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Resonant torsion magnetometry in anisotropic
quantum materials
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Arkady Shekhter4 & Philip J.W. Moll 1,6

Unusual behavior in quantum materials commonly arises from their effective low-

dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of

freedom. Here we introduce the magnetotropic coefficient k= ∂2F/∂θ2, the second derivative

of the free energy F with respect to the magnetic field orientation θ in the crystal. We show

that the magnetotropic coefficient can be quantitatively determined from a shift in the

resonant frequency of a commercially available atomic force microscopy cantilever under

magnetic field. This detection method enables part per 100 million sensitivity and the ability

to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl

semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate

RuCl3 highlights its sensitivity to anisotropic phase transitions and allows a quantitative

comparison to other thermodynamic coefficients via the Ehrenfest relations.
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Correlated quantum materials governed by strong electronic
interactions commonly host a variety of competing and
coexisting electronic phases, such as the copper- and iron-

based high-Tc superconductors where charge ordering, high-
temperature superconductivity, and magnetism occur in close
proximity1. Mapping the associated phase diagram is a critical
first step to understanding their physics. These phases are com-
monly characterized by anisotropic behavior that reflects the
microscopic anisotropy in the spin and charge degrees of free-
dom. Prominent examples include anisotropy in the magnetic
susceptibility of the cuprates2–4, the identification of hidden-
order phases in URu2Si2 and SmB65,6 and the electronic nema-
ticity of the iron-based superconductors7,8. While anisotropy is
an essential ingredient for the complex phases that emerge in
quantum materials, its experimental signatures can be subtle.

An established and highly sensitive technique to directly probe
small anisotropies in correlated metals and exotic magnets is
torque magnetometry9–11. When a sample with an anisotropic
magnetization M is placed in an external magnetic field B, it
experiences a torque τ=M × B. This torque can be measured
with high accuracy by mounting a crystal onto a cantilever12–17.
Because the overall susceptibility is small, we assume that the
local field B is approximately equal to the applied field H, and use
B throughout.

Both the magnetic torque τ= ∂F/∂θ and the magnetization
M=−∂F/∂B are first derivatives of the free energy F, and thus
these thermodynamic potentials provide sensitive and essential
information at phase transitions (Fig. 1a). Second derivatives of
the free energy, however, such as the heat capacity C=−T∂2F/
∂T2, the magnetic susceptibility χ=−∂2F/∂B2, and the elastic

moduli cijkl ¼ ∂2F=∂ϵij∂ϵkl often provide more fundamental
insights into a material. These quantities can be directly related to
physical properties, such as the density of states, and are the
essential quantities to formulate microscopic theories. Unlike first
derivatives, they exhibit discontinuities at second-order phase
transitions and their magnitudes can be related to one another
through the Ehrenfest relations18.

Here, we develop a technique to measure the curvature of a
sample’s free energy with respect to magnetic field orientation
k= ∂2F/∂θ2—the thermodynamic coefficient directly linked to
magnetic anisotropy. We name this the magnetotropic coefficient
as it describes rigidity with respect to rotation in a magnetic field.
With the sample mounted onto a resonating cantilever, the
magnetotropic response acts to reduce or enhance stiffness of the
total system, leading to a shift in the resonant frequency (Fig. 1c).
This is in contrast with the magnetic torque, which bends the
cantilever to a new equilibrium position but does not lead to a
frequency shift. The measured frequency is highly sensitive to the
magnetic anisotropy of a sample, which is the basis of resonant
torsion magnetometry19,20. We demonstrate the sensitivity of
resonant torsion magnetometry and highlight the importance of
its thermodynamic properties on two materials, one with charge-
and the other with spin-dominated anisotropy. We measure
quantum oscillations in the Weyl semimetal NbP21,22 and the
antiferromagnetic phase boundary of the spin-liquid candidate
RuCl323–29.

Results
Kinematics of resonant torsion. To detect the magneotropic
coefficient, we use the Akiyama Probe (A-Probe)—a self-oscillating
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Fig. 1 Schematic overview of resonant torsion magnetometry. a First and second derivatives of the free energy with respect to the magnetic field B and the
field orientation θ. b The quartz tuning fork of the Akiyama A-probe (http://www.akiyamaprobe.com) is electrically excited at the lowest-resonance mode
of the silicon cantilever, producing a large out-of-plane motion at the tip of the cantilever. c Schematic representing the principle of measuring the
magnetotropic coefficient k. In a magnetic field, the magnetic torque brings the lever to a new equilibrium position. The magnetic energy of the samples
changes the effective stiffness of the lever, leading to a shift in the resonant frequency. d The silicon cantilever glued to each leg of the quartz tuning fork
with a single crystal of RuCl3 mounted at the tip with Bayer silicone grease
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and self-sensing cantilever designed for scanning probe micro-
scopy30. The A-probe is made of two separate resonators: a silicon
U-shaped cantilever and a quartz tuning fork (see Fig. 1b and
Methods)30. The benefits of repurposing the A-probe for resonant
torsion magnetometry are threefold: the relatively large spring
constant of the silicon cantilever (5 Nm−130) allows us to extend
ultrasensitive and dynamic cantilever magnetometry31–36 to mac-
roscopic sample sizes; placement of the sample on the silicon
cantilever (rather than one leg of a quartz tuning fork) eliminates
complications that arise from the center of mass motion of the
tuning fork coupling to the resonance mode37,38; and electrical
read-out of the A-probe eliminates the need for optical detection of
the resonant frequency, making setup relatively straightforward and
more robust compared to previous approaches.

To elucidate the physical distinction between the magnetic
torque and the magnetotropic coefficient and to describe the
measurement, we briefly review the energetics of the resonating
sample. In the harmonic approximation, the energy of a
cantilever with effective stiffness K, moment of inertia I (see
Methods) and an attached sample can be written as

E ¼ I
2

dΔθ
dt

� �2

þK
2

Δθð Þ2�τΔθ þ k
2

Δθð Þ2; ð1Þ

where Δθ describes the angle of rotation of the sample with
respect to a fixed magnetic field. Note that this is opposite in sign
to θ discussed elsewhere, which describes rotation of the magnetic
field with respect to fixed crystal axes.

The first two terms describe the kinetic and potential energies
of the bare cantilever and together determine the base oscillation
frequency, ω2

0 ¼ K=I. We parameterize the motion of the lever as
it vibrates by an angle Δθ at the tip of the lever where the sample
is mounted (Fig. 1c). The last two terms in Eq. (1) describe the
anisotropic energy of the measured sample in the applied
magnetic field. Both the torque and the magnetotropic coefficient
appear as coefficients in a Taylor expansion of the free energy F(θ,
B), and they manifest themselves in distinct physical responses of
the sample. The torque shifts the equilibrium angle about which
the lever oscillates to Δθτ= τ/(K+ k) (Fig. 1c). The magneto-
tropic coefficient encodes the curvature of the free energy with
respect to the rotation angle, and appears as a shift in the
oscillation frequency (ω0+ Δω)2= (K+ k)/I. For small frequency
shifts, this can be expanded as

Δωðθ;BÞ
ω0

¼ kðθ;BÞ
2K

: ð2Þ

Therefore, k can be directly determined by a measurement of the
resonant frequency of the cantilever.

Linear magnetic response. In general, the functional form of the
magnetization M(B) can include terms other than those linear in
magnetic field. These are common in magnetic materials, even at
very low fields. Therefore, the torque τ=M(B) × B, and subse-
quently the magnetotropic coefficient k= ∂τ/∂θ, can also carry a
more complex form. We first focus on the simple case of the
linear response regime (Mi= χijBj), however, to illustrate the
different behaviors of τ and k. Here, the free energy F(θ, B)= (1/
4)(χj− χi)B2 cos2θ requires the angle dependences of the torque
τ∝ sin 2θ and the magnetotropic coefficient

kðθ;BÞ ¼ χi � χj

� �
B2 cos2θ ð3Þ

to strongly differ. Here, θ is defined as the angle of rotation of
magnetic field with respect to the ith crystal direction in a right-
handed spherical coordinate system.

We observe the expected angle dependence for the magneto-
tropic coefficient in a resonant torsion measurement of RuCl3 at
low fields within the linear regime (Fig. 2). Importantly, the signal
of resonant torsion is maximal for fields along the axes of
symmetry, a disadvantageous field orientation for conventional
torque measurements because the signal goes to zero. Even in the
vicinity of these directions (gray lines in Fig. 2), the torque is
subject to an undesirable interaction effect (see methods), which
contributes minimally to the magnetotropic coefficient. While the
magnetic torque and the magnetotropic coefficient are simply
related to each other in the linear magnetic regime, we later
capture the nonlinear response in RuCl3 at higher magnetic fields
and show that it conveys new information about the magnetic
anisotropy, different from the magnetic torque.

High sensitivity de Haas-van Alphen. In order to demonstrate
the sensitivity of the technique, we measure quantum oscillations
in the Weyl semimetal NbP21,22 up to 3 T (Fig. 3). This semimetal
is non-magnetic, and its entire magnetic response at low fields is
due to the weak Landau diamagnetism of the conduction elec-
trons, as well as the Berry paramagnetism arising from its non-
trivial topology39,40. With the magnetic field applied along the
crystallographic c axis, where the magnetic torque signal is zero,
we can resolve quantum oscillations in fields well below 1 T. The
quantum oscillation frequencies for this field orientation agree
with those reported in the literature21,22. With a characteristic
response bandwidth of 1 Hz, the smallest detectable frequency
shift is Δf/f= 6 × 10−9= Δk/K, where K is the effective bending
stiffness of the lever (see Methods). With K= 180 nJ rad−2, the
smallest detectable magnetotropic coefficient is Δk= 1.1 × 10−15

J rad−2, equivalent to 1.2 × 108 μB at 1 T. This can be used to
estimate the required mass of a metallic crystal that can be
investigated with resonant torsion magnetometry. Even in only
weakly anisotropic metals (1% anisotropy), which would con-
tribute 0.01 μB per formula unit, only 1012 formula units are
needed to resolve a signal at the demonstrated sensitivity. For a
3 Å unit cell size, this corresponds to a 3 μm3 sample size or a
sample weight of 0.1 ng for a sample density of 5 g cm−3. Reso-
nant torsion magnetometry is thus ideally suited to investigate
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Fig. 2 Angle dependence of the magnetotropic coefficient. The
magnetotropic coefficient k, proportional to the shift in frequency, of RuCl3
at T= 16 K and B= 5 T (black points). The expected angle dependences of
the magnetotropic coefficient (solid red line) and the magnetic torque
(dashed red line) in the linear response regime Mi= χijBj are overlaying the
data. θ= 0° and θ= 90° correspond to magnetic field applied
perpendicular and parallel to the honeycomb planes, respectively. In the
linear response regime, the principal magnetic axes (gray bands) have a
maximal response in the magnetotropic coefficient, and these directions
coincide with the zeros of the torque signal

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06412-w ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3975 | DOI: 10.1038/s41467-018-06412-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


anisotropy when only the smallest samples exist in single crystal
form.

Thermodynamics and phase transitions. The magnetotropic
coefficient can provide valuable insight into the thermodynamics
of phase transitions via the Ehrenfest relations. k can be more
formally defined as a member of a matrix of second derviatives
(thermodynamic coefficients) of the free energy when tempera-
ture T, volume V, magnetic field B, and magnetic field orientation
θ are independent variables. The relation of k to other thermo-
dynamic coefficients is directly apparent from the behavior of the
thermodynamic potential in the T, V, B, and θ variables

dF ¼ �SdT � PdV �MdBþ τdθ: ð4Þ

We can derive the Ehrenfest relation that relates a discontin-
uous jump in the resonant torsion to other thermodynamic
coefficients. If we assume that Tc(θ)V,B is the boundary of a
second-order phase transition induced by the magnetic field angle
measured at a fixed volume V and magnetic field B, then
continuity of all first derivatives (S, P, M, τ) across such a
boundary, ΔS= 0 and Δτ= 0, requires that discontinuous jumps
in the three thermodynamic coefficients C, (∂S/∂θ)=−(∂τ/∂T),
and k are all related to each other:

ΔC
Tc
dT� þ Δ ∂S=∂θð Þdθ� ¼ 0

Δ ∂τ=∂Tð ÞdT� þ Δkdθ� ¼ 0:
ð5Þ

Here, ΔX indicates the jump of X across the phase boundary and
dT* and dθ* are short segments along the phase boundary in the
T− θ phase plane, such that dT*/dθ*= (∂Tc/∂θ)B. The Ehrenfest
relation connecting the jump in the magnetotropic coefficient Δk
and the jump in the heat capacity ΔC is

Δk ¼ �ΔC
Tc

∂Tc=∂θð Þ2B; ð6Þ

where the derivative is to be taken along the phase boundary
at fixed magnetic field. Similarly, Ehrenfest relations between
the jumps in k, χ, and C give Δk ¼ �Δχ ∂Bc=∂θð Þ2T and
Δχ ¼ ΔC=Tcð Þ ∂Tc=∂Bð Þ2θ , where the derivatives in the two
relations must be taken along the phase boundary at fixed
temperature and at a fixed field orientation, respectively.

In order to verify experimentally these thermodynamic
relations, we refer again to RuCl3, an effective spin-1/2 quantum
magnet that orders antiferromagnetically at TN= 7 K26. Below
this temperature, long-range order can be suppressed with a
magnetic field of ~8 T for fields applied within the honeycomb
planes28,29, with recent evidence suggesting a spin-liquid state at
higher magnetic fields23. We measure RuCl3 at T= 1.3 K—well
within the antiferromagnetically ordered state27,29—to observe
the evolution of the magnetic torque and the resonant torsion as
we cross the second-order phase boundary with increasing
magnetic field (Fig. 4). The torque (Fig. 4a) is inferred from the
piezoresistively detected bending amplitude of a Seiko Instru-
ments cantilever14. With small fields at an angle ~10° away from
the honeycomb planes, both τ and k respond quadratically to the
applied magnetic field. For this field orientation, we observe the
suppression of long-range order at ~9 T. Across the phase
boundary (gray line in Fig. 4), τ shows a break in slope crossing
over to linear behavior at higher magnetic fields, whereas k
experiences a discontinuous jump. Akin to the advantages of
techniques sensing the magnetic susceptibility compared to
magnetization, detecting k offers a more appropriate means for
identifying magnetic phase transitions.

The experimentally observed jump Δk ≈ 6 J rad−2 mol−1 in this
configuration (Fig. 4b) can be directly compared to heat capacity
measurements under magnetic field. (∂Tc/∂θ)B can be estimated
from the angle dependence of the resonant torsion of RuCl3 at
fixed temperatures. One such scan at T= 1.3 K and B= 17.5 T
shows a pronounced anomaly at the phase boundary of the long-
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range ordered state (blue vertical line in Fig. 5). Entry into the
ordered state is marked by a jump down at the phase boundary,
as required by Eq. (6). Similar measurements at various fixed
magnetic fields allow to map out the phase boundary of the
antiferromagnetically ordered state (Fig. 5b). The derivative (∂Tc/
∂θ)B= (∂Tc/∂B)θ (∂Bc/∂θ)T at T= 1.3 K, B= 10 T, and θ= 102°
can be estimated as (∂Bc/∂θ)T ≈ 2.8 T rad−1 and (∂Tc/∂B)θ ≈ 25 K

T−1. The heat capacity jump at the antiferromagnetic transition
at T= 1.3 K has been reported as ΔC/Tc ~ 1.7 mJ mol−1 K−228.
Thus, the right-hand side of Eq. (6) gives ~8 J rad−2 mol−1, in
agreement with the size of the measured jump Δk of 6 J rad−2

mol−1 found above. This quantitative agreement is remarkable,
especially given the uncertainties of the derivatives due to the
complex shape of the phase boundary.

Discussion
The magnetotropic coefficient provides valuable thermodynamic
information and complements the magnetic torque. The direct
measurement of k highlights second-order phase transitions by
discontinuous jumps that can be related to anomalies in other
thermodynamic measurements, such as the heat capacity. Reso-
nant torsion allows direct access to the magnetic anisotropy when
the magnetic field is aligned along the principal magnetic axes—a
blindspot for conventional torque magnetometry. Finally, the
ability to measure shifts in the resonant frequency of lever
vibrations much more precisely than the amplitude of lever
deflections results in better than part per 100 million sensitivity
and the opportunity to measure sub-nanogram samples.

Methods
Characteristics of the cantilever. The A-probe, originally designed for atomic
force microscopy (AFM), consists of a piezoelectic quartz tuning fork, with a
silicon cantilever glued to the ends (Fig. 6). Electrical grounding of the silicon tip
can be made via the blob of silver epoxy on one contact (Fig. 6a). Each tuning fork
leg is 2400 μm long and the cross-sectional area is 124 × 214 μm2 (Fig. 6b). The
silicon cantilever is l= 310 μm long, w= 30 μm wide (Fig. 6a), and 3.7 μm thick30.
We estimate the mass of the lever to be 100 ng, much smaller than the mass of the
tuning fork.

In Eq. (1) in the main text, the potential and kinetic energy of the vibrating
cantilever is described with a bending stiffness K and a moment of inertia I. The
bending stiffness K is the coefficient of elastic energy stored in the silicon cantilever
when the tip of the lever is bent by an angle Δθ. The stored elastic energy, therefore,
depends not only on the geometry (width, length, etc.) of the lever, but also on the
shape of the resonance mode.

In the main text, we calibrate the shift in frequency using known values of the
anisotropic susceptibility in the linear response regime, and its connection to the
magnetotropic coefficient k= (χc− χa)B2 cos(2θ). Alternatively, we can estimate
the magnitude of the magnetotropic coefficient k for RuCl3 using Eq. (2) in the
main text. First, we need to take into account the shape of the bending mode of the
cantilever to determine the bending stiffness K.

The bending shape of the silicon cantilever is described by ζ(z, t), where z is the
distance along the lever from the point of attachment and ζ is the vertical
displacement of the lever41. At resonance, the motion of the lever is described by ζ
(z, t)= ζ(n)(z)sin(2πf(n)t), where ζ(n)(z) is the shape of the n-th mode and f(n) is its
frequency. The shape of the lever is found from elastic equations derived from an
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Fig. 6 NANOSENSORS™ Akiyama-probe. a Photograph of the silicon cantilever highlights the attachment to the quartz tuning fork (reproduced from
http://www.akiyamaprobe.com). Glue lies between the silicon and ends of the tuning fork legs. The left contact is covered in silver epoxy to ground the tip
of the cantilever in AFM30 (http://www.akiyamaprobe.com). b Photograph of the gold-covered quartz tuning fork and the silicon cantilever (reproduced
from http://www.akiyamaprobe.com). c Cross-sectional area of the quartz tuning fork, where the drive and pickup gold contacts along the length of the
lever are represented by blue and pink, respectively. The quadrupolar electric field induces motion in the tuning fork
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energy functional E= ð1=2ÞρAR dzðdζðz; tÞ=dtÞ2 + ð1=2ÞYIc
R
dz d2ζðz; tÞ=dz2� �2

,
where the first term is the kinetic energy (ρ is the density and A is the cross-
sectional area) and the second term is the potential energy (Y is Young’s modulus
and Ic is the moment of inertia of the lever’s cross-section with respect to its center
of mass41). The second derivative d2ζ(z, t)/dz2 in the elastic energy represents the
inverse radius of local curvature. Evaluating the second term for the fundamental
vibration mode ζ(0) (normalized as dζ(z)/dzz= tip of the lever= Δθ(t)) gives
K(0)= 1.63(YIc/L), which for the silicon lever evaluates to K(0)= 180 nJ rad−2.
Similarly, evaluating the first term results in the moment of inertia for the same
mode as I(0)= 0.13ρAL3= 0.19 × 10−17 J Hz−2.

For RuCl3, calibration of the magnetotropic coefficient using the linear response
regime k= (χc− χa)B2 cos(2θ) yields 1 Hz= 0.321 J rad−2 mol−1. From the
dimensions, we estimate the sample mass to be ~20 ng, which corresponds to
25 picomol per unit cell of RuCl3 (where the unit cell contains 4 formula units).
This gives 8 pJ rad−2 for the magnetotropic coefficient k of the sample. Using
K(0)= 180 nJ rad−2 in Eq. (2), the right-hand side evaluates to 2.2 × 10−5, which is
close to the expectation on the left-hand side for a 1 Hz shift in frequency.

The two gold contacts wrap around each leg to create quadrupolar electric field
lines (Fig. 6c) when a voltage is applied. In resonant torsion magnetometry, the
gold contacts are effectively used as a driver and a pickup. Applying a voltage
induces motion due to the piezoelectric properties of the quartz. The large
mechanical motion of the silicon cantilever on resonance drives a piezoelectric
current that is detected in our measurement. In addition to this piezoelectric
current, a background current is present at all frequencies due to the parasitic
capacitance of the wires connecting the cantilever in the cryostat to the room
temperature electronics.

The pickup voltage near a resonance has a standard Lorentzian shape,
V= VBG+ A/[ω− ω0+ iΓ/2], where VBG is a background voltage due to the
background current discussed above. ω0 and Γ are the resonant frequency and
linewidth, respectively (Fig. 7b). In the complex plane, plotting the imaginary
versus real parts of the Lorentzian traces a circle. Any anharmonic deviation from
Eq. (1) of the main text leads to a distortion of this circle. We find that the response
of the Akiyama probe deviates from a circle, signaling the nonlinear response
regime of the lever, when driven with oscillating voltages in excess of 100 mV
(Vosc in Fig. 8). We also checked optically that a driving voltage of 1 V leads to a
displacement of the lever of about 2 degrees. Our typical driving voltage of 10 mV
therefore is accompanied by much smaller angular displacements, ensuring the
validity of Eq. (1).

Tracking the resonant frequency. Our measurement requires a method for fol-
lowing the resonant frequency as a function of temperature, magnetic field, and
magnetic field orientation. Typically, this can be achieved with a phase-locked loop
(PLL) controlled lock-in amplifier. We used the readily available (PLL/PID) option
of the Zurich Instruments mid-frequency lock-in (MFLI) amplifier for fast and
sensitive response to shifts in the resonant frequency as a function of magnetic field
only. As a function of temperature and in some situations, such as measurement
across a sharp phase transition, we use our custom software-implemented PLL.
This allows us to obtain additional information at frequencies near the resonance,
but it significantly slows down the measurement speed. Below we explain a critical
limitation with the hardware-implemented PLL due to the background impedance
detected in our measurement. We discuss how we overcome this with a capacitance
compensation circuit (Fig. 8) when using the hardware-implemented PLL, and how
this is resolved in software when frequency scans through the resonance are
necessary.

For robust tracking, the hardware PLL requires a large phase swing across the
resonant frequency. The largest phase swing of 360° is obtained when the reference
point for the phase is inside of the Lorentzian circle (Z1 in Fig. 7). The PLL
implementation of the Zurich MFLI calculates the phase with respect to zero
voltage only. Therefore, to achieve a large phase swing across the resonance, the
circle of the Lorentzian must be in the vicinity of zero voltage in the complex plane.
In the actual measurement, this circle is shifted away from zero (blue curve in
Fig. 7) due to the finite background voltage arising from parallel capacitance in the
cables (outside and inside of the measurement probe). The circle diameter, which is
proportional to the amplitude of the drive voltage and inversely proportional to the
linewidth of the resonance, is typically 10–100 μV for a resonance in air with a q-
factor of ~2000. In vacuum, the q-factor is in excess of 10,000 and the circle
diameter increases above 100 μV, leading to a larger phase swing for the same given
background voltage.

There are three different situations for the phase swing on resonance. First, the
zero voltage is inside the circle (Z1 in Fig. 7) and the phase swing is monotonic as a
function of frequency. This is most preferred for successful tracking. Second, the
zero voltage lies outside of the circle and the phase swing is non-monotonic (the
phase returns to the same value on both sides of the resonance). When the angle
range (visible from Z2 in Fig. 7) of the Lorentzian circle is not too small (roughly
>30°), the PLL implementation of the Zurich MFLI can reliably still lock in to the
resonance, but is sometimes an unstable situation. For example, if the system goes
through a phase transition and the resonance becomes much broader, it may be
lost. Third, the border of the circle crosses the zero voltage at the tail of the
resonance (which never happens). This corresponds to no background voltage V=
A/[ω− ωo+ iΓ/2] and a 180° phase swing. In the special case for the border of the
circle near the zero voltage, the phase first swings slowly 180°, followed by an

abrupt additional 180° swing either up or down depending upon the position of the
resonance (either slightly inside or slightly outside of the circle)—this is usually the
situation that arises with use of a capacitance compensation circuit (Fig. 8).

In order to improve the phase swing when the background voltage is large (or
the circle diameter is not large enough), we incorporate a modified capacitance
compensation circuit (Fig. 8) based on the one recommended by
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Fig. 7 Cantilever resonance. a Frequency scans through the normal mode
resonance at room temperature and in air. The in-phase and out-of-phase
voltages are shown in blue and red, respectively. b The Lorentzian at
resonance can be observed as a circle when plotted in the complex plane.
Off resonance, the background voltage VBG is measured. Approaching the
resonance corresponds to tracing the circle in a counter-clockwise direction
starting from VBG. The resonant frequency is observed at V(ωo). The
positions Z1, Z2, and Z3 in the complex plane are different possible positions
of the reference point (zero voltage) from which the phase can be
measured with the PLL. Depending upon the drive voltage and the
capacitance compensation, the circle can be shifted to encompass, lie
outside, or lie on the border of the phase reference. The effect this has on
the phase swing at resonance is discussed in the text. Distortions of the
circle, which are not observed in our measurements with drive voltages
below 100mV, are an indication of the nonlinear response regime of the
lever
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NANOSENSORS™30. The first stage following the input (upper left) acts as a buffer.
An effective negative capacitance is then added in parallel with that of the
measurement cables and the A-probe. The piezoelectric current, as well as the
background current, is then detected at the current–voltage converter (marked by
the red cross) and then amplified. At zero magnetic field, the background
capacitance is nulled with the potentiometer until the phase shift on resonance is
maximized, allowing successful tracking with the hardware PLL. Because the
background capacitance changes as a function of temperature, we use our custom
program to adaptively follow the resonance with temperature. Our software-
implemented PLL uses feedback from previous frequency scans to measure phase
from arbitrary points in the complex voltage plane42,43.

Regarding the linewidth. These measurements also allow us to measure the
linewidth evolution with temperature and magnetic field, which provides relaxation
time information about anisotropic fluctuations. Excluding any experimental
artifacts, the linewidth is directly determined by the energy dissipation per oscil-
lation cycle44, which in this measurement will be associated with magnetically
anisotropic fluctuations. Here we discuss some experimental factors that are
unrelated to the physics in the sample. This is especially important because
causality (expressed via Kramers–Kronig relations) requires that changes in the
linewidth are accompanied by related changes in the frequency44; when the line-
width decreases by an amount ΔΓ, the frequency increases by a comparable
amount. For example, bringing the lever into vacuum at room temperature
removes the dissipation associated with air friction around the lever, which typi-
cally decreases the linewidth by about 20 Hz. This is accompanied by a 20 Hz
increase in frequency that is observed in our measurement. This is of concern only
when the frequency shifts are smaller than the linewidth. In our RuCl3 measure-
ments, the linewidth in vacuum at cryogenic temperatures is a couple of Hz and the
frequency shifts observed in nanogram-sized samples under magnetic field/tem-
perature are typically 100–1000s of Hz. Normally, we use 10 mbar of helium-4
exchange gas, which allows for a q-factor that can be as much as 30,000 at cryo-
genic temperatures. We have also observed unexpected frequency shifts with
temperature that we believe result from partial covering of the lever with grease
(used for sample attachment). The grease freezes below about 200 K, effectively
increasing the bending stiffness of the lever by as much as 1%.

Magnetotropic coefficient in the linear magnetic regime. We now refer to the
linear response regime (Mi= χijBj) to compare the magnitude of the frequency shift
Δω/ω0 and the average deflection angle Δθτ. The free energy of the sample as it
rotates in a magnetic field is

Fðθ;BÞ ¼ 1
4
αB2 cos 2θ; ð7Þ

where α= χj− χi is the anisotropic susceptibility restricted to the plane of vibra-
tion. In the linear regime, τ= 2F(θ, B) tan 2θ and k= 4F(θ, B) so that both the
frequency shift and deflection angle can be written as a function of the free energy

Δθτ ¼ 4
Fðθ;BÞ

K
tan 2θ;

Δω

ω0
¼ 2

Fðθ;BÞ
K

: ð8Þ

This shows that relative frequency shift in the linear regime is of the same order of
magnitude as the bending angle:

Δω

ω0
¼ Δθτ cot 2θ

2
: ð9Þ

Although the shift in frequency is accompanied with (and is proportional to)
the average bending angle of the lever due to the magnetic torque, the former is not
caused by the latter. These are two independent phenomena and they will start to
affect each other if anharmonic effects become important—both in the response of
the lever due to a large Δθτ or in the sample due to a nonlinear magnetic response.
In particular, for nonlinear magnetization, Δω and Δθτ are not related in a simple
way.

Comparison with conventional torque magnetometry. As stated in the main
text, resonant torsion magnetometry allows us to probe magnetic anisotropy in
highly anisotropic systems along the crystallographic directions—often the main
goal of an experiment. In order to detect the intrinsic magnetic anisotropy with
conventional torque magnetometry, one must always apply field off of these
directions to avoid interaction effects. This arises because the magnetic torque
signal goes to zero near the principal directions (gray line in Fig. 2). Here (just
like at all field orientation angles), the lever reorients in the magnetic field due to
the torque. The sample then experiences a new torque due to the reorientation,
but the change in these two torques is of the order of the total torque signal size.
This behavior leads to a nonlinear response near the crystallographic axes10,
which can be avoided by measuring the magnetotropic coefficient instead of
torque.

We find that use of the A-probe allows us to overcome several other systematic
challenges associated with torque that is inferred from the angular deflection of a
piezoresistive cantilever12,14. These include the additional deflection due to the
force from magnetic field gradients, a magnetoresistive contribution, and an
asymmetry in the response of the amplitude-detection levers. In our resonant
torsion measurements, we are always operating within the linear response regime
of the lever. The shift in the resonant frequency of the vibrating cantilever is
capacitively inferred from an impedance measurement, alleviating the effects of
magnetoresistance. Furthermore, shifts in the frequency of lever vibrations
produced by spatial inhomogeneities of the magnetic field are much smaller than
the corresponding shift in the average deflection angle of the lever, as demonstrated
herein. In addition, our experimental setup allows for easy rotation with respect to
the applied magnetic field, even within the confines of a pulsed field magnet. The
high eigenfrequency of the cantilever and the high q-factor allow for fast response
and high sensitivity on the ~10 ms timescale of pulsed magnetic fields. In this
environment, where magnetoresistance can dominate in piezoresistive torque
magnetometry, resonant torsion can be a marked advancement.

Data availability
All relevant data are available upon request from the authors.
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