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Abstract

In this thesis we study certain mathematical aspects of evolution. The two primary forces

that drive an evolutionary process are mutation and selection. Mutation generates new

variants in a population. Selection chooses among the variants depending on the re-

productive rates of individuals. Evolutionary processes are intrinsically random – a new

mutation that is initially present in the population at low frequency can go extinct, even if

it confers a reproductive advantage. The overall rate of evolution is largely determined by

two quantities: the probability that an invading advantageous mutation spreads through

the population (called fixation probability) and the time until it does so (called fixation

time). Both those quantities crucially depend not only on the strength of the invading

mutation but also on the population structure. In this thesis, we aim to understand how

the underlying population structure affects the overall rate of evolution. Specifically, we

study population structures that increase the fixation probability of advantageous mu-

tants (called amplifiers of selection). Broadly speaking, our results are of three different

types: We present various strong amplifiers, we identify regimes under which only lim-

ited amplification is feasible, and we propose population structures that provide different

tradeoffs between high fixation probability and short fixation time.
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lems for international competitions (e.g. IMO 2012/p5 and IMO 2016/p6), and lecturing

at math camps around the world (AwesomeMath in the US, African Math Initiative in

Kenya, Maths Beyond Limits in Poland). He likes ultimate frisbee, outdoor puzzle hunts,

and musical instruments of any kind.



viii

List of Publications

Chapters 2, 3, and 4 of this thesis are closely based on the following joint work with

A. Pavlogiannis, K. Chatterjee and M. A. Nowak.

1. Pavlogiannis, A., Tkadlec, J., Chatterjee, K., & Nowak, M. A. (2018). Construction

of arbitrarily strong amplifiers of natural selection using evolutionary graph theory.

Communications biology, 1(1), 71.

2. Tkadlec, J., Pavlogiannis, A., Chatterjee, K., & Nowak, M. A. (2019). Population

structure determines the tradeoff between fixation probability and fixation time.

Communications biology, 2.

3. Tkadlec, J., Pavlogiannis, A., Chatterjee, K., & Nowak, M. A. (2019). Lim-

its on amplifiers of natural selection under death-Birth updating. arXiv preprint

arXiv:1906.02785.



ix

Table of Contents

Abstract v

Acknowledgments vi

About the Author vii

List of Publications viii

1 Introduction 1

1.1 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Relevance and implications of our results . . . . . . . . . . . . . . . . . . . 13

1.5 Further directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Weighted & loopy superamplifiers 17

2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Overview of theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Proofs of the negative results . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Proof of the positive result . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Numerical and simulation results . . . . . . . . . . . . . . . . . . . . . . . 55

3 Time-probability tradeoff 57

3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



x

3.2 Overview of theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Numerical and simulation results . . . . . . . . . . . . . . . . . . . . . . . 79

4 Amplification under death-Birth updating 87

4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Overview of theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Numerical and simulation results . . . . . . . . . . . . . . . . . . . . . . . 100

5 Selection reactors 104

5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Overview of theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Numerical and simulation results . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 127



1

1 Introduction

In this thesis we study certain mathematical aspects of evolution. That is, we study

processes that act on populations of reproducing individuals. The two primary forces

that drive these evolutionary processes are mutation and selection. Mutation generates

new variants in a population. Selection chooses among the variants depending on the

reproductive rates of individuals. A reproductive rate is also called fitness. Evolution-

ary processes are intrinsically random. A new mutation that is initially present in the

population at low frequency can go extinct, even if it confers a reproductive advantage.

The key quantities of evolutionary dynamics which affect the overall rate of evolution

are then [1; 2; 3; 4; 5]: (a) the mutation rate µ, which is the rate at which new mutations

are generated; (b) the fixation probability ρ, which is the probability that a new mutation

takes over the whole population; and (c) the fixation time τ , which is the time until the

mutation fixates in the population, once generated. In the regime of low mutation rate,

the population spends most of the time in a homogeneous state in which all individuals

are of the same type and the fixation time is no longer so relevant.

A classical evolutionary process for studying the fate of a newly generated mutation

is the discrete-time Moran Birth-death process [6]. Given a population of N individuals,

at each time step, an individual is chosen for reproduction proportionally to its fitness

(reproductive rate). It produces an offspring (a copy of itself) and the offspring replaces

a random individual (see Figure 1.1a). Hence the total population size remains constant.

In the case of a well-mixed population, each offspring is equally likely to replace any

other individual. The fixation probability of a single new mutant with relative fitness

r > 1 invading a homogeneous population of residents with normalized fitness 1 is equal

to ρ = (1− 1/r)/(1− 1/rN). Thus, for large N we have ρ ≈ 1− 1/r [7; 3]. The fixation

time is of the order of N logN steps [8; 9].
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Figure 1.1: Moran process on graphs. a, A new mutant (blue) appears in a population

of finite size. The lineage of the new mutant can either become extinct or reach fixation.

The Moran process is a birth-death process; in any one time step one new offspring is

generated and one individual dies. b, All fixed spatial structures can be described by

graphs. The classical, well-mixed population corresponds to a complete graph. The star

graph is a well-studied example of extreme heterogeneity, where one individual, the center,

is connected to all others, but each leaf is only connected to the center. c, Population

structure influences both the fixation probability and the fixation time. An advantageous

mutant introduced at a random vertex of a star graph is more likely to fixate than on a

complete graph (the arrows pointing to the right are thicker), but the (average) fixation

time on the star graph is much longer than on the complete graph (the arrows are longer).

A population structure has profound effects on fixation probability and fixation time

of an invading mutant [10; 11; 12; 13; 14; 15; 16; 17; 18]. The mathematical framework

for studying these effects is called Evolutionary graph theory. In Evolutionary graph

theory, the structure of a population is represented by a graph (network) [7; 19; 20; 21;

22; 23]: each individual occupies a node (vertex) and the edges (links) represent the

connections to neighboring sites where a reproducing individual can place an offspring.

The edges can have different weights representing different interaction rates between pairs

of sites. Moran Birth-death process can be run on any graph. The well-mixed population

is given by the complete graph KN where each individual is connected to each other

individual (Figure 1.1b). Graphs can also represent deme structured populations, where

islands are represented by complete graphs and connections of different weights exist

between islands. Graphs can also represent spatial lattices or asymmetric structures.

A well-studied example is the star graph SN , which has one central vertex and N − 1
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surrounding vertices each connected to the central vertex (Figure 1.1b). For the star

graph, the fixation probability tends to approximately 1− 1/r2 for r > 1 and large N [7;

24]. Hence, if a mutant has 10 % fitness advantage, which means r = 1.1, the star graph

amplifies its advantage to 21 %. The fixation time is of the order of N2 logN steps [25;

26].

Our goal is to understand how the key quantities of fixation probability and fixation

time depend on the structure of the underlying graph. Specifically, we are interested in

two types of questions:

1. What are the quantities for some natural fixed graph G, or for a sequence of struc-

turally similar graphs of increasing population size N? E.g.: What is the fixation

probability on a 1D-lattice of size N = 10? How does the fixation time on a square

grid scale when the size grows large?

2. What is the possible range of values that the quantities attain, over all graphs from

some natural class? E.g.: How high can a fixation probability be on a regular graph?

How slow are the slowest undirected graphs?

In addressing (1), the ideal outcome is obtaining a concise formula for the quantity in

question. If that is not possible, as is often the case, we might still be able to compute

the quantity numerically [27], or to approximate it, e.g. using a simulation-based algo-

rithm [28]. In addressing (2), the ideal outcome is typically an asymptotically tight bound

obtained via some probabilistic tools [29; 30; 31; 32].

We note that the key quantities are crucially affected not only by the population struc-

ture but also by other features, such as by the choice of the underlying stochastc pro-

cess [33], by the initialization scheme describing where the invading mutant appears [34],

and obviously by its fitness r. By default, we consider Moran Birth-death process and

a mutant with fixed fitness advantage r > 1 initialized at a node selected uniformly at

random. However, we also discuss different update rules (e.g. Moran death-Birth pro-

cess), different initialization schemes (e.g. temperature initialization) and mutants that

are either neutral (r = 1) or disadvantageous (r < 1).

Finally, we note that random processes of similar flavor have been independently

studied accross various fields, each time representing a different phenomenon [35]. In
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social science, nodes of different colors can represent people with different opinions who

interact along edges of a social network [36]. Similar models of agent-based dynamics

have also appeared in statistical physics to study interacting particle systems [37], in

epidemiology to study spread of infectious diseases [38, Chapter 7], or in the study of

evolution of cooperation [39].

1.1 Preliminaries and notation

Here we introduce the key concepts and terminology. Specifically, we give an overview of

different types of population structures, different versions of the evolutionary dynamics,

and the quantities of interest. For reader’s convenience, we summarize the key notation

in Table 1.1 on page 7. Moreover, each of the following chapters includes a self-contained

description of the precise model and notation.

Population structure, degree, temperature. The population structure is repre-

sented by a connected graph GN whose N nodes represent individuals and whose edges

represent possible interactions. A well-mixed population is represented by a complete

graph KN .

In general, the edges could be directed (one-way), they could be weighted, and they

could include self-loops. Formally, for a pair of nodes u, v, the weight of an edge (u, v)

is denoted by wu,v. If the nodes u, v are not connected by an edge then we set wu,v = 0.

In the special case of undirected graphs, each edge is two-way and has the same weight

in both directions, that is, wu,v = wv,u for all pairs of nodes u, v. In the special case of

unweighted graphs, each edge has weight 1. In the special case of self-loop free graphs,

nodes do not have self-loops, that is, wu,u = 0 for each node u. In the most general case

of directed graphs with weighted edges and self-loops, two nodes u, v could be interacting

in both directions with different weights wu,v ̸= wv,u.

Given a node u of a graph, its outdegree Out(u) is the sum Out(u) =
∑

v wu,v of the

weights of the outgoing edges and, similarly, its indegree In(u) is the sum In(u) =
∑

v wv,u

of the weights of the incoming edges. When both notions coincide, which is the case e.g.

for undirected graphs, we call this the degree of the node. When the graph is unweighted,

the degree is simply the number of neighbors of the node.
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A temperature of a node is a notion that corresponds to the rate at which the node is

typically replaced by its neighbors. Formally, a temperature T(v) of a node v is defined

by

T(v) =
∑
u

w(u, v)∑
v′∈N(u) w(u, v

′)
.

Evolutionary dynamics, update rules. Initially, each node is of one of several

possible types and each type is associated with a non-negative real number called a fitness.

Typically there are only two types: residents with normalized fitness 1 and mutants with

relative fitness r. A configuration is a mapping from nodes of GN into types.

The configuration updates randomly in discrete time-steps according to one of several

possible versions of a Moran process. Here we list two of them. For notation purposes,

let f(v) be the fitness of the individual at node v.

1. Moran Birth-death (Bd) updating: The individuals compete for reproduction and

the winner replaces a random neighbor.

• (Birth) A random individual is selected for reproduction with probability pro-

portional to its fitness. That is, an individual u is selected with probability

f(u)/
∑

v f(v).

• (migration) An outgoing edge from u is selected with probability proportional

to its weight. That is, an edge (u, v) is selected with probability wu,v/
∑

v′ wu,v′ .

• (replacement) Node v becomes the same type as node u.

2. Moran death-Birth (dB) updating: The individuals randomly die and the neighbors

compete to fill the resulting gap.

• (death) A random individual is selected for death uniformly at random. That

is, an individual v is selected with probability 1/N .

• (competition) An incoming edge to v is selected with probability proportional

to its weight and the fitness of the type at its other end. That is, an edge (u, v)

is selected with probability f(u) · wu,v/(
∑

u′ f(u′) · wu′,v).

• (replacement) Node v becomes the same type as node u.

We note that in both abbreviations the letter “B” is upper case and “d” is lower case

to signify that the fitness plays a role in the “Birth” step and not in the “death” step.
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There are other versions of Moran process – for example, in Moran Db process, first the

death happens with probability inversely proportional to the fitness and then the gap is

filled ignoring the fitness of the reproducing individual [40]. It is also possible to combine

the update rules. For example, given δ ∈ [0, 1], in δ-dB updating each step independently

follows a dB updating with probability δ and Bd updating with probability 1− δ [33]. In

general, different versions of the underlying stochastic process can give rise to qualitatively

different behavior [41].

Initialization schemes and key quantities. We are interested in the fate of a newly

generated mutation appearing in a population of indistinguishable residents. The fate

depends on the node at which the mutant appears. Given a (connected) graph G, a node

v and r > 0, we denote by fp(G, r, v) the fixation probability of a single mutant with

relative fitness r initialized at a node v of graph G, under Moran Bd process. Typically,

we consider that the first mutant appears at a random node according to some probability

distribution over nodes. Specifically, we denote by fp(G, r) = 1
N

∑
v fp(G, r, v) the fixation

probability under uniform initialization and by fpT(G, r) = 1
N

∑
v T(v) · fp(G, r, v) the

fixation probability under temperature initialization.

Regarding the duration of the process, we denote by T (G, r, v) the random variable

counting the number of steps until the process reaches one of the absorbing states (either

all mutants or all residents), starting with a single initial mutant with fitness r at node

v. Typically we are interested not in the full distribution but only in its expectation

AT(G, r, v) = E[T (G, r, v)] or even in the (mean, expected) absorption time AT(G, r) =

1
N

∑
AT(G, r, v). Similarly, we define the (mean, expected) conditional fixation time

CT(G, r) where we average over only those evolutionary trajectories that eventually reach

fixation. Unless stated otherwise, we work with uniform initialization and Moran Bd

updating.

Amplifiers and suppressors of selection, superamplifiers. Given r > 1, some pop-

ulation structures GN increase the fixation probability of advantageous mutants compared

to the complete graph KN whereas others decrease it. This gives rise to a classification

of graphs into so-called amplifiers of selection and suppressors of selection.

Formally, given a graph GN and r > 1, we say that GN is an r-amplifier if fp(GN , r) >

fp(KN , r), where KN is a complete graph of the same size representing a well-mixed
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Notation Description

G or GN connected graph (network) with N nodes

u, v nodes, each hosting one individual: a mutant or a resident

r relative fitness (reproductive rate) of any mutant (residents have fitness 1)

fp(G, r, v) fixation probability: probability that in the Moran Birth-death process

starting with a single mutant with relative fitness r at a node v of graph G,

the mutants spread to all nodes of the graph (the mutants “fixate”)

fp(G, r) (average) fixation probability when the initial mutant appears at a node

selected uniformly at random

T(v) temperature of a node v: a measure of how frequently the node is replaced

by its neighbors when all individuals are residents

fpT(G, r) fixation probability when the initial mutant appears at a node selected

randomly according to the node’s temperature

fpdB(G, r) (average) fixation probability under Moran death-Birth process

T (G, r, v) a random variable counting the number of steps until the process reaches

either mutant fixation or mutant extinction

AT(G, r, v) Expectation of T (G, r, v)

AT(G, r) (unconditional) Absorption time: 1
N
AT(G, r, v)

CT(G, r, v) Expectation of T (G, r, v), conditioned on the final state being fixation

CT(G, r) (conditional) Fixation time: 1
N
CT(G, r, v)

Table 1.1: Summary of the notation.



8

population. When the inequality is reversed, fp(GN , r) < fp(KN , r), we call GN an r-

suppressor. If G is an r-amplifier for all r > 1, we say it is universal. (Some authors

further require that a universal amplifier has to satisfy fp(GN , r) < fp(KN , r) for any

r < 1, that is, the population structure not only favours advantageous mutants but also

disfavours disadvantageous mutants.)

We remark that universal amplifiers can be further classified based on their strength [34].

The strongest possible form of amplification is called superamplification. It is meaningful

only in the limit of increasing population size. Formally, a sequence of graphs (GN)
∞
N=1 of

increasing size is called a superamplifier (or arbitrarily strong amplifier) if it guarantees

fixation of any advantageous mutant in the limit of large N , that is, fp(GN , r) → 1 as

N → ∞ for any r > 1.

Notation for asymptotic behavior. To talk about asymptotic behavior (in the limit

of large population size N), we use standard mathematical notations o(·), O(·), and Θ(·)

that denote “asymptotically strictly smaller than”, “asymptotically less than or equal to”,

and “asymptotically equal to” (up to a constant factor), respectively. For example, we

will write 1
N

= o(1) (since 1
N

is much smaller than 1, for large N) or 1
2
N(N +1) = Θ(N2).

For detailed treatment see [42, Section 1.3].

1.2 Related work

Here we give a brief summary of the existing literature, with the focus on results that

are directly relevant to the role of population structure in Moran Birth-death process on

graphs. A substantial portion of the research done in the field in the past decade has

gone into computing the key quantities for fixed graphs and graph families and into iden-

tifying population structures that exhibit some sort of extreme behavior for advantageous

mutants (when r > 1).

1.2.1 Computing the key quantities

Exact formulas. Moran Bd process on a complete graph is well understood as it can

be mapped into a random walk on [0, N ] with constant forward bias r. The fixation

probability of a single mutant is given by fp(KN , r) = (1− 1/r)/(1− 1/rN). The formula
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exhibits a threshold behavior for large N . When r > 1, this tends to a positive constant

1 − 1/r; however when r > 1 it tends to zero roughly as 1/rN−1. (When r = 1 we

clearly get fp(KN , r) = 1/N by symmetry.) The absorption time and fixation time are

also known. Using a Coupon Collector-like argument we have AT(KN , r) ≈ r+1
r

·N logN

and CT(KN , r) ≈ r+1
r−1 ·N logN when r > 1.

In fact, the mapping into a random walk with constant bias shows that the fixation

probability is the same for all regular graphs. This is called the Isothermal theorem [7].

However, the time changes: For a Ring graph RN (aka Cycle, aka 1D lattice) the absorp-

tion and fixation time are Θ(N2) when r > 1 [8] and for the Grid graph (aka 2D square

lattice) the correct asymptotics is not known since the waiting time to gain a mutant

depends not only on the number of current mutants but also on their relative position in

the grid.

Another well understood family of graphs are the Stars SN consisting of one cen-

tral node and N − 1 leaf nodes, all connected to the center. When r > 1 we have

fp(SN , r) →N→∞ 1− 1/r2 (see [7; 19]) and AT(SN , r) = Θ(N2 logN) (see [25; 26]). Using

martingales, the fixation probability can be explicitly computed for complete bipartite

graphs [43] and for so-called bithermal graphs [44].

Numerical computation. The problem of computing the fixation probabilities and

absorption or fixation times can be approached numerically. Given two types competing

on a graph GN , the resulting dynamical system is a Markov chain with 2N states (since

there are 2N possible subsets of nodes that could be occupied by mutants). Thus the

problem of computing fixation probabilities, absorption times, or fixation times reduces

to solving a system of 2N linear equations [27]. Such approach is feasible for graphs of small

population size N ≤ 20 [45; 46; 26] and for graphs that are highly regular since then the

size of the system of equations can be greatly reduced (e.g. to 2N equations for SN) [47;

48]. We remark that Grid graphs are not susceptible to this approach.

Approximation algorithms. Another approach to find the quantities is to use simu-

lation-based approximation algorithms. When the underlying graph is undirected, there

exists a FPRAS to compute the quantities [28]. It relies on the fact that the absorp-

tion time on an undirected graph is polynomial, hence simulations of the process finish

quickly. A subsequent work improved the algorithm by simulating only the steps when
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the configuration changes, by improving the bound on the absorption time, and by termi-

nating certain runs early [49; 50]. We remark that without further modifications, such a

simulation-based approach does not extend to directed graphs since the absorption time

on some directed graphs is exponentially long [8].

1.2.2 Highest and lowest probability and time

Probability: Amplifiers of selection. In terms of probability, the main quest in the

field has been a hunt for amplifiers of selection – as simple as possible and as strong as

possible.

The first directed superamplifiers, called Superstars and Metafunnels, were proposed

in the seminal paper [7], supported by a heuristic argument. Later, it turned out that

the argument can not be made formal, even though the structures probably do work [51;

52]. However, directed structures called Megastars, inspired by Superstars, were proved

to be superamplifiers. Moreover, as N → ∞, the extinction probability of Megastars

decays as 1/N1/2 which is optimal up to logarithmic factors [53].

All those structures heavily rely on directed edges. Among a more restricted family

of undirected graphs, Star graphs have long been the strongest known amplifiers for

any fixed r > 1 and any fixed N ≥ 2. However, now we know stronger undirected

amplifiers for certain combinations of r andN [47] and even undirected superamplifiers [54;

55]. Moreover, the extinction probability on those superamplifiers decays as 1/N1/3 which

is again optimal up to logarithmic factors.

Although those structures are superamplifiers under uniform initialization, they all

cease to work under temperature initialization. In fact, superamplifiers can not exist

under temperature initialization unless the underlying graph has both weighted edges

and self-loops. Conversely, among graphs that have both weighted edges and self-loops,

many superamplifiers exist [48].

Probability: Suppressors of selection. Among directed graphs, there are plenty

suppressors of selection – for instance, for a directed path PN on N nodes we have

fp(PN , r) = 1/N for any r > 1, hence the fixation probability of mutants tends to 0

no matter how high their fitness advantage. Among undirected graphs, first r-suppressors

have been constructed for r ∈ (1, 4/3) (see [56; 57]). Later, Giakkoupis constructed
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the first super-suppressors [54] with fixation probability decaying as roughly O(1/N1/4).

Current champions achieve roughly O(1/N1/2) (see [50]).

Time. As alluded above, for undirected graphs both the absorption and the fixation

time can be exponential [8]. For undirected graphs, the absorption time is O(N3+ε) for

any ε > 0 [50] and it is Ω(N logN) provided that the graph is not a strong suppressor [26].

In fact, the complete graph KN is the fastest known graph in terms of both absorption

and fixation time among undirected graphs, for any fixed r > 1 and N ≥ 2. However,

certain directed graphs do achieve shorter fixation time [26].

Moran dB updating. When it comes to dB Moran process, rather than having a

fairly complete picture we have a few known results here and there [33]. The Isothermal

theorem no longer holds but there is a formula for the fixation probability on the complete

graph [41] and on the star graph [19; 40]. An exhaustive search for amplifiers among small

undirected unweighted graphs has not found any [58]. The first weighted r-amplifiers

have been constructed for r ∈ (1, ϕ) where ϕ = 1
2
(1 +

√
5) is the golden ratio [59]. On

the negative side, it is known that among self-loop free graphs, no superamplifiers and no

universal amplifiers exist under dB updating [60].

1.3 Our contribution

Our contribution comes in four parts. Each part is treated separately in a different

chapter. Each chapter is self-contained. Here we give a broad overview of the main result

presented in each chapter and the idea behind its proof.

Chapter 2: Weighted loopy superamplifiers [48].

Result. We present a dichotomy result on the existence of superamplifiers under uniform

and temperature initialization. Our result highlights the importance of weighted edges

and self-loops in the underlying graph structure. On the positive side, we show that

superamplifiers are abundant among graphs with both weighted edges and self-loops. On

the negative side, we show that no temp-superamplifiers exist among graphs that lack

either weighted edges or self-loops (or both), and that unif-superamplifiers can exist only

when the maximum degree of the graphs grows unbounded.
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Idea behind the proof. The main idea behind the negative results is to look at the

evolutionary trajectories in which the initial mutant dies before reproducing even once.

We show that in most scenarios the total mass of those trajectories is non-negligible. The

first exceptional scenario is when the graph contains both weighted edges and self-loops.

The other one is when it contains vertices of unbounded degree and we operate under

uniform initialization.

The main idea behind the positive result is to show that for almost all connected

graphs we can assign weights to its edges and self-loops such that we obtain a strong

amplifier under both initializations. In more detail, we partition the graph into a central

part called a hub and many small perimeter parts called branches and assign the weights

such that, with high probability, the initial mutant appears at a branch, travels to a hub,

spreads through the hub, and eventually spreads through all the branches too.

Chapter 3: Time-probability tradeoff [26].

Result. We present two results related to tradeoff between high fixation probability and

short fixation time. First, motivated by the exhaustive search through all graphs of small

size N ≤ 9, we present population structures, called α-Balanced bipartite graphs, that

are roughly as good as Stars in terms of fixation probability and close to as good as

Complete graphs in terms of fixation time. Second, we show that no amplifiers can have

asymptotically shorter absorption time than the Complete graphs.

Idea behind the proof. The main idea behind the α-Balanced bipartite graphs is to speed

up the Star without harming the fixation probability. This is achieved by considering

Complete bipartite graphs KN,N1−α for some α > 0. The hard part is to argue about

the fixation time. We manage to formalize the following intuition: As with the Star, the

critical events are those in which a node from a smaller part reproduces on a node in a

larger part. On α-Balanced bipartite graphs, those critical events occur at a higher rate

than they would on a Star (by a factor of roughly N1−α) so one would expect the fixation

time to be faster by that factor.

Chapter 4: No strong dB-amplifiers [60].

Result. We present a negative result on the existence of strong amplifiers under pure

death-Birth updating and δ-death-Birth updating. Namely, we show that any amplifiers

under death-Birth updating are necessarily transient and bounded, and that any amplifiers
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under δ-death-Birth updating are necessarily transient and at most linear.

Idea behind the proof. The main idea behind the proofs for the (pure) death-Birth

updating on a generic graph is to account for those evolutionary trajectories in which the

initial mutant dies before reproducing even once. When the accounting is done smartly,

Jensen’s inequality yields a tight upper bound on the fixation probability in terms of the

average degree d of the graph. Transience then follows from the fact that the Complete

graph has strictly higher average degree than any other graph (directed or undirected).

The method extends to δ-death-Birth updating.

Chapter 5: Selection reactors.

Result. We present a simple and natural underlying population structure that we call

a Selection reactor. The edges and self-loops of the Selection reactor can be assigned

weights in many ways. For certain weight assignment, we present a simple proof that

the result is a superamplifier. For other weight assignment, we prove that the result is a

superamplifier with absorption time comparable to that of the Star graph.

Idea behind the proof. The main idea behind the proofs is to build on the general positive

result presented in Chapter 2 in the special case when the underlying graph structure is

given by the Selection reactor. In the first proof, we exploit the fact that on a Selection

reactor, the general partitioning into a hub and branches can be done in such a way that

every branch consists of a single vertex. In the second proof, we use a weight assignment

that makes the hub interact with the branches more often than they would do in the

weight assignment used for the general construction. We show that even with this more

frequent interaction, the resulting Selection rectors are still superamplifiers and that the

higher interaction rate substantially shortens the absorption time.

1.4 Relevance and implications of our results

Our negative results show that the phenomenon of superamplification is highly sensitive

to seemingly secondary low-level details of the evolutionary process. In Chapter 4 we

show that superamplification is impossible under Moran dB updating or under any mixed

δ-dB updating. This leaves only (pure) Moran Bd updating. In Chapter 2 we show that

superamplification is impossible under adversarial or temperature initialization – though
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it is possible under uniform initialization. However, in Chapter 2 we also show that even

under uniform initialization, superamplification is possible only when the degree of the

underlying graphs grows unbounded.

Our positive results all relate to the rate of evolution at different mutation-rate regimes.

In the limit of extremely low mutation rate, the overall rate of evolution does not depend

on the fixation time but only on the fixation probability. In this regime, the plethora

of superamplifiers identified in Chapter 2 are relevant. With higher mutation rate, the

fixation time enters the picture and so do the Selection reactors from Chapter 5. With an

even higher mutation rate, it is important to optimize the tradeoff between high fixation

probability and low fixation time. Different tradeoffs are achieved by the α-Balanced

bipartite graphs from Chapter 3.

1.5 Further directions

We conclude this chapter with an outlook at possible future research. We focus on three

broad research directions and list several open questions in each of them.

Amplification under temperature and adversarial initialization. The first direc-

tion is to investigate whether amplifiers exist under various mutant initialization schemes.

Under Bd updating, fixation probability tends to be higher when the initial mutant is

placed at a node with low degree [20]. It is then not that surprising that graphs that have

many nodes with low degree (such as stars) tend to be amplifiers under uniform initial-

ization. When mutations occur during reproduction events rather than spontaneously, a

more relevant notion is that of a temperature initialization. Under temperature initial-

ization, the initial mutant typically appears at a node with high turnover rate and such

nodes tend to have high degree so we would generally expect the fixation probability to

be lower and amplification to be harder to achieve. Empirically, this seems to be the case

and in fact no self-loop free amplifiers under temperature initialization are known.

Open Problem 1 (Temperature vs. uniform initialization). Does there exist a self-loop

free graph GN (possibly directed and/or weighted) and r > 1 such that fpT(GN , r) >

fp(GN , r)?
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Open Problem 2 (Temperature amplifiers). Does there exist a self-loop free graph GN

(possibly directed and/or weighted) and r > 1 such that fpT(GN , r) > fp(KN , r)?

An even stricter condition is to require that a population structure amplifies starting

from any initial mutant node [34]. No such structures are known.

Open Problem 3 (Adversarial amplifiers). Does there exist a graph GN (possibly di-

rected and/or weighted) and r > 1 such that for all nodes v we have fp(GN , r, v) >

fp(KN , r)?

A complementary question would be to ask whether there exists a graph GN such that

fp(GN , r, v) < fp(KN , r) for all nodes v. We remark that [54, Lemma 6] implies that the

answer to this complementary question is negative for undirected unweighted graphs.

Extreme points of the time-probability tradeoff. The second direction is to better

understand the extreme points of the time-probability tradeoff. When it comes to short

time, Theorem 6 implies that AT(AN , r) = Ω(N logN) for any amplifier AN . Even though

we have AT(KN , r) = Θ(N logN), the constants do not match. Specifically, the following

two questions are open:

Open Problem 4 (Faster than KN). Does there exist a GN and r > 1 such that

AT(GN , r) < AT(KN , r)?

Open Problem 5 (Asymptotically faster than KN). Does there exist a family {GN} of

graphs of increasing size and r > 1 such that AT(GN , r) = o(N logN)?

Of course, by Theorem 6, such a family would have to be a super-suppressor.

At the other end of the spectrum, there is a gap between the fastest known superampli-

fiers (Õ(N2), given by Theorem 15) and the lower bound on time for any superamplifiers

(Ω(N logN), given by Theorem 6).

Open Problem 6 (Asymptotically fastest superamplifiers). How fast are the asymptot-

ically fastest superamplifiers?

Amplification under dB and δ-dB updating. Finally, the third direction is to in-

vestigate the dB updating and the mixed δ-dB updating. Here there are many interesting

questions, of which we list three.
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First, even though r-universal amplifiers are impossible under dB updating, transient

amplifiers have recently been constructed [59]. However, their edges have (rather extreme)

weights.

Open Problem 7 (Unweighted dB r-amplifiers). Does there exist an unweighted graph

GN and r > 1 such that fpdB(GN , r) > fpdB(KN , r)?

Second, dB updating generally seems to be less conductive to amplification than Bd

updating.

Open Problem 8 (Monotonicity in δ). Does fpdB(GN , r) < fp(GN , r) hold for every

graph GN and every r > 1? If so, is fpδ(GN , r) a decreasing function of δ, for any fixed

graph G and any fixed r > 1?

Third, contrary to Bd updating, there are no superamplifiers under dB updating.

Hence the following question is meaningful.

Open Problem 9 (Strongest r-amplifier under dB updating). For fixed r > 1, find

M(r) = supG{fpdB(G, r)}.

Theorem 11 implies that M(r) ≤ 1 − 1/(r + 1) and equality is attained for r = 1

and K2. On the other hand, large complete graphs show that, M(r) ≥ 1 − 1/r which is

relatively tight for r large (see Figure 4.6).
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2 Weighted & loopy superamplifiers

In general, the fixation probability depends not only on the graph, but also on the initial

placement of the invading mutants [61; 34]. The two most natural cases are the following.

First, mutation is independent of reproduction and occurs at all locations at a constant

rate per unit time. Thus, mutants arise with equal probability in each location. This is

called uniform initialization. Second, mutation happens during reproduction. In this case,

mutants are more likely to occur in locations that have a higher turnover. This is called

temperature initialization. Our approach also allows us to study any combination of the

two cases: some mutants arise spontaneously while others occur during reproduction.

For a wide class of population structures [7], which include symmetric ones [62], the

fixation probability is the same as for the well-mixed population. A population structure

is an amplifier if it exaggerates the fitness difference between the invading mutant and the

resident when compared to the well-mixed population [7; 34; 41]. A population structure

is a superamplifier (in this section also called strong amplifier) if it ensures a fixation

probability arbitrarily close to one for any advantageous mutant, r > 1. Superamplifiers

can only exist in the limit of large population size.

Numerical studies [58] suggest that for spontaneously arising mutants and small pop-

ulation size, many unweighted graphs amplify for some values of r. But for large pop-

ulation size, randomly constructed, unweighted graphs do not amplify [63]. Moreover,

proven amplifiers for all values of r are rare. For spontaneously arising mutants (uniform

initialization): (i) the Star has fixation probability approximately 1 − 1/r2 in the limit

of large N , and is thus an amplifier [7; 43; 24]; (ii) the Superstar (introduced in [7], see

also [52]) and the Incubator (introduced in [55; 54]), which are graphs with unbounded

degree, are superamplifiers. The mathematical proofs of these assertions are intricate [53].

For mutants that arise during reproduction (temperature initialization), neither the
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Star nor the Superstar amplify [34]. The Star can be modified with self-loops and edge

weights to obtain the Looping Star, which has fixation probability 1 − 1/r2 in the limit

of large N both for mutants that arise during reproduction and for mutants that arise

spontaneously. The Looping Star is the only known amplifier for both uniform and tem-

perature initialization [34], but it is not a superamplifier. In fact, no superamplifiers for

temperature initialization had been known.

In this work we resolve several open questions regarding superamplification under uni-

form and temperature initialization. First, we show that there exists a vast variety of

graphs with self-loops and weighted edges that are superamplifiers for both uniform and

temperature initialization. Moreover, many of those superamplifiers are structurally sim-

ple, therefore they might be realizable in natural or laboratory setting. Second, we show

that both self-loops and weighted edges are key features of superamplification. Namely,

we show that without either self-loops or weighted edges, no graph is a superamplifier

under temperature initialization, and no simple graph is a superamplifier under uniform

initialization.

2.1 Model

The Moran Process on Weighted Structured Populations. We consider a pop-

ulation of n individuals on a weighted, directed graph Gn = (Vn, En,Wn), where Vn =

{1, 2, . . . , n} is the vertex set, En is the Boolean edge matrix, and Wn is a stochastic

weight matrix. An edge is a pair of vertices (i, j) which is indicated by En[i, j] = 1 and

denotes that there is an interaction from i to j (whereas we have En[i, j] = 0 if there is no

interaction from i to j). The stochastic weight matrix Wn assigns weights to interactions,

i.e., Wn[i, j] is positive iff En[i, j] = 1, and for all i we have
∑

j Wn[i, j] = 1. For a vertex

i, we denote by In(i) = {j | En[j, i] = 1} (resp., Out(i) = {j | En[i, j] = 1}) the set of

vertices that have incoming (resp., outgoing) interaction or edge to (resp., from) i. Each

individual of the population is either a resident, or a mutant. Mutants are associated with

a reproductive rate (or fitness) r, whereas the reproductive rate of residents is normalized

to 1. Typically we consider the case where r > 1, i.e., mutants are advantageous, whereas

when r < 1 we call the mutants disadvantageous. We now introduce the formal notation

related to the process.
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Configuration. A configuration of Gn is a subset S ⊆ V which specifies the vertices

of Gn that are occupied by mutants and thus the remaining vertices V \ S are occupied

by residents. We denote by F(S) = r · |S|+ n− |S| the total fitness of the population in

configuration S, where |S| is the number of mutants in S.

The Moran process. The birth-detah Moran process on Gn is a discrete-time Marko-

vian random process. We denote by Xi the random variable for a configuration at time

step i, and F(Xi) and |Xi| denote the total fitness and the number of mutants of the

corresponding configuration, respectively. The probability distribution for the next con-

figuration Xi+1 at time i+ 1 is determined by the following two events in succession:

Birth: One individual is chosen at random to reproduce, with probability proportional to

its fitness. That is, the probability to reproduce is r/F(Xi) for a mutant, and 1/F(Xi)

for a resident. Let u be the vertex occupied by the reproducing individual.

Death: A neighboring vertex v ∈ Out(u) is chosen randomly with probability Wn[u, v]. The

individual occupying v dies, and the reproducing individual places a copy of its own

on v. Hence, if u ∈ Xi, then Xi+1 = Xi ∪ {v}, otherwise Xi+1 = Xi \ {v}.

The above process is known as the Birth-death Moran process, where the death event is

conditioned on the birth event, and the dying individual is a neighbor of the reproducing

one.

Probability measure. Given a graph Gn and the fitness r, the birth-death Moran

process defines a probability measure on sequences of configurations, which we denote

as PGn,r[·]. If the initial configuration is {u}, then we define the probability measure

as PGn,r
u [·], and if the graph and fitness r is clear from the context, then we drop the

superscript.

Fixation event. The fixation event, denoted E , represents that all vertices are mutants,

i.e., Xi = V for some i. In particular, PGn,r
u [E ] denotes the fixation probability in Gn for

fitness r of the mutant, when the initial mutant is placed on vertex u. We will denote

this fixation probability as fp(Gn, r, u) = PGn,r
u [E ].

Initialization and Fixation Probabilities. We will consider three types of initializa-

tion, namely, (a) uniform initialization, where the mutant arises at vertices with uniform
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probability, (b) temperature initialization, where the mutant arises at vertices propor-

tional to the temperature, and (c) convex combination of the above two.

Temperature. For a weighted graph Gn = (Vn, En,Wn), the temperature of a vertex

u, denoted T(u), is
∑

v∈In(u) Wn[v, u], i.e., the sum of the incoming weights. Note that∑
u∈Vn

T(u) = n, and a graph is isothermal iff T(u) = 1 for all vertices u.

Fixation probabilities. We now define the fixation probabilities under different ini-

tialization.

1. Uniform initialization. The fixation probability under uniform initialization is

fp(Gn, r,U) =
∑
u∈Vn

1

n
· fp(Gn, r, u).

2. Temperature initialization. The fixation probability under temperature initialization

is

fp(Gn, r,T) =
∑
u∈Vn

T(u)

n
· fp(Gn, r, u).

3. Convex initialization. In η-convex initialization, where η ∈ [0, 1], the initial mutant

arises with probability (1− η) via uniform initialization, and with probability η via

temperature initialization. The fixation probability is then

fp(Gn, r, η) = (1− η) · fp(Gn, r,U) + η · fp(Gn, r,T).

Strong Amplifier Graph Families. A family of graphs G is an infinite sequence of

weighted graphs G = (Gn)n∈N+ .

• Strong amplifiers (aka “superamplifiers”). A family of graphs G is a strong uniform

amplifier (resp. strong temperature amplifier, strong convex amplifier) if for every

fixed r1 > 1 and r2 < 1 we have that

lim inf
n→∞

fp(Gn, r1, Z) = 1 and lim sup
n→∞

fp(Gn, r2, Z) = 0 ;

where Z = U (resp., Z = T, Z = η).

Intuitively, strong amplifiers ensures (a) fixation of advantageous mutants with probabil-

ity 1 and (b) extinction of disadvantageous mutants with probability 1. In other words,

strong amplifiers represent the strongest form of amplifiers possible.

Classification of graphs. We consider the following classification of graphs:
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1. Directed vs undirected graphs. A graph Gn = (Vn, En,Wn) is called undirected if for

all 1 ≤ i, j ≤ n we have En[i, j] = En[j, i]. In other words, there is an edge from

i to j iff there is an edge from j to i, which represents symmetric interaction. If a

graph is not undirected, then it is called a directed graph.

2. Self-loop free graphs. A graph Gn = (Vn, En,Wn) is called a self-loop free graph iff

for all 1 ≤ i ≤ n we have En[i, i] = Wn[i, i] = 0.

3. Weighted vs unweighted graphs. A graph Gn = (Vn, En,Wn) is called an unweighted

graph if for all 1 ≤ i ≤ n we have

Wn[i, j] =

⎧⎪⎨⎪⎩
1

|Out(i)| j ∈ Out(i);

0 j ̸∈ Out(i)

In other words, in unweighted graphs for every vertex the edges are choosen uni-

formly at random. Note that for unweighted graphs the weight matrix is not rele-

vant, and can be specified simply by the graph structure (Vn, En). In the sequel, we

will represent unweighted graphs as Gn = (Vn, En).

4. Bounded degree graphs. The degree of a graph Gn = (Vn, En,Wn), denoted deg(Gn),

is max{In(i),Out(i) | 1 ≤ i ≤ n}, i.e., the maximum in-degree or out-degree. For a

family of graphs (Gn)n>0 we say that the family has bounded degree, if there exists

a constant c such that the degree of all graphs in the family is at most c, i.e., for all

n we have deg(Gn) ≤ c.

Open questions. Despite several important existing results on amplifiers of selection,

several basic questions have remained open:

1. Question 1. Does there exist a family of self-loop free graphs (weighted or un-

weighted) that is a quadratic amplifier under temperature initialization?

2. Question 2. Does there exist a family of unweighted graphs (with or without self-

loops) that is a quadratic amplifier under temperature initialization?

3. Question 3. Does there exist a family of bounded degree self-loop free (weighted or

unweighted) graphs that is a strong amplifier under uniform initialization?
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4. Question 4. Does there exist a family of bounded degree unweighted graphs (with

or without self-loops) that is a strong amplifier under uniform initialization?

5. Question 5. Does there exist a family of graphs that is a strong amplifier under

temperature initialization? More generally, does there exist a family of graphs that

is a strong amplifier both under temperature and uniform initialization?

2.2 Overview of theoretical results

In this work we present several negative and one positive result that answer the open

questions (Questions 1-5) mentioned above. We first present our negative results.

Negative results. Our main negative results are as follows:

1. Our first result (Theorem 1) shows that for any self-loop free weighted graph Gn =

(Vn, En,Wn), for any r ≥ 1, under temperature initialization the fixation probability

is at most 1 − 1/(r + 1). The implication of the above result is that it answers

Question 1 in negative.

2. Our second result (Theorem 2) shows that for any unweighted (with or without

self-loops) graph Gn = (Vn, En), for any r ≥ 1, under temperature initialization the

fixation probability is at most 1 − 1/(4r + 2). The implication of the above result

is that it answers Question 2 in negative.

3. Our third result (Theorem 3) shows that for any bounded degree self-loop free graph

(possibly weighted) Gn = (Vn, En,Wn), for any r ≥ 1, under uniform initialization

the fixation probability is at most 1−1/(c+c2r), where c is the bound on the degree,

i.e., deg(Gn) ≤ c. The implication of the above result is that it answers Question 3

in negative.

4. Our fourth result (Theorem 4) shows that for any unweighted, bounded degree

graph (with or without self-loops) Gn = (Vn, En), for any r ≥ 1, under uniform

initialization the fixation probability is at most 1− 1/(1+ rc), where c is the bound

on the degree, i.e., deg(Gn) ≤ c. The implication of the above result is that it

answers Question 4 in negative.
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Discussion of the negative results. We now discuss the significance of the above

results.

1. The first two negative results show that in order to obtain quadratic amplifiers under

temperature initialization, self-loops and weights are inevitable, complementing the

existing results of [34]. More importantly, it shows a sharp contrast between temper-

ature and uniform initialization: while self-loop free, unweighted graphs (namely,

Star graphs) are quadratic amplifiers under uniform initialization, no such graph

families are quadratic amplifiers under temperature initialization.

2. The third and fourth results show that without using self-loops and weights, bounded

degree graphs cannot be made strong amplifiers even under uniform initialization.

See also Remark 1.

Positive result. Our main positive result shows the following:

1. For any constant ϵ > 0, consider any connected unweighted graph Gn = (Vn, En)

of n vertices with self-loops and which has diameter at most n1−ϵ. The diameter

of a connected graph is the maximum, among all pairs of vertices, of the length

of the shortest path between that pair. We establish (Theorem 5) that there is a

stochastic weight matrixWn such that for any r > 1 the fixation probability on Gn =

(Vn, En,Wn) both under uniform and temperature initialization is at least 1− 1
nϵ/3 .

An immediate consequence of our result is the following: for any family of connected

unweighted graphs with self-loops (Gn = (Vn, En))n>0 such that the diameter of Gn

is at most n1−ϵ, for a constant ϵ > 0, one can construct a stochastic weight matrix

Wn such that the resulting family (Gn = (Vn, En,Wn))n>0 of weighted graphs is a

strong amplifier simultaneously under uniform and temperature initialization. Thus

we answer Question 5 in affirmative.

Discussion of the positive result. We highlight some important aspects of the positive

result established in this work.

1. First, note that for the fixation probability of the Moran process on graphs to be

well defined, a necessary and sufficient condition is that the graph is connected. A

uniformly chosen random connected unweighted graph of n vertices has diameter
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bounded by a constant, with high probability. Hence, within the family of con-

nected, unweighted graphs, the family of graphs of diameter at most O(n1−ϵ), for

any constant 0 < ϵ < 1, has probability measure 1. Our results establish a strong

dichotomy: (a) the negative results state that without self-loops and/or without

weights, no family of graphs can be a quadratic amplifier (even more so a strong

amplifier) even for only temperature initialization; and (b) in contrast, for almost all

families of connected graphs with self-loops, there exist weight functions such that

the resulting family of weighted graphs is a strong amplifier both under temperature

and uniform initialization.

2. Second, our positive result is constructive, rather than existential.

Specifically, given an underlying graph with sublinear diameter we first specify cer-

tain subset of vertices that we call a hub. The remaining vertices are then split by

the hub into a number of so-called branches. The construction guarantees that the

combined population size of all the branches is much larger than that of the hub.

Therefore, with high probability, the first mutant arises on a branch.

The weights of all edges are then defined so that each of the following steps happens

with high probability (see Fig. 2.1). First, the mutants spread on the branch until

they reach a vertex that is connected to the hub. Second, the mutants repeatedly

invade the hub and eventually fixate there. Third, one by one the mutants spread

from the hub to all branches and fixate.

Intuitively, the weight assignment creates a sense of global flow in the branches,

directed towards the hub. This guarantees that the first two steps happen with

high probability. For the third step, we show that once the mutants fixate in the

hub, they are extremely likely to resist all resident invasion attempts and instead

they will invade and take over the branches one by one thereby fixating on the whole

graph.

3. Third, we show that with the use of self-loops and weights, even simple graph

structures, such as Star graphs and Grids can be turned into strong amplifiers

(see Fig. 2.4).

4. Fourth, note that in using weights, edges can be effectively removed by assigning to

their weight a small value. However, edges cannot be created. Thus, for complete
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Figure 2.1: Details of steps to fixation. a, Assigning different weights to edges and

self-loops changes the frequency with which each edge is used in each direction. Thicker

arrows indicate edges that are used more frequently. b, Our weight assignment creates a

global sense of flow in the branches, directed towards the hub. The hub itself is almost

isothermal and evolves fast. c, Three stages to fixation, illustrated on a single branch and

the connecting vertex in the hub. After fixating on the hub at the end of Stage 2 (hub

becomes dark orange), mutants spread to all the branches and fixate on the whole graph.

graphs, desired sub-graphs can be created easily using weights. Our positive result

states that for almost all graphs, one can use weights to create sub-graphs which

are strong amplifiers both under uniform and temperature initialization.

Our results are summarized in Table 2.1.

2.3 Proofs of the negative results

In the current section we present our negative results, which show the nonexistence of

strong amplifiers in the absence of either self-loops or weights. In our proofs, we consider

weighted graph Gn = (Vn, En,Wn), and for notational simplicity we drop the subscripts

from vertices, edges and weights, i.e., we write Gn = (V,E,W ). We also consider that Gn
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Temperature Uniform⋆

Loops No Loops Loops No Loops

Weights ✓ × ✓ ×

No Weights × × × ×

Table 2.1: Summary of our results on existence of strong amplifiers for different initial-

ization schemes (temperature initialization or uniform initialization) and graph families

(presence or absence of loops and/or weights). The “✓” symbol marks that for given

choice of initialization scheme and graph family, almost all graphs admit a weight func-

tion that makes them strong amplifiers. The “×” symbol marks that for given choice

of initialization scheme and graph family, no strong amplifiers exist (under any weight

function). The asterisk signifies that the negative results under uniform initialization only

hold for bounded degree graphs.

is connected and n ≥ 2. Throughout this section we will use a simple lemma, which we

present below. Given a configuration Xi = {u} with one mutant, let x and y be the prob-

ability that in the next configuration the mutants increase and go extinct, respectively.

The following lemma bounds the fixation probability fp(Gn, r, u) as a function of x and

y.

Lemma 1. Consider a vertex u and the initial configuration X0 = {u} where the initial

mutant arises at vertex u. For any configuration Xi = {u}, let

x = PGn,r[|Xi+1| = 2 | Xi = {u}] and y = PGn,r[|Xi+1| = 0 | Xi = {u}] .

be the probability that the number of mutants increases (or decreases) in a single step.

Then the fixation probability from u is at most x/(x+ y), i.e.,

fp(Gn, r, u) ≤
x

x+ y
= 1− y

x+ y
.

Proof. Let’s focus on the first event that changes the number of mutants. The probability

that this event decreases the number of mutants equals y
x+y

. In such case, the mutants have

gone extinct, hence the extinction probability is at least y
x+y

and the fixation probability

is at most x
x+y

.
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2.3.1 Negative Result 1

We now prove our negative result 1.

Theorem 1. For all self-loop free graphs Gn and for every r ≥ 1 we have

fp(Gn, r,T) ≤ 1− 1/(r + 1).

Proof. Since Gn is self-loop free, for all u we have W [u, u] = 0. Hence

T(u) =
∑

v∈In(u)\{u}

W [v, u].

Consider the case where the initial mutant is placed on vertex u, i.e, X0 = {u}. For any

configuration Xi = {u}, we have the following:

x = PGn,r[|Xi+1| = 2 | Xi = {u}] = r

F(Xi)

y = PGn,r[|Xi+1| = 0 | Xi = {u}] = 1

F(Xi)
·

∑
v∈In(u)\{u}

W [v, u] =
1

F(Xi)
· T(u) .

Thus x/y = r/T(u). Hence by Lemma 1 we have

fp(Gn, r, u) ≤ 1− T(u)

T(u) + r
.

Summing over all u, we obtain

fp(Gn, r,T) =
∑
u

T(u)

n
·fp(Gn, r, u) ≤

1

n
·
∑
u

T(u)·
(
1− T(u)

T(u) + r

)
= 1− 1

n
·
∑
u

T(u)2

T(u) + r
;

(2.1)

since
∑

u T(u) = n. Using the Cauchy-Schwarz inequality, we obtain

∑
u

T(u)2

T(u) + r
≥ (

∑
u T(u))

2∑
u(T(u) + r)

=
n2

n+ n · r
=

n

r + 1
;

and thus Eq. (2.1) becomes

fp(Gn, r,T) ≤ 1− 1

n
· n

r + 1
= 1− 1

r + 1

as desired.

We thus arrive at the following corollary.

Corollary 1. There exists no self-loop free family of graphs which is a strong temperature

amplifier.
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2.3.2 Negative Result 2

We now prove our negative result 2.

Theorem 2. For all unweighted graphs Gn and for every r ≥ 1 we have fp(Gn, r,T) ≤

1− 1/(4r + 2).

Proof. For every vertex u ∈ V , let

T′(u) =
∑

v∈In(u)\{u}

1

|Out(v)|
.

We establish two inequalities related to T′. Since Gn is unweighted, we have

T(u) =
∑

v∈In(u)

1

|Out(v)|
≥ T′(u) .

For a vertex u, let sl(u) = 1 if u has a self-loop and sl(u) = 0 otherwise. Since Gn

is connected, each vertex u has at least one neighbor other than itself. Thus for every

vertex u with sl(u) = 1 we have that |Out(u)| ≥ 2. Hence

∑
u

T′(u) =
∑
u

⎛⎝ ∑
v∈In(u)

1

|Out(v)|
− sl(u)

1

|Out(u)|

⎞⎠

=
∑
u

⎛⎝ ∑
v∈In(u)

1

|Out(v)|

⎞⎠−
∑

u:sl(u)=1

(
1

|Out(u)|

)

≥
∑
u

T(u)−
∑
u

1

2
= n− n

2
=

n

2
. (2.2)

Similarly to the proof of Theorem 1, the fixation probability given that a mutant is

initially placed on vertex u is at most

fp(Gn, r, u) ≤ 1− T′(u)

T′(u) + r

Summing over all u, we obtain

fp(Gn, r,T) =
1

n
·
∑
u

T(u) · fp(Gn, r, u) ≤
1

n
·
∑
u

T(u) ·
(
1− T′(u)

T′(u) + r

)
≤ 1− 1

n
·
∑
u

T′(u)2

T′(u) + r
; (2.3)

since
∑

u T(u) = n and T(u) ≥ T′(u).
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Using the Cauchy-Schwarz inequality we get

∑
u

T′(u)2

T′(u) + r
≥ (

∑
u T
′(u))2∑

u(T
′(u) + r)

=
x2

x+ n · r
,

where x =
∑

u T
′(u). Note that the function f(x) = x2

x+n·r is increasing in x for x > 0 and

any r, n > 0. Since x > n/2, the right-hand side is minimized for x = n/2, that is

∑
u

T′(u)2

T′(u) + r
≥ (n/2)2

n/2 + n · r
=

n

4r + 2
.

Thus Eq. (2.3) becomes

fp(Gn, r,T) ≤ 1− 1

n
· n

4r + 2
= 1− 1

4r + 2

as desired.

We thus arrive at the following corollary.

Corollary 2. There exists no unweighted family of graphs which is a strong temperature

amplifier.

2.3.3 Negative Result 3

We now prove our negative result 3.

Theorem 3. For all self-loop free graphs Gn with c = deg(Gn), and for every r ≥ 1 we

have fp(Gn, r,U) ≤ 1− 1/(c+ r · c2).

Proof. Let Gn = (V,E,W ) and γ = 1/c. For a vertex u, denote by Outγ(u) = {v ∈

Out(u) : W [u, v] ≥ γ}. Observe that since deg(Gn) = c, every vertex u has an outgoing

edge of weight at least 1/c, and thus Outγ(u) ̸= ∅ for all u ∈ V . Let V h =
⋃

u Out
γ(u).

Intuitively, the set V h contains “hot” vertices, since each vertex u ∈ V h is replaced

frequently (with rate at least γ) by at least one neighbor v.

Bound on size of V h. We first obtain a bound on the size of V h. Consider a vertex u ∈ V

and a vertex v ∈ Outγ(u) (i.e., v ∈ V h). For every vertex w ∈ In(v) such that v ∈ Outγ(w)

we can count v ∈ V h and to avoide multiple counting, we consider for each count of v a
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contribution of 1
|{w∈In(v): v∈Outγ(w)}| , which is at least 1

c
due to the degree bound. Hence we

have

|V h| =
∑
u∈V

∑
v∈Outγ(u)

1

|{w ∈ In(v) : v ∈ Outγ(w)}|
≥
∑
u∈V

∑
v∈Outγ(u)

1

c
≥
∑
u∈V

1

c
=

n

c
;

where the last inequality follows from the fact that Outγ(u) ̸= ∅ for all u ∈ V . Hence the

probability that the initial mutant is a vertex in V h has probability at least 1/c according

to the uniform initialization.

Bound on probability. Consider that the initial mutant is a vertex u ∈ V h. Consider any

configuration Xi = {u}, we have the following:

x = PGn,r[|Xi+1| = 2 | Xi = {u}] = r

F(Xi)

y = PGn,r[|Xi+1| = 0 | Xi = {u}] = 1

F(Xi)
·
∑

(v,u)∈E

W [v, u] ≥ 1

F(Xi)
·

∑
v:u∈Outγ(v)

γ ≥ 1

F(Xi)
·γ .

Thus x/y ≤ r/γ. Hence by Lemma 1 we have

fp(Gn, r, u) ≤
r · c

1 + r · c
.

Finally, we have

fp(Gn, r,U) =
∑
u∈V h

1

n
· fp(Gn, r, u) +

∑
u∈V \V h

1

n
· fp(Gn, r, u)

≤1

c
· r · c
1 + r · c

+
c− 1

c
· 1 = 1− 1

c
·
(
1− r · c

1 + r · c

)
= 1− 1

c+ r · c2
.

The desired result follows.

We thus arrive at the following corollary.

Corollary 3. There exists no self-loop free, bounded-degree family of graphs which is a

strong uniform amplifier.

2.3.4 Negative Result 4

We now prove our negative result 4.

Theorem 4. For all unweighted graphs Gn with c = deg(Gn), and for every r ≥ 1 we

have fp(Gn, r,U) ≤ 1− 1/(1 + r · c).
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Proof. Let Gn = (V,E,W ) and consider that X0 = u for some u ∈ V . Consider any

configuration Xi = {u}, we have the following:

x = PGn,r[|Xi+1| = 2 | Xi = {u}] ≤ r

F(Xi)
.

y = PGn,r[|Xi+1| = 0 | Xi = {u}] = 1

F(Xi)
·

∑
v∈In(u)\{u}

W [v, u] ≥ 1

F(Xi)
· 1
c
.

Thus x/y ≤ r · c. By Lemma 1 we have

fp(Gn, r, u) ≤
r · c

1 + r · c
.

Finally, we have

fp(Gn, r,U) =
1

n
·
∑
u

fp(Gn, r, u) ≤
r · c

1 + r · c
= 1− 1

1 + r · c
.

The desired result follows.

We thus arrive at the following corollary.

Corollary 4. There exists no unweighted, bounded-degree family of graphs which is a

strong uniform amplifier.

Remark 1. Theorems 3 and 4 establish the nonexistence of strong amplification with

bounded degree graphs. A relevant result can be found in [56], which establishes an

upperbound of the fixation probability of mutants under uniform initialization on un-

weighted, undirected graphs. If the bounded degree restriction is relaxed to bounded

average degree, then recent results show that strong amplifiers (called sparse incubators)

exist [64].

2.4 Proof of the positive result

In the previous section we showed that self-loops and weights are necessary for the ex-

istence of strong amplifiers. In this section we present our positive result, namely that

every family of undirected graphs with self-loops and whose diameter is not “too large”

can be made a strong amplifier by using appropriate weight functions. Our result relies

on several novel conceptual steps, therefore the proof is structured in three parts.
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1. First, we introduce some formal notation that will help with the exposition of the

ideas that follow.

2. Second, we describe an algorithm which takes as input an undirected graph Gn =

(Vn, En) of n vertices, and constructs a weight matrix Wn to obtain the weighted

graph Gw
n = (Vn, En,Wn).

3. Lastly, we prove that Gw
n is a strong amplifier both for uniform and temperature

initialization.

Before presenting the details we introduce some notation to be used in this section.

2.4.1 Undirected graphs and notation

We first present some additional notation required for the exposition of the results of this

section.

Undirected graphs. Our input is an unweighted undirected graph Gn = (Vn, En) with self

loops. For ease of notation, we drop the subscript n and refer to the graph G = (V,E)

instead. Since G is undirected, for all vertices u we have In(u) = Out(u), and we denote

by Nh(u) = In(u) = Out(u) the set of neighbors of vertex u. Hence, v ∈ Nh(u) iff

u ∈ Nh(v). Moreover, since G has self-loops, we have u ∈ Nh(u). Also we consider that

G is connected, i.e., for every pair of vertices u, v, there is a path from u to v.

Symmetric weight function. So far we have used a stochastic weight matrix W , where

for every u we have
∑

v W [u, v] = 1. In this section, we will consider a weight function

w : E → R≥0, and given a vertex u ∈ V we denote by w(u) =
∑

v∈Nh(u) w(u, v). Our

construction will not only assign weights, but also ensure symmetry. In other words, we

we construct symmetric weights such that for all u, v we have w(u, v) = w(v, u). Given

such a weight function w, the corresponding stochastic weight matrix W is defined as

W [u, v] = w(u, v)/w(u) for all pairs of vertices u, v. Given a unweighted graph G and

weight function w, we denote by Gw the corresponding weighted graph.

Vertex-induced subgraphs. Given a set of vertices X ⊆ V , we denote by Gw[X] =

(X,E[X],w[X]) the subgraph of G induced by X, where E[X] = E ∩ (X × X), and
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the weight function w[X] : E[X] → R≥0 defined as

w[X](u, v) =

⎧⎨⎩ w(u, u) +
∑

(u,w)∈E\E[X] w(u,w) if u = v

w(u, v) otherwise

In words, the weights on the edges of u to vertices that do not belong to X are added

to the self-loop weight of u. Since the sum of all weights does not change, we have

w[X](u) = w(u) for all u. The temperature of u in G[X] is

T[X](u) =
∑

v∈Nh(u)∩X

w[X](v, u)

w[X](v)
.

2.4.2 Algorithm for weight assignment on G

We start with the construction of the weight function w on G. Since we consider arbitrary

input graphs, w is constructed by an algorithm. The time complexity of the algorithm is

O(n · log n). Since our focus is on the properties of the resulting weighted graph, we do

not explicitly analyze the time complexity.

Steps of the construction. Consider a connected graph G with diameter diam(G) ≤

n1−ε, where ε > 0 is a constant independent of n. We construct a weight function w such

that whp an initial mutant arising under uniform or temperature initialization, eventually

fixates on Gw. The weight assignment consists of the following conceptual steps.

1. Spanning tree construction and partition. First, we construct a spanning tree T x
n of

G rooted on some arbitrary vertex x. In words, a spanning tree of an undirected

graph is a connected subgraph that is a tree and includes all of the vertices of the

graph. Then we partition the tree into a number of component trees of appropriate

sizes.

2. Hub construction. Second, we construct the hub of G, which consists of the vertices

xi that are roots of the component trees, together with all vertices in the paths that

connect each xi to the root x of T x
n . All vertices that do not belong to the hub

belong to the branches of G.

3. Weight assignment. Finally, we assign weights to the edges of G, such that the

following properties hold:
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(a) The hub is an isothermal graph, and evolves exponentially faster than the

branches.

(b) All edges between vertices in different branches are effectively cut-out (by being

assigned weight 0).

In the following we describe the above steps formally.

Spanning tree T x
n construction and partition. Given the graph G, we first construct

a spanning tree using the standard breadth-first-search (BFS) algorithm. Let T x
n be such a

spanning tree of G, rooted at some arbitrary vertex x. We now construct the partitioning

as follows: We choose a constant c = 2ε/3, and pick a set S ⊂ V such that

1. |S| ≤ nc, and

2. the removal of S splits T x
n into k trees T x1

n1
, . . . , T xk

nk
, each T xi

ni
rooted at vertex xi

and of size ni, with the property that ni ≤ n1−c for all 1 ≤ i ≤ k.

The set S is constructed by a simple bottom-up traversal of T x
n in which we keep track

of the size size(u) of the subtree marked by the current vertex u and the vertices already

in S. Once size(u) > n1−c, we add u to S and proceed as before. Since every time we

add a vertex u to S we have size(u) > n1−c, it follows that |S| ≤ nc. Additionally, the

subtree rooted in every child of u has size at most n1−c, otherwise that child of u would

have been chosen to be included in S instead of u.

Hub construction: hub H. Given the set of vertices S constructed during the spanning

tree partitioning, we construct the set of vertices H ⊂ V called the hub, as follows:

1. We choose a constant γ = ε/3.

2. For every vertex u ∈ S, we add in H every vertex v that lies in the unique simple

path Pu : x ⇝ u between the root x of T x
n and u (including x and u). Since

diam(G) ≤ n1−ε and |S| ≤ nc, we have that |H| ≤ n1−ε+c ≤ n1−γ.

3. We add n1−γ − |H| extra vertices to H, such that in the end, the vertices of H form

a connected subtree of T x
n (rooted in x). This is simply done by choosing a vertex

u ∈ H and a neighbor v of u with v ̸∈ H, and adding v to H, until H contains n1−γ

vertices.
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...

...
...

Hub H

...
...

...
y1

y2 y3

B1 = T y1
m1

B2 = T y2
m2

B3 = T y3
m3

|Bj | << |H|

|H| <<
∑

j |Bj |

Figure 2.2: Illustration of the hub H and the branches T
yj
mj .

Branches Bj = T
yj
mj . The hub H defines a number of trees Bj = T

yj
mj , where each tree

is rooted at a vertex yj ̸∈ H adjacent to H, and has mj vertices. We will refer to these

trees as branches(see Fig. 2.2).

Proposition 1. Note that by construction, we have mj ≤ n1−2/3·ε for every j, and

|H| = n1−ε/3, and
∑

j mj = n− n1−ε/3.

Notation. To make the exposition of the ideas clear, we rely on the following notation.

1. Parent par(u) and ancestors anc(u). Given a vertex u ̸= x, we denote by par(u) the

parent of u in T x
n and by anc(u) the set of ancestors of u.

2. Children chl(u) and descendants des(u). Given a vertex u that is not a leaf in T x
n ,

we denote by chl(u) the children of u in T x
n that do not belong to the hub H, and

by des(u) the set of descendants of u in T x
n that do not belong to the hub H.

Frontier, distance, and branches. We present few notions required for the weight

assignment:

1. Frontier F . Given the hub H, the frontier of H is the set of vertices F ⊆ H defined

as

F =
⋃

u∈V \H

Nh(u) ∩H .

In words, F contains all vertices of H that have a neighbor not in H.



36

2. Distance function λ. For every vertex u, we define its distance λ(u) to be the length

of the shortest path P : u⇝ v in T x
n to some vertex v ∈ F (e.g., if u ∈ F , we have

(i) λ(u) = 0, and (ii) for every v ∈ Nh(u) \ H we have λ(v) = 1).

3. Values µ and ν. For every vertex u ∈ H, we define deg(u) = |(Nh(u)∩H)\{u}| i.e.,

deg(u) is the number of neighbors of u that belong to the hub (excluding u itself).

Let

µ = max
u∈F

|chl(u)| and ν = max
u∈H

deg(u) .

Weight assignment. We are now ready to define the weight function w : E → R≥0.

1. For every edge (u, v) such that u ̸= v and u, v ̸∈ H and u and v are not neighbors

in T x
n , we assign w(u, v) = 0.

2. For every vertex u ∈ F we assign w(u, u) = (µ− |chl(u)|) · 2−n + ν − deg(u).

3. For every vertex u ∈ H \ F we assign w(u, u) = µ · 2−n + ν − deg(u).

4. For every vertex u ̸∈ H we assign w(u, u) = n−2·λ(u).

5. For every edge (u, v) ∈ E such that u ̸= v and u, v ∈ H we assign w(u, v) = 1.

6. For every remaining edge (u, v) ∈ E such that u = par(v) we assign w(u, v) =

2−n · n−4·λ(u).

The following lemma is straightforward from the weight assignment, and captures that

every vertex in the hub has the same weight.

Lemma 2. For every vertex u ∈ H we have w(u) =
∑

v∈Nh(u) w(u, v) = µ · 2−n + ν.

Proof. Consider any vertex u ∈ H \ F . We have

w(u) =w(u, u) +
∑

v∈Nh(u)\{u}

w(u, v)

=µ · 2−n + ν − deg(u) +
∑

v∈Nh(u)\{u}

1

=µ · 2−n + ν − deg(u) + deg(u)

=µ · 2−n + ν (2.4)
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Similarly, consider any u ∈ F . We have

w(u) =w(u, u) +
∑

v∈(Nh(u)∩H)\{u}

w(u, v) +
∑

v∈chl(u)

w(u, v)

=(µ− |chl(u)|) · 2−n + ν − deg(u) +
∑

v∈(Nh(u)∩H)\{u}

1 +
∑

v∈chl(u)

2−n

=µ · 2−n − |chl(u)| · 2−n + ν − deg(u) + deg(u) + |chl(u)| · 2−n

=µ · 2−n + ν (2.5)

2.4.3 Analysis of the fixation probability

In this section we present detailed analysis of the fixation probability and we start with

the outline of the proof.

Outline of the proof

The fixation of new mutants is guaranteed by showing that each of the following four

stages happens with high probability.

(A) In stage 1 we consider the event E1 that a mutant arises in one of the branches (i.e.,

outside the hub H). We show that event E1 happens whp.

(B) In stage 2 we consider the event E2 that a mutant occupies a vertex v of the branches

which is a neighbor to the hub. We show that given event E1 the event E2 happens

whp.

(C) In stage 3 we consider the event E3 that the mutants fixate in the hub. We show

that given event E2 the event E3 happens whp.

(D) In stage 4 we consider the event E4 that the mutants fixate in all the branches. We

show that given event E3 the event E4 happens whp.

Crux of the proof. Before the details of the proof we present the main crux of the

proof. We say a vertex v ̸∈ H hits the hub when it places an offspring to the hub. First,

our construction ensures that the hub is isothermal. Second, our construction ensures
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that a mutant appearing in a branch reaches to a vertex adjacent to the hub, and hits the

hub with a mutant polynomially many times. Third, our construction also ensures that

the hub reaches a homogeneous configuration whp between any two hits to the hub. We

now describe two crucial events.

• Consider that a mutant is adjacent to a hub of residents. Every time a mutant

is introduced in the hub it has a constant probability (around 1 − 1/r for large

population) of fixation since the hub is isothermal. The polynomially many hits of

the hub by mutants ensure that the hub becomes mutants whp.

• In contrast consider that a resident is adjacent to a hub. Every time a resident is

introduced in the hub it has exponentially small probability (around (r− 1)/(r|H|−

1)) of fixation.

Hence, given a hub of mutants, the probability (say, η1 = 2−Ω(|H|)) that the residents win

over the hub is exponentially small. Given a hub of mutant, the probability that the hub

wins over a branch Bj is also exponentially small (say, η2 = 2−O(|Bj |)). More importantly

the ratio of η1/η2 is also exponentially small (by Proposition 1 regarding the sizes of the

hub and branches). Using this property, se show that fixation the mutants reach fixation

whp. We now analyze each stage in detail.

Analysis of Stage 1: Event E1

Lemma 3. Consider the event E1 that the initial mutant is placed at a vertex outside the

hub. Formally, the event E1 is that X0 ∩ H = ∅. The event E1 happens with probability

at least 1−O(n−ε/3), i.e., the event E1 happens whp.

Proof. We examine the uniform and temperature initialization schemes separately.

• (Uniform initialization): The initial mutant is placed on a vertex u ̸∈ H with

probability

∑
u ̸∈H

1

n
=

|V \ H|
n

=
n− n1−γ

n
= 1− n1−γ

n
= 1−O(n−ε/3) ;

since γ = ε/3.
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• (Temperature initialization): For any vertex u ̸∈ H, we have

∑
v∈Nh(u)\{u}

w(u, v) ≤
∑

v∈Nh(u)\{u}

2−n = 2−Ω(n) ;

whereas since diam(G) ≤ n1−ε we have

w(u, u) = n−2·λ(u) ≥ n−2·diam(G) ≥ n−O(n1−ε) .

Note that

n−O(n1−ε) = 2−O(n1−ε·logn) >> 2−O(n) .

Let A = w(u, u) and B =
∑

v∈Nh(u)\{u} w(u, v), and we have

w(u, u)

w(u)
=

A

A+B
= 1− B

A+B
= 1− 2−Ω(n)

n−O(n1−ε) + 2−Ω(n)
= 1− 2−Ω(n)

n−O(n1−ε)
= 1−2−Ω(n) .

Then the desired event happens with probability at least

∑
u ̸∈H

fpT[X0 = {u}] =
∑
u ̸∈H

T(u)

n
=

1

n
·
∑
u ̸∈H

∑
v∈Nh(u)

w(u, v)

w(v)
≥ 1

n
·
∑
u ̸∈H

w(u, u)

w(u)

≥ 1

n
·
∑
u ̸∈H

(
1− 2−Ω(n)

)
=

|V \ H|
n

·
(
1− 2−Ω(n)

)
=
n− n1−γ

n
·
(
1− 2−Ω(n)

)
= (1− n−γ) ·

(
1− 2−Ω(n)

)
=1−O(n−ε/3)

since γ = ε/3. The desired result follows.

Analysis of Stage 2: Event E2

The following lemma states that if a mutant is placed on a vertex w outside the hub,

then whp the mutant will propagate to the ancestor v of w at distance λ(v) = 1 from the

hub (i.e., the parent of v belongs to the hub). This is a direct consequence of the weight

assignment, which guarantees that for every vertex u ̸∈ H, the individual occupying u

will place an offspring on the parent of u before some neighbor of u places an offspring

on u, and this event happens with probability at least 1 −O(n−1).
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Lemma 4. Consider that at some time j the configuration of the Moran process on Gw

is Xj = {w} with w ̸∈ H. Let v ∈ anc(w) with λ(v) = 1, i.e., v is the ancestor of w and

v is adjacent to the hub. Then a subsequent configuration Xt with v ∈ Xt is reached with

probability 1−O(n−1), i.e., given event E1, the event E2 happens whp.

Proof. Let t be the first time such that v ∈ Xt (possibly t = ∞, denoting that v never

becomes mutant). Let si be the random variable such that

si =

⎧⎨⎩ |Xi ∩ anc(w)| if i < t

|anc(w)| if i ≥ t

In words, si counts the number of mutant ancestors of u until time t. Given the current

configuration Xi with 0 < si < |anc(w)|, let u = argminz∈Xi∩anc(w) λ(z). The probability

that si+1 = si + 1 is lowerbounded by the probability that u reproduces and places an

offspring on par(u). Similarly, the probability that si+1 = si − 1 is upperbounded by the

probability that (i) par(u) reproduces and places an offspring on u, plus (ii) the probability

that some z ∈ des(u) \ Xi reproduces and places an offspring on par(z).

We now proceed to compute the above probabilities. Consider any configuration Xi,

and and let z be any child of u and z′ any child of z. The above probabilities crucially

depend on the following quantities:

w(u, par(u))

w(u)
;

w(u, par(u))

w(par(u))
;

∑
zi∈des(u)

w(par(zi), zi)

w(zi)
.

Recall that

• w(u, par(u)) = 2−n · n−4·λ(par(u))

• w(u, x) = 2−n · n−4·λ(u)

• w(z, z′) = 2−n · n−4·λ(z)

• w(par(u), par(par(u))) = 2−n · n−4·λ(par(par(u)))

• w(u, u) = n−2·λ(u)

• w(par(u), par(u)) = n−2·λ(par(u))

• w(z, z) = n−2·λ(z)

Thus, we have
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w(u, par(u))

w(u)
=

w(u, par(u))

w(u, u) + w(u, par(u)) + |chl(u)| · w(u, x)
=

2−n · n−4·(λ(u)−1)

O(n−2·λ(u))

=Ω(2−n · n−2·(λ(u)−2)), (2.6)

w(u, par(u))

w(par(u))
=

w(u, par(u))

w(par(u), par(u)) + w(par(u), par(par(u))) + |chl(par(u))| · w(u, par(u))

=
2−n · n−4·(λ(u)−1)

Ω(n−2·(λ(u)−1))
= O(2−n · n−2·(λ(u)−1)), (2.7)

∑
zi∈des(u)

w(par(zi), zi)

w(zi)
=|des(u)| · w(u, z)

w(z, z) + w(u, z) + |chl(z)| · w(z, z′)

≤|des(u)| · 2−n · n−4·λ(u)

Ω(n−2·(λ(u)+1))
= n ·O(2−n · n−2·(λ(u)−1))

=O(2−n · n−2·λ(u)+3). (2.8)

Thus, using Eq. (2.6), Eq. (2.7) and Eq. (2.8), we obtain

P[si+1 = si + 1]

P[si+1 = si − 1]
≥

r
F(X′)

· w(u,par(u))
w(u)

1
F(X′)

·
(

w(u,par(u))
w(par(u))

+
∑

zi∈des(u)
w(par(zi),zi)

w(zi)

)
=

Ω(2−n · n−2·(λ(u)−2))
O(2−n · n−2·(λ(u)−1)) +O(2−n · n−2·λ(u)+3)

= Ω(n) (2.9)

Let α(n) = 1−O(n−1) and consider a one-dimensional random walk P : s′0, s
′
1, . . . on

states 0 ≤ i ≤ |anc(w)|, with transition probabilities

P[s′i+1 = ℓ|s′i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α(n) if 0 < s′i < |H| and ℓ = s′i + 1

1− α(n) if 0 < s′i < |H| and ℓ = s′i − 1

0 otherwise

(2.10)

Using Eq. (2.9), we have that

P[s′i+1 = s′i + 1]

P[s′i+1 = s′i − 1]
=

α(n)

1− α(n)
= Ω(n) ≤ P[si+1 = si + 1]

P[si+1 = si − 1]
.

Hence the probability that s∞ = |anc(w)| is lowerbounded by the probability that

s′∞ = |anc(w)|. The latter event occurs with probability 1 − O(n−1) (see e.g., [65], [3,

Section 6.3]), as desired.
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Analysis of Stage 3: Event E3

We now focus on the evolution on the hub H, and establish several useful results.

1. First, we show that Gw[H] is isothermal (Lemma 5)

2. Second, the above result implies that the hub behaves as a well-mixed population.

Considering advantageous mutants (r > 1) this implies the following (Lemma 6).

(a) Every time a mutant hits a hub of only residents, then the mutant has at least

a constant probability of fixating in the hub.

(b) In contrast, every time a resident hits a hub of only mutants, then the resident

has exponentially small probability of fixating in the hub.

3. Third, we show that an initial mutant adjacent to the hub, hits the hub a polynomial

number of times (Lemma 7).

4. Finally, we show that an initial mutant adjacent to the hub ensures fixating in the

hub whp (Lemma 8), i.e., we show that given event E2 the event E3 happens whp.

We start with observing that the hub is isothermal, which follows by a direct application

of the definition of isothermal (sub)graphs [7].

Lemma 5. The graph Gw[H] is isothermal.

Proof. Consider any vertex u ∈ H \ F . We have

T[X](u) =
∑

v∈Nh(u)∩H

w[H](v, u)

w[H](v)
=

w[H](u, u)

w[H](u)
+

∑
v∈(Nh(u)\{u})∩H

w[H](v, u)

w[H](v)

=
w(u, u)

w(u)
+

∑
v∈(Nh(u)\{u})∩H

w(v, u)

w(v)

=
1

µ · 2−n + ν
·

⎛⎝w(u, u) +
∑

v∈(Nh(u)\{u})∩H

1

⎞⎠
=

1

µ · 2−n + ν
· (µ · 2−n + ν − deg(u) + deg(u))

=1
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since by Lemma 2 we have w(u) = µ ·2−n+ν. Similarly, consider any u ∈ F . We have

T[X](u) =
∑

v∈Nh(u)∩H

w[H](v, u)

w[H](v)
=

w[H](u, u)

w[H](u)
+

∑
v∈(Nh(u)\{u})∩H

w[H](v, u)

w[H](v)

=
w(u, u) +

∑
v∈Nh(u)\H w(u, v)

w(u)
+

∑
v∈(Nh(u)\{u})∩H

w(v, u)

w(v)

=
1

µ · 2−n + ν
·

⎛⎝w(u, u) +
∑

v∈Nh(u)\H

2−n +
∑

v∈(Nh(u)\{u})∩H

1

⎞⎠
=

1

µ · 2−n + ν
· ((µ− |chl(u)|) · 2−n + ν − deg(u) + |chl(u)| · 2−n + deg(u))

=1

Thus for all u ∈ H we have T[X](u) = 1, as desired.

Lemma 6. Consider that at some time j the configuration of the Moran process on Gw

is Xj.

1. If |H ∩ Xj| ≥ 1, i.e., there is at least one mutant in the hub, then a subsequent

configuration Xt withH ⊆ Xt will be reached with probability at least 1−r−1−2−Ω(n)

(i.e., mutants fixate in the hub with constant probability).

2. If |H \ Xj| = 1, i.e., there is exactly one resident in the hub, then a subsequent

configuration Xt with H ⊆ Xt will be reached with probability at least 1 − 2−Ω(m),

where m = n1−γ (i.e., mutants fixate in the hub with probability exponentially close

to 1).

Proof. Given a configuration Xi, denote by si = |H ∩ Xi|. Let Xi be any configuration of

the Moran process with 0 < si < |Xi|, u be the random variable that indicates the vertex

that is chosen for reproduction in Xi, and Xi+1 be the random variable that indicates

the configuration of the population in the next step. By Lemma 5, the subgraph Gw[H]

induced by the hub H is isothermal, thus

P[si+1 = si − 1|u ∈ H]

P[si+1 = si + 1|u ∈ H]
=

1

r
. (2.11)

Additionally,

P[si+1 = si − 1|u ̸∈ H] ≤
∑
v∈F

u∈chl(v)

(
1

F(Xi)
· w(u, v)

w(u)

)
≤ n−1 ·

∑
v∈F

u∈chl(v)

2−n

n−2

≤n−1 · n · 2−n · n2 = O(n2 · 2−n) (2.12)
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since 1/F(Xi) ≤ n−1, w(u, v) = 2−n and w(u, u) = n−2. Moreover, as H is hetero-

geneous, it contains at least a mutant vertex v and a resident vertex w ∈ Nh(v), and

v reproduces with probability r/F(Xi) ≥ n−1, and replaces the individual v ∈ H with

probability at least 1/w(v). Hence we have

P[si+1 = si + 1|u ∈ H] · P[u ∈ H] ≥ 1

w(u)
· r

F(Xi)
≥ 1

µ · 2−n + ν
· n−1 ≥ 1

n · 2−n + n
· n−1

= Ω(n−2), (2.13)

since by Lemma 2 we have w(v) = µ · 2−n + ν. Using Eq. (2.11), Eq. (2.12) and

Eq. (2.13), we have

P[si+1 = si − 1]

P[si+1 = si + 1]
=
P[si+1 = si − 1|u ∈ H] · P[u ∈ H] + P[si+1 = si − 1|u ̸∈ H] · P[u ̸∈ H]

P[si+1 = si + 1|u ∈ H] · P[u ∈ H] + P[si+1 = si + 1|u ̸∈ H] · P[u ̸∈ H]

≤P[si+1 = si − 1|u ∈ H] · P[u ∈ H] + P[si+1 = si − 1|u ̸∈ H] · P[u ̸∈ H]

P[si+1 = si + 1|u ∈ H] · P[u ∈ H]

≤P[si+1 = si − 1|u ∈ H]

P[si+1 = si + 1|u ∈ H]
+O(n2) · P[si+1 = si − 1|u ̸∈ H] =

1

r
+ 2−Ω(n)

(2.14)

Hence, sj, sj+1, . . . performs a one-dimensional random walk on the states 0 ≤ i ≤ |H|,

with the ratio of transition probabilities given by Eq. (2.14). Let α(n) = r/(r+1+2−Ω(n))

and consider the one-dimensional random walk ρ : s′j, s
′
j+1, . . . on states 0 ≤ i ≤ |H|, with

transition probabilities

P[s′i+1 = ℓ|s′i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α(n) if 0 < s′i < |H| and ℓ = s′i + 1

1− α(n) if 0 < s′i < |H| and ℓ = s′i − 1

0 otherwise

(2.15)

Using Eq. (2.14) we have that

P[s′i+1 = s′i − 1]

P[s′i+1 = s′i + 1]
=

1− α(n)

α(n)
=

1

r
+ 2−Ω(n) ≥ P[si+1 = si − 1]

P[si+1 = si + 1]
.

Let ρ1 (resp. ρ2) be the probability that the Moran process starting on configuration

Xj with |H ∩ Xj| ≥ 1 (resp. |H \ Xj| = 1) will reach a configuration Xt with H ⊆ Xt.

We have that ρ1 (resp. ρ2) is lowerbounded by the probability that ρ gets absorbed in

s′∞ = |H| when it starts from s′j = 1 (resp. s′j = |H| − 1). Let

β =
P[s′i+1 = s′i − 1]

P[s′i+1 = s′i + 1]
=

1

r
+ 2−Ω(n) < 1 ;
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and we have (see e.g., [65], [3, Section 6.3])

ρ1 ≥
1− β

1− β|H|
≥ 1− β = 1− 1

r
− 2−Ω(n) ;

and

ρ2 ≥ 1− 1− β−1

1− β−|H|
≥ 1− β−1

β−|H|
= 1− β|H|−1 = 1−

(
1

r
+ 2−Ω(n)

)n1−γ−1

= 1− 2−Ω(n1−γ) ;

since β−|H| > β−1 and thus (β−1 − 1)/(β−|H| − 1) ≤ β−1/β−|H|. The desired result

follows.

Lemma 7. Consider that at some time j the configuration of the Moran process on Gw

is Xj such that v ∈ Xj for some v ̸∈ H that is adjacent to the hub (λ(v) = 1). Then a

mutant hits the hub at least n1/3 times with probability 1−O(n−1/3).

Proof. For any configuration Xi occurring after Xj, let

1. A be the event that v places an offspring on par(v) in Xi+1, and

2. B be the event that a neighbor of v places an offspring on v in Xi+1,

and let ρA and ρB be the corresponding probabilities. Using Eq. (2.6), we have

ρA =
r

F(Xi)
· w(v, par(v))

w(v)
= Ω

(
n · 2−n

)
; (2.16)

and using Eq. (2.7) and Eq. (2.8)

ρB ≤ r

F(Xi)
·

⎛⎝w(v, par(v))

w(par(u))
+
∑

z∈chl(v)

w(v, z)

w(z)

⎞⎠ ≤ r

n
·
(
2−n +O

(
n · 2−n

))
= 2−Ω(n) . (2.17)

since par(u) ∈ H and by Lemma 2 we have w(par(u)) ≥ 1. Let X be the random variable

that counts the time required until event A occurs n1/3 times. Then, for all ℓ ∈ N we have

P[X ≥ ℓ] ≤ P[X ′ ≥ ℓ] where X ′ is a random variable that follows the negative binomial

distribution on n1/3 failures with success rate ρX′ = 1−O(n ·2−n) ≤ ρA (using Eq. (2.16)).

The expected value of X ′ is

E[X ′] =
ρX′ · n1/3

1− ρX′
= O

(
1− n · 2−n

n2/3 · 2−n

)
.

Let α = 2n · n−1/3, and by Markov’s inequality, we have

P[X ′ ≥ α] ≤ E[X ′]
α

=
O
(

1−n·2−n

n2/3·2−n

)
2n · n−1/3

= O(n−1/3) .
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Similarly, let Y be the random variable that counts the time required until event B occurs.

Then, for all ℓ ∈ N, we have P[Y ≤ ℓ] ≤ P[Y ′ ≤ ℓ], where Y ′ is a geometrically distributed

variable with rate ρY ′ = 2−Ω(n) ≥ ρB (using Eq. (2.17)). Then

P[Y ′ ≤ α] = 1− (1− ρY ′)α = O(n−1/3) ;

and thus

P[Y ≤ X] ≤ P[Y ≤ α] + P[X ≥ α] ≤ P[Y ′ ≤ α] + P[X ′ ≥ α] = O(n−1/3) . (2.18)

Hence, with probability at least 1−O(n1/3), the vertex v places an offspring on par(v) at

least n1/3 times before it is replaced by a neighbor. The desired result follows.

Lemma 8. Consider that at some time j the configuration of the Moran process on Gw is

Xj with v ∈ Xj for some v ̸∈ H that is adjacent to the hub (λ(v) = 1). Then a subsequent

configuration Xt with H ⊆ Xt (mutants fixating in the hub) is reached with probability

1−O(n−1/3), i.e., given event E2, the event E3 happens whp.

Proof. By Lemma 7, we have that with probability at least Ω(n1/3), the vertex v places

an offspring on par(v) at least n1/3 times before it is replaced by a neighbor. Let ti be the

time that v places its i-th offspring on par(v), with 1 ≤ i ≤ n1/3. Let Ai be the event that

a configuration Xt is reached, where t ≥ ti and such that H ⊆ Xt. By Lemma 6, we have

P[Ai] ≥ 1− r−1− 2−Ω(n). Moreover, with probability 1− 2−Ω(n), at each time ti the hub is

in a homogeneous state, i.e., either H ⊆ Xti or H∩Xti = ∅. The proof is similar to that of

Lemma 9, and is based on the fact that every edge which has one end on the hub and the

other outside the hub has exponentially small weight (i.e., 2−n), whereas the hub Gw[H]

resolves to a homogeneous state in polynomial time with probability exponentially close

to 1. It follows that with probability at least p = 1 − 2−Ω(n), the events Āi are pairwise

independent, and thus

P[A1 ∩ A2 · · · ∩ An1/3 ] ≤ p ·
n1/3∏
i=1

P[Ai] + (1− p) ≤
n1/3∏
i=1

(1− P[Ai]) + 2−Ω(n)

≤
(
r−1 + 2−Ω(n)

)n1/3

+ 2−Ω(n). (2.19)

Finally, starting from X0 = {u}, the probability that a configuration Xt is reached

such that H ⊆ Xt is lowerbounded by the probability of the events that
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1. the ancestor v of u is eventually occupied by a mutant, and

2. v places at least n1/3 offsprings to par(v) ∈ H before a neighbor of v places an

offspring on v, and

3. the event A1 ∩ A2 · · · ∩ An1/3 does not occur.

Combining Lemma 4, Eq. (2.18) and Eq. (2.19), we obtain that the goal configuration Xt

is reached with probability at least

(1−O(n−1)) · (1−O(n−1/3)) ·
(
1− P[A1 ∩ A2 · · · ∩ An1/3 ]

)
= 1−O(n−1/3)

as desired.

Analysis of Stage 4: Event E4

In this section we present the last stage to fixation. This is established in four intermediate

steps.

1. First, we consider the event of some vertex in the hub placing an offspring in one

of the branches, while the hub is heterogeneous. We show that this event has

exponentially small probability of occurring (Lemma 9).

2. We introduce the modified Moran process which favors residents when certain events

occur, more than the conventional Moran process. This modification underapprox-

imates the fixation probability of mutants, but simplifies the analysis.

3. We define a set of simple Markov chains Mj and show that the fixation of mutants

on the j-th branch T
yj
mj is captured by the absorption probability to a specific state

of Mj (Lemma 11). This absorption probability is computed in Lemma 10.

4. Finally we combine the above steps in Lemma 12 to show that if the hub is occupied

by mutants (i.e., given that event E3 holds), the mutants eventually fixate in the

graph (i.e., event E4 holds) whp.

We start with an intermediate lemma, which states that while the hub is heterogeneous,

the probability that a node from the hub places an offspring to one of the branches is

exponentially small.
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Lemma 9. For any configuration Xj with |H \ Xj| = 1, let t1 ≥ j be the first time such

that H ⊆ Xt1 (possibly t1 = ∞), and t2 ≥ j the first time in which a vertex u ∈ F places

an offspring on some vertex v ∈ Nh(u) \ H. We have that P[t2 < t1] = 2−Ω(m), where

m = n1−γ.

Proof. Given a configuration Xi, denote by si = |H∩Xi|. Recall from the proof of Lemma 8

that sj, sj+1, . . . performs a one-dimensional random walk on the states 0 ≤ i ≤ |H|, with

the ratio of transition probabilities given by Eq. (2.14). Observe that in each si, the

random walk changes state with probability at least n−2, which is a lowerbound on the

probability that the walk progresses to si+1 = si + 1 (i.e., the mutants increase by one).

Consider that the walk starts from sj, and let Ha be the expected absorption time, Hf

the expected fixation time on state |H|, and He the expected extinction time on state 0 of

the random walk, respectively. The unlooped variant of the random walk ρ = si, si+1, . . .

has expected absorption time O(n) [29], hence the random walk sj, sj+1, . . . has expected

absorption time

Ha ≤ n2 ·O(n) = O(n3) ;

and since by Lemma 6 for large enough n we have P[s∞ = |H|] ≥ P[s∞ = 0], we have

Ha = P[s∞ = |H|] ·Hf + P[s∞ = 0] ·He =⇒ Hf ≤ 2 ·Ha = O(n3) .

Let t′1 be the random variable defined as t′1 = t1 − j, and we have

E[t′1|t′1 < ∞] = Hf = O(n3) ;

i.e., given that a configuration Xt1 with H ⊆ Xt1 is reached (thus t1 < ∞ and t′1 < ∞), the

expected time we have to wait after time j for this event to happen equals the expected

fixation time Hf of the random walk sj, sj+1, . . . . Let α = 2
n
2 , and by Markov’s inequality,

we have

P[t′1 > α|t′1 < ∞] ≤ E[t′1|t′1 < ∞]

α
= n3 · 2−

n
2 . (2.20)

Consider any configuration Xi. The probability p that a vertex u ∈ F places an offspring

on some vertex v ∈ Nh(u) \ H is at most

p ≤ r

F(Xi)
·
∑
u∈F

∑
v∈Nh(u)\H

w(u, v)

w(u)
≤ r · n−1 · n1−γ · 2−n ≤ r · n2 · 2−n .
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since w(u, v) = 2−n and by Lemma 2 we have w(u) > 1. Let t′2 = t2 − i, and we have

P[t′2 ≤ α] ≤ P[X ≤ α], where X is a geometrically distributed random variable with rate

ρ = r · n2 · 2−n. Since P[t2 < t1] = P[t′2 < t′1], we have

P[t2 < t1] =P[t′2 < t′1|t′1 < ∞] · P[t′1 < ∞] + P[t′2 < t′1|t′1 = ∞] · P[t′1 = ∞]

≤P[t′2 < t′1|t′1 < ∞] + P[t′1 = ∞]

≤P[t′2 < t′1|t1 < ∞] + 2−Ω(n1−γ)

≤P[t′2 ≤ α|t′1 < ∞] + P[t′1 > α|t′1 < ∞] + 2−Ω(n1−γ)

≤P[t′2 ≤ α|t′1 < ∞] + n3 · 2−
n
2 + 2−Ω(n1−γ)

≤P[X ≤ α] + 2−Ω(n1−γ)

≤1− (1− ρ)α + 2−Ω(n1−γ)

≤1− (1− r · n2 · 2−n)2n/2

+ 2−Ω(n1−γ)

=2−Ω(n1−γ)

The second inequality holds since by Lemma 6 we have P[t′1 = ∞] = 2−Ω(n1−γ). The

fourth inequality comes from Eq. (2.20).

To simplify the analysis, we replace the Moran process with a modified Moran process,

which favors the residents (hence it is conservative) and allows for rigorous derivation of

the fixation probability of the mutants.

The modified Moran process. Consider the Moran process on Gw, and assume there

exists a first time t∗ < ∞ when a configuration Xt∗ is reached such that H ⊆ Xt∗ . We

underapproximate the fixation probability of the Moran process starting from Xt∗ by

the fixation probability of the modified Moran process Xt∗ ,Xt∗+1, . . . , which behaves as

follows. Recall that for every vertex yj with λ(yj) = 1, we denote by T
yj
mj the subtree of

T x
n rooted at yj, which has mj vertices. Let Vi be the set of vertices of T

yi
mi
, and note that

by construction mi ≤ n1−c, while there are at most n such trees. The modified Moran

process is identical to the Moran process, except for the following modifications.

1. Initially, Xt∗ = H.

2. At any configuration Xi with H ∈ Xi, for all trees T
yj
mj , if a resident vertex u ∈ Vj

places an offspring on some vertex v with u ̸= v, then Xi+1 = Xi\Vj and |H\Xi+1| = 1

i.e., all vertices of T
yj
mj become residents and the hub is invaded by a single resident.
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3. If the modified process reaches a configuration Xi with Xi ∩ H = ∅, the process

instead transitions to configuration Xi = ∅, i.e., if the hub becomes resident, then

all mutants go extinct.

4. At any configuration Xi with H \ Xi ̸= ∅, if some vertex u ∈ F places an offspring

on some vertex v ∈ Nh(u) \H, then the process instead transitions to configuration

Xi = ∅, i.e., if while the hub is heterogeneous, an offspring is placed from the hub

to a vertex outside the hub, the mutants go extinct.

Note that any time a case of Item 1-Item 4 applies, the Moran and modified Moran

processes transition to configurations Xi and Xi respectively, with Xi ⊆ Xi. Thus, the

fixation probability of the Moran process on Gw
n is underapproximated by the fixation

probability of the modified Moran process (i.e., we have P[X∞ = V |t∗ < ∞] ≥ P[X∞ =

V ]). It is easy to see that Lemma 6 and Lemma 9 directly apply to the modified Moran

process.

The Markov chain Mj. Recall that T
yj
mj refers to the j-th branch of the weighted graph

Gw, rooted at the vertex yj and consisting of mj vertices. We associate T
yj
mj with a Markov

chain Mj of mj + 3 vertices, which captures the number of mutants in T
yj
mj , and whether

the state of the hub. Intuitively, a state 0 ≤ i ≤ mj of Mj represents a configuration

where the hub is homogeneous and consists only of mutants, and there are i mutants in

the branch T
yj
mj . The state H represents a configuration where the hub is heterogeneous,

whereas the state D represents a configuration where the mutants have gone extinct in

the hub, and thus the modified Moran process has terminated. We first present formally

the Markov chain Mj, and later (in Lemma 11) we couple Mj with the modified Moran

process.

Consider any tree T
yj
mj , and let α = 1/(n3 + 1). We define the Markov chain Mj =

(Xj, δj) as follows:

1. The set of states is Xj = {H,D} ∪ {0, 1, . . . ,mj}

2. The transition probability matrix δj : Xj ×Xj → [0, 1] is defined as follows:

(a) δj[i, i+ 1] = α for 0 ≤ i < mj,

(b) δj[i, 0] = 1− α for 1 < i < mj,
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(c) δj[0,H] = 1− α,

(d) δj[H, 0] = 1− 2−Ω(m), and δj[H,D] = 2−Ω(m), where m = n1−γ,

(e) δj[mj,mj] = δj[D,D] = 1,

(f) δj[x, y] = 0 for all other pairs x, y ∈ Xj

See Fig. 2.3 for an illustration. The Markov chain Mj has two absorbing states, D

D H 0 1 2 . . . nj

2−Ω(m)

1− 2−Ω(m)

1− α

α

1− α

α

1− α
1 1

Figure 2.3: The Markov chain Mj given a tree T
xj
nj .

and mj. We denote by ρj the probability that a random walk on Mj starting from state

0 will be absorbed in state mj. The following lemma lowerbounds ρj, and comes from a

straightforward analysis of Mj.

Lemma 10. For all Markov chains Mj, we have ρj = 1− 2−Ω(m), where m = n1−γ.

Proof. Given a state a ∈ Xj, we denote by xa the probability that a random walk starting

from state a will be absorbed in state mj. Then ρj = x0, and we have the following linear

system

xH =δ[H, 0] · x0 =
(
1− 2Ω(n1−γ)

)
· x0

xi =δ[i,H] · xH + δ[i, i+ 1] · xi+1 = (1− α) · xH + α · xi+1 for 0 ≤ i < mj

xmj
=1

and thus

xH =
(
1− 2−Ω(n1−γ)

)
·

(
xH · (1− α) ·

mj∑
0=1

ai + amj

)
=⇒ xH =

(
1− 2−Ω(n1−γ)

)
·
(
xH ·

(
1− amj−1

)
+ amj

)
=⇒ xH

(
1−

(
1− 2−Ω(n1−γ)

)
·
(
1− amj−1

))
= amj (2.21)
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Note that

1−
(
1− 2−Ω(n1−γ)

)
·
(
1− anj−1

)
≤ 2−Ω(n1−γ) + an

j

;

and from Eq. (2.21) we obtain

xH ≥ αnj

2−Ω(n1−γ) + αnj
= 1− 2−Ω(n1−γ)

2−Ω(n1−γ) + αnj
≥ 1− 2−Ω(n1−γ) · α−nj

= 1− 2−Ω(n1−γ) · (n3 + 1)n
1−c

= 1− 2−Ω(n1−γ) ;

since a = 1/(n3 + 1) and by construction nj ≤ n1−c and γ = ε/3 < ε/2 = c. Finally, we

have that ρj = x0 ≥ xH = 1− 2−Ω(n1−γ), as desired.

Given a configuration Xk of the modified Moran process, we denote by ρj(Xk) the

probability that the process reaches a configuration Xt with H ∪ Vj ⊆ Xt. The following

lemma states that the probability ρj(Xℓ) is underapproximated by the probability ρj. The

proof is by a coupling argument, which ensures that

1. every time the run on Mj is on a state 0 ≤ i ≤ mj, there are at least i mutants

placed on T
yj
mj , and

2. every time the modified Moran process transitions to a configuration where hub is

heterogeneous (i.e., we reach a configuration X with H \ X ̸= ∅), the run on Mj

transitions to state H.

Lemma 11. Consider any configuration Xℓ of the modified Moran process, with H ⊆ Xℓ,

and any tree T
yj
mj . We have ρj(Xℓ) ≥ ρj.

Proof. The proof is by coupling the modified Moran process and the Markov chain Mj.

To do so, we let the modified Moran process execute, and use certain events of that

process as the source of randomness for a run in Mj. We describe the coupling process

in high level. Intuitively, every time the run on Mj is on a state 0 ≤ i ≤ mj, there are

at least i mutants placed on T
yj
mj . Additionally, every time the modified Moran process

transitions to a configuration where hub is heterogeneous (i.e., we reach a configuration

X with H \ X ̸= ∅), then the run on Mj transitions to state H. Finally, if the modified

Moran process ends on a configuration X = ∅, then the run on Mj gets absorbed to state

D. The coupling works based on the following two facts.
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1. For every state 0 < i < mj, the ratio δj[i, i+ 1]/δj[i, i− 1] is upperbounded by the

ratio of the probabilities of increasing the number of mutant vertices in T
yj
mj by one,

over decreasing that number by one and having the hub being invaded by a resident.

Indeed, we have

δj[i, i+ 1]

δj[i, i− 1]
=

α

1− α
=

1

n3
;

while for every mutant vertex x of G with at last one resident neighbor, the prob-

ability that x becomes mutant in the next step of the modified Moran process over

the probability that x becomes resident is at least 1/n3 (this ratio is at least 1/n2

for every resident neighbor y of x, and there are at most n such resident neighbors).

The same holds for the ratio δj[0, 1]/δj[0,H].

2. The probability of transitioning from stateH to state 0 is upperbounded by the prob-

ability that once the mutant hub gets invaded by a resident the modified Moran pro-

cess reaches a configuration where the hub consists of only mutants (using Lemma 6

and Lemma 9).

The following lemma captures the probability that the modified Moran process reaches

fixation whp. That is, whp a configuration Xi is reached which contains all vertices of

Gw. The proof is based on repeated applications of Lemma 11 and Lemma 10, one for

each subtree T
yj
mj .

Lemma 12. Consider that at some time t∗ the configuration of the Moran process on

Gw is Xt∗ with H ⊆ Xt∗ . Then, a subsequent configuration Xt with Xt = V is reached

with probability at least 1 − 2−Ω(m) where m = n1−γ, i.e., given event E3, the event E4 is

happens whp.

Proof. It suffices to consider the modified Moran process on G starting from configuration

Xt∗ = H, and showing that whp we eventually reach a configuration Xt = V . First note

that if there exists a configuration Xt′ with Vi ⊆ Xt′ for any Vi, then for all t′′ ≥ t′ with

Xt′′ ̸= ∅ we have Vi ⊆ Xt′′ . Let t1 = t∗. Since H ⊆ Xt1 , by Lemma 11, with probability

ρ1(Xt1) ≥ ρ1 there exists a time t2 ≥ t1 such that H ∪ V1 ⊆ Xt2 . Inductively, given the
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configuration Xti , with probability ρi(Xti) ≥ ρi there exists a time ti+1 ≥ ti such that

H ∪ V1 ∪ · · · ∪ Vi ⊆ Xti+1
. Since V = H ∪ (

⋃k
i=1 Vi), we obtain

P[X∞ = V ] ≥
n∏

i=1

ρi =
n∏

i=1

(
1− 2−Ω(n1−γ)

)
≥
(
1− 2−Ω(n1−γ)

)n
= 1− 2−Ω(m) ;

as by Lemma 10 we have that ρi = 1− 2−Ω(m) for all i. The desired result follows.

Main Positive Result

We are now ready to prove the main theorem of this section. First, combining Lemma 3,

Lemma 4, Lemma 8 and Lemma 12, we obtain that if r > 1, then the mutants fixate Gn

whp.

Lemma 13. For any fixed ε > 0, for any graph Gn of n vertices and diameter diam(Gn) ≤

n1−ε, there exists a weight function w such that for all r > 1, we have fp(Gw
n , r,U) =

1−O(n−ε/3) and fp(Gw
n , r,T) = 1−O(n−ε/3).

It now remains to show that if r < 1, then the mutants go extinct whp. This is a

direct consequence of the following lemma, which states that for any r ≥ 1, the fixation

probability of a mutant with relative fitness 1/r is upperbounded by one minus the fixation

probability of a mutant with relative fitness r, in the same population.

Lemma 14. For any graph Gn and any weight function w, for all r ≥ 1, we have that

fp(Gw
n , 1/r,U) ≤ 1− fp(Gw

n , r,U).

Proof. Let σ be any irreflexive permutation of V (i.e., σ(u) ̸= u for all u ∈ V ), and

observe that for every vertex u, the probability that a mutant of fitness 1/r arising at u

fixates in Gn is upperbounded by one minus the probability that a mutant of fitness r

arising in σ(u) fixates in Gn. We have

fp(Gw
n , 1/r,U) =

1

n

∑
u

fp(Gw
n , 1/r, u)

≤ 1

n
·
∑
u

(1− fp(Gw
n , r, σ(u)))

=1− 1

n
·
∑
σ(u)

fp(Gw
n , r, u)

=1− fp(Gw
n , r,U)
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A direct consequence of the above lemma is that under uniform initialization, for any

graph family where the fixation probability of advantageous mutants (r > 1) approaches 1,

the fixation probability of disadvantageous mutants (r < 1) approaches zero. Since under

our weight function w temperature initialization coincides with uniform initialization whp,

Lemma 13 and Lemma 14 lead to the following corollary, which is our positive result.

Theorem 5. Let ε > 0 and n0 > 0 be any two fixed constants, and consider any sequence

of unweighted, undirected graphs (Gn)n>0 such that diam(Gn) ≤ n1−ε for all n > n0.

There exists a sequence of weight functions (wn)n>0 such that the graph family G = (Gwn
n )

is a (i) strong uniform, (ii) strong temperature, and (iii) strong convex amplifier.

2.5 Numerical and simulation results

Here we present related numerical and simulation results. Specifically, we illustrate that

even simple graph structures, such as Star graphs and Grids can be turned into strong

amplifiers.
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r=1.1
r=1.05

r=1.2

weighted

unweighted

a b c

Figure 2.4: Almost any topology can be turned into a strong amplifier. We

illustrate our positive result on the topology of a Star (a), a Grid (b), and a Sunflower (c).

The hub is shown in orange, the branches in blue. Thin edges are assigned negligibly small

(or zero) weights. For each graph, we compare the fixation probability of the unweighted

version (lines) and the weighted version (dots) as a function of the population size, N ,

For unweighted graphs, we plot the maximum of the fixation probabilities for uniform

and temperature initialization. For weighted graphs we plot the minimum of the two. A

Sunflower graph consists of a well-mixed population of size n in the center surrounded by

n petals which are local well-mixed populations of size n − 1 or n − 2 each. Each petal

is connected to a unique vertex of the center. Our construction assigns negligibly small

weights to edges within petals. The values plotted are obtained by simulating the process

10 000 times.
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3 Time-probability tradeoff

Several population structures have been identified that alter the fixation probability of

advantageous mutants. Structures that decrease the fixation probability are known as

suppressors of selection and those that increase it are known as amplifiers of selection [7;

34; 58; 47]. However, amplification is usually achieved at the cost of increasing fixation

time compared to the well-mixed population [13; 17; 28; 66]. For example, the star graph

has higher fixation probability but also longer fixation time as compared to the well-mixed

population. There also exist superamplifiers (also known as arbitrarily strong amplifiers

of natural selection) that guarantee fixation of advantageous mutants in the limit of large

population size [53; 54; 55; 48]. But those structures tend to require even longer fixation

times.

We can refer to population structures that decrease the fixation time with respect to

the well-mixed population as accelerators. Both the fixation probability and the fixation

time play an important role in the speed of evolution. Ideally, we prefer a population

structure that is both an amplifier and an accelerator, but all known amplifiers achieve

amplification at the cost of deceleration. In fact, this slowdown can be so prominent that

it outweighs the amplification and leads to longer evolutionary timescales [17].

Here we show that absorption time on any amplifier is asymptotically at least as large

as both the absorption and the fixation time on the well-mixed population. Given this

negative result, we proceed to study the tradeoff between fixation probability and time

more closely. We have computed fixation probabilities and fixation times for a large class

of graphs. While within this class, the well-mixed population is optimal with respect to

fixation time, and the star graph is favorable with respect to fixation probability, there is

a very interesting tradeoff curve between fixation probability and fixation time. In other

words, there exist population structures which provide different tradeoffs between high
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fixation probability and short fixation time. As our main analytical results, we present

population structures that asymptotically achieve fixation probability equal to that of

star graphs and fixation time similar to that of well-mixed populations. Thus, we achieve

amplification with negligible deceleration. Finally, while the above analytical results are

established for large population sizes, we also study evolutionary processes on population

structures of small or intermediate size by numerical simulation. Specifically, we consider

the effective rate of evolution as proposed by Frean, Rainey, and Traulsen [17]. Generally

speaking, the well-mixed population has a high effective rate of evolution if the mutation

rate is high, while the star graph has a high effective rate of evolution if the mutation

rate is very low. We show that for a wide range of intermediate mutation rates, our new

structures achieve higher effective rate of evolution than both the well-mixed population

and the star graph.

3.1 Model

Moran process on graphs. Moran Birth-death process is a discrete-time stochastic

(random) process that models evolutionary dynamics in a spatially structured population.

The population structure is represented by a connected graph G, possibly with weighted

edges and/or self-loops. At all times, each vertex of the graph is occupied by a single

individual that is of one of two types: either a resident or a mutant. The individuals of

one type are considered indistinguishable. Moreover, residents are assigned (normalized)

fitness 1 while the mutants have fitness r. Here we consider advantageous mutants (r >

1). In one step of the process, an individual is selected for reproduction randomly and

proportionally to its fitness. This individual produces an offspring that is a copy of itself.

This offspring then selects one of the adjacent edges proportionally to the edge weight and

travels along that edge to replace the individual at its other endpoint. (If the selected edge

happened to be a self-loop then the offspring replaces the parent and nothing changes.)

These steps continue until the population becomes homogeneous: either all individuals

are mutants (fixation occurred) or they are all residents (extinction occurred). The well-

mixed population is modelled by an unweighted complete graph (without self-loops).

Initialization scheme. We study the situation of a single mutant invading a population

of residents. This initial mutant can appear either spontaneously or during reproduction.
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In the first case, called uniform initialization, the mutant is placed at a vertex chosen

uniformly at random. In the second case, called temperature initialization, we perform

one step of the Moran process in a population that consists entirely of residents and place

the mutant at the vertex that the offspring migrates to. Formally, the mutant is placed

at a random vertex, proportionally to the temperature (or turnover rate) of that vertex.

Here temperature T(v) of a vertex v is defined by

T(v) =
∑

u∈N(v)

w(u, v)∑
v′∈N(u) w(u, v

′)
,

where w(u, v) is the weight of edge between u and v and N(v) is the set of neighbors of

v, that is vertices connected to v by an edge.

Fixation probability and time. Given a graph G and relative fitness advantage r,

let fp(G, r) be the fixation probability of a single mutant under uniform initialization,

and let fpT(G, r) stand for temperature initialization. Similarly, we define CT(G, r) (or

CTT(G, r)) to be the fixation time, that is the expected number of steps of the Moran

process until the mutants reach fixation (conditioning on them doing so). Likewise we

define ET(G, r) (or ETT(G, r)) to be the extinction time and AT(G, r) (or ATT(G, r)) to

be the (unconditional) absorption time.

Amplifiers and superamplifiers. A graph GN with N vertices is called an amplifier

if it increases the fixation probability of any advantageous mutant, as compared to the

Complete graph (that is, fp(GN , r) > fp(KN , r) for any r > 1). A sequence of graphs

(GN)
∞
N=1 of increasing size is called a superamplifier (or arbiterarily strong amplifier) if,

in the limit of large N , it guarantees the fixation of any advantageous mutant (that is,

fp(GN , r) → 1 as N → ∞).

Graphs. We introduce and study the following graphs.

Complete graph. Complete graph KN on N vertices models a well-mixed population.

This case is well understood. In particular, the fixation probability satisfies

fp(KN , r) = fpT(KN , r) =
1− 1/r

1− 1/rN
→ 1− 1/r

for r > 1 as N → ∞ and the (unconditional) absorption time is of the order of Θ(N logN)

(see [8]). In fact, using a standard difference method one can derive that, for r > 1, we
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have AT(KN , r) ≈ r+1
r

·N logN and CT(KN , r) ≈ r+1
r−1 ·N logN . For reference purposes

we present those proofs in Section 3.3.4.

Star graph. Star graph SN consists of one central vertex connected to each of the

remaining N − 1 vertices on the periphery. For large N , it is known that fp(SN , r) →

1−1/r2 and that the absorption and fixation time are of the order of at most O(N2 logN)

and O(N3), respectively [40]. In fact, as a corollary of our results on ε-Balanced bipartite

graph, we show that both the absorption time and the fixation time are of the order

of Θ(N2 logN). The bottom line is that, under uniform initialization, the Star graph

amplifies the fixation probability but at the cost of substantially increasing the fixation

time.

ε-Balanced bipartite graph. For uniform initialization we present a family of graphs

that, in the limit of large population size, achieve the fixation probability of the Star graph

and the fixation time almost as good as the Complete graph. The graphs are complete

bipartite graphs with both parts large but one part asymptotically larger than the other

one. Formally, given N and ε ∈ (0, 1], the ε-Balanced bipartite graph BN,ε is a complete

bipartite graph with parts of size N1−ε and N . That is, there are N1−ε vertices in one

part, N vertices in the other part, and all edges that connect vertices in different parts.

The case ε = 1 corresponds to a Star graph.

Weighted bipartite graphs. For temperature initialization, the Star graph and the ε-

Balanced bipartite graphs fail to amplify. We present another family of weighted graphs

with self-loops that, in the limit of large population size, provide fixation probability

1−1/r2 (the same as Star graph under uniform initialization) and the fixation time almost

as good as the Complete graph. The graphs are obtained by adding self-loops of relatively

large weight to all vertices in the larger part of an ε-Balanced bipartite graph. Formally,

given N and ε ∈ (0, 1), the Weighted bipartite graph WN,ε is a complete bipartite graphs

with one (smaller) part of size N1−ε, one (larger) part of size N , and every vertex of the

larger part having a self-loop of such a weight w that N−ε/2 = N1−ε

w+N1−ε . The case ε = 1 is

closely related to a Looping Star [34].
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3.2 Overview of theoretical results

Here we present the summary of our theoretical results and discuss their significance.

They are all related to the tradeoff between fixation probability and fixation time, under

both uniform and temperature initialization.

First, we prove that no amplifier is asymptotically faster than the Complete graph in

terms of absorption time (recall that AT(KN , r) = Θ(N logN), see Section 3.3.4).

Theorem 6. Fix r > 1. Let G be any graph with N ≥ 2 vertices and let p = fp(G, r) be

the fixation probability of a single mutant under uniform initialization. Then

AT(G, r) ≥ p

r
·N ·HN−1,

where HN−1 = 1
1
+ 1

2
+ · · · + 1

N−1 ≥ logN . In particular, AT(G, r) ≥ p
r
· N logN for an

arbitrary graph G and AT(A, r) ≥ r−1
r2

·N logN for an arbitrary amplifier A.

Second, we give tight results for the fixation time on Bipartite graphs. In particu-

lar, we prove that under uniform initialization, certain ε-Balanced bipartite graphs BN,ε

asymptotically achieve the fixation probability of the Star graph and the fixation time

almost as good as the Complete graph. The analysis of fixation probability is relatively

straightforward. For fixation time, we provide tight lower and upper bounds. We first

present the lower bound that is proportional to N1+ε logN . For the upper bound we then

distinguish two cases: If the size of the smaller part is small, that is N1−ε = o(
√
N),

then the argument is simpler and we get a matching upper bound. If the size of the

smaller part is relatively close to N , the upper bound has an additional factor of N ε. As

a consequence, we can prove the following theorem.

Theorem 7. Fix ε ∈ (0, 1] and r > 1. Let BN,ε be the ε-Balanced bipartite graph. Then

• fp(BN,ε, r) → 1− 1/r2.

– (small center) If ε ∈ (0.5, 1) then there exist constants c1, c2 such that

c1 ·N1+ε logN ≤ AT(BN,ε, r) ≤ c2 ·N1+ε logN.

– (large center) If ε ∈ (0, 0.5) then there exist constants c1, c2 such that

c1 ·N1+ε logN ≤ AT(BN,ε, r) ≤ c2 ·N1+2ε logN.



62

Moreover, the fixation time CT(BN,ε, r) satisfies the same inequalities.

As an immediate corollary, we obtain that for any fixed r > 1, both the absorption

and the fixation time on a Star graph (α = 1) are of the order of Θ(N2 logN). This is in

alignment with earlier results [40; 25].

Third, we prove that under temperature initialization, analogous results can be achieved

using Weighted bipartite graphs WN,ε.

Theorem 8. Fix ε ∈ (0, 1] and r > 1. Let WN,ε be the Weighted bipartite graph. Then

• fp(WN,ε, r) → 1− 1/r2.

• There exist constants c1, c2 such that

c1 ·N1+ε logN ≤ AT(BN,ε, r) ≤ c2 ·N1+ 3
2
ε logN.

Moreover, the fixation time CT(WN,ε, r) satisfies the same inequalities.

We note that the same upper bounds on expected time in Theorems 7 and 8 apply

regardless of the initial configuration of mutants and residents. Thus we also get strong

concentration results: For example, splitting the time into logN stages of length 3 ·

AT(G, r) each, a repeated application of Markov inequality immediately implies that the

absorption time is less than 3 · AT(G, r) · logN with probability at least 1 − 1/3logN ≥

1− 1/N .

Finally, for reference purposes we compute the absorption, fixation, and extinction

times of a single advantageous mutant (r > 1) on a Complete graph, using the standard

difference method. We remark that for the absorption time we also identify the non-

leading terms, up to an error of the order of o(1).

Theorem 9. Fix r > 1 and let KN be the Complete graph on N vertices. Then

AT(KN , r) = (N − 1)HN−1 ·
r + 1

r
+ (N − 1) · log(1− 1/r)− 1

r(r − 1)
+ o(1),

CT(KN , r) = (N − 1)HN−1 ·
r + 1

r − 1
+ (N − 1) · r + 1

r − 1
log(1− 1/r) + o(N),

ET(KN , r) = (N − 1) · log
(

r

r − 1

)
+ o(N).

In particular for r = 1 + s, s > 0 small, we have AT(KN , r) ≈ 2 ·N logN , CT(KN , r) ≈
2
s
·N logN , and ET(KN , r) ≈ 1

s
·N .
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3.3 Proofs

3.3.1 Lower bound on absorption time

Here we show that for r > 1 no family of graphs with fixation probability bounded away

from zero can have asymptotically smaller absorption time than the Complete graphs.

Specifically, no amplifiers can absorb asymptotically faster than the Complete graphs.

Recall that for the Complete graph on N vertices, both the fixation time and the absorp-

tion time is of the order of Θ(N logN) (see Section 3.3.4).

Theorem 6. Fix r > 1. Let G be any graph with N ≥ 2 vertices and let p = fp(G, r) be

the fixation probability of a single mutant under uniform initialization. Then

AT(G, r) ≥ p

r
·N ·HN−1,

where HN−1 = 1
1
+ 1

2
+ · · · + 1

N−1 ≥ logN . In particular, AT(G, r) ≥ p
r
· N logN for an

arbitrary graph G and AT(A, r) ≥ r−1
r2

·N logN for an arbitrary amplifier A.

Proof. Consider a modified Moran process M ′ that is identical with the standard Moran

process, except that if the mutation goes extinct then in the next step we again initialize

a single mutant uniformly at random and continue the process. Clearly, the modified

process M ′ always terminates with the mutants fixating and its expected fixation time is

given by T ′(G, r) = 1
p
· AT(G, r).

Given any subset X of the vertices, let pX be the probability to gain a mutant in

a single step from a configuration consisting of mutants at vertices of X and residents

elsewhere. To gain a mutant, one of the |X| mutants has to be selected for reproduction

and then the offspring has to replace a resident. The probability of the first event alone

equals r|X|
N+(r−1)|X| , hence we get an upper bound

pX ≤ r|X|
N + (r − 1)|X|

≤ r|X|
N

≡ p|X|

that doesn’t depend on X but only on |X|.

Finally, fix k ∈ {1, 2, . . . , N − 1} and observe that any evolutionary trajectory in

M ′ has to, at some point, reach a state with k mutants and gain another mutant from

there. Hence, in expectation, the evolutionary trace spends at least 1
pk

steps in states
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corresponding to configurations with k mutants. By linearity of expectation, summing

over k gives

AT(G, r) = p · T ′(G, r) ≥ p
N−1∑
k=1

N

r · k
=

p

r
·N ·HN−1

as desired.

Remarks on the lower bound. Several remarks are in order.

1. First, we emphasize that the proof applies to all graphs, possibly containing directed

edges, weighted edges, and/or self-loops.

2. Second, we note that the same proof goes through for any initialization scheme S

(with p = fp(G, r) replaced by the fixation probability pS under that initialization

scheme S). Specifically, it applies to temperature initialization and also to schemes

in which the first mutant is initialized to a fixed vertex.

3. Third, we discuss relationship between absorption time and fixation time. Note

that Theorem 6 provides a lower bound on the absorption time AT(G, r) which is

a weighted average of the fixation time CT(G, r) and the extinction time ET(G, r).

Since the evolutionary trajectories leading to extinction are typically shorter than

those leading to fixation, the fixation time tends to be even longer than the ab-

sorption time. In fact, the inequality CT(G, r) > AT(G, r) holds for all undirected

graphs G and all values r > 1 that we tested. On the other hand, there do exist

directed graphs for which the opposite inequality CT(G, r) < AT(G, r) holds. As

an example, consider r = 4 and a graph G consisting of three vertices {u, v1, v2} and

edges {u → v1, u → v2, v1 ↔ v2}. Then we easily check that CT(G, 4) = 3.25 while

AT(G, 4) = 19.25. In fact, in terms of fixation time, this graph G is even slightly

faster than the complete graph K3, as we have CT(K3, 4) = 3 + 4
7
> 3.25.

3.3.2 ε-Balanced bipartite graphs

In this subsection we analyze the ε-Balanced bipartite graph BN,ε. Recall that BN,ε

consists of c = N1−ε vertices in the (smaller) center and N vertices in the outside part,

each two vertices from different parts connected by an edge.

We prove the following theorem.
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Theorem 7. Fix ε ∈ (0, 1] and r > 1. Let BN,ε be the ε-Balanced bipartite graph. Then

• fp(BN,ε, r) → 1− 1/r2.

– (small center) If ε ∈ (0.5, 1) then there exist constants c1, c2 such that

c1 ·N1+ε logN ≤ AT(BN,ε, r) ≤ c2 ·N1+ε logN.

– (large center) If ε ∈ (0, 0.5) then there exist constants c1, c2 such that

c1 ·N1+ε logN ≤ AT(BN,ε, r) ≤ c2 ·N1+2ε logN.

Moreover, the fixation time CT(BN,ε, r) satisfies the same inequalities.

Martingales background

First, we recall the following facts about martingales (see [43]). Fix r > 1. Given a

complete bipartite graph with v vertices at the outside part and c vertices in the center,

the state (configuration) space can be parametrized by the number 0 ≤ i ≤ v of mutants

in the outside part and the number 0 ≤ j ≤ c of mutants in the center. For each state

(i, j), let fp(i, j) be the fixation probability starting from that state. There is a formula

for fp(i, j) which can be computed as follows: Let

hv =
v + cr

vr2 + cr
, hc =

c+ vr

cr2 + vr

and for every state (i, j) define a potential function ϕ(i, j) = hi
v ·hj

c. (Note that ϕ(i+1, j) =

ϕ(i, j) · hv and ϕ(i, j + 1) = ϕ(i, j) · hc.) Then

fp(i, j) =
ϕ(0, 0)− ϕ(i, j)

ϕ(0, 0)− ϕ(v, c)
=

1− ϕ(i, j)

1− ϕ(v, c)
.

For the rest of this section, we will be using these results for c = N1−ε and v = N .

Fixation probability

With the martingales background, the analysis of the fixation probability is relatively

straightforward.

Lemma 15. Fix ε ∈ (0, 1] and r > 1. As N → ∞, we have fp(BN,ε, r) → 1− 1/r2.
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Proof. The original mutant appears at the outside part with probability N/(N+N1−ε) →

1. Since ϕ(1, 0) = hv → 1/r2 and ϕ(v, c) = hv
v · hc

c < hv
v → 0 as N → ∞, we compute

fp(BN,ε, r) =
1− ϕ(1, 0)

1− ϕ(v, c)
→N→∞ 1− 1/r2.

Lower bound on fixation time

Next, we present the lower bounds for the absorption and fixation time. The idea is

to consider the expected time tk to gain one mutant in the outside part, if there are

currently k mutants there. By bounding those times and summing up we obtain the

following lemma.

Lemma 16. Fix ε ∈ (0, 1]. Then

AT(BN,ε, r) = Ω(N1+ε logN), CT(BN,ε, r) = Ω(N1+ε logN).

Proof. For the absorption time, we proceed as in the proof of Theorem 6, that is, we restart

the process each time the mutants go extinct. The modified process M ′ always terminates

with the mutants fixating and its expected fixation time is given by T ′(BN,ε, r) =
1

fp(BN,ε,r)
·

AT(BN,ε, r). Consider a state with 1 ≤ k ≤ N − 1 mutants in the outside part and

0 ≤ j ≤ c mutants at the center. Let F = N + c + (r − 1)(j + k) > N be the total

fitness of the population. The probability that in the next step we gain one mutant in

the outside part equals

r · j
F

· N − k

N
≤ r · c

N2
· (N − k) ≡ pk.

Since pk is independent of j, the expected time to reach some state with k + 1 mutants,

starting in any state with k mutants in the outside part, is at least

1

pk
=

1

r
· N

2

c
· 1

N − k
≡ tk.

In order to fixate, we need to pass through a state with k mutants in the outside part,

for each k = 1, . . . , N − 1. By linearity of expectation,

AT(BN,ε, r) = fp(BN,ε, r) · T ′(BN,ε, r)

≥ fp(BN,ε, r) ·
N−1∑
k=1

1

r
· N

2

c
· 1

N − k
→ r2 − 1

r3
·N1+ε ·

N−1∑
k=1

1

k
= Θ(N1+ε logN).
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For the fixation time, we perform a standard construction to obtain a different modified

processM ′′ that only includes the trajectories that lead to fixation. Specifically, we remove

the state (0, 0) (the only state s with fp(s) = 0) and, for any two other states s and t, we

renormalize the transition probability p(s → t) to a new value p′′(s → t) = p(s → t) · fp(t)
fp(s)

.

It is a standard result that in this way we have constructed a Markov chain with only

one absorbing state whose absorption time is equal to the fixation time of the original

process, that is, CT(BN,ε, r) = AT′′(BN,ε, r). To get a lower bound for AT′′(BN,ε, r), we

proceed as before.

Due to the renormalization, each pk (k = 1, . . . , N − 1) gets multiplied by a ratio of

two fixation probabilities that can be upper bounded by

maxj{fp(k + 1, j)}
minj{fp(k, j)}

.

Note that for k ≥ 1 the denominator is at least a constant (recall that fp(1, 0) → 1− 1/r2

for large N), hence the ratio can be further upper bounded by 1/c0 for any c0 < 1− 1/r2

and N → ∞. Hence t′′k = 1/p′′k ≥ c0/pk. This gives

CT(BN,ε, r) = AT′′(BN,ε, r) ≥
N−1∑
k=1

t′′k ≥ c0

N−1∑
k=1

1

r
· N

2

c
· 1

N − k
=

c0
r
·N1+ε ·

N−1∑
k=1

1

k

= Θ(N1+ε logN)

as desired.

Upper bound: “small” center

For the upper bound, we distinguish two cases. First, we assume that ε ∈ (1/2, 1], that

is c = o(
√
N).

The idea is to again work with the restarted process and moreover to split the set of

states into sections as follows: section Si consists of all the states with i mutants in the

outside part. Then we consider a Markov chain M′ whose nodes are the sections Si. By

construction, the only transitions with nonzero probability are of the form Si → Si±1 or

Si → Si. In the following sequence of Lemmas, we provide upper bounds for the expected

number of transitions from Si+1 to Si and for the expected number of transitions within
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each Si. Summing up, we obtain an upper bound for the fixation time in the original

Markov chain.

Formally, fix i and let

• fmax = maxj{fp(i, j)} be the maximum fixation probability from a state in Si.

Clearly, fmax is attained in state (i, c).

• gmin = minj{fp(i+ 1, j)} be the minimum fixation probability from a state in Si+1.

Clearly, gmin is attained in state (i+ 1, 0).

• q = minj{qj} where qj is the probability that an evolutionary trajectory starting at

(i+ 1, j) fixates at (v, c) before visiting any state in Si.

First, since ε > 1/2 we have the following:

Lemma 17. hc
c →N→∞ 1 and fmax < gmin (for large enough N)

Proof. We have

hc
c ≈

(
1− r − 1/r

N ε

)(N1−ε)

For N → ∞ we have N ε → ∞. If the parenthesis was raised to power N ε, the limit

would have been exp(−(r − 1/r)), a constant. Since N1−ε = o(N ε) for ε > 1/2, we have

limN→∞ hc
c = 1. Hence hc

c > hv, then ϕ(i, c) = hc
c · ϕ(i, 0) > hv · ϕ(i, 0) = ϕ(i + 1, 0) and

thus fmax = fp(i, c) < fp(i+ 1, 0) = gmin as desired.

We aim to bound q from below and use it to bound the expected number X of tran-

sitions from (any state in) Si+1 to (any state in) Si from above.

Lemma 18. q ≥ gmin−fmax

1−fmax

Proof. Let’s run an evolutionary trajectory from some state (i + 1, j) in Si+1. The tra-

jectory can’t go extinct without hitting Si. Conditioning on if the trajectory first fixates

or hits Si, we can write

gmin ≤ fp(i+ 1, j) ≤ qj · 1 + (1− qj) · fmax

which rewrites as

qj ≥
gmin − fmax

1− fmax

.

This is true for every j, hence it is true for q = minj{qj} too.
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Let X be a random variable counting the transitions from any state in Si+1 to any

state in Si, starting from any state.

Lemma 19. E[X] ≤ 1−q
q

= 1−gmin

gmin−fmax
.

Proof. Any two transitions from section Si+1 to section Si are necessarily separated by

an intermediate visit to section Si+1. Any time we are in section Si+1, with probability

at least q we fixate before hitting section Si again. Hence

E[X] ≤ q · 0 + (1− q)(1 + E[X]).

Rewriting and using the bound for q we obtain

E[X] ≤ 1− q

q
=

1

q
− 1 =

1− fmax

gmin − fmax

− 1 =
1− gmin

gmin − fmax

.

Rewriting gmin and fmax in terms of hv, hc we deduce that E[X] is constant.

Lemma 20. E[X] ≤ 1
r2−1 (for large enough N)

Proof. Recall that fp(i, j) = 1−ϕ(i,j)
d

where d = 1−ϕ(v, c) doesn’t depend on i, j. Plugging

this in the bound from Lemma 19 we get

E[X] ≤ 1− gmin

gmin − fmax

=
1− 1−ϕ(i+1,0)

d
1−ϕ(i+1,0)

d
− 1−ϕ(i,c)

d

=
d− (1− ϕ(i+ 1, 0))

1− ϕ(i+ 1, 0)− (1− ϕ(i, c))
<

ϕ(i+ 1, 0)

ϕ(i, c)− ϕ(i+ 1, 0)
.

Using the definition ϕ(i, j) = hi
vh

j
c and dividing by hi

v this can be further rewritten as

E[X] <
ϕ(i+ 1, 0)

ϕ(i, c)− ϕ(i+ 1, 0)
=

hv

hc
c − hv

→N→∞
1/r2

1− 1/r2

as desired.

Let E[Li] be the expected number of “looping” transitions of the form Si → Si before

a transition of the form Si → Si±1 occurs (or the process reaches an absorbing state).

The following lemma bounds E[Li] from above.

Lemma 21. For i = 1, 2, . . . , N − 1 we have E[Li] ≤ r·N(N+c)
c·min{i,N−i} − 1. Moreover, E[L0] ≤

r(N + c)− 1 and E[LN ] ≤ r(N + c)− 1.
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Proof. Crudely (not caring about r). First, let i = 1, . . . , N − 1. We pick a vertex in the

center with probability at least 1·c
r(N+c)

. No matter its type, there are at least min{i, N−i}

vertices of the other type at the outside part. Hence with probability

p ≥ 1 · c
r(N + c)

· min{i, N − i}
N

we transition to section Si±1 in one step. As before, we get the result from E[Li] ≤ 1
p
− 1.

Second, if i = 0 or i = N and we are not in an absorbing state then there exists a vertex

in the center whose type is different to the type of all vertices in the outside part. Hence

p ≥ 1
r(N+c)

and we conclude as in the first case.

We are ready to sum those contributions up.

Lemma 22. If ε ∈ (1/2, 1], c = N1−ε = o(
√
N) and r > 1 then

AT(BN,ε, r) = O

(
N2

c
· logN

)
= O(N1+ε logN).

Proof. As in the proof of Theorem 6 we restart the process anytime the mutants fixate.

Consider the one-dimensional Markov chain M′ whose vertices are the sections Si, i =

0, . . . , N . Fix i ∈ {1, . . . , N − 1} and let f(r) = 1
r2−1 . On average, there are at most f(r)

transitions Si+1 → Si. Also, on average there are at most f(r) transitions Si → Si−1,

hence there are at most f(r) + 1 transitions Si−1 → Si for a total of at most 2f(r) + 1

transitions from outside of Si to Si. Similarly, on average there are at most f(r) transitions

into S0 and at most f(r) + 1 transitions into SN . Every time there is a transition into

Si, there are on average E[Li] transitions within Si. By linearity of expectation, the total

expected number of transitions is at most

AT(BN,ε, r) = fp(BN,ε, r) · T ′(BN,ε, r)

≤ fp(BN,ε, r) ·

(
(2f(r) + 1) · r(N + c) +

N−1∑
i=1

(2f(r) + 1)(1 + E[Li])

)

= fp(BN,ε, r) · (2f(r) + 1) · r(N + c) ·

(
1 +

N

c

N−1∑
i=1

1

min{i, N − i}

)

= Θ

(
N2

c
· logN

)
,

where in the inequality we first combined the terms for S0 and SN . The last equality

follows from the sum being Θ(2 log(N/2)) = Θ(logN) and from c = o(N).
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Upper bound: “large” center

Note that the argument used for small center fails for ε ≤ 1/2 because the difference

gmin − fmax becomes zero or even negative. Indeed, for ε = 1/2 we have hc
c →N→∞

exp(−(r − 1/r)) < 1/r2 and for ε < 1/2 the inequality is even stricter. However an

analogous argument can be made to work if we split the state space into different “tilted”

sections, taking ε into account. The idea of the proof is that we fix ε ∈ (0, 1/2), consider

large N , and look at a complete bipartite graph BN,ε. We assume that r is such that there

exists an integer t called “tilt” satisfying ht
c = hv. This assumption guarantees that the

states (i, j + t) and (i + 1, j) are assigned exactly the same potential. We can then split

the state (configuration) space into Θ(N) sections where each section is not a vertical

line but a set of c states that looks like a line tilted with slope −t (see figure). We then

proceed as before, providing an upper bound for the number of transitions across sections

and within sections. The result follows by summing up.

0 1 2 v. . .

c

0

1

2

...

Sk

Figure 3.1: Tilted sections of BN,ε. For ε ∈ (0, 1/2) we split the state (configuration) space into

Θ(N) “tilted” sections Sk. Here the tilt is t = 2. The maximum potential within Sk is attained at any

thick black vertex, the minimum potential within Sk+1 is attained at any thick grey vertex.

In the rest of the section we formalize this idea. First, we define the (tilted) sections.

Let s = v + ⌊c/t⌋ and for k = 0, . . . , s let

Sk = {(i, j) : i+ ⌊j/t⌋ = k} .

As before, we fix k and define

• fmax = max{fp(i, j) : (i, j) ∈ Sk},

• gmin = min{fp(i, j) : (i, j) ∈ Sk+1}, and
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• q = min(i,j)∈Sk+1
{q(i,j)} where q(i,j) is the probability that an evolutionary trajectory

starting at state (i, j) belonging to Sk+1 fixates at (v, c) before visiting any state in

Sk.

Clearly, fmax is attained for any “top” state of Sk within its column (possibly not in the

“top” row). Similarly, gmin is attained in state “bottom” state of Sk+1 (possibly not in

the “bottom” row). Note that by construction, those two states are assigned potentials

that differ by a factor of hc.

As before, let X be a random variable counting the transitions from any state in Sk+1

to any state in Sk, starting from any state. The following lemma bounds E[X] from above.

Note that this time the bound is super-constant.

Lemma 23. E[X] ≤ r
r2−1 ·N

ε (for large N)

Proof. Note that Lemma 18 and Lemma 19 are valid for tilted sections too. Let (i, j) be

some state in Sk for which the value fmax is attained. Then gmin is attained at a state

whose potential is equal to hc · ϕ(i, j). We continue as in the proof of Lemma 20 to get

E[X] ≤ 1− gmin

gmin − fmax

=
hc · ϕ(i, j)− ϕ(v, c)

ϕ(i, j)− hc · ϕ(i, j)
<

hc

1− hc

.

Since for large N we have hc ≈ 1− (1−1/r)/N ε, the right-hand side can be approximated

as

hc

1− hc

<
1

1− hc

=
N ε

r − 1/r
=

r

r2 − 1
·N ε.

It remains to bound the expected number E[Lk] of the “looping” transitions of the

form Sk → Sk before a transition of the form Sk → Sk±1 occurs. This is done as before,

observing that any two states that differ only in the number of mutants in the outside

part of the graph always lie in different sections. Hence Lemma 21 holds.

Now we are ready ti prove the last inequality in Theorem 7.

Lemma 24. If ε ∈ (0, 1/2) then

AT(BN,ε, r) = O(N1+2ε logN).



73

Proof. As before, let f(r) = r
r2−1 · N ε. By linearity of expectation, the total expected

number of transitions is

AT(BN,ε, r) ≤ fp(BN,ε, r) ·

(
(2f(r) + 1) · r(N + c) +

N−1∑
i=1

(2f(r) + 1)(1 + E[Li])

)

= fp(BN,ε, r) · (2f(r) + 1) · r(N + c) ·

(
1 +

N

c

N−1∑
i=1

1

min{i, N − i}

)

= O

(
N ε ·N · N

c
· logN

)
= O(N1+2ε logN)

and the result follows.

Finally, we observe that an upper bound on AT(BN,ε, r) immediately implies an asymp-

totically matching upper bound on CT(BN,ε, r).

Lemma 25. Fix r > 1 and ε > 0. If AT(BN,ε, r) = O(Nα logN) then CT(BN,ε, r) =

O(Nα logN)

Proof. Since the absorption time is a weighted average of the fixation time and the ex-

tinction time, we have

AT(BN,ε, r) = fp(BN,ε, r) · CT(BN,ε, r) + (1− fp(BN,ε, r)) · ET(BN,ε, r))

≥ fp(BN,ε, r) · CT(BN,ε, r)

Since fp(BN,ε, r) → 1 − 1/r2 as N → ∞ and AT(BN,ε, r) = O(Nα logN), the result

follows.

Altogether, Lemmas 15, 16, 22, 24 and 25 prove all the statements of Theorem 7.

3.3.3 Weighted bipartite graphs

In this section we analyze the Weighted bipartite graphs WN,ε under temperature initial-

ization. Recall that WN,ε is a complete bipartite graph with one (smaller) part of size

c = N1−ε, one (larger) part of size N , and every vertex of the larger part having a self-loop

of such a weight w that N−ε/2 = N1−ε

w+N1−ε .

We prove the following theorem.

Theorem 8. Fix ε ∈ (0, 1) and r > 1. Let WN,ε be the Weighted bipartite graph. Then
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• fp(WN,ε, r) → 1− 1/r2.

• There exist constants c1, c2 such that

c1 ·N1+ε logN ≤ AT(BN,ε, r) ≤ c2 ·N1+ 3
2
ε logN.

Moreover, the fixation time CT(BN,ε, r) satisfies the same inequalities.

Martingales for Weighted bipartite graphs

First, we recall more martingales background.

Fix r > 1. Given integers v, c, and a real number q ∈ (0, 1), let W (c, v, q) be a

Weighted complete bipartite graph with c vertices in the smaller part (center) and v

vertices at the larger (outside) part, each of them with an extra self-loop of such weight

w that q = c
w+c

is the probability that when a vertex in the larger part is selected for

reproduction, its offspring replaces one of the vertices in the smaller part (as opposed to

replacing its parent via the self-loop). Then, as with the unweighted complete bipartite

graphs, the state space can be parametrized by the number 0 ≤ i ≤ v of mutants in

the outside part and the number 0 ≤ j ≤ c of mutants in the center and the fixation

probabilities from all the states can be computed similarly to above, with v replaced by

v · q.

Namely, let

hv =
qv + cr

qvr2 + cr
, hc =

c+ qvr

cr2 + qvr

and for every state (i, j) of i mutants in the outside part and j mutants in the center,

define a potential function ϕ(i, j) = hi
v · hj

c. Then we easily check the fixation probability

from a state (i, j) is given by

fp(i, j) =
ϕ(0, 0)− ϕ(i, j)

ϕ(0, 0)− ϕ(v, c)
=

1− ϕ(i, j)

1− ϕ(v, c)
.

Fixation probability

With the extra martingales background, the analysis of the fixation probability is again

relatively straightforward.

Lemma 26. fpT(WN,ε, r) → 1− 1/r2.
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Proof. The first mutant is introduced in the center with probability proportional to q · v

and to the outside part with probability proportional to c + (1 − q)v. Since q = o(1), it

is introduced to the outside part with high probability. The fixation probability fp(1, 0)

starting from a state with a single mutant in the outside part satisfies

fp(1, 0) =
1− ϕ(1, 0)

1− ϕ(v, c)
=

1− hv

1− hv
vh

c
c

.

Since hv ≈ 1
r2

and hv
v → 0 as N → ∞, we have fp(1, 0) → 1− 1/r2.

Fixation time

The arguments for fixation time are direct translations of arguments for (unweighted)

ε-Balanced bipartite graphs (see Section 3.3.2). For the lower bound, Lemma 16 still

applies. For the upper bound, we proceed analogously.

Lemma 27. If ε ∈ (0, 1) and r > 1 then TT(WN,ε, r) = O(N1+ 3
2
ε logN).

Proof. Fixing k and considering the section Sk, we denote by X the expected number of

transitions from any state in Sk+1 to any state in Sk. As in Lemmas 20 and 23 we get

E[X] ≤ hc

1− hc

= Θ(N ε/2).

Lemma 21 then yields

TT(WN,ε) = O

(
N ε/2 ·N · N

c
· logN

)
= O(N1+ 3

2
ε logN).

Altogether, Lemmas 16, 25, 26 and 27 prove all the statements of Theorem 8

3.3.4 Time on Complete graph

For reference purposes we compute the absorption, fixation, and extinction times of a

single advantageous mutant (r > 1) on a Complete graph, using the standard difference

method.
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Theorem 9. Fix r > 1 and let KN be the Complete graph on N vertices. Then

AT(KN , r) = (N − 1)HN−1 ·
r + 1

r
+ (N − 1) · log(1− 1/r)− 1

r(r − 1)
+ o(1),

CT(KN , r) = (N − 1)HN−1 ·
r + 1

r − 1
+ (N − 1) · r + 1

r − 1
log(1− 1/r) + o(N),

ET(KN , r) = (N − 1) · log
(

r

r − 1

)
+ o(N).

In particular for r = 1 + s, s > 0 small, we have AT(KN , r) ≈ 2 ·N logN , CT(KN , r) ≈
2
s
·N logN , and ET(KN , r) ≈ 1

s
·N .

Proof. First, we compute the absorption time, then the fixation time and finally the

extinction time.

Absorption time. Fix N and r and for k = 0, . . . , N let Tk be the expected absorption

time from a state with k mutants. Clearly T0 = TN = 0 and for k = 1, . . . , N − 1 we have

Tk = 1 + p(k, k)Tk + p(k, k − 1)Tk−1 + p(k, k + 1)Tk+1,

where p(i, j) is the transition probability from a state with i mutants to a state with j

mutants. Specifically, we have

p(k, k − 1) =
N − k

N + (r − 1)k
· k

N − 1
. and p(k, k + 1) =

r · k
N + (r − 1)k

· N − k

N − 1
.

Plugging in those values of p(i, j), the above equation can be rewritten as

Tk+1 − Tk =
1

r
(Tk − Tk−1)−

(
N − 1

rk
+

N − 1

N − k

)
.

Setting ∆k ≡ Tk − Tk−1 and xk =
N−1
rk

+ N−1
N−k this further rewrites as

∆k+1 =
1

r
∆k − xk.

Specifically, we have ∆1 = T1 − T0 = T1 and ∆1 + · · ·+∆N = TN − T0 = 0. Let’s write

∆2 =
1

r
∆1 − x1, (1)

∆3 =
1

r
∆2 − x2, (2)

∆4 =
1

r
∆3 − x3, (3)

. . .

∆N =
1

r
∆N−1 − xN−1, (N − 1)
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We aim to express each ∆k in terms of ∆1 only. Summing up 1
r
(1) + (2) gives

∆3 =
1

r2
∆1 −

(
x2 +

1

r
x1

)
Similarly, summing up 1

r2
(1) + 1

r
(2) + (3) gives

∆4 =
1

r3
∆1 −

(
x3 +

1

r
x2 +

1

r2
x1

)
and similarly all the way up to

∆N =
1

rN−1
∆1 −

(
xN−1 +

1

r
xN−2 + · · ·+ 1

rN−2
x1

)
.

Summing up all of them, together with an extra equation ∆1 = ∆1, we get

0 = ∆1 + · · ·+∆N

= ∆1

(
1 + · · ·+ 1

rN−1

)
−
(
x1(1 + · · ·+ 1/rN−2) + x2(1 + · · ·+ 1/rN−3) + · · ·+ xN−1 · 1

)
and in turn

∆1 =
1− 1/r

1− 1/rN
· x1(1− 1/rN−1) + x2(1− 1/rN−2) + · · ·+ xN−1(1− 1/r)

1− 1/r

=
1

1− 1/rN

(N−1∑
k=1

xk  
A

−
N−1∑
k=1

xk

rN−k  
B

)
.

For A we easily get A = r+1
r
(N − 1)HN−1. For B, we plug in xk = N−1

rk
+ N−1

N−k , split

B = B1 +B2 and separately compute the sums using a well-known limit

B2 = (N − 1)
N−1∑
i=1

1

N − k
· 1

rN−k

= (N − 1)
(
log(1− 1/r) +O(1/rN)

)
→ (N − 1) log(1− 1/r) + o(1)

and an approximation

B1 =
1

r

N−1∑
k=1

N − 1

N − k

1

rk
=

1

r

N−1∑
k=1

1

rk
+ E(N) =

1

r(r − 1)
+ o(1)

whose error term

E(N) =
N−1∑
k=1

k − 1

N − k
· 1

rk

tends to 0, because the sum S1 over the first 3
√
N terms satisfies

S1 ≤
3
√
N ·

3
√
N

N − 3
√
N

· 1
r
<

1
3
√
N

· 1
r
→ 0
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and the sum S2 of the remaining terms satisfies

S2 ≤ (N − 3
√
N) · N

1
· 1

r
3√N

→ 0.

This concludes the proof of the absorption time.

Fixation time. We proceed similarly.

As before, we fixN and r and for k = 1, . . . , N we let CTk be the expected (conditional)

fixation time from a state with k mutants (for k = 0 we define CT0 = 0). Then CTN = 0

and for k = 1, . . . , N − 1 we have

fpk CTk = fpk +p(k, k) · fpk CTk +p(k, k − 1) · fpk−1 CTk−1 +p(k, k + 1) · fpk+1 CTk+1,

where fpi =
1−1/ri
1−1/rN are the fixation probabilities and p(i, j) are the transition probabilities.

Setting ∆k ≡ fpk CTk − fpk−1 CTk−1 and xk ≡ fpk
p(k,k+1)

this can be rewritten as

∆k+1 =
1

r
∆k − xk.

Specifically, we have ∆1 = fp1 ·CT1 − fp0 ·CT0 = fp1 ·CT1 and

∆1 + · · ·+∆N = fpN ·CTN − fp0 ·CT0 = 0− 0 = 0.

As before, we obtain

(1− 1/rN) ·∆1 =
N−1∑
k=1

xk  
A

−
N−1∑
k=1

xk

rN−k  
B

.

This time, p(k, k + 1) = rk
N+(r−1)k · N−k

N−1 and thus

xk =
fpk

p(k, k + 1)
=

1− 1/rk

1− 1/rN
·
(
r − 1

r
+

N

rk

)
· N − 1

N − k

and

A =
N−1∑
k=1

xk =
N − 1

1− 1/rN
·
N−1∑
k=1

(1− 1/rk) ·
(

1

N − k
+

1

rk

)
.

Multiplying out the two parentheses we get

X ≡
N−1∑
k=1

1

N − k
+

1

rk
= (1 + 1/r) ·HN−1

and

Y ≡
N−1∑
k=1

1

rk(N − k)
→ 0, Z ≡

N−1∑
k=1

1

rk · rk
→ 1

r
log(1− 1/r).
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Hence

A =
N − 1

1− 1/rN
· (X + Y +Z) = (1+ 1/r) · (N − 1)HN−1 +

1

r
log(1− 1/r) · (N − 1)+ o(N).

We proceed with B analogously. This time, the only combination that survives is

N−1∑
k=1

1

rN−k
· 1

N − k
→ log(1− 1/r),

hence B = log(1− 1/r) · (N − 1) + o(N).

In total, we get

(1− 1/rN) · 1− 1/r

1− 1/rN
· CT1 = (1− 1/rN) ·∆1 = A+B

=
r + 1

r
· (N − 1)HN−1 +

r + 1

r
log(1− 1/r) · (N − 1) + o(N)

and finally the desired

CT(N, r) = CT1 =
r + 1

r − 1
· (N − 1)HN−1 +

r + 1

r − 1
log(1− 1/r) · (N − 1) + o(N).

Extinction time. A formula for the extinction time follows easily from the absorption

time and the fixation time.

It suffices to note that AT1 = fp1 ·T1 + (1− fp1) · ET1 and plug in the expressions for

AT1 and T1. The N logN term cancels out and we are left with

ET1 = − log(1− 1/r) · (N − 1) + o(N).

3.4 Numerical and simulation results

Here we present related numerical and simulation results. First we consider uniform

initialization. We show fixation probability and fixation time for all undirected graphs on

N = 8 vertices (see Figure 3.2) and for selected graphs of size N = 100 (see Figure 3.3).

Then we do the same for temperature initialization (see Figures 3.4 and 3.5). The results

are robust with respect to the selection parameter r (see Figure 3.6). Next, we focus

on ε-Balanced graphs and illustrate that as N → ∞, their fixation probability tends

to 1 − 1/r2 for any ε > 0 (see Figure 3.6), whereas the fixation time seems to scale as

Θ(N1+ε · logN) (see Figure 3.8). Finally, we illustrate that, in terms of the effective

rate of evolution, ε-Balanced graphs and ε-Weighted bipartite graphs perform well under

uniform and temperature initialization, respectively.
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Pare
to

fro
nt

N = 8

Figure 3.2: Fixation probability and time under uniform initialization. Numer-

ical solutions for all 11,117 undirected connected graphs of size N = 8. Each graph is

represented by a dot and color corresponds to the number of its edges. The x- and y-

coordinates show the fixation probability and the fixation time for a single mutant with

relative fitness r = 1.1, under uniform initialization. The graphs to the right of the com-

plete graph are amplifiers of selection: they increase the fixation probability. Any graph

below the complete graph would be an accelerator of selection: it would decrease the fix-

ation time. Graphs close to the bottom right corner provide good trade-off between high

fixation probability and short fixation time. All the values are computed by numerically

solving large systems of linear equations (see e.g. [27]). See Figure 3.6 for other r values.
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Figure 3.3: ε-Balanced bipartite graphs. a, An ε-Balanced bipartite graph BN,ε is

a complete bipartite graph with N vertices in the larger part and N1−ε vertices in the

smaller part. Here N = 8 and ε = 1/3. We prove that for large N , the ε-Balanced

bipartite graphs achieve the fixation probability of a star and, for ε small, approach the

fixation time of the complete graph (see Figures 3.7 and 3.8). b, In general, bipartite

graphs provide great trade-offs between high fixation probability and short fixation time.

Comparison is with selected graphs of size N = 100 such as Trees (100×), random Erdős–

Renyi graphs (100×, p = 0.03), star graphs with additional 10, 30, 50, 100 random edges

(10× each), and cycle graphs with additional 1, 3, 5, 10 random edges (5× each). The

values were obtained by simulating the Moran process 105 times. c, Star graph with

several random edges. d, Cycle graph with several random edges.
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N = 8

Figure 3.4: Fixation probability and time under temperature initialization. Nu-

merical solutions for all undirected connected graphs of size N = 8, under temperature

initialization (r = 1.1). There are no amplifiers and no (strict) accelerators. By the

isothermal theorem [7], all the regular graphs achieve the same fixation probability as the

complete graph.
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Figure 3.5: ε-Weighted bipartite graphs. a, An ε-Weighted bipartite graph WN,ε is

obtained by adding self-loops with weight w
.
= N1−ε/2 to all vertices in the larger part of

an ε-Balanced bipartite graph. Here N = 8 and ε = 1/3. We prove that for large N , the

ε-Weighted bipartite graphs improve the fixation probability to 1− 1/r2 and, for ε small,

approach the fixation time of the complete graph. b, Computer simulations for selected

graphs of size N = 100 (as in Figure 3.3b). It is known than among unweighted graphs,

only a very limited amplification can be achieved [48]. ε-Weighted bipartite graphs (with

self-loops of varying weight) overcome this limitation and provide trade-offs between high

fixation probability and short fixation time.
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N = 8 N = 8

Uniform initialization Temperature initialization

Figure 3.6: Fixation probability and time under for other r values. Similar data as

in Figures 3.2 and 3.4 for varying r ∈ {1, 1.01, 1.05, 1.1}, under a uniform or b temperature

initialization. Under uniform initialization, the fixation probability of a neutral mutant

equals 1/N , independent of the graph structure. As r approaches 1, the point cloud gets

closer to a vertical line.
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Figure 3.7: Fixation probability on bipartite graphs BN,ε. We fix r = 2 and consider

the ε-Balanced bipartite graphs for ε = 1 (i.e. a star) and ε ∈ {0.5, 0.33, 0.25, 0.2}. The

dots are exact values of the fixation probability under uniform initialization, computed

by numerically solving large systems of linear equations. The figure illustrates that the

fixation probability tends to 1− 1/r2 for any positive ε > 0.
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Figure 3.8: Fixation time for Bn,ε is proportional to n1+ε log n. We fix r = 2 and

consider the ε-Balanced bipartite graphs Bn,ε for ε ∈ {0.5, 0.33, 0.2, 0.1} and for n up

to 500. The dots are exact numerical solutions, the lines are the best fits. The figure

confirms that the fixation time T (Bn,ε, r) is proportional to n1+ε log n for any ε > 0.
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Uniform initialization

Temperature initialization

Star Completeε-Balanced

Completeε-Weighted

N = 100

N = 100

,

,,

,

Figure 3.9: Fig. 4. Effective rate of evolution. The effective rate of evolution depends

on the population size, N , the mutation rate, µ, and the population structure. For

uniform initialization, we compare five different population structures: the complete graph

(blue), ε-Balanced graphs with ε ∈ {0.1, 0.25, 0.5} (orange, green, red), and the star graph

(purple), always showing the relative rate of evolution with respect to the complete graph.

a, We fix N = 100, r = 1.1 and vary µ = 10−7, . . . , 100. The complete graph has a higher

effective rate of evolution if the mutation rate is high (µ > 10−3) and star is favourable if

the mutation rate is low (µ < 3 · 10−6). In the intermediate regime, suitable ε-Balanced

graphs outperform both of them. b, We fix r = 1.1 and N · µ ∈ {10−2, 10−3, 10−4} and

vary N = 10, 20, . . . , 500. The star is favourable if mutations are rare (N · µ = 10−4 and

N small). Otherwise, suitable ε-Balanced graphs are more efficient. c, d Analogous data

for temperature initialization. This time we compare the complete graph (blue) and the

star (purple) with ε-Weighted bipartite graphs for ε ∈ {0.25, 0.5, 1} (orange, green, red).

The complete graph dominates if mutations are common (N · µ = 10−2). In other cases,

ε-Weighted bipartite graphs are preferred. The star is not an amplifier for temperature

initialization.
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4 Amplification under death-Birth updating

Evolutionary graph theory represents population structure of size N by a graph (network)

GN [7; 19; 20; 21; 22; 23]: each individual occupies a vertex, and neighboring vertices mark

sites of spatial proximity (see Fig. 4.1a). Mutant spread must respect the structure, in

that the offspring of a reproducing individual in one vertex can only move to a neighboring

vertex. The Moran process on graphs has two distinct variants:

• In the Birth-death Moran process, the death event is conditioned on the Birth event.

That is, first an individual is chosen for reproduction and then its offspring replaces

a random neighbor (see Fig. 4.1b).

• In the death-Birth Moran process, the Birth event is conditioned on the death event.

That is, first an individual is chosen for death and then its neighbors compete to

fill the vacancy with their offspring (see Fig. 4.1c).

a b Birth-death c death-Birth

Figure 4.1: Moran process on graphs. a, The spatial structure is represented by a

graph. Each vertex represents a site and is occupied either by a resident (red) with fitness

1 or by a mutant (blue) with relative fitness r > 1. Each edge can be one-way (arrow)

or two-way. b, In each step of the Birth-death process, one individual is sampled for

reproduction proportionally to fitness, and then its offspring replaces a random neighbor.

c, In each step of the death-Birth process, a random individual dies and then it is replaced

by a neighbor sampled proportionally to fitness.
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The fixation probability of the invading mutant is a function of its fitness r, as well

as the graph GN . In alignment with most of the literature, we focus on advantageous

mutants, where r > 1.

The well-mixed population of size N is represented by a complete graph KN . In

the Birth-death Moran process, the fixation probability in the well-mixed population is

fp(KN , r) = (1−1/r)/(1−1/rN) [3]. Under death-Birth updating, the fixation probability

is fpdB(KN , r) = (1 − 1/N) · (1 − 1/r)/(1 − 1/rN−1) [41]. Specifically, as N → ∞, both

the expressions converge to 1− 1/r.

Amplifiers of natural selection are graphs that increase the fixation probability of the

advantageous mutants compared to the well-mixed population [34; 7]. Under Birth-death

updating, many amplifying families of graphs have been constructed, such as the Star

graph [24; 40; 25], the Complete Bipartite graph [43] and the Comet graph [47], as well

as families that guarantee fixation in the limit of large population size [7; 54; 53; 48;

55]. Extensive computer simulations on small populations have also shown that many

graphs have amplifying properties [66; 58; 26]. While the above results hold for the Birth-

death Moran process, no amplifiers are known for the death-Birth Moran process, and

computer-assisted search has found that, under death-Birth updating, most small graphs

suppress the fixation probability rather than amplifying it [58].

Here we prove two negative results on the existence of amplifiers under death-Birth

updating. Our first result states that the fixation probability in any graph is bounded by

1−1/(r+1). Hence, even if amplifiers do exist, they can provide only limited amplification.

In particular, there are no families of graphs that would guarantee fixation in the limit

of large population size. Our second result states that for any graph GN , there exists a

threshold r∗ such that for all r ≥ r∗, the fixation probability is bounded by fpdB(r,KN).

Hence, even if some graphs amplify for certain values of r, their amplifying property

is necessarily transient, and lost when the mutant fitness advantage r becomes large

enough. We note that a companion work [59] identifies transient amplifiers among graphs

that have weighted edges. Finally, we also study the mixed δ-death-Birth Moran process,

for δ ∈ [0, 1], under which death-Birth and Birth-death updates happen with rate δ and

1− δ, respectively [33]. We establish analogous negative results for mixed δ-updating, for

any fixed δ > 0. Note that as δ vanishes (δ → 0), we approach (pure) Birth-death Moran

process for which both universal and super amplifiers exist. We find that some of those



89

amplifiers are less sensitive to variations in δ than other. In particular, certain bipartite

structures achieve transient amplification for δ as big as 0.5.

4.1 Model

Here we present the model of Moran process on graphs.

Population structure. In evolutionary graph theory, a population structure is repre-

sented by a graph that has N sites (nodes), some of which are connected by edges. Each

site is occupied by a single individual. The edge from node u to node v represents that

the individual at node u can replace the individual at node v.

Directions and weights. The edges could be undirected (two-way) or directed (one-

way) and they could be weighted. Formally, for a pair of nodes u, v, the weight of an edge

(u, v) is denoted by wu,v. If the nodes u, v are not connected then wu,v = 0. In the special

case of unweighted graphs, each edge is considered to have weight 1. In the special case

of undirected graphs, each edge is two-way. In the most general case of directed graphs

with weighted edges, two nodes u, v could be interacting in both directions with different

weights wu,v ̸= wv,u. We don’t allow self-loops, that is, wu,u = 0 for each node u.

Mutant initialization. Initially, each site is occupied by a single resident with fitness 1.

Then a single mutant with fitness r appears at a certain node. This initial mutant node can

be selected uniformly at random (uniform initialization) or with probability proportional

to the turnover rate of each node (temperature initialization). Unless specified otherwise,

we assume that the initialization is uniform and that the mutation is advantageous (r > 1).

Moran dB and Bd updating. Once a mutant has appeared, some version of Moran

process takes place. Moran process is a discrete-time stochastic process. At each step, one

individual is replaced by a copy of another (neighbouring) individual, hence the population

size remains constant. Denote by f(v) the fitness of the individual at node v. The two

prototypical updatings are:

• Moran death-Birth (dB) updating. An individual v is selected uniformly at random

for death. The individuals at the neighbouring sites then compete for the vacant

spot. Specifically, once v is fixed, an individual u is selected for placing a copy
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of itself on v with probability proportional to f(u) · wu,v. Note that fitness of an

individual doesn’t play a role in the death step (thus “d” is lower case) but it does

play a role in the birth step (thus “B” is upper case).

• Moran Birth-death (Bd) updating. An individual u is selected for reproduction with

probability proportional to its fitness f(u). Then it replaces a random neighbor.

Specifically, once u is fixed, an individual v is replaced by a copy of u with probability

proportional to wu,v.

Mixed δ-dB updating. The two regimes dB and Bd can be understood as two extreme

points of a spectrum. We also consider mixed updating where some steps of the process

follow the dB updating while the other ones follow Bd updating. Generally, given a

δ ∈ [0, 1], a δ-dB updating is an update rule in which each step is a dB event with

probability δ and a Bd event with probability 1− δ, independently of all the other steps.

With this notation, a 1-dB updating is the same as (pure) dB updating and 0-dB updating

is the same as (pure) Bd updating.

Fixation probability. Given a graph G, r > 1 and δ ∈ [0, 1], we denote by fpδ(G, r)

the fixation probability of a δ-dB updating, when the first mutant is initialized uniformly

at random. The complement, that is the probability that the evolutionary trajectory

goes extinct, is denoted by epδ(G, r) = 1 − fpδ(G, r). Specifically, for δ = 1 we denote

the fixation (resp. extinction) probability under pure dB updating by fpdB(G, r) (resp.

epdB(G, r)) and similarly for the pure Bd updating which corresponds to δ = 0.

Fixation probability on well-mixed populations. When studying the effect of

population structure on the fixation probability, our baseline is the fixation probability

on a well-mixed population of the same size. A well-mixed population is modelled by a

complete (unweighted) graph KN , without self-loops. Under pure dB and Bd updating

there are exact formulas for fixation probability [41; 7]:

fpdB(KN , r) =
N − 1

N
·

1− 1
r

1− 1
rN−1

and fp(KN , r) =
1− 1

r

1− 1
rN

.

For δ-dB updating, no analogous formula is known but numerical computations for various

values of N and r show that fpδ(KN , r) is essentially indistinguishable from the linear

interpolation

f̂pδ(KN , r) = δ · fpdB(KN , r) + (1− δ) · fp(KN , r)
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between fpdB(KN , r) and fp(KN , r) (see Fig. 4.2). Therefore, in δ-dB updating we use

f̂pδ(KN , r) as the baseline comparison.

ba

Figure 4.2: Linear interpolation for δ-dB updating. On a complete graph KN , the

fixation probability fpδ(KN , r) under δ-dB updating is essentially indistinguishable from

the linear interpolation f̂pδ(KN , r) between fixation probability under pure dB and pure

Bd updating. a, The x-axis shows δ ∈ [0, 1], the y-axis shows the fixation probability

fpδ(KN , r) (marks) and the linear interpolation f̂pδ(KN , r) (lines) for several pairs (N, r).

The marks lie almost exactly on the lines. b, The ratio f̂pδ(KN , r)/ fp
δ(KN , r) is well

within 1 %, typically even within 0.1 % of 1. The interpolation is exact for N = 2.

Amplifiers of selection. Given r > 1, some population structures enhance the fixation

probability of mutants, compared to the well-mixed population, whereas others decrease it.

We refer to the former ones as amplifiers of selection and to the latter ones as suppressors

of selection. Formally, given a graph GN with N nodes and some r > 1, we say that GN

is an r-amplifier under dB updating if fpdB(GN , r) > fpdB(KN , r), where KN is a complete

graph that represents a well-mixed population. If G is an r-amplifier under dB updating

for all r > 1, we call it universal. In contrast, graphs that amplify only for some range of

values r ∈ (1, r⋆) are called transient. Similarly, we say that GN is an r-amplifier under

Bd updating if fp(GN , r) > fp(KN , r) (note that the baseline is the complete graph KN

under Bd updating) and, for a fixed δ ∈ [0, 1], we say that GN is an r-amplifier under

δ-dB updating if fpδ(GN , r) > f̂pδ(KN , r).

Classification of amplifiers by strength: Implied scale of fitness. Amplifiers can

be further classified by strength [34]. We single out bounded amplifiers, linear amplifiers,
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quadratic amplifiers and super amplifiers. The intuition behind the classification is that,

in the limit of large population size, fixation probability can often be written as 1−1/ isf(r)

for a suitable function isf(r) of r. For instance, for large well-mixed population we have

isf(r) = r (under any of dB, Bd, δ-dB updating) and for large Star graphs under Bd

updating we have isf(r) = r2. The extent to which a large population structure G distorts

this fixation probability can thus be classified by looking at the function isf(r).

Formally, given a family of graphs {GN}∞N=1 of increasing population size, the implied

scale of fitness of the family is a function isf(r) : (1,∞) → R such that

lim inf
N→∞

fpdB(GN , r) = 1− 1/ isf(r).

We say that the family is

1. an (at most) bounded amplifier if isf(r) ≤ r + c0 for some constant c0.

2. an (at least) linear amplifier if isf(r) ≥ c1r + c0 for some constants c1 > 1, c0.

3. an (at least) quadratic amplifier if isf(r) ≥ c2r
2+ c1r+ c0 for some constants c2 > 0,

c1, c0.

4. a super amplifier if isf(r) = ∞ for all r > 1.

These definitions naturally carry over to Bd updating and δ-dB updating. Figure 4.3 illus-

trates that Stars and certain bipartite graphs are quadratic amplifiers under Bd updating

but they cease to amplify under dB updating.

Remark on the regimes considered. We intentionally restrict our attention to the

following regimes:

1. r > 1. If r = 1 then fpδ(GN , r) = 1/N , regardless of the population structure. If

r < 1 then fpδ(GN , r) < 1/N →N→∞ 0 for any GN . Thus we focus on r > 1.

2. Uniform initialization. For dB updating, the notions of uniform and temperature

initialization coincide, since every node is, on average, selected for death and re-

placed equally often. Thus we focus on uniform initialization only.

3. No self-loops. For dB updating, self-loops are not biologically realistic: An individ-

ual who has just died can not replace itself. Thus we consider graphs with possibly

directed and/or weighted edges but without self-loops.
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cBirth-death death-Birtha b

Figure 4.3: Implied scale of fitness. The implied scale of fitness for several graph

families. a, Complete graphs KN , Ring graphs RN , complete Bipartite graphs B√N,N−
√
N

and Star graphs SN . b, Under Birth-death updating, the Star graphs and the Bipartite

graphs are quadratic amplifiers, whereas the Ring graphs are equivalent to Complete

graphs. There also exist super amplifiers that guarantee fixation with probability 1 for

any r > 1. (To model the limit N → ∞ we show values for N = 400.) c, Under death-

Birth updating, none of Bipartite graphs, Star graphs or Ring graphs amplify selection.

4.2 Overview of theoretical results

Here we formally state our theorems and their consequences. The first two theorems

concern pure dB updating, the other two concern mixed δ-dB updating.

Theorem 10 (All dB amplifiers are bounded). Fix r > 1. Then for any graph GN

(possibly with directed and/or weighted edges) we have fpdB(GN , r) ≤ 1− 1
r+1

.

Theorem 11 (All dB amplifiers are transient). Fix a non-complete graph GN (possibly

with directed and/or weighted edges). Then there exists r⋆ > 1 such that for all r > r⋆

we have fpdB(GN , r) < fpdB(KN , r), where KN is the complete graph on N vertices. In

particular, we can take r⋆ = 2N2.

Theorem 12 (All δ-dB amplifiers are at most linear). Fix r > 1 and δ ∈ (0, 1]. Then for

any graph G (possibly with directed and/or weighted edges) we have fpδ(G, r) ≤ 1− 1
(r/δ)+1

.

Theorem 13 (All δ-dB amplifiers are transient). Fix a non-complete graph G on N

vertices (possibly with directed and/or weighted edges) and δ ∈ (0, 1]. Then there exists
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r⋆ > 1 such that for all r > r⋆ we have fpδ(G, r) < f̂pδ(KN , r), where KN is the complete

graph on N vertices.

Discussion of our results. Here we list the implications of our results.

1. Theorem 10 implies that, under dB updating, no unweighted graph is a universal

amplifier and a weighted graph can only be a universal amplifier if it is a weighted

version of the complete graph KN .

2. Theorem 11 implies that, under dB udpating, there are no superamplifiers and no

quadratic or even linear amplifiers.

3. Theorem 12 is a δ-dB analogue of Theorem 10. It implies that, compared to the base-

line given by a weighted average between fpdB(KN , r) and fp(KN , r), no unweighted

graph is a universal amplifier and a weighted graph can only be an r-universal

amplifier if it is a weighted version of KN .

4. Theorem 13 is a δ-dB analogue of Theorem 11. It implies that if δ > 0 (i.e. we

don’t have pure Bd updating) then there are no quadratic amplifiers and no super-

amplifiers. For δ = 1 (pure dB updating), the bound coincides with the one given

in Theorem 11. For δ = 0 (pure Bd updating), the bound is vacuous (in the limit

δ → 0 it simplifies to fp(G, r) ≤ 1) which is in alignment with the existence of

quadratic amplifiers and superamplifiers under (pure) Bd updating.

4.3 Proofs

Our proofs rely on Jensen’s inequality. For reference purposes, we state it here. Essen-

tially, given a convex (or concave) function f and several real numbers x1, . . . , xk, Jensen’s

inequality bounds the (weighted) average of values f(x1), . . . , f(xk) by the value that f

takes at the (weighted) average of x1, . . . , xk.

Claim 1 (Jensen’s inequality). Let a1, . . . , an be non-negative real numbers that sum up

to 1 and let f be a real continuous function. Then

• If f is convex then
k∑

i=1

ai · f(xi) ≥ f

(
k∑

i=1

ai · xi

)
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• If f is concave then
k∑

i=1

ai · f(xi) ≤ f

(
k∑

i=1

ai · xi

)

4.3.1 Theorems on dB updating

The key to proving our theorems on dB updating is the following lemma that gives an

upper bound on the fixation probability fpdB(G, r) on an arbitrary graph (possibly with

directed and/or weighted edges), in terms of the average in-degree d and the relative

fitness r > 1 of the mutant. Recall that given a graph G and its node v, the in-degree of

v is the number of nodes u for which there is an edge (u, v). If G is undirected then the

in-degree of a node is the same as the degree (the number of neighbors). For any graph

G, the average in-degree is the same as the average out-degree (and as the average degree

if G is undirected).

Lemma 28. Fix r > 1 and let G be a graph (possibly with directed and/or weighted

edges) with average out-degree d. Then

fpdB(G, r) ≤ d · r
d · r + d+ r − 1

.

Proof. Denote by u the initial node occupied by the mutant and recall that epdB(u) is

the extinction probability under dB updating if the initial mutant appears at u. Then

epdB(G, r) = 1
N

∑
u ep

dB(u).

Denote by E−(u) (resp. E+(u)) the event that in the next step of the dB updating

the number of mutants decreases (resp. increases) and by p−(u) (resp. p+(u)) the cor-

responding probability. Note that if neither of E−(u), E+(u) happens, the set of nodes

occupied by the mutants stays the same, and if E−(u) happens before E+(u), the mutants

go extinct. Therefore the extinction probability epdB(u) starting from a configuration

with a single mutant at node u satisfies

epdB(u) ≥ p−(u)

p−(u) + p+(u)
=

1

1 + p+(u)
p−(u)

.

We now compute p−(u) and p+(u). The number of mutants decreases if and only if

we select the single mutant for death, i.e. p−(u) = 1/N , for any node u. The number of
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mutants increases if and only if for death we select some node that neighbors u and then

we select u for producing an offspring. Hence

p+(u) =
∑
v

p+u,v,

where

p+u,v =
1

N
· r · wu,v

(r − 1) · wu,v +
∑

u′ wu′,v

is the probability that v was selected for death and then u (the only mutant on G) was

selected to place a copy of itself on v.

Now we bound epBd(G, r) in terms of p−(u) and p+(u). In the last step we use Jensen’s

inequality for a function f(x) = 1/(1 + x) which is convex on x ∈ (0,∞):

epdB(G, r) =
1

N

∑
u

epdB(u) ≥ 1

N

∑
u

1

1 + p+(u)
p−(u)

≥ 1

1 + 1
N

∑
u

p+(u)
p−(u)

.

Since p−(u) = 1/N for all u, the right-hand side simplifies and we get

epdB(G, r) ≥ 1

1 +
∑

u p
+(u)

.

In the rest, we find a tight upper bound on
∑

u p
+(u). We first rewrite each p+(u) using

p+u,v and interchange the sums to get∑
u

p+(u) =
∑
u

∑
v

p+u,v =
∑
v

∑
u

p+u,v.

We focus on the inner sum. Fix a node v and denote by s(v) =
∑

u′ wu′,v the total weight

of all edges incoming to v. Using the formula for p+u,v we obtain∑
u

p+u,v =
1

N

∑
u

r · wu,v

(r − 1) · wu,v + s(v)
.

We make three observations. First, the summation has at most din(v) terms, where din(v)

is the number of incoming edges to v. Second, we have
∑

u wu,v = s(v). Third, for fixed

r > 0 and any s > 0, the function g(x) = r·x
(r−1)x+s

is concave on x ∈ (0, s). Therefore, by

another application of Jensen’s inequality we can write

∑
u

p+u,v ≤
1

N
· din(v) ·

r · s(v)
din(v)

(r − 1) · s(v)
din(v)

+ s(v)
=

1

N
· r · din(v)
r − 1 + din(v)

,

Finally, summing up over v we obtain∑
u

p+(u) =
∑
v

∑
u

p+u,v ≤
1

N

∑
v

r · din(v)
r − 1 + din(v)

≤ r · d
r − 1 + d

,
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where in the last step we yet again used Jensen’s inequality, this time for the function

h(x) = r·x
r−1+x

that is concave on x ∈ (0,∞), and the fact that the average in-degree of a

graph is the same as its average out-degree.

We conclude by observing that this upper bound on
∑

u p
+(u) yields

epdB(G, r) ≥ 1

1 +
∑

u p
+(u)

≥ 1

1 + r·d
r−1+d

=
d+ r − 1

dr + d+ r − 1
,

hence

fpdB(G, r) ≤ 1− epdB(G, r) ≤ d · r
d · r + d+ r − 1

as desired

With the lemma at hand, we can prove the first two Theorems.

Theorem 10 (All dB amplifiers are transient). Fix a non-complete graph GN (possibly

with directed and/or weighted edges). Then there exists r⋆ > 1 such that for all r > r⋆

we have fpdB(GN , r) < fpdB(KN , r), where KN is the complete graph on N vertices. In

particular, we can take r⋆ = 2N2.

Proof. Recall that

fpdB(KN) = (1− 1/N)
1− 1/r

1− 1/rN−1
≥ (1− 1/N)(1− 1/r),

hence

epdB(KN) ≤
N + r − 1

Nr
.

Using Lemma 28, it suffices to show that for all sufficiently large r we have

d+ r − 1

dr + d+ r − 1
>

N + r − 1

Nr

which, after clearing the denominators, is equivalent to

r2 (N − 1− d)− 2r(N − 1)− (d− 1)(N − 1) > 0.

Since G is not complete, d < N − 1 (a strict inequality), hence the coefficient by r2 is

positive and the inequality holds for all sufficiently large r.

In particular, it is straightforward to check that r = 2N2 is large enough: If G misses

at least one edge then d ≤ N − 1− 1
N

hence for r ≥ 2N2 the right-hand side is at least

(2N2)2 · 1

N
− 4N2(N − 1)−N2 = 3N2 > 0.
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Theorem 11 (All dB amplifiers are bounded). Fix r > 1. Then for any graph GN

(possibly with directed and/or weighted edges) we have fpdB(GN , r) ≤ 1− 1
r+1

.

Proof. Using Lemma 28, it suffices to check that

d+ r − 1

dr + d+ r − 1
≥ 1

r + 1

which, after clearing the denominators, is equivalent to r(r − 1) ≥ 0. The equality holds

for r = 1.

4.3.2 Theorems on δ-dB updating

In order to prove Theorems 13 and 12 we first use a similar technique as before to establish

an analogue of Lemma 28 that applies to δ-dB updating.

Lemma 29. Fix r > 1 and let G be a graph (possibly with directed and/or weighted

edges) with average out-degree d. Then

epδ(G, r) ≥ 1

1 + dr
d+r−1 +

1−δ
δ

· Nr
N+r−1

.

Proof. Denote the initial mutant node by u and, as in Lemma 28, let p−(u) (resp. p+(u))

be the probability that after a single step of δ-dB updating, the number of mutants in

the population decreases (resp. increases).

The values p−(u) and p+(u) are weighted averages of the corresponding values under

(pure) dB and Bd updating, with weights δ, 1− δ. That is,

p−(u) = δ · 1

N
+ (1− δ) ·

∑
t

1

N + r − 1
· wt,u∑

u′ wt,u′

and, using the notation p+u,v from Lemma 28,

p+(u) = δ ·
∑
v

p+u,v + (1− δ) · r

N + r − 1
.

As in Lemma 28, we get

epδ(G, r) ≥ 1

1 + 1
N

∑
u

p+(u)
p−(u)

.

For each fixed u, we bound p−(u) from below by ignoring the whole Bd-contribution. We

get p−(u) ≥ δ
N

which yields

epδ(G, r) ≥ 1

1 + 1
δ

∑
u p

+(u)
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and it remains to bound
∑

u p
+(u) from above. In

∑
u p

+(u), the total Bd-contribution

(summed over u) equals (1− δ) Nr
N+r−1 and, as in Lemma 28, the total dB-contribution is

at most δ ·
∑

u

∑
v p

+
u,v ≤ δ · rd

r−1+d
. In total, this yields

epδ(G, r) ≥ 1

1 + dr
d+r−1 +

1−δ
δ

· Nr
N+r−1

as desired.

Using Lemma 29 we present proofs of Theorems 3 and 4 from the main text.

Theorem 12 (All δ-dB amplifiers are transient). Fix a non-complete graph G on N

vertices (possibly with directed and/or weighted edges) and δ ∈ (0, 1]. Then there exists

r⋆ > 1 such that for all r > r⋆ we have fpδ(G, r) < f̂pδ(KN , r), where KN is the complete

graph on N vertices.

Proof. Let d be the average in-degree of G. Since G is not complete, we have d < N − 1

(a strict inequality).

As in the proof of Theorem 10, recall that epdB(KN , r) ≤ N+r−1
Nr

. Moreover, fp(KN , r) =

1−1/r
1−1/rN ≥ 1− 1/r, hence epBd(KN , r) ≤ 1

r
. This yields

1− f̂pδ(KN , r) = êpδ(KN , r) = δ · epdB(KN , r) + (1− δ) epBd(KN , r) ≤
1

r
+ δ · r − 1

Nr

and by Lemma 29 it suffices to show that for all sufficiently large r we have

1

1 + dr
d+r−1 +

1−δ
δ

· Nr
N+r−1

≥ 1

r
+ δ · r − 1

Nr
,

Since N , d and δ are all fixed, we can consider both sides as functions of r. As r → ∞,

the left-hand side tends to 1
1+d+ 1−δ

δ
N

while the right-hand side tends to δ
N
. In order to

conclude, it suffices to show strict inequality between the respective limits:

1

1 + d+ 1−δ
δ
N

>
δ

N
.

After clearing the denominators, this is equivalent to δ(N−1−d) > 0 which indeed holds

for any δ > 0 and any non-complete graph KN .

Theorem 13 (All δ-dB amplifiers are at most linear). Fix r > 1 and δ ∈ (0, 1]. Then for

any graph G (possibly with directed and/or weighted edges) we have fpδ(G, r) ≤ 1− 1
(r/δ)+1

.
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Proof. Since d ≤ N − 1 < N and r > 1, we have

dr

d+ r − 1
<

Nr

N + r − 1
,

hence Lemma 29 gives

epδ(G, r) ≥ 1

1 + dr
d+r−1 +

1−δ
δ

· Nr
N+r−1

>
1

1 + 1
δ
· Nr
N+r−1

≥ δ

r + δ
=

1

(r/δ) + 1
,

where the last inequality is equivalent to δ · r(r− 1) ≥ 0 after clearing the denominators.

The result follows.

4.4 Numerical and simulation results

Here we present related numerical and simulation results. First, we illustrate that given

a fixed population structure under δ-dB updating, the fixation probability increases as δ

decreases (see Figure 4.4).

Second, we note that even though universal amplification and superamplification are

impossible for any δ > 0 due to Theorems 12 and 13, some population structures do

achieve reasonable levels of amplification for various combinations of r and δ. Specifically,

we consider Star graphs, Bipartite graphs, and Ring graphs of fixed size N = 10 and

N = 100 and show how strongly they amplify, depending on the fitness advantage r of

the initial mutant and on the portion δ of dB updates (see Figure 4.5). We make two

observations:

1. First, when δ is small enough, both Star graphs and Bipartite graphs do amplify

selection, for a certain range of r > 1. Interestingly, large Bipartite graphs are

less sensitive to variations in δ than Star graphs, and for small r > 1 they maintain

amplification even for δ almost as big as 0.5. On the other hand, if δ is small enough,

Star graphs tend to achieve stronger amplification than Bipartite graphs.

2. Second, for any of the six population structures and any fixed r, increasing δ dimin-

ishes any benefit that the population structure provides to advantageous mutants.

Specifically, there appears to be no regime (r, δ) where a ring graph would amplify

selection.
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Third, we illustrate that the upper bound on fpdB(GN , r) given by Theorem 11 is

tight for r = 1, due to K2, and relatively tight for large r, due to KN with N large (see

Figure 4.6).

ba c

Figure 4.4: Fixation probability under δ-dB updating. Three different graphs

on N = 10 vertices: a Complete graph, b Ring graph, c Star graph. For each

δ ∈ {0, 0.25, 0.5, 0.75, 1} we show the fixation probability under δ-dB updating as a func-

tion of r. On the latter two graphs, the dependence of the fixation probability on δ is more

pronounced and not roughly linear as is the case for the Complete graph. The Star graph

is an amplifier under Bd updating and also a δ-dB amplifier for small δ (e.g. for δ = 0.2

and r = 2 we have fpδ(S10, r) > 0.494 > 0.491 > f̂pδ(K10, r)) but ceases to be an amplifier

for large δ (e.g. for δ = 0.5 and r = 2 we have fpδ(S10, r) < 0.37 < 0.47 < f̂pδ(K10, r)).
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Figure 4.5: Strength of amplification in terms of r and δ. a, Star graphs, b,

complete Bipartite graphs with smaller part of size
√
N , and c, Ring graphs, of size

either N = 10 (top row) or N = 100 (bottom row). For each of the six graphs, we plot

the ratio fpδ(GN , r)/f̂p
δ(KN , r) as a function of the fitness advantage r (x-axis) and the

portion of dB-updates δ (y-axis). Red (blue) color signifies that the population structure

amplifies (suppresses) selection for the given regime (r, δ). Green curves denote regimes

where the ratio equals 1. When r = 1, the fixation probability equals 1/N regardless of

δ and the population structure. By Theorem 12, all δ-amplifiers are transient, hence the

“horizontal” green curves eventually hit the x-axis for r large enough. Plotted values were

obtained by numerically solving large systems of equations for every r ∈ {1, 1.025, . . . , 3}

and δ ∈ {0, 0.025, . . . , 1}.
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Figure 4.6: Tightness of the upper bound. We consider Complete graphs of sizes

N ∈ {2, 3, 5, 10, 100} under dB updating. The fixation probability is always below the

upper bound given by Theorem 11. For r = 1 the bound precisely matches the fixation

probability onK2. For large r, the bound is relatively tight with respect to large Complete

graphs.
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5 Selection reactors

Here we study certain simple and natural population structures that we call Selection

reactors. The nodes of a Selection reactor are split into two parts: a reactor-chamber

and a pre-chamber (see Figure 5.1). In the reactor-chamber, the individuals directly

compete. This is modelled by a complete graph. In the pre-chamber, the individuals

do not compete. This is modelled by an empty graph (with self-loops). Finally, with

some small probability, an offspring of a reproducing individual can migrate to the other

chamber. This is modelled by a complete bipartite graph connecting each reactor-node

to each pre-node.

Adjusting the weights of the self-loops and of the edges going across the chambers, we

can model any combination of the two migration rates among the two chambers. Doing

so, we find that the weight assignment crucially affects the fixation probability and the

absorption time of a single advantageous mutant. For certain weight assignments, we

present a simple proof that the resulting weighted graphs are superamplifiers. For other

weight assignments, we prove that the resulting weighted graphs are superamplifiers with

absorption time comparable to that of the Star graph.

5.1 Model

Here we formally introduce the model and our notation.

Moran process on graphs. Let G be an undirected connected graph with N nodes

and edges that are possibly weighted and possibly include self-loops. Each node of G is

occupied by a single individual. The individuals come in two types – mutants and residents

– that differ in their fitness (reproductive strength). Every mutant has relative fitness r

for some fixed r > 0 whereas the residents have normalized fitness 1. A configuration is a
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set of nodes occupied by mutants. Given a configuration C, Moran Birth-death process

is a discrete-time stochastic process that proceeds as follows:

1. (Birth) Pick a random individual for reproduction, proportionally to their fitness.

That is, if there are i mutants and N − i residents, each mutant is picked with

probability r/F and each resident is picked with probability 1/F , where F = i ·

r + (N − i) · 1 is the total fitness of the population. Suppose the picked individual

occupies node x.

2. (Migration) Pick a random edge adjacent to x in G, proportionally to its weight.

That is, edge (x, y) is picked with probability w(x, y)/w(x), where w(x, y) is the

weight of edge (x, y) and w(x) is the sum of weights of all edges adjacent to node

x. Suppose the picked edge is (x, y).

3. (Death) Replace the individual at node y by a copy of an individual at node x.

When G is connected, the process has two absorbing states: one where all individuals are

mutants (this is called fixation) and one where they are all residents (extinction). Once

one of those two states is reached, the process terminates.

Fixation probability and time. The main quantities of interest are the fixation

probability and fixation time. Given a graph GN on N nodes, a relative fitness r of

the mutants, and an initial configuration C of nodes occupied by mutants, we denote

by fp(GN , r, C) the probability that Moran process reaches fixation, we call this fixation

probability. Moreover, we denote by T (GN , r, C) the random variable counting the number

of steps required until the process terminates. We use T (GN , r, C) to define two notions

of time: First, we denote by AT(GN , r, C) = E[T (GN , r, C)] the expected number of

steps of the process; we call this (unconditional) absorption time. Second, we denote by

CT(GN , r, C) the expected number of steps among only those evolutionary trajectories

that reach fixation (as opposed to reaching extinction); we call this (conditional) fixation

time.

Initialization scheme. Typically, we are interested in the fixation probability and

absorption time of a single mutant invading a population of residents, that is, the cases
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when |C| = 1. To that end, we define the fixation probability and time under uniform

initialization as the average over all N possible starting positions, that is:

fp(GN , r) =
1

N

∑
|C|=1

fp(GN , r, C)

and likewise for AT(GN , r) and CT(GN , r). Alternatively, we could average over the start-

ing positions non-uniformly. One common way is a so-called temperature initialization,

where each possible initial node x is given weight T(x) instead of 1/N . Here T(x) is the

temperature of the node, that is, the rate at which the node is replaced by its neighbors

when the whole population is residents. Formally, T(x) =
∑

y
1
N
· w(y, x)/w(y). All our

results hold for both types of initialization.

Unweighted selection reactor. First we describe the underlying (unweighted) graph

structure of selection reactors. Given integers N , n the unweighted selection reactor

USR(N, n) is an unweighted graph such that:

1. There are N leaf nodes and n hub nodes.

2. Every two hub nodes are connected, every hub node is connected to every leaf node,

and every leaf node has a self-loop.

Firing in and out. Due to the symmetry of selection reactors, any step of the process

that changes the mutant configuration is one of the following four types:

1. A hub node replaces another hub node: We say the hub node stays ;

2. A hub node replaces a leaf node: We say the hub node fires out ;

3. A leaf node replaces itself due to a self loop: We say the leaf loops ;

4. A leaf node replaces a hub node: We say the leaf fires in.

Moreover, we say that a fire-in event is resident fire-in when the individual reproducing

is a resident (and similarly for mutant and/or fire-out events). Finally, we say that a set

of nodes (e.g. a hub) is heterogeneous if it contains at least one node resident and at least

one mutant. Otherwise, we call it homogeneous.

Selection reactors. Now we can formally define (weighted) selection reactors. Given

integers N , n and two real numbers a, b, the selection reactor SR(N, n, a, b) is a weighted

graph such that:
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1. There are N leaf nodes and n hub nodes.

2. Every two hub nodes are connected, every hub node is connected to every leaf node

by a weighted edge, and every leaf node has a weighted self-loop. Moreover, the

edge weights are such that:

(a) For any leaf node, once it is selected for reproduction, it fires in the hub (as

opposed to self-looping) with probability fin = 1/Na. In other words, we

expect to see one fire-in event per a generations.

(b) For any hub node, once it is selected for reproduction, it fires out to some leaf

(as opposed to replacing another hub node) with probability fout = 1/nb. In

other words, we expect to see one fire-out event per b generations.

It is readily checked that the properties 2b and 2a are satisfied by assigning weight w =

(n − 1)/(N · (nb − 1)) = Θ(1/Nb) to each edge connecting a hub node with a leaf node,

and by assigning weight l = n(n− 1)(Na− 1)/(N · (nb− 1)) = Θ(na/b) to each self-loop,

respectively.

leaves

hub

n · a/b

n× 1

n× 1/Nb

1 fire-in per a generations

n

N

N × 1/Nb

1 fire-outs per b generations

h = 1

w = 1/Nb

l = n · a/b

Figure 5.1: Selection reactor SR(N, n, a, b) consists of N leaves with heavy self-loops of

weight roughly na/b each, n other nodes forming a well-mixed population called a hub,

and N · n light accross edges of weight roughly 1/Nb each. Due to the weights, most of

the time a leaf will reproduce along its self-loop and a hub node will replace another hub

node but occasionally, a leaf fires in the hub or a hub node fires out to a leaf. Specifically,

the weights are such that we expect to see roughly 1/a fire-in events and roughly 1/b

fire-out events per generation (N steps).

In what follows, we consider N as the main parameter and we view n, a, b as functions

of N .
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5.2 Overview of theoretical results

Here we present a summary of our theoretical results related to Selection reactors and

superamplification.

First, we present a simple proof that, with appropriate weights, Selection reactors

become superamplifiers.

Theorem 14 (Reactors are superamplifiers). For any fixed N , let n =
√
N , a = N6 and

b = N8. Then Selection reactors SR(N, n, a, b) are superamplifiers, under both uniform

and temperature initialization.

Second, we show that with different weights, Selection reactors become superamplifiers

with absorption time asymptotically comparable to that of the Star graph.

Theorem 15 (Reactors are fast superamplifiers). For any fixed N , let n =
√
N , a = logN

and b = log2 N . Then Selection reactors SR(N, n, a, b) satisfy the following, under both

uniform and temperature initialization:

1. (super-amplifiers) fp(SR(N, n, a, b), r) →N→∞ 1.

2. (fast) AT(SR(N, n, a, b), r) = O(N2+ε), for any ε > 0.

We remark that in the proof we also establish that the absorption time is O(N2+ε)

not only in expectation but also with high probability.

Discussion of the results.

1. Connection to Weighted & loopy superamplifiers. We remark that our proof

of Theorem 14 is based on a general construction for turning almost an arbitrary

connected graph into a strong amplifier by assigning weights to edges and self-loops,

see [48]. When the underlying graph is a Selection reactor, as is our case, the general

proof can be greatly simplified.

2. Tightness of analysis. Second, we note our analysis in Theorem 15 is tight,

for our proof strategy. In order for the absorption time to be O(n2−ε), the leaves

would have to interact with the hub so often that the hub would frequently get

interrupted before resolving to a homogeneous state. It is possible that even with

this more common interaction the Selection reactors are superamplifiers but our

proof strategy does not apply.
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5.3 Proofs

Here we present formal proofs of our theoretical results.

5.3.1 Selection reactors as superamplifiers

The goal of this section is to give a simple proof of Theorem 14.

Proof idea. The intuition behind the proof is motivated by two features identified

in [48]. First, due to the weights the hub evolves almost completely independently and

it interacts with the leaves only rarely. Hence, with probability very close to one, it

resolves to a homogeneous state between any two interactions with the leaves. Second,

since the hub itself behaves like a well-mixed population, the mutants are fairly likely to

win it and extremely unlikely to lose it afterwards: Indeed, for fixed r and as N grows

large, the fixation probability fp(KN , r) of a single (advantageous) mutant invading a well-

mixed population of residents tends to a positive constant 1 − 1/r, whereas the fixation

probability of a single (disadvantageous) resident invading a well-mixed population of

mutants fp(KN , 1/r) is exponentially small in N .

When the hub is relatively small and the interactions between the hub and the leaves

are sufficiently rare, we argue that:

1. the first mutant typically appears at a leaf;

2. the mutant repeatedly invades the hub until mutants fixate there; and

3. the mutant hub easily withstands the residents invasions while the mutants win the

leaves one by one.

For the formal proof we need the following technical lemma that quantifies the intuition

about the behavior of the hub between any two interactions with the leaves.

Lemma 30. Consider the selection reactor SR(N,
√
N,N6, N8) and a configuration where

both mutants and residents are present in the hub. Then, except for an event with

probability O(1/N5), in the next N2 steps the hub resolves to a homogeneous state

without interacting with any leaf. Moreover,



111

1. If the hub contains exactly one mutant then this homogeneous state is “all mutants”,

except for a constant probability pm ≤ 1/r.

2. If the hub contains exactly one resident then this homogeneous state is “all mutants”,

except for an exponentially small probability pr ≤ 1/rN−1.

Proof. Note that we expect to see one fire-in event per N6 generations, hence a single

reproduction event is a fire-in event with probability Θ(1/N7). Similarly, it is a fire-out

event with probability Θ(1/N9). Overall, the probability that a hub interacts with the

leaves in one step is Θ(1/N7 + 1/N9) = Θ(1/N7).

Consider any period of N2 steps. Within this period, the hub interacts with the leaves

with probability at most N2 ·Θ(1/N7) = Θ(1/N5).

Say that a step of the Moran process is a hub-step if it involves a hub node replacing

another hub node. The hub is well-mixed population of size
√
N so the expected number of

hub-steps until it resolves to a homogeneous state is Θ(
√
N ·log

√
N). A hub-step happens

on average once per Θ(
√
N) steps (once a hub node is selected for reproduction, it fires out

with probability only o(1)), so overall the hub is expected to resolve in τ = Θ(N logN)

steps. By Markov inequality, the probability that the hub does not resolve in 3τ steps

is at most 1/3 < 1/e, hence it resolves in 5 logN · 3τ = o(N2) steps with probability at

least 1− 1/N5.

Altogether, within the N2 steps, the hub doesn’t interact with the leaves and becomes

homogeneous, apart from trajectories of total probability O(1/N5).

Finally, when the hub evolves independently, the fixation probability of a single in-

vading mutant is fp(KN , r) > 1−1/r whereas the fixation probability of a single invading

resident equals fp(KN , 1/r) < 1/rN−1.

Now we present a formal proof.

Theorem 14 (Reactors are superamplifiers). For any fixed N , let n =
√
N , a = N6 and

b = N8. Then Selection reactors SR(N, n, a, b) are superamplifiers, under both uniform

and temperature initialization.

Proof. We proceed in three phases as sketched above. Note that any specific edge con-

necting a leaf-node and a hub-node is Θ(N8/N6) = Θ(N2) more likely to be used for

reproduction as a fire-in event than as a fire-out event.



112

Throughout the proof, whenever the hub becomes heterogeneous, we wait for N2

steps. If, within this period, the hub does not resolve or it interacts with the leaves, we

conservatively assume that the evolutionary trajectory goes extinct. By Lemma 30, in

each individual case this happens with probability at most O(1/N5) → 0.

First, we argue that the initial mutant typically appears at a leaf. Indeed, the proba-

bility that the first mutant appears at a hub node is
√
N/(N +

√
N) = O(1/N1/2) → 0,

both for uniform and temperature initialization. From now on, we assume that the first

mutant appeared at a leaf.

Second, we argue that the mutants typically fixate on the hub. Wait for the first

interaction between the initial mutant and any hub node. The interaction could be a

fire-in event or a fire-out event.

• With probability Θ(1/N2) the event is a fire-out event and the mutants go extinct

right away.

• With the remaining probability the event is a fire-in event. Then we wait N2 steps.

Within those N2 steps, the hub either gets interrupted (probability O(1/N5), we

conservatively assume extinction), or the residents win the hub back (probability

1/r), or the mutants win the hub (probability 1 − 1/r).

Altogether, with probability Θ(1/N2 + 1/N5) = Θ(1/N2) we go extinct and with prob-

ability at most 1/r nothing happens, otherwise we win the hub. We repeat this stage

X = log1/r 1/N = Θ(logN) times. The probability that “nothing happens” X times in a

row is at most (1/r)X = 1/N . During this time, we observe a fire-out event or a hub gets

interrupted while heterogeneous with probability at most O(logN/N2). Otherwise the

mutants win the hub. Thus the mutants win the hub except for events with probability

at most O(1/N + logN/N2) = O(1/N) → 0.

Third, we argue that the mutants then typically win the leaves. Wait for the first

interaction between a hub and a resident leaf. The interaction could be a fire-in event or

a fire-out event.

• With probability p+ = Θ(1/N2) the event is a fire-out event and one leaf becomes

a mutant.
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• With the remaining probability it is a fire-in event. Then we wait N2 steps. Within

those N2 steps, the hub either gets interrupted (probability O(1/N5), we conser-

vatively assume extinction) or the residents fixate on the hub (probability at most

1/rN−1)), otherwise the mutants win the hub back. Altogether, with probability

p− = O(1/N5+1/rN−1) = O(1/N5) we conservatively assume extinction, otherwise

nothing happens.

Comparing the two probabilities, we see that we win a leaf before assuming extinction,

except for an event with probability p−/(p+ + p−) = O(N2/N5) = O(1/N3). Repeating

this N − 1 times, we obtain that once we gain the hub, we win all N − 1 leaves that were

initially resident, except for an event with probability at most

(N − 1) · p−

p+ + p−
= O(1/N2).

Combining all three stages, we conclude that mutants fixate on the whole graph, except

for probability O(1/N1/2 + 1/N + 1/N2) = O(1/N1/2) → 0. Graphs SR(N,
√
N,N6, N8)

are thus superamplifiers.

5.3.2 Selection reactors as fast superamplifiers

The goal of this section is to prove Theorem 15.

Proof idea. Here we informally describe the idea behind the proof that the selection

reactors are fast super-amplifiers.

The relative sizes of the hub and leaf subpopulations and the weights are constructed

such that the following conditions are satisfied:

(i) there are many more leaves than hub nodes,

(ii) leaves interact with the hub only rarely, and

(iii) any specific leaf is more likely to fire in the hub than to be fired to from any vertex

in the hub.

The intuition behind the proof of super-amplification is that the following events happen

with high probability:
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1. By (i), the first mutant appears at a leaf.

2. By (iii), the mutant repeatedly invades the hub before being eliminated.

3. By (ii), the hub evolves mostly independently and since any invading mutant has a

fitness advantage, the mutants eventually fixate on the hub.

4. Next, the mutants need to win the leaves, one by one. During this period, two forces

are at play:

• If the hub is all mutants, the next active step is typically a resident leaf firing

in and making the hub heterogeneous, but occasionally a mutant from the hub

fires out to a resident leaf, thereby making it mutant.

• If the hub is heterogeneous, typically it resolves to an all-mutants state before

any hub-node fires out to a leaf, however rarely it might “leak” – that is, it

might fire out a resident (while in a heterogeneous state), thereby possibly

turning a leaf from a mutant to a resident.

By construction, we can relate the strength of those two forces. By (ii), hub leaks

only rarely. On the other hand, by (iii), gaining a mutant leaf is “only” uncommon

(not rare). In total, we gain a mutant leaf (due to some hub-node firing out while

the hub is all mutants) more frequently than we lose one (due to the hub leaking).

5. One by one, all leaves become mutants and the mutants fixate.

Since the aforementioned sequence of events occurs with high probability, the selection

reactors are super-amplifiers.

Moreover, we can quantify how much time each stage takes. We show that winning

the hub starting from a single initial mutant in a leaf takes, on average, roughly N2 steps.

Moreover, we show that winning the i-th leaf takes, on average, roughly N2/i steps, hence

all leaves are won in roughly
∑N

i=1 N
2/i ≈ N2 logN steps, on average. Therefore, the total

number of steps is of the order of roughly N2 logN = O(N2+ε) for any ε > 0.

Mathematical tools. We recall several mathematical facts that we will rely on in our

proofs.

Lemma 31. Let f(n) be an increasing function. Then
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1. If f(n) = o(n) then limn→∞(1− 1/n)f(n) = 1;

2. If n = o(f(n)) then limn→∞(1− 1/n)f(n) = 0; and

3. If f(n) = Θ(n) then lim infn→∞(1− 1/n)f(n) > 0 and lim infn→∞(1− 1/n)f(n) < 1.

Lemma 32 (Bernoulli inequality). For any positive integer n and any x ∈ (0, 1) we have

(1− x)n ≥ 1− xn.

Lemma 33 (Markov inequality). Let X be a non-negative random variable with expec-

tation µ and c > 1 a real constant. Then P[X ≥ c · µ] ≤ 1
c
.

Finally, we recall several basic properties of a Moran process on a complete graph

of size N with mutants of fitness r: First, until the process resolves (that is, as long as

it is heterogeneous), we are always r times more likely to gain a mutant than to lose

a mutant. Second, advantageous mutants have at least a constant fixation probability

whereas disadvantageous mutants have exponentially small fixation probability. Third,

for advantageous mutants both the (unconditional) absorption time and the (conditional)

fixation time are of the order of Θ(N logN). Fourth, the number of steps is short not

only on average but also with high probability.

Lemma 34. FixN ∈ N and r ̸= 1. Consider the Moran Birth-death process with mutants

of fitness r on a complete graph KN . Then

1. Suppose there are currently i mutants for 1 ≤ i ≤ n − 1. Then p+(i) = r · p−(i),

where p+(i) (resp. p−(i)) is the probability that the number of mutants increases

(resp. decreases) in one step. As a consequence, we expect to visit states with i

mutants at most a constant number of times (for each i).

2. fp(KN , r) =
1−1/r
1−1/rN . Specifically, fp(KN , r) > 1− 1/r when r > 1, and fp(KN , r) <

rN−1 when r < 1.

3. AT(KN , r) = r+1
r

· N logN + o(N logN) = Θ(N logN) and CT(KN , r) = r+1
r−1 ·

N logN + o(N logN) = Θ(N logN) when r > 1.

4. For any a > 0 we have P[T (KN , r) > 2 log aAT(KN , r)] < 1− 1/a, where T (KN , r)

is a random variable counting the number of steps until the process resolves.
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Proof. This is well known. For the last item, let τ = AT(KN , r). By Markov inequality

applied to T (KN , r) we have Pr[T (KN , r) > 2τ ] < 1/2. Hence the process terminates

within each block of length 2τ with probability at least 1/2 ≥ 1/e. The probability

that the process does not terminate in any of a such consecutive blocks is then at most

(1/e)log a = 1/a as desired.

Now we turn to proving Theorem 15. We remark that our results apply as long as the

three functions n(N), a(N), b(N) are increasing and unbounded, and satisfy conditions:

1. n = o(N): there are many more leaves than hub nodes;

2. (logN)3 = o(n): hub is not too small;

3. a = o(b): fire-ins are more common than fire-outs; and

4. b = o(N): fire-ins and fire-outs occur at least once in a while.

For specificity, we set n =
√
N , a = logN , b = log2 N and use a shorthand notation

SR(N) for selection reactor SR(N,
√
N, logN, log2 N).

Recall that a configuration, denoted by C, is the set of nodes that are occupied by

mutants.

First we show that the hub is interrupted by fire-ins so rarely that it is still biased

towards gaining mutants by a constant factor.

Lemma 35 (Hub with fire-ins is still biased). Suppose the hub is heterogenous, that is,

the number i of mutants in the hub satisfies 1 ≤ i ≤ n − 1. Let p+ (resp. p−) be the

probability that the number of mutants in the hub increases (resp. decreases) in one step

and let r′ = 1
2
(r + 1). Then p+ ≥ r′ · p− for N large enough.

Proof. Simple counting. Let F be the total fitness of the population. We can always gain

a mutant in the hub due to a hub mutant replacing a hub resident. Conversely, we lose

a mutant in the hub either due to a hub resident replacing a hub mutant or due to a

resident leaf firing in the hub. Regardless of how many mutant leaves there are, we get:

p+ ≥ ri

F
· (1− fout) ·

n− i

n− 1

and

p− ≤ n− i

F
· (1− fout) ·

i

n− 1
+

N

F
· fin ·

i

n
,
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hence

p+/p− ≥ r(1− fout)(n− i)

(1− fout)(n− i) + 1/a
≥ r(1− fout)

(1− fout) + 1/a
→N→∞ r,

since fout → 0 and a → ∞ as N → ∞. In particular, from some N on the ratio is at least

r′ = (r + 1)/2.

As a corollary, we obtain that any time the hub becomes heterogeneous, it quickly

resolves to a homogeneous state and, with constant probability, that state is all-mutants.

Lemma 36. There exists a positive constant c0 such that: For large enough N , if the

hub is heterogeneous, it resolves to an all-mutants state within O(N log n) steps with

probability at least c0. Moreover, if the hub is heterogeneous then it resolves (to one of

the two states) within O(N log2 n) steps, with high probability.

Proof. For the first claim, by Lemma 35, the fixation probability for large enough N is at

least as high as on the complete graph with mutant fitness advantage r′. By Lemma 34,

this fixation probability is at least 1 − 1/r′. To bound the number of steps, note that a

step of the Moran process changes a configuration on the hub with probability at least

n/F · (1 − fout) = Ω(n/N), hence by Lemma 34, fixation happens within O(n log n ·

N/n) = O(N log n) steps with constant probability. The second claim now follows from

Lemma 34.

We deduce that starting from a configuration with at least one mutant leaf, with high

probability we quickly win the hub.

Lemma 37 (We gain the hub). If the current configuration C includes a leaf then, with

high probability, we reach a configuration that contains all hub nodes within O(N2b)

steps.

Proof. Let C be any configuration containing at least one leaf, call that leaf x.

First we show that C will contain x for s0 = N2
√
ab steps with high probability.

Indeed, the probability that x gets eliminated in a single step is at most p0 = n/N · fout ·

1/N = 1/N2b. The probability that it survives for all s0 steps is (1− p0)
s0 ≥ 1− p0s0 =

1−
√

a/b → 1 as desired (recall Lemma 32 and the relation a = o(b)).

Now we show that x invades hub fairly often. The probability that in a single step x

gets selected for reproduction and fires in the hub is at least p1 ≥ 1/(r(N + n)) · fin =
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Ω(1/N2a). Consider s1 = N2a steps. Then the probability that, in the next s1 steps, x

fires-in at least once (and thus the mutants invade the hub) is at least 1− (1− p1)
s1 . By

Lemma 31, this is at least some positive constant c1 as N → ∞.

Once C contains a hub node, by Lemma 36 there is at least a constant probability c2

that it will contain all hub nodes at some point in the next O(N log n) steps. In total, the

mutants win the hub within s = s1+s2 = O(N2a) steps with constant positive probability

c = c1 · c2.

Finally, we amplify this constant probability into a high probability. Consider
√
b/a

stages, each consisting of s1 + s2 steps. Note that the number of stages grows unbounded

(a = o(b)) and in total the stages take N2a ·
√
b/a = N2

√
ab steps, so x stays a mutant

throughout all stages, with high probability. Within each stage, the mutants win the hub

with at least a constant probability c. This implies that the mutants win the hub in one

of the stages with probability at least 1−(1−c)b/a → 1, that is, with high probability.

Next we show that once we win the hub, it remains mostly mutants for long enough

time. Specifically, we use k = 1 + 4 · logr N = Θ(logN) as the threshold number of

residents allowed in the hub.

Lemma 38 (Hub stays mostly mutants). Set k = 1 + 4 · logr N = Θ(logN). If at any

point a configuration C contains all n hub vertices, then, with high probability, the hub

contains at most k = Θ(logN) resident vertices in each of the next N3 steps.

Proof. This follows from the behavior of the Moran process on a complete graph and

some crude bounds. Fix r′ = (r + 1)/2.

Suppose that a single hub vertex has just become a resident. Denote by p the prob-

ability that k hub nodes become resident before the hub becomes all mutants. Recall

that by Lemma 35, as long as the hub is heterogeneous, there is at least a constant bias

r′ = 1
2
(r+1) against gaining more residents. By Lemma 34, the fixation probability with

bias exactly equal to r′ would be fp(Kk, 1/r
′) < (1/r′)k−1 = 1/N4. Thus p ≤ 1/N4.

Since by Lemma 31 we have (1 − p)N
3
> (1− 1/N4)N

3 →N→∞ 1, the following event

happens with high probability: The first N3 times the hub becomes heterogeneous, it

reaches a state with all mutants before reaching a state with k residents. Since each such

stage takes at least one step, this takes at least N3 steps in total as desired.
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Now we prove that as long as the hub is mostly mutants, we are much more likely

to gain a mutant leaf (due to a hub firing out while fully homogeneous) than to lose a

mutant leaf (due to a hub firing out a resident while heterogeneous). We call the latter

event leaking and consider it first.

Lemma 39 (Leaking is rare). If the hub contains at most k = Θ(logN) residents through-

out the next Θ(N log n log b) steps, then it leaks a resident before becoming all mutants

with probability of the order of at most O(1/b).

Proof. Since there are at most k residents in the hub, the probability that a single step

is a resident leak is at most pleak =
k
F
· fout ≤ k

Nnb
. Consider the next s = Θ(N log n log b)

steps. With probability at least 1 − 1/b, the hub becomes all mutants within those s

steps (see Lemma 36 and Lemma 34). On the other hand, by Lemma 32 the hub leaks a

resident within those s steps with probability at most

1− (1− pleak)
s ≤ 1− (1− pleak · s) = pleak · s = O(k log n log b/(nb))

= O((logN)3/nb) = O(1/b),

where the last two steps hold provided that b = O(N) and (logN)3 = o(n). In total,

except for events with probability at most 1/b + 1/b = O(1/b), the hub resolves before

leaking a resident.

On the other hand, as mentioned earlier, gaining a mutant leaf is more common.

Lemma 40 (Occasionally we gain a leaf). If the hub is homogeneous then it gains a

mutant leaf before getting heterogeneous with probability of the order of at least Ω(a/b).

Proof. This is simple computation. Note that the only edges whose endpoints have dif-

ferent types are those that connect a resident leaf to a mutant node in the hub. Fix any

such edge and denote the resident leaf by x and the hub mutant by y. Let F be the total

fitness. We directly compare the probabilities that in a single step the edge is used for

reproduction in the direction x → y or y → x. We get

P[x → y] =
1

F
· fin ·

1

n
=

1

FNna
and P[y → x] =

r

F
· fout ·

1

N
=

r

FNnb

hence
P[y → x]

P[y → x] + P[x → y]
=

ra

ra+ b
= Ω(a/b).

Since this holds for every edge, it holds overall too.
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Combining the last two lemmas, we show that as long as the hub is mostly mutants,

it is overwhelmingly more likely to gain a mutant leaf than to lose one.

Lemma 41 (Gaining leaves before losing them). As long as the hub contains at most

k = Θ(logN) residents, with high probability, we gain a mutant leaf before losing one.

Proof. By Lemma 39 the hub leaks with probability p← that is of the order of at most

O(1/b) and otherwise it resolves to all mutants. Once it resolves, by Lemma 40 we gain

a mutant leaf with probability p→ that is of the order of at least Ω(a/b), otherwise the

hub becomes heterogeneous again. From this point on, the situation repeats. Hence the

probabilities of losing and gaining a mutant leaf are in ratio p← : (1−p←) ·p→. Computing

the probability p of losing a leaf before winning it we get

p =
p←

p← + (1− p←) · p→
= O

(
1/b

1/b+ a/b

)
= O(1/a) →N→∞ 0,

hence 1− p →N→∞ 1 as desired.

Now we combine the ingredients for the proof of Theorem 15.

Theorem 15 (Reactors are fast superamplifiers). For any fixed N , let n =
√
N , a = logN

and b = log2 N . Then Selection reactors SR(N, n, a, b) satisfy the following, under both

uniform and temperature initialization:

1. (super-amplifiers) fp(SR(N, n, a, b), r) →N→∞ 1.

2. (fast) AT(SR(N, n, a, b), r) = O(N2+ε), for any ε > 0.

Proof. Recall that the selection reactor consists of N leaf nodes and n = o(N) hub nodes.

First, we argue that the initial mutant appears at a leaf node with high probability,

under both uniform and temperature initialization. For uniform initialization this follows

immediately from n = o(N). For temperature initialization, we use the fact that the

leaves mostly self-loop: For any fixed leaf x we have T(x) ≥ 1
N+n

· (1− 1/Na), hence∑
x leaf

T(x) ≥ N

N + n
· (1− 1/Na) →N→∞ 1.

Since the total temperature of the population is 1, this implies that the overwhelming

majority of the temperature is concentrated on the leaves, hence the initial mutant appears

at a leaf vertex with high probability.
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Next, Lemma 37 implies that the mutants invade the hub and win it over in N2 ·b steps

(with high probability). After that, Lemma 38 implies that in each of the subsequent N3

steps, the hub will contain at most k = O(logN) residents (with high probability).

Now we consider a Markov chain M with 2N +3 states labelled Mi, Hi for 0 ≤ i ≤ N

and a single extra state X (see Figure 5.2).

Fix
ati
on

p+p−

. . .. . .
all mutants

heterogeneous

# mutant leaves

p↓p↑

p←

p→hub is

hub is

p↓p↑

p←

p→

HiHi−1

Mi Mi+1

M0 Mi−1 Mi Mi+1 MN

H0 Hi−1 Hi Hi+1

Figure 5.2: Graphical representation of the Markov chain in step 4. Denote by Mi (resp.

Hi) the states when we have i mutant leaves and the hub is all mutants (resp. hetero-

geneous and containing at most k = Θ(logN) residents) and assume our current state

is Hi. Then the state keeps toggling between Hi and Mi until either we move right via

Mi → Mi+1 or Hi → Hi+1 (uncommon) or left via Hi → Hi−1 (rare). Since uncommon is

more frequent than rare, we gain a mutant leaf more often than we lose it.

The states Mi represent the configurations in which all n hub vertices and i of the

leaf vertices are mutants. Specifically, M1 corresponds to the current state and MN

corresponds to fixation. The states Hi represent configurations in which n−1 hub vertices

and i of the leaf vertices are mutants. The state X represents the configurations that

have more than k residents in the hub (including extinction). Note that by Lemma 38,

we avoid state X in the next N3 steps with high probability. Thus it suffices to show that

those evolutionary trajectories that avoid X fixate within the next N3 steps with high

probability. From now on we deal with such trajectories only.

Observe that when in a state Mi, there are only three options for the next state:

1. Mi → Mi when the configuration does not change;
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2. Mi → Mi+1 when we gain a leaf;

3. Mi → Hi when a resident fires in the hub;

and only the latter two of them change the state. Moreover, Lemma 40 implies that the

probability p→ of moving to state Mi+1 (rather than to Hi) is of the order of at least a/b.

Similarly, when in a state Hi, there are four options for the next state:

1. Hi → Hi when the configuration does not change;

2. Hi → Hi+1 when the hub leaks a mutant and we gain a mutant leaf;

3. Hi → Hi−1 when the hub leaks a resident and we lose a mutant leaf;

4. Hi → Mi when the hub becomes all mutants before leaking;

and only the latter three of them change the state. Lemma 39 implies that the probability

p← of moving to state Hi−1 (rather than to Mi) is of the order of at most 1/b.

A typical evolutionary trajectory starting at Hi keeps toggling between Hi and Mi

(potentially staying at each state for some time) but eventually it leaves the set {Hi,Mi}

either along Mi → Mi+1 or along Hi → Hi−1. Lemma 41 implies that, upon winning

the hub, with high probability pN → 1, the trajectory will leave into {Hi+1,Mi+1} (along

either Mi → Mi+1 or perhaps even Hi → Hi+1) rather than into {Hi−1,Mi−1} (along

Hi → Hi−1), no matter if it is currently at Hi or at Mi.

Hence the fixation probability in the Markov chain M can be bounded from below by

the fixation probability on a one-dimensional Markov chain with bias pN
1−pN

. By Lemma 34,

the fixation probability for fixed bias r⋆ (and any N) is at least 1− 1/r⋆. As N → ∞, we

have pN → 1, hence

fp(SR(N), r) ≥ 1− 1− pN
pN

→N→∞ 1

and the selection reactors are indeed super-amplifiers.

Regarding the fixation time, note that for any i = 0, . . . , N − 1 we leave the set

{Hi,Mi} in one step with probability pi satisfying

pi ≥
r(n− k)

F
· fout ·

N − i

N
= Ω((N − i)/N2b),
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hence the expected number of steps to leave the set {Hi,Mi} is of the order of at most

1

pi
≤ N2b

N − i
.

By Lemma 34, upon leaving the set {Hi,Mi}, we are expected to revisit it only a constant

number of times. Summing over i = 0, . . . , N − 1 we get that the expected number of

steps to fixate on the whole graph after fixating on the hub is of the order of at most

N−1∑
i=0

N2b

N − i
= N2b logN.

By Lemma 34, this implies that we win the leaves within O(N2b log2 N) steps with high

probability.

Combined with the time spent winning the hub in the first place (N2 · b steps, with

high probability), we obtain that, with high probability, fixation happens within O(N2+ε)

steps.

Finally, it remains to show that fixation happens within O(N2+ε) steps not only with

high probability but also on average. This follows from two observations. First, note

that the process absorbs within O(N2+ε) steps with high probability, starting from any

configuration: Indeed, for configurations containing a leaf we have just proved that the

process in fact fixates with high probability. Given a configuration contained in the hub,

by Lemma 36 we either go extinct, or win the hub, or gain a leaf in O(N log2 n) steps

(with high probability). In the first case we have just absorbed and in the latter two cases

we fixate within O(N2+ε) steps as above (with high probability). Second, consider stages

of length τ = O(N2+ε) such that the process absorbs within each stage with probability

at least 1/2. Then we get

AT(SR(N)) ≤ 1

2
τ +

1

4
(2τ) +

1

8
(3τ) + · · · = 2τ = O(N2+ε)

where we have summed a series
∑∞

i=1 i/2
i = 2. Thus AT(SR(N), r) = O(N2+ε).

5.4 Numerical and simulation results

Here we present related numerical and simulation results. First, we illustrate that Selec-

tion reactors are superamplifiers for any r > 1 (see Figure 5.3). Second, we show that

different Selection reactors achieve different tradeoffs between high fixation probability

and low fixation time (see Figure 5.4).
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Figure 5.3: Fixation probability on Selection reactors. We consider Selection reac-

tors SR′(N,
√
N,N1/2, N3/2). We vary N up to 1000 and consider r ∈ {2, 1.1, 1.05, 1.01}.

The dots are exact values of the fixation probability under uniform initialization. The

figure illustrates that the fixation probability tends to 1 for any r > 1. We remark that

when r = 1.01 and N = 1000 then the Selection Reactor increases the fixation probability

by a factor of 25, compared to the Complete graph.
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Figure 5.4: Time-probability tradeoff for Selection reactors. We fix r = 1.1,

N = 100, n =
√
N and consider Selection reactors SR(N, n, a, b) for five discrete values

a ∈ {N−1, N−0.5, N0, N0.5, N1} and variable b. We observe that, compared to a Star

graph, already for N = 100 certain Selection reactors substantially increase the fixation

probability while other Selection reactors slightly increase the fixation probability while

simultaneously decreasing the fixation time.
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[20] Broom M, Rychtář J, Stadler BT. Evolutionary Dynamics on Graphs – the Effect

of Graph Structure and Initial Placement on Mutant Spread. J Stat Theory Pract.

2011;5(3):369–381.

[21] Shakarian P, Roos P, Johnson A. A review of evolutionary graph theory with appli-

cations to game theory. Biosystems. 2012;107(2):66–80.
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