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Abstract

This paper presents a novel abstraction technique for analyzing Lyapunov
and asymptotic stability of polyhedral switched systems. A polyhedral switched
system is a hybrid system in which the continuous dynamics is specified by
polyhedral differential inclusions, the invariants and guards are specified by
polyhedral sets and the switching between the modes do not involve reset of
variables. A finite state weighted graph abstracting the polyhedral switched
system is constructed from a finite partition of the state-space, such that the
satisfaction of certain graph conditions, such as the absence of cycles with
product of weights on the edges greater than (or equal) to 1, implies the
stability of the system. However, the graph is in general conservative and
hence, the violation of the graph conditions does not imply instability. If
the analysis fails to establish stability due to the conservativeness in the ap-
proximation, a counterexample (cycle with product of edge weights greater
than or equal to 1) indicating a potential reason for the failure is returned.
Further, a more precise approximation of the switched system can be con-
structed by considering a finer partition of the state-space in the construction
of the finite weighted graph. We present experimental results on analyzing
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stability of switched systems using the above method.

Keywords: polyhedral switched systems, stability verification, abstraction,
model-checking techniques, counterexample generation

1. INTRODUCTION

Stability is a fundamental property in control design. It captures the
notion that small perturbations in the initial state or input to the system
result in only small variations in the behavior of the system. In this paper, we
focus on the problem of automated stability verification of switched systems.

Switched systems [1] are a special class of hybrid systems [2] - systems
exhibiting mixed discrete continuous behaviors - in which the continuous
state of the system does not change during a mode switch. Switched systems
are a natural model in supervisory control, wherein the plant consists of a
finite number of operational modes, and the supervisor continuously observes
the state of the system and takes decisions regarding the mode switches.
Stability has been extensively investigated in the context of switched systems,
and several sufficient conditions on the system and the switching behavior
which ensure stability have been proposed (see [1, 3] and references therein).

One of the widely used approaches to stability verification of switched
system is based on the notions of common and multiple Lyapunov func-
tions [4, 5, 3, 6, 7, 8], wherein either a common function which acts as a Lya-
punov function for each mode or a distinct function serving as a Lyapunov
function for each mode along with consistency conditions on the switching, is
sought. Automated verification of stability based on Lyapunov function can
be characterized as deductive verification in the formal methods terminology.
It encompasses a search for a Lyapunov function based on a template, such
as a polynomial with coefficients as parameters, which serves as a candidate
function. The requirements of Lyapunov function are encoded as a sum-of-
squares programming problem over the template, which can be efficiently
solved using tools such as SOSTOOLS [9, 10, 11].

One of the major limiting factors of the template based search is the inge-
nuity required in providing the right texmplates; and automatically learning
the templates, with the exception of [12], is a challenge which has not been
adequately addressed. Moreover, if a template fails to satisfy the conditions
of Lyapunov function, then it does not provide insights into the potential rea-
sons for instability or towards the choice of a better template. To overcome
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these limitations, we propose an algorithmic approach — graph exploration
based algorithm — that consists of constructing a weighted graph whose
analysis either determines stability or returns a counterexample indicating a
potential reason for failure. Further, the counterexample can provide insights
into the choice of subsequent abstractions (refinement); we do not explore
here automated refinement techniques based on counterexamples.

In this paper, we focus on the class of polyhedral switched systems (PSS).
These are systems in which the invariants for the modes and the guards on
the switching are convex polyhedral sets; further, the dynamics in each mode
is specified as a polyhedral differential inclusion ẋ ∈ P , where P is a com-
pact convex polyhedral set. The core contribution is the development of
a quantitative predicate abstraction technique over PSS. Various methods
include predicate and hybrid abstractions [13, 14, 15, 16] for computing ab-
stract models oriented to safety verification. These standard methods do not
suffice for stability analysis, so we introduce a novel predicate abstraction
technique for stability preservation.

Our approach consists of constructing a finite weighted graph which rep-
resents a conservative approximation of the switched system, and inferring
stability by analyzing certain properties of the graph. The algorithm takes
as input a PSS H and a finite partition P of the state-space into convex
polyhedral sets (so-called elements), and outputs a finite weighted graph G.
The vertices of the graph correspond to pairs consisting of a mode of the
system and an element of the partition. An edge between two mode-element
pairs indicates the existence of an execution starting from the first mode and
a point on the first element to the second mode and a point on the second
element such that it remains in a single element at all the intermediate time
instances. The weight on an edge corresponds to the maximum scaling be-
tween the starting and the ending continuous states over all such executions,
that is, an upper bound on the ratio of the distance to the equilibrium point
at the end of the execution to that at the beginning. Hence, corresponding
to every execution of the system, there exists a path in the graph which
tracks the scalings associated with various time points in the execution. In
particular, the existence of an edge with weight +∞ implies a possibility of
a diverging execution. Similarly, existence of a cycle in the graph such that
the product of the weights is strictly greater than 1, implies the possibility of
a diverging execution obtained by traversing the cycle infinitely many times.
Absence of the above entities in the graph implies Lyapunov stability. We
provide criteria based on graph analysis, which provide sufficient conditions
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for Lyapunov and asymptotic stability.
One interesting feature of this analysis is a potential counterexample in

the event of a failure to prove stability. For example, a cycle such that the
product of the weights on the edges > 1 is a potential counterexample for
Lyapunov stability. Another interesting feature is the ability to construct a
less conservative abstraction, by considering a finer partition. A finer parti-
tion can be obtained, for example, by splitting each element in the current
partition based on a linear constraint.

Construction of the finite weighted graph involves computing a non-trivial
reachability predicate which captures all pairs of states of the system for
which there is an execution from the first state to second while remaining
within a single element of the partition. Existence of an edge then corre-
sponds to satisfiability of the predicate and the weight corresponds to solving
an optimization problem over the predicate. We show that we can construct
a formula which is a boolean combination of linear constraints which is equiv-
alent to the reachability predicate and hence compute the weight by solving
a finite set of linear programming problems. The construction of the formula
is involved owing to the fact that the number of mode switches that can oc-
cur during an execution within an element of the partition is unbounded due
to the presence of cycles in the underlying switching graph. We reduce the
analysis to that of an acyclic graph using the notion of strongly connected
components and hence, bound the number of switches for the purpose of
analysis.

The algorithm has been implemented in a tool called Averist (Algorith-
mic VERIfier for STability) [17]. We illustrate the merits of the algorithmic
approach on an example using the tool. We employ variations of the example
for evaluating the performance of the tool. The tool returns either a stability
proof or a counterexample. The counterexample either leads to an instabil-
ity answer or can be used to construct new constraints in order to refine the
partition and obtain a more accurate one.

Currently, the choice of the appropriate predicates is carried out mainly
through manual examination of the counterexample. There exists work fo-
cused on automating this process through a counterexample guided abstrac-
tion refinement approach [18].

Our choice of polyhedral switched systems is motivated by the fact that
certain computations involved in our analysis are simple for this class, such
as the representation of the reachability predicate. However, several classes
of hybrid systems can be efficiently abstracted to this class [19, 20].
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A preliminary version of this paper, appeared in [21]. In comparison to
the former version, this work contains more detailed explanations, complete
proofs and elaborate experiments. In particular, the replacement of execu-
tions by piecewise executions in stability definitions is justified in here by
stating Proposition 2 and adding its proof. Proposition 3 and its proof ap-
pear only as an observation in the previous work. The equivalence in terms
of stability between a polyhedral switched system and its normal form is
proved in detail. Proofs of Theorem 7 and Theorem 8 are included. Also
Algorithm 1 for abstraction construction and Algorithm 2 for scaling compu-
tation are added, accompanied by details of the functions contained in them.
Table 1 with experimental results does not appear in the preliminary version.

2. Preliminaries

Let R, R>0, and N denote the set of reals, non-negative reals and natural
numbers, respectively. Given a function F , we use dom(F ) to denote the
domain of F . Given a set A ⊆ dom(F ), we denote by F�A, the restriction of
F to the domain A.

Sequences: A sequence domain is a either a finite subset of N of the form
{0, 1, . . . , n} for some n ∈ N or the infinite set N. A sequence over a set
A is a function S : D → A, where D is a sequence domain. The length
of a sequence S, denoted len(S), is the least upper bound of the elements
in dom(S), that is, last(dom(S)). S is also represented by enumerating its
elements as in S(0)S(1) . . ..

Intervals, time domain and interval domain: An interval is a closed con-
vex subset of R. A time domain is an interval I such that first(I) = 0. The
concatenation of a time domain I2 to a finite time domain I1 is the time do-
main I, denoted I1◦I2, given by I1∪(I2 +{last(I1)}). An interval domain is
a finite or infinite sequence of intervals ι = I0I1 · · · such that first(I0) = 0,
last(Ii) = first(Ii+1) for 0 ≤ i < len(ι), and if dom(ι) is infinite, then
for every n ∈ N, there exists m ∈ N such that n ∈ Im. We denote by [[ι]]
the interval ∪i∈dom(ι)ι(i). The concatenation of an interval domain ι2 to an
interval domain ι1 with dom(ι1) < +∞, denoted ι1 ◦ ι2, is the interval domain
ι whose domain is dom(ι1)∪(dom(ι2)+len(ι1)), and ι(i) = ι1(i) if i ∈ dom(ι1),
and is ι2(i− len(ι1)) + {last(ι1(len(ι1)))}, otherwise.

Splitting of sequences, intervals and interval domains: Sequences S1 and
S2 form a splitting of a sequence S, denoted S = S1 ◦ S2, if S1(len(S1)) =
S2(0), len(S) = len(S1) + len(S2), and S(i) = S1(i) if i ∈ dom(S1), and
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S2(i−len(S)), otherwise. Note that for a given index of S, there is a unique
way to split it into two sequences.

Intervals I1 and I2 form a splitting of an interval I, denoted I = I1 ◦
I2, if last(I1) = first(I2), and I = I1 ∪ I2. Interval domains ι1 and ι2
form a splitting of an interval domain ι, denoted ι = ι1 ◦ ι2, if len(ι) =
len(ι1) + len(ι2), and ι(i) = ι1(i) if i < len(ι1) and ι(i) = ι2(i− len(ι1)) +
{last(ι1(len(ι1)))}) otherwise.

Euclidean space: The n-dimensional Euclidean space is given by Rn. We
use |x| to denote the infinity norm of x ∈ Rn and x · y to denote the dot
product of x, y ∈ Rn. Given ε ∈ R>0, we use Bε(x) to denote an open ball
around x of radius ε, that is, Bε(x) = {y | |x−y| < ε}. A set S ⊆ Rn is open if
for every x ∈ S, there exists a δ > 0 such that Bδ(x) ⊆ S; and a set S ⊆ Rn is
closed if Rn\S is open. Note that open sets are closed under arbitrary union
and closed sets are closed under arbitrary intersection. Hence, given any set
S ⊆ Rn, the interior of S, denoted S̊, is the largest open subset of S; and
the closure of S, denoted S is the smallest closed set containing S. Given
sets X, Y ⊆ Rn, X + Y denotes the Minkowski sum {x + y |x ∈ X, y ∈ Y }.
Given a set X ⊆ Rn, we use chull(X) to denote the smallest convex set
containing X.

Convex polyhedral sets: A linear constraint is an expression of the form
a ·x+b ∼ 0, where a ∈ Rn, x = (x1, · · · , xn) is a tuple of variables, b ∈ R and
relation ∼∈ {<,≤,=}. It is called homogeneous if b = 0. The set defined
by a linear constraint c ≡ a · x + b ∼ 0, denoted [[c]], is the set of valuations
v = (v1, . . . , vn) ∈ Rn, such that a · v + b ∼ 0 holds. A half-space is a set
defined by a linear constraint with inequality relation and a hyperplane is a
set defined by a linear constraint with equality, so it has dimension n−1. Note
that a half-space is either of the two parts into which a hyperplane divides
the space. We denote the set of all hyperplanes of space Rn by hyper(n).
Given a set p ∈ Rn of dimension lower than n, plane(p) is the intersection
of all hyperplanes which contain p, plane(p) =

⋂
h∈hyper(n), p⊆h h, while in

case of dimension equal to n, plane(p) = Rn. A convex polyhedral set is
an intersection of finitely many half-spaces and hyperplanes; it is said to be
pointed if the half-spaces and hyperplanes are defined by homogenous linear
constraints and elementary if the linear constraints defining the half-spaces
only use the relation {<}. We will use polysets(X) to denote the set of
all convex polyhedral subsets of X, and cpolysets(X) to denote the set of
compact convex polyhedral sets. In case of X = Rn we denote polysets(n)
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and cpolysets(n).
A partition P of S ⊆ Rn into convex polyhedral sets is a finite set of

convex polyhedral sets {P1, · · · , Pk} such that ∪ki=1Pi = S and for each i 6= j,
P̊i ∩ P̊j = ∅. An elementary partition is a partition in which all the convex
polyhedral sets are elementary; the sets are referred to as elements.

Linear, piecewise-linear and differentiable functions: A trajectory η is
a function from a time domain D to Rn for some n. A trajectory η is
said to be linear if there exist a, b ∈ Rn, such that for every t ∈ dom(η),
η(t) = at + b; and piecewise-linear if there exists an interval domain ι such
that [[ι]] = dom(η) and η�ι(i) is linear for every i ∈ dom(ι). A trajectory η is
said to be differentiable if its derivative exists at all point of the domain, and
the derivative of η is denoted by η̇.

Graphs and weighted graphs: A graph G is a pair (V,E), where V is a
finite set of vertices and E ⊆ V × V is a finite set of edges. Cardinality
of the graph is denoted as |G| and corresponds to the number of nodes. A
path of a graph is a finite or infinite sequence of vertices π = v0v1 . . . such
that (vi, vi+1) is an edge for each i < len(π). Let paths(G) denote the set of
paths of G. A cycle is a finite path where the first and the last vertices are
the same; and it is simple if all the vertices except the last are distinct.

A weighted graph G = (V,E, w) where (V,E) is a graph and w : E →
R>0 ∪ {+∞} is a weighting function on the edges. The weight of a finite
path π is w(π) = Πi∈dom(π)w(π(i)). Given a set of vertices V ′ ⊆ V , we use
G[V ′] to represent (V ′, E ∩ V ′ × V ′, w�V ′×V ′).

A strongly connected component scc of a graph G is a set of vertices V ′

of G such that for every v1, v2 ∈ V ′, there is a path in G[V ′] from v1 to v2.
A strongly connected component is maximal if there is no bigger strongly
connected component containing it. Let scc(G) denote the set of maximal
strongly connected components of G. Note that scc(G) is a partition of the
vertices of G. The quotient graph G/scc is a graph where the set of vertices is
scc(G) and the edges correspond to pairs (C1, C2) ∈ scc(G) such that there
exist c1 ∈ C1 and c2 ∈ C2 with (c1, c2) an edge of G. Note that the quotient
graph is an acyclic graph.

Satisfiability Modulo Theory (SMT): An SMT formula ϕ(x) over linear
real arithmetic is a boolean combination of linear constraints over the variable
in x. We will refer to it simply as an SMT formula from now on. A valuation
v ∈ Rn is said to satisfy an SMT formula ϕ(x), denoted v |= ϕ(x), over
variables x = (x1, . . . , xn), if the constraint obtained by substituting vi to xi
is true. An SMT formula ϕ(x) is satisfiable if there exists a valuation which
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satisfies it. Checking satisfiability of an SMT formula over linear arithmetic
is decidable and there exist efficient tools [22] to compute it.

The following observation will be used later.

Proposition 1. Given a polyhedral set P ∈ polysets(n) defined by the
linear constraints ai · x ∼ bi for 1 ≤ i ≤ k, an n-tuple of variables x =
(x1, . . . , xn) and a variable t, the set of all valuations for x and t satisfying
the constraints x/t ∈ P can be represented by the following SMT formula:∧k
i=1 ai · x ∼ bit.

3. Polyhedral Switched Systems

A switched system [1] models supervisory control in which the supervisor
observes the state of the system and switches between a finite number of
operational modes of the system. In each mode, the continuous state evolves
according to a pre-assigned continuous dynamics and satisfies certain invari-
ant conditions. Mode switch occurs when certain guards are satisfied, and
in particular, the continuous state remains the same during the switch. We
focus on the class of switched systems in which the continuous dynamics
is specified using polyhedral differential inclusions, and the invariants and
guards are specified using convex polyhedral sets.

Definition 1. An n-dimensional polyhedral switched system (PSS) is a tuple
H = (Q,E,X, F, I,G), where:

• Q is a finite set of control modes or locations;

• E ⊆ Q×Q is a finite set of edges;

• X = Rn, for some n, is the continuous state space;

• F : Q→ cpolysets(n) is the flow function;

• I : Q→ polysets(n) is the invariant function; and

• G : E→ polysets(n) is the guard function.

Notation 1. We will denote each of the elements in a PSS H, with H as a
subscript, for instance, the invariant function will be referred to as IH.
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Figure 1 shows an automaton which represents a 2-dimensional polyhedral
switched system with 5 modes, q1, q2, q3, q4 and q5. The continuous state
space corresponds to X = R2 and (x, y) represents the continuous state of
the system. Every mode qi is related to a convex polyhedral set Ii which is
the invariant, that is I(qi) = Ii. The continuous state belongs to Ii in mode
qi. Also every mode qi is related to a compact convex polyhedral set Fi which
specifies the flow function, F(qi) = Fi. The derivative with respect to time of
the continuous state, (ẋ, ẏ) belongs to Fi when in mode qi. The edges of the
system correspond to the arrows between the modes. These edges are tagged
with predicates of the form (x, y) ∈ Gi where Gi are convex polyhedral sets
determined by the guard function. The predicates determine the condition
when a switch between modes can be committed. Figure 2a and Figure 2b are
two graphical instances of the PSS in Figure 1. The invariants are determined
as follows, I1 = {(x, y) ∈ X : x > 0, y > 0}, I2 = {(x, y) ∈ X : x < 0, y > 0},
I3 = {(x, y) ∈ X : x < 0, y < 0}, I4 = {(x, y) ∈ X : x > 0, y < 0} and
I5 = {(x, y) ∈ X : x − 2y > 0, y > 0}. The polyhedra Fi are determined by
the convex combination of the vectors depicted in Figure 2. Observe that
in Figure 2 the difference between the stable and unstable instances arises
from the description of F5. This corresponds to the flow of the system in
the wedge-shaped region I5. The 3 different guards tagging the edges are
determined by the following predicates in both instances, G1 = {(x, y) : x =
0}, G2 = {(x, y) : y = 0}, and G3 = {(x, y) : x− 2y > 0}.

The switched system starts in a location q and a continuous state x. In a
mode q, the continuous state evolves inside I(q) such that the differential of
the evolution at anytime lies within F(q). The mode can switch from q1 to q2

if (q1, q2) is an edge of the system and the continuous state at the switching
satisfies the guard associated with the edge. Switched systems differ from
a hybrid system in that the continuous state does not change in a switched
system during a mode switch.

3.1. Semantics

Next, we present the semantics of a polyhedral switched system as a set
of executions of the system.

Definition 2. An execution σ of a PSS H = (Q,E,X,F, I,G) of dimension
n is a triple (ι, η, γ), such that:

• ι is an interval domain;
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Figure 1: Polyhedral switched system automaton

(a) Stable (b) Unstable

Figure 2: Instances of polyhedral switched system in Figure 1

• η : [[ι]] → X such that for each i ∈ dom(ι), η �ι(i) is a differentiable
function;

• γ : dom(ι)→ Q such that:

– for all i ∈ dom(ι), for all t ∈ ι(i), η(t) ∈ I(γ(i)) and η̇(t) ∈ F(γ(i));

– for all 0 ≤ i < len(ι), (γ(i), γ(i + 1)) ∈ E and η(last(ι(i))) ∈
G((γ(i), γ(i+ 1))).

We denote the set of all executions of H by exec(H). The intersection
between an execution σ = (ι, η, γ) and a set A ⊆ X is defined as σ ∩ A =
{η(t) | t ∈ [[ι]]} ∩ A, and extended to exec(H) ∩ A = ∪σ∈exec(H)(σ ∩ A).
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Definition 3. An execution σ = (ι, η, γ) of H is said to be complete if
dom(η) = [0,∞); otherwise, it is called finite.

Every execution of the PSS in Figure 1 evolves inside Ii when located
in control mode qi by following some of the vectors in Fi. Notice that the
invariants of locations q1 and q5 are overlapped and in the overlapped region,
which coincides with the wedge-shaped region, the polyhedral set determining
the dynamics consists of the convex hull of the polyhedra F1 and F5. In
Figure 2, two sample finite executions are shown. They correspond to the
dotted lines.

Notation 2. We will use fs(σ) to refer to the first state (γ(0), η(0)). If σ is
finite, we will use ls(σ) to refer to the last state (γ(len(γ)), η(last([[ι]]))).
Given an execution σi, its components will be referred to as (ιi, ηi, γi).

3.2. Piecewise-linear executions and Splitting

Definition 4. An execution σ = (ι, η, γ) is said to be piecewise-linear if η
is piecewise linear.

We denote the set of all piecewise-linear executions of H by pwexec(H).
The next proposition states that if there exists an execution of H between
two states, then there also exists a piecewise linear execution between the
states.

Proposition 2. [Lemma 1 in [23]] Let H be a polyhedral switched system.
Given any finite execution σ ∈ exec(H), there exists a piecewise-linear exe-
cution σ′ ∈ pwexec(H) such that fs(σ) = fs(σ′) and ls(σ) = ls(σ′).

Definition 5. (Splitting of an execution)
Executions σ1 = (ι1, η1, γ1) and σ2 = (ι2, η2, γ2) form a splitting of an execu-
tion σ = (ι, η, γ), denoted σ = σ1 ◦ σ2, if the following hold:

• ι = ι1 ◦ ι2;

• η1(t) = η(t) for all t ∈ dom(η1), and η2(t) = η(t+ last(dom(η1))) for all
t ∈ dom(η2).

• γ1(i) = γ(i) for all i ∈ dom(γ1), and γ2(i) = γ(i + len(γ1)) for all
i ∈ dom(γ2).
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Note that the splitting predicate is associative, that is, if σ = (σ1◦σ2)◦σ3

holds, then so does σ = σ1 ◦ (σ2 ◦ σ3). Hence, we will denote a splitting
of a an execution σ into a finite sequence of executions σ1σ2 . . . σk as σ =
σ1 ◦ σ2 ◦ . . . ◦ σk, without the parentheses.

An infinite sequence σ1σ2 · · · is a splitting of a complete execution σ,
denoted σ = σ1 ◦ σ2 ◦ . . ., if there exists an infinite sequence of complete
executions σ′2, σ

′
3, . . . such that σ = σ1 ◦ σ′2, σ′i = σi ◦ σ′i+1 for i ≥ 2.

3.3. Functions on switched systems

Let us fix a PSS H = (Q,E,X,F, I,G) of dimension n. The underlying
graph of a hybrid systemH, denoted UG(H), is the pair of the set of locations
and the set of edges (Q,E).

Given a set p ⊆ Rn, define H ∩ p to be the PSS (Qp,Ep,Xp,Fp, Ip,Gp),
where:

• Qp = {q ∈ Q | p ⊆ I(q)},

• Ep = {(q1, q2) ∈ (Qp ×Qp) ∩ E | p ⊆ G((q1, q2))},

• Fp(q) = F(q) ∩ plane(p) for each q ∈ Qp,

• Ip(q) = p for each q ∈ Qp, and

• Gp(e) = p, for each e ∈ Ep.

Let reach(H, p) denote the set of pairs (q1, q2) ∈ Qp×Qp such that there
exists a path in UG(H ∩ p) from q1 to q2.

By considering the polyhedral switched system in Figure 1, H, and the
polyhedral set p2 = {(x, y) : y > 0, x − 2y > 0}, observe the PSS H ∩ p2

enclosed by a dotted line.

4. Stability: Lyapunov and Asymptotic

In this section, we define two classical notions of stability in control the-
ory, and state preliminary results about the stability of polyhedral switched
systems.

Definition 6. A point x ∈ Rn is an equilibrium point of an n-dimensional
PSS, if every execution σ ∈ exec(H) with η(0) = x satisfies η(t) = x for all
t ∈ dom(η).
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We will assume without loss of generality that the origin 0̄, is the equi-
librium point. In the case of the equilibrium point is not 0̄, we can apply
a translation to the equilibrium point and every guard and invariant in the
PSS by the vector from the equilibrium point to the origin. This translation
does not affect to the dynamical behaviour with respect to the equilibrium.

Remark 1. The stability verification algorithm described in the paper does
not require the input system to have 0̄ as an equilibrium point. However, if
the algorithm deduces that the system is stable, then it also implies that 0̄
is an equilibrium point.

Intuitively, Lyapunov stability captures the notion that the executions of
the system starting close to the equilibrium point remain close to it. Asymp-
totic stability, in addition, requires that executions starting in a small enough
neighborhood around the equilibrium point converge to it.

Given ε, δ ∈ R>0 and a set of executions Σ, let the predicate lyap(Σ, ε, δ)
denote the fact that for every execution σ ∈ Σ with η(0) ∈ Bδ(0̄), η(t) ∈ Bε(0̄)
for every t ∈ dom(η).

Definition 7. A set of executions Σ of a PSS H is said to be Lyapunov
stable with respect to 0̄, if for every real ε > 0, there exists a real δ > 0 such
that lyap(Σ, ε, δ).

Given an execution σ, it is said to converge to 0̄, denoted conv(σ, 0̄), if
for every real ε > 0, there exists a T ∈ dom(η), such that η(t) ∈ Bε(0̄) for
every t ≥ T . Further, we denote by asymp(Σ, δ) the fact that every complete
execution σ ∈ Σ with η(0) ∈ Bδ(0̄) satisfies conv(σ, 0̄).

Definition 8. A set of executions Σ of a PSS H is said to be asymptotically
stable with respect to 0̄, if it is Lyapunov stable with respect to 0̄ and there
exists a δ > 0 such that asymp(Σ, δ).

A polyhedral switched system H is said to be Lyapunov (asymptotically)
stable if exec(H) is Lyapunov (asymptotically) stable with respect to 0̄. We
observe in Figure 2a a stable PSS while in Figure 2b, with different dynamics
in q5, an unstable PSS.
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4.1. Some properties of stability

Next, we prove some properties about stability. The first property states
that the Lyapunov stability of a system depends on the executions in a small
neighborhood around 0̄ of the system.

Proposition 3. A set of executions Σ is Lyapunov stable if and only if there
exists an ε′ > 0 such that for every 0 < ε < ε′, there exists a δ > 0 for which
lyap(Σ, ε, δ) holds.

In a small enough neighborhood around 0̄, the executions of a PSS are
determined by the homogenous linear constraints of the guards and the in-
variants. Hence, we can assume that the system is in a normal form as stated
in the next proposition.

Definition 9. A polyhedral switched system is in normal form if the invari-
ants and the guards of the system are pointed.

Consider a polyhedral switched system H = (QH,EH,X,FH, IH,GH) and
an equilibrium point x ∈ X, we define a PSS in normal form H′ based on it,
as the tuple (QH′ ,EH′ ,X,FH′ , IH′ ,GH′), where QH′ = {q ∈ QH : x ∈ I(q)},
EH′ = {e ∈ EH : x ∈ G(e)}, FH′(q) = FH(q), IH′(q) = {αy : y ∈ IH(q), α >
0} and GH′(e) = {αy : y ∈ GH(e), α > 0}. Observe that the local behaviour
close to 0̄ of both systems is analogous, it is the same as the behaviour of H
restricted to Bε(0̄) for a small enough ε value.

Proposition 4. Let H be a polyhedral switched system and H′ be the polyhe-
dral switched system in normal form based on H. Then, there exists a value
ε > 0 such that

exec(H) ∩ Bε(0̄) = exec(H′) ∩ Bε(0̄).

Proof. It is enough to fix an ε−ball around the origin such that the in-
variants and guards of the PSS H not containing 0̄ are out of the ball.
Fix ε > 0 such that Bε(0̄) ∩ IH(q) = ∅ for every q ∈ QH with IH(q) not
pointed and Bε(0̄) ∩ GH(q1, q2) = ∅ for every pair (q1, q2) ∈ EH such that
GH(q1, q2) not pointed. Consider σ ∈ exec(H) ∩ Bε(0̄). Then, σ = (ι, η, γ)
where ι is an interval domain; η : [[ι]] → Rn such that for each i ∈ dom(ι),
η �ι(i) is a differentiable function. γ : dom(ι) → QH is such that for all
i ∈ dom(ι), IH(γ(i)) is pointed. Then, γ : dom(ι) → QH′ . For all i ∈ dom(ι),
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for all t ∈ ι(i), η(t) ∈ IH(γ(i)) ∩ Bε(0̄) and η̇(t) ∈ FH(γ(i)). By construc-
tion of the normal PSS H′ based on H, IH(γ(i)) ⊆ IH′(γ(i)) and hence
IH(γ(i)) ∩ Bε(0̄) ⊆ IH′(γ(i)) ∩ Bε(0̄). Let us denote A = ∪j∈dom(ι){IH(γ(j)) :
0̄ /∈ IH(γ(j))}. We know that IH′(γ(i)) = {αx : x ∈ IH(γ(i)), α > 0} ⊆
IH(γ(i)) ∪ A, which implies that IH′(γ(i)) ∩ Bε(0̄) ⊆ (IH(γ(i)) ∪ A) ∩ Bε(0̄).
And this last expression, by definition of ε, is equal to IH(γ(i)) ∩ Bε(0̄).
Therefore, IH(γ(i)) ∩ Bε(0̄) = IH′(γ(i)) ∩ Bε(0̄). By construction of H′,
FH(γ(i)) = FH′(γ(i)). For all 0 ≤ i < len(ι), (γ(i), γ(i + 1)) ∈ EH and
η(last(ι(i))) ∈ GH((γ(i), γ(i + 1))) ∩ Bε(0̄), where GH((γ(i), γ(i + 1))) is
pointed. Then, GH((γ(i), γ(i+1)))∩Bε(0̄) = GH′((γ(i), γ(i+1)))∩Bε(0̄), by
construction of the normal PSS H′ based on H. Hence, σ ∈ exec(H′)∩Bε(0̄).
On the other hand, if we consider σ ∈ exec(H′) ∩ Bε(0̄), by an analogous
reasoning, σ ∈ exec(H) ∩ Bε(0̄) is obtained.

Proposition 5. Given a polyhedral switched systemH, the polyhedral switched
system H′ in normal form based on H, is such that:

• H is Lyapunov stable if and only if H′ is Lyapunov stable.

• H is asymptotically stable if and only if H′ is asymptotically stable.

Proof. For a system in normal form it is enough to prove stability in a
small neighborhood to the origin [24]. Suppose H is Lyapunov stable. By
Proposition 4, we fix ε > 0 such that exec(H)∩Bε(0̄) ⊆ exec(H′). We know
that there exists δ > 0 such that lyap(exec(H), ε, δ). Then, by construction
of H′, it is clear that lyap(exec(H′), ε, δ) and that for every ε′ = wε > 0
we can choose δ′ = wδ, which satisfies lyap(exec(H′), ε′, δ′). Therefore,
we infer that H′ is Lyapunov stable. Now, suppose H′ is Lyapunov sta-
ble. Choose ε′ > 0 such that exec(H) ∩ Bε′(0̄) ⊆ exec(H′). For every
ε < ε′ we know that there exists δ > 0 such that lyap(exec(H′), ε, δ). Since
exec(H) ∩ Bε′(0̄) ⊆ exec(H′), for every ε < ε′ we have lyap(exec(H), ε, δ).
Then, by Proposition 3, exec(H) is Lyapunov stable. Next, we need to
prove the second point, about asymptotic stability. Suppose first H′ is
asymptotically stable. Then, by definition, there exists δ > 0 such that
asymp(exec(H′), δ) is satisfied. Also, by Proposition 4, there exists ε > 0 such
that exec(H) ∩ Bε(0̄) ⊆ exec(H′). In addition, since Lyapunov stability of
H′ implies Lyapunov stability of H, it is known that there exists δε > 0 such
that lyap(exec(H), ε, δε). Therefore, every execution σ ∈ exec(H) starting
from Bδε(0̄) remains in Bε(0̄), which implies that σ ∈ exec(H′). Therefore,
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in the case of δε 6 δ, σ satisfies conv(σ, 0̄) since Bε(0̄) ⊆ Bε(0̄), which im-
plies that asymp(exec(H), δε). While in the case of δε > δ, σ does not satisfy
conv(σ, 0̄). Then, consider σ that, in addition, starts from Bδ(0̄). These kind
of executions satisfy conv(σ, 0̄) and consequently asymp(exec(H), δ). Now,
for the case of H is asymptotically stable, the proof is analogous.

From now on, we will assume that the PSS is in normal form. The PSS
in Figure 2 are in normal form.

The next lemma states that the stability of a polyhedral switched sys-
tem is determined completely by the stability of the set of piecewise-linear
executions of the system.

Lemma 6. Let H be a polyhedral switched system. Then:

• exec(H) is Lyapunov stable if and only if pwexec(H) is Lyapunov sta-
ble.

• exec(H) is asymptotically stable if and only if pwexec(H) is asymptot-
ically stable.

Proof. Suppose exec(H) is Lyapunov (asymptotically) stable, it is clear
that pwexec(H) is Lyapunov (asymptotically) stable since pwexec(H) ⊆
exec(H).

Next, suppose that pwexec(H) is Lyapunov stable. We prove that this
implies exec(H) is Lyapunov stable. Suppose that exec(H) is not Lyapunov
stable, then there exists an ε > 0 such that for every value δ > 0 there
exists an execution σ ∈ exec(H) starting from Bδ(0̄) which at some time
T > 0 goes out from Bε(0̄), that is, it is such η(0) ∈ Bδ(0̄) and η(T ) /∈
Bε(0̄). The restriction of σ to the time interval [0, T ] is a finite execution
in H. By applying Proposition 2, construct a piecewise-linear execution
σ′ ∈ pwexec(H) such that fs(σ) = fs(σ′) and ls(σ) = ls(σ′). This means
that for every δ > 0, there exists a piecewise-linear execution σ′ ∈ pwexec(H)
starting from Bδ(0̄) and at time T > 0 goes out of Bε(0̄), which contradicts
the fact that pwexec(H) is Lyapunov stable.

Finally, we prove that pwexec(H) is asymptotically stable implies exec(H)
is asymptotically stable. Suppose that asymp(pwexec(H), δ) holds. We
will show that asymp(exec(H), δ) holds. Let σ be an execution in H with
η(0) ∈ Bδ(0̄). Suppose that conv(σ, 0̄) does not hold. Then there exists
δ′ > 0, such that the trajectory η does not eventually remain inside Bδ′(0̄).
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Choose an infinite sequence of diverging times t0 = 0 < t1 < t2 < · · ·
such that η(ti) 6∈ Bδ′(0̄). Construct a piecewise-linear execution σ′ of H
using Proposition 2 by replacing σ in each of the intervals [ti, ti+1] by a
piecewise-linear execution. Then conv(σ′, 0̄) does not hold, which contra-
dicts asymp(pwexec(H), δ).

5. Stability verification procedure

In this section, we present an algorithmic approach for verifying stability
of PSSs. This is an extension of the algorithms in [25] for piecewise constant
derivative systems and in [24] for two dimensional rectangular switched sys-
tems. The verification procedure consists of two parts:

1. Extracting a finite weighted graph from the PSS using an elementary
partition of the state-space.

2. Analyzing the graph for deducing stability.

We discuss the two parts in detail in the following. However, we will defer
the computational aspects to the next section.

5.1. Formal definition of the graph

The graph construction takes as input an elementary partition of the
state-space and a polyhedral switched system, and outputs a finite weighted
graph. The graph captures the sequence of elements the executions of the
system traverse using the notion of an almost-inside element execution.

Definition 10. Let H be a PSS and P an elementary partition of its state
space. Given an element p of P , a p-execution is an execution σ such that
η(t) ∈ p for every 0 < t < last(dom(η)). An element execution is an execu-
tion which is a p-execution for some element p of P .

The weights in the graph correspond to scalings of executions which mea-
sure the relative distance of the end-points of the executions to the origin.
Given a finite execution σ, its scaling, denoted scaling(σ) is given by:

scaling(σ) =
|η(last(dom(η)))|

|η(0)| .

The vertices of the graph correspond to location-element pairs, edges
between two location-element pairs correspond to the presence of an element
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Figure 3: Weighted graph

execution from the first location-element pair to the second, and weights
on edges correspond to an upper-bound on the scaling of the executions
corresponding to the edge.

Let us fix a PSS H = (Q,E,X,F, I,G) in normal form, and an element
partition P of the state space. We will assume that every element p of the par-
tition P is such that for each invariant or guard r, p is either contained in r or
is disjoint from r. Given q1, q2 ∈ Q and p1, p2 ∈ P , let ai(σ, (q1, p1), (q2, p2))
denote the fact that σ is an element execution from a state in (q1, p1) to a
state in (q2, p2).

The weighted graph G = (V,E, w) is determined by H and P , denoted as
G(H,P) and it is defined as follows:

1. The set of vertices V is given by Q× P ;

2. The set of edges E ⊆ V × V is given by {((q1, p1), (q2, p2)) | ∃σ, ai(σ,
(q1, p1), (q2, p2))};

3. The weighting function w is given by the supremum of a set of scal-
ing values as follows, w(((q1, p1), (q2, p2))) = sup{scaling(σ) | ∃σ, ai(σ,
(q1, p1), (q2, p2))}.

A weighted graph is represented in Figure 3. It is constructed by con-
sidering the PSS H in Figure 2a and an element partition P . The element
partition, depicted in Figure 5a, consists of the following polyhedral sets,
p1 = {(x, y) : x > 0, y = 0}, p2 = {(x, y) : x − 2y > 0, y > 0}, p3 = {(x, y) :
x − 2y = 0, y > 0}, p4 = {(x, y) : x − 2y < 0, x > 0}, p5 = {(x, y) : x =
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0, y > 0}, p6 = {(x, y) : x < 0, y > 0}, p7 = {(x, y) : x < 0, y = 0}, p8 =
{(x, y) : x < 0, y < 0}, p9 = {(x, y) : x = 0, y < 0} and p10 = {(x, y) :
x > 0, y < 0}. For clarity, the weighted graph is depicted only for the ele-
ments p1, p3, p5, p7 and p9, since they are enough to abstract the PSS. The
set of vertices for G(H,P) corresponds to the pairs (q1, p1), (q5, p1), (q1, p3),
(q5, p3), (q1, p5), (q2, p5), (q2, p7), (q3, p7), (q3, p9), (q4, p9), and the edges
are ((q1, p1), (q5, p1)), ((q5, p1), (q1, p1)), ((q5, p1), (q5, p3)), ((q1, p1), (q5, p3)),
((q5, p1), (q1, p3)), ((q1, p1), (q1, p3)), ((q5, p3), (q1, p3)), ((q1, p3), (q5, p3)), ((q5, p3),
(q1, p5)), ((q1, p3), (q1, p5)), ((q1, p3), (q2, p5)), ((q1, p5), (q2, p5)), ((q2, p5), (q3, p7)),
((q2, p5), (q2, p7)), ((q2, p7), (q3, p7)), ((q3, p7), (q3, p9)), ((q3, p7), (q4, p9)), ((q3, p9),
(q4, p9)), ((q4, p9), (q1, p1)) and ((q4, p9), (q5, p1)). The computation of the
weight values associated with the edges will be presented later.

5.2. Stability Criteria

The weighted graph G = (V,E, w) is analysed for the satisfaction of the
following properties:

P1 For every edge e ∈ E, w(e) ∈ R>0.

P2 Every simple cycle π of G is such that w(π) 6 1.

P3 Every simple cycle π of G is such that w(π) < 1.

In addition, we need to verify the following property:

P4 For every element p ∈ P , there exists no complete execution σ such
that η(t) ∈ p, for all t ∈ [0,∞) and conv(σ, 0̄) does not hold.

The following theorems characterize the criteria for stability in terms of
the above properties.

Theorem 7. (Lyapunov stability) If Conditions [P1] and [P2] hold for G,
then H is Lyapunov stable.

Theorem 8. (Asymptotic stability) If Conditions [P1], [P3] and [P4] hold
for G, then H is asymptotically stable.
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5.3. Correctness of the stability criteria

Below, we provide insights into the correctness of the theorems. It re-
lies crucially on the following decomposition of the executions into element
executions.

Lemma 9. Let H be a polyhedral switched system and P an elementary
partition. For every execution σ ∈ exec(H), there exists a finite or infinite
sequence σ0σ1 . . . of executions in exec(H) such that for each i, σi is a p-
execution for some p ∈ P, and σ = σ0 ◦ σ1 ◦ . . ..

Proof. Consider σ ∈ exec(H). We know σ = (ι, η, γ) and ∀i ∈ dom(ι) and
∀t ∈ ι(i), η(t) ∈ I(γ(i)). The polyhedral set I(γ(i)) is divided into ki finite
parts by partition P , {I(γ(i)) ∩ p1, . . . , I(γ(i)) ∩ pki}. Then, the interval ι(i)
can be separated into ki time intervals, {ι(i)1, . . . , ι(i)ki}such that η(t) ∈ pj
for every t ∈ ι(i)j and 1 ≤ j ≤ ki. Let us denote last(dom(ι)) as l and assign
to the interval set {ι(1)1, . . . , ι(1)k1 , ι(2)1, . . . , ι(2)k2 , . . . , ι(l)1, . . . , ι(l)kl} the
indexes from 1 to k =

∑
1≤j≤l kj. We define the set of executions σj =

(ιj, ηj, γj) for 1 ≤ j ≤ k such that:

• ιj = ι(1)j if 1 ≤ j ≤ k1, ιj = ι(2)j if k1 < j ≤ k1 + k2, . . . and ιj = ι(l)j
if kl−1 < j ≤ kl,

• ηj(t) = η(t) for all t ∈ dom(ηj), and ηj+1(t) = η(t + last(dom(ηj))) for
all t ∈ dom(ηj+1).

• γj(1) is equal to γ(1) if 1 ≤ j ≤ k1, γ(2) if k1 < j ≤ k1 + k2, and so on,
till being equal to γ(dom(ι)) if kl−1 < j ≤ kl.

Hence, the execution σ is split into a set of p-executions in exec(H), σ =
σ1 ◦ . . . ◦ σk.

Proof of Theorem 7. A sufficient condition for proving Lyapunov sta-
bility is to establish a global bound on the scaling of all executions of the
system. This is precisely what conditions [P1] and [P2] capture. Consider
σ ∈ exec(H) being a p-execution, hence there exist q1, q2 ∈ Q such that
ai(σ, (q1, p), (q2, p)) with scaling(σ) 6 w((q1, p), (q2, p)). w((q1, p), (q2, p)) ∈
R>0 because of condition [P1], and corresponds to an edge in G which is
finite; therefore we can define

b1 = max
e∈E

w(e)
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as the bound of p-executions. Consider σ ∈ exec(H) such that σ = σ0◦σ1◦. . .
where for every i, σi is pi-execution for some pi ∈ P . Then there exists
qi ∈ Q for all i such that ai(σi, (qi, pi), (qi+1, pi+1)) with scaling(σi) 6
w((qi, pi), (qi+1, pi+1)). Now we distinguish between σ finite or complete. Let

us consider σ finite of length k, which implies w(σ) =
k∏
i=0

w((qi, pi), (qi+1, pi+1)).

Since condition [P1] establishes that w((qi, pi), (qi+1, pi+1)) ∈ R>0 and the
number of simple paths in G is bounded we define

b2 = max
σ∈exec(H)
σ finite

w(σ).

In case of σ complete, w(σ) =
∞∏
i=0

w((qi, pi), (qi+1, pi+1)) and due to the fact

of G is finite, σ is abstracted by a finite number of simple paths and a finite
set of cycles, getting w(σ) =

∏
π cycle

w(π) · ∏
π simple path

w(π) where the first term

in the product is less than or equal to 1 because of condition [P2] and the
second one belongs to R>0 because of condition [P1]. Then, we define

b3 = max
σ∈exec(H)
σ infinite

w(σ) ∈ R>0.

Finally, by choosing B = max{b1, b2, b3}, we claim that for every σ ∈
exec(H), w(σ) 6 B, it means that |η(t)| 6 B · |η(0)| for all t ∈ dom(η),
hence ∀ε ≥ 0, lyap(exec(H), ε, ε

B
) holds.

Proof of Theorem 8. First, note that Condition [P3] implies Condition
[P2], hence, [P1] and [P3] together imply Lyapunov stability. It remains to
show that every complete execution converges to 0̄. If the execution eventu-
ally enters an element p and remains within it, then Condition [P4] guaran-
tees convergence. Hence, let us consider the case where the execution, say
σ, can be split into an infinite sequence of element executions, that is, cor-
responds to an infinite path π in the graph. An infinite path π corresponds
to a splitting of a finite set of finite paths, π1, . . . , πk, and an infinite set
of simple cycles, πk+1, πk+2, . . .. Note that the indices do not represent the
order of the splitting and k varies from 0 to the total number of simple paths
in the graph G. Let b be an upper bound on the weight of all simple paths,
it is b = max

π∈paths(G)
len(π)<∞

w(σ). From Condition [P3], we know that the weight of
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each simple cycle is < 1. Since the number of simple cycles in the graph
G is finite, there exists ε > 0 such that the weight of each simple cycle is
< 1− ε. Every prefix of the infinite path π is conformed by the finite paths,
π1, . . . , πk, πk+1, . . . , πk+m for some m ∈ N, which has weight less than or
equal to bk(1− ε)m. The weight goes to 0 as m increases. Hence, the scaling
of σ converges to 0. Therefore, σ converges to 0̄.

5.4. Verifying Conditions [P1-P4]

Given the graph G, conditions [P1-P3] can be efficiently verified inO(|V ||E|)
complexity where |V | and |E| are the number of vertices and edges in G,
respectively. Verifying Condition [P1] consists of iterating over the edges
and checking if the values of the weights is < +∞, which is of complexity
O(|E|). Conditions [P2] and [P3] can be transformed into checking for cycles
whose sum of weights is negative by replacing the weight in an edge e by
− log(w(e)). Negative cycles can be detected, for example, by Bellman-Ford
algorithm [26], whose worst-case performance is O(|V ||E|) for V and E being
the vertices and edges in G.

Note that any complete execution which remains within a partition ele-
ment p will eventually enter a strongly connected component of H ∩ p and
stay there. It will not converge if 0̄ is in the convex hull of the flows asso-
ciated with the locations in that component or there exists a vector in the
convex hull which points into p from the origin (and hence diverges). Hence,
Condition [P4] is equivalent to checking:

P4’ For each C ∈ scc(UG(H∩p)), 0̄ 6∈ chull(
⋃
q∈C

F(q))∧chull(
⋃
q∈C

F(q))∩

p = ∅,

where H ∩ p is computed in O(|V | + |E|) and the search for all strongly
connected components in H∩ p is performed by the Tarjan’s algorithm with
Nuutila’s modifications [27] in O(|Vp|+ |Ep|) complexity time, where Vp and
Ep are the vertices and edges in UG(H ∩ p), respectively.

In the case of Condition [P2] is not satisfied, the finite abstract graph G
could be too coarse for proving stability and a tighter abstraction needs to
be constructed. A finer abstraction comes out by adding new predicates to
the state space partition. This addition can be either an automatic random
process or a counterexample based approach. Both approaches are refinement
strategies. The automatic random process creates predicates which partition
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Algorithm 1 Weighted graph construction

Require: A PSS H and an elementary partition P
Ensure: The weighted graph G

1: for each location q in Q and element p in P do
2: if p ⊆ I(q) then
3: AddNode((q, p),G)
4: end if
5: end for
6: for element p in P do
7: G ′ := QuotientGraph(H, p)
8: for (q1, p1) and (q2, p2) in G do
9: if Adjacent(p1, p) and Adjacent(p2, p) then

10: w := −∞
11: for each pair of nodes C1, C2 in G ′ do
12: Π := SimplePaths(C1, C2,G ′)
13: for π in Π do
14: wπ := Scaling(p1, p2, p, π,H)
15: w := Max(w,wπ)
16: end for
17: end for
18: if q1 in Enter(p1, C1) and q2 in Exit(p2, C2) then
19: AddEdge(((q1, p1), (q2, p2), p, w),G)
20: end if
21: end if
22: end for
23: end for

uniformly the state-space. Another refinement strategy is an algorithmic
technique which constructs predicates based on the counterexample. The
theoretical foundations and results related to the refinement techniques are
presented in [18].

6. Weighted graph construction

Here, we present in detail the weighted graph construction. Algorithm 1
describes the full procedure and Algorithm 2 is the most intricate function
in the graph construction. Algorithm 2 determines the existence of edges
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between vertices and computes the weights associated with them.

6.1. Algorithm 1

Given a PSS H and an elementary partition P , Algorithm 1 outputs a
weighted graph G. This graph G corresponds to the graph G(H,P) defined
in Subsection 5.1. We enumerate the functions involved in Algorithm 1.

1. AddNode((q, p),G) adds the node (q, p) to the graph G.

2. QuotientGraph(H, p) constructs the quotient graph UG(H∩p)/scc,
where UG(H∩p) corresponds to the underlying graph of the PSS H∩p
as defined in Subsection 3.3.

3. Adjacent(p′, p) takes as inputs two elements p′, p ∈ P and returns
True if they are adjacent and False otherwise. An element p′ is adjacent
to p if p′ belongs to the boundary of p, that is if p′ ⊂ p and p′ ∩ p̊ = ∅.

4. SimplePaths(C1, C2,G ′) provides all the simple paths in the graph G ′
starting from the node C1 and ending at the node C2.

5. Scaling(p1, p2, p, π,H) computes the relation between points in p1 and
p2 such that there exists a p-execution evolving by following the dy-
namics involved in the path π and it will be explained in detail later.

6. Max(w,wπ) computes the maximum of the two rational values w and
wπ.

7. Enter(p1, C1) takes as input an element p1 and a strongly connected
component C1 of UG(H∩p)/scc. It consists of three subfunctions. The
first one proceeds to search the locations q in the strongly connected
component C1 such that p1 is contained in the closure of the invariant
set I(q). These locations are stored into a list l1. The second function
lists into l2 the set of locations q ∈ l1 such that the vector field F(q) can
define a execution which enters in p. Finally, the third function outputs
the locations in l2 such that there exists an edge in the subgraph H∩p1

to them.

8. Exit(p2, C2) takes as input an element p and a strongly connected
component C2 of UG(H ∩ p)/scc. It requires three steps. The first
one identifies the locations q in the strongly connected component C2

such that p2 ⊆ I(q). They are stored into a list l1. The second step
lists into l2 the locations q ∈ l1 such that the dynamics determined by
the vector field F(q) can exit from the element p. Then, the third step
selects from l2 the locations which form an edge in the subgraph H∩p2

from them.
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Algorithm 2 Scaling function

Require: Three elements p1, p2, p, a sequence of sets of locations π =
(C0, . . . , Ck) and a PSS H

Ensure: Scaling wπ
1: d := CollectDynamics(C0,H)
2: D := ConvexHull(d)
3: R := ReachRelation(p1, p,D)
4: for i = 1, . . . , k − 1 do
5: d := CollectDynamics(Ci,H)
6: D := ConvexHull(d)
7: r := ReachRelation(p, p,D)
8: R := Compose(R, r)
9: end for

10: d := CollectDynamics(Ck,H)
11: D := ConvexHull(d)
12: r := ReachRelation(p, p2, D)
13: R := Compose(R, r)
14: wπ := Optimization(R)

The input to Algorithm 1 is a PSS H and an elementary partition P , and
the output is a weighted graph. The nodes of the weighted graph are pairs of
a location and an element. Hence, the algorithm iterates over locations and
elements. If a pair of a location q and an element p is such that the element
is contained in the invariant I(q) of the location, this pair is added as a node
to the graph. Next, the edges and the weights associated with them will be
computed by iterating over the elements of the elementary partition. For
the element p, the quotient graph over the strongly connected components of
H∩p is constructed. Then, for every pair of nodes C1 and C2 in the quotient
graph, all the simple paths connecting them are added into Π (line 12 in
Algorithm 1). For each simple path in Π, the scaling is computed. Such a
computation is performed by the function Scaling, whose inputs are a pair
of elements p1 and p2 (both adjacent to p), the element p, the selected simple
path and the initial PSS H. Observe that the edges are to be between nodes
determined by a pair of location in H and element in P . Therefore, one
step is to set the enter and exit locations in order to pair the locations with
the elements p1 and p2 respectively. The enter locations correspond to the
locations in the strongly connected component of H ∩ p associated with C1
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such that an execution can travel from p1 to the invariants in C1, while exit
locations are those in the strongly connected component of H∩ p associated
with C2 such that there exists an execution evolving from each of the location
invariants to the adjacent element p2. Therefore, for each enter location q1

and exit location q2 there exists an edge of the form ((q1, p1), (q2, p2)) in the
weighted graph G. It remains to compute the weight. Each edge of the
form ((q1, p1), (q2, p2)) have the same weight for the same triple of elements
p1, p2 and p, irrespective of the locations q1 and q2. The maximum of the
scaling over all the simple paths will be the weight linked to and edge of the
form ((q1, p1), (q2, p2)) in case of q1 is a location which allows to enter the
component C1 and q2 is a location which allows to exit from the component
C2.

6.2. Algorithm 2

Next, we explain in detail the function Scaling(p1, p2, p, π,H), described
in Algorithm 2. Algorithm 2 takes as input three elements p1, p2, p ∈ P and
a PSS H, then it computes the relation between points in p1 and p2 such
that there exists a p-execution evolving by following the dynamics involved
in the path π. It consists of five functions:

1. CollectDynamics(C,H) collects all the flows F(q) in the PSS H,
where q ∈ C, into a list.

2. ConvexHull(d) takes as input a list of flows, say d, and computes
the convex hull polyhedron of these flows.

3. ReachRelation(p1, p,D) returns a polyhedron which represents the
relation between points from element p1 travelling to points in element
p by following any vector dynamics contained in the polyhedron D. A
detailed description on the relation polyhedron construction is exposed
later.

4. Compose(R, r) composes two given reach relations, R and r by re-
turning a new one, such that if (x, y) ∈ R and (y, z) ∈ r, then (x, z)
will be contained in the composed reach relation.

5. Optimization(R) returns the pair element in R which maximizes the
scaling, that is the pair (x, y) ∈ R with maximum value |y|/|x|.

The input to the Algorithm 2, that is the scaling function, is three ele-
ments, p1, p2 and p, a PSS H and a sequence of sets of locations or compo-
nents in H, π = (C0, . . . , Ck). The output is a rational value. It constructs a
composed reach relation polyhedral set by iterating over the sets of locations.
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For each set of locations Ci in π, the flows determined by them are collected
into a list d. After, the convex hull of the collected flows is computed and
called D. Then the reach relation polyhedral set is constructed for the pair
of corresponding elements, p1, p for C0, p, p2 for Ck and p, p for the rest of
components. All the computed reach relation polyhedra are composed into
the polyhedron R. Finally, an optimization is performed over the composed
relation polyhedron R in order to obtain the maximum scaling between an
initial point in p1 and a final point in p2 for a p-execution. This is the scaling
value returned by Scaling(p1, p2, p, π,H).

Illustration. We illustrate the main steps in Algorithm 1. Consider the poly-
hedral switched system H depicted in Figure 1, and the partition P de-
fined at the end of Section 5.1. The weighted graph G(H,P) is represented
in Figure 3. We pick one of the elements in the partition, for instance
p2 = {(x, y) ∈ R2 : x − 2y > 0, y > 0}. The element p2 is contained in
the invariant of two different modes of the PSS. The function Quotient-
Graph(H, p2) constructs first UG(H∩p2) as defined in Subsection 3.3. This
subgraph is circled by a dotted line in Figure 1. Then, the quotient graph
obtained from UG(H ∩ p2) returns just one strongly connected component,
which consists of the locations q1 and q5. The adjacent elements to p2 con-
tained in the partition P , defined in Subsection 5.1, are p1 and p3. Let us
consider p1 as the initial adjacent element and p3 as the final adjacent ele-
ment. We explain in the following subsection how to define the polyhedral set
which represents the relation between points in p1 and p3 such that there ex-
ists an execution starting at a point in p1, ending in p3 and evolving through
the element p2.

6.3. Reach Relation polyhedron

Here, we present a detailed description of the polyhedral construction im-
plemented in ReachRelation(p1, p2, D). This function constructs a poly-
hedron which represents the relation between points from the element p1

travelling to points in the element p2 by following some of the dynamics de-
scribed in the polyhedron D. Consider d1 and d2 the affine dimensions of
elements p1 and p2 respectively. To perform such construction, three different
sets are defined:

• A polyhedral set which duplicates the initial polyhedron p1. It consists
of a polyhedron of affine dimension 2d1 where the new variables are
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constrained in the same fashion as the old ones and equalized to them.
The new polyhedral set for an element defined as {x ∈ Rn : a1 · x ∼
0, . . . , am · x ∼ 0} is {(x, y) ∈ R2n : a1 · x ∼ 0, . . . , am · x ∼ 0, a1 · y ∼
0, . . . , am · y ∼ 0, x = y}.
• A new dynamical polyhedron duplicates the dimension of the initial

dynamic polyhedron, D, preserving the coefficients of the constraints
in the second half part of the new coefficients and adding constraints
to equalize the half first variables to zero. Each dynamical polyhedron
of the form {x ∈ R : a1 · x ∼ 0, . . . , am · x ∼ 0} becomes {(x, y) ∈ R2n :
a1 · y ∼ 0, . . . , am · y ∼ 0, x = 0̄}.
• A polyhedral set based on the final polyhedron p2. It will be one with

affine dimension 2d2, where the first half part of the coefficients in the
new constraints are whatever value and the second half part of the
coefficients correspond to the ones in the old constraints. Consider a
final polyhedron p2 of the form {x ∈ Rn : a1 · x ∼ 0, . . . , am · x ∼ 0},
then the new polyhedral set is defined as follows, {(x, y) ∈ R2n : a1 ·y ∼
0, . . . , am · y ∼ 0}.

Now, by considering Figure 5a, we construct the relation polyhedron for
the elements p1 and p3 such that there exists a p2-execution evolving through
the list of dynamics in the strongly connected component formed by locations
q1 and q5 in the PSS of Figure 1. The involved dynamics are determined by
the sets F1 and F5. We define these sets for the stable system in Figure 2a,
F1 = {(x, y) : x + y < 0, x + 2y > 0} and F5 = {(x, y) : x < 0, x + 2y > 0},
so d = {F1, F5}. Then, we have all the ingredients for constructing the
relation polyhedron ReachRelation(p1, p3, D). Let us first construct the
duplicated polyhedron for p1. It will be defined as

P1 = {(x, y, z, t) : x > 0, y = 0, z > 0, t = 0, z = x, t = y}.
Then, the duplicated polyhedron for the final element p3 is

P2 = {(x, y, z, t) : z − 2t = 0, t > 0}.
For the polyhedra F1 and F5 representing the dynamics, the following dupli-
cated sets are computed, {(x, y, z, t) : x = 0, y = 0, z+ t < 0, z+ 2t > 0} and
{(x, y, z, t) : x = 0, y = 0, z < 0, z + 2t > 0} respectively. The convex hull
generated by them is determined as

D = {(x, y, z, t) : x = 0, y = 0, z + 2t > 0, z < 0}.
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Finally, the relation polyhedron returned by the function ReachRelation
(p1, p3, D) will be the one constructed by considering the initial polyhedron
P1, the final polyhedron P2 and the dynamics polyhedron {(x, y, z, t) : z −
2t = 0, y = 0, x− z >= 0, z > 0,−x+ 2z >= 0}.

7. Implementation

The stability verification procedure has been implemented in Python
and integrated in a tool called Averist (Algorithmic VERIfier for STa-
bility) [21, 17], which can be found in software.imdea.org/projects/

averist/index.html. It uses the Parma Polyhedral Library (PPL) [28] to
deal with polyhedral operations, the NetworkX Python package [29] to man-
age and analyse graphs and the GLPK library [30] for solving optimization
problems.

The experiments have been performed on Mac OS X 10.10 with proces-
sor 2.8 GHz Intel Core i5 and 8GB 1600 MHz DDR3 memory. They are
performed, first, to demonstrate the feasibility of the approach and, second,
to evaluate the running times. Comparison with stability verification tools
is not possible because, as far as we know, the unique stability-verification
available tool works only for switched linear and non-linear systems [31].

We illustrate the algorithm on an example which has been verified using
Averist. The switched system is shown in Figure 4 and a pictorial illustra-
tion of the system when the value of the variable z = 1 is shown in Figure 5b.
The system executions do not diverge while remaining in any single cell, and
as we will see from the proof of stability given by the tool, the system does
not have any infinite executions. Hence, the scaling associated with any
execution is bounded and the system is both Lyapunov and asymptotically
stable.

Part of the graph constructed by the algorithm is shown in Figure 5b. It
has a cycle with weight > 1. The same is returned by the tool. However,
observe that the path e1 to e2 to e3 is infeasible even if both the edges e1

to e2 and e2 to e3 are feasible. We add the constraint x + y = 0 shown by
the dotted line in Figure 5b to the partition to create a finer partition. This
breaks the cycle and Averist returns that the system is stable.

We have experimented with variations of the example described in Fig-
ure 4, considering different flow functions, and we extend it to some 4 and 5
dimensional examples. Our results are summarized in Table 1. Stability
refers to Lyapunov stability. Here, Exp refers to the experiment number,
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Figure 4: Switched System Example

dim to the dimension of the concrete PSS. Answer is the verification answer,
which can be stable (S ), unstable (NS ) or inconclusive (IN ). Ref refers to
the number of abstraction refinements performed before termination, Size
refers to the number of nodes of the final weighted graph. The time for con-
structing the final weighted graph G time and verification Ver time is shown
along with the total time Time. All the times are in seconds.

Observe that the increment of the time with respect to the dimension of
the PSS for constructing the weighted graph increments polynomially with
respect to the number of abstraction refinements. The time increment with
respect to the size of the abstraction is sharper but still not exponential.
When comparing the time for the weighted graph construction with the ver-
ification time, it is recognizable that the weighted graph construction is a
crucial step in terms of computability. There is a remarkable total time in-
crement in the case of increasing the number of refinements when considering
the same dimension of the PSS. This points to the need of decreasing the
number of refinements. In the future, we will develop heuristics to address
this.
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Figure 5

8. Conclusions

We investigated an algorithmic approach to stability verification of poly-
hedral switched systems. Our method relies on constructing a finite weighted
graph abstracting the system using a finite partition of the state-space as a
parameter. In the event of a failure to infer stability from the graph, our
algorithm provides insights into the reasons for the failure in terms of a
counterexample. In addition, a qualitatively better approximation of the
system can be constructed by feeding a finer partition as input to the proce-
dure. The benefits of the approach are illustrated through the analysis of an
example using the tool implementing the approach.

Our method can be extended to more complex dynamics provided that
the reachability predicate, involved in deducing the existence of edges and
computing the weights, can be effectively computed. In the case of linear
and non-linear dynamics, the reachability predicate cannot be computed ex-
actly, however, over-approximations using tools such as SpaceEx [32] can be
computed. Another direction for future work includes exploring the possibil-
ity of automatically refining the partitions by analyzing the counterexample
returned by the procedure [33].
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Exp Dim Answer Ref Size G time (s) Ver time (s) Time (s)
1 3 S 1 60 5.56 0.001 6.05
2 3 S 3 83 5.09 0.006 23.6
3 3 S 3 82 7.43 0.001 19.85
4 3 S 7 122 28.62 0.003 98.71
5 3 S 9 142 24.83 0.003 135.39
6 3 S 11 166 37.45 0.009 208.47
7 3 NS 1 − 0 0 0.27
8 3 S 10 143 32.27 0.006 206.04
9 3 S 11 157 42.07 0.009 239.39
10 3 S 16 202 138.08 0.049 1256.9
11 4 S 3 341 285.94 0.019 708.23
12 4 S 7 601 819.87 0.037 3154.2
13 5 S 3 1365 4288.73 0.147 11939.06
14 3 IN 10 115 20.46 0.04 111.43
15 3 IN 10 65 7.71 0.01 226.98
16 3 S 3 74 7.94 0.001 14.33
17 3 S 3 74 9.74 0.001 17.72
18 3 S 3 74 7.7 0.001 14.57
20 3 S 3 74 7.66 0.001 14.5
21 3 S 3 74 7.53 0.001 13.66

Table 1: Experimental results
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