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Brassinosteroid signaling delimits root gravitropism
via sorting of the Arabidopsis PIN2 auxin transporter
Katarzyna Retzer 1,2,6, Maria Akhmanova3,6, Nataliia Konstantinova1, Kateřina Malínská 2,

Johannes Leitner1,5, Jan Petraš́ek2,4 & Christian Luschnig 1*

Arabidopsis PIN2 protein directs transport of the phytohormone auxin from the root tip into

the root elongation zone. Variation in hormone transport, which depends on a delicate

interplay between PIN2 sorting to and from polar plasma membrane domains, determines

root growth. By employing a constitutively degraded version of PIN2, we identify brassino-

lides as antagonists of PIN2 endocytosis. This response does not require de novo protein

synthesis, but involves early events in canonical brassinolide signaling. Brassinolide-

controlled adjustments in PIN2 sorting and intracellular distribution governs formation of a

lateral PIN2 gradient in gravistimulated roots, coinciding with adjustments in auxin signaling

and directional root growth. Strikingly, simulations indicate that PIN2 gradient formation is no

prerequisite for root bending but rather dampens asymmetric auxin flow and signaling.

Crosstalk between brassinolide signaling and endocytic PIN2 sorting, thus, appears essential

for determining the rate of gravity-induced root curvature via attenuation of differential cell

elongation.
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D irectional transport of the growth regulator auxin
throughout the plant body establishes morphogenetic
cues, influencing a range of developmental programs.

PIN-FORMED (PIN) proteins mediate such polar auxin trans-
port (PAT) by means of their asymmetric distribution at the
plasma membrane (PM) and are subject to tight control, influ-
encing localization, activity, and abundance1–3.

PIN exocytotic sorting to distinct polar PM domains1,2,4,5 is
followed by endocytic sorting via clathrin-mediated endocytosis
(CME) into trans-Golgi network (TGN) compartments6. Such
cargo is either recycled to PM domains, or passed on to Late
Endosomes (LE)/Multivesicular Bodies (MVB) for degradation in
the vacuole5,7. Cis- and trans-acting regulators, determining the
fate of endocytosed PINs, have been identified. ARF-GEFs and
components of a plant retromer complex, for example, mediate
rerouting to the PM, whereas protein ubiquitylation triggers
Endosomal sorting complex required for transport (ESCRT)-
dependent PIN vacuolar targeting5,7–10. Consequently, variations
in PIN abundance and subcellular distribution define directional,
intercellular auxin flow, instrumental for establishment of auxin
gradients, thus shaping plant growth and rapid adaptation in
response to fluctuating environmental conditions.

Plant hormones impact on PIN sorting and abundance. Auxin
for example has been suggested to stabilize PIN proteins at the
PM, but to induce vacuolar sorting and degradation after pro-
longed incubation11,12. Stabilizing effects have been attributed to
the activity of gibberellic acid (GA)13,14, whereas differing
concentrations of jasmonate promote either stabilization or
degradation of PIN215. Cytokinin and the strigolactone agonist
rac-GR24 promote PIN endocytic sorting and vacuolar
degradation, thereby influencing particular aspects of plant
morphogenesis16,17. Furthermore, secondary messengers, such as
calcium and redox signaling affect PIN sorting during adaptation
processes, emphasizing the central role of crosstalk between plant
growth regulators and PIN proteins in plant development18,19.

Brassinosteroids represent plant steroid hormones, regulating
cell proliferation and differentiation, often acting in conjunction
with additional hormones20–24. Crosstalk between brassinolide
and auxin signaling shapes plant development, predominantly via
transcriptional control25–27. Additionally, brassinolide signaling
has been implicated in sorting and steady-state level control of
root-specific PIN21,28–30; however, mechanisms orchestrating
such post-transcriptional control and its significance for auxin
transport remained obscure.

Here, by employing a constitutively endocytosed allele of PIN2,
we demonstrate that brassinolide modulates vacuolar degradation
of PIN2, specifically in gravity-responding roots. Assessment of
crosstalk between brassinolide and PIN2 sorting, together with
modeling of auxin flow in gravistimulated roots, highlight a
mechanism, by which brassinolide delimits root curvature via
differential sorting of PIN2.

Results
Brassinolide controls turnover of ubiquitylated PIN2. Sorting
of PIN2 is modulated by various stimuli, defining auxin flow and,
consequently, root growth in response to them. To extend our
knowledge about PIN2 regulation, we tested for effects on the
sorting and abundance of the ubiquitin-tagged PIN2:ubq:VEN7.
This reporter protein mimics constitutive PIN2 ubiquitylation,
resulting in its enhanced internalization and vacuolar targeting in
dependence of the ESCRT endocytic sorting machinery7,8 (Sup-
plementary Fig. 1a, b). We crossed the reporter line into
tamoxifen-inducible pINTAM»RFP:HUB, exerting dominant
negative effects on CME from the PM6, revealing retention of
PIN2:ubq:VEN signals at the PM, specifically in cells expressing

RFP:HUB (Supplementary Fig. 1c–i). Thus, similar to sorting of
ubiquitylated PM cargo in fungi and metazoa, endocytic sorting
of PIN2:ubq:VEN in Arabidopsis involves activities of CME and
the ESCRT machinery31.

When testing for signals affecting endocytosis of ubiquitylated
PIN2, we observed strong responses to the plant steroid hormone
24-epibrassinolide (eBL). This growth regulator caused a
concentration- and time-dependent quantitative increase in
PIN2:ubq:VEN abundance on Western blots and upon assess-
ment of fluorescent signal intensities (Fig. 1a–h), with low eBL
concentrations (0.1 nM) resulting in increased reporter protein
signals after extended incubation times (Supplementary Fig. 2a–c).
Detailed examination of eir1-4 PIN2p::PIN2:ubq:VEN root

epidermis cells demonstrated accumulation of reporter signals
predominantly at the PM in response to eBL (Fig. 1a–d). These
effects appear specific, since treatment with another active
brassinosteroid, 28-homobrassinolide, also caused stabilization
of PIN2:ubq:VEN, whereas no comparable responses were
observed when testing additional steroid compounds (Fig. 1f, i,
Supplementary Fig. 3d).

We then determined, whether upregulation of PIN2:ubq:VEN
could result from eBL effects on transcription. However, neither
PIN2:ubq:VEN nor endogenous PIN2 transcript levels increased
in response to eBL (Fig. 1j). Furthermore, analysis of PIN2
expressed under control of the strong RP40 ribosomal protein
promoter32 showed that unlike RP40p::PIN2:VEN roots, which
displaying prominent reporter signals at the PM of stele, ground
tissue and epidermis cells, only faint intracellular signals could be
observed in RP40p::PIN2:ubq:VEN roots (Supplementary Fig. 3a,
b). Thus, constitutive ubiquitylation induces internalization and
degradation of PIN2, regardless of ectopic expression. Further-
more, treatment of RP40p::PIN2:ubq:VEN with eBL, caused
reporter protein stabilization at the PM, recapitulating results
obtained with PIN2p::PIN2:ubq:VEN (Fig. 1k, l; Supplementary
Fig. 3c, d).

Brassinolide homeostasis and BRI1 control PIN2:ubq:VEN
fate. To identify pathways connecting brassinolide and ubiqui-
tylated PIN2, we tested det2-1 eir1-4 PIN2p::PIN2:ubq:VEN,
which is affected in DEETIOLATED2, required for an early step
in brassinosteroid biosynthesis33. PIN2:ubq:VEN reporter signals
were even weaker than in eir1-4 PIN2p::PIN2:ubq:VEN, suggest-
ing that interference with brassinolide biosynthesis results in
further destabilization of ubiquitylated PIN2 (Fig. 2a, b, d).
Consistently, eBL application, which rescues det2-133, restored
reporter expression in det2-1 eir1-4 PIN2p::PIN2:ubq:VEN
(Fig. 2c, d). In agreement, treatment of eir1-4 PIN2p::PIN2:ubq:
VEN with Brassinazole (BRZ), a potent inhibitor of brassinolide
biosynthesis34, resulted in reduced abundance of PIN2:ubq:VEN
at the PM (Fig. 2e–g), which underlines a role for brassinolide
homeostasis in regulating the stability of ubiquitylated PIN2.

Brassinolide is a positive regulator of GA biosynthesis35,
another phytohormone modulating PIN sorting13,14. Thus, we
tested for involvement of eBL-controlled GA homeostasis in the
regulation of PIN2:ubq:VEN. Co-treatment with eBL and
paclobutrazole (PAC), an inhibitor of GA biosynthesis, did not
affect eBL-induced PIN2:ubq:VEN localization at the PM, which
argues for brassinolide effects uncoupled from GA biosynthesis
(Supplementary Fig. 4a–e).

Next, to characterize the signaling pathways involved, we
generated a cross between a mutant in BRASSINOSTEROIDE
INSENSITIVE1 brassinolide receptor kinase (bri1-6) and eir1-4
PIN2p::PIN2:ubq:VEN. Unlike in eir1-4 PIN2p::PIN2:ubq:VEN,
eBL treatment of bri1-6 eir1-4 PIN2p::PIN2:ubq:VEN did not
efficiently restore PIN2:ubq:VEN abundance at the PM,
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suggesting involvement of BRI1 in regulating the trafficking of the
ubiquitylated PIN2 (Fig. 2h–j, l–o). Bikinin is a potent inhibitor of
GSK3/Shaggy-type serine/threonine kinases, which function as
negative regulators of brassinosteroid signaling downstream of
BRI136,37. Inhibition of these protein kinases therefore causes
activation of brassinolide signaling, even in bri1 loss-of-function

mutants38. Bikinin treatment stabilized PIN2:ubq:VEN at the PM
in eir1-4 PIN2p::PIN2:ubq:VEN and in bri1-6 eir1-4 PIN2p::PIN2:
ubq:VEN roots (Fig. 2h, k, n, o). Overall, this demonstrates
involvement of canonical brassinolide signaling elements,
namely BRI1 and GSK3/Shaggy-type kinases, in PIN2:ubq:VEN
trafficking.

14

p 
<

 0
.0

1

12

S
ig

na
l r

at
io

 P
M

/in
tr

ac
el

lu
la

r

10

8

6

4

2

0

360′

eBLeBLPNS

PNS

a b c

d

e

f

– +

90′0′

– +–24-epiBL

24
-e

pi
B

L

28
-h

B
L

ei
r1

–4

ei
r1

–4

ei
r1

–4

PIN2100

0 10 50

[24-epiBL] nM

100

55 TUB

P
N

S

PNS 100 nM eBL

P
N

S

C
ho

l.

S
tig

.

D
E

X

PIN2

TUB

PIN2

TUB

1.4

1.2

0.6

0.8

F
ol

d 
ex

pr
es

si
on

1

0.2

eir1–4
PIN2p::PIN2:ubq:VEN

PIN2

PNS eBL

0

0.4

1.4

1.2

0.6

0.8

F
ol

d 
ex

pr
es

si
on

1

0.2

0

0.4

PIN2

TUB

+ kDa
kDa

100

55

kDa

100

55

kDa

100

55

PNS

10
0 

nM
 e

BL

g

h i

j k l

Fig. 1 Brassinolide stabilizes PIN2:ubq:VEN. a–d Comparison of eir1-4 PIN2p::PIN2:ubq:VEN root tips (a, b) and root epidermis cells (c, d) at 6 DAG
germinated on PNS (a, c) or on PNS supplemented with 100 nM eBL (b, d). e PIN2:ubq:VEN signal ratios between PM and the intracellular space in PNS
and eBL-treated seedlings. 82–85 root epidermal cells in 12 roots were tested for each dataset and analyzed by two-tailed t-test. f–i Western blots
performed with eir1-4 PIN2p::PIN2:ubq:VEN membrane protein fractions isolated at 6 DAG probed with anti-PIN2; where indicated eir1-4 was used as a
control. Anti-α-tubulin (TUB) was used as a loading control for all blots. f Samples either remained mock-treated (PNS) or were germinated in the presence
of 100 nM 24-epiBL, or 28-homoBL. g Samples taken from a time course after 0, 90, and 360min in the presence of 100 nM eBL (+ ) or incubated with
solvent alone (-). h Samples with increasing concentrations of 24-epiBL. i Samples treated with 50 μM cholesterol (Chol.), 50 μM stigmasterol (Stig.),
and 50 μM dexamethasone (DEX) for 16 h, or mock-treated sample (PNS). j PIN2 transcript levels in 6-day-old Col0 and PIN2p::PIN2:ubq:VEN on PNS or on
100 nM eBL for 6 h. Four biological repetitions were made for each sample, with transcripts normalized to expression of EF1a (At1g07940). k, l PIN2:ubq:
VEN distribution and abundance in root epidermis cells of RP40p::PIN2:ubq:VEN at 6 DAG, on PNS (k) or in the presence of 100 nM eBL for 6 h (l).
Whiskers in box plots cover the entire range of outliers obtained in the datasets; gray boxes: first and third quartiles; center line: median; dots: values
obtained. Scale bars: a,b= 50 μm; c,d= 20 μm; k,l= 10 μm. Source data are provided as Source Data file.
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Brassinolide antagonizes PIN2:ubq:VEN endocytic sorting. We
asked, whether stabilization of PIN2:ubq:VEN results from
retention at, or from enhanced sorting to the PM. We tested this
in eir1-4 PIN2p::PIN2:ubq:VEN seedlings by cycloheximide
treatment (CHX), to block de novo protein biosynthesis, followed

by treatment with CHX and Brefeldin A (BFA), an inhibitor of
anterograde PIN trafficking5. This resulted in intracellular accu-
mulation of Venus signals, indicating reporter protein retention
in response to BFA (Fig. 3a, d). Pre-treatment with eBL did not
interfere with this process, whilst after BFA washout, intracellular
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(a) and det2-1 eir1-4 PIN2p::PIN2:ubq:VEN grown in the absence (b) or presence of 100 nM eBL at 6 DAG (c). d PIN2:ubq:VEN signal ratios between PM and
intracellular space in eir1-4 PIN2p::PIN2:ubq:VEN and det2-1 eir1-4 PIN2p::PIN2:ubq:VEN. 31-32 root epidermis cells in five roots were tested for each dataset.
Relevant p-values obtained by One-way ANOVA with post-hoc Tukey HSD test are indicated. e, f PIN2:ubq:VEN distribution and abundance in 6 DAG eir1-
4 PIN2p::PIN2:ubq:VEN root epidermis cells incubated on PNS (e) or after 16 h incubation on 10 μM Brassinazole (BRZ; f). g Western blots of eir1-4 PIN2p::
PIN2:ubq:VEN membrane protein fraction, probed with anti-PIN2. Samples were incubated for 16 h in the presence of 100 nM 24-epiBL, 10 μM BRZ, or
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data are provided as Source Data file.
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aggregates vanished in eBL-treated and in control samples
(Fig. 3a, d). Together, this indicates that PIN2:ubq:VEN retention
in BFA compartments occurs regardless of eBL treatment.
However, quantification of PIN2:ubq:VEN signal intensities at the
PM vs. BFA compartments, indicated that a smaller proportion of

intracellular reporter signals accumulated in eBL-treated samples,
potentially reflecting reduced endocytic sorting of PIN2:ubq:VEN
in response to eBL (Fig. 3a, e).

Treatment of eir1-4 PIN2p::PIN2:ubq:VEN with Wortmannin
(WM), a phosphatidylinositol kinase inhibitor that obstructs
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for p-values. Scale bars: a–c, h= 10 μm. Source data are provided as a Source Data file.
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vacuolar cargo sorting39, caused formation of punctate intracellular
Venus signals, indicating its ongoing vacuolar targeting (Fig. 3b).
Pre-treatment with eBL followed by WM treatment, did not
completely block PIN2:ubq:VEN signal accumulation, but caused
reduced internalization of it (Fig. 3b, f), signifying inhibition of
PIN2:ubq:VEN endocytic sorting in response to brassinolide.
Consistent results were obtained when testing BRZ effects in an
Arabidopsis TOM1-LIKE (TOL) pentuple mutant (tolQ). This
mutant is compromised in an early recognition step of ubiquitylated
membrane protein cargo, causing PIN2:ubq:VEN retention at the
PM, instead of its endocytic sorting8. Unlike wild type, in which
BRZ-induced inhibition of brassinolide biosynthesis enhances
vacuolar targeting of PIN2:ubq:VEN, tolQ antagonizes these BRZ
effects (Fig. 3c, g). Variations in PIN2:ubq:VEN endocytosis caused
by altered brassinolide homeostasis thus, require the TOL/ESCRT
machinery, guiding ubiquitylated membrane proteins from the PM
towards the vacuolar compartment.

Next, we asked if de novo protein biosynthesis is required for eBL
effects observed. Inhibition of protein biosynthesis by CHX under
our conditions was first validated by analysis of the instable D2-
Venus reporter protein40 (Supplementary Fig. 5a–d). We then
treated eir1-4 PIN2p::PIN2:ubq:VEN with CHX for 30min, followed
by co-incubation in the presence of CHX and eBL for 5 h and
observed PIN2:ubq:VEN signals at the PM, which were absent in
untreated controls or in the presence of CHX alone (Fig. 3h, i).
Consistently, Western analysis of membrane protein extracts
showed accumulation of PIN2:ubq:VEN after pre-treatment with
CHX, followed by CHX/eBL co-treatment; a response not observed
in controls (Fig. 3j). Pre-treatment of eir1-4 PIN2p::PIN2:ubq:VEN
with eBL, followed by translational inhibition for 150min, led to
PIN2:ubq:VEN PM retention as well (Supplementary Fig. 6a–e),
corroborating that de novo protein biosynthesis is dispensable for
brassinolide effects on PIN2:ubq:VEN.

Brassinolide modulates endocytosis of wild type PIN2. We then
determined brassinolide responsiveness of Venus-tagged wild
type PIN2 (PIN2:VEN). BRZ-mediated inhibition of brassinolide
biosynthesis in eir1-4 PIN2p::PIN2:VEN caused moderate
increases in intracellular Venus signals (Supplementary Fig. 7a,
b). In line with these observations, bri1-6 PIN2p::PIN2:VEN root
meristem epidermis cells exhibited punctate intracellular reporter
signals, significantly more abundant than in BRI1 controls
(Fig. 4a–c; Supplementary Fig. 7c, d). Co-staining with the
endocytosed marker FM4-64, demonstrated overlaps in the dis-
tribution of internalized FM4-64 and PIN2:VEN in bri1-6 root
epidermis cells, suggesting that deficiencies in brassinolide per-
ception promote internalization of PIN2 (Fig. 4a–c). Despite
alterations in PIN2 distribution, Western blots revealed no
striking changes in PIN2 abundance, neither in response to BRZ
treatment, nor in bri1-6 (Supplementary Fig. 7e, f). Furthermore,
no striking adjustments in PIN2:VEN PM localization and/or
steady-state protein levels were observed in response to eBL
(Fig. 4d–f; Supplementary Fig. 7g, h). Thus, alterations in bras-
sinolide homeostasis or signaling seemingly affect PIN2 sorting,
without noticeable effects on total protein levels. Related findings
were made, when assessing eBL effects on expression of addi-
tional auxin transport proteins, which revealed no striking dif-
ferences in response to brassinolide (Supplementary Fig. 8a–d).
Next, we tested conditions, demonstrated to cause vacuolar
degradation of PIN27,9. Dark growth of eir1-4 PIN2p::PIN2:
mCherry roots caused pronounced vacuolar reporter signals in
root epidermis cells, reflecting enhanced degradation of the
reporter protein. This was reverted by eBL treatment, suggesting
that brassinolide antagonizes PIN2 vacuolar targeting (Fig. 4g, h;
Supplementary Fig. 7i–l). Next, we incubated eir1-4 PIN2p::PIN2:

VEN in the presence of auxin analog 1-NAA (1-Naphthalenea-
cetic acid) for 4-to-5 h, which induced PIN2:VEN internalization,
together with a reduction in total protein levels (Fig. 4i, k, l).
Auxin-induced PIN2:VEN degradation was antagonized by eBL,
reflected in a partial restoration of reporter protein levels and
increased PM localization of PIN2:VEN signals, when compared
to auxin-treated controls (Fig. 4j–l). Collectively, these findings
indicate a role for brassinolide in PIN2 regulation, by countering
its vacuolar targeting and degradation.

Brassinolide acts in PIN2-controlled directional root growth.
Brassinolide influences root growth via distinct mechanisms,
including control of cell cycle progression, cytoskeleton configura-
tion and cell wall biosynthesis22–24,26,29. PIN2, on the other hand,
represents a regulator of directional root growth, mediating auxin
flow into the root elongation zone (EZ). To understand how
brassinolide could influence root growth via PIN2, we compared
phenotypes of wild type and eir1-4 roots in response to eBL.
Moderate hormone concentrations promote curliness of Arabi-
dopsis root growth, a response, earlier linked to brassinolide-
induced reconfigurations of the cytoskeleton29. Indeed, wild type
roots germinated on 1 nM eBL responded with formation of small
bends and turns, and a similar increase in irregular root twists was
observed in eir1-4 under our growth conditions (Supplementary
Fig. 9a). Thus, PIN2 seems dispensable for brassinolide-induced
root curling. We then examined gravitropic root bending, as this
growth response, which requires PIN2, is mediated by differential
cell elongation at the upper vs. the lower side of bending roots41.
Wild type plants, when germinated on vertically oriented plates in
the presence of brassinolide, exhibited deficiencies in directional
root growth in a dosage-dependent manner (Fig. 5a, d) In contrast,
brassinolide did not cause any prominent changes in already
agravitropic eir1-4 root growth (Fig. 5a, c, e).

We tested eBL effects on the kinetics of root gravitropism, by
monitoring reorientation of horizontally positioned primary roots
over time. In line with published research, we found that
brassinolide treatment does not interfere with root bending in
response to gravistimulation42–44, but quite the opposite, we
observed a prominent hyper-responsiveness to gravistimulation
(Fig. 5f). Whilst seedlings grown on regular medium terminated
root bending, once the direction of root growth has realigned with
the direction of the gravity vector, eBL-treated roots had a tendency
to over-bend. As a result, eBL-treated roots frequently exhibited a
hairpin-shaped root growth pattern, which we did not observe in
mock-treated controls (Fig. 5g, h). Gravistimulated eir1-4 PIN2p::
PIN2:VEN on eBL exhibited growth characteristics similar to wild
type and furthermore, a partial rescue of gravitropism defects was
observed with eBL-treated eir1-4 PIN2p::PIN2:ubq:VEN (Supple-
mentary Fig. 9b). Thus, stabilization of ubiquitylated PIN2 in
response to brassinolide appears to contribute to restoration of
differential auxin flow and cell elongation. In contrast, eir1-4 roots
treated with eBL exhibited increased irregularity in the directionality
of root growth, but we did not observe a comparable rescue of root
gravitropism (Fig. 5i; Supplementary Fig. 9b). Related observations
were made with the auxin co-receptor quadruple mutant tir1-1
afb1-1 afb2-1 afb3-145 (TRANSPORT INHIBITOR RESPONSE1,
AUXIN SIGNALING F-BOX; Supplementary Fig. 9c). Thus,
brassinolide action in the absence of either PIN2-mediated auxin
transport or TIR1/AFB-dependent auxin perception seems insuffi-
cient for efficient establishment of gravitropic root growth.

Brassinolide modulates PIN2 sorting upon gravistimulation.
Gravitropic root bending coincides with a transient PIN2 gra-
dient, with more PM-resident PIN2 found at the lower side of
bending roots12. Before completion of root bending this gradient
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vanishes, signifying that dynamic variations in PIN2 sorting
shape differential auxin flow from the root tip into the root
elongation zone12,46. To determine, how brassinolide might
influence PIN2 distribution in gravistimulated roots, we tested
PIN2:VEN distribution over time. In eir1-4 PIN2p::PIN2:VEN
controls, a lateral PIN2 gradient with more Venus signals at the
lower side of the meristem became visible after 90' and 150', and

disappeared after extended gravistimulation (Fig. 6a–e). Roots
pre-treated with brassinolide did not establish a comparable PIN2
gradient, indicating that brassinolide interferes with differential
PIN2 distribution in gravistimulated roots (Fig. 6a–e).

The apparent eBL effects on PIN2:VEN upon gravistimulation,
hint at participation of brassinolide signaling in sorting control of
PIN2 in gravity-responding roots. To visualize endogenous
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brassinolide signaling upon gravistimulation, we made use of
brassinolide-responsive 35S::BES1:GFP47. Specifically, reporter sta-
bilization and increased nuclear localization in response to
brassinolide, makes this line a versatile tool for studying variations
in brassinolide signaling47 (Supplementary Fig. 10a–c). Quantifica-
tion of BES1:GFP in nuclei of root meristem epidermis cells revealed
establishment of a transient expression gradient in horizontally
positioned roots. After 90min of gravistimulation, we observed a
transient increase in BES1:GFP signal intensities at the root’s lower
side, when compared to the upper side (Fig. 7a–d). In contrast, no
BES1:GFP gradient was established on eBL medium, indicating that
exogenously applied eBL interferes with differential brassinolide
signaling in gravistimulated roots (Supplementary Fig. 10d–f).

Taken together, our experiments revealed asymmetric brassi-
nolide signaling in gravistimulated roots, coinciding with a lateral
PIN2 gradient. Furthermore, disruption of the lateral PIN2

gradient by brassinolide treatment is in line with a role for
endogenous brassinolide signaling in the spatiotemporal control
of PIN2 in gravistimulated roots.

Modeling auxin distribution in dependence of PIN2. Current
models suggest that elevated PIN2 levels at the lower side of
gravity-responding roots cause differential auxin flow into the
root elongation zone to stimulate altered root elongation12,46. We
found that brassinolide treatment, whilst interfering with PIN2
gradient formation in gravistimulated roots, does not block dif-
ferential cell elongation and root bending. We therefore asked, if
brassinolide affects differential auxin distribution/signaling,
which functions as a prerequisite for root gravitropism, and tested
intensity of auxin-responsive R2D240. In mock-treated controls, a
D2 signal gradient was clearly visible after 90 min of gravi-
stimulation, which disappeared at later time points, reflecting
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differential auxin signaling in gravity-responding roots during a
defined stage of root curvature (Fig. 7e–g)48. Gravistimulated
R2D2 roots pre-treated with brassinolide also established a dis-
cernible signal gradient, even slightly more pronounced than in
controls (Fig. 7e–g). From that it seems that, unlike suggested in
current models, formation of a PIN2 gradient is not categorically
required for differential auxin signaling in gravistimulated roots.

To clarify this conundrum, we took a simulation approach, and
analyzed auxin distribution in dependence of variable PIN2 levels,
by extending a recently developed model of auxin transport
(Supplementary Note 1, Supplementary Fig. 11a)49. Intracellular
auxin concentrations are governed by three distinct transport
mechanisms across cellular membrane boundaries, namely
diffusion as well as active transport by influx and efflux
carriers12,50. Cumulative permeabilities for auxin at each
membrane boundary are jointly defined by these three parameters

and thus, should be influenced by variations in any of these
determinants48. To model a PIN2 gradient and effects on
intracellular auxin concentration, we varied auxin permeability
in proportion to relative PIN2 abundance, as determined
experimentally (Fig. 6e).

PIN2-mediated auxin permeability on the opposing sides of the
root is denoted by Plower side

PIN2 and Pupper side
PIN2 (Fig. 8a, b schemes, blue

bars, Supplementary Fig. 11a). In the symmetrical (initial) state,
there is no difference in permeabilities on both sides:
Plower side
PIN2 ¼ Pupper side

PIN2 ¼ Pinitial
PIN2 . The ratio of PIN2 permeabilities

is assumed proportional to the measured PIN2:VEN signal ratio,

as presented in Fig. 6e: Pupper sidePIN2

Plower side
PIN2

¼ PIN2:Venus signal upper side
PIN2:Venus signal lower side ¼ k. We

used this ratio, denoted as parameter k, to define permeabilities as
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functions of the initial permeabilities:

Pupper side
PIN2 ¼ Pinitial

PIN2 �
ffiffiffi

k
p

; ð1Þ

Plower side
PIN2 ¼ Pinitial

PIN2
ffiffiffi

k
p : ð2Þ

In our experiments, gravistimulated control roots exhibited
PIN2 asymmetry with a minimum median value k= 0.81,
whereas eBL-treated samples exhibited no asymmetry (k close
to 1) (Fig. 6e). We calculated [IAA]cell distribution for a range of

k values (from 0.05 to 1.4) and determined how PIN2 asymmetry
affects [IAA]cell, and how eBL treatment could influence [IAA]cell.

First, we tested conditions under which initial [IAA]cell is equal
at upper and lower side of the root elongation zone, and no
asymmetric [IAA]cell is present in root tip cells (Fig. 8a, b, e).
Upon building asymmetry in PIN2 permeability we observed an
increase in [IAA]cell at the side with lower PIN2 abundance
(Fig. 8b, e): with an asymmetry coefficient k= 0.81, we obtained
IAAlower side

IAAupper side ffi 0:8 (calculated for epidermal cells of the elongation

zone; Fig. 8b, g; blue curve). A linear relationship between Pupper side
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and IAAlower side

IAAupper side is maintained, independently of initial PIN2
permeabilities, which influence only the magnitude of this
positive coefficient of proportionality (Supplementary Note 14;
Supplementary Fig. 16a–c). This relationship also applies, when
changing permeability values of the auxin importer AUX1, a key
determinant of shootward auxin transport in root meristems50

(Supplementary Note 16, Supplementary Fig. 17b).
Next, we introduced initial [IAA]cell asymmetry in the root tip,

reflecting auxin gradient formation mediated by asymmetric
accumulation of PIN3 and PIN7 at the lower side of columella
cells51 (Fig. 8c, d, f). We simulated this gravistimulation case by
increasing permeability at the lower side of columella cells, so that
IAAlower side

IAAupper side ¼ 1:62 at k= 0.81. This value was chosen to match
experimental values at 90′ after gravistimulation in control roots
(IAA

lower side

IAAupper side ¼ R2D2 upper sideð Þ
R2D2 lower sideð Þ ¼ 1:62, k= 0.81 Fig. 6e; Fig. 7e). Keep-

ing permeability distribution in columella cells unchanged, we
calculated IAAlower side

IAAupper side depending on k (plotted on Fig. 8g, orange
line), revealing that PIN2 asymmetry with higher permeability at
the lower side effectively decreases the [IAA]cell ratio (Fig. 8d, f,
g). In related simulations, we tested modifications in overall root
morphology, which occur in response to brassinolide
treatment23,28 (Supplementary Note 10; Supplementary Fig. 12),
and assessed consequences of altered PIN2 localization (Supple-
mentary Note 11; Supplementary Fig. 14). These variations did
not strikingly modify the values of [IAA]cell ratios, obtained in
our simulations (Supplementary Fig. 12c; Supplementary
Fig. 14e).

We asked, if a loss of PIN2 asymmetry upon eBL treatment is
solely responsible for increased IAAlower side

IAAupper side = 2.28 (Fig. 7e). When
mimicking no PIN2 asymmetry (k= 1) upon gravistimulation,
we obtained IAAlower side

IAAupper side ¼ 1:93, which is lower than the experi-
mental value (= 2.28) observed in response to eBL treatment
(Fig. 8g, orange line). This discrepancy argues for additional
determinants involved in auxin gradient formation under eBL
treatment, and we therefore extended simulations. We assessed
consequences of a range of physiologically plausible values for
PIN2 and AUX1 permeabilities as well as PIN3/7 asymmetry, to
estimate how such changes could influence IAAlower side

IAAupper side. PIN3/7
asymmetry in columella cells turned out to define gravistimula-
tion strength, i.e. the proportion of auxin that is directed to
the root's lower side during the gravitropic response. There
is a linear relationship between PIN3/7 asymmetry and IAAlower side

IAAupper side.

Conversely, the functions of PIN2 and AUX1 permeability are
not monotonical (Fig. 8h; Supplementary Fig. 15a, b and 17a–c).
Specifically, we identified intermediate permeability values of
PIN2 and AUX1, at which IAAlower side

IAAupper side is highest (Supplementary
Note 16). Upon simulation of very low PIN2 permeabilities, no
auxin asymmetry is established, even under very strong
gravistimulation strength, reproducing pin2 mutant phenotypes
(Fig. 8h).

Because of the nonlinear relationship between AUX1/PIN2
permeabilities and IAAlower side

IAAupper side, consequences of changes in PIN2 and
AUX1 levels strongly depend on initial AUX1/PIN2 permeability
values and on the gravistimulation strength. An at least twofold
increase in overall PIN2 permeability at upper and lower side of the
root is required, to account for a shift of IAAlower side

IAAupper side from 1.62
(control) to 2.3 (eBL-treated). This however, is only true, upon
simulating a very strong asymmetry in PIN3/PIN7 permeabilities,
together with very low levels of initial PIN2 permeability (Fig. 8h,
shaded gray region). If any of these minimal requirements is not
fulfilled, an up to 100-fold increase of PIN2 permeability would be
needed to cause such a shift in IAAlower side

IAAupper side (Fig. 8h, shaded blue and
pink regions). These conditions appear physiologically irrelevant,
supported by our experimental data, with increases in PIN2:VEN
signal intensities never exceeding a factor of 2 (Supplementary
Fig. 15c). In contrast, by introducing PIN2 asymmetry into the
model, an increase of PIN2 permeability values within the range of
experimentally observed variations in PIN2:VEN abundance, is
sufficient for the calculated shifts in IAAlower side

IAAupper side (Supplementary
Figs. 15a, b and 17, Supplementary Notes 13 and 16). Thus, whilst
increased overall PIN2 (or AUX1) permeability influences auxin
distribution, it appears insufficient for eBL-induced shifts in
IAAlower side

IAAupper side ratios, as it would require drastic permeability changes.
In contrast, for values of PIN2 permeability similar to those
reported in the literature (0:1 � Pinitial

PIN2 � 10; Supplementary
Table 1), even a moderate PIN2 asymmetry (k= 0.81) will have
substantial effects on IAAlower side

IAAupper side, and therefore is not negligible for our
model (Supplementary Fig. 17d, compare bars # 1 & 6 or 5 & 9).

Our simulation revealed an inverse proportionality of [IAA]cell
and PIN2 asymmetry levels in gravistimulated roots, with IAAlower side

IAAupper side

~ Pupper side
PIN2

Plower side
PIN2

. The coefficient of proportionality depends on the initial

asymmetry of IAAlower side

IAAupper side, induced in columella cells and rises with

increasingIAA
lower side

IAAupper side values (Fig. 8g). This can be explained by

Fig. 8 Simulation of auxin distribution in root tips. a–d Top: Model geometry showing PIN2-mediated permeabilities (blue lines) and PIN3/PIN7
permeability (yellow lines). Thickness of the lines represents permeability values. Bottom: Corresponding steady-state intracellular auxin concentrations
[IAA]cell. a Symmetric PIN2 and PIN3/PIN7 permeabilities distribution. b PIN2 permeability is reduced at the upper side and increased at the lower side,
while PIN3/PIN7 permeabilities are symmetric (no gravistimulation). c Symmetric PIN2 distribution in the case of asymmetric PIN3/PIN7 permeabilities
(gravistimulation). d PIN2 permeability is reduced at the upper side and increased at the lower side, and PIN3/PIN7 permeabilities are also asymmetric
(gravistimulation). e, f Evolution of [IAA]cell at the upper (blue) and lower (green) side in the EZ, starting with equal PIN2 distribution (k= 1), and after
PIN2 asymmetry is established at time point zero (k= 0.5). Plotted is an average [IAA]cell of the first 5 cells of the EZ (highlighted by blue and green dots

in ‘a’). No gravistimulation: Initial IAA lower sideð Þ
IAA upper sideð Þ ¼ 1 (e). Gravistimulation: Initial IAA lower sideð Þ

IAA upper sideð Þ ¼ 2:3 (f). g Simulation of IAA lower sideð Þ
IAA upper sideð Þ in dependence of PIN2

asymmetry k in the case of no gravistimulation (blue line; IAA lower sideð Þ
IAA upper sideð Þ ¼ 1 at k= 1), and after gravistimulation under control conditions (orange line;

IAA lower sideð Þ
IAA upper sideð Þ ¼ 1:62 at k= 0.81). Boxes display experimental values determined for IAA lower sideð Þ

IAA upper sideð Þ and k for control and eBL-treatement (see text and Figs. 6c

and 7e). Whiskers represent the range of values obtained in the datasets. h Dependence of IAA lower sideð Þ
IAA upper sideð Þ on initial PIN2 permeability in gravistimulated roots,

for k= 1 and variable gravistimulation strengths (normalized by default value: P0 initial
PIN2 ¼ 0:5 um=s). Gravistimulation strength is defined as the ratio of auxin

flux towards the lower side vs. the upper side in columella cells (in %). Color shadings highlight shifts in PIN2 permeability required to increase IAA lower sideð Þ
IAA upper sideð Þ

from measured control values (1.62, black line) to eBL-treatment values (2.3, red line) under: high gravistimulation strength (auxin flux ratio 95%/5%,
gray), intermediate (auxin flux ratio of 70%/30%, blue) and lowest possible gravistimulation strength (auxin flux ratio 60%/40%, pink). Source data are
provided as Source Data file.
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increased PIN2 efflux activity resulting in lower cellular IAA levels,
as long as other transport activities remain unchanged (Supple-
mentary Notes 10 and 17; Supplementary Fig. 13). Reduced PIN2
activity in contrast, moves the flux balance in favor of influx, giving
rise to increased intracellular auxin concentrations. According to
this simulation, the effect of asymmetric PIN2 abundance on
auxin distribution would be opposite to that of gravity-induced
PIN3/PIN7 relocation in columella root cap cells. Consequently,
it would counteract differential elongation of cell files at upper
and lower sides of the root meristem, by dampening the steep
auxin concentration gradient, initially established in gravistimulated
columella root cap cells.

Discussion
Variations in subcellular PIN distribution determine directional
auxin transport. Hence, deciphering the molecular basis of PIN
sorting is key to our understanding of mechanisms, by which these
proteins influence plant growth. Here, by employing a constitutively
endocytosed version of Arabidopsis PIN2, we present a detailed
characterization of PIN2 crosstalk with brassinolide signaling, and
its functional implications for root gravitropism.

We utilized a version of PIN2, with a ubiquitin-tag serving as a
signal for protein internalization and degradation, which makes
this reporter highly suitable for investigating stability and sorting
of endocytosed PIN27. Stabilization of PIN2:ubq:VEN by brassi-
nolide represents an example for the feasibility of this approach.
This response depends on canonical brassinolide signaling via
BRI1 and on downstream GSK3/Shaggy-type protein kinases21,37.
The effect is dosage-dependent and independent of de novo
protein biosynthesis, suggestive of non-genomic mechanisms, as
implicated in PIN sorting control by auxin and GA11,14. Alter-
natively, brassinolide might act indirectly, via affecting transcrip-
tion of regulators of PIN sorting, as suggested for microtubule
associated protein CYTOPLASMIC LINKER-ASSOCIATED PRO-
TEIN1 (CLASP1). CLASP1 promotes PIN2 recycling to the PM,
presumably via adjusting the association of sorting endosomes
and microtubules in a SORTING NEXIN1-(SNX1)-dependent
manner10. Brassinolide in turn, causes transcriptional down-
regulation of CLASP1, potentially modulating PIN2 recycling to
the PM30.

Next to crosstalk between brassinolide and CLASP1, implicated
in protein recycling, our analysis highlights brassinolide-mediated
inhibition of PIN2 endocytic sorting from the PM. Effects are
strong in the case of constitutively endocytosed PIN2:ubq:VEN,
whereas comparatively mild responses are observed with wild
type PIN2 reporters. PIN2 labeled for degradation, thus likely
represents a preferred target for this type of hormonal regulation.
This is supported by our observations, demonstrating that bras-
sinolide stabilizes PIN2 under conditions, promoting its vacuolar
degradation. Furthermore, we found that inhibition of brassino-
lide biosynthesis no longer causes enhanced degradation of ubi-
quitylated PIN2 upon interfering with the TOL/ESCRT
machinery8, which links brassinolide signals to endocytosis of
ubiquitylated PM cargo. Brassinolide-controlled variations in the
distribution of PIN2 thus, seem to occur via adjustments, both in
protein recycling and endocytosis, affecting PAT in the regulation
of root growth in general, and gravitropism, in particular.

Coordination of root growth in response to gravity involves
differential auxin flow from the root tip into the elongation zone.
This asymmetry seemingly depends on redistribution of PIN
proteins to the bottom side of columella root cap cells, redirecting
auxin flow to the root’s lower margin51. Enhanced auxin trans-
port at the root’s lower side, when compared to the upper side,
was suggested to be consolidated further by a transient PIN2
gradient, with more PM-resident PIN2 at the lower side, resulting

from differential sorting and turnover of the protein7,12,46.
Consequently, asymmetric auxin flow would induce differential
cell elongation and gravitropic root bending. Along these lines,
resetting of differential auxin transport to default levels would be
promoted by getting rid of the PIN2 gradient upon completion of
root bending12,46. Our findings demonstrate crosstalk between
auxin and brassinolide signals, via PIN2 sorting in gravity-
responding roots. By analogy to modes of action suggested for
other growth regulators, spatiotemporal variations in brassinolide
signaling influence PIN2 PM association, thereby adjusting auxin
flow12,14. Surprisingly though, interference with PIN2 gradient
formation upon eBL treatment, neither prevented gravitropic root
bending, nor differential auxin signaling. Abolished PIN2 gra-
dient formation might be compensated by—for example—local
adjustments in PIN2 activity. Nevertheless, our observations
demonstrate that formation of a lateral PIN2 expression gradient
is not categorically required for gravitropic root bending.

Our modeling approach offers a plausible explanation for our
experimental observations. We propose that the steep auxin
concentration gradient, established in columella root cap cells51,
is sufficient for differential auxin flow into the root elongation
zone, as long as PIN2 is functionally expressed. Our simulation
suggests that formation of a lateral PIN2 gradient in gravi-
stimulated roots results in a less pronounced auxin gradient, due
to transiently reduced PIN2 levels at the root’s upper side.
Diminished auxin efflux, caused by such reduced PIN2 levels, will
give rise to a noticeable reduction in the IAA upper sideð Þ

IAA lower sideð Þ ratio. In
contrast, equal PIN2 abundance at both sides of gravistimulated
root meristems is predicted to generate a steeper auxin gradient.
This is caused by efficient auxin efflux at the root’s upper side,
resulting in a localized reduction in cellular auxin steady-state
levels. Likely consequences of steeper auxin gradients involve
accentuation of differential cell elongation, which might con-
tribute to root overbending phenotypes similar to those observed
in response to brassinolide.

Timing and kinetics of differential auxin signaling and
PIN2 sorting are consistent with our model. Specifically, whilst
differential auxin signaling in the root meristem is manifested
already after 30min of gravistimulation48, a PIN2 gradient becomes
apparent during later phases of root bending12,46. At this stage,
differential PIN2 abundance could already antagonize effects of
asymmetric auxin flow, preventing disproportionate root bending.
Such activities would be no longer required upon completion of
root bending, reflected in recovery of PIN2 levels12,46. Furthermore,
since local [IAA]cell adjustments in dependence of variable PIN2
expression appear to occur already within a few minutes (Fig. 8e, f),
variations in abundance and localization of PIN2 could facilitate
swift adjustments in auxin flow, by limiting effects of the auxin
gradient established in the root tip.

Variable BES1:GFP expression in gravistimulated roots hints at
an involvement of brassinolide signaling in the regulation of
PIN2. Along these lines, deficiencies in root gravitropism that
have been described for brassinolide signaling mutants42, could
reflect defects in intracellular sorting of PIN2. Together with
additional root growth responses triggered by brassinolide, the
plant hormone thus appears to shape root growth via adjustments
in auxin flow. Integration of these distinct pathways into a net-
work of regulatory events that jointly define adaptive growth
responses, remains a challenge for future research.

Methods
Plant lines and growth conditions. Plants were grown on PNS plant nutrient agar
plates52, supplemented with 1% (w/v) agar and 1% (w/v) sucrose, in a 16 h light/8 h
dark regime at 22 °C. PIN2p::PIN2:ubq:VEN7, PIN2p::PIN2:VEN7, R2D240, 35S::
BES1:GFP47, and pINTAM»RFP:HUB6 transgenic lines have been described. We
made use of reduced pH sensitivity of the mCherry tag, and generated mCherry-
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tagged PIN2 for assessment of vacuolar sorting of PIN2. PIN2p::PIN2:mCherry was
obtained by replacing Venus in PIN2p::PIN2:VEN with the mCherry tag. For
generation of RP40p::PIN2:VEN and RP40p::PIN2:ubq:VEN, an RP40 promoter
fragment has been put upstream of the respective ORFs32. Constructs were
transformed into eir1-4, using the floral dip method53. Resulting transgenics were
selected for single copy insertions and propagated to homozygosity. Eir1-4, bri1-6,
tir1-1 afb1-1 afb2-1 afb3-1, and det2-1 mutant lines have been described
elsewhere12,33,45,54. For expression analysis, reporter lines were introduced into the
respective plant lines by crossing. Resulting progeny was then grown into F3 to
homozygosity. Isogenic mutant and wild type lines resulting from these crosses
were used for comparison of reporter expression. For testing the effect of eBL on
PIN2:mCherry distribution in dark grown roots, seedlings were grown accord-
ingly55. Ubiquitylation-deficient eir1-4 PIN2p::pin2K12R:VEN and eir1-4 PIN2p::
pin2K17R:VEN lines were considered for growth assays as well, as stabilization of
PIN2 resulting from diminished ubiquitylation, resembles eBL effects on wild type
PIN27. In planta analysis of these lines, however, indicated that functionality of the
pin2K-R alleles differs from that of wild type PIN2, which made a comparison of
growth and hormone responses unfeasible (Konstantinova and Luschnig, in
preparation).

Chemicals, pharmacological, and growth assays. All chemicals used in this study
were of analytical grade and were stored as 1000 × stock solutions (24-epibrassinolide,
28-orthobrassinolide, stigmasterol, 1-NAA, PAC, 4-hydroxytamoxifen were dissolved
in ethanol, whereas DMSO was used for BFA, WM, BRZ, bikinin, cholesterol, DEX).
Upon assaying, compounds were added to liquid ½ × Murashige Skoog growth
medium to give the indicated working concentrations. Controls were treated with the
corresponding amounts of solvent only. For quantitative analysis on Western blots,
plant material was grown on solid PNS medium for the indicated period of time. For
short term treatment with plant growth regulators and inhibitors, seedlings grown on
the surface of solid medium were sprayed with the compounds diluted in liquid
growth medium. After incubation for the time indicated, root material was harvested,
snap frozen in liquid nitrogen followed by protein extraction. For induction of
pINTAM»RFP:HUB plant material was germinated on PNS, followed by induction in
the presence of 2 μM 4-hydroxytamoxifen for 24 h. Induced material, together with
non-induced controls was analyzed at 5–6 DAG.

For root gravitropism assays, seedlings were germinated on regular growth
medium for the indicated period of time. Seedlings were then transferred onto fresh
control plates or onto plates containing indicated concentrations of eBL. After o/n
equilibration in the dark, seedlings were aligned in a horizontal orientation. Plates
were then turned clockwise at an angle of 90° and kept in darkness to minimize light-
mediated effects on root growth. Plates were scanned at indicated time points and
images were used for determination of root reorientation, employing the angle tool of
ImageJ (NIH). The root tip angle of individual roots at time point zero was defined as
0°. Growth reorientation of these individual roots was then followed over time, and
defined as positive in the case of growth in the direction of the gravity vector, and as
negative, when growing in the opposite direction. For root growth assays, seedlings of
each genotype were germinated on PNS in the presence of the indicated drugs. After
incubation on vertically positioned nutrient plates, seedlings were scanned and root
angles were determined as deviation from vertical, using ImageJ. For root waving
assays, seedlings of each genotype were germinated on vertically oriented nutrient
plates. Seedlings were scanned and resulting images used for determination of root
waves per root length, using ImageJ.

Microscopy. CLSM images were generated using a Leica SP5 (Leica Microsystems,
Wetzlar, Germany) microscope. For imaging, we used the following excitation con-
ditions: 488 nm (GFP), 514 nm (Venus), 561 nm (mCherry, RFP and FM4-64). For
endocytic sorting studies, seedlings were transferred from horizontally oriented
nutrient plates into 6-well plates with liquid medium and incubated in the presence of
FM4-64 (Invitrogen; working concentration 2 μM) for 30min before CLSM visuali-
zation. For visualization of 35S::BES1:GFP in gravistimulated seedlings, we viewed
root meristems at indicated time points. Relative gray values in the nuclei of 4–5
adjacent epidermis cells in the cell division zone were determined at the upper/lower
side of incubated seedlings ImageJ/Fiji software. The average of these values was then
used for determination of the signal ratio. For analysis of intracellular BES1:GFP
signal distribution, we determined the signal intensities in nuclei and the cytoplasm of
columella root cap cells and calculated the corresponding ratio.

For assessment of PIN2 reporter signal distribution we determined the ratio of
PM-localized vs. intracellular reporter signals, by determining gray values in areas of
identical size and shape. In the case of BFA and WM treatments, signals were
determined in intracellular compartments that were induced by drug treatment and
compared to signal intensities at the PM, by using areas of identical size and shape.

For determination of PIN2 Venus signals in gravistimulated roots, we used 5–6-
days-old eir1-4 PIN2p::PIN2:VEN seedlings. Seedlings were transferred onto fresh
PNS plates or onto PNS supplemented with 100 nM eBL, straightened, using fine
tweezers and positioned in a horizontal orientation. After o/n equilibration and
synchronization of directional root growth, seedlings were turned clockwise at an
angle of 90°, followed by incubation in the dark. Samples were taken at indicated
time points after gravistimulation, and subject to CLSM analysis, with laser
intensities set to a minimum, in order to avoid saturation effects, upon signal
quantification. For CLSM imaging we used z-sectioning, generating stacks

consisting of five slices each, which were taken in a distance of 2 μm. Stacks were
used for generation of maximum projections, using the ImageJ/Fiji software. This
was followed by determination of relative gray values at the PM of adjacent
epidermis cells in the root elongation zone at the upper and lower side of the root
meristem (4–5 on each side). Resulting averages of signals at the upper and lower
side were then used for determination of signal ratios in individual roots.

For imaging the effect of eBL on PIN2:mCherry distribution in dark grown
roots a Zeiss LSM 880 confocal microscope (Carl Zeiss, Germany) equipped with
C-Apochromat ×40/1.2W objective was used. Fluorescence signals were processed
with the Zen Blue software (Zeiss) where PIN2:mCherry distribution was evaluated
as ratio of mean fluorescence intensity at the apical PM to mean intracellular
fluorescence intensity of individual trichoblast cells. Average values were depicted
as box plots, their statistical significance was calculated using two-tailed t-test in
Sigma Plot (Systat, Chicago, IL, USA).

RNA and protein analyses. qRT-PCR analysis was performed using a Biorad
CFX96 Real time system with the IQ SYBRgreen super mix (Biorad) according to
manufacturers' recommendations. Reactions were heated for 3min to 95 °C to acti-
vate hot start Taq DNA polymerase, followed by 40 cycles of denaturation for 10 s at
95 °C, annealing for 30 s at 55 °C and extension for 30 s at 72 °C. Expression levels
were normalized to the expression levels of EF1a using the Livak method56. Primers
pairs used for PIN2 reporters were 5′-ATTGCTTAGGGCGATGTACG-3′ and 5′-T
AATTGAACCAGCCGTCTCC-3′. For amplification of the reference gene EF1a
(At1g07940) 5′-TGAGCACGCTCTTCTTGCTTTCA-3′ and 5′-GGTGGTGGCATC
CATCTTGTTACA-3′ were used.

For membrane protein extraction, root material was homogenized and
resuspended in extraction buffer (50 mM Tris pH 6.8; 5% (v/v) glycerol; 1.5% (w/v)
insoluble poly-vinylpolypyrrolidone; 150 mM KCl; 5 mM Na EDTA; 5 mM Na
EGTA; 1 mM DTE; 50 mM NaF; 20 mM beta-glycero phosphate; 1 mM
benzamidine; 1 mM PMSF; 3.5 µg/ml E64; 1 µg/ml pepstatin; 1 µg/ml leupeptin; 1
µg/ml aprotinin; 1 Roche Complete Mini Protease Inhibitor tablet per 10 ml)57.
Samples were cleared by centrifugation (2100g for 2 min). The supernatant was
saved and the pellet was re-extracted. Samples were again cleared, and combined
supernatants were centrifuged (14,000g for 2 h) to yield total membrane pellets. For
Western blot analysis, membrane pellets were dissolved in sample buffer [0.5%
(w/v) CHAPS, 3% (w/v) SDS, 30% (v/v) glycerol, 60 mM dithioerythritol, 50 mM
Tris (pH 6.8), 1 mM PMSF, and 0.5x Roche Complete Mini Protease Inhibitor
Mixture Tablets], separated by SDS/urea PAGE, transferred to nitrocellulose
membranes, and probed with affinity-purified rabbit anti-PIN2 (1:500)12, followed
by HRP-conjugated goat-anti-rabbit IgG (1:20,000; Jackson, 111-036-003). For
determination of protein amounts we used mouse anti-α-TUB (clone B-5-1-2;
1:1,000; Sigma Life Sciences, T6074), followed by HRP-conjugated goat-anti-mouse
IgG (1:20,000; Jackson, 115-035-003).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper, and its Supplementary Information files. A reporting summary for this
Article is available as a Supplementary Information file. The datasets generated and
analyzed during the current study are available from the corresponding author upon
request. The source data underlying Figures 1e–j; 2d, g, h, o; 3d–g, i, j; 4c, f, k, l; 5a, f, i; 6e
and 7d, e, as well as Supplementary Figures 1i; 2c; 3d; 4e; 5d; 6e; 7e–i, l; 9a–c; 10c, f and
15c are provided as a Source Data file. Modeling data underlying Fig. 8g, h;
Supplementary Figures 12c; 13d; 14e; 15a, b; 16a, d; 17a–d are provided as a Source Data
file. Model Comsol Multiphysics files with solutions are available under the following
links: https://seafile.ist.ac.at/d/8d2375fedc2d4a86a471/ and https://doi.org/10.6084/m9.
figshare.10279448.
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