-paper-scissors cycle of trustful cooperation,194

trustful defection and suspicious cooperation (Figure 3(a)). This is because for lower values of q most encounters195

are between unknown players. Therefore (i) almost all games between trustful defectors and trustful cooperators are196

accepted, and the situation is (almost) identical to the donation game with obligatory interactions where trustful de-197

fection beats trustful cooperation (ii) when trustful cooperators are absent both suspicious cooperators and trustful198

defectors play only amongst themselves, and because cooperative interaction yields higher payoff than defective in-199

teractions suspicious cooperators beat trustful defectors (iii) if most players are cooperators, trustful cooperators beat200

suspicious cooperators because trustful cooperators play more cooperative games by accepting unknown, and therefore201

cooperative, opponents.202

Second, when T−R
T < q < 1, the evolutionary outcome is a population of trustful cooperation, independently203

of the initial (strictly positive) frequency distribution of strategies (Figures 3(b)-(d)). Trustful cooperation is an ESS204

because for higher values of q a population of trustful cooperators efficiently refuse defective games. This implies that205

trajectories nearby converge to a fully trustful cooperation. The global convergence is due to the existence of suspicious206

cooperators as they can invade a population of defectors, and then be eventually replaced by trustful cooperators.207

We remark that a similar ESS condition has been derived in Nowak and Sigmund (1998a), Nowak and Sigmund208

(1998b), Suzuki and Toquenaga (2005) and Ghang and Nowak (2015). There are however two notable differences.209

Firstly, the condition given in the previous work was derived for a donation game stating that cooperation is an ESS if210

the probability of knowing the type of the opponent q is greater than the cost to benefit ratio of cooperation. However,211

our model is derived for the general prisoners dilemma allowing us to make a distinction between the cost of cooper-212

ation P − S and the benefit of defection T − R (in the donation game they are equal). The interpretation of the ESS213

condition then becomes a ratio between the benefit of defection T − R, rather than cost of cooperation, and a payoff214

value which is the difference between unknown and known defectors encountering a trustful cooperator, i.e. T (recall215

the reinterpretation of the payoff values). Secondly, but more importantly, our condition implies global convergence to216

trustful cooperation. This is a consequence of allowing decision rules that are optimal when trustful behaviour is not,217

and therefore, when population consist mainly of defectors, suspicious behaviour becomes the outcompeting social218

norm which eventually enables the dominance of trustful cooperation.219

220

Opting out is costly221

Lets now suppose that players who opt out are strictly worse off than players who mutually defect S < 0 < P .222

Because defectors should accept every interaction whenever 0 ≤ P , the strategies under consideration are identical to223
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the previous model (P = 0). The expected payoffs are224

f0 =
(
x0q

2 + x1q
)
R

f1 = (x0q + x1)R+ y1(1− q)S

g1 = x1(1− q)T + y1P.

(4)

The evolutionary dynamics (1) with the expected payoffs given in (4) can be analysed fully analytically (see SI for225

detailed analysis) and we summarise the results in Figure 4.226

In contrast with the previous model with P = 0, a trimorphic equilibrium (x0, x1, y1) enters the interior of the227

state space whenever (deleted: the condition) P
−S < 1 holds. There are thus three cases to consider that depend on228

whether the trimorphic equilibrium enters the interior of the state space, and if it does, whether at the time of entry the229

trustful
defection
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Figure 4: Evolutionary dynamics (1) for a model (4) where rejected interactions are costly S < 0 < P . We distinguish three
cases (a1)-(d1), (a2)-(d2) and (a3)-(b3), depending on the relationship between the trimorphic equilibrium (x0, x1, y1) and the
equilibrium of trustful cooperation (see the main text). The parameter values are (a1) 0 < q < P

−S
(b1) P

−S
< q < T−R

T
(c1)

T−R
T

< q < PR−ST
−S(R+T )

(d1) PR−ST
−S(R+T )

< q < 1, (a2) 0 < q < T−R
T

(b2) T−R
T

< q < P
−S

(c2) P
−S

< q < PR−ST
−S(R+T )

(d2)
PR−ST
−S(R+T )

< q < 1, (a3) 0 < q < T−R
T

(b3) T−R
T

< q < 1. Notation is identical to Figure 3. There are two qualitatively different
evolutionary outcomes: in panels where 0 < q < T−R

T
all trajectories approach trustful defection, and in panels where T−R

T
<

q < 1 all trajectories approach either trustful defection or trustful cooperation depending on the initial frequency distribution. See
SI for a detailed analysis.
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equilibrium of trustful cooperation is stable or not. In the first case the trimorphic equilibrium (x0, x1, y1) enters the230

interior while trustful cooperation is an unstable equilibrium 0 < P
−S < T−R

T (Figure 4, top row (a1)-(d1)). In (a1)231

0 < q < P
−S the trimorphic equilibrium (x0, x1, y1) is in the exterior of the state space and the only stable equilibrium232

is the equilibrium of trustful defection y1. In (b1) P
−S < q < T−R

T the unstable trimorphic equilibrium (x0, x1, y1)233

enters the interior, and in (c1) T−R
T < q < PR−ST

−S(R+T ) the equilibrium of trustful cooperation x1 becomes stable.234

In (d1) PR−ST
−S(R+T ) < q < 1 the trimorphic equilibrium (x0, x1, y1) leaves the interior. We have that in (a1)-(b1) all235

evolutionary trajectories approach the equilibrium of trustful defection y1 (globally convergent ESS), and in (c1)-(d1)236

it depends on the initial frequency distribution of strategies whether evolutionary trajectories approach the equilibrium237

of trustful cooperation x1 or trustful defection y1 (both locally convergent ESS).238

In the second case trustful cooperation is stable as the trimorphic equilibrium (x0, x1, y1) enters the interior T−RT <239

P
−S < 1 (Figure 4, middle row (a2)-(d2)). In (a2) 0 < q < T−R

T the trimorphic equilibrium (x0, x1, y1) is in240

the exterior of the state space and the only stable equilibrium is the equilibrium of trustful defection y1. In (b2)241

T−R
T < q < P

−S the equilibrium of trustful cooperation becomes stable, in (c2) P
−S < q < PR−ST

−S(R+T ) the trimorphic242

equilibrium (x0, x1, y1) enters the interior and in (d2) PR−ST
−S(R+T ) < q < 1 the trimorphic equilibrium (x0, x1, y1)243

leaves the interior. We have that in (a2) all trajectories approach the equilibrium of trustful defection y1 and in (b2)-244

(d2) it depends on the initial frequency distribution of strategies whether trajectories approach the equilibrium of245

trustful cooperation x1 or trustful defection y1. In the third case the trimorphic equilibrium never enters the interior246

1 < P
−S (Figure 4, bottom row (a3)-(b3)). In (a3) 0 < q < T−R

T the only stable equilibrium is the equilibrium of247

trustful defection y1 and so all trajectories approach trustful defection and in (b3) T−R
T < q < 1 the equilibrium of248

trustful cooperation becomes stable and so depending on the initial frequency distribution of strategies all trajectories249

approach the equilibrium of trustful cooperation x1 or trustful defection y1. We remark that as q approaches 0 or 1 this250

model simplifies to the model with zero q = 0 (Figure 2a) and perfect information q = 1, respectfully.251

We observe that in this model trustful defection is an ESS for all values of q. This is because opting out is costly252

0 < P and so both trustful and suspicious cooperators are at a disadvantage for sufficiently high frequency of defectors.253

This means that all trajectories converge to a fully defective population whenever 0 < q < T−R
T . When T−R

T < q < 1254

trustful cooperation is also an ESS, but contrary to the previous model (P = 0) it is not a globally convergent ESS.255

However, the basin of attraction increases with q and for large q only trajectories close to full defection are unable to256

reach the ESS of trustful cooperation.257

258
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Opting out is beneficial259

In this section we suppose that opting out yields a strictly greater payoff than mutual defection P < 0 < R. In260

contrast to the previous two cases, defectors ought to avoid each other and so in addition to trustful cooperators, trustful261

defectors and suspicious cooperators we must also consider suspicious defectors, having in total four strategies. Note262

that since in this model mutual defection is worse than opting out, defective strategies will reject known defectors.263

The expected payoffs are264

f0 =
(
x0q

2 + x1q
)
R

f1 = (x0q + x1)R+ (y0q + y1)(1− q)S

g0 = x1(1− q)T

g1 = x1(1− q)T + y1(1− q)2P,

(5)

where y0 is the frequency and g0 the expected payoff of suspicious defectors. The evolutionary dynamics (1) with265

the expected payoffs given in (5) can be analysed analytically, except for intermediate values of q where we couldn’t266
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x0

x1

y0

x0
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Figure 5: Evolutionary dynamics (1) for a model (5) where opting out is beneficial P < 0 < R, and when T < 4R: (a)
0 < q < qstab.

x0x1y1 (b) qstab.
x0x1y1 < q < q0 (c) q0 < q < qexit

x0x1y1 (d) qexit
x0x1y1 < q < qentry

x1y0y1 (e) qentry
x1y0y1 < q < 1. The filled circles

are stable equilibria, i.e. all the eigenvalues are negative (see SI for details). For simplicity no arrows are drawn for the trimorphic
equilibria, unless the equilibrium is an unstable equilibrium but also has negative eigenvalues in which case the stable direction(s)
is drawn. There are three different evolutionary outcomes. 1. All trajectories approach the equilibrium of suspicious cooperation,
trustful cooperation and trustful defection (x0, x1, y0) (panel (a)). 2. All trajectories approach one of the two heteroclinic cycles,
either x0 → x1 → y1 or x0 → x1 → y1 → y0. Numerical investigation shows it is the first one (panel (b)) . 3. All trajectories
approach the equilibrium of trustful cooperation x1 (panels (c)-(d)).
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determine which of the two, when T < 4R, or three, when 4R ≤ T , possible heteroclinic cycles evolutionary267

trajectories approach to (see below for the precise condition; a more detailed analysis is in SI). Figure 5 summarizes268

the results for the case T < 4R and Figure 6 summarizes the case 4R ≤ T .269

The threshold values at which we transition between panels in Figures 5 and 6 are270

qstab.
x0x1y1 =

1

−2P (T −R)

[
−2P (T −R)− SR−

√
R2S2 + 4SPRT − 4SPR2

]
(6)

q0 =
T −R
T

= qenter
x1y1 = qexit

x0x1y0 (7)

qexit
x0x1y1 =

−1

2PR
[S(R+ T )− 2PR+

√
S2(R+ T )2 − 4PSR2] (8)

qentry
x1y0y1 =

1

−2PT
[T (S − P ) +

√
−4P 2RT + T 2(P + S)2] (9)

(10)
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Figure 6: Evolutionary dynamics (1) for a model (5) where opting out is beneficial P < 0 < R, and when 4R ≤ T : In contrast
with the case in Figure 5, the unstable equilibrium (x1, y0) exits the interior for qexit

x1y0 < q < qentry
x1y0 . We distinguish three cases

based on the order in which we transition between the panels when q increases. For the case (i) qstab.
x0x1y1 < qexit

x1y0 , we transition
between (a1), (b1), (b2), (b1), after which continue to (c), (d) and (e) (ii) qexit

x1y0 < qstab.
x0x1y1 < qentry

x1y0 we transition between (a1),
(a2), (b2), (b1), after which continue to (c), (d) and (e), and (iii) qentry

x1y0 < qstab.
x0x1y1 we transition between (a1), (a2), (a1), (b1),

after which continue to (c), (d) and (e). Similarly to Figure 5 we have (a1a2) 0 < q < qstab.
x0x1y1 (b1b2) qstab.

x0x1y1 < q < q0 (c)
q0 < q < qexit

x0x1y1 (d) qexit
x0x1y1 < q < qentry

x1y0y1 (e) qentry
x1y0y1 < q < 1. Notation is identical to Figure 5. There are three different

evolutionary outcomes: 1. All trajectories approach the equilibrium of suspicious cooperation, trustful cooperation and trustful
defection (x0, x1, y0) (panels (a1, a2)) . 2. All trajectories approach one of the three heteroclinic cycles, either x0 → x1 → y1
or x0 → x1 → y1 → y0 (panels b1,b2), or an additional cycle x0 → x1 → y0 which is possible only in panel (b2). Numerical
investigation shows it is the first one. 3. All trajectories approach the equilibrium of trustful cooperation x1 (panels (c)-(d)) .
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where qstab.
x0x1y1 < q0 < qexit

x0x1y1 < qentry
x1y0y1 for all payoff values S, P,R, T . In Figure 6 we need additional thresholds271

qexit
x1y0 =

1

2
− 1

2

√
1− 4

R

T
(11)

qentry
x1y0 =

1

2
+

1

2

√
1− 4

R

T
, (12)

where qexit
x1y0 < qentry

x1y0 < q0 for all R, T . However, the relative order between the thresholds qexit
x1y0 , q

entry
x1y0 and qstab.

x0x1y1272

depends on S, P,R, T .273

Let us first analyze the case T < 4R (Figure 5). In panel (a) 0 < q < qstab.
x0x1y1 there exists a stable trimorphic274

equilibrium (x0, x1, y1). In panel (b) qstab.
x0x1y1 < q < q0 the trimorphic equilibrium (x0, x1, y1) becomes unstable275

and there are no stable equilibria in the system. In panel (c) q0 < q < qexit
x0x1y1 the dimorphic equilibrium (x1, y1)276

enters the interior and trustful cooperation x1 becomes stable. In panel (d) qexit
x0x1y1 < q < qentry

x1y0y1 the trimorphic277

equilibrium (x0, x1, y1) exits the interior by passing through the dimorphic equilibrium (x1, y1), and in panel (e)278

qentry
x1y0y1 < q < 1 an unstable trimorphic equilibrium (x1, y0, y1) enters the interior by passing through the dimor-279

phic equilibrium (x1, y0). Because there are no interior 4−morphic equilibria (see SI) all evolutionary trajectories280

approach the boundary of the state space. As a consequence we get that in panel (a) all evolutionary trajectories ap-281

proach the stable coexistence of suspicious cooperation, trustful cooperation and trustful defection at the equilibrium282

(x0, x1, y1). In panel (b) all evolutionary trajectories approach one of the two heteroclinic cycles, either the cycle283

between suspicious cooperation, trustful cooperation and trustful defection (x0 → x1 → y1) or the cycle between284

suspicious cooperation, trustful cooperation, trustful defection and suspicious defection (x0 → x1 → y1 → y0). Our285

numerical investigation indicates it is the cycle x0 → x1 → y1. Finally, in panels (c)-(e) all evolutionary trajectories286

approach trustful cooperation x1.287

In Figure 6, where 4R ≤ T , the phase planes are similar to the previous case except that the dimorphic unstable288

equilibrium (x1, y0) exits the interior for qexit
x1y0 < q < qentry

x1y0 . We need to distinguish three cases based on the order in289

which we transition between the panels when q increases. In the first case (i) qstab.
x0x1y1 < qexit

x1y0 , we transition between290

(a1), (b1), (b2), (b1), after which we continue to (c), (d) and (e). In the second case (ii) qexit
x1y0 < qstab.

x0x1y1 < qentry
x1y0291

we transition between (a1), (a2), (b2), (b1), after which we continue to (c), (d) and (e), and (iii) qentry
x1y0 < qstab.

x0x1y1 we292

transition between (a1), (a2), (a1), (b1), after which we continue to (c), (d) and (e). Otherwise the threshold values for293

which we transition between panels are similar to Figure 5. An important consequence of the dimorphic equilibrium294

exiting the interior is that in panel (b2) evolutionary trajectories may approach an additional heteroclinic cycle of295

suspicious cooperation, trustful cooperation and suspicious defection (x0 → x1 → y0). However, our numerical296

15



investigation indicates all trajectories approach the cycle x0 → x1 → y1. We remark that as q approaches 0 or 1297

this model simplifies to the model with no q = 0 (Figure 2(c)) and perfect information q = 1, respectfully. As q298

approaches 0 then the globally stable trimorphic equilibrium (x0, x1, y1) approaches the equilibrium of suspicious299

cooperation x0 and when q approaches 1 then the unstable dimorphic equilibrium (x1, y1) approaches y1 and so all300

trajectories approach trustful cooperation.301
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DISCUSSION302

In this paper we introduced an evolutionary game theoretic model where individuals encounter each other at random,303

but have the option to opt out of interactions based on partial information about their encountered opponents. With304

a fixed probability, individuals are assumed to know whether the opponent is a cooperator or defector. This simple305

formulation allowed us to solve the model of prisoners dilemma with optional interactions fully analytically, with the306

exception of a specific parameter region where we were not able to determine which of the three or four heteroclinic307

cycles evolutionary trajectories approach to (see below).308
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Figure 7: Summary of the results. On the vertical axis is the probability of knowing the type of the opponent q, and on the
horizontal axis is the payoff for non-social behaviour 0 (opting out). The vertical black line in the middle represents the non-generic
case where P = 0, while on the left of the vertical line opting out is costly S ≤ 0 < P and on the right opting out is beneficial
P < 0 < R. In each area with a different colour theme we draw a triangle that represents the phase plane for the parameter values
in the area, such that in each triangle in the bottom left corner all the players are trustful cooperators x1, in the bottom right corner
all the players are trustful defectors y1 and the upper corner all the players are suspicious cooperators x1. Trustful cooperation is
an ESS above the curve q = T−R

T
(the upper curve) and trustful defection is an ESS whenever S ≤ 0 < P . Thus for S ≤ 0 < P

and 0 ≤ q < T−R
T

all trajectories approach trustful defection (red area), for P ≤ 0S < 0 and T−R
T

< q ≤ 1 all trajectories
approach trustful cooperation (green area) and for S < 0 < P and T−R

T
< q ≤ 1 all trajectories approach either trustful defection

or trustful cooperation depending on the initial frequency distribution (purple area). For P ≤ 0 ≤ R and qstab.
x0x1y1 < q < T−R

T
,

where q = qstab.
x0x1y1 is the bottom curve (see the exact expression in (6)), all trajectories approach the rock-paper-scissors cycle of

suspicious cooperation, trustful cooperation and trustful defection (numerical result; yellow area). For P ≤ 0 ≤ R below the curve
q = qstab.

x0x1y1 (blue area) all trajectories approach the stable coexistence of suspicious cooperation, trustful cooperation and trustful
defection.

The results of our paper are summarised in Figure 7. First, we find that if the probability of identifying the type309

of the opponent is sufficiently high, T−RT < q ≤ 1, then trustful cooperation is an ESS (similar condition was derived310

in Nowak and Sigmund 1998a,b, Suzuki and Toquenaga 2005, Ghang and Nowak 2015). Interestingly, and in contrast311
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with previous findings, if opting out is at least as beneficial as mutual defection (P ≤ 0), then trustful cooperation is a312

globally convergent ESS, i.e. trustful cooperation is reached from any initial frequency distribution of strategies (green313

area in Figure 7). In particular, even an (almost) entirely defective population will be replaced by trustful cooperators.314

Secondly, we find that if the probability of knowing the type of the opponent is 0 ≤ q ≤ T−R
T , and opting out is at315

least as beneficial as mutual defection (P ≤ 0), then all evolutionary trajectories approach one of the three heteroclinic316

cycles given in model (5) (yellow area denoted ”evolutionary cycle” in Figure 7). Numerical investigation indicates317

that all trajectories approach the cycle of suspicious cooperation, trustful cooperation and trustful defection. Thirdly,318

if opting out is strictly worse than mutual defection (S < 0 < P ) then trustful defection is always an ESS, either a319

locally convergent T−RT < q ≤ 1 (purple area denoted ”trustful defection and trustful cooperation” in Figure 7) or320

globally convergent ESS 0 ≤ q ≤ T−R
T (red area denoted ”trustful defection” in Figure 7). Lastly, if opting out is321

strictly beneficial (P < 0 ≤ R), then for 0 ≤ q < qstab.
x0x1y1 , trustful cooperators, trustful defectors and suspicious322

cooperators coexist at a globally stable equilibrium (see model (5) for the exact condition; blue area denoted ”stable323

coexistence” in Figure 7). Note that suspicious defectors are always (eventually) selected against and thus eradicated324

from the population. We remark that the models with zero q = 0 and perfect information q = 1 are (deleted: also)325

aligned with the Figure 7.326

Our model can be extended in a straightforward manner to several intriguing directions. One possibility is to327

consider multiplayer games where each player has partial information about other players in the group. Here, a group328

of players may find themselves in a situation where only a fraction of players want to opt out while others would329

wish to continue the game, which may or may not be allowed depending on the biological motivation of the model.330

Ultimately, such situations would have to be accounted for by the model which consequently leads to more complex331

decision-rules as the group size increases. Another possibility is to allow errors in perception or execution of strategies332

(Molander 1985, Sigmund 2010). This scenario would also require to update our current strategies as even trustful333

individuals should either doubt the truthfulness of the observed type (errors in perception) or should be suspicious of334

the future action of the opponent (errors in execution). Yet another possibility is to consider a game where players335

don’t have the option of opting out if the opponent wants to interact. This case may apply for example in mating336

systems with forced copulations (Verrell 1998). However, the assumption of forced interactions may be better suited337

for games other than prisoners dilemma where we suspect its effect on the dynamics becomes trivial. This is because338

in prisoners dilemma the preference for opponents is unidirectional, and so the preferred cooperative players would339

be forced into harmful partnerships, consequently lowering the level of cooperation. Finally, instead of pure-decision340

rules a mixed decision could be used where accepting an unknown opponent happens with some probability. This341

set-up could be used, for example, to investigate the gradual evolution of trust in fully suspicious populations.342
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To conclude, our simple mathematically tractable evolutionary model with optional interactions, a model that can343

be readily extended to games other than prisoners dilemma, shows that the option of non-social behaviour facilitates344

the emergence of cooperative behaviour. Interestingly, the option of non-sociality facilitates not only stable coopera-345

tive populations but also trustful behaviour that accepts interactions with potentially harmful players.346
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SUPPLEMENTARY INFORMATION437

Rescaling the payoffs S, P,R, T

First we will show that only the difference in payoffs between social interactions and non-social behaviour matters.

The expected payoff for each strategy A, upon encountering a random player, is

EA =
∑
B

xBπABuAB +
∑
B

xB(1− πAB)L

=
∑
B

xBπAB(uAB − L) + L,

(13)

where xB is the frequency of a strategy B, πAB ∈ [0, 1] is the probability that players A and B will play a game

(function of q) and uAB ∈ {S, P,R, T} is the payoff to a player A when the interaction is accepted with a player B.

The evolutionary dynamics is represented with the continuous-time replicator dynamics

ẋA =xA
[
EA − Ē

]
=xA

[∑
B

xBπAB(uAB − L) + L−
∑
C

xC

(∑
B

xBπCB(uCB − L) + L

)]
(14)

=xA

∑
B

xBπAB(uAB − L)−
∑
B,C

xCxBπCB(uCB − L)

 .
which shows that we only need to consider the difference in payoffs between accepted and rejected interactions438

uAB − L. We thus scale the payoffs, and redefine the notation so that with T we denote T − L, etc.439

440

Zero information441

Case 0 < P :442

1-morphic equilibria443

• ẑx0
= (x̂0, x̂1, ŷ1) = (1, 0, 0). The eigenvalues are444

– λx0,x1
= 0.445

– λx0,y1 = 0.446

• ẑx1 = (x̂0, x̂1, ŷ1) = (0, 1, 0). The eigenvalues are447

– λx1,x0
= −R < 0, and so ẑx1

is always stable in the direction of x1 = 1.448
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– λx1,y1 = T −R > 0, and so ẑx1 is always unstable in the direction of y1 = 1.449

• ẑy1 = (x̂0, x̂1, ŷ1) = (0, 0, 1). The eigenvalues are450

– λy1,x0 = −P < 0, and so ẑy1 is always stable in the direction of y1 = 1.451

– λy1,x1
= S − P < 0, and so ẑy1 is always stable in the direction of y1 = 1.452

Since there are no (interior) 2-morphic nor (any) 3-morphic equilibria all trajectories approach the equilibrium of453

trustful defection ẑy1 = (x̂0, x̂1, ŷ1) = (0, 0, 1).454

455

Case 0 = P :456

1-morphic equilibria457

• ẑx0
= (x̂0, x̂1, ŷ1) = (1, 0, 0). For stability see below.458

• ẑx1 = (x̂0, x̂1, ŷ1) = (0, 1, 0). The eigenvalues are459

– λx1,x0
= −R < 0, and so ẑx1

is always stable in the direction x1 = 1.460

– λx1,y1 = T −R > 0, and so ẑx1 is always unstable in the direction y1 = 1.461

• ẑy1 = (x̂0, x̂1, ŷ1) = (0, 0, 1). For stability see below.462

2-morphic equilibria463

• ẑx0y1 = (x̂0, x̂1, ŷ1) = (0, 1− y1, y1) gives a line of equilibria. The eigenvalues are464

– λx0y1,x0y1 = 0, as this is a line of equilibria there is no (directional) dynamics along this line.465

– λx0y1,y1 = y1S ≤ 0, and so the line of equilibria ẑx0y1 is stable w.r.t. to the interior of the phase-plane466

whenever y1 > 0. For y1 = 0 the equilibrium point ẑx0
= (x̂0, x̂1, ŷ1) = (1, 0, 0) is unstable in the467

direction of x1 = 1.468

Since there are no 3-morphic equilibria all trajectories approach the line of equilibria ẑx0y1 = (x̂0, x̂1, ŷ1) = (0, 1 −469

y1, y1), where y1 > 0.470

471

Case P < 0:472

1-morphic equilibria473

• ẑx0
= (x̂0, x̂1, ŷ1) = (1, 0, 0). The eigenvalues are474
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– λx0,x1 = 0.475

– λx0,y1 = 0.476

• ẑx1
= (x̂0, x̂1, ŷ1) = (0, 1, 0). The eigenvalues are477

– λx1,x0
= −R < 0, and so ẑx1

is always stable in the direction of x1 = 1.478

– λx1,y1 = T −R > 0, and so ẑx1
is always unstable in the direction of y1 = 1.479

• ẑy1 = (x̂0, x̂1, ŷ1) = (0, 0, 1). The eigenvalues are480

– λy1,x0
= −P > 0, and so ẑy1 is always unstable in the direction of x0 = 1.481

– λy1,x1
= S − P < 0, and so ẑy1 is always stable in the direction of y1 = 1.482

Since there are no 3-morphic equilibria all trajectories approach the equilibrium of suspicious strategies ẑy1 =483

(x̂0, x̂1, ŷ1) = (1, 0, 0).484

485

Perfect information486

In the model with perfect information cooperators interact only amongst themselves and reject every interaction with487

a defector, whereas defectors interact amongst themselves if P > 0 and interact with no-one if P ≤ 0.488

489

Case 0 < P :490

The dynamics is captured by ẋ = xR, ẏ = yP where x, y are cooperators and defectors, respectfully.491

1-morphic equilibria492

• ẑx = (x̂, ŷ) = (1, 0). The eigenvalue is λx,y = −R and so this equilibrium is stable.493

• ẑy = (x̂, ŷ) = (0, 1). The eigenvalue is λy,x = −P and so this equilibrium is stable.494

2-morphic equilibrium495

• ẑx,y = (x̂, ŷ) = ( P
R+P ,

R
P+R ). The eigenvalue is λxy = RP

R+P > 0 and so this equilibrium is always unstable496

whenever it is in the interior.497

Both cooperation and defection are locally attracting strategies.498

499

Case P ≥ 0:500

The dynamics is captured by ẋ = xR, ẏ = 0 where x, y are cooperators and defectors, respectfully. Since x increases501
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for any x > 0 the dynamics approaches x = 1 for any initial condition x > 0.502

503

Partial information: opting out is costly S < 0 < P < R < T504

1-morphic equilibria505

• ẑx0
= (x̂0, x̂1, ŷ1) = (1, 0, 0). The eigenvalues are506

– λx0,x1 = qR(1− q) > 0, and so ẑx0 is always unstable in the direction of x1 = 1.507

– λx0,y1 = −q2R < 0, and so ẑx0
is always stable in the direction of y1 = 1.508

• ẑx1
= (x̂0, x̂1, ŷ1) = (0, 1, 0). The eigenvalues are509

– λx1,x0
= −R(1− q) < 0, and so ẑx1

is always stable in the direction of x1 = 1.510

– λx1,y1 = (1 − q)T − R < 0, and so ẑx1
is stable in the direction of y1 = 1 ⇐⇒ T−R

T < q < 1. We511

denote q0 = T−R
T .512

• ẑy1 = (x̂0, x̂1, ŷ1) = (0, 0, 1). The eigenvalues are513

– λy1,x0 = −P < 0, and so ẑy1 is always stable in the direction of x1 = 1.514

– λy1,x1
= (1− q)S − P < 0, and so ẑy1 is always stable in the direction of y1 = 1.515

2-morphic equilibria516

517

• (x̂0, x̂1, ŷ1) = ( 1
1−q ,

−q
1−q , 0) which is never in the interior of the state space.518

• ẑx0y1 = (x̂0, x̂1, ŷ1) = ( P
P+Rq2 , 0,

Rq2

P+Rq2 ), which is always in the interior of the state space. The eigenvalues519

are520

– λx0y1,x0y1 = RPq2

P+RPq2 > 0, and so ẑx0y1 is always unstable in the direction of x0 = 1 and y1 = 1.521

– λx0y1,x0x1y1 = Rq
P+Rq2

(
P − qP + qS − q2S

)
, which is always positive if P

−S > 1, and if P
−S < 1 it is522

positive iff P
−S < q < 1. Thus ẑx0y1 is unstable in the direction of the state space spanned by strategies523

(x0, x1, y1) for all 0 < q < 1 if P
−S > 1, and for P

−S < q < 1 if P
−S < 1. We denote qentry

x0x1y1 = P
−S .524

• ẑx1y1 = (x̂0, x̂1, ŷ1) = (0, 1
A (P − S(1 − q)), 1

A (R − T (1 − q))), where A = P + R − (T + S)(1 − q). We525

get that the equilibrium is in the interior of the state space ⇐⇒ T−R
T < q < 1. We denote qentry

x1y1 = q0. The526

eigenvalues are527
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– λx1y1,x1y1 = B1

A , where B1 = q2ST +PqT + qRS− 2qST +PR−PT −RS+ST and A is as above.528

Therefore, whenever the equilibrium is in the interior we must have A > 0, and so λx1y1,x1y1 > 0 ⇐⇒529

B1 > 0. We get B1 > 0 ⇐⇒ T−R
T < q < 1. That is, whenever ẑx1y1 is in the interior it is always530

unstable in the direction of x1 = 1 and y1 = 1.531

– λx1y1,x0x1y1 = B2

A , where B2 = q2RS + q2ST + PqR − qRS − 2qST − PR + ST and A is as above.532

Therefore, whenever the equilibrium is in the interior we must have A > 0, and so λx1y1,x0x1y1 < 0 ⇐⇒533

B2 < 0. We get that B2 < 0 is true for all 0 < q < 1 if P
−S > 1, and is true for 0 < q < PR−ST

−S(T+R) , if534

P
−S < 1. We denote PR−ST

−S(R+T ) = qexit
x0x1y1 .535

3-morphic equilibrium536

537

• ẑx0x1y1 = (x̂0, x̂1, ŷ1) = ( 1
A (PR − ST + qS(T + R)), 1

A (−qR(qS + P )), 1
A (qRT (1 − q))), where A =538

(PR − ST + qR(S + T ))(1 − q). We notice that ŷ1 > 0 ⇐⇒ A > 0 which is true for all 0 < q < 1 if539

T
−S > 1 and is true for 0 < q < PR−ST

−R(S+T ) if T
−S < 1. Also, we notice that x̂1 > 0, given A > 0, iff P

−S < q,540

and that x̂0 > 0, given A > 0, iff 0 < q < PR−ST
−S(R+T ) . Therefore ẑx0x1y1 is in the interior iff A > 0 and541

qentry
x0x1y1 < q < qexit

x0x1y1 where the latter condition is true whenever P
−S < 1. Because the former condition is542

true for all 0 < q < 1 if T
−S > 1 and is true for 0 < q < PR−ST

−R(S+T ) if T
−S < 1, we still need to confirm that543

PR−ST
−S(R+T ) <

PR−ST
−R(S+T ) . Since this inequality is always true, we have that ẑx0x1y1 is in the interior iff P

−S < 1544

and qentry
x0x1y1 = P

−S < q < PR−ST
−S(R+T ) = qexit

x0x1y1 .545

The eigenvalues are546

– λ1,2x1y1,x0x1y1 = (1−q)qR
2A (B±

√
∆), where A is as above, B = P (T −R)−RSq > 0 and ∆ = q2R2S2 +547

4q2RS2T+4q2S2T 2+2PqR2S+6PqRST+4PqST 2−4qS2T 2+P 2R2+2P 2RT+P 2T 2−4PST 2.548

If the eigenvalues are complex, i.e. ∆ < 0, then the real part of λ1,2x1y1,x0x1y1 is always positive because549

B > 0. If the eigenvalues are real, i.e. ∆ is non-negative, then λ1,2x1y1,x0x1y1 are positive when qentry
x0x1y1 =550

P
−S < q < PR−ST

−S(R+T ) = qexit
x0x1y1 , i.e. whenever the equilibrium is in the interior. Therefore, the equilibrium551

ẑx0x1y1 is unstable whenever it is in the interior of the state space.552

To see whether the equilibrium is an unstable node or a spiral we check for which values the eigenvalues553

are complex, i.e. ∆ < 0. The roots of ∆ = 0 are q−,+x0x1y1,complex = α±2
√
β

γ , where α = PR2 + 3RPT +554

2PT 2 − 2ST 2, β = PRST 3 + 2PST 4 + S2T 4 and γ = −S(R2 + 4RT + 4T 2) > 0. If β < 0,555

then ∆ > 0, i.e. the eigenvalues are always real, which is true when T
2T+R < P

−S . If β ≥ 0, then556
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∆ < 0 ⇐⇒ q−x0x1y1,complex < q < q+x0x1y1,complex. Because we know that the eigenvalues must be real557

when the equilibrium enters and when it exits the interior of the state space, we obtain the following result:558

The equilibrium ẑx0x1y1 , is always unstable when it is in the interior of the state space (necessarily P
−S <559

1), more precisely it is an560

∗ unstable spiral iff T
2T+R > P

−S and q−x0x1y1,complex < q < q+x0x1y1,complex561

∗ unstable node iff T
2T+R < P

−S , or T
2T+R > P

−S and qentry
x0x1y1 = P

−S < q < q−x0x1y1,complex and562

q+x0x1y1,complex < q < PR−ST
−S(R+T ) = qexit

x0x1y1563

We remark that if 1+
√
5

2 R < T then T
2T+R < T−R

T , and when R < T < 1+
√
5

2 R then T
2T+R > T−R

T .564

These conditions tell us the relationship between ẑx1y1 entering the interior and whether the eigenvalues565

of ẑx0x1y1 are always real or not.566

In summary, there are two qualitatively different evolutionary trajectories: if 0 < q < T−R
T , then all trajectories567

tend towards trustful defection, and if T−RT < q < 1, then trajectories tend to either trustful defection or cooperation,568

depending on the exact initial conditions.569

570

Partial information: opting out yields no benefits nor costs S < 0 = P < R < T571

Because the strategies for this model (0 = P ) and the model where opting out is costly (0 < P ) are identical, we ob-572

tain the evolutionary dynamics by simple setting P = 0 in the previous model. For completeness we work this case out.573

574

1-morphic equilibria575

• ẑx0 = (x̂0, x̂1, ŷ1) = (1, 0, 0). The eigenvalues are576

– λx0,x1
= qR(1− q) > 0, and so ẑx0

is always unstable in the direction of x1 = 1.577

– λx0,y1 = −q2R < 0, and so ẑx0 is always stable in the direction of y1 = 1.578

• ẑx1
= (x̂0, x̂1, ŷ1) = (0, 1, 0). The eigenvalues are579

– λx1,x0 = −R(1− q) < 0, and so ẑx1 is always stable in the direction of x0 = 1.580

– λx1,y1 = (1 − q)T − R < 0, and so ẑx1
is stable in the direction of y1 = 1 ⇐⇒ T−R

T < q < 1. We581

denote q0 = T−R
T .582

• ẑy1 = (x̂0, x̂1, ŷ1) = (0, 0, 1). The eigenvalues are583
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– λy1,x0 = 0, but since λx0,y1 < 0 and there are no 2-morphic equilibria when x1 = 0 (see below), the584

equilibrium ẑy1 is always stable in the direction of x0 = 1.585

– λy1,x1
= (1− q)S < 0, and so ẑy1 is always stable in the direction of x1 = 1.586

2-morphic equilibria587

588

• (x̂0, x̂1, ŷ1) = ( 1
1−q ,

−q
1−q , 0) which is never in the interior of the state space.589

• ẑx1y1 = (x̂0, x̂1, ŷ1) = (0, 1
A (−S(1− q)), 1

A (R−T (1− q))), where A = R− (T +S)(1− q). We get that the590

equilibrium is in the interior of the state space ⇐⇒ T−R
T < q < 1. We denote qentry

x1y1 = q0. The eigenvalues591

are592

– λx1y1,x1y1 = B1

A , where B1 = q2ST + qRS− 2qST −RS+ST and A is as above. Therefore, whenever593

the equilibrium is in the interior we must have A > 0, and so λx1y1,x1y1 > 0 ⇐⇒ B1 > 0. We get594

B1 > 0 ⇐⇒ T−R
T < q < 1. That is, whenever ẑx1y1 is in the interior it is always unstable in the595

direction of x1 = 1 and y1 = 1.596

– λx1y1,x0x1y1 = B2

A , where B2 = q2RS + q2ST − qRS − 2qST + ST and A is as above. Therefore,597

whenever the equilibrium is in the interior we must have A > 0, and so λx1y1,x0x1y1 < 0 ⇐⇒ B2 < 0598

which is true for 0 < q < T
(T+R) . We denote T

(R+T ) = qexit
x0x1y1 .599

3-morphic equilibrium600

601

• ẑx0x1y1 = (x̂0, x̂1, ŷ1) = ( 1
A (−ST +qS(T +R)), 1

A (−q2RS), 1
A (qRT (1−q))), where A = (−ST +qR(S+602

T ))(1 − q). We notice that ŷ1 > 0 ⇐⇒ A > 0 which is true for all 0 < q < 1 if T
−S > 1 and is true603

for 0 < q < −ST
−R(S+T ) if T

−S < 1. Also, we notice that x̂1 > 0 only if A > 0, and if A > 0 then x̂0 > 0604

iff 0 < q < T
(R+T ) . Therefore ẑx0x1y1 is in the interior iff A > 0 and 0 < q < T

(R+T ) . Because the former605

condition is true for all 0 < q < 1 if T
−S > 1 and is true for 0 < q < −ST

−R(S+T ) if T
−S < 1, we still need to606

confirm that T
(R+T ) <

−ST
−R(S+T ) . Since this inequality is always true, we have that ẑx0x1y1 is in the interior iff607

0 < q < T
(R+T ) .608

The eigenvalues are609

– λ1,2x1y1,x0x1y1 = −(1−q)qSR
2A (B ±

√
∆), where A is as above, B = Rq > 0 and ∆ = q2R2 + 4q2RT +610

4q2T 2 − 4qT 2. If the eigenvalues are complex, i.e. ∆ < 0, then the real part of λ1,2x1y1,x0x1y1 is always611
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positive because B > 0. If the eigenvalues are real, i.e. ∆ is non-negative, then λ1,2x1y1,x0x1y1 are positive612

when qentry
x0x1y1 = 0 < q < T

(R+T ) = qexit
x0x1y1 , i.e. whenever the equilibrium is in the interior. Therefore, the613

equilibrium ẑx0x1y1 is unstable whenever it is in the interior of the state space.614

To see whether the equilibrium is an unstable node or a spiral we check for which values the eigenvalues615

are complex, i.e. ∆ < 0. The roots of ∆ = 0 are q−x0x1y1,complex = 0 and q+x0x1y1,complex = T
R(1+ R

4T )+T
.616

Because T
R(1+ R

4T )+T
< T

R+T ) and since eigenvalues must be real when the equilibrium exits the interior617

we have that the eigenvalues are complex (equilibrium is a spiral) when 0 < q < T
R(1+ R

4T )+T
and real618

(equilibrium is an unstable node) when T
R(1+ R

4T )+T
< q < T

(R+T ) .619

In summary, there are two qualitatively different evolutionary trajectories: if 0 < q < T−R
T , then all trajecto-620

ries tend towards the heteroclinic cycle of trustful cooperation, trustful defection and suspicious cooperation, and if621

T−R
T < q < 1, then all trajectories tend to trustful cooperation.622

623

Partial information: opting out is beneficial S < P < 0 < R < T624

625

1-morphic equilibria626

• ẑx0
= (x̂0, x̂1, ŷ0, ŷ1) = (1, 0, 0, 0). The eigenvalues are627

– λx0,x1 = qR(1− q) > 0, and so ẑx0 is always unstable in the direction of x1 = 1.628

– λx0,y0 = −q2R < 0, and so ẑx0
is always stable in the direction of y0 = 1.629

– λx0,y1 = −q2R < 0, and so ẑx0
is always stable in the direction of y1 = 1.630

• ẑx1 = (x̂0, x̂1, ŷ0, ŷ1) = (0, 1, 0, 0). The eigenvalues are631

– λx1,x0
= −R(1− q) < 0, and so ẑx1

is always stable in the direction of x0 = 1.632

– λx1,y0 = (1− q)T − R < 0, and so for T
R < 4, ẑx1 is always unstable, and for T

R > 4, ẑx1 is unstable in633

the direction of y0 = 1 ⇐⇒ q− < q < q+ where q−,+ = 1
2 ± 1

2

√
1− 4RT .634

– λx1,y1 = (1− q)T −R < 0, and so ẑx1 is stable in the direction of y1 = 1 ⇐⇒ T−R
T < q < 1.635

• ẑy0 = (x̂0, x̂1, ŷ0, ŷ1) = (0, 0, 1, 0). The eigenvalues are636

– λy0,x0
= 0, and since there is no ẑx0y0 interior equilibrium the stability is determined by the eigenvalue637

λx0,y0 ; ẑy0 is always unstable in the direction of x0 = 1.638

– λy0,x1
= q(1− q)S < 0, and so ẑy0 is always stable in the direction of x1 = 1.639
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– λy0,y1 = 0, and since there is no ẑy0y1 interior equilibrium the stability is determined by the eigenvalue640

λy1,y0 ; ẑy0 is always stable in the direction of y1 = 1.641

• ẑy1 = (x̂0, x̂1, ŷ0, ŷ1) = (0, 0, 0, 1). The eigenvalues are642

– λy1,x0
= −(1− q)2P > 0, and so ẑy1 is always unstable in the direction of x0 = 1.643

– λy1,x1
= (1− q)S − (1− q)2P < 0, and so ẑy1 is always stable in the direction of x1 = 1.644

– λy1,y0 = −(1− q)2P > 0, and so ẑy1 is always unstable in the direction of y0 = 1.645

2-morphic equilibria646

647

• ẑx0x1
= (x̂0, x̂1, ŷ0, ŷ1) = ( 1

1−q ,
−q
1−q , 0, 0) which is never in the interior of the state space.648

• ẑx0y0 = (x̂0, x̂1, ŷ0, ŷ1) = (0, 0, 1, 0) which coincides with the 1-morphic equilibrium and is never in the strict649

interior of the state space.650

• ẑx0y1 = (x̂0, x̂1, ŷ0, ŷ1) = ( P (1−q)2
Pq2+q2R−2Pq+P , 0, 0,

q2R
Pq2+q2R−2Pq+P ) which is never in the interior of the state651

space.652

• ẑy0y1 = (x̂0, x̂1, ŷ0, ŷ1) = (0, 0, 1, 0) which coincides with the 1-morphic equilibrium and is never in the strict653

interior of the state space.654

• ẑx1y0 = (x̂0, x̂1, ŷ0, ŷ1) = (0, −(q−1)qS
(q2S+q2T−qS−qT+R ,

q2T−qT+R
q2S+q2T−qS−qT+R , 0) which is always in the interior when655

T
R < 4, and when T

R > 4 it leaves the interior ⇐⇒ q− < q < q+ where q−,+ = 1
2 ± 1

2

√
1− 4RT . We denote656

qexit
x1y0 = 1

2 − 1
2

√
1− 4RT and qentry

x1y0 = 1
2 + 1

2

√
1− 4RT .657

The eigenvalues λx1y0 : all eigenvalues and the equilibrium have the same denominator, and so the numerator of658

the eigenvalues determines the stability. The numerators of the eigenvalues are659

– λ̃x1y0,x1y0 = qS(q3T −2q2T +qR+qT −R), where the term in the brackets has roots 1, 12± 1
2

√
1− 4RT :660

the equilibrium, whenever in the interior, is always unstable in the direction of the state space spanned by661

strategies x1, y0.662

– λ̃x1y0,x0x1y0 = q2S(q2T + qR − 2qT − R + T ), where the term in the brackets has roots T−R
T , 1: the663

equilibrium, whenever in the interior, is stable in the direction of the state space spanned by strategies664

x0, x1, y0 iff 0 < q < T−R
T .665
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– λ̃x1y0,x0y0y1 = qST (q3 − 3q2 + 3q − 1), where the term in the brackets has a triple root 1: the equilib-666

rium, whenever in the interior, is always unstable in the direction of the state space spanned by strategies667

x0, y0, y1.668

• ẑx1y1 = (x̂0, x̂1, ŷ0, ŷ1) = (0, Pq2−2Pq+qS+P−S
Pq2−2Pq+qS+qT+P+R−S−T , 0,

qT+R−T
Pq2−2Pq+qS+qT+P+R−S−T ) which is in the669

interior whenever 0 < q < T−R
T .670

The eigenvalues λx1y1 : all eigenvalues and the equilibrium have the same denominator, and so the numerator of671

the eigenvalues determines the stability. The numerators of the eigenvalues are672

– λ̃x1y1,x1y1 = Pq3T +Pq2R−3Pq2T +q2ST −2PqR+3PqT +qRS−2qST +PR−PT −RS+ST ,673

which has the roots 1 − S
P ,

T−R
T , 1: the equilibrium, whenever in the interior, is always unstable in the674

direction of the state space spanned by strategies x1, y1.675

– λ̃x1y1,x1y0y1 = −(Pq4T−3Pq3T+q3ST+Pq2R+3Pq2T−3q2ST−2PqR−PqT+3qST+PR−ST ),676

which has the roots 1
−2PT (−PT + ST ±

√
−4P 2RT + P 2T 2 + 2PST 2 + S2T 2), 1: the equilibrium,677

whenever in the interior, is unstable in the direction of the state space spanned by strategies x1, y0, y1 iff678

1
−2PT (−PT + ST +

√
−4P 2RT + P 2T 2 + 2PST 2 + S2T 2) < q < 1.679

– λ̃x1y1,x0x1y1 = Pq3R − 3Pq2R + q2RS + q2ST + 3PqR − qRS − 2qST − PR + ST , which has680

the roots 1
−2PR (−2PR + S(R + T ) ±

√
−4PR2S + S2(R+ T )2), 1: the equilibrium, whenever in681

the interior, is unstable in the direction of the state space spanned by strategies x0, x1, y1 iff qexit
x0x1y1 =682

1
−2PR (−2PR+ S(R+ T ) +

√
−4PR2S + S2(R+ T )2) < q < 1.683

3-morphic equilibria684

685

• ẑx0y0y1 = (x̂0, x̂1, ŷ0, ŷ1) = (0, 0, 1, 0) which coincides with the 1-morphic equilibrium and is never in the686

strict interior of the state space.687

• ẑx1y0y1 = (x̂0, x̂1, ŷ0, ŷ1) = 1
A (0, SPq(1 − q), (Pq2T − PqT + qST + PR − ST ),−STq(1 − q)), where688

A = q2ST − Pq2S − Pq2T + PqS + PqT − 2qST − PR+ ST . The equilibrium is in the interior iff689

qentry
x1y0y1 =

1

−2PT
[ST − PT +

√
−4P 2RT + T 2(P + S)2] < q < 1. (15)

– The eigenvalues λx1y0y1,x1y0y1 corresponding to the direction spanned by strategies x1, y0, y1 are of the690

form −S(1−q)q
2A [B ±

√
∆], where A is as above and B = PqT +PR− TP > 0 ⇐⇒ T−R

T < q < 1 and691
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∆ = 4P 2q4T 2−12P 2q3T 2+4Pq3ST 2+4P 2q2RT +13P 2q2T 2−12Pq2ST 2−6P 2qRT −6P 2qT 2+692

12PqST 2 +P 2R2 + 2P 2RT +P 2T 2 − 4PST 2. Because T−R
T < qentry

x1y0y1 , then when the equilibrium is693

in the interior at least one of the eigenvalues is always positive and thus the equilibrium is always unstable.694

– The eigenvalue corresponding to the direction spanned by strategies x0x1y0y1 is λx1y0y1,x0x1y0y1 =695

1
A [−SPq2(T (1− q)2 + qR)] < 0.696

• ẑx0x1y0 = (x̂0, x̂1, ŷ0, ŷ1) = 1
A (−S(T − qT −R),−SRq,RT (1− q), 0), where A = (−S(T −R) +RT )(1−697

q) > 0. The equilibrium is in the interior of the state space iff 0 < q < T−R
T .698

– The eigenvalues λx0x1y0,x0x1y0 corresponding to the direction spanned by strategies x0, x1, y0 are of the699

form −S(1−q)q
2A [R±

√
∆], whereA is as above and ∆ = R2−4qT (T −qT −R). Because either

√
∆ < R700

or the eigenvalues are complex, then both eigenvalues (or their real part) are positive and the equilibrium701

is always unstable (either a node or a spiral).702

– The eigenvalue corresponding to the direction spanned by strategies x0, x1, y0, y1 is −STR(1−q)q
−S(T−R)+RT > 0.703

• ẑx0x1y0 = (x̂0, x̂1, ŷ0, ŷ1) = ( −qR(1−q)A (Pq2 − 2Pq + qS + P ), 1
(1−q)A (Pq2R− 2PqR+ qRS + qST + PR−

ST ), 1
A (qRT ), 0) where A = Pq2R − 2PqR + qRS + qRT + PR − ST . We find that the equilibrium is in

the interior iff

0 < q <
−1

2PR
[S(R+ T )− 2PR+

√
S2(R+ T )2 − 4PSR2] = qexit

x0x1y1 . (16)

– Next, we show that in the state space spanned by strategies x0, x1, y1 the equilibrium is (i) a spiral sink for704

q close to 0 (ii) it changes into a spiral source at q = qstab.
x0x1y1 , where 0 < qstab.

x0x1y1 < q0 (iii) the equilibrium705

ẑx1y1 enters the interior at q = q0, where qstab.
x0x1y1 < q0 < qexit

x0x1y1 (iv) the equilibrium ẑx0x1y0 leaves the706

interior by passing the equilibrium ẑx1y1 at qexit
x0x1y1 . The equilibrium ẑx0x1y0 becomes an unstable node707

before it exists the interior either in between (ii) and (iii) or (iii) and (iv), depending on the relationship708

between q0 and qexit
x0x1y1 .709

Proof. The eigenvalues λx0x1y1,x0x1y1 corresponding to the direction spanned by strategies x0x1y1 are of

the form

λ =
qR

2A

[
B ±

√
∆
]

(17)

where A = Pq2R − 2PqR + qRS + qRT + PR − ST , B = −Pq2R + Pq2T + 2PqR − 2PqT −710

qRS − PR + PT and ∆ is some lengthy expression. Because qR
2A is positive whenever the equilibrium711

is in the interior, the equilibrium changes stability while in the interior if either (a) ∆ > 0 and the sign of712
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[
B ±

√
∆
]

changes between both being negative and one of them becoming positive, or (b) ∆ < 0 and B713

changes sign (i.e. the real part of the eigenvalue).714

Lets first consider (a) and solve for which q the expression
[
B ±

√
∆
]

is zero. We get715

q1,2 =
1

2PR

[
2PR− S(R+ T )±

√
S2(R+ T 2)− 4PSR2

]
and q3,4 = 1

2P

[
2P − S ±

√
S2 − 4PS

]
. We notice that for q3,4 to be real numbers we must have S < 4P ,716

but then q3 and q4 are both negative. Also, we notice that q1,2 with a plus sign is always negative and so the717

only candidate for which the stability may change (given ∆ > 0) is q = −1
2PR

[
S(R+ T )− 2PR+

√
S2(R+ T )2 − 4PSR2

]
,718

which is the value at which the equilibrium leaves the interior. Thus if the equilibrium changes stability719

while in the interior, it must happen when ∆ < 0 and when B changes sign (because purely real eigenval-720

ues don’t change sign for 0 < q < qexit
x0x1y1 )721

Before we calculate the change of sign in B, we first find that when the equilibrium leaves the interior one

of the purely real eigenvalues at qexit
x0x1y1 is zero, and the other one is positive, by evaluating B at qexit

x0x1y1 :

ST

2PR2

[
−2PR2 + ST (R+ T ) + T

√
−S(4PR2 − S(R+ T )2)

]
> 0 ⇐⇒ (18)

− ST 2(4PR2 − S(R+ T )2) > 4P 2R4 − 4PSTR2(R+ T ) + S2T 2(T +R)2 ⇐⇒ (19)

PR− ST > 0 (20)

which is always true. And so at the moment of leaving the interior the eigenvalues are λ1 = qR
2A

[
B −

√
∆
]

=722

0 and λ2 = qR
2A

[
B +

√
∆
]
> 0. The equilibrium thus changes from being an unstable node to a (unstable)723

saddle. Note that we don’t know whether the equilibrium is an unstable saddle (λ1 < 0 and λ2 > 0) or node724

(λ1, λ1 > 0) while the equilibrium is still in the interior. However, if we find that for some 0 ≤ q < qexit
x0x1y1725

the eigenvalues are complex, then necessarily the equilibrium must be a node (λ1, λ2 > 0) while the equi-726

librium is still in the interior. This is because the eigenvalues are continuous and at the value q where they727

change from complex to real the real eigenvalues must be of the same sign. If in addition we find that for728

some 0 ≤ q < qexit
x0x1y1 the eigenvalues are complex and the real part is negative, the stability must change729

whenever B = 0 which implies ∆ < 0 (since we know, again, that purely real eigenvalues don’t change730

sign for 0 ≤ q < qexit
x0x1y1 ).731

Lets calculate the eigenvalues (17) for small q by taking the taylor expansion at q = 0 up to the second
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order, and we get
Rq

2(PR− ST )

[
P (T −R)±

√
P 2(R+ T )2 − 4PST 2)

]
. (21)

The expression in front of brackets is positive and the expression in front of the square root is negative.

Since the discriminant is negative, we get that for small q the eigenvalues are complex and the real part

(P (T −R)) is negative. Furthermore, the solution of B = 0 is

q1,2 =
1

2P (R− T )

[
2PR− 2PT −RS ±

√
R2S2 + 4PRST − 4PSR2

]
(22)

and we check that the value with a plus sign is always greater than 1 and so B changes sign only once and

this happens at the value

qstab.
x0x1y1 =

1

2P (R− T )

[
2PR− 2PT −RS −

√
R2S2 + 4PRST − 4PSR2

]
. (23)

We also confirm that qstab.
x0x1y1 <

T−R
T < qexit

x0x1y1 .732

733

The claims (i)-(iv) are thus being shown correct: (i) 0 < q < qstab.
x0x1y1 the equilibrium ẑx0x1y0 has complex734

eigenvalues with a negative real part and is thus a stable spiral (ii) qstab.
x0x1y1 < q < T−R

T the equilibrium735

ẑx0x1y0 becomes unstable since the real part passes zero but ẑx1y1 has not yet entered the interior (iii)736

T−R
T < q < qexit

x0x1y1 the equilibrium ẑx1y1 has entered the interior (iv) qexit
x0x1y1 < q < 1 the equilibrium737

ẑx0x1y0 has left the interior and changed from being an unstable node to a saddle. The equilibrium ẑx0x1y0738

turned from an unstable spiral to an unstable node either at (ii) or (iii), depending on the relationship739

between q0 and qexit
x0x1y1 .740

– The eigenvalue corresponding to the state space spanned by all four strategies is λx0x1y1,x0x1y0y1 =741

RTq2

A [S(1− q)− P (1− q)2] < 0.742

We conclude that ẑx0x1y0 is a stable equilibrium for 0 < q < qstab.
x0x1y1 , where qstab.

x0x1y1 <
T−R
T < qexit

x0x1y1 .743

4-morphic equilibria Lets show that this model doesn’t contain an (interior) 4-morphic equilibrium. The (only)

4−morphic equilibrium is

ẑx0x1y0y1 = (x̂0, x̂1, ŷ0, ŷ1) =(
PRSq

(1− q)A,
PS(T (1− q)−R)

(1− q)A , (24)
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−RSTq
(1− q)A,

−RT (P (1− q)− S)

(1− q))A ) (25)

where A = (PST +RST −PRS −PRT ). Clearly, for the equilibrium to be in the interior, all the numerators must744

be of the same sign. However, this is never true, because S − P (1 − q) < 0 and so the numerator of ŷ0 is always745

negative while for example the numerator of x̂1 is always positive PSRq > 0.746

747

evolutionary trajectories748

Since the system doesn’t contain an interior equilibrium then every trajectory must converge to the boundary (by749

theorem 5.2.1 in Hofbauer and Sigmund (1998), and by noting that every replicator equation is equivalent to some750

Lotka-Volterra equation, see theorem 7.5.1.).751

752

We have summarised all the possible evolutionary trajectories in Figures 5 and 6. Lets collect threshold values that753

are important for the phase plane analysis: If T > 4R, then754

qstab.
x0x1y1 =

1

−2P (T −R)

[
−2P (T −R)− SR−

√
R2S2 + 4SPRT − 4SPR2

]
(26)

q0 =
T −R
T

= qenter
x1y1 = qexit

x0x1y0 (27)

qexit
x0x1y1 =

−1

2PR
[S(R+ T )− 2PR+

√
S2(R+ T )2 − 4PSR2] (28)

qentry
x1y0y1 =

1

−2PT
[T (S − P ) +

√
−4P 2RT + T 2(P + S)2] (29)

(30)

where always qstab.
x0x1y1 < q0 < qexit

x0x1y1 < qentry
x1y0y1 . If T > 4R then also thresholds755

qexit
x1y0 =

1

2
− 1

2

√
1− 4

R

T
(31)

qentry
x1y0 =

1

2
+

1

2

√
1− 4

R

T
(32)

are relevant, s.t. qexit
x1y0 < qentry

x1y0 < q0. However, it depends on the payoffs what is the relative order between qexit
x1y0 , q

entry
x1y0756

and qstab.
x0x1y1 .757
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