
ARTICLE

Population structure determines the tradeoff
between fixation probability and fixation time
Josef Tkadlec 1,4, Andreas Pavlogiannis2,4, Krishnendu Chatterjee1 & Martin A. Nowak 3

The rate of biological evolution depends on the fixation probability and on the fixation time of

new mutants. Intensive research has focused on identifying population structures that aug-

ment the fixation probability of advantageous mutants. But these amplifiers of natural

selection typically increase fixation time. Here we study population structures that achieve a

tradeoff between fixation probability and time. First, we show that no amplifiers can have an

asymptotically lower absorption time than the well-mixed population. Then we design

population structures that substantially augment the fixation probability with just a minor

increase in fixation time. Finally, we show that those structures enable higher effective rate of

evolution than the well-mixed population provided that the rate of generating advantageous

mutants is relatively low. Our work sheds light on how population structure affects the rate of

evolution. Moreover, our structures could be useful for lab-based, medical, or industrial

applications of evolutionary optimization.
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The two primary forces that drive evolutionary processes are
mutation and selection. Mutation generates new variants in
a population. Selection chooses among them depending on

the reproductive rates of individuals. Evolutionary processes are
intrinsically random. A new mutant that is initially present in the
population at low frequency can go extinct due to random drift.
The key quantities of evolutionary dynamics which affect the rate
of evolution are1–5 (a) the mutation rate μ, which is the rate at
which new mutants are generated; (b) the fixation probability ρ,
which is the probability that the lineage of a mutant takes over
the whole population; and (c) the fixation time τ, which is
the expected time until the lineage of a mutant fixates in the
population.

A classical and well-studied evolutionary process is the
discrete-time Moran birth-death process6. Given a population of
N individuals, at each time step, an individual is chosen for
reproduction proportionally to its fitness; then the offspring
replaces a random individual (see Fig. 1a). In the case of a well-
mixed population, each offspring is equally likely to replace any
other individual. For a single new mutant with relative fitness r,
its fixation probability is ρ = (1 − 1/r)/(1 − 1/rN). Thus, for r > 1
and large N we have ρ ≈ 1 − 1/r3,7.

For measuring time, there are two natural options. The
absorption time is the average number of steps of the Moran
process until the population becomes homogeneous, regardless of
whether the mutant fixates or becomes extinct. Alternatively, the
(conditional) fixation time is the average number of steps of those
evolutionary trajectories that lead to the fixation of the mutant,
ignoring trajectories that lead to the extinction of the mutant.
Since the evolutionary trajectories leading to extinction are
typically shorter than those leading to fixation, the fixation time
tends to be longer than the absorption time. Therefore, in our
results concerning time we present lower bounds on the
absorption time and upper bounds on the fixation time.

For the well-mixed population, both the absorption time and
the fixation time are of the order of N log N8,9. Specifically, for r >
1 and large N, the absorption time is approximately [(r + 1)/r]N
log N while the fixation time is approximately [(r + 1)/(r − 1)]N
log N. For neutral evolution, r = 1, the absorption time is
approximately N log N while the fixation time is (N − 1)2.

Both the fixation probability and the fixation time depend on
population structure10–18. Evolutionary graph theory is a frame-
work to study the effect of population structure. In evolutionary

graph theory, the structure of a population is represented by a
graph7,19–23: each individual occupies a vertex; the edges repre-
sent the connections to neighboring sites where a reproducing
individual can place an offspring. The edge weights represent the
proportional preference to make such a choice. The well-mixed
population is given by the complete graph KN where each indi-
vidual is connected to each other individual (Fig. 1b). Graphs can
also represent deme structured populations, where islands are
represented by complete graphs and connections (of different
weights) exist between islands. Graphs can also represent spatial
lattices or asymmetric structures.

A well-studied example is the star graph SN, which has one
central vertex and N− 1 surrounding vertices each connected to
the central vertex (Fig. 1b). For the star graph, the fixation
probability tends to approximately 1− 1/r2 for r > 1 and large N
while both the absorption and the fixation time is of the order of
N2 log N24–26. Hence, if a mutant has 10% fitness advantage,
which means r = 1.1, the star graph amplifies the advantage to
21%, but at the cost of increasing the time to fixation (Fig. 1c).

Several population structures have been identified that alter the
fixation probability of advantageous mutants. Structures that
decrease the fixation probability are known as suppressors of
selection and those that increase it are known as amplifiers of
selection7,27–29. However, amplification is usually achieved at the
cost of increasing fixation time compared to the well-mixed
population13,17,30,31. For example, the star graph has higher
fixation probability but also longer fixation time as compared to
the well-mixed population. There also exist superamplifiers (also
known as arbitrarily strong amplifiers of natural selection) that
guarantee fixation of advantageous mutants in the limit of large
population size32–35. But those structures tend to require even
longer fixation times.

We can refer to population structures that decrease the fixation
time with respect to the well-mixed population as accelerators.
Both the fixation probability and the fixation time play an
important role in the speed of evolution. Ideally, we prefer a
population structure that is both an amplifier and an accelerator,
but all known amplifiers achieve amplification at the cost of
deceleration. In fact, this slowdown can be so prominent that it
outweighs the amplification and leads to longer evolutionary
timescales17.

Here we show that absorption time on any amplifier is
asymptotically at least as large as both the absorption and the

...
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Fig. 1 Moran process on graphs. a A new mutant (blue) appears in a population of finite size. The lineage of the new mutant can either become extinct or
reach fixation. The Moran process is a birth–death process; in any one time step one new offspring is generated and one individual dies. b All fixed spatial
structures can be described by graphs. The classical, well-mixed population corresponds to a complete graph, where all positions are equivalent. The star
graph is a well-studied example of extreme heterogeneity, where one individual, the center, is connected to all others, but each leaf is only connected to the
center. c Population structure influences both the fixation probability and the fixation time. An advantageous mutant introduced at a random vertex of a
star graph is more likely to fixate than on a complete graph (the arrows pointing to the right are thicker), but the (average) fixation time on the star graph is
much longer than on the complete graph (the arrows are longer). The star graph achieves amplification at the cost of deceleration
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fixation time on the well-mixed population. Given this negative
result, we proceed to study the tradeoff between fixation prob-
ability and time more closely. We have computed fixation
probabilities and fixation times for a large class of graphs. While
within this class, the well-mixed population is optimal with
respect to fixation time, and the star graph is favorable with
respect to fixation probability, there is a very interesting tradeoff
curve between fixation probability and fixation time. In other
words, there exist population structures which provide different
tradeoffs between high fixation probability and short fixation
time. As our main analytical results, we present population
structures that asymptotically achieve fixation probability equal to
that of star graphs and fixation time similar to that of well-mixed
populations. Thus, we achieve amplification with negligible
deceleration. Finally, while the above analytical results are
established for large population sizes, we also study evolutionary
processes on population structures of small or intermediate size
by numerical simulation. Specifically, we consider the effective
rate of evolution as proposed by Frean, Rainey, and Traulsen17.
Generally speaking, the well-mixed population has a high effec-
tive rate of evolution if the mutation rate is high, while the star
graph has a high effective rate of evolution if the mutation rate is
very low. We show that for a wide range of intermediate mutation
rates, our new structures achieve higher effective rate of evolution
than both the well-mixed population and the star graph.

Results
We study several fundamental questions related to the
probability-time tradeoff of a single advantageous mutant in a
population of size N. Mutants can arise either spontaneously or
during reproduction. Mutants that arise spontaneously appear at
a vertex chosen uniformly at random among all N vertices. This is
called uniform initialization. Mutants that arise during repro-
duction appear at each vertex proportionally to its replacement
rate, which is called temperature of that vertex. This is called
temperature initialization. We study the probability-time tradeoff
for both types of initialization.

Amplifiers and accelerators. First, we investigate whether there
are population structures that are amplifiers and asymptotic
accelerators of selection as compared to the complete graph (well-
mixed population). We show that for any amplifier with popu-
lation size N, the absorption time is of the order of at least N log
N, for both types of initialization. Since the fixation time tends to
be even longer than the absorption time and the fixation time for
the complete graph is also of the order of N log N, regardless of
initialization, this suggests that no amplifier is an asymptotic
accelerator. Moreover, we show that the same conclusion holds
for graphs that decrease the fixation probability by not more than
a constant factor. Our result does not completely exclude the
possibility of population structures with absorption time
asymptotically shorter than that of the complete graphs but it
shows that, if such structures do exist, then the fixation prob-
ability has to tend to 0 as the population size N grows large. While
the above results holds in the limit of large population size, we
present a small directed graph that is a suppressor and has a
slightly shorter fixation time than the complete graph for the
same population size (see Supplementary Note 1, Section 3.1).

Tradeoff under uniform initialization. Second, we consider
uniform initialization. There are two interesting questions: First,
for fixed (small) population size, how do different population
structures fare with respect to the probability-time tradeoff?
Second, in the limit of large population size, do there exists

population structures that achieve the same amplification as the
star graph, with shorter fixation time? Our results are as follows.

First, for small population size, both fixation probability and
fixation time can be computed numerically36. We do this for all
graphs with N = 8 vertices and a mutant with relative fitness
advantage r = 1.1 (see Fig. 2a). We observe that the complete graph
has the shortest fixation time, and the star graph has the highest
fixation probability. However, the star graph has much longer
fixation time than the complete graph. While some graphs have
smaller fixation probability and longer fixation time than the
complete graph, there are other graphs which provide a tradeoff
between high fixation probability and short fixation time. In
particular, there are Pareto-optimal graphs. Recall that in two- or
multi-dimensional optimization problems, the Pareto front is the
set of non-dominated objects. In our case, the Pareto front consists
of graphs for which the fixation probability can not be improved
without increasing the fixation time. For N = 8 and r = 1.1 the
complete graph and the star graph are the two extreme points of the
Pareto front. This finding holds for other values of r > 1 as well
(Fig. 2b).

We answer the second question in the affirmative. The tradeoff
results (Fig. 2a) that we study allow us to obtain graphs which we
call α-Balanced bipartite graphs. Intuitively, they are defined as
follows: we split the vertices into two groups such that one is
much smaller than the other, but both are relatively large. Then
we connect every two vertices that belong to different groups. We
show that, in the limit of large population size, this bipartite
graph achieves the same fixation probability as the star graph and
that its fixation time asymptotically approaches that of the
complete graph. Formally, an α-Balanced bipartite graph BN,α is a
complete bipartite graph with the parts containing N and N1−α

vertices (see Fig. 2c for illustration with N = 8 and α = 1/3). We
show that the fixation probability of such graphs tends to 1−1/r2

while the fixation time is of the order of N1+α log N, for any α > 0
(compared to N log N fixation time of complete graph). Thus we
achieve the best of two worlds, that is, we present a graph family
that, in the limit of large population size, is as good an amplifier
as the star graph and almost as good with respect to time as the
complete graph. As a byproduct, we prove that on a star graph,
both the absorption and the fixation time are of the order of N2

log N for any fixed r > 1 which is in alignment with known
bounds and approximation results25,26.

Moreover, we support the analytical result with computer
simulations for fixed population size N = 100. We compute the
fixation probability and time for selected families of graphs, such
as Trees or random Erdős–Rényi graphs (see Fig. 2d). The α-
Balanced bipartite graphs outperform all of them. Hence the
analytical results are interesting not only in the limit of large
population but already for relatively small population sizes.

Tradeoff under temperature initialization. Third, we consider
temperature initialization. The above questions for uniform
initialization are also the relevant questions for temperature
initialization. Our results are as follows.

First, we again numerically compute the fixation probability
and the fixation time for all graphs with N = 8 vertices (see
Fig. 3a). In contrast to the results for uniform initialization
(Fig. 2a), under temperature initialization, the complete graph has
both the highest fixation probability and the shortest fixation
time. This is the case for other r > 1 too (see Fig. 3b).

Second, we present analytical results. Figure 3a shows that
there is no tradeoff for temperature initialization. The result is not
surprising as it has recently been shown that, for temperature
initialization, no unweighted graphs can achieve substantial
amplification35, and in the present work we have established that
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the complete graph is asymptotically optimal among amplifiers
with respect to absorption time. Thus, the relevant analytical
question is whether weighted graphs can achieve interesting
tradeoffs between fixation probability and time. We answer this
question in the affirmative by presenting a weighted version of α-
Balanced bipartite graphs (see Fig. 3c). Intuitively, we add
weighted self-loops to all vertices in the larger group of an α-
Balanced bipartite graph, such that when such a vertex is selected
for reproduction, its offspring replaces the parent most of the
time and migrates to the smaller group only rarely. Formally, the
α- Weighted bipartite graph WN,α is a complete bipartite graph
with the parts containing N and N1−α vertices. Moreover, each
vertex in the larger part has an extra self-loop of weight
approximately N1−α/2. We show that, in the limit of large

population size, this weighted bipartite graph structure achieves
fixation probability 1− 1/r2 (which is the same as the star graph
under uniform initialization), while the fixation time is of the
order of N1+α log N, for any α > 0 (compared to N log N fixation
time of complete graph). Thus we again achieve the best of two
worlds, that is, we present a graph family that, in the limit of large
population, is as good an amplifier as the star graph (under
uniform initialization) and almost as good with respect to time as
the complete graph.

Moreover, as before, Fig. 3d shows computer simulations for
N = 100, including Trees, random Erdős–Rényi graphs and the
Bipartite graphs. The α- Weighted bipartite graphs are the only
graphs that considerably increase the fixation probability as
compared to the complete graph.
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Fig. 2 Fixation probability and time under uniform initialization. a Numerical solutions for all 11,117 undirected connected graphs of size N = 8 (see
Supplementary Fig. 1 for 2.3 · 105 graphs of size N = 9). Each graph is represented by a dot and color corresponds to the number of its edges. The x- and y-
coordinates show the fixation probability and the fixation time for a single mutant with relative fitness r = 1.1, under uniform initialization. The graphs to the
right of the complete graph are amplifiers of selection: they increase the fixation probability. Any graph below the complete graph would be an accelerator
of selection: it would decrease the fixation time. Graphs close to the bottom right corner provide good tradeoff between high fixation probability and short
fixation time. b Similar data for varying r. Under uniform initialization, the fixation probability of a neutral mutant equals 1/N, independent of the graph
structure. As r approaches 1, the point cloud gets closer to a vertical line. c An α-Balanced bipartite graph BN,α is a complete bipartite graph with N vertices
in the larger part and N1−α vertices in the smaller part. Here N = 8 and α = 1/3. We prove that for large N, the α-Balanced bipartite graphs achieve the
fixation probability of a star graph and approach the fixation time of the complete graph. d Computer simulations for selected graphs of size N = 100 such
as Trees, random Erdős–Rényi graphs, and Cycles or stars with several extra edges (see Supplementary Note 1, Section 4 for details). Bipartite graphs
provide great tradeoffs between high fixation probability and short fixation time

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0373-y

4 COMMUNICATIONS BIOLOGY |           (2019) 2:138 | https://doi.org/10.1038/s42003-019-0373-y | www.nature.com/commsbio

www.nature.com/commsbio


Effective rate of evolution. Finally, we study the effectiveness of
the presented population structures for small population sizes.
We use an elegant mathematical formula for the effective rate of
evolution that combines both fixation probability and fixation
time17. Let t1 ¼ 1

Nμρ denote the expected number of generations to
generate a mutant that eventually fixates, where N is the popu-
lation size, μ is the mutation rate, and ρ is the fixation probability.
Let t2 ¼ τ

N denote the expected number of generations for a
mutant to fixate once it is generated. Note that τ is the fixation
time measured in steps of the Moran process, and τ

N represents
the number of generations. The effective rate of evolution is
defined as the inverse of the sum of the above two quantities, i.e.,
1

t1þt2
. The effective rate of evolution was studied for the complete

graph and for the star graph under uniform initialization17.
Here we further investigate the effective rate of evolution for α-
Balanced bipartite graph under uniform initialization, and for

α-Weighted bipartite graphs under temperature initialization, for
relatively small population sizes.

Regarding uniform initialization, we compute the effective rate
of evolution on α-Balanced bipartite graphs for a wide range of
mutation rates μ and compare it to the effective rate of evolution
on complete graphs and star graphs (see Fig. 4a for fixed
population size and Fig. 4b for varying population sizes).
The complete graph is more effective for high mutation rates
and the star graph is more effective for low mutation rates but in
the intermediate regime, suitable α-Balanced bipartite graphs are
more effective than both the complete graph and the star graph.
This is in a perfect alignment with the Pareto front presented in
Fig. 2a.

Regarding temperature initialization, we study α-Weighted
bipartite graphs instead of α-Balanced bipartite graphs (Fig. 4c, d).
As before, the complete graph is the most effective population
structure for high mutation rates. However, the star graph is a
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Fig. 3 Fixation probability and time under temperature initialization. a Numerical solutions for all undirected connected graphs of size N = 8, under
temperature initialization (r = 1.1). There are no amplifiers and no (strict) accelerators. By the isothermal theorem7, all the regular graphs achieve the same
fixation probability as the complete graph. b Similar data for varying r. c The α- Weighted bipartite graphs are obtained by adding self-loops with large
weight to all vertices in the larger part of an α-Balanced bipartite graph. We prove that for large N, the α-Weighted bipartite graphs improve the fixation
probability to 1− 1/r2 and approach the fixation time of a complete graph. d Computer simulations for selected graphs of size N = 100. It is known than
among unweighted graphs, only a very limited amplification can be achieved35. Our α- Weighted bipartite graphs (with self-loops of varying weight)
overcome this limitation and provide tradeoffs between high fixation probability and short fixation time
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suppressor under temperature initialization and performs poorly.
Therefore, except for the high mutation rate regime, various α-
Weighted bipartite graphs achieve higher effective rate of evolution
than both the complete graph and the star graph.

Discussion
Many previous studies have explored how population structure
affects the fixation probability of new mutants7,16,19–21,23,32–35,37,38.
While such studies cover one major aspect of evolutionary
dynamics, the other aspect, which is fixation time, is much less
studied. Both fixation probability and fixation time play an
important role in determining the rate of evolution. If the mutation
rate is low, the rate-limiting step is waiting for an advantageous
mutant to occur. In this regime the fixation probability is more
important than the fixation time. Conversely, if the mutation rate is
high, then fixation time is more relevant than fixation probability.
In the intermediate-mutation rate regime, the tradeoff between
fixation probability and fixation time must be considered. We study
this tradeoff and propose population structures, called α-Balanced
bipartite graphs and α-Weighted bipartite graphs, that provide

substantial amplification with negligible increase in the fixation
time. This is in stark contrast with all previous works that achieve
amplification at the cost of asymptotically increasing the fixation
time. As a consequence, compared to previous works, our popu-
lation structures enable higher effective rate of evolution than the
well-mixed population for a wide range of mutation-rate regimes.

There are some interesting mathematical questions that remain
open. While we show that (i) amplifiers cannot have better
asymptotic absorption time than the well-mixed population (in
the limit of large population size, N → ∞), and (ii) there are
graphs of fixed population size N, that are suppressors and have
shorter fixation time than the well-mixed population, two parti-
cularly interesting questions are: (a) Does there exist an amplifier
of fixed population size that has shorter fixation time than the
well-mixed population? (b) Does there exist a graph family
(which must be suppressing) that has better asymptotic fixation
time (for N → ∞) than the well-mixed population?

Note that, in general, clonal interference can occur and the
fixation of a mutant need not be achieved before the next
mutation arrives4,39,40. Thus, the fixation probability and fixation
time alone may not completely characterize the performance of a
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Fig. 4 Effective rate of evolution. The effective rate of evolution depends on the population size, N, the mutation rate, μ, and the population structure. For uniform
initialization, we compare five different population structures: the complete graph (blue), α-Balanced graphs with α ∈ {0.1, 0.25, 0.5} (orange, green, red), and
the star graph (purple), always showing the relative rate of evolution with respect to the complete graph. a We fix N = 100, r = 1.1, and vary μ = 10−7,…, 100.
The complete graph has a higher effective rate of evolution if the mutation rate is high (μ > 10−3) and star graph is favorable if the mutation rate is low
(μ < 3 · 10−6). In the intermediate regime, suitable α-Balanced graphs outperform both of them. b We fix r = 1.1 and N⋅μ∈ {10−2, 10−3, 10−4} and vary
N = 10, 20,…, 500. The star graph is favorable if mutations are rare (N⋅μ = 10−4 and N small) and the complete graph is favorable if mutations are common
(N ⋅ μ ≥ 10−1). In the intermediate regime, suitable α-Balanced graphs are more efficient. c, d Analogous data for temperature initialization. This time we compare
the complete graph (blue) and the star graph (purple) with α-Weighted bipartite graphs for α ∈ {0.25, 0.5, 1} (orange, green, red). As before, the complete graph
dominates if mutations are common. In other cases, α-Weighted bipartite graphs are preferred. The star graph is not an amplifier for temperature initialization
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population structure with respect to the overall rate and efficiency
of an evolutionary search process. Nevertheless, the effective rate
of evolution and the probability-time tradeoff curves are indica-
tive of the efficacy of each population structure in speeding-up
evolution. The numerical and experimental study of population
structures in the presence of clonal interference is another
interesting direction for future work.

The population structures which we have described here could
become an important tool for in vitro evolution41–44, since they
can substantially speed up the process of finding advantageous
mutants. In vitro evolution, can be used to discover optimized
protein or nucleotide sequences for any medical or industrial
purpose. Depending on the mutation-rate regime, our work
shows that different population structures can lead to more
effective time scales of discovery.

Methods
Here we present details of the model and sketches of the formal proofs of our
results, pointing to the relevant parts of the Supplementary Note 1 for details.

Uniform and temperature initialization. Given a graph G with N vertices and one
specific vertex v, we denote by ρ(G, v, r) the fixation probability of a single mutant
with fitness r starting at vertex v, in a standard Moran birth-death process. Then
the fixation probability under uniform initialization is simply the average
ρðG;U; rÞ ¼ 1

N

P
v ρðG; v; rÞ. The fixation probability under temperature initi-

alization is a weighted average ρðG;T; rÞ ¼ P
v tðvÞ � ρðG; v; rÞ, where t(v) is the

temperature of vertex v. The temperature (turnover rate) of vertex v is defined by
tðvÞ ¼ 1

N

P
u wðu; vÞ, where w(u, v) is the probability that an individual reprodu-

cing at vertex u places offspring at vertex v.

Amplifiers and accelerators. We prove that for any graph G on N vertices, the

absorption time is greater than ρðG;rÞ
r N logN . Specifically, this shows that the

absorption time is of the order of at least N log N for the complete graph, for any
amplifier, and for any weak suppressor (a graph that decreases the fixation prob-
ability by not more than a constant factor). In the proof, we consider the Markov
chain corresponding to the Moran process. Briefly, for every k = 1,…,N− 1, we
denote by tXk the expected time it takes to gain a single mutant from any config-
uration X consisting of k mutants. To gain a mutant, one of the k mutants has to be
selected for reproduction (and then the mutant has to replace a resident). We show
that if the probability of fixation is at least a constant, then this yields a lower
bound for tk that is proportional to N/k. Summing over all k’s we get that the total
fixation time is of the order of at least N/1 + N/2 + … + N/(N − 1) ≈ N log N.
Since the absorption time for the complete graph is also proportional to N log N,
no amplifier or a weak suppressor is asymptotically faster than the complete graph
in terms of absorption time. We remark that this does not imply that the complete
graph is faster than any other graph of the same size. In fact, this is not true: We
present a simple (directed) suppressor whose fixation time is shorter than the
fixation time on a complete graph of the same size. See Supplementary Note 1,
Section 3.1 for details.

Tradeoff under uniform initialization. Under uniform initialization, we consider
α-Balanced bipartite graphs BN,α with parts of sizes N and N1−α, where α > 0 is fixed.
We prove that the fixation probability of such graphs BN,α tends to 1 − 1/r2 as the
population size N tends to infinity. To that end, we use a general formula for the
fixation probability on a complete bipartite graph45 and compute the limit when the
size of the smaller part is equal to N1−α. Next, we argue that the fixation time for α-
Balanced bipartite graphs BN,α is of order approximately N1+α · log N which is
asymptotically less than N2·log N for the star graph. We confirm this by providing
matching numerical results (see Supplementary Figs. 2 and 3). Intuitively, during
evolutionary dynamics on a star graph, the non-central vertices of the star evolve like
a well-mixed population except that an evolutionary step occurs only if the vertex
picked for reproduction was the center of the star. This happens approximately once
in every N steps, hence the star graph is approximately N-times slower than the well-
mixed population. Similarly, for α-Balanced bipartite graph the larger part evolves
like a well-mixed population, except that an evolutionary step occurs only if the
vertex picked for reproduction belonged to the smaller part. Hence, compared to the
star graph, we get a speed up by a factor of N1−α, for the total fixation time N2 log
N/N1−α = N1+α log N. See Supplementary Note 1, Section 3.2 for details.

Tradeoff under temperature initialization. Under temperature initialization, we
define α- Weighted bipartite graphs WN,α with parts of sizes N and N1−α and self-
loops of weight N1−α/2 − N1−α at each vertex of the larger part. We closely follow
the arguments for the α-Balanced bipartite graphs, and prove that, in the limit of
large population size, the fixation probability of such α- Weighted bipartite graphs

WN,α tends to 1 − 1/r2 and that the fixation time is of order approximately N1+α

log N. See Supplementary Note 1, Section 3.3 for details.

Effective rate of evolution. Given a mutation rate μ and a population of N
individuals placed on a population structure where a new mutant has fixation
probability ρ and fixation time τ, the effective rate of evolution is given by 1

t1þt2
,

where t1 ¼ 1
Nμρ is the expected number of generations to produce a mutant that

eventually fixates and t2 ¼ τ
N is the expected number of generations for the mutant

to fixate once it was generated. This is closely based on a notion introduced
before17 but with both t1 and t2 measured in generations. We numerically compute
the effective rate of evolution for various population structures (complete graph,
star graph, α-Balanced bipartite graphs, and α-Weighted bipartite graphs), popu-
lation sizes, and mutation rates and compare the results (see Supplementary Fig. 4
for additional regimes).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study and the related
computer code are available at https://figshare.com/s/38f0d4ceffb32ce49bc4.

Code availability
Computer code used in this study is available at https://figshare.com/s/
38f0d4ceffb32ce49bc4.
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