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1 Introduction

Let X be a finite polyhedral cell complex1 of dimension dim X = d . Gromov [8] recently
showed that if X has sufficiently strong higher-dimensional expansion properties (which
generalize edge expansion of graphs, see below for the precise definition) then X has the
following topological overlap property: For every every continuous map f : X → Rd , there
exists a point p ∈ Rd that is contained in the images of some positive fraction of the d-cells
of X , i.e.,

|{σ ∈ �d(X): p ∈ f (σ )}| ≥ μ · |�d(X)|, (1)

where �k(X) denotes the set of k-dimensional cells of X , 0 ≤ k ≤ d , and μ > 0. More
generally, the same conclusion holds if the target space Rd is replaced by a d-dimensional
manifold M , and the overlap constant μ > 0 depends only on the dimension d and on the
constants quantifying the expansion properties of X , but not on M . For technical reasons,
we will assume that the manifold M admits a piecewise-linear (PL) triangulation, so that
we can apply standard tools to perturb a given map to general position. We refer to the book
by Rourke and Sanderson [15] or to the lecture notes by Zeeman [16] for background and
standard facts about piecewise-linear topology.

In the special case where X is the n-dimensional simplex �n (or its d-dimensional skele-
ton), determining the optimal overlap constant for maps �n → Rd is a classical problem
in discrete geometry, also known as the point selection problem [1,2] and originally only
considered for affine maps. Apart from the generalization from affine to arbitrary continuous
maps, Gromov’s proof also led to improved estimates for the point selection problem, and a
number of papers have appeared with expositions and simplified proofs of Gromov’s result
in this special case X = �n , see [9,13] and [4, Sec. 7.8].

The goal of the present paper is to provide a detailed and easily accessible proof of Gro-
mov’s result for general complexes X , see Theorem 8 below. This is a crucial ingredient for
obtaining examples of simplicial complexes X of bounded degree (i.e., such that every vertex
is incident to a bounded number of simplices) that have the topological overlap property [6,7].
The basic idea of the proof is the same as Gromov’s, but we present a simplified and stream-
lined version of the proof that uses only elementary topological notions (general position
for piecewise-linear maps, algebraic intersection numbers, cellular chains and cochains, and
chain homotopies) and avoids much of the machinery used in Gromov’s original paper (in
particular, the simplicial set of cocycles).

For stating the result formally, we need to discuss higher-dimensional expansion prop-
erties of cell complexes. The relevant notion of expansion originated in the work of Linial
and Meshulam [10] and of Gromov [8] and generalizes edge expansion of graphs (which
corresponds to 1-dimensional expansion). To define k-dimensional expansion, we need two
ingredients: first, information about incidences between cells of dimensions k and k −1 and,
second, a notion of discrete volumes in X . To define these, it is convenient to use the language
of cellular cochains of X .

1.1 Cellular cochains

Let X be a polyhedral cell complex, let �k(X) denote the set of k-dimensional cells of X ,
and let Ck(X) := Ck(X;F2) := F

�k (X)
2 be the space of k-dimensional cellular cochains

with coefficients in the fieldF2; in other wordsCk(X) is the space of functions a : �k(X) →
1 See [3, Sec. 12] or [16, Ch. I] for more background on polyhedral cell complexes (in [16], they are called
convex linear cell complexes).
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F2 = {0, 1}. For a pair (σ, τ ) ∈ �k(X)×�k−1(X), let [σ : τ ] be 1 or 0 depending onwhether
τ is incident to σ (i.e., whether τ is contained in the boundary ∂σ ) or not. This incidence
information is recorded in the coboundary operator, which is a linear map δ : Ck−1(X) →
Ck(X) given by δa(σ ) := ∑

τ∈�k−1(X)[σ : τ ]a(τ ).

The elements of the subspaces Zk(X) := ker(δ : Ck(X) → Ck+1(X)) and Bk(X) :=
im(δ : Ck−1(X) → Ck(X)) are called k-dimensional cocycles and coboundaries, respec-
tively. The composition of consecutive coboundary operators is zero, i.e., Bk(X) ⊆ Zk(X),
and Hk(X) = Zk(X)/Bk(X) is the k-dimensional homology group (with F2-coefficients)
of X . This information is customarily recorded in the cellular cochain complex2 of X :

0 → F2 = C−1(X)
δ−→ C0(X)

δ−→ C1(X)
δ−→ · · · δ−→ Cd−1(X)

δ−→ Cd(X) → 0 (2)

1.2 Norm, cofilling, expansion, and systoles

For α ∈ Ck(X), let |α| denote the Hamming norm of α, i.e., the cardinality of the support
supp(α) := {σ ∈ �k(X) : α(σ) �= 0}, which we think of as a measure of “discrete k-
dimensional volume.” In fact, it will be convenient to allowmore general norms on cochains;
the following definition summarizes the properties that we will need.

Definition 1 (Norm on cochains) A norm on the group C∗(X) = ⊕d
k=0 C

k(X) of cellular
cochains of X with F2-coefficients is a function ‖ · ‖ : C∗(X;F2) → R≥0 that satisfies the
following properties for all cochains α, β ∈ Ck(X), 0 ≤ k ≤ d:

1. ‖0‖ = 0.

2. Triangle inequality: ‖α + β‖ ≤ ‖α‖ + ‖β‖.
Furthermore, we will assume throughout that the norm satisfies the following:

3. Monotonicty: ‖α‖ ≤ ‖β‖ whenever supp(α) ⊆ supp(β).

From now on, weworkwith a fixed norm on the cochains of X .We assume that the norm is
normalized such that ‖1k

X‖ = 1 for 0 ≤ k ≤ d , where 1k
X ∈ Ck(X) assigns 1 to every k-cell

of X . In particular, when working with the Hamming norm, we will consider its normalized
version

‖α‖H := |α|
|�k(X)| .

Given β ∈ Bk(X), we say that α ∈ Ck−1(X) cofills b if β = δα. Once we have a notion of
discrete volumes, we can consider the following (co)isoperimetric question: Can we bound
the minimum norm of a cofilling for a coboundary β in terms of the norm of β?

Definition 2 (Cofilling/coisoperimetric inequality) Let L > 0. We say that X satisfies a L-
cofilling inequality (or coisoperimetric inequality) in dimension k if, for every β ∈ Bk(X),
there exists some α ∈ Ck−1(X) such that δα = β and ‖α‖ ≤ L‖β‖.

Any two cofillings of a given coboundary differ by a cocycle. Thus, X satisfies an L-
cofilling inequality in dimension k if and only if

‖δα‖ ≥ 1

L
· min{‖α + ζ‖ : ζ ∈ Zk−1(X)} for all α ∈ Ck−1(X). (3)

2 More precisely, we work with the augmented cellular cochain complex of X , unless stated otherwise, i.e.,
we consider X to have a unique (−1)-dimensional cell, the empty cell ∅, which is incident to every vertex of
X .
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We can strengthen (3) by replacing cocycles with coboundaries and obtain a condition
that also allows us to draw conclusions about the cohomology of X . For α ∈ Ck−1(X), let

‖[α]‖ := min{‖α + β‖ : β ∈ Bk−1(X)} (4)

denote the distance (with respect to the norm ‖·‖) of α to the space Bk−1(X) of coboundaries.

Definition 3 (Coboundary expansion) Let η > 0.We say that X is η-expanding in dimension
k, if for every (k − 1)-cochain α ∈ Ck−1(X),

‖δα‖ ≥ η · ‖[α]‖. (5)

Lemma 4 Let η > 0. A complex X is η-expanding in dimension k if and only if Hk−1(X) = 0
and X satisfies a 1/η-coisoperimetric inequality in dimension k.

Proof Suppose that X is η-expanding in dimension k. Clearly, (5) implies (3), i.e., X satisfies
a 1/η-cofilling inequality. Moreover, if α ∈ Ck−1(X) \ Bk−1(X) then ‖[α]‖ > 0, hence
‖δα‖ > 0, hence α /∈ Zk−1(X). Thus, Zk−1(X) = Bk−1(X), i.e., Hk−1(X) = 0.

Conversely, assume that Hk−1(X) = 0. Then Zk−1(X) = Bk−1(X), so (5) and (3) are
equivalent. ��

In some cases, however, vanishing of Hk−1(X) turns out to be too stringent a requirement,
and we can replace it by the condition that every nontrivial cocycle has large norm:

Definition 5 (Large cosystoles) Let ϑ > 0. We say that X has ϑ-large cosystoles in dimen-
sion j if ‖α‖ ≥ ϑ for every α ∈ Z j (X) \ B j (X).

Example 6 Consider the case k = 1, with the normalized Hamming norm. In this case, η-
expansion in dimension 1 corresponds to η-edge expansion of a graph (the 1-skeleton of the
complex). An L-cofilling inequality in dimension 1 means that every connected component
of the graph is 1/L-edge expanding. Having ϑ-large cosystoles in dimension 0 means that
every connected component contains at least a ϑ-fraction of the vertices.

1.3 Local sparsity of X

For the formal statement of the overlap theorem, we need one more technical condition on
X . For a cell τ of X , let ιkτ be the k-dimensional cochain that assigns 1 to k-cells of X that
have nonempty intersection with τ and 0 otherwise.

Definition 7 (Local sparsity) Let ε > 0. We say that X is locally ε-sparse (with respect to
a given norm ‖ · ‖) if ‖ιkτ‖ ≤ ε for every nonempty cell τ of X and every k, 0 ≤ k ≤ d .

For example, in the case of the normalized Hamming norm ‖ · ‖H , local sparsity means
that

|{σ ∈ �k(X) : τ ∩ σ �= ∅}| ≤ ε|�k(X)|,
for every nonempty cell τ of X .

1.4 Formal statement of the theorem

We are now ready to state Gromov’s theorem.

123



Geom Dedicata

Theorem 8 (Gromov’s Topological Overlap Theorem [8]) For every d ≥ 1 and L , ϑ > 0
there exists ε0 = ε0(d, L , ϑ) > 0 such that the following holds:

Let X be a finite cell complex of dimension d, and let ‖ · ‖ be a norm on the cochains of
X. Suppose that

1. X satisfies a L-cofilling inequality in dimensions 1, . . . , d;
2. X has ϑ-large cosystoles in dimensions 0, . . . , d − 1; and
3. X is locally ε-sparse for some ε ≤ ε0.

Then for every continuous map f : X → M into a compact connected d-dimensional
piecewise-linear (PL) manifold M, there exists a point p ∈ M such that3

‖{σ ∈ �d(X) | p ∈ f (σ )}‖ ≥ μ, (6)

where μ = μ(d, ε, L , ϑ) > 0.

Remark 9 The assumption that the manifold M is compact is not essential; moreover, we
may assume without loss of generality that M has no boundary. Indeed, since X is compact,
the image f (X) is compact and hence contained in a compact submanifold N of M with
boundary ∂N ; we can turn N into a compact manifold without boundary by doubling, i.e.,
by glueing two copies of N along their boundary.

If a complex X satisfies the conclusion of the theorem, we also say that X is topologically
μ-overlapping for maps into d-dimensional PL manifolds. If the conclusion holds true just
for affine maps and M = Rd , we say that X is geometrically μ-overlapping.

2 Preliminaries from piecewise-linear topology

2.1 Assumptions on M

We assume that M is a compact connected piecewise-linear (PL) d-dimensional manifold,
without boundary. That is, we assume that M admits a triangulation4 T with the property
that the link of every nonempty simplex τ of T is a PL sphere of dimension d − 1− dim(τ );
throughout this paper, we only consider triangulations of M that have this property.

2.2 Approximation by PL maps

We can fix a metric on M , e.g., by fixing a triangulation T of M and by considering each
simplex of T as a regular simplex with edge length 1. By subdividing a given triangulation T
sufficiently often, we can pass to a new triangulation T ′ in which each simplex has diameter
at most ρ > 0, for a given ρ (see, e.g., [12, Sec. 1.7]).

By the standard simplicial approximation theorem [14], given the triangulation T ′ of M
and a continuous map f : X → M , there is a simplicial approximation of f , i.e., there is a
subdivision X ′ of X and a simplicial map g : X ′ → T ′ such that, for each point x ∈ X , the
image g(x) belongs to the (uniquely defined) simplex of T ′ whose relative interior contains
f (x). (In fact, g is even homotopic to f , but we will not need that.) This map g is a PL map

3 Here, we use that a subset of �k (X) can be identified with a k-dimensional cellular cochain, its indicator
function.
4 The triangulation is necessarily finite, since M is compact.
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X → M and the distance between g(x) and f (x) is at most the maximum diameter of any
simplex in T ′, hence at most ρ, for every x ∈ X .

Thus, by the preceding discussion and the following lemma, it suffices to prove Theorem 8
for PL maps.

Lemma 10 Let f : X → M be a continuous map, and let gn : X → M be a sequence of
continuous maps that converges to f uniformly, i.e., max

x∈X dist(gn(x), f (x)) → 0 as n → ∞.

Suppose that for every gn there exists a point pn ∈ M such that ‖{σ ∈ �d(X) | pn ∈
gn(σ )}‖ ≥ μ. Then there exists a point p ∈ M such that (6) holds.

Proof By compactness, there is a subsequence of the points pn that converges to a point
p. We claim that p is the desired point. Since there are only finitely many cells in X , there
is some ρ > 0 such that for every d-cell σ of X with p /∈ f (σ ), the distance between p
and f (σ ) is at least ρ. Choose n sufficiently large so that the distance between pn and p is
less than ρ/2, and the distance between f (x) and gn(x) is at most ρ/2, for every x ∈ X . If
pn ∈ gn(σ ), then the distance between p and f (σ ) is less than ρ, so by the choice of ρ, we
have p ∈ f (σ ). Therefore, {σ ∈ �d(X) | p ∈ f (σ )} ⊆ {σ ∈ �d(X) | pn ∈ gn(σ )}, and
the desired conclusion follows by the monotonicity property of the norm. ��
2.3 General position

We refer to [16, Ch. VI] for a comprehensive treatment of general position for PL maps. The
following definition summarizes the properties that we will need.

Definition 11 Let X be a finite polyhedral cell complex, M a PL manifold, and let f : X →
M be a PL map.

1. We say that f is in strongly general position (with respect to the given decomposition of
X into polyhedral cells) if, for every r ≥ 1 and pairwise disjoint cells σ1, . . . , σr of X ,

dim
(⋂r

i=1 f (σi )
) ≤ max

{ − 1,
(∑r

i=1 dim σi
) − d(r − 1)

}
. (7)

In particular, if the number of the right-hand side is −1, then the intersection is empty.
2. Given a triangulation T of M , we that that f is in general position with respect to T if,

for every simplex σ of X and every simplex τ of T , dim( f (σ )∩ τ) ≤ max{−1, dim σ +
dim τ − d}; moreover, if dim σ + dim τ = d then we require that f (σ ) and τ intersect
transversely (either the intersection is empty, or they intersect locally like complementary
linear subspaces).

The main fact that we will need is that any map f : X → M can be approximated
arbitrarily closely by a PL map that is in general position:

Lemma 12 [16, Ch. VI] Let f : X → M be a PL map and let T be a triangulation of M.
Then, up to a small perturbation, we may assume that f is general position with respect to
T and in strongly general position.

Furthermore, we will need the following notion of sufficiently fine triangulations:

Definition 13 Let T be a triangulation of M and let f : X → M be a PL map in general
position with respect to T . We say that T is sufficiently fine with respect to f if, for every
k > 0 and every k-simplex τ of T ,

‖{σ ∈ �d−k(X) : f (σ ) ∩ τ �= ∅}‖ ≤ d

k
max{‖ιd−k

σ ′ ‖ : σ ′ ∈ �d−k(X)}.
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Lemma 14 Suppose that f : X → M be a PL map in strongly general position and in
general position with respect to a triangulation T of M. Then (by refining T , if necessary),
we may assume furthermore that T is sufficiently fine with respect to f .

Proof If f is in general position with respect to T , then by choosing points at which we
subdivide T in a sufficiently generic way, we can assume that f is also in general position
with respect to the subdivision T ′. Thus, we may assume that T already has the property that
every simplex of T has diameter smaller than some specified parameter ρ > 0.

Now suppose that σ1, . . . , σr are pairwise distinct simplices of X with f (σ1) ∩ . . . ∩
f (σr ) = ∅. By compactness, there exists ρ = ρ(σ1, . . . , σr ) > 0 such that no matter how
we select xi ∈ f (σi ), some pair xi , x j has distance at least ρ. Since X is finite, there is some
ρ > 0 that works for all finite collections of simplices whose images do not have a common
point of intersection. Suppose now that we have chosen T such that all simplices in T have
diameter at most ρ/2.

Given τ ∈ T of dimension k > 0 consider S(τ ) := {σ ∈ �d−k(X) : f (σ ) ∩ τ �= ∅}. We
claim that

⋂
σ∈S(τ ) f (σ ) �= ∅. Otherwise, for every choice of points xσ ∈ f (σ ), σ ∈ S(τ ),

there would be some pair σ, σ ′ such that xσ and xσ ′ have distance at least ρ. However, by
the definition of S(τ ), we can choose each xσ to lie in the intersection f (σ )∩ τ , from which
it follows that for every pair σ, σ ′ ∈ S(τ ), the distance between xσ and xσ ′ is at most the
diameter of τ , i.e., at most ρ/2.

Let {σ1, . . . , σr } ⊆ S(τ ) be an inclusion-maximal subset with σi ∩ σ j = ∅ (i.e., the σi
are pairwise vertex-disjoint; we can pick this subset greedily). Since f is in strongly general
position and

⋂
σ∈S(τ ) f (σ ) �= ∅, it follows that ∑r

i=1(d − k) − d(r − 1) ≥ 0; this implies
r ≤ d/k. Now, every other simplex σ ∈ S(τ ) intersects one of the σi . Thus, by monotonicity
of the norm and by the triangle inequality, ‖S(τ )‖ ≤ d

k max1≤i≤r ‖ιd−k
σi

‖. ��
2.4 Intersection numbers

Definition 15 (Intersection numbers) If T is a PL triangulation of M and if f : X → M is a
PL map in general position with respect to T , then for every pair of chains a ∈ Cd−k(X;F2)

and b ∈ Ck(T ;F2), we can define their (algebraic) intersection number

f (a) · b ∈ F2

as follows: If σ is a (d − k)-dimensional cell of X and if τ is a k-dimensional simplex of T ,
then by general position, the intersection f (σ ) ∩ τ consists of a finite number of points, and
the intersection number f (σ ) · τ is defined as the number of intersections5 modulo 2. This
definition is extended by linearity (over F2) to arbitrary chains.

This yields, for 0 ≤ k ≤ d , an intersection number homomorphism

f � : Ck(T ) → Cd−k(X), (8)

defined by f �(b)(a) = f (a) · b for each a ∈ Cd−k(X).

It is well-known that the intersection number homomorphism is a chain-cochain map, i.e.,
it commutes with the boundary and coboundary operators in the following sense (see, e.g.,
[11, Sec. 2.2] for a detailed review of this and other properties of intersection numbers).

5 There is a small caveat: In the case k = 0, an intersection point in f (σ ) · τ may have several preimages in
σ and should be counted with the corresponding multiplicity; equivalently, the intersection number is defined
as the number of points in σ ∩ f −1(τ ) modulo 2.
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Lemma 16

f �(∂a) = δ f �(a).

For the proof of the main theorem, we need the following definition:

Definition 17 (Chain-cochainhomotopy)Consider twochain-cochainmapsϕ,ψ :Ck(M)→
Cd−k(X) from the (non-augmented) chain complex of M to the cochain complex of X .
A chain-cochain homotopy between ϕ and ψ is a family of linear maps h : Ck(M) →
Cd−k−1(X) such that ϕ − ψ = h∂ + δh. To keep track of the various maps, it is convenient
to keep in mind the following diagram:

0 Cd(M)

ϕ ψ

∂

h

Cd−1(M)

ϕ ψ

∂

h

· · ·

h

∂
C1(M)

ϕ ψ

∂

h

C0(M)

ϕ ψ
h

0

0 C0(X)
δ

C1(X)
δ

· · ·
δ

Cd−1(X)
δ

Cd(X) 0

(9)

3 Proof of the overlap theorem

Proof of Theorem 8 Let μ and ε0 be parameters that we will determine in the course of the
proof. We assume that X satisfies the assumptions of the theorem, in particular that it is
locally ε-sparse for some ε ≤ ε0.

Let f : X → M be a map. By the discussion in Sect. 2.2 and by Lemmas 12 and 14,
we may assume that f is PL and in general position with respect to a sufficiently fine PL
triangulation T of M .

We wish to show that there is a vertex v of T such that the intersection number cochain
f �(v) ∈ Cd(X) satisfies ‖ f �(v)‖ ≥ μ. We assume that this is not the case and we proceed
to derive a contradiction.

Let v0 be a fixed vertex of T ; by assumption, ‖ f �(v0)‖ < μ. (Note that if f is not
surjective then we can choose the triangulation T and v0 so that ‖ f �(v0)‖ = 0.)

We define a chain-cochain map6

G : C∗(T ) → Cd−∗(X)

by setting G(v) := f �(v0) for every vertex v of T and G(c) = 0 for every c ∈ Ck(T ;F2),
k > 0.

We will construct a chain-cochain homotopy H : C∗(T ) → Cd−1−∗(X) between f � and
G; that is, for every k, we construct a homomorphism

H : Ck(T ) → Cd−1−k(X)

such that
f �(c) − G(c) = H(∂c) + δH(c) (10)

for c ∈ Ck(T ). We stress that for this proof, we work with non-augmented chain and cochain
complexes as in (9), i.e., we use the convention that C−1(X) = 0. It follows that G(c) = 0
for k > 0 and that H(c) = 0 for c ∈ Cd(M).

6 That is, a homomorphism G : Ck (T ) → Cd−k (X) for every k such that G(∂c) = δG(c) for c ∈ Ck (T ).

123



Geom Dedicata

The chain-cochain homotopy H will yield the desired contradiction: Given the triangu-
lation T of M , the formal sum of all d-dimensional simplices of T is a d-dimensional cycle
ζM (here we use that M has no boundary). Note that f �(ζM ) = 10

X (every vertex v of X is
mapped into the interior of a unique d-simplex of M) butG(ζM ) = 0. This is a contradiction,
since

0 �= 10
X = f �(ζM ) − G(ζM ) = H(∂ζM )

︸ ︷︷ ︸
=0 since ∂ζM=0

+ δ H(ζM )
︸ ︷︷ ︸

=0

= 0.

To complete the proof, it remains construct H , which we will do by induction on k.
For k = 0,weobserve that for every vertex v of T , the cochains f �(v) andG(v) = f �(v0)

are cohomologous, i.e., their difference is a coboundary: We assume that M is connected,
hence there is a 1-chain (indeed, a path) c in T with ∂c = v − v0, and so f �(v) − G(v) =
f �(v−v0) = δ f �(c). For every vertex v of T , we set H(v) to be a cofilling of f �(v)−G(v)

of minimal norm (if there is more than one minimal cofilling, we choose one arbitrarily).
Thus, the homotopy condition (10) is satisfied for 0-chains (since chains and cochains of
dimension less than zero or larger than d are, by convention, zero).

By choice of H(v) and the coisoperimetric assumption on X , we have

‖H(v)‖ ≤ L ‖ f �(v) − f �(v0)‖︸ ︷︷ ︸
<2μ

< s0 := 2Lμ.

Inductively, assume that we have already defined H on chains of dimension less than k
and that ‖H(ρ)‖ < si for every i-simplex of T , i < k, where si is a parameter that we will
determine inductively. Thus, if τ is a k-simplex of T , then H(∂τ) is already defined and has
norm less than (k + 1)sk−1.

Moreover, we have ‖ f �(τ )‖ ≤ d
k ε ≤ dε, by the sparsity assumption on X and since the

triangulation T is sufficiently fine.
By construction, z := f �(τ ) − H(∂τ) is a (d − k)-dimensional cocycle, and

‖z‖ ≤ ‖ f �(τ ) − H(∂τ)‖ < dε + (k + 1)sk−1. (11)

If z is cohomologically trivial, i.e., z ∈ Bd−k(X), then we define H(τ ) to be a minimal
cofilling of z and extend H to Ck(T ) by linearity. By assumption on X , we get

‖H(τ )‖ < sk := L (dε + (k + 1)sk−1) .

Note that this recursion yields sk = dε(L + · · · + Lk) + (k + 1)!Lk+12μ.

If z is nontrivial,7 then by the assumption on large cosystoles and (11),

ϑ ≤ ‖z‖ < dε + (k + 1)sk−1,

which is a contradiction if we choose μ and ε0 (and hence ε) sufficiently small with respect
to d , L and ϑ . ��
Remarks 18 1. In many interesting cases, X belongs to an infinite family of complexes for

which the local sparsity parameter ε tends to zero as the size of the complex increases.
For instance, if X is the d-skeleton of the n-simplex, n → ∞, then we have ε = O(1/n).
For complexes with local sparsity ε = o(1), the above proof yieldsμ ≥ ϑ

2(k+1)!Lk +o(1).
If M is unbounded, then, as remarked in the proof, we can take the vertex v0 to satisfy

7 Note that in the special case that X is connected and k = d, the only nontrivial 0-cocycle is z = 10X , hence‖z‖ = 1.
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f �(v0) = 0, which improves the estimate by a factor of 2.
More quantitative information and better bounds on the overlap constant (which are of
interest for specific families of complexes, e.g., skeleta of simplices) can be gleaned from
the proof by amore refined analysis through the cofilling profiles of X [8], which estimate
the size of a minimal cofilling of a cocycle b as a possibly nonlinear function of ‖b‖.
Further improvements in the estimates are possible through the notion of pagodas [13].

2. The proof of the overlap theorem is very robust and easily generalizes to other settings,
in particular to other coefficient rings and other norms. Suppose that R is a fixed ring
of coefficients (commutative, with 1), and consider (co)chains and (co)homology with
R-coefficients. If R is not of characteristic 2, we need to add some minor assumptions
to deal with orientations. First, we need to assume that he target manifold M is R-
orientable, i.e., that Hd(M; R) ∼= R, generated by a fundamental homology class [M].
The definition of the intersection number changes slightly: if two oriented linear simplices
σ, τ of complementary dimensions inM intersect transversely in a single point, then their
orientations determine a local orientation of M , and we set the intersection number σ · τ
to be +1 or −1 depending on whether this orientation agrees with the chosen global
orientation of M or not.
Second, we need to assume that the norm of a cochain is invariant under sign changes in
the values of the cochain, i.e., if two k-cochains c, c′ ∈ Ck(X; R) satisfy c(σ ) = ±c′(σ )

for every orientated k-cell σ of X (the signs may be different for different σ ), then
‖c‖ = ‖c‖.
With these additional assumptions, the proof of Theorem 8 goes through also for R-
coefficients and yields that for every f : X → M , there exists p ∈ M such (6) holds.

3. For norms other than the normalizedHamming norm, ‖ f �(p)‖ ≥ μ does not necessarily
imply that (1) holds. For instance, suppose that R = R and that we work with the �2-
norm. In this case, large norm ‖ f �(p)‖ might be caused by a single d-simplex σ such
that f �(p)(σ ) is a large integer, i.e., f (σ ) intersects p with large multiplicity. However,
this problem does not occur if we impose additional assumptions on the map f , e.g., that
f �(p)(σ ) is bounded by some constant K in absolute value (e.g., if f is linear, then we
can take K = 1).

4. We used the assumption that M is piecewise-linear in order to apply standard general
position arguments from piecewise-linear topology.We believe that the result holds more
generally if M is a homology manifold. General position arguments for homology man-
ifolds are much more subtle, but for the proof we do not really need to perturb the map f
to general position (which may not be possible), we only need a general position chain
map that is close to the chain map induced by f . We plan to investigate this in more
detail in a future paper.
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