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FIGURE S1. Synthetically-generated neural data reveals relationship of the MSR and of the coefficient
of local variation, Ly, with the bursty-ness and memory coefficients, and Skaggs-McNaughton mutual
information. Interevent times were drawn from a stretched exponential distribution to simulate random events
up to 100,000 time units where short-term memory effects were introduced through a shuffling procedure
and the number of random events, M, were varied by modifying the characteristic time constant, 7y (See
Supplementary Text S1 for details). Scatter plots show how the multiscale relevance (MSR) scales with the
bursty-ness coefficient, b (panel a), the memory coefficient, m (panel b), and log M (panel ¢). In panel
b, random events were drawn from a stretched exponential distribution with v = 1.0 while in panel ¢, the
parameter u was set to 0.3. Panels d, e and f, on the other hand, show the relationship between Ly and bursty-
ness coefficient, memory coefficient and log M respectively. The results for 100 realizations of such random
events are shown. Notice, in ¢ and f, that both the MSR and the Ly are sensitive to the number of spiking
events. Idealized HD cells were also simulated by assuming that the firing probability conditioned on the HD
follows a circular Gaussian distribution centered at a preferred HD, 6y, with a given width, o. Spike train
data was generated using resampling methods (See Section 5.5) using a random walk trajectory for a fixed 6,
and o. For each realization of the spike train data, the MSR (blue line) and the HD information (orange line)
were calculated and shown in panel g. Here, we report the mean and standard deviation across 100 spike train
realization. For a given 6, sample HD tuning curves are shown in the polar plots.
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FIGURE S2. The MSR is a robust measure and contains information beyond what the number of spikes
and local variations can explain. For each neuron, the MSR was calculated using only the first half and only
the second half of the data (panel a). The scatter plot reports the two results. The linearity of the relationship
between the two sets of partial data is quantified by the Pearson correlation p, along with its P-value. The
black dashed line indicates the linear fit. For the neurons in the mEC dataset, the MSR was linearly regressed
with log M (panel b). The residual MSR, defined as the deviation of the MSR from the black regression
line, were then correlated against spatial (panel ¢) and HD (panel d) information. The MSR was also linearly
regressed with the coefficient of local variation, Ly (panel e). The residual MSRs were then correlated against
spatial (panel f) and HD (panel g) information.
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FIGURE S3. Local variations in the interspike intervals can capture spatial and HD information but not
decodable spatial information. A scatter plot of the coefficient of local variation Ly vs. the spatial (HD)
information is shown in a (b). The shapes of the scatter points indicate the identity of the neuron according
to Stensola et al. (2012). The linearity and monotonicity of the multiscale relevance and the information
measures were assessed by the Pearson’s correlation, p,, and the Spearman’s correlation, p,, respectively. The
20 top and bottom locally variating neurons (LVNs) were then used to decode position (See Main Text Section
5.6). Panel ¢ shows the cumulative distribution of the decoding error, ||X — X¢ruel|, for the RN (solid violet
squares) and LVNs (solid green circles) neurons as well as for the non-RNs (dashed violet squares) and non-
LVNs (dashed green circles). In all the decoding procedures, time points where all the neurons in the ensemble
was silent were discarded in the decoding process.
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FIGURE S4. RNs in the mEC exhibit spatially selective firing compared to non-RNs. The spatial firing
rate maps of the 65 neurons in the mEC data, sorted according to their MSR scores, are shown together with
the calculated spatial sparsity, spx, the grid score, g, and the maximum and minimum firing.
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FIGURE S5. RNs in the mEC exhibit HD selective firing compared to non-RNs. The HD tuning curves of
the 65 neurons in the mEC data, sorted according to their MSR scores, are shown together with the calculated
HD sparsity, spg, the Rayleigh mean vector length, R, and the maximum and minimum firing.
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FIGURE S6. MSR of neurons from the anterodorsal thalamic nucleus (ADn) and post-subicular (PoS)
regions of 6 freely-behaving mice pooled from multiple recording sessions. For each mouse, the MSR of
the recorded neurons which had more than 100 recorded spikes in a session were calculated. The corresponding
the HD information and sparsity (in bits per spike, see Main Text Section 5.4: Information, Sparsity and other
Scores) were also calculated. ADn neurons are depicted in red circles while PoS neurons in blue squares. The
size of each point reflects the mean vector lengths of the neurons wherein larger points indicate a unimodal
distribution in the calculated HD tuning curves.
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FIGURE S7. The mEC neurons that were both RNs and INs do not contain the bulk of the decodable
spatial information. The overlap between the set of RNs and INs as a function of the size, n, of each set for
the mEC (a), for the ADn of Mouse 12 (Session 120806) (b) and for the ADn and PoS of Mouse 28 (Session
140313) (¢). To show how much decodable spatial information there is in the overlap between the RNs and
spatial INs in the mEC at n = 20, we took the 14 overlapping neurons (ONs) and randomly chose 6 neurons
outside of this overlap and performed a Bayesian positional decoding (see Main Text Section 5.6). The mean
and standard errors of the cumulative distribution of decoding errors, HX — Xtrue|, of the 14 ONs + 6 random
neurons (n = 100 realizations) are shown in grey (D) together with the cumulative distribution of decoding
errors of the RNs (violet squares) and spatial INs (yellow stars). For a given position error, x, a z-score can
be calculated by measuring how many standard errors from the mean of the decoding errors for ONs is the
decoding error of the RN or of the spatial INs. These z-scores are shown in the inset of panel d.



Py —~ -3
% 100 - [ = /{5 ><105 ?;:,4 ,
= (%, | < 030 & 1
g,f GC11,GC61 é- o | e, - 0 gg
= GC33,GC41 < R
[t () e 029 17 T ©
Q,é_ E ®_ 0 20
= & 1071 5 £D g C_\:@ 0.98 neuron pair mean
c !
5 8 [m] [u] % g . firing rate (Hz)
T @ i GC33,GC41
g Q B Top single neurons © 0.27 GC11,GC61
b= Pairs of top neurons o
= 1 —2 \ Top/Bottom neuron pairs 8 112,116
-% 0 / 0> 16 Pairs of botton neurons g 0.26 1
% 1 10 ’ [0 Bottom single neurons g </ I18N10
T T T T T T T T
0.26 027 0.28 0.29 0.30 0.26 0.28 0.30
multiscale relevance, R¢(OR(3, 7)) (Mats?) multiscale relevance, R¢(OR(3, 7)) (Mats?)
¢ - z = 03l7g
S '~ <3
< 0.31 1 2 0.00 1 ot < 2 0.0 A S 7
a 3 £ 0301 o4
<ZC 0.30 A @ —0.02 4 |.’ T % @ —0.02 1 |‘ T T /’
E —0.02  0.00 \é 0.29 - —0.02 0.00 0.02 X
L& 29 max(rMSR(3), IMSR(3)) - Q max(rMSR(2), TMSR(])/,
8 & 0.29 18N10 ,° 8 & .
g = pis & = 0.28 1 PR
S~ (.28 - ‘ 5~ i
< 0. 12116 7 s 7 GC33,GC41 —>
o ) o™ o 0.27 PR < GC11,GC61
[} i P [} 7
2 0.27 il 2 ,/’ < I8N10
= ”’ = .
2 s 2 0.26 112116
0.26 T T T T T T T
0.26 0.28 0.30 0.26 0.27 0.28 0.29 0.30

max(Ry(4), Re(5)) (Mats?) max(R¢(4), Re(5)) (Mats?)

FIGURE S8. Multiscale relevance (MSR) for spike trains built from AND, OR and XOR Boolean func-
tions between pairs of neurons. To study the possible application of MSR to neuronal ensembles, MSRs
were calculated from spike trains resulting from AND, OR and XOR Boolean function between pairs of neu-
rons (See Section 5.7). A scatter plot between the spatial information and the calculated MSR for spike trains
constructed from OR Boolean function is shown in a. Red squares indicate the 10 single neurons with the
highest MSR (top single neurons), green squares the 10 single neurons with the lowest MSRs (bottom single
neurons), red circles the OR Boolean function from pairs of top neurons, green circles the pairs of bottom
neurons, and yellow circles the pairs of top and bottom neurons. Similar results to panel a hold for HD in-
formation (plot not shown). Panel b shows a scatter plot between MSRs from OR Boolean function and from
XOR Boolean function. The inset scatter plot show the difference between the MSRs from XOR and from OR
Boolean function as a function of the average firing rate of the neuron pairs along with the best-fit line (dashed
line). The comparison between the MSR of the OR and the XOR potentially allows us to probe the effects of
common driving of the neurons, because the latter includes also simultaneous firing, whereas the former does
not. We find that the MSR of the XOR is very similar to that of the OR. One way to interpret this lack of
difference is that the role of common input to correlated firing is small. The lack of difference could also be
due to small firing rates of neurons but given that we see the similarity between the MSR of the OR and XOR
for almost all pairs makes this unlikely. Panel ¢ (d) shows a scatter plot between the MSRs from an AND
(XOR) Boolean function between pairs of neurons and the maximal MSR between the corresponding pairs.
Residual MSRs are calculated by subtracting the part of the MSR that is explained by log M through linear
regression. The corresponding inset scatter plots show a scatter plot between residual MSRs from pairs of
neurons and the maximum residual MSR of the corresponding pairs. Orange crosses indicate neurons that are
paired with an interneuron. The resulting MSR (of the OR or of the XOR) is almost always lower (and never
significantly higher) than the MSR of the most relevant of the two neurons, suggests that individual neurons
contain non-redundant information. Furthermore, for those pairs of neurons where we get a significant signal,
in most of the cases, one of the neurons turns out to be an interneuron which suggests that interneurons play a
peculiar role in the information aggregation. The neuron pairs considered in Supplementary Materials Fig. S9
are highlighted. GC: grid cell, I: interneuron, N: unclassified neuron.
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FIGURE S9. Resolution vs. relevance curves for different pairs of neurons. Panels show the resolution,
H]s], vs relevance H[k] curves traced by different pairs of neurons: grid cells with high and low MSR (a),
grid cells with low MSRs having similar grid scores (b), a neuron having a low MSR and an interneuron (c)
and two interneurons (d). Each point, (H[s], H[K]), in this curve corresponds to a fixed binning time, At,
with which we see the corresponding spike count codes. The spatial noise correlation, C;;(x) (see main text,
section 5.8), for the neuron pairs are also indicated. The multiscale relevance of the boolean functions that can
be constructed from these neuron pairs are indicated in Supplementary Materials Fig. S8.
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Text S1: Relation between MSR and other measures of tem-
poral structure

Characterizing the neural spiking can be done by studying the distribution of the time in-
tervals between two succeeding spikes, known in literature as the interspike interval (ISI)
distribution which allows us to see whether a neuron fires in bursts (Ebbesen et al., 2016;
Sharp and Green, 1994). Note that given the time stamps of neural activity {t1,...,ty},
the interspike interval is given by {71, ..., 7)1} where 7; = t;,1 — ¢;. Because the multi-
scale relevance (MSR) is built to separate relevant neurons from the irrelevant ones through
their temporal structures in the neural spiking, we wanted to assess how the proposed mea-
sure scales with the characteristics that give structure to temporal events. In the context of
the temporal activity of a neuron, a feature of the relevance measure, H[K] is that highly
regular, equally-spaced ISI are attributed with a low measure. On the other hand, ISI that
follow broad, non-trivial distributions are attributed with a high relevance measure. Hence,
we expected that the relevance measure, and therefore the MSR, captures non-trivial bursty
patterns of neurons.

To study how MSR behaves with respect to the characteristics of ISI, we considered a
stretched exponential distribution

u—1 u
Pg(r) = % H exp {— (}0) ] (S1)

with which the parameter v allows us to define the broadness of underlying distribution and

Ty 1S the characteristic time constant of the random event. For Poisson processes, the ISI
follow an exponential distribution corresponding to v = 1 in Eq. (S1). For v < 1, the ISI
distribution becomes broad and tends to a power law distribution with an exponent of —1 in
the limit when © — 0. On the other hand, for © > 1, the distribution becomes narrower and
tends to a Dirac delta function in the limit when u — oo.

Upon fixing the parameters u and 75 which fixes the stretched exponential distribution
in Eq. (S1), random ISI, 7;, could then be sampled independently from Eq. (S1) so as to
generate a time series of 100,000 time units. The MSRs of each time series could then be
calculated using the methods described in the main text (Section 2).

To characterize the temporal structures of both the simulated data and neural data, we
adapted the measures of bursty-ness and memory of Goh and Barabasi (Goh and Barabasi,
2008). While the bursty-ness coefficient, b defined as

UT_UT

b= ,
Or + r

(52)

measures the broadness of the underlying ISI distribution with y, and o, as the mean and
standard deviations of the ISI respectively, the memory coefficient, m defined as
M-2
1 (7j = 1e) (T2 — pir)
S3
5 p , (S3)

J=1

m =

measures the short-time correlation between events.
For the stretched exponential distribution in Eq. (S1), the mean and standard deviations

could be computed as
1
y = 70 (“ - ) (s4)

u
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and

2
UT:TO\/F(UZQ)—F(Uzl) (S5)

where I'(z) = (z — 1)! is the gamma function. With these closed-form relationships,

we could now study the limiting properties of the burstiness and memory coefficients. For
Poisson processes, the mean, j.,, and standard deviation, o, coincide, i.e. p, = o, = To,
and thus with Eq. (S2), give b = 0. For broad distributions, u < 1 in Eq. (S1), 0, > pu,
which gives b > 0 and tends to approach b — 1 in the limit v — 0. On the other hand, for
narrow distributions, v > 1 in Eq. (S1), 0, < ., resulting to b < 0 and tends to b — —1
in the limit v — oo. Hence, the bursty-ness parameter, b, is a bounded parameter, i.e.,
be-1,1].

For the synthetic datasets, note that fixing the parameter © automatically fixes the bursty-
ness coefficient, b. However, because the synthetic ISI are sampled independently, the mem-
ory coefficient, m, is approximately zero. Short-term memory can then be introduced by first
sorting the ISI in decreasing (or increasing) order which results to m ~ 1. Randomly shuf-
fling a subset of the ordered ISI (100 events at a time in this case) results to a monotonic
decrease of m. In the limit of infinite data, the memory coefficient is bounded by [—1, 1].
These bounds may no longer hold in the case of limited data. Despite this, a positive memory
coefficient indicates that a short (long) ISI between events tends to be followed by another
short (long) interval and a negative memory coefficient indicates that a short (long) ISI be-
tween events tends to be followed by a long (short) interval.

With this, we found that the MSR increased with bursty-ness and memory for the syn-
thetically generated dataset as seen in Supplementary Materials Fig. Sla and b. We also
sought to characterize the relationship between the number of events, M, with the MSR
which can be addressed by changing the characteristic time constant, 7y, in Eq. (S1) wherein
decreasing 7, leads to more events and thus, increased log M. We found that MSR decreased
with log M as seen in Supplementary Materials Fig. S1c. This result is indicative that MSR
of randomly generated events can be explained by log M.

Since the MSR is constructed as a measure of dynamical variablity, we compared our
results on synthetically generated datasets with the coefficient of local variation, Ly, (Shi-
nomoto et al., 2005, 2003, 2009) defined as

M-1

Ly = 1 Z 3 (Tj — Tj+1)2 (1)
M—1 j=1 (Tj + Tj+1)2

where the factor 3 in the summand was taken such that, for a Poisson process, Ly = 1.
With this, we found that the Ly increases with increasing bursty-ness coefficient, b, indi-
cating that power law ISI distributions lead to highly locally variating spiking events (see
Supplementary Materials Fig. S1d). Also, we found that the L  decreases with increasing
short-term memory, m (see Supplementary Materials Fig. Sle). Finally, like the MSR, we
also found a dependence of the Ly, with the log M (see Supplementary Materials Fig. S1f).

Following the results on synthetic data, we also analyzed temporal characteristics in real
neural dataset. In the case of neurons in the mEC data, we also found that MSR decreased
with the logarithm of the number of observed spikes, log M, as shown in Supplementary
Materials Fig. S2b. To determine how much of the calculated MSRs can be explained by
the number of observed spikes, M, we linearly regressed MSR with log M shown as the
dashed line in Supplementary Materials Fig. S2b. Residuals were then calculated as the
deviation of the calculated MSR from the regression line and thus, captures the amount of
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MSR that cannot be explained by log M alone. We showed in Supplementary Materials Fig.
S2c and d that the MSR for real dataset still contained information going beyond log M as
the residual MSRs (with respect to log M) still retained the dependence with spatial and
HD information as already observed in the main text (Fig. 2). We also observed a positive
correlation between MSR and Ly. However, through residual analysis, we found that the
residual MSRs (with respect to Ly/) still contained spatial and HD information as seen in
Supplementary Materials Fig. S2f and g.
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