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Summary 

Plants are sessile organisms rooted in one place. The soil resources plants require are often 

distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots 

whose growth and development is highly responsive to soil signals. As a result, 3D root 

architecture is shaped by myriad environmental signals to ensure resource capture is 

optimised and unfavourable environments are avoided. The first signals sensed by newly 

germinating seed, gravity and light, direct root growth into the soil to aid seedling 

establishment. Heterogeneous soil resources such as water, nitrogen and phosphate also 

act as signals that shape 3D root growth to optimise uptake. Root architecture is also 

modified through biotic interactions that include soil fungi and neighbouring plants. This 

developmental plasticity results in a ‘custom made’ 3D root system best adapted to forage 

for resources in each soil environment a plant colonises.  
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Introduction 

Land plants have evolved root systems with complex 3D shapes. The volume of soil explored 

by a root system is largely determined by its architecture and hence modifications to its 3D 

shape can significantly impact a plant’s efficiency at acquiring resources. Root system 

architecture (RSA) is essentially determined by four major shape parameters- growth, 

branching, surface area and angle. Roots regulate these shape parameters in response to 

signals in their local soil environment such as water and nutrient availability, in addition to 

genetically determined developmental programmes. This highly adaptable behaviour, 

termed developmental plasticity, has been a major determinant for the success of land 

plants [1, 2].  

In order to understand the need for root systems to be developmentally plastic, it is 

necessary to consider that soil is spatially and temporally highly heterogeneous (Figure 1). 

For example, soil structure varies between types of soil, but also as a result of different 

tillage practices [3] (Figure 1A). This results in huge variations in the size and connectivity of 

pores (Figure 1A-C). Soil pores are the gaps in between and within particles and aggregated 

material. They are either gas or water filled. Heterogeneity of nutrient availability can arise 

due to patchy organic input and microbial decomposition [4]. This is further compounded by 

movement of nutrient ions in soil varying widely. For example, nitrate is highly soluble in 

water, whereas phosphate quickly forms insoluble complexes greatly reducing its mobility 

[5]. Water heterogeneity also occurs at a macro-scale, as the top soil dries before deeper 

profiles, and on a micro-scale within pores that vary in their capacity to hold water (Figure 

1D) (See supplementary video 1) [2, 6, 7]. Broadly speaking the water in micropores (< 30 

µm) is held at very high suctions typically above what a plant is able to extract, water in 
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mesopores (30-1000 µm) is regularly accessible to plants and water in macropores 

(>1000µm) is free drainage and usually passes through the upper portion of the root zone 

before a plant can extract it [8]. Soil structure in particular is a dynamic property, changing 

significantly over time (from minutes to years) in response to changes in weather and the 

associated variations in water content, temperature, vegetative growth, soil organism 

activity and anthropogenic management [9-11] . The developmental plasticity of RSA is 

therefore not surprising, given the complexity of soil structure and fluid dynamics that cross 

many scales.  

Studying RSA in soil poses major practical challenges. The development of shovelomics has 

enabled high throughput root phenotyping of field grown crops [12, 13]. However, 

destructive sampling often results in finer scale root architectural features being lost (e.g. 

lateral roots) and only a snapshot of development being measured [13]. Non-destructive 

imaging techniques enable temporal changes in architecture to be observed throughout 

root development. Classical non-destructive techniques such as agar plates, rhizotron, 

paper-based and hydro/aeroponic systems have been integral in gaining a better 

understanding of root development (Figure 2A) [14-18]. Nevertheless, these techniques 

essentially force roots to develop in two dimensions. 

Integrating the third, and fourth (time), dimension enables researchers to better observe 

how roots forage and compete for resources. Non-destructive analysis of 3D root growth 

has been made possible using transparent gels (Figure 2B) [19, 20]. Growing roots in non-

soil based systems helps decrease experimental variability by reducing, for example, 

heterogeneity of resource distribution or the impact of microbial populations. However, by 

removing these factors the conditions faced by the plant are artificial and results may be 
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difficult to extrapolate to growth in the field. To non-invasively study 3D growth in soil, 

more sophisticated imaging approaches are needed. For example, Magnetic Resonance 

Imaging (MRI; Figure 2C) and X-ray Computer Tomography (CT; Figure 2D) have been used 

successfully to observe 3D root systems in the soil [21-25]. However, these techniques are 

expensive to employ and are low throughput. Until such techniques overcome these issues, 

2D imaging will remain important for root research. 

This review explores the diverse architectures, adaptive responses and molecular 

mechanisms employed by root systems to optimise resource capture and adapt to abiotic 

and biotic stresses.  

 

Root system architecture: myriad variations on common themes 

At the root system level, different plant species appear to display myriad shape variations, 

yet common types of root distributions can be discerned. For example, in dicotyledonous 

plants such as Arabidopsis thaliana L. (thale cress) and Raphanus sativus L. (tillage radish), 

the embryo derived primary root remains active throughout the plants life cycle. Several 

orders of lateral roots then develop from the primary root to form the mature root system 

(Figure 3A & 4B). In contrast, seedlings in monocotyledonous species like Triticum aestivum 

L. (wheat) form several seminal roots (Figure 3B). When visualised from above (Figure 3C), 

seminal roots serve to multiply the volume of topsoil a seedling’s roots are able to initially 

colonise to obtain nutrients and anchorage. At later stages of development, cereal root 

systems are dominated by a new root class termed adventitious crown or brace roots [26]. 

This class originate post-embryonically from shoot tissues like grain forming tillers and 

provide greater anchorage and resource acquisition capacity [27]. The striking differences in 
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the 3D structures of dicot and monocot roots result in them being classified as tap root and 

fibrous types of architectures, respectively. 

At the local root level, almost every class of root (irrespective of species) branches to aid 

efficient exploration of the adjacent soil volume (Figure 3). A top down CT image of a wheat 

root segmentation reveals how branches emerge at different angles relative to the root 

circumference (Figure 3D). The term rhizotaxis has been used to describe the spacing and 

pattern of lateral root emergence akin to phyllotaxis in leaves [28, 29]. As in leaves, altering 

the angle of lateral root emergence relative to the previous and next branch will serve to 

minimise competition between a plant’s own roots. Despite its obvious importance, almost 

nothing is known about how roots select where branches emerge radially [30]. In all 

flowering plant species, lateral roots originate from small groups of pericycle-derived stem 

cells (Figure 4A). Depending on the plant species, lateral root stem cells are either 

positioned between or opposite phloem and/or xylem vessels [31]. In Arabidopsis lateral 

roots emerge from opposing xylem poles in an alternating pattern as two laterals will not 

develop at one cross section of the root (Figure 4B) [32, 33]. In cereals like wheat, lateral 

roots emerge from phloem poles (of which 10 or more may be present) enabling branches 

to simultaneously emerge at many different radial positions in one cross section (Figure 3D) 

[34, 35]. The net benefit is the capacity to form a much denser root system when conditions 

favour, such as encountering a localised source of nutrients (Figure 5A & 5B).  

 

3D root architecture is shaped by environmental signals throughout plant development 

The first environmental signals to shape root architecture immediately after seed 

germination are gravity and light. This was strikingly demonstrated by Ma & Hasenstein 
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(2006) who observed that the primary root of flax seedlings develop the ability to sense the 

direction of gravity 8 hours after seed imbibition (rehydration), which was 11 hours prior to 

root emergence from the seed coat [36]. The onset of this gravity-sensing ability is 

correlated with the formation of starch-filled plastids termed statoliths. These specialised 

plastids function as gravity sensors that sediment to the bottom of columella cells (root cap) 

and move in response to seedling re-orientation [37-39]. Statolith movement triggers the 

formation of a lateral gradient of the hormone auxin within minutes after a gravity stimulus 

[40]. Unequal distribution of the hormone between the upper and lower sides of the root in 

the elongation zone results in differential cell elongation, leading to root curvature [39, 41, 

42]. A seedling’s ability to orient the growth of the primary root in the direction of gravity 

(termed positive gravitropism) will greatly enhance its chances of establishment. A time 

series of CT images charting the development of an Arabidopsis seedling root system (Figure 

4B) (See supplementary video 2), reveals the critical role that the primary root performs 

during the first 12 days after germination, prior to lateral root emergence. Up to this point, 

the seedling is entirely reliant on the primary root for its establishment, providing 

anchorage and foraging for critical resources such as nutrients and water.  

Like gravity, light is amongst the very first environmental factors to regulate root growth, 

directing it to penetrate the soil surface [43]. Plant roots are negatively phototropic 

meaning they will grow away from the direction of light [44]. Light is able to penetrate the 

topsoil and provide a directional signal for root growth that is perceived immediately after 

germination. Plant roots express phytochrome, phototropin and cryptochrome classes of 

light receptors [45-48]. Polar localisation of auxin efflux transporters PIN2 and PIN3 has 

been proposed to result in an asymmetric distribution of auxin, causing the root to bend 

away from light and into the soil [49-52]. Interestingly recent research has demonstrated 
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that light received by the shoot can activate the photoreceptor phyB in roots which has a 

role in controlling organ growth. This suggests that roots are able to integrate light signals 

from both the stem and the root to control growth [53]. 

Gravity continues to play a crucial role controlling 3D RSA following seedling establishment. 

The angles at which roots grow varies widely between the different classes of roots within a 

single plant (Figure 3A & 3B) [54, 55]. For example, lateral roots emerging from primary and 

seminal roots often grow horizontally in a manner termed diagravitropic behaviour (Figure 

3A, 3B & 4B) [55, 56]. Furthermore, higher orders of lateral roots (originating from first 

order laterals) exhibit highly variable angles termed plagiotropic behaviour [57]. Seminal 

roots grow at angles intermediate to the vertical and horizontal, distinct to the vertical 

(positive gravitropic behaviour) of the primary root (Figure 3B). Such differences in angle 

between these distinct root classes are likely to reduce self-competition, whilst serving to 

maximise the volume of soil being explored.  

Exactly how roots grow at angles that deviate from vertical is currently unclear as the 

majority of research to date has focused on studying the primary root and its positive 

gravitropic response [58, 59]. This non-vertical pattern of growth is termed the gravitropic 

set-point angle (GSA) [56, 60]. GSA is an important trait of RSA determining whether a plant 

develops a steep or shallow root system, which in turn has an impact on water and nutrient 

uptake [61]. GSA may change in the course of development and can be modified by 

environmental factors such as nutrient availability [62].  

A single root shape is not optimal for capturing heterogeneously spread nutrients in soil 

A key root system function for the plant is acquisition of mineral and organic nutrients. 

There are seventeen nutrient elements that are widely classified as essential for plant 
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growth and development [63]. Of these nutrients two elements, nitrogen and phosphorus, 

are required in high quantities in agriculture yet are deficient in many soils. As the 

availability of nutrients are spatially and temporally heterogeneous in the soil, roots need to 

forage for such resources. Root architecture thus has a profound effect on the uptake of 

nutrients and consequently the yield potential of a crop. Root adaptive responses to 

nutrient supply have been widely studied. Despite the diversity across the plant kingdom, 

several nutrient-related root responses are common in most land plants. For example, roots 

that respond to the local availability of a nutrient often proliferate in this zone (Figure 5A & 

5B) [64-67]. Therefore, 3D RSA is shaped by the availability of these nutrients in order to 

optimise resource capture. 

Phosphorus is largely unavailable for uptake as it is insoluble in the soil solution [68]. 

Phosphate (P) is an inorganic form of phosphorus that is highly immobile and is 

concentrated in the topsoil due to plant bioaccumulation and deposition [69, 70]. 

Adaptations to RSA for increased topsoil foraging has been shown to enhance P acquisition. 

Architectural changes to RSA in response to low P availability include: increased numbers 

and lengths of roots in patches of high P availability (Figure 5A) [67, 71], shallower root 

angle [69, 72], increased numbers and lengths of root hairs [73, 74] and cluster root 

formation [75, 76]. Cluster roots represent dense arrays of branched roots. Their high 

numbers help to increase the surface area of the root system in order to access a greater 

amount of P [75, 77]. These adaptive responses highlight the importance of root 

architecture in acquiring P compared with other nutrients, as a result of its low mobility in 

soil. Plants also appear to manipulate their associated root microbiome in response to 

phosphate stress to enhance their performance [78]. Nevertheless, once an area of soil has 

been depleted of P the root must expand its surface area to forage further. It is evident that 
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root architecture must be plastic to respond spatially and temporally to nutrient 

heterogeneity for efficient uptake.  

Nitrogen (N) is an essential macronutrient for plant growth and development that is 

primarily assimilated in the form of nitrate (NO3–) and ammonium (NH4+). In soil NH4+ is 

immobile because it rapidly forms insoluble complexes with cations whereas NO3– is 

transported with soil water [63]. NO3– therefore is a particular challenge for root capture as 

it is mobile in the soil water solution and leaches into the deeper soil layers. When soil is 

uniformly low in N, the following root responses have been reported: steeper root angle in 

brace and crown roots [79], elongation of lateral and seminal roots [80-82], reduced root 

length density near the soil surface and reduced numbers of axial roots [83]. This increases 

the foraging capacity of the root system with exploration of deeper soil layers where N is 

more abundant.  

Root adaptive responses are important even when N requirements are sufficient. An 

increased concentration of NH4+ inhibits primary root elongation whereas an excess of NO3– 

represses lateral root elongation and branching [84, 85]. Such suppression of root growth in 

response to increased N allows reallocation of carbon and metabolites to the shoots of the 

plant [81].  

Modifications in RSA in response to N level are sensitive to whether the supply is global or 

local. Root growth is inhibited in soils with globally high N but the opposite response is 

observed when a root growing in N poor soil encounters a locally enriched nitrogen patch 

(Figure 5B) [66]. Uneven distribution and breakdown of organic matter in soil cause 

localised nutrient rich patches. Root strategies for exploiting localised N include stimulation 

of lateral root initiation and lateral root elongation in these zones [86-89]. 
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Root architectural plasticity is a beneficial adaptation particularly in natural ecosystems 

when resources are scarce and there is competition with other plants. In agricultural 

systems however plasticity can be considered a maladaptive trait. For example, it may be 

advantageous for a plant to not proliferate in response to local nutrient pockets but to grow 

deeper irrespective of nutrient availability in anticipation of leaching N fertiliser later in the 

year [83, 90, 91]. By repressing adaptive responses to heterogeneous nutrients, a plant 

could prioritise growing a deep root system with increased distribution of lateral roots at 

depth for better access to resources [92]. 

It is clear that nutrient heterogeneity has a major impact on RSA as a result of changes in 

branching, elongation and angle of root growth. With crop productivity gains not increasing 

at the required rate for food security [93], and flat lining for key crops and some regions 

[94], increased focus on root research could provide further gains by increasing nutrient 

efficiency. Development of an ideotypic root system for each root type per environment and 

management practice system could be a more realistic aim. The biggest challenge ahead is 

to comprehend the complexity of nutrient spatial and temporal heterogeneity in soil in 

respect to the diverse varieties of crops we grow. 

 

Symbiotic mycorrhiza act as a surrogate root system that extends the range of foraging 

In both wild and agricultural soil habitats roots do not grow in isolation, but interact with 

the soil microbiome, often forming symbiotic relationships with bacteria like rhizobium and 

frankia that trigger root nodule formation to fix nitrogen [95, 96]. Moreover, more than 90% 

of land plants form symbioses with mycorrhizal fungi [97, 98]. Indeed, early land plants 

heavily relied on mycorrhizal fungi interactions to provide a surrogate root system, prior to 
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the evolution of roots [99].The most common type is the arbuscular mycorrhizas (AM) which 

colonise 80% of terrestrial plant species [98]. The Glomeromycota fungus and the infected 

plant both benefit from this symbiotic relationship. Extraradical mycelia can extend far 

beyond the root depletion zone to capture P which is then passed to the plant through 

arbuscules, highly branched intraradical hyphae, that form in the roots cortical cells. In 

return the plant provides photosynthate to support the fungi’s obligate biotrophic lifestyle 

[100, 101].  

As P is extremely immobile this extension of the root system increases the plants ability to 

access P and it is known that mycorrhizal colonisation can increase plant P level and plant 

growth [101]. The level of mycorrhizal colonisation responds to P availability in the soil 

[102]. When P availability is low in the soil intraradical development of the fungus can occur 

in over 80% of the root length, preferentially in lateral roots [103, 104]. On the other hand 

the ability of mycorrhiza to improve N plant content is less well understood [97]. 

Nevertheless, it can be argued that plants have enlisted the help of mycorrhiza to act as a 

surrogate root system in order to explore a greater soil volume and improve P uptake. 

Mycorrhizal colonisation leads to changes in 3D root architecture due to an increase in 

lateral root development [104, 105]. Research has shown that mycorrhiza can cause this 

response in root architecture both before and during colonisation. AM fungal spores 

produce a diffusible factor that stimulates lateral root formation before colonisation occurs 

[106]. Furthermore, this response was seen clearly during colonisation when AM fungi 

colonisation was able to rescue lateral root branching in the Zea mays L. (maize) mutant 

lateral rootless1 (lrt1), normally lacking embryonic laterals [107]. It has been argued that the 

increase in density is an adaptive strategy to create more suitable sites for further 
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colonisation [103]. However, the response may not be specific to mycorrhiza and may 

simply be caused by the locally high P or sugar levels at sites of colonisation [108]. 

 

Roots growing in water deficit respond by increasing their angle to reach deeper soil 

One of the key functions of the root system is to source water. As the topsoil commonly 

dries first there is a vertical gradient of water availability, ranging from lower water 

availability in shallow soil to more abundant water availability in the deep soil. The steep 

root architecture in Pennisetum glaucum L. (pearl millet) is hypothesised to be an 

adaptation to the low water availability in the topsoil where it was domesticated [109]. In 

Oryza sativa L. (rice) a shallow rooting cultivar had improved yield under drought stress 

conditions when its seminal root angle was made steeper by overexpression of the DEEPER 

ROOTING1 (DRO1) gene [110]. This novel sequence is an early auxin responsive gene 

suggesting the water deficit signal is integrated into the auxin-regulated gravitropic 

response pathway. Recent research in Arabidopsis has observed that when a root system is 

exposed to a soil water deficit in the upper soil profile, it responds by increasing the 

gravitropic angle of its lateral roots in order to explore deeper levels (Figure 5C) [111]. This 

novel adaptive root response appears to be distinct from another water-related root 

response termed hydrotropism [112], since hydrotropic mutant miz1 does not disrupt 

lateral root re-orientation, leading this response to be termed xerotropism [111, 113]. 

Water deficit in the upper soil profile has also been observed to suppress lateral root and 

crown root growth in different plant species [111, 114]. In the cereal Setaria viridis L. (green 

foxtail) crown root growth is completely repressed during water deficit whilst primary root 

growth is promoted causing significant changes to the overall root architecture [114]. Water 
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deficit is sensed locally at the crown and results in an accumulation of arrested roots. This 

repression of branching is an adaptive response to save metabolic resources [115, 116]. The 

few but long lateral ideotype of root architecture is suggested to be the most efficient shape 

during water stress as metabolic resources are saved to be used to extend the root system 

into deeper soil profiles. Indeed, when grown under water stress maize lines with few but 

long root architecture had 144% greater yield than lines with many but short architecture 

[115].  

 

Root systems also respond to micro-scale heterogeneity in water availability  

Historically research into the effect of water on root architecture has focused on water 

deficit and drought [6]. However, water availability in soil is heterogeneous on a much 

smaller scale than has been previously considered. At a microscale soil consists of 

aggregates and pores of different sizes [117]. The size of the pore alters the matric potential 

imposed on water and hence how strongly water adheres to the soil matrix. Therefore, 

some pores will be filled with water whilst other pores will only contain a layer of water 

adhered to the soil and the majority of the pore will contain air. This creates heterogeneity 

of water availability as the water in a filled pore is much easier to access for a root than 

water adhered to the soil matrix or water contained in humid air [113, 118]. 

Recent research has highlighted how root architecture responds to microscale water 

heterogeneity by altering the pattern of branching [18, 30]. It has been observed that when 

the primary root is exposed to a difference in water availability across its circumferential 

axis lateral roots initiate preferentially on the side with greater water availability (Figure 5D) 

[30]. This novel adaptive response, called hydropatterning, has been observed in 
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Arabidopsis and several cereals when grown on agar plates and in soil [30]. Therefore, 

branching is patterned to best place root growth in areas where water (and hence soluble 

nutrients) are present. Similarly, when primary and seminal cereal roots are exposed to a 

localised water deficit, lateral root initiation is repressed specifically in the segment of root 

exposed to the stress [18]. Both responses appear very similar, with the only difference 

being one represses lateral root growth in a radial pattern whilst the other represses growth 

in a longitudinal pattern. Although the molecular mechanisms controlling each response 

have not been fully elucidated, initial research suggests that hydropatterning is regulated by 

the hormone auxin [30]. These patterning responses are sensitive to microscale differences 

in water highlighting that 3D root architecture can respond to the soil environment at a 

spatial scale much lower than previously thought.  

Branching is not the only way root architecture can be altered by water heterogeneity. 

Roots are able to grow towards areas with higher water availability using hydrotropism. This 

response has been demonstrated in soil grown Arabidopsis exposed to a directional source 

of water [119]. Hydrotropism is distinct from gravitropism, involving the hormone abscisic 

acid (ABA) [120] and a different set of tissues to sense and respond to micro-scale gradients 

of water availability located in the elongation zone [112]. Roots are also able to grow away 

from soil areas with high salt using halotropism, which (like gravitropism) is mediated by 

auxin redistribution [121]. Both responses ensure that root architecture is shaped to 

optimise root growth in areas of high water availability. The patterning of branching and 

tropisms into favourable growth environments mean that root systems are not at the whim 

of the environment but actively grow into more conducive soil environments.  
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Finding the path of least resistance in deeper soil 

Whilst roots colonising deeper soil profiles is favourable due to its higher water content, this 

zone is also much more challenging to penetrate due to its higher bulk density created by 

overburden pressure. As a soils bulk soil density increases, the pore connectivity usually 

decreases. This results in increased mechanical impedance for roots and reduced air 

permeability [122-124]. Higher soil bulk density has been shown to impede root growth by 

decreasing the spread of lateral roots and total root length [125]. Solanum lycopersicum L. 

(tomato) roots respond to soil compaction by increasing their diameter and lateral root 

number in an attempt to overcome the reduction in root surface area [125]. However, 

wheat roots growing 90 cm below the ground are only found in macropores suggesting that 

their roots only grow by soil deformation in shallow un-compacted soil [126]. Furthermore, 

root tips of Glycine max L. (Soybean) die if they do not meet a macropore before a soil 

depth of 30 to 45 cm [127]. Therefore, once roots reach deep compacted soil they rely on 

the presence of macropores for a pathway of least resistance, hence these pores shape the 

3D root system.  

Macropores, often in the shape of cracks or tubular passages, are most commonly 

associated with the bioturbation of previous roots, the burrowing activity of macro 

organisms (like worms) and shrinkage of soil due to dehydration [126]. Interestingly maize 

and soybean roots preferentially grow towards macropores using a process termed 

trematotropism [128]. Macropore availability is a key determinate of plant growth in 

compacted soil, with dry shoot biomass increasing by 27-67% when artificial pores were 

created in a compacted field [128]. Despite the potential importance of this response, the 

mechanisms behind it remain unclear. Instead it has been assumed that the ability to 
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deform strong soil is the most important trait for deep rooting [129]. However, the ability to 

locate and grow through macropores may be more important for conferring a deep rooting 

architecture to reach water supplies.  

 

Root systems architecture is shaped by interactions with neighbouring plants 

In natural and agricultural environments plants grow alongside neighbours. Roots from 

different trees are able to graft together to form a common root system [130]. However, in 

many plant species, roots compete for the same resources in overlapping soil volumes 

[131]. Many different responses to below ground competition have been documented 

[132]. It has been observed in multiple studies that plants respond by over proliferating 

their root system to compete for resources [133-135]. Over proliferation has been deemed 

a “tragedy of the commons” as both plants increase the size of the root system in an 

attempt to take up more resources than the other. However, multiple studies that observed 

a tragedy of the commons response failed to control soil volume meaning it is difficult to 

conclude whether the plant responded to the neighbouring plant or the extra soil volume 

[136, 137]. 

Research by Nord et al., (2011) showed that root responses of Phaseolus vulgaris L. 

(common bean) to neighbouring plants was caused by resource depletion by the neighbour 

rather than the direct presence of a neighbour [138]. In this study over proliferation of roots 

was not observed but RSA was altered to reduce the distribution of roots in the soil volume 

occupied by the neighbour. This response to spatially segregate root systems and avoid 

resource competition has also been observed in Arabidopsis and rice [139, 140]. 

Transcriptomic analysis of Arabidopsis indicates plants sense neighbouring roots before 
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resource depletion occurs suggesting that resource depletion is not the only signal for 

segregation [139]. 

Interestingly the changes in RSA documented in root: root interaction studies appear to be 

dependent on the relationship of the plants in competition [140-142]. The perennial grass 

Buchloe dactyloides (buffalo grass) produced fewer and shorter roots when grown in the 

presence of roots from the same physiological individual compared to a stranger [141].  

Identity recognition can occur on multiple levels from species specific recognition to kin vs 

stranger and self vs non-self recognition [139-142]. The ability to identify the relationship of 

a neighbouring plant may be advantageous in order to prevent competition for soil 

resources with kin. However, how plants determine these relationships is not well 

understood. Proposed mechanisms include volatile cues, electric signals, hormonal rhythms, 

root exudates and associated microorganisms [132].  

In conclusion, it is not yet clear if a plants RSA is altered directly or indirectly by its 

neighbours. The difficulty in observing these interactions has slowed research into this 

fascinating, yet under-studied topic. However, new image analysis techniques are being 

developed to observe 3D multi-root interactions in soil which promise to revolutionise our 

understanding (Figure 2D) [23, 140].  

 

Conclusion 

Roots perceive and interpret multiple, often overlapping, abiotic and biotic signals from soil. 

The key components of 3D RSA (root growth, branching, surface area and angle), are 

continuously being modified by these signals to optimise resource capture in highly 
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heterogeneous soil environments. The extraordinary plasticity exhibited during root 

development underpins the success of their foraging strategies. This review has described 

several major advances in our understanding of 3D root architecture gained through the use 

of novel imaging systems (Figure 2 & 5). However, a much greater understanding about the 

molecular mechanisms regulating how plants integrate these signals to control root 

developmental plasticity, and ultimately 3D RSA, is needed. Being able to non-invasively 

study gene expression throughout development in soil grown roots, using the GLO-roots 

imaging system, represents a major step forward to gaining a mechanistic understanding of 

RSA [111]. Similarly, models of 3D RSA are set to provide new knowledge about complex, 

non-linear processes, such as how multiple root architectural phenes interact to facilitate 

adaptation to a single (or multiple) abiotic stress(es) [90].  Such multi-scale mechanistic 

insights will underpin efforts to develop crops with improved root systems [91] and help 

address the urgent need for future crops better adapted to the challenge of climate change.  

 

Supplementary Information 

Supplemental information includes two videos. 
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Figure legends 

Figure 1. Heterogeneous soil structure, pore and water availability create a complex 

environment for root growth 

(A-C) X-ray CT images of soil in tilled (i.e. after ploughing) and zero till (in this case after 15 

years without ploughing) conditions [3]. (A) 3D rendered grey scale X-ray attenuation map 

of soil cores with a virtual ‘cut-out’ to reveal soil structure. In this case the darker the 

material, the lower the attenuation, hence the pore space appears as blacker regions. (B) 

Images highlighting ‘solid’ soil matrix in brown and ‘pore’ space in white. In this case there is 

no discrimination between water and air-filled pores so all pores appear in white though 

clear differences in size and shape can be seen (C) Images visualise the pore space only. This 

helps to appreciate the level of connectivity in the pores (shown to a high degree in the 

tilled soil and to a much lesser extent in the zero tilled soil). Scale bar is 10 mm (D) X-ray CT 

image of sandy loam soil (sieved < 2mm) where the soil is saturated i.e. almost all the pores 

are water filled. The water distribution is shown in blue, soil in grey and some air-filled pores 

in black. The size of the visualised region is approx. 2.5 x 2.5 x 7.5 mm. Scan resolution is 3 

microns. See supplementary video 1. 
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Figure 2. Imaging solutions available to study root architecture 

(A) Triticum aestivum root system imaged after 9 days of growth using a germination paper 

hydroponic phenotyping system [17]. (B) 3D root reconstruction of Oryza sativa created 

from 2D rotational image sequences of roots grown in a transparent gellan gum system [20]. 

(C) 3D surface renderings of MRI time lapse images of Zea mays growth at 6, 9, 12 and 15 

days after sowing (DAS) show 3D root architecture but not soil structure. Maize was grown 

in pots with an 81 mm internal diameter and 300 mm tall [22] . (D) Interaction between two 

Triticum aestivum root systems grown in soil and imaged using X-ray CT. Root system 

information was recovered using the software tool RooTrak - for multiple interacting root 

systems (version 0.3.10). The column diameter was 5 cm [23]. 

 

Figure 3. Tap root and fibrous root systems 

(A) X-ray CT rendered image of the tap root system of Raphanus sativus grown in a sandy 

loam arable soil for 58 days. (B) X-ray CT image of a 10-day-old Triticum aestivum root 

system grown in soil (column dimensions 7.5 cm [w] × 17 cm [h]). (C) Top down view of the 

whole Triticum aestivum root system shown in B. (D) Top down view of a single Triticum 

aestivum seminal root showing lateral root rhizotaxis. Applied bounding box has restricted 

lateral root length for image clarity. 

 

Figure 4. Overview of lateral root development in Arabidopsis thaliana 

(A) Time series of a developing young lateral root primordium expressing a 

plasmamembrane marker (UBQ10::YFP-PIP1;4) captured by confocal fluorescence 

microscopy. Scale bar = 50 µm. The lower panel depicts a sketch of cell contours seen in the 
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upper panel. Upon stage VII the cellular organization resembles the one seen in primary 

root tips, indicated by colours. 3D Illustration of a stage IV and emerged lateral root.  (B) X-

ray CT time series of a seedling growing in soil (column 1 cm [w] x 4 cm [h], imaged section 1 

cm [w] x 1.8 cm [h]) over a period of 21 DAS. Day 3, 7, 10, 12, 14, 17, 19 and 21 are shown, 

see supplementary video 2. 

 

Figure 5. Root development is altered in response to nutrients and water in the local soil 

environment in order to optimise root architecture for resource capture  

(A) X-ray CT image of Triticum aestivum grown for 28 days with (left) and without (right) a 

high phosphate band. Increased root density is seen in the high phosphate section [67]. (B) 

Hordeum vulgare grown for 21 days in a sand culture split into three compartments. In the 

control samples a complete nutrient solution was supplied to all three compartments. In 

other samples only the middle section was supplied with the complete nutrient solution 

whilst the other sections were supplied with a solution deficient in nitrate or ammonium. 

Plants responded to the localised increase in nitrogen with an increased number and growth 

of laterals [66]. (C) Arabidopsis thaliana plants, imaged with the GloRoots imaging system, 

exposed to a water deficit (WD) after 13 DAS have enhanced xerotropism in the lateral roots 

compared with well-watered (WW) plants [111]. (D) X-ray CT image of Zea mays growing 

down an artificial air pore (left) and in a continuous volume of soil (right). The primary root 

exposed to both soil and air preferentially branches into the soil [30].  
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Supplementary video 1- 3D visualisation of the distribution of water in soil from X-ray CT 

data 

Video showing the 3D reconstruction of an X-ray CT scan of sandy loam soil (sieved < 2mm) 

where the soil is saturated i.e. almost all the pores are water filled. The water distribution is 

shown in blue, soil in grey and some air-filled pores in black. The size of the visualised region 

is approx. 2.5 x 2.5 x 7.5 mm. Scan resolution is 3 microns. 

 

Supplementary video 2- X-ray CT time series reconstruction of an Arabidopsis seedling 

growing in soil over a period of 21 days after sowing. 

X-ray CT time series of an Arabidopsis seedling growing in soil (column 1 cm [w] x 4 cm [h], 

imaged section 1 cm [w] x 1.8 cm [h]) over a period of 21 days after sowing. Day 3, 5, 7, 10, 

12, 14, 17, 19 and 21 are shown  
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