
Algorithmica (2018) 80:1604–1633
https://doi.org/10.1007/s00453-017-0369-2

How to Escape Local Optima in Black Box
Optimisation: When Non-elitism Outperforms Elitism

Pietro S. Oliveto1 · Tiago Paixão2 ·
Jorge Pérez Heredia1 · Dirk Sudholt1 ·
Barbora Trubenová2

Received: 14 October 2016 / Accepted: 19 August 2017 / Published online: 6 September 2017
© The Author(s) 2017. This article is an open access publication

Abstract Escaping local optima is one of themajor obstacles to function optimisation.
Using themetaphor of a fitness landscape, local optima correspond to hills separated by
fitness valleys that have to be overcome. We define a class of fitness valleys of tunable
difficulty by considering their length, representing the Hamming path between the two
optima and their depth, the drop in fitness. For this function class we present a runtime
comparison between stochastic search algorithms using different search strategies.
The (1 + 1) EA is a simple and well-studied evolutionary algorithm that has to jump
across the valley to a point of higher fitness because it does not accept worsening
moves (elitism). In contrast, the Metropolis algorithm and the Strong Selection Weak
Mutation (SSWM) algorithm, a famous process in population genetics, are both able
to cross the fitness valley by accepting worsening moves. We show that the runtime
of the (1 + 1) EA depends critically on the length of the valley while the runtimes of
the non-elitist algorithms depend crucially on the depth of the valley. Moreover, we
show that both SSWM and Metropolis can also efficiently optimise a rugged function
consisting of consecutive valleys.

Keywords Evolutionary algorithms · Runtime analysis · Population genetics · Strong
selection weak mutation regime · Metropolis algorithm · Simulated annealing · Black
box optimisation

An extended abstract of this article with preliminary results was presented at GECCO ’16 [24].

B Jorge Pérez Heredia
jperezheredia1@sheffield.ac.uk

1 University of Sheffield, Sheffield S1 4DP, UK

2 IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0369-2&domain=pdf
http://orcid.org/0000-0003-4688-182X

Algorithmica (2018) 80:1604–1633 1605

1 Introduction

Black box algorithms are general purpose optimisation tools typically used when no
good problem specific algorithm is known for the problem at hand. No particular
knowledge is required for their application and they have been reported to be surpris-
ingly effective. Popular classes are evolutionary algorithms, ant colony optimisation
and artificial immune systems. These examples fall into the family of bio-inspired
heuristics, but there aremany other black box algorithms, including SimulatedAnneal-
ing or Tabu Search. While many successful applications of these algorithms have been
described, it is still hard to decide in advance which algorithm is preferable for a
given problem. An initial natural research topic towards understanding the capabili-
ties of a given algorithm is to identify classes of problems that are easy or hard for
it [2,6,9,13,38]. However, the easiest and hardest classes of problems often are not
closely related to real world applications. A more general question that applies to
virtually any multimodal optimisation problem is to understand how efficient a given
algorithm is in escaping from local optima.

Families of black box algorithms mainly differ in the way new solutions are gen-
erated (i.e. variation operators), how solutions are chosen for the next iterations (i.e.
selection) and how many solutions are used by the heuristic in each iteration (i.e.
population). Different variation operators, selection operators, population sizes and
combinations of these lead to different algorithmic behaviours. In this paper we anal-
yse the effects of mutation and selection in overcoming local optima.

Two different approaches are commonly used by most black box algorithms. One
strategy is to rely on variation operators such as mutation to produce new solutions
of high fitness outside the basin of attraction of the local optimum. These are unary
operators that construct a newcandidate solution typically byflippingbits of an existing
solution. Elitist algorithms (i.e. those that never discard the best found solution),mainly
rely on such strategieswhen stuck on a local optimum. In a population-based algorithm
different individualsmay use differentmutation rates to help escape local optima faster
[23].Other variation operatorsmay escape even faster thanmutation. Population-based
algorithms can recombine different solutions through the crossover operator to reach
points outside the area of attraction of the local optima [14]. This operation requires
that sufficient diversity is available in the population which may be introduced by
using some diversity-enforcing mechanism [4]. Recently it has been shown that the
interplay between the two variation operators, mutation and crossover, may efficiently
give rise to the necessary burst of diversity without the need of any artificial diversity
mechanism [3]. Another combination that has been proven to be effective for elitist
algorithms to overcome local optima is to alternate mutations with variable depth
search [35]. A common approach used in practice is to restart the algorithm or perform
several runs in parallel with the hope that the algorithm does not get stuck on the same
local optima every time.

A very different approach is to attempt to escape by accepting solutions of lower
fitness in the hope of eventually leaving the basin of attraction of the local optimum.
This approach is the main driving force behind non-elitist algorithms. Compared to
the amount of work on elitist black box algorithms, there are few theoretical works
analysing the performance of non-elitism (see, e. g. [5,15,16,20,21,25,26,31,33,36]).

123

1606 Algorithmica (2018) 80:1604–1633

i0

0

fitness

1

d1

d2

1 2

Fig. 1 Sketch of the function Valley

While both approaches may clearly be promising, it is still unclear when one should
be preferred to the other.

In this paper we investigate this topic by considering the areas between consecutive
local optima, which we call fitness valleys. These valleys can have arbitrary length �

i.e., the distance between the local optima, and arbitrary depth d i.e., the difference in
function values between the optima and the point of minimum fitness between them.
More precisely,we define a valley on aHamming path (a path ofHamming neighbours)
to ensure that mutation has the same probability of going forward on the path as going
backwards. The valley is composed of a slope of length �1 descending towards a local
minimum from which a slope of increasing fitness of length �2 can be taken to reach
the end of the valley. The steepness of each slope is controlled by parameters d1 and
d2, respectively indicating the fitness of the two local optima at the extreme left and
extreme right of the valley. a sketch of a fitness valley is shown in Fig. 1. Our aim is to
analyse how the characteristics of the valley impact the performance of elitist versus
non-elitist strategies.

We point out that understanding how to cross fitness valleys efficiently is a very
important problem also in biology [37]. From a biological perspective, crossing fitness
valleys represents one of the major obstacles to the evolution of complex traits. Many
of these traits require accumulation ofmultiple mutations that are individually harmful
for their bearers; a fitness advantage is achieved only when all mutations have been
acquired—a fitness valley has been crossed. We refer the interested reader to [27]
for an attempt to unify evolutionary processes in computer science and population
genetics.

We consider the simple elitist (1 + 1) EA, the most-studied elitist evolutionary
algorithm, and compare its ability to cross fitness valleys with the recently introduced
non-elitist Strong Selection Weak Mutation (SSWM) algorithm inspired by a model
of biological evolution in the ‘strong selection, weak mutation regime’ [28,29]. This
regime applies when mutations are rare enough and selection is strong enough that
the time between occurrences of new mutations is long compared to the time a new
genotype takes to replace its parent genotype, or to be lost entirely [8].Mutations occur

123

Algorithmica (2018) 80:1604–1633 1607

rarely, therefore only one genotype is present in the population most of the time, and
the relevant dynamics can be characterized by a stochastic process on one genotype.
The significant difference between the SSWM algorithm and the (1 + 1) EA is that
the former may accept solutions of lower quality than the current solution and even
reject solutions of higher quality.

Recently, Paixão et al. investigated SSWM on Cliffd [28], a function defined such
that non-elitist algorithms have a chance to jump down a “cliff” of height roughly d
and to traverse a fitness valley of Hamming distance d to the optimum. The function
is a generalised construction of the unitation function (a function that only depends on
the number of 1-bits in the bit string) introduced by Jägersküpper and Storch to give
an example class of functions where a (1, λ) EA outperforms a (1+ λ) EA [12]. This
analysis revealed that SSWM can cross the fitness valley. However, upon comparison
with the (1+1) EA, SSWMachieved only a small speed-up: the expected time (number
of function evaluations) of SSWM is at most nd/eΩ(d), while the (1+ 1) EA requires
Θ(nd) [28].

In this manuscript, we show that greater speed-ups can be achieved by SSWM on
fitness valleys. Differently to the work in [28] where global mutations were used, here
we only allow SSWM to use local mutations because we are interested in comparing
the benefits of escaping local optima by using non-elitism to cross valleys against the
benefits of jumping to the other side by large mutations. Additionally, local mutations
are a more natural variation operator for SSWM because they resemble more closely
the biological processes from which the algorithm is inspired.

After presenting some Preliminaries, we build upon Gambler’s Ruin theory [7] in
Sect. 3 to devise a general mathematical framework for the analysis of non-elitist
algorithms using local mutations for crossing fitness valleys. We use it to rigorously
show that SSWM is able to efficiently perform a random walk across the valley using
only local mutations by accepting worse solutions, provided that the valley is not too
deep. On the other hand, the (1 + 1) EA cannot accept worse solutions and therefore
relies on global mutations to reach the other side of the valley in a single jump. More
precisely, the (1+1) EA needs to make a jump across all valley points that have lower
fitness; we call this the effective length of the valley.

As a result, the runtime of the (1 + 1) EA is exponential in the effective length of
the valley while the runtime of SSWM depends crucially on the depth of the valley.
We demonstrate the generality of the presented mathematical tool by using it to prove
that the same asymptotic results achieved by SSWM also hold for the well-known
Metropolis algorithm (simulated annealingwith constant temperature) that, differently
from SSWM, always accepts improving moves. Jansen and Wegener [15] previously
compared the performance of the (1+1) EAandMetropolis for a fitness valley encoded
as a unitation function where the slopes are symmetric and of the same length. They
used their fitness valley as an example where the performance of the two algorithms
is asymptotically equivalent.

The framework also allows the analysis for concatenated “paths” of several consec-
utive valleys, creating a rugged fitness landscape that loosely resembles a “big valley”
structure found in many problems from combinatorial optimisation [1,19,22,30]. In
particular, in Sect. 4 we use it to prove that SSWM and Metropolis can cross consec-
utive paths in expected time that depends crucially on the depth and number of the

123

1608 Algorithmica (2018) 80:1604–1633

valleys. Note that our preliminary work [24] required the more restrictive condition
that the slope towards the optimum should be steeper than the one in the opposite
direction i.e., d2/�2 > d1/�1. In this paper we have relaxed the conditions to consider
only the depths of the valleys, i.e. d2 > d1. This generalisation allows the results to
hold for a broader family of functions.

2 Preliminaries

2.1 Algorithms

In this paper we present a runtime comparison between the (1 + 1) EA and two non-
elitist nature-inspired algorithms, SSWM and Metropolis. While they match the same
basic scheme shown in Algorithm 1, they differ in the way they generate new solutions
(mutate(x) function), and in the acceptance probability of these new solutions (pacc
function). The (1 + 1) EA relies on global mutations to cross the fitness valley and

Algorithm 1 General scheme
Choose x ∈ {0, 1}n uniformly at random
repeat

y ← mutate(x)
Δ f = f (y) − f (x)
Choose r ∈ [0, 1] uniformly at random
if r ≤ pacc(Δ f) then

x ← y
end if

until stop

the function mutate(x) flips each bit independently with probability 1/n. Conversely,
SSWMandMetropolis analysedhere use localmutations, hence the functionmutate(x)
flips a single bit chosen uniformly at random.

Furthermore, the (1+ 1) EA always accepts a better solution, with ties resolved in
favour of the new solution. The probability of acceptance is formally described by

pEAacc(Δ f) =
{
1 if Δ f ≥ 0

0 if Δ f < 0.

where Δ f is the fitness difference between the new and the current solution. SSWM
accepts candidate solutions with probability

pSSWM
acc (Δ f) = pfix(Δ f) = 1 − e−2βΔ f

1 − e−2NβΔ f
(1)

(see Fig. 2) where N ≥ 1 is the size of the “population” that underlies the biological
SSWM process as explained in the following paragraph, β represents the selection
strength and Δ f �= 0. For Δ f = 0 we define pacc(0) := limΔ f→0 pacc(Δ f) = 1

N . If

123

Algorithmica (2018) 80:1604–1633 1609

Δf

–1–2–3

1

0

pacc

1 2

1/N

SSWMMetropolis

(1+1) EA

Fig. 2 Probability of acceptance. Red dashed line—Metropolis, Blue solid line—(1+1) EA,Green dotted
line—SSWM (Color figure online)

N = 1, this probability is pacc(Δ f) = 1, meaning that any offspring will be accepted,
and if N → ∞, it will only accept solutions for which Δ f > 0. SSWM’s acceptance
function depends on the absolute difference in fitness between genotypes. It introduces
two main differences compared to the (1+ 1) EA: first, solutions of lower fitness may
be accepted with some positive probability, and second, solutions of higher fitness can
be rejected.

Equation (1), first derived by Kimura [17], represents the probability that a gene
that is initially present in one copy in a population of N individuals is eventually
present in all individuals (the probability of fixation). Hence, Algorithm 1 takes a
macro view to the adaptation process in that each iteration of the process models
the appearance of a new mutation and its subsequent fate: either it is accepted with
probability pacc, increasing to frequency 1 and replacing the previous genotype, or it is
not and is lost. It is important to note that the population size N refers to the biological
SSWM regime [29]. From the algorithmic perspective N is just a parameter of a single
evolving individual.

The acceptance function pacc is strictly increasing with the following limits:
limΔ f →−∞ pacc(Δ f) = 0 and limΔ f →∞ pacc(Δ f) = 1. The same limits are obtained
when β tends to ∞, and thus for large |βΔ f | the probability of acceptance is close to
the one of the (1+ 1) EA, as long as N > 1, defeating the purpose of the comparison,
with the only difference being the tie-breaking rule: SSWM only accepts the new
equally good solution with probability 1/N [28].

Finally, the Metropolis algorithm is similar to SSWM in the sense that it is
able to accept mutations that decrease fitness with some probability. However,
unlike SSWM, for fitness improvements it behaves like the (1 + 1) EA in that it
accepts any fitness improvement. Formally, Metropolis’ acceptance function can be
described by:

pMET
acc (Δ f) =

{
1 if Δ f ≥ 0

eαΔ f if Δ f < 0
(2)

123

1610 Algorithmica (2018) 80:1604–1633

where α is the reciprocal of the “temperature”. Temperature in the Metropolis algo-
rithm plays the same role as population size in SSWM: increasing the temperature
(decreasing α) increases the probability of accepting fitness decreases. The accep-
tance functions of all three algorithms are shown in Fig. 2.

2.2 Long Paths

Previous work on valley crossing [12,15,28] used functions of unitation to encode
fitness valleys, with 1n being a global optimum. The drawback of this construction is
that the transition probabilities for mutation heavily depend on the current position.
The closer an algorithm gets to 1n , the larger the probability of mutation decreasing
the number of ones and moving away from the optimum.

We follow a different approach to avoid this mutational bias, and to ensure that the
structure of the fitness valley is independent of its position in the search space. This
also allows us to easily concatenate multiple valleys.

We base our construction on so-called long k-paths, paths of Hamming neigh-
bours with increasing fitness whose length can be exponential in n. These paths were
introduced and investigated experimentally in [11] and subsequently formalised and
rigorously analysed in [32]. Exponential lower bounds were shown in [6]. An example
of a long k-path is shown in Table 1. The following formal, slightly revised definition
is taken from [34, p. 2517].

Definition 1 Let k ∈ N and n be a multiple of k. The long k-path of dimension n
is a sequence of bit strings from {0, 1}n defined recursively as follows. The long k-
path of dimension 0 is the empty bit string. Assume the long k-path of dimension
n − k is given by the sequence Pk

n−k = (p1, . . . , p�), where p1, . . . , p� ∈ {0, 1}n−k

and � is the length of Pk
n−k . Then the long k-path of dimension n is defined by

prepending k bits to these search points: let S0 := (0k p1, 0k p2, . . . , 0k p�), S1 :=
(1k p�, 1k p�−1, . . . , 1k p1), and B := (0k−11p�, 0k−212 p�, . . . , 01k−1 p�). The search
points in S0 and S1 differ in the k leading bits and the search points in B represent
a bridge between them. The long k-path of dimension n, Pk

n , is the concatenation of
S0, B, and S1.

The length of Pk
n is k · 2n/k − k + 1 [34, Lemma 3], which is exponential in n

if, for example, k = Θ(
√
n). An exponential length implies that the path has to be

folded in {0, 1}n in a sense that there are i < j such that the i-th and the j-th point
on the path have Hamming distance H(·, ·) smaller than j − i . Standard bit mutations
have a positive probability of jumping from the i-th to the j-th point, hence there is a
chance to skip large parts of the path by taking a shortcut. However, long k-paths are
constructed in such a way that at least k bits have to flip simultaneously in order to
take a shortcut of length at least k. The probability of such an event is exponentially
small if k = Θ(

√
n), in which case the path still has exponential length.

Long k-paths turn out to be very useful for our purposes. If we consider the first
points of a long k-path and assign increasing fitness values to them, we obtain a
fitness-increasing path of any desired length (up to exponential in n [34, Lemma 3]).

123

Algorithmica (2018) 80:1604–1633 1611

Table 1 Example of a long k-path for n = 9 and k = 3: P3
9 = (P0, P1, . . . , P21)

P0 : 000000000 P6 : 000111111 P12 : 111111000 P18 : 111000111

P1 : 000000001 P7 : 000111011 P13 : 111111001 P19 : 111000011

P2 : 000000011 P8 : 000111001 P14 : 111111011 P20 : 111000001

P3 : 000000111 P9 : 000111000 P15 : 111111111 P21 : 111000000

P4 : 000001111 P10 : 001111000 P16 : 111011111

P5 : 000011111 P11 : 011111000 P17 : 111001111

Given two points Ps,Ps+i for i > 0, Ps+i is called the i-th successor of Ps and Ps
is called a predecessor of Ps+i . Long k-paths have the following properties.

Lemma 1 (Long paths) 1. For every i ∈ N0 and path points Ps and Ps+i , if i < k
then H(Ps,Ps+i) = i , otherwise H(Ps,Ps+i) ≥ k.

2. The probability of a standard bit mutation turning Ps into Ps+i (or Ps+i into Ps)
is 1/ni · (1 − 1/n)n−i for 0 ≤ i < k and the probability of reaching any search
point in {Ps+i | i ≥ k} from Ps is at most 1/(k!).

Proof The first statementwas shown in [34, p. 2517] (refining a previous analysis in [6,
p. 73]). The second statement follows from the first one, using that the probability of
mutating at least k bits is at most

(n
k

)
n−k ≤ 1/(k!).
�

In the following, we fix k := √
n such that the probability of taking a shortcut on

the path is exponentially small. We assign fitness values such that all points on the
path have a higher fitness than those off the path. This fitness difference is made large
enough such that the considered algorithms are very unlikely to ever fall off the path.
Assuming that we want to use the first m path points P0, . . . ,Pm−1, then the fitness is
given by

f (x) :=
{
h(i) if x = Pi , i < m

−∞ otherwise

where h(i) gives the fitness (height) of the i-th path point.
Then, assuming the algorithm is currently on the path, the fitness landscape is a

one-dimensional landscape where (except for the two ends) each point has a Hamming
neighbour as predecessor and a Hamming neighbour as successor on the path. Local
mutations will create each of these with equal probability 1/n. If we call these steps
relevant and ignore all other steps, we get a stochastic process where in each relevant
step we create a mutant up or down the path with probability 1/2 each (for the two
ends we assume a self-loop probability of 1/2). The probability whether such a move
is accepted then depends on the fitness difference between these path points.

It then suffices to study the expected number of relevant steps, as we obtain the
expected number of function evaluations by multiplying with the expected waiting
time n/2 for a relevant step.

123

1612 Algorithmica (2018) 80:1604–1633

Lemma 2 Let E (T) be the expected number of relevant steps for any algorithm
described by Algorithm 1 with local mutations finding a global optimum. Then the
respective expected number of function evaluations is n/2 ·E (T), unless the algorithm
falls off the path.

In the following, we assume that all algorithms start on P0. This behaviour can be
simulated from random initialisation with high probability by embedding the path into
a larger search space and giving hints to find the start of the path within this larger
space [34]. As such a construction is cumbersome and does not lead to additional
insights, we simply assume that all algorithms start in P0.

3 Crossing Simple Valleys

On the first slope starting at point P0 the fitness decreases from the initial height
d1 ∈ R

+ until the path point P�1 with fitness 0. Then the second slope begins with
fitness increasing up to the path point P�1+�2 of fitness d2 ∈ R

+. The total length of
the path is � = �1 + �2. We call such a path Valley.

h(i)valley :=
{
d1 − i · d1

�1
if i ≤ �1

(i − �1) · d2
�2

if �1 < i ≤ �.

Here, d1
�1

and d2
�2

indicate the steepness of the two slopes (see Fig. 1). In this paper we
will use d2 > d1 to force the point P� to be the optimum.

3.1 Analysis for the (1 + 1) EA

We first show that the runtime of the (1+ 1) EA depends on the effective length �∗ of
the valley, defined as the distance between the initial point P0 and the first valley point
of greater or equal fitness. Here we restrict parameters to �1 + �2 ≤ √

n/4, as then
the probability of the (1 + 1) EA taking a shortcut is no larger than the probability of
jumping by a distance of �1 + �2: 1

(
√
n)! ≤ n−√

n/4 for n ≥ 4.

Theorem 3 Assume �1+�2 ≤ √
n/4 and d1 ≤ d2. The expected time for the (1+1) EA

starting in P0 to cross the fitness valley is Θ(n�∗
) where �∗ = �1 +
d1�2/d2�.

Proof Let us first recall that due to its elitism the (1+ 1) EA can not fall off the path.
To cross the fitness valley the (1+1) EA needs to jump from P0 to a point with higher
fitness, thus it has to jump at least a distance �∗. The probability of such a jump can
be bounded from below using Lemma 1 by

pjump ≥ n−�∗
(
1 − 1

n

)n−�∗

≥ e−1n−�∗
(3)

resulting in an expected time needed to jump over the valley of at most en�∗ = O(n�∗
).

After jumping over the valley, the (1 + 1) EA has to climb at most the remaining

123

Algorithmica (2018) 80:1604–1633 1613

(
1 − d1

d2

)
�2 ≤ �2 steps, and each improvement has a probability of at least 1/(en).

The expected time for this climb is thus at most e�2n. As �2 < n and �∗ ≥ �1 ≥ 2,
this time is O(n�∗

).
Note that, in case P�∗ has the same fitness as P0, the (1+1) EA can jump back to the

beginning of the path, in which case it needs to repeat the jump. However, conditional
on leaving P�∗ , the probability that a successor is found is at least Ω(1). Hence in
expectation O(1) jumps are sufficient.

Furthermore, the probability of the jump can be bounded from above by the prob-
ability of jumping to any of the next potential

√
n path points and by the probability

of taking a shortcut (see Lemma 1)

pjump ≤ 1√
n! +

√
n∑

i=�∗
n−i

(
1 − 1

n

)n−i

= O
(
n−�∗)

where we used 1
(
√
n)! ≤ n−√

n/4 ≤ n−�∗
. Thus the expected time is Ω(n�∗

).
�

3.2 A General Framework for Local Search Algorithms

We introduce a general framework to analyse the expected number of relevant steps of
non-elitist local search algorithms (Algorithm 1 with local mutations) for the Valley
problem. As explained in Sect. 2.2, in a relevant step mutation creates a mutant up or
down the path with probability 1/2, and this move is accepted with a probability that
depends only on the fitness difference. For slopes where the gradient is the same at
every position, this resembles a gambler’s ruin process.

To apply classical gambler ruin theory (see e.g. [7]) two technicalities need to be
taken into account. Firstly, two different gambler ruin games need to be considered,
one for descending down the first slope and another one for climbing up the second
slope. The process may alternate between these two ruin games as the extreme ends of
each game at the bottom of the valley are not absorbing states. Secondly, a non-elitist
algorithm could reject the offspring individual even when it has a higher fitness than
its parent. Hence the probabilities of winning or losing a dollar (i.e., the probabilities
of moving one step up or down in the slope) do not necessarily add up to one, but loop
probabilities of neither winning or losing a dollar need to be taken into account when
estimating expected times (winning probabilities are unaffected by self-loops).

Theorem 4 (Gambler’s Ruin with self-loops) Consider a game where two players
start with n1 ∈ N

+ and n2 ∈ N
+ dollars respectively. In each iteration player 1 wins

one of player’s 2 dollars with probability p1, player 2 wins one of player’s 1 dollars
with probability p2, and nothing happens with probability 1 − p1 − p2. Then the
probability of player 1 winning all the dollars before going bankrupt is:

P1 =

⎧⎪⎨
⎪⎩

n1
n1+n2

if p1 = p2
1−

(
p2
p1

)n1
1−

(
p2
p1

)n1+n2
if p1 �= p2.

123

1614 Algorithmica (2018) 80:1604–1633

The expected time until either of both players become bankrupt i.e. the expected dura-
tion of the game is

E (T) =
{ n1n2

p1+p2
if p1 = p2

n1−(n1+n2)P1
p22−p21

if p1 �= p2.

Proof The proof follows directly from the results of the standard problem (p1 + p2 =
1) see e.g. Chapter XIV in [7]. The only effect of the self-loops is to add extra iterations
in the problem where nothing happens, therefore the winning probabilities will not be
affected, however the expected duration of the game will be increased by the waiting
time needed for a relevant iteration 1/(p1 + p2).
�

In order to simplify the calculations we have developed the following notation.

Definition 2 (Framework’s notation) The Valley problem can be considered as a
Markov chain with states {P0, P1, . . . , P�1−1, P�1 , P�1+1, . . . , P�1+�2}. For simplicity
we will sometimes refer to these points only with their sub-indices {0, 1, . . . , �1 −
1, �1, �1 + 1, . . . , �1 + �2}. For any stochastic process on the Valley problem we
will denote by:

(1) pi→ j the probability of moving from state i to j ∈ {i−1, i, i+1} in one iteration,
(2) pGRi→k the probability of a Gambler’s Ruin process starting in i finishing in k before

reaching the state i − 1,

(3) E
(
TGR
i,k

)
the expected duration until either the state i − 1 or k is reached,

(4) E (Ti→m) the expected time to move from state i to state m.

The following lemmas simplify the runtime analysis of any algorithm that matches
the scheme of Algorithm 1 for local mutations and some reasonable conditions on the
selection operator.

Lemma 5 Consider any algorithm described by Algorithm 1 with local mutations
and the following properties on Valley with �1, �2 ∈ {2, 3, . . . } and d1, d2 ∈ R+

(i) p�1→�1−1, p�1→�1+1 = Ω(1)
(ii) p�1→�1+1 ≥ p�1+1→�1 + ε, for ε > 0 a constant
(iii) pacc(Δ f) is non-decreasing.

Then the expected number of relevant steps for such a process to reach the point P�1+�2

starting from P0 is

E
(
T0→�1+�2

) = Θ
(
E

(
T1→�1

)) + Θ(�2).

Property (iii) describes a common feature of optimisation algorithms: the selection
operator prefers fitness increases over decreases (e.g. Randomised Local Search, (1+
1) EA or Metropolis). Then, the bottleneck of Valley seems to be climbing down
the first �1 steps since several fitness decreasing mutations have to be accepted.

Once at the bottom of the valley P�1 the process must keep moving. It could be
the case that the algorithm climbs up again to P0. But under some mild conditions it
will only have to repeat the experiment a constant number of times (property (i) of the
following lemma).

123

Algorithmica (2018) 80:1604–1633 1615

Finally, the algorithm will have to climb up to P�1+�2 . This will take linear time in
�2, provided the probability of accepting an improvement p�1→�1+1 is by a constant
greater than accepting a worsening of the same size p�1+1→�1 , as required by property
(ii).

Consider an algorithm with a selection operator that satisfies condition (iii) such as
Metropolis or SSWM. In order to satisfy the first two conditions, the selection strength
must be big enough to accept the two possible fitness increases of Valley (d1/�1 and
d2/�2) with constant probability. Aswewill see at the end of this section, this condition
directly translates to βd1/�1, βd2/�2 = Ω(1) for SSWM and αd1/�1, αd2/�2 =
Ω(1) for Metropolis.

In order to prove the previous lemma we will make use of the following lemma that
shows some implications of the conditions from the previous lemma.

Lemma 6 In the context of Lemma 5, properties (i) and (ii) imply that

(i) p�1→�1−1 + p�1→�1+1 = 1/c1 for some constant c1 ≥ 1
(ii) 1 − c1 · pGR�1+1→�1

= 1/c2 for some constant c2 > 1
(iii) 1 − c1c2 · p�1→�1−1 = 1/c3 for some constant c3 > 1.

For the sake of readability the proof of Lemma 6 can be found in the appendix.

Proof of Lemma 5 Since the algorithm only produces points in the Hamming neigh-
bourhood it will have to pass through all the states on the path. We break down the set
of states in three sets and expand the total time as the sum of the optimisation time for
those three sets:

E
(
T0→�1+�2

) = E (T0→1) + E
(
T1→�1

) + E
(
T�1→�1+�2

)
. (4)

Note that the lower bound follows directly. Let us now consider the upper bound.
We start using a recurrence relation for the last term: once in state �1, after one iteration,
the algorithm can either move to state �1 +1 with probability p�1→�1+1, move to state
�1 − 1 with probability p�1→�1−1 or stay in state �1 with the remaining probability (if
the mutation is not accepted).

E
(
T�1→�1+�2

) = 1 + p�1→�1+1 · E (
T�1+1→�1+�2

)
+ p�1→�1−1 · E (

T�1−1→�1+�2

) + p�1→�1 · E (
T�1→�1+�2

)
.

Using E
(
T�1−1→�1+�2

) ≤ E
(
T0→�1+�2

)
this expression reduces to

≤ 1 + p�1→�1+1 · E (
T�1+1→�1+�2

) + p�1→�1−1 · E (
T0→�1+�2

)
+ p�1→�1 · E (

T�1→�1+�2

)
.

Solving the previous expression for E
(
T�1→�1+�2

)
leads to

E
(
T�1→�1+�2

) ≤ 1 + p�1→�1+1 · E (
T�1+1→�1+�2

) + p�1→�1−1 · E (
T0→�1+�2

)
p�1→�1−1 + p�1→�1+1

.

123

1616 Algorithmica (2018) 80:1604–1633

Since property (i) of Lemma 5 implies that the denominator is a constant 1/c1, we get

E
(
T�1→�1+�2

) ≤ c1
(
1 + p�1→�1+1 · E (

T�1+1→�1+�2

) + p�1→�1−1 · E (
T0→�1+�2

))
.

(5)

Let us now focus on the term E
(
T�1+1→�1+�2

)
. Since the acceptance probability is

a function of Δ f , for both sides of the valley the probabilities of moving to the next or
previous state remain constant during each slope and we can cast the behaviour as a
Gambler’s Ruin problem. Then, when the state is P�1+1 a Gambler’s Ruin game (with
self-loops) occurs. The two possible outcomes are: (1) the problem is optimised or (2)
we are back in P�1 . Hence,

E
(
T�1+1→�1+�2

) = E
(
TGR

�1+1,�1+�2

)
+ pGR�1+1→�1

· E (
T�1→�1+�2

)
. (6)

Now we introduce (6) in (5), obtaining

E
(
T�1→�1+�2

) ≤ c1
(
1 + p�1→�1−1 · E (

T0→�1+�2

))
+ c1 · p�1→�1+1 ·

(
E

(
TGR

�1+1,�1+�2

)
+ pGR�1+1→�1

· E (
T�1→�1+�2

))
.

Solving for E
(
T�1→�1+�2

)
yields

E
(
T�1→�1+�2

) ≤
c1

(
1 + p�1→�1+1 · E

(
TGR

�1+1,�1+�2

)
+ p�1→�1−1 · E (

T0→�1+�2

))
1 − c1 · p�1→�1+1 · pGR�1+1→�1

.

By Lemma 6, properties (i) and (ii) of Lemma 5 imply that the denominator is a
constant 1/c2. Hence,

E
(
T�1→�1+�2

) ≤ c1c2 ·
(
1+p�1→�1+1 · E

(
TGR

�1+1,�1+�2

)
+ p�1→�1−1 · E (

T0→�1+�2

))
≤ c1c2 ·

(
1 + E

(
TGR

�1+1,�1+�2

)
+ p�1→�1−1 · E (

T0→�1+�2

))
.

We introduce this into (4), leading to

E
(
T0→�1+�2

) ≤ E (T0→1) + E
(
T1→�1

)
+ c1c2

(
1 + E

(
TGR

�1+1,�1+�2

)
+ p�1→�1−1 · E (

T0→�1+�2

))
.

Solving for E
(
T0→�1+�2

)
leads to

E
(
T0→�1+�2

) ≤
E (T0→1) + E

(
T1→�1

) + c1c2 + c1c2 · E
(
TGR

�1+1,�1+�2

)
1 − c1c2 · p�1→�1−1

.

123

Algorithmica (2018) 80:1604–1633 1617

Again by Lemma 6, properties (i) and (ii) of Lemma 5 imply that the denominator is
a constant 1/c3. Hence,

E
(
T0→�1+�2

) ≤ c3
(
E (T0→1) + E

(
T1→�1

) + c1c2 + c1c2 · E
(
TGR

�1+1,�1+�2

))
. (7)

Since E (T0→1) ≤ E
(
T1→�1

)
we have that E (T0→1) + E

(
T1→�1

) = Θ
(
E

(
T1→�1

))
.

Now we consider the last term. Due to property (ii) of Lemma 5, once in �1 + 1 there
is a constant probability of moving towards the optimum. Since the algorithm has to

cover a distance of �2 + �1 − (�1 + 1) = �2 − 1, then E
(
TGR

�1+1,�1+�2

)
= Θ(�2).

Plugging this into (7) proves the claimed upper bound.
�

Now we estimate the time to move from P0 to P�1 . As in the previous proof, the
main arguments are a recurrence relation and a Gambler’s Ruin game.

Lemma 7 Consider any algorithm described byAlgorithm 1 with local mutations on
Valley with �1, �2 ∈ N\{1} and d1, d2 ∈ R+. Then the number of relevant steps to
go from the state P1 to P�1 is

E
(
T1→�1

) = 1

pGR1→�1

·
(
E

(
TGR
1,�1

)
+ pGR1→0

p0→1

)
.

Proof At the state P1 a Gambler’s Ruin game (with self-loops) occurs. The two pos-
sible outcomes are: (1) we have reached the valley P�1 or (2) we are back to P0.
Hence,

E
(
T1→�1

) = E
(
TGR
1,�1

)
+ pGR1→0 · E (

T0→�1

)
= E

(
TGR
1,�1

)
+ pGR1→0 · (

E (T0→1) + E
(
T1→�1

))
.

Solving for E
(
T1→�1

)
leads to

E
(
T1→�1

) =
E

(
TGR
1,�1

)
+ pGR1→0 · E (T0→1)

1 − pGR1→0

,

which, by using 1 − pGR1→0 = pGR1→�1
, simplifies to

E
(
T1→�1

) = 1

pGR1→�1

·
(
E

(
TGR
1,�1

)
+ pGR1→0

p0→1

)
. (8)

�

123

1618 Algorithmica (2018) 80:1604–1633

3.3 Application to SSWM

In this subsection we make use of the previous framework to analyse the SSWM for
the Valley problem. To apply this framework we need to know how a Gambler’s
Ruin with the acceptance probabilities of the SSWM behaves. When dealing with
these probabilities the ratio between symmetric fitness variations appears often. The
next lemma will be very helpful to simplify this ratio.

Lemma 8 (Lemma 2 in [28]) For every β ∈ R
+, Δ f ∈ R and N ∈ N

+

pfix(−Δ f)

pfix(+Δ f)
= e−2(N−1)βΔ f .

Proof The proof follows from the definition of pfix [see Eq. (1)] and applying the
relation ex = (ex − 1)/(1 − e−x).
�

Due to the sigmoid expression of the SSWM acceptance probability [Eq. (1)], it
can be helpful to use bounds given by simpler expressions. Lemma 1 in [28] provides
such bounds.

Lemma 9 (Lemma 1 in [28]) For every β ∈ R
+ and N ∈ N

+ the following inequal-
ities hold. If Δ f ≥ 0 then

2βΔ f

1 + 2βΔ f
≤ pfix(Δ f) ≤ 2βΔ f

1 − e−2NβΔ f
.

If Δ f ≤ 0 then
−2βΔ f

e−2NβΔ f
≤ pfix(Δ f) ≤ e−2βΔ f

e−2NβΔ f − 1
.

The following lemma contains bounds on the expected duration of the game and
winning probabilities for SSWM. Although Valley has slopes of d1/�1 and d2/�2,
SSWM through the action of the parameter β sees an effective gradient of β · d1/�1
and β · d2/�2. Varying this parameter allows the algorithm to accommodate the slope
to a comfortable value. We have set this effective gradient to β|Δ f | = Ω(1) so that
the probability of accepting an improvement is at least a constant.

Lemma 10 (SSWM Gambler’s Ruin) Consider a Gambler’s Ruin problem as
described in Theorem 4 with starting dollars n1 = 1 and n2 = � − 1, and prob-
abilities p1 and p2 dependant on SSWM’s acceptance function as follows

p1 = 1

2
· pfix(Δ f) p2 = 1

2
· pfix(−Δ f)

where Δ f < 0 and (N − 1)β|Δ f | = Ω(1). Then the winning probability of player
one PGR

1→�1
can be bounded as follows

−2(N − 1)βΔ f

e−2(N−1)β(n1+n2)Δ f
≤ PGR

1→�1
≤ e−2(N−1)βΔ f

e−2(N−1)β(n1+n2)Δ f − 1

and the expected duration of the game will be E
(
TGR
1,�

)
= O(1).

123

Algorithmica (2018) 80:1604–1633 1619

Proof We start with the winning probability. Invoking Theorem 4 and simplifying the
ratio of pfix of symmetric fitness variations with Lemma 8 we obtain

PGR
1→�1

=
1 −

(
p2
p1

)n1
1 −

(
p2
p1

)n1+n2
=

1 −
(
pfix(−Δ f)
pfix(Δ f)

)n1
1 −

(
pfix(−Δ f)
pfix(Δ f)

)n1+n2
= 1 − e−2(N−1)βn1Δ f

1 − e−2(N−1)β(n1+n2)Δ f
.

Notice that this is the same expression as the acceptance probability if we change β

for (N − 1)β and N for �. Then we can apply the bounds for the original acceptance
probabilities from Lemma 9 to obtain the inequalities of the theorem’s statement.

Finally, for the expected duration of the game we call again Theorem 4

E
(
TGR
1,�

)
= 1

p2 + p1
· n1 − (n1 + n2) · PGR

1→�1

p2 − p1

≤ 1 − � · PGR
1→�1

p22 − p21
≤ 1

p22 − p21
= 1

p22

(
1 − p21

p22

)

= 1

p22
(
1 − e−4β(N−1)Δ f

) .

Note that in the last step we have used Lemma 8, and that since N ≥ 2 the condition
(N − 1)β|Δ f | = Ω(1) implies that β|Δ f | = Ω(1). Hence all the parameters of
SSWM’s acceptance probability [Eq. (1)] are Ω(1) and so is p2. For the same reason

the factor 1 − e−4β(N−1)Δ f is constant yielding E
(
TGR
1,�

)
= O(1).
�

While the optimisation time of the (1+1) EAgrows exponentiallywith the length of
the valley, the following theorem shows that for the SSWM the growth is exponential
in the depth of the valley.

Theorem 11 The expected number of function evaluations E
(
T f

)
for SSWM with

local mutations to reach P�1+�2 from P0 on Valley with �1, �2 ∈ {2, 3, . . . } and
d1, d2 ∈ R+ is

E
(
T f

) = O
(
n · e2Nβd1(�1+1)/�1

)
+ Θ(n · �2) and

E
(
T f

) = Ω
(
n · e2(N−1)βd1(�1−1)/�1

)
+ Θ(n · �2)

provided βd1/�1, βd2/�2 = Ω(1) and N being a large enough constant.

The conditions βd1/�1, βd2/�2 = Ω(1) are identical to those in Lemma 10: SSWM
must have a selection strength β strong enough such that the probability of accepting
a move uphill (fitness difference of d1/�1 or d2/�2) is Ω(1). This is a necessary and
sensible condition as otherwise SSWM struggles to climb uphill.

The upper and lower bounds in Theorem 11 are not tight because of the terms
(�1 +1)/�1 and (�1 −1)/�1 in the exponents, respectively. However, both these terms

123

1620 Algorithmica (2018) 80:1604–1633

converge to 1 as �1 grows. The running time, particularly the term e2Nβd1(�1+1)/�1 ,
crucially depends on βd1, the depth of the valley after scaling. Note that the condition
βd1/�1 = Ω(1) is equivalent to βd1 = Ω(�1), hence Theorem 11 applies if the depth
after scaling is at least of the same order of growth as the length (recall that d1 and �1
may grow with n).

Theorem 11 also indicates how to choose β according to the valley function in hand,
in order to meet the theorem’s condition and to minimise the (upper bounds on the)
running time. One can always choose β = ε�1/d1 for some constant ε > 0 and any
valley structure (even when �1 = ω(d1)). This way the theorem’s condition becomes
βd1/�1 = ε and the running time simplifies to O

(
n · e2Nβε(�1+1)

)+Θ(n · �2), where
we can choose the constant ε > 0 as small as we like. For N = O(1) we can further
simplify the runtime to O

(
n · eO(�1)

) + Θ(n · �2). For all �1 ≥ 2 (and reasonable �2)
this is asymptotically smaller that the expected optimisation time of the (1 + 1) EA,
which is at least Ω(n�1) = Ω(e�1 ln n) (see Theorem 3).

Proof of Theorem 11 The first part of the proof consists of estimating E
(
T1→�1

)
by

using the statement of Lemma 7. Thenwewill check that the conditions fromLemma 5
are met and we will add the Θ(�2) term. Finally, we will take into account the time
needed for a relevant step in the long path to obtain the n factor in the bounds (see
Lemma 2).

As just described above we start considering E
(
T1→�1

)
by using Lemma 7. Let us

start with the upper bound.

E
(
T1→�1

) = O

(
1

pGR1→�1

·
(
E

(
TGR
1,�1

)
+ 1

p0→1

))
.

Using Lemma 10 we bound pGR1→�1
yielding

E
(
T1→�1

) = O

(
e2(N−1)βd1

2(N − 1)βd1/�1
·
(
O(1) + 1

p0→1

))
.

Since pfix for Δ f < 0 decreases when the parameters N , β and |Δ f | increase and

Nβd1/�1 = Ω(1), we get p−1
0→1 = Ω(1) and O(1) + 1

p0→1
= O

(
1

p0→1

)
. Hence,

E
(
T1→�1

) = O

(
e2(N−1)βd1

2(N − 1)βd1/�1
· 1

p0→1

)
.

Using Lemma 9 to lower bound p0→1 we get

E
(
T1→�1

) = O

(
e2(N−1)βd1

2(N − 1)βd1/�1
· e

2Nβd1/�1

2β d1
�1

)
.

123

Algorithmica (2018) 80:1604–1633 1621

Using (N − 1)βd1/�1 = Ω(1) and βd1/�1 = Ω(1) both terms to the denominator
are Ω(1) leading to

E
(
T1→�1

) = O
(
e2Nβd1(�1+1)/�1

)
.

We now consider the lower bound. Starting again from Lemmas 5 and 7 and bounding
pGR1→�1

with Lemma 10

E
(
T1→�1

) = Ω

(
1

pGR1→�1

)
= Ω

(
e2(N−1)βd1 − 1

e2(N−1)βd1/�1

)

= Ω

(
e
2(N−1)βd1

�1−1
�1 − 1

e2(N−1)βd1/�1

)

= Ω

(
e
2(N−1)βd1

�1−1
�1

)
.

Now we need to apply Lemma 5 to add the Θ(�2) term in both bounds. We start
checking that all the conditions are satisfied. Firstly, since pfix for Δ f > 0 increases
when the parameters (N , β and Δ f) increase, then Nβd2/�2 = Ω(1) implies
p�1→�1+1 = Ω(1). Analogously for p�1→�1−1 with Nβd1/�1 = Ω(1) satisfying
the first property. Secondly, property (ii) follows directly from Lemma 8 and the con-
dition Nβd2/�2 = Ω(1). The third property is satisfied since for N > 1 the acceptance
probability is strictly increasingwithΔ f . Considering the time for a relevant step from
Lemma 2 completes the proof.
�

3.4 Application to Metropolis

We now apply the framework from Sect. 3.2 to the Metropolis algorithm. Since the
analysis follows very closely the one of SSWM the proofs for this subsection are
provided in the appendix. We first cast Metropolis on Valley as a Gambler’s Ruin
problem. Like SSWM, Metropolis can make use of its parameter α to accommodate
the gradient of Valley.

Lemma 12 (Metropolis Gambler’s Ruin downhill) Consider a Gambler’s Ruin prob-
lem as described in Theorem 4 with starting dollars n1 = 1 and n2 = � − 1, and
probabilities p1 and p2 dependant on Metropolis’s acceptance function as follows

p1 = 1

2
· e−αΔ f p2 = 1

2

where Δ f < 0 and α|Δ f | = Ω(1). Then the winning probability of player one P1
can be bounded as follows

−αΔ f

e−α�Δ f
< PGR−Met

1 <
e−αΔ f

e−α�Δ f − 1

123

1622 Algorithmica (2018) 80:1604–1633

0
0

fitness

1

d1

d2

1 2

Fig. 3 Sketch of the function ValleyPath

and the expected duration of the game will be E
(
TGR
1,�

)
= O(1).

Lastly, wemake use of the previous lemma and the framework presented in Sect. 3.2
to determine bounds on the runtime of Metropolis for Valley. Note that the required
conditions are similar to those from Theorem 11 for the SSWM algorithm, with only
difference being that the parameter α substitutes the selection strength β. Hence the
previous considerations for SSWM translate to Metropolis on Valley by simply
applying β ← α.

Theorem 13 The expected number of function evaluations E
(
T f

)
for Metropolis to

reach P�1+�2 from P0 on Valley with �1, �2 ∈ N\{1} and d1, d2 ∈ R+ is

E(T f) = O
(
n · eαd1(1+1/�1)

)
+ Θ(n · �2) and

E(T f) = Ω
(
n · eαd1(1−1/�1)

)
+ Θ(n · �2)

provided αd1/�1, αd2/�2 = Ω(1).

4 Crossing Concatenated Valleys

Wedefine a class of functions calledValleyPath consisting ofm consecutive valleys
of the same size. Each of the consecutive valleys is shifted such that the fitness at the
beginning of each valley is the same as that at the end of the previous valley (see
Fig. 3). Fitness values from one valley to the next valley increase by an amount of
d2 − d1 > 0. Formally:

h(i, j)ValleyPath :=
{
j · (d2 − d1) + d1 − i · d1

�1
if i ≤ �1

j · (d2 − d1) + (i − �1) · d2
�2

if �1 < i ≤ �.

Here 0 < j ≤ m indicates a valley while 0 ≤ i ≤ �1 + �2 = � indicates the position
in the given valley. Hence, the global optimum is the path point Pm·�.

123

Algorithmica (2018) 80:1604–1633 1623

ValleyPath represents a rugged fitness landscape with many valleys and many
local optima (peaks). It loosely resembles a “big valley” structure found in many real-
world problems [1,19,22,30]: from a high-level view the concatenation of valleys
indicates a “global” gradient, i. e. the direction towards valleys at higher indices. The
difficulty for optimisation algorithms is to overcome these many local optima and
to still be able to identify the underlying gradient. We show here that both SSWM
and Metropolis are able to exploit this global gradient and find the global optimum
efficiently. Note that ValleyPath is a very broad function class in that it allows for
many shapes to emerge, from few deep valleys to many shallow ones. Our results hold
for all valley paths with d1 < d2.

As in the analysis for Valley, instead of considering the whole Markov chain
underlying ValleyPath we take a high-level view and consider the chain that
describes transitions between neighbouring peaks. Since the peaks have increasing
fitness, this chain is quite simple and allows for an easy application of drift arguments.
By choosing the number of peaks to the right of the current peak as distance function,
the next theorem shows that, if we can find constant bounds for the drift, we will only
need to repeat theValley experiment for as many peaks as there are inValleyPath.

Theorem 14 Consider any algorithm described by Algorithm 1 with local mutations
on ValleyPath. Consider the points in time where the algorithm is on a peak and
focus on transitions between different peaks. Let Xt be a random variable describing
the number of peaks to the right of the current valley at the t-th time a different peak
is reached. If the drift over peaks Δ can be lower bounded by some positive constant

Δ := E (Xt − Xt+1 | Xt > 0) ≥ c > 0 (9)

then the expected number of function evaluations E
(
T f

)
to reach the optimum starting

from any peak is

E
(
T f

) = O
(
m · E

(
T O
Valley

))
and Ω

(
m · E (

TΩ
Valley

))
where m is the number of valleys that compose ValleyPath, and E

(
T O
Valley

)
and

E
(
TΩ
Valley

)
are the upper and lower bounds for Valley respectively.

Proof The lower bound is trivial since the algorithm can only move to a neighbour
peak and has to visit m peaks. The upper bound follows from the standard additive
drift theorem [10,18].
�

To compute the drift over the peaks Δ [see Eq. (9)] needed to use the previous
theorem we perform a slightly different abstraction over the ValleyPath problem.
We will also consider, apart from the peaks (local maxima), the points of minimal
fitness between them (valleys). For simplicity we will use the following notation.

Definition 3 (ValleyPath Notation) Consider any algorithm described by Algo-
rithm 1 with local mutations where the current search point is any extreme point (a
maximum or minimum) of ValleyPath. If the algorithm is on a valley (minimum)
we will denote by:

123

1624 Algorithmica (2018) 80:1604–1633

0
0

fitness

1

d1

d2

1 2

ppeaksi→i+1

ppeaksi→i−1

p↓
r

p↑
rp↑

l

p↓
l

Fig. 4 Sketch of the function ValleyPath with the probabilities used for its runtime analysis

(1) Tpeaks the first hitting time of either of the neighbouring peaks,

(2) p↑
r the probability of the algorithm being in the right-hand peak at Tpeaks,

(3) p↑
l = 1− p↑

r the probability of the algorithm being in the left-hand peak at Tpeaks.

If the algorithm is on a peak (a maximum) we will denote by:

(4) Tmin the first hitting time of either of the neighbouring minima,
(5) p↓

r the probability of the algorithm being in the right-hand minimum at Tmin,
(6) p↓

l = 1 − p↓
r the probability of the algorithm being in the left-hand minimum at

Tmin.

The following lemma computes the drift between peaks Δ [Eq. (9)] by introducing
transition probabilities between neighbouring peaks ppeaksi→i−1 and ppeaksi→i+1 (see Fig. 4).
These two new probabilities can be expressed in terms of the transition probabilities
between consecutive peaks and minima from Definition 3, yielding a neat expression
for the drift.

Lemma 15 In the context of Theorem 14 and Definition 3, if p↓
r p

↑
r ≥ γ p↓

l p
↑
l for

some constant γ > 1 then the drift between peaks will be Ω(1).

Proof Let us start from the definition of the drift between peaks from Theorem 14, we
expand the drift in terms of two probabilities: ppeaksi→i−1 which reads as the probability of

decreasing the number of peaks on the right by 1 and for the opposite event ppeaksi→i+1 =
1 − ppeaksi→i−1. Then,

E (Xt − Xt+1 | Xt = i > 0) = i − ppeaksi→i−1(i − 1) − ppeaksi→i+1(i + 1)

= i ·
(
1 − ppeaksi→i−1 − ppeaksi→i+1

)
+ ppeaksi→i−1 − ppeaksi→i+1

= 2ppeaksi→i−1 − 1

where in the last step we have used ppeaksi→i−1 + ppeaksi→i+1 = 1. Therefore a sufficient

condition for the drift to be constant is ppeaksi→i−1 ≥ 1
2 + 1

c for some constant c ≥ 2.

123

Algorithmica (2018) 80:1604–1633 1625

We can break down this term using the four probabilities from Definition 3. We
consider the Markov Chain composed of the extreme points (maxima and minima) of
ValleyPath and the algorithm on a peak. After two steps the system can be only
in one of three points: with probability p↓

l p
↑
l the algorithm will reach the peak on

its left, analogously it will reach the right peak with probability p↓
r p

↑
r and with the

remaining probability p↓
r p

↑
l + p↓

l p
↑
r the algorithm will leave and return to the starting

peak before reaching any other peak. We can now express the probability of moving
to a specific peak given that we have moved to a peak ppeaksi→i−1 as

ppeaksi→i−1 = p↓
r p

↑
r

p↓
r p

↑
r + p↓

l p
↑
l

= 1

1 + p↓
l p

↑
l

p↓
r p

↑
r

.

The previous condition ppeaksi→i−1 ≥ 1
2 + 1

c can now be translated to p↓
r p

↑
r ≥ γ p↓

l p
↑
l

for some constant γ > 1.
�
The previous lemma gives us a simple equation that determines the drift. Losing

rigour for a moment we neglect the factor γ and identify some regimes where the
overall drift is positive: (1) p↓

r > p↓
l and p↑

r > p↑
l , (2) p

↓
r � p↓

l and p↑
r < p↑

l or (3)

p↓
r < p↓

l and p↑
r � p↑

l . In the next lemma we recover the original Markov Chain and
express these four probabilities in terms of the real transition probabilities between
the states of ValleyPath. We will also make an assumption on the algorithm (the
probability of accepting an improvement of Δ f must be exponentially bigger than the
probability of accepting a worsening of the same size with Δ f). As the reader might
notice from the previous section both SSWM and Metropolis meet this condition.

Finally we can simplify the condition to have a positive drift in a neat expression
that only depends on the depth of the valleys (d1 and d2) and the parameter λ of the
acceptance probability distribution.

Lemma 16 In the context of Lemma 15, consider any algorithm described by Algo-
rithm 1 with an acceptance function such that pacc(Δ f)

pacc(−Δ f) = eλΔ f for some λ ∈ R
+.

Then

p↓
l p

↑
l

p↓
r p

↑
r

= e−λ(d2−d1).

Proof According to our notation (Definition 3) p↓
l reads as the probability of reaching

the minimum on the left of a peak before reaching the minimum on its right. As in the
Valley sectionwe can break down the process ofmoving to a neighbouringminimum
in two steps: (1) first moving just one point towards the left slope and (2) winning a
Gambler’s Ruin game starting with one dollar, using a notation in the same spirit as
in the previous section (see Definition 2). We will respectively denote the probability
of the events (1) and (2) p↓

�2
and pGR↓

�2
, where �2 determines that the process is on

the slope with length �2. Using the same rationale for the other probabilities we can
rewrite the quotient from Lemma 15 as

123

1626 Algorithmica (2018) 80:1604–1633

p↓
l p

↑
l

p↓
r p

↑
r

=

(
p↓
�2

pGR↓
�2

p↓
�2

pGR↓
�2

+p↓
�1

pGR↓
�1

)
·
(

p↑
�1

pGR↑
�1

p↑
�1

pGR↑
�1

+p↑
�2

pGR↑
�2

)
(

p↓
�1

pGR↓
�1

p↓
�1

pGR↓
�1

+p↓
�2

pGR↓
�2

)
·
(

p↑
�2

pGR↑
�2

p↑
�1

pGR↑
�1

+p↑
�2

pGR↑
�2

)

= p↓
�2
pGR↓
�2

· p↑
�1
pGR↑
�1

p↓
�1
pGR↓
�1

· p↑
�2
pGR↑
�2

= p↓
�2

p↑
�2

· p↑
�1

p↓
�1

· pGR↓
�2

pGR↑
�2

· pGR↑
�1

pGR↓
�1

.

Using theGambler’s Ruin problem results (see Theorem4)we can expand the previous
equality into

p↓
l p

↑
l

p↓
r p

↑
r

= p↓
�2

p↑
�2

· p↑
�1

p↓
�1

·

⎛
⎜⎜⎜⎝

1−
p
↑
�2

p
↓
�2

1−
(

p
↑
�2

p
↓
�2

)�2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1−
p
↓
�2

p
↑
�2

1−
(

p
↓
�2

p
↑
�2

)�2

⎞
⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

1−
p
↓
�1

p
↑
�1

1−
(

p
↓
�1

p
↑
�1

)�1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1−
p
↑
�1

p
↓
�1

1−
(

p
↑
�1

p
↓
�1

)�1

⎞
⎟⎟⎟⎠

.

Now using the acceptance function’s property from the lemma statement we can
simplify this expression to

p↓
l p

↑
l

p↓
r p

↑
r

= e−λd2/�2 · eλd1/�1 ·
(
1−eλd2/�2

1−eλd2

)
(
1−e−λd2/�2

1−e−λd2

) ·
(
1−e−λd1/�1

1−e−λd1

)
(
1−eλd1/�1

1−eλd1

) .

Notice that the last four terms have the same format as the equation for pfix (with
different parameters). Lets rename them as p∗

fix for simplicity

p↓
l p

↑
l

p↓
r p

↑
r

= e−λd2/�2 · eλd1/�1 ·
(
p∗↓�2
fix

p∗↑�2
fix

)
·
(
p∗↑�1
fix

p∗↓�1
fix

)
.

We find again the ratio between symmetric fitness differences, then Lemma 8 highly
simplifies the previous expression to

p↓
l p

↑
l

p↓
r p

↑
r

= e−λd2/�2 · eλd1/�1 · e−λd2(�2−1)/�2 · eλd1(�1−1)/�1

= e−λ(d2−d1).

�

123

Algorithmica (2018) 80:1604–1633 1627

4.1 Application for SSWM and Metropolis

In the next two theorems we apply the previous results onValleyPath to the SSWM
andMetropolis algorithms.The application is straightforwardwhenmaking the param-
eter λ = Ω(1) and the depths of the valley (d1 and d2) differ in some positive constant.
Notice that it could be the case that d2−d1 is smaller than a constant but the parameters
are big enough to compensate for this effect and still have a positive drift over peaks.
However this increase in the parameters will affect the optimisation time between
peaks (i.e. the Valley problem). Note that, by applying Theorem 3, it is easy to see
that the runtime of the (1 + 1) EA will be exponential in the length of the individual
valleys, hence the algorithmwill be efficient only for valley paths consisting of valleys
of moderate length.

The remaining conditions that Theorems 17 and 18 require are those already
required on the analysis for Valley (see Theorems 11 and 13).

Theorem 17 The expected number of function evaluations E
(
T f

)
for SSWM to reach

the optimum starting from any peak on ValleyPath with 2β(N − 1) · (d2 − d1) ≥ c
for some constant c > 0 is

E
(
T f

) = O
(
m · n ·

(
e2Nβd1(l1+1)/ l1 + Θ(l2)

))
and

E
(
T f

) = Ω
(
m · n ·

(
e2(N−1)βd1(l1−1)/ l1 + Θ(l2)

))
provided �1, �2 ∈ N\{1}, d2 > d1, N = Ω(1) and βd1/�1, βd2/�2 = Ω(1).

Proof Due to Lemma 8, SSWM meets the exponential ratio property needed by
Lemma 16 with λ = 2β(N − 1). Then we can say that

p↓
l p

↑
l

p↓
r p

↑
r

= e−λ(d2−d1) = 1

e2β(N−1)(d2−d1)
= 1

γ
.

Since 2β(N − 1)(d2 − d1) ≥ c > 0, then γ is a constant greater than 1 fulfilling
the condition required by Lemma 15 for the drift to be constant. Finally we apply
Theorem14 taking into account the optimisation time forValley to obtain the claimed
result.
�

An equivalent result to that of the SSWM forValleyPath is shown forMetropolis
in the following theorem.

Theorem 18 The expected number of function evaluations E
(
T f

)
for Metropolis to

reach the optimum starting from any peak on ValleyPath with α(d2 − d1) ≥ c for
some constant c > 0 is

E
(
T f

) = O
(
m · n ·

(
eαd1(l1+1)/ l1 + Θ(l2)

))
and

E
(
T f

) = Ω
(
m · n ·

(
eαd1(l1−1)/ l1 + Θ(l2)

))
provided �1, �2 ∈ N\{1}, d2 > d1, and αd1/�1, αd2/�2 = Ω(1).

123

1628 Algorithmica (2018) 80:1604–1633

Proof The proof follows exactly as the proof of Theorem 17 with the only difference
that λ = α [see Eq. (2)].
�

Note that our approach can be extended to concatenations of valleys of different
sizes, assuming d1 < d2 for each valley. In this case the expression of the runtime
would be dominated by the deepest valley.

5 Conclusions

We presented an analysis of randomised search heuristics for crossing fitness valleys
where no mutational bias exists and thus the probability for moving forwards or back-
wards on the path depends only on the fitness difference between neighbouring search
points. Our focus was to highlight characteristics of valleys where an elitist selection
strategy should be preferred to a non-elitist one and vice versa. In particular, we com-
pared the (1 + 1) EA using standard bit mutation with elitism against two algorithms
using local mutations with non-elitism, namely SSWM and Metropolis. To achieve
our goals we presented a mathematical framework to allow the analysis of non-elitist
algorithms on valleys and paths of concatenated valleys. We rigorously proved that
while the (1 + 1) EA is efficient for valleys and valley paths up to moderate lengths,
both SSWM andMetropolis are efficient when the valleys and valley paths are not too
deep. A natural direction for future work is to extend the mathematical framework to
allow the analysis of SSWM with global mutations, thus highlighting the benefits of
combining both non-elitism and global mutations for overcoming local optima.

Acknowledgements The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No 618091 (SAGE) and from
the EPSRC under Grant Agreement No EP/M004252/1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Omitted Proofs for Valley

This appendix contains proofs that were omitted from the main part.

Restating Lemma 6 In the context of Lemma 5, properties (i) and (ii) imply that

(i) p�1→�1−1 + p�1→�1+1 = 1/c1 for some constant c1 ≥ 1
(ii) 1 − c1 · p�1→�1+1 · pGR�1+1→�1

= 1/c2 for some constant c2 > 1
(iii) 1 − c1c2 · p�1→�1−1 = 1/c3 for some constant c3 > 1

Proof of Lemma 6 The first result follows directly from

p�1→�1+1, p�1→�1−1 = Ω(1) (property (i) of Lemma 5)

p�1→�1−1 + p�1→�1+1 ≤ 1

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2018) 80:1604–1633 1629

For the second result, first we observe that 1− c1 · p�1→�1+1 · pGR�1+1→�1
< 1. Then we

need to prove a constant lower bound on 1−c1 · p�1→�1+1 · pGR�1+1→�1
. For that, we start

considering the term pGR�1+1→�1
, which was defined in the framework’s notation (see

Definition 2). Using the results from the Gambler’s Ruin problem (see Theorem 4) we
can express pGR�1+1→�1

as

pGR�1+1→�1
=

1 −
(
p�1→�1+1

p�1+1→�1

)�2−1

1 −
(
p�1→�1+1

p�1+1→�1

)�2
= p�1+1→�1

p�1→�1+1
·
(
p�1→�1+1

p�1+1→�1

)�2 − p�1→�1+1

p�1+1→�1(
p�1→�1+1

p�1+1→�1

)�2 − 1

≤ p�1+1→�1

p�1→�1+1
(10)

where in the last step we have used that p�1+1→�1 < p�1→�1+1 (property (ii) of
Lemma 5) to upper bound the quotient by 1. Now we recover the second claim and
introduce the already proven first result: p�1→�1−1 + p�1→�1+1 = 1/c1 leading to

1 − c1 · p�1→�1+1 · pGR�1+1→�1
= 1 − p�1→�1+1 · pGR�1+1→�1

p�1→�1−1 + p�1→�1+1
.

Using pGR�1+1→�1
≤ p�1+1→�1/p�1→�1+1 obtained in Eq. (10) yields

1 − c1 · p�1→�1+1 · pGR�1+1→�1
≥ 1 − p�1+1→�1

p�1→�1+1 + p�1→�1−1

≥ p�1→�1+1 − p�1+1→�1

p�1→�1+1 + p�1→�1−1
= 1

c

for some constant c > 1. The last step follows since both numerator and denominator
are constant due to properties (ii) and (i) from Lemma 5 respectively. The claimed
equality from the statement with 1/c2 will hold for some constant c2 in the range
c ≥ c2 > 1.

Finally, for the third statement we start by observing that 1− c1c2 · p�1→�1−1 < 1.
The remainingpart of the proof is to showaconstant lower boundon1−c1c2·p�1→�1−1.
For this, we introduce the already proven results for c1 and c2 obtaining

1 − c1c2 · p�1→�1−1

= 1 − c1 · p�1→�1−1

1 − c1 · p�1→�1+1 · pGR�1+1→�1

= 1 − p�1→�1−1

p�1→�1−1 + p�1→�1+1
· 1

1 − p�1→�1+1·pGR�1+1→�1
p�1→�1−1+p�1→�1+1

= 1 − p�1→�1−1

p�1→�1−1 + p�1→�1+1 − p�1→�1+1 · pGR�1+1→�1

123

1630 Algorithmica (2018) 80:1604–1633

≥ 1 − p�1→�1−1

p�1→�1−1 + p�1→�1+1 − p�1+1→�1

[Eq. (10)]

≥ 1 − p�1→�1−1

p�1→�1−1 + ε
, ε > 0 (property (ii) of Lemma 5)

= 1

c3
, c3 > 1. (property (ii) of Lemma 5)

�B Analysis of Metropolis on Valley

Restating Lemma 12 Consider aGambler’sRuin problemasdescribed inTheorem4
with starting dollars n1 = 1 and n2 = � − 1. And probabilities p1 and p2 dependant
on Metropolis’s acceptance function as follows

p1 = 1

2
· eαΔ f p2 = 1

2

where Δ f < 0 and α|Δ f | = Ω(1). Then the winning probability of player one P1
can be bounded as follows

−αΔ f

e−α�Δ f
< PGR−Met

1 <
e−αΔ f

e−α�Δ f − 1

and the expected duration of the game will be E
(
TGR
1,�

)
= O(1).

Proof of of Lemma 12 Since in general 1/2+ 1/2 · e−α|Δ f | < 1 we have to make use
of the Gambler’s Ruin problem with self-loops (see Theorem 4). Let us start with the
winning probabilities

PGR−Met
1→�1

=
1 −

(
p2
p1

)n1
1 −

(
p2
p1

)n1+n2
= 1 − e−αn1Δ f

1 − e−α(n1+n2)Δ f
.

For the upper bound:

PGR−Met
1→�1

= 1 − e−αΔ f

1 − e−α�Δ f
= e−αΔ f − 1

e−α�Δ f − 1
<

e−αΔ f

e−α�Δ f − 1
.

For the lower bound:

PGR−Met
1→�1

= e−αΔ f − 1

e−α�Δ f − 1
>

−αΔ f

e−α�Δ f − 1
>

−αΔ f

e−α�Δ f
.

Using again Theorem 4 for the expected duration of the game leads to

E
(
TGR−Met
1,�1

)
= n1 − (n1 + n2) · PGR−Met

1

p22 − p21
= 1 − � · PGR−Met

1

p22 − p21
≤ 1

p22

(
1 − p21

p22

)

123

Algorithmica (2018) 80:1604–1633 1631

introducing p1 and p1 and noticing that Δ f < 0 yields

E
(
TGR−Met
1,�1

)
≤ 4

1 − e2αΔ f
= 4

1 − e−2α|Δ f | = O(1).

Where in the last step we have used that α|Δ f | = Ω(1) implies e−2α|Δ f | = 1−Ω(1).

�

Restating Theorem 13 The expected number of function evaluations E
(
T f

)
for

Metropolis to reach P�1+�2 from P0 on Valley with �1, �2 ∈ N\{1} and d1, d2 ∈ R+
is

E(T) = O
(
n · eαd1(1+1/�1)

)
+ Θ (n · �2)

E(T) = Ω
(
n · eαd1(1−1/�1)

)
+ Θ (n · �2)

provided αd1/�1, αd2/�2 = Ω(1).

Proof of of Theorem 13 Let’s begin by checking the conditions of Lemma 7 for
Metropolis. First, (i) p�1→�1+1 = p�1→�1−1 = 1/2. Next, (ii) p2�1→�1+1 = 1/4 and

p�1+1→�1 = e−αd2/�2/2. This implies that condition (ii) only applies if e−αd2/�2 <
1
2 ⇔ αd2/�2 > ln 2. Conditions (iii) and (iv) are valid since Metropolis accepts solu-
tions with a probability that depends only on Δ f and is non-decreasing in Δ f . The
proof for the fourth condition follows directly from p�1→�1+1/p�1+1→�1 = eαd2/�2

and the condition αd2/�2 = Ω(1). Since these conditions are satisfied, Lemmas 5 and
6 apply and the expected time is:

E
(
T0→�1+�2

) = Θ

(
1

pGR1→�1

·
(
E

(
TGR
1,�1

)
+ pGR1→0

p0→1

))
.

For the upper bound, note that from Lemma 12:

E
(
TGR−Met
1,�1

)
= O (1)

as long as αd1
�1

= Ω(1). Then, using the bounds on P1 from Lemma 12

E
(
T0→�1+�2

) = O

(
1

pGR1→�1

·
(
E

(
TGR−Met
1,�1

)
+ pGR1→0

p0→1

))

= O

(
1

pGR1→�1

·
(
O(1) + eαd1/�1

))

= O

(
�1

αd1
eαd1 ·

(
O(1) + eαd1/�1

))

123

1632 Algorithmica (2018) 80:1604–1633

= O

(
�1

αd1
eαd1(1+1/�1)

)

= O
(
eαd1(1+1/�1)

)
.

For the lower bound, since E
(
TGR−Met
1,�1

)
> 0 and

pGR1→0
p0→1

= eαd1/�1 > 1 :

E
(
T0→�1+�2

) = Ω

(
1

pGR1→�1

·
(
E

(
TGR−Met
1,�1

)
+ pGR1→0

p0→1

))

= Ω

(
1

pGR1→�1

)
= Ω

(
eαd1 − 1

eαd1/�1

)

= Ω
(
eαd1(1−1/�1) − e−αd1/�1

)
= Ω

(
eαd1(1−1/�1)

)
.

Finally, we add the Θ (�2) term (Lemma 5) and multiply by the time needed for a
relevant step n/2 (Lemma 2).
�

References

1. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global
optimizations. Oper. Res. Lett. 16(2), 101–113 (1994)

2. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest functions for mutation
operators in bio-inspired optimisation. Algorithmica 59(3), 343–368 (2016)

3. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton,
A.M.: Emergence of diversity and its benefits for crossover in genetic algorithms. In: Proceedings of
the 14th Parallel Problem Solving from Nature Conference (PPSN XIV), Volume 9921 of LNCS, pp.
890–900. Springer, Berlin (2016)

4. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton,
A.M.: Escaping local optima with diversity mechanisms and crossover. In: Proceedings of the 2016
Genetic and Evolutionary Computation Conference (GECCO ’16), Volume 9921, pp. 645–652. ACM
Press, New York (2016)

5. Dang, D.-C., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical optimisation to
partial information. Algorithmica 75(3), 428–461 (2016)

6. Droste, S., Jansen, T.,Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput.
Sci. 276, 51–81 (2002)

7. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1968)
8. Gillespie, J.H.:Molecular evolution over themutational landscape. Evolution 38(5), 1116–1129 (1984)
9. He, J., Chen, T., Yao, X.: On the easiest and hardest fitness functions. IEEE Trans. Evol. Comput.

19(2), 295–305 (2015)
10. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell.

127(1), 57–85 (2001)
11. Horn, J., Goldberg, D.E., Deb, K.: Long path problems. In Parallel Problem Solving from Nature

(PPSN III), Volume 866 of LNCS, pp. 149–158 (1994)
12. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategyand when not. In:

2007 IEEE Symposium on Foundations of Computational Intelligence, pp. 25–32 (2007)
13. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary

algorithms. Evol. Comput. 13, 413–440 (2005)

123

Algorithmica (2018) 80:1604–1633 1633

14. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms—a proof that crossover really can
help. Algorithmica 34(1), 47–66 (2002)

15. Jansen, T., Wegener, I.: A comparison of simulated annealing with a simple evolutionary algorithm on
pseudo-Boolean functions of unitation. Theor. Comput. Sci. 386(1–2), 73–93 (2007)

16. Jerrum,M., Sorkin, G.B.: TheMetropolis algorithm for graph bisection. Discrete Appl. Math. 82(1–3),
155–175 (1998)

17. Kimura, M.: On the probability of fixation of mutant genes in a population. Genetics 47(6), 713–719
(1962)

18. Lehre, P.K., Witt, C.: General drift analysis with tail bounds. CoRR (2013). arXiv:1307.2559
19. Merz, P., Freisleben, B.: Memetic algorithms and the fitness landscape of the graph bi-partitioning

problem. In: Proceedings of the 5th International Conference on Parallel Problem Solving fromNature
(PPSN V), pp. 765–774. Springer, Berlin (1998)

20. Mitra, D., Romeo, F., Sangiovanni-Vincentelli, A.: Convergence and finite-time behavior of simulated
annealing. Adv. Appl. Probab. 18(3), 747–771 (1986)

21. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: land-
scapes and efficiency. In: Proceedings of the 2009 Genetic and Evolutionary Computation Conference
(GECCO ’09), pp. 835–842. ACM Press, New York (2009)

22. Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Proceedings of the
16th European Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP
2016), pp. 58–73. Springer, Berlin (2016)

23. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation-combining explo-
ration and exploitation. In: Proceedings of the 2009 IEEECongress onEvolutionaryComputation (CEC
’09), pp. 1455–1462. IEEE Press, New York (2009)

24. Oliveto, P. S., Paixão, T., Pérez Heredia, J., Sudholt, D., Trubenová, B.: When non-elitism outperforms
elitism for crossing fitness valleys. In: Proceedings of the Genetic and Evolutionary Computation
Conference 2016, GECCO ’16, pp. 1163–1170. ACM, New York (2016)

25. Oliveto, P.S., Witt, C.: On the runtime analysis of the simple genetic algorithm. Theor. Comput. Sci.
545, 2–19 (2014)

26. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic algorithm. Theor.
Comput. Sci. 605, 21–41 (2015)

27. Paixão, T., Badkobeh, G., Barton, N., Corus, D., Dang, D.-C., Friedrich, T., Lehre, P.K., Sudholt, D.,
Sutton, A.M., Trubenová, B.: Toward a unifying framework for evolutionary processes. J. Theor. Biol.
383, 28–43 (2015)

28. Paixão, T., Pérez Heredia, J., Sudholt, D., Trubenová, B.: Towards a runtime comparison of natural
and artificial evolution. Algorithmica 78(2), 681–713 (2017)

29. PérezHeredia, J., Trubenová,B., Sudholt,D., Paixão,T.: Selection limits to adaptivewalks on correlated
landscapes. Genetics 205(2), 803–825 (2016)

30. Reeves, C.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1999)
31. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ) evolutionary algorithm.

Theor. Comput. Sci. 545, 20–38 (2014)
32. Rudolph, G.: Howmutation and selection solve long-path problems in polynomial expected time. Evol.

Comput. 4(2), 195–205 (1997)
33. Sasaki, G.H., Hajek, B.: The time complexity of maximum matching by simulated annealing. J. ACM

35, 387–403 (1988)
34. Sudholt, D.: The impact of parametrization in memetic evolutionary algorithms. Theor. Comput. Sci.

410(26), 2511–2528 (2009)
35. Sudholt, D.: Hybridizing evolutionary algorithmswith variable-depth search to overcome local optima.

Algorithmica 59(3), 343–368 (2011)
36. Wegener, I.: Simulated annealing beats metropolis in combinatorial optimization. In: Proceedings of

the 32nd International Colloquium on Automata, Languages and Programming (ICALP ’05), Volume
3580 of LNCS, pp. 589–601 (2005)

37. Whitlock,M.C., Phillips, P.C.,Moore, F.B.-G., Tonsor, S.J.: Multiple fitness peaks and epistasis. Annu.
Rev. Ecol. Syst. 26, 601–629 (1995)

38. Witt, C.: Runtime analysis of the (μ+1) EA on simple pseudo-Boolean functions. Evol. Comput. 14(1),
65–86 (2006)

123

http://arxiv.org/abs/1307.2559

	How to Escape Local Optima in Black Box Optimisation: When Non-elitism Outperforms Elitism
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Algorithms
	2.2 Long Paths

	3 Crossing Simple Valleys
	3.1 Analysis for the (1+1) EA
	3.2 A General Framework for Local Search Algorithms
	3.3 Application to SSWM
	3.4 Application to Metropolis

	4 Crossing Concatenated Valleys
	4.1 Application for SSWM and Metropolis

	5 Conclusions
	Acknowledgements
	A Omitted Proofs for Valley
	B Analysis of Metropolis on Valley
	References

