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SUMMARY

Effective design of combination therapies requires
understanding the changes in cell physiology that
result from drug interactions. Here, we show that
the genome-wide transcriptional response to combi-
nations of two drugs, measured at a rigorously
controlled growth rate, can predict higher-order
antagonism with a third drug in Saccharomyces cer-
evisiae. Using isogrowth profiling, over 90% of the
variation in cellular response can be decomposed
into three principal components (PCs) that have clear
biological interpretations. We demonstrate that the
third PC captures emergent transcriptional programs
that are dependent on both drugs and can predict
antagonism with a third drug targeting the emergent
pathway. We further show that emergent gene
expression patterns are most pronounced at a drug
ratio where the drug interaction is strongest,
providing a guideline for future measurements. Our
results provide a readily applicable recipe for uncov-
ering emergent responses in other systems and for
higher-order drug combinations. A record of this
paper’s transparent peer review process is included
in the Supplemental Information.

INTRODUCTION

Combinatorial drug treatment is an increasingly important strat-

egy for combatingmicrobial infections and a powerful tool for un-

derstanding the molecular biology of the perturbed cell (Chen

and Lahav, 2016; Fischbach, 2011; Pemovska et al., 2018).

When two or more drugs are combined, synergistic or antago-

nistic interactions can occur. These interactions, respectively,

correspond to increased or decreased inhibitory effect of the

drug combination compared to the null expectation of additivity

(Figure 1A; Bollenbach, 2015; Loewe, 1928). In recent years,

high-throughput techniques for identifying drug interactions

(Brochado et al., 2018; Cokol et al., 2011, 2014) and their modi-

fiers (Chevereau and Bollenbach, 2015) have considerably
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advanced our understanding of drug interactions. Further,

frameworks for quantifying higher-order drug interactions have

been developed (Cokol et al., 2017; Russ and Kishony, 2018; Te-

kin et al., 2016). However, to rationally design combination ther-

apies, a deeper understanding of the combinatorial effects of

drugs on cell physiology and of the general principles guiding

the cellular response to drug combinations is necessary (Cohen

et al., 2008).

Predicting cellular responses to combinatorial perturbations

from responses to the individual perturbations is one of the

key conceptual goals of systems biology (Molinelli et al.,

2013). In Escherichia coli, gene expression responses to

combinations of two antibiotics, measured using fluorescent re-

porters for �100 genes, can be predicted by a linear or

nonlinear interpolation of the responses to the individual drugs

(Bollenbach and Kishony, 2011). Another study showed that

even the temporal response of �100 promoters in E. coli to all

possible combinations of four growth conditions could be

predicted by linear superposition of temporal responses to indi-

vidual conditions (Rothschild et al., 2014). Prediction of tempo-

ral expression dynamics during combination drug treatment

from responses to individual drugs was also possible for 15 pro-

teins in a human cancer cell line (Geva-Zatorsky et al., 2010).

However, it is unclear if such simple interpolation or super-

position principles for gene regulation in multidrug environ-

ments hold genome-wide and more generally across different

prokaryotes and eukaryotes.

Quantitative measurements of gene expression changes in

response to drugs are complicated by the fact that the growth

rate change caused by the drugs alone can drastically affect

gene expression (Brauer et al., 2008; Knijnenburg et al., 2009;

Metzl-Raz et al., 2017; Regenberg et al., 2006), thus obfuscating

any specific responses to the drugs. In a two-dimensional con-

centration gradient of two drugs, growth rate related changes

alone can account for as much as three-quarters of the variance

in gene expression (Bollenbach and Kishony, 2011). Further,

analysis of yeast gene deletion mutants revealed that the most

prominent geneexpression changecausedby thegenetic pertur-

bations was a general environmental-stress-response like signa-

ture associated with slower growth (O’Duibhir et al., 2014). Such

non-specific effects due to growth rate changes are an underes-

timated challenge for the interpretation of gene expression mea-

surements aiming to predict drug mechanisms and interactions.
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Figure 1. Automated Re-inoculation Protocol Allows for Steady-State Yeast Culture under Drug Combinations with Controlled Growth Rate

and Cell Density

(A) Schematic diagrams of drug interactions based on Loewe additivity (Loewe, 1928). Lines show isoboles, i.e., lines of constant growth rate. Synergy,

antagonism, and suppression are defined by the shape of the isoboles in comparison to the additive reference (left). To quantify gene expression changes due to

drug combinations, gene expression measurements in no drug, the two individual drugs, and the drug combination should be performed (circles).

(B) Schematic illustration of the experimental strategy for isogrowth profiling. Gene expression is measured along a selected growth isobole at different ratios of

the two drugs (circles, varying hue denotes varying ratio) to control for growth-rate-induced gene expression changes.

(C) Schematic illustration of how an automated system was used to produce a 243 24 discretized two-drug concentration gradient distributed over six 96-well

microplates, to inoculate S. cerevisiae, and measure growth by optical density at 600 nm (OD600).

(D) Growth measurements (OD600 over time) of yeast cells growing in a 2D-drug gradient of myriocin (Myr) and cycloheximide (Cyc). Drops in OD600 are the result

of automated re-dilution, the dotted line denotes target OD600 directly after re-dilution. Shaded areas show regions used to determine the growth rates.

(E) Growth ratesmeasured for themyriocin-cycloheximide 243 24 gradient after each of the three re-dilution steps. Green rectangles denote wells used to collect

samples for RNA sequencing at the end of incubation. See Figure S1 for the growth rates and OD600 of the collected samples.
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Here, we show that precisemeasurements of gene expression

in drug combinations, which disentangle specific effects from

growth-rate-induced changes, reveal emergent cellular re-

sponses to drug combinations, which in turn enable faithful

predictions of three-way drug antagonism. To quantify gene
2 Cell Systems 10, 1–11, January 22, 2020
expression changes in drug combinations independently of

growth rate changes, we introduce a new methodology, iso-

growth profiling, which is based on measurements at constant

growth inhibition achieved by varying ratios of two drugs. Using

this technique, we found that upregulation of cytoplasmic



Table 1. Information about Drugs Used in This Study

Drug Abbr.

IC50

[mg/ml] Mechanism of Action

Cycloheximide Cyc 0.065 Inhibitor of cytosolic translation

by binding to the large ribosomal

subunit (Schneider-Poetsch

et al., 2010)

Lithium

Chloride

LiC 123103 Pleiotropic; inhibits glycogen

synthase kinase (O’Brien and

Klein, 2009), Xrn1p endonuclease

(Dichtl et al., 1997),

phosphoglucomutase

(Masuda et al., 2001), inositol

monophosphatase (Lopez et al.,

1999), protein degradation

through the proteasome (Rice

and Sartorelli, 2001), and other

enzymes (Phiel and Klein, 2001)

Myriocin Myr 0.50 Inhibitor of sphingolipid synthesis

(Miyake et al., 1995), exacerbates

the consequences of protein

misfolding (Lee et al., 2011)

Rapamycin Rap 6.8310�3 Inhibitor of nutrient-sensing TOR

signaling (Crespo and Hall, 2002)
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translation by the combination of lithium chloride and myriocin

protected cells against the addition of the translation inhibitor

cycloheximide; analogously, the upregulation of DNA integrity

checkpoint by the combination of cycloheximide and myriocin

protected cells against a DNA damaging agent. Thus, emergent

regulatory responses to drug combinations enabled predicting

higher-order drug interactions. We propose a readily applicable

way of extending such growth-rate-controlled gene expression

measurements to larger sets of drug combinations.

RESULTS

Automated Re-dilution Setup Enables Yeast Culture at
Fixed Growth Inhibition by Two Drugs
We developed an automated method that precisely controls

growth inhibition for microbial cultures growing in the presence

of two drugs. This effort is necessary to keep gene expression

measurements in the presence of different drugs comparable.

It is challenging to keep growth inhibition constant both in indi-

vidual drugs and drug combinations since the drug concentra-

tions need to be quantitatively tuned according to the interac-

tions of the specific drugs. We addressed this issue by

culturing yeast populations in a fine-resolution 24 3 24 discre-

tized concentration gradient of two drugs, i.e., 576 distinct

two-drug concentrations spread over six 96-well microtitre

plates (Figure 1C).

Given equal inoculum size, populations growing at the same

growth rate would end up at the same cell density after a given

incubation period. However, some drugs have a delayed effect

on growth, allowing for faster growth at the beginning of incu-

bation. As a result, gene expression measurements would be

done at different cell density and nutrient content in the growth

medium, which influences gene expression (Kolkman et al.,

2006; Wu et al., 2004). We equalized the cell density by coupling
our method with an automated re-inoculation protocol on a

customized liquid handling robot, where all cultures are re-

diluted to a fixed target population size (optical density) every

8 h (Figure 1D, STAR Methods). Three such re-dilution cycles

are performed to ensure that populations undergo approxi-

mately eight generations at 50% growth inhibition, giving

them sufficient time to reach a well-defined steady state of

exponential growth while keeping the experimental expense

manageable (Figure 1E). At the end of this procedure, we

selected specific wells where the yeast populations grew at a

defined growth rate for transcriptome analysis. These cultures

have a narrow range of cell densities (Figure S1) and thus

approximately the same nutrient content. Thus, we essentially

sampled different drug ratios along a line of constant growth

(isobole) in a two-drug concentration space, while controlling

for cell density and nutrient content.

Isogrowth RNA-Sequencing in Drug Combinations
Reveals Both Simple Interpolated and Emergent Gene
Expression Changes
We used this re-dilution setup to measure genome-wide gene

expression changes along growth isoboles for combinations of

antifungal drugs (‘‘isogrowth profiling’’). We systematically

investigated all pairwise combinations between four antifungal

drugs. The drugs were selected such that their pairwise

combinations included clear cases of antagonism, synergy,

and additivity (Figure 1A); this selection thus enabled a sys-

tematic investigation of the utility of isogrowth profiling for

characterizing drug interactions. We included the well-charac-

terized drugs cycloheximide and rapamycin but also drugs

with pleiotropic effects or unclear physiological roles, namely

lithium chloride and myriocin (Table 1). Among the strongest

drug interactions we observed are suppression of myriocin

by lithium chloride and synergy between rapamycin and myrio-

cin (Figure 2A); of note, the latter combination also has a syner-

gistic effect with respect to aging (Huang et al., 2013, 2015). After

three incubation cycles (�22 h), we extracted and sequenced

the polyA-RNA from wells with a growth rate of �50% relative

to the no-drug reference (Figure 1E). To represent gene expres-

sion changes along the growth isobole, we parameterized

the growth isobole by relative drug fraction (Figure 2B; STAR

Methods). This representation has the advantage that the varia-

tion in contour length of the growth isobole due to drug inter-

action does not influence the visualization of the data.

Initial examination of gene expression changes along the

growth isoboles revealed that genes often exhibit interpolating

behavior in the drug combination, i.e., the gene expression

level in the presence of both drugs at varying ratios was between

the levels in each of the two drugs alone (Figure 2C left). An

example of this behavior is given by LEU4, which codes for an

enzyme that catalyzes the first step in leucine biosynthesis

and is upregulated by rapamycin, which signals the presence

of the nutrient-poor environment. Beyond simple interpolation,

we detected genes that show emergent responses to the drug

combination, i.e., their expression level in the combination is

more extreme than in either drug alone (Figure 2C right).

An example of this behavior are the COS2 and COS3 genes

required for vesicular sorting and degradation of membrane

proteins; these genes are upregulated in the combination only
Cell Systems 10, 1–11, January 22, 2020 3
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Figure 2. Selected Genes Responding to Pairwise Combinations of Interacting Antifungal Drugs Manifest Interpolating or Emergent

Behavior

(A) Growth response surfaces for all pairwise combinations of four drugs (myriocin, rapamycin, lithium chloride, and cycloheximide). Growth rates weremeasured

during the third iteration of the protocol shown in Figure 1. Black lines are isoboles; red line shows 50% growth inhibition isobole, gray dots indicate concen-

trations at which growth rate wasmeasured, green dots indicate wells used for sample collection for RNA sequencing. Measured values are reported in Table S4.

(B) Schematic illustration of the definition of relative drug fraction q used to reduce the dimensionality of the drug concentration space for visualizing gene

expression changes along an isobole. The relative drug fraction is equivalent to the contour length of a projection of the points along the isobole onto the

theoretical line of additivity (STAR Methods).

(C) Examples of gene expression changes along the 50% growth isobole for selected genes showing interpolating (left) and emergent (right) behavior in response

to the rapamycin-myriocin combination. Gene expression is normalized to the no-drug control.
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of rapamycin and myriocin, which increases chronological life

span (Huang et al., 2013, 2015). Motivated by these observa-

tions, we systematically investigated the extent of interpolating

and emergent gene expression responses in our genome-wide

datasets.

Principal Component Analysis Decomposes Responses
to Drug Combinations into Interpretable Contributions
To reveal general principles that relate responses to individual

drugs to multidrug responses, we used principal component
4 Cell Systems 10, 1–11, January 22, 2020
analysis (PCA), a dimensionality reduction method previously

used to disentangle gene expression changes in drug combina-

tions (Bollenbach and Kishony, 2011). This approach can reveal

structure in the data, in particular, if the responses of most

genes can be written as a linear superposition of relatively few

characteristic response modes (principal components, PCs); it

is not a priori clear though if this is possible. Using our dataset,

we calculated the PCs of the global gene expression response

along a growth rate isobole for each drug pair (STAR Methods).

This analysis revealed that between 93% and 98% of the
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Figure 3. Gene Expression Responses to

Drug Combinations Are a Superposition of

Consensual, Drug-Specific, and Combina-

tion-Specific Effects

(A) First (blue), second (red), and third (yellow)

principal component (PC) of genome-wide gene

expression changes along the growth isoboles for

the six drug combinations from Figure 2. PCA was

performed for each drug combination separately

(STAR Methods). Insets: pie charts showing a

fraction of variance explained by these first three

PCs.

(B) The fraction of variance explained by the first PC

versus similarity of the responses to the individual

drugs constituting the drug pair (quantified by

Pearson’s correlation coefficient) for all drug pairs in

(A). Black line shows linear regression, R2 = 0.95,

p = 9310�4 (t-statistic for the linear term). The first

principal component explains an increasing fraction

of the variance the more similar the effects of the

drug pairs are.

Please cite this article in press as: Luka�ci�sin and Bollenbach, Emergent Gene Expression Responses to Drug Combinations Predict Higher-Order Drug
Interactions, Cell Systems (2019), https://doi.org/10.1016/j.cels.2019.10.004
variance in the dataset is explained by just three PCs, depending

on the specific drug pair (Figure 3A). Notably, these first three

PCs are similar across drug pairs, suggesting that each of these

PCs has a common, potentially biologically meaningful origin.

For all drug pairs, the first PC was flat (blue lines in Figure 3A)

and thus captures changes in gene expression relative to the

no-drug reference that are independent of the drug ratio along

the growth isobole. As this behavior is independent of the

inhibiting drug, it reflects the global gene expression response

to growth inhibition. The fact that the growth-rate-related first

PC explains a considerable fraction of the gene expression vari-

ance under drug combinations further validates our experi-

mental approach aimed at eliminating non-specific growth-

rate effects. When the specific gene expression responses to

the individual drugs are strongly correlated, the first PC addi-

tionally includes the common gene expression signatures of

both drugs (Figure 3B).

The second PC captured how different gene expression re-

sponses to the individual drugs are typically interpolated (red

lines in Figure 3A). Genes often respond differently to different

drugs, which inevitably leads to conflicting responses in the

presence of both drugs. The second PC exposes the default

way in which genes that exhibit no specific response to the

drug combination resolve such conflicts. The shape of the sec-

ond PC was approximately linear, but sometimes clearly

sigmoidal, in particular for the strongly antagonistic drug pair

cycloheximide-rapamycin (Figure 3A). This result about
genome-wide transcriptional regulation in

a eukaryotic model system generalizes

previous observations from bacteria that

antagonistic drug interactions coincide

with a sigmoidal interpolation (‘‘prioritiza-

tion’’) of gene expression conflicts, while

additive combinations lead to a more

linear interpolation (‘‘averaging’’) (Bollen-

bach and Kishony, 2011). The large frac-

tion of variance explained by the first two

PCs implies that, for most yeast genes,
the response to drug combinations is largely predictable from

their responses to the individual drugs alone.

Our genome-wide dataset further enabled us to systematically

identify emergent behaviors, where the expression of a gene un-

der a drug combination is higher or lower than under either drug

alone. For all drug pairs, such emergent responses were

captured by the third PC (yellow lines in Figure 3A). Genes with

a strong third PC are specifically up- or downregulated in the

presence of both drugs due to effects that are absent in either

drug alone. Based on the observed shapes of the PCs, we hy-

pothesized that functional analysis of genes governed strongly

by the second and third principal component should yield test-

able predictions about the specific effects of individual drugs

and drug interactions on cell physiology, respectively.

Analysis of Specific Drug Effects Reveals that Myriocin
Prepares Yeast for Respiratory Medium
We first exploited our dataset to extract the specific effects of

individual drug perturbations on cell physiology. Because of

the confounding effects of growth inhibition, this cannot be

achieved by simple comparisons of gene expression measure-

ments in the presence and absence of a drug alone. This prob-

lem is particularly evident for the abundances of ribosomes

and mitochondria, which are strongly affected by growth rate

(Metzl-Raz et al., 2017). Therefore, we leveraged the fact that,

by construction, the second PC is orthogonal to the first PC,

which captures the non-specific growth rate effect. The second
Cell Systems 10, 1–11, January 22, 2020 5



Figure 4. Functional Analysis of Genes with Interpolating Behavior Reveals Specific Effects of Individual Drugs on Cell Physiology

(A) Cumulative distributions of mean relative second PC scores for individual genes across experiments for the respective drug (STAR Methods). Before

averaging, the scores were inverted if needed, such that positive scores always indicate upregulation in the given drug. Cellular functions that are enriched based

on gene ontology (GO) analysis of up- and downregulated genes are highlighted in green and red, respectively. Themost significant GO term that has no offspring

(more specific) term with p % 10�9 is displayed (STAR Methods). For cycloheximide, no functional group was found to be enriched for downregulation at the

chosen level of significance. See also Table S1.

(B) Schematics of hypothetical growth curves during diauxic shifts from fermentation to respiration: the diauxic lag (left) should be shortened if the mitochondrial

translation is induced while still in fermentative medium (right).

(C) Growth curves of yeast cultured in YPG glycerol medium inoculated from glucose overnight culture at different concentrations of myriocin (left) and cyclo-

heximide (right). Intermediate myriocin concentrations drastically shorten the diauxic lag time; in contrast, the control drug cycloheximide has no effect on diauxic

lag. MIC = Minimum Inhibitory Concentration, 2.5 mg/ml for myriocin, 0.16 mg/ml for cycloheximide.
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PC, which monotonically interpolates between the individual

drug responses, can be used to rigorously identify specific

responses of genes to individual drugs. To this end, we quanti-

fied the fraction of variance in expression along the two-drug iso-

bole that is explained by the second PC for each gene. To iden-

tify the gene expression change that can be specifically

attributed to a given drug, we averaged this fraction across all

experiments involving that drug, accounting for the sign of the

expression change (STAR Methods). This procedure does not

necessarily average out the entire contribution of the other

drugs and, due to inherent limitations of PCA, it might not cap-

ture more complex behaviors of smaller gene groups. Neverthe-

less, it estimates the specific effect of a single drug on gene

expression more thoroughly than a simple comparison to a sin-

gle reference condition. We then sorted the genes according

to this average and performed gene ontology enrichment anal-

ysis (STAR Methods). This procedure produces a list of func-

tional gene groups that are specifically up- or downregulated

in response to each drug in a way that is not obfuscated by

growth rate changes or any other non-specific effects of drugs.

The most strongly enriched up- and downregulated functional

gene groups in the cellular response to individual drugs

confirmed expectations in the light of published literature (Fig-

ure 4A; Tables 1 and S1). Cycloheximide, a drug that binds to
6 Cell Systems 10, 1–11, January 22, 2020
the large ribosomal subunit (Schneider-Poetsch et al., 2010)

and is commonly used to inhibit cytosolic translation, elicited

upregulation of genes involved in cytoplasmic translation (Fig-

ure 4A). Rapamycin, a specific inhibitor of nutrient-sensing

TOR signaling (Crespo and Hall, 2002), triggered a decrease

in ribosome biogenesis and an increase in amino acid biosyn-

thesis (Figure 4A)—canonical responses to low-nutrient environ-

ments (Mayer and Grummt, 2006; Peng et al., 2002). The pleio-

tropic drug lithium chloride led to upregulation of proteasome

assembly with a concomitant decrease in amino acid biosyn-

thesis (Figure 4A). Both observations are consistent with a

cellular response to the inhibition of protein degradation—a

plausible effect as lithium chloride is known to inhibit protein

degradation through the proteasome (Rice and Sartorelli, 2001)

along with inhibition of other enzymes (Table 1). Together, these

results corroborate that our analysis of the second PC can iden-

tify specific cellular responses to individual drugs and thus pro-

vide insights into drug modes of action.

Furthermore, this analysis exposed previously unreported ef-

fects of individual drugs. We found that myriocin, a known inhib-

itor of sphingolipid synthesis (Miyake et al., 1995), leads to an in-

crease in mitochondrial translation and downregulation of

protein degradation. The latter is consistent with previous re-

ports that myriocin exacerbates the consequences of protein
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misfolding (Lee et al., 2011). However, the effect of myriocin on

mitochondrial translation was entirely unexpected. Therefore,

we performed additional experiments to test the prediction that

the upregulation of mitochondrial translation is one of the major

physiological effects of myriocin.

We reasoned that the mitochondrial ribosome primarily trans-

lates genes needed for oxidative metabolism (Couvillion et al.,

2016). Therefore, the increasedmitoribosome expression should

increase respiratory capacity, especially in conditions where this

capacity is not maximal to begin with, e.g., during fermentative

overflow metabolism in glucose. Thus, we hypothesized that

the mitoribosome overexpression triggered by myriocin treat-

ment should have a growth rate cost on a fermentative carbon

source, but should shorten the diauxic lag upon a shift to an

oxidative carbon source such as glycerol (Figure 4B). Indeed, in-

termediate concentrations of myriocin drastically shortened

this diauxic lag, while higher doses led to more pronounced inhi-

bition of fermentative growth (Figure 4C). Inhibition by a control

drug (cycloheximide) supported that the shortening of the dia-

uxic lag was not due to a non-specific decrease in growth rate,

but rather due to specific effects of myriocin, confirming the pre-

diction of our analysis based on the second PC. Overall, these

results show that abstracting growth rate effects from the spe-

cific gene expression changes triggered by individual drugs

can reveal far-reaching changes in cellular physiology and

metabolism.

Emergent Response to Drug Combinations Predicts
Antagonisms with Drugs Targeting Upregulated
Pathways
We next sought to identify the physiological consequences of

drug combinations that go qualitatively beyond those brought

about by the constituent drugs alone. We reasoned that func-

tional analysis of the genes strongly governed by the third PC

should expose the emergent effects of the two drugs on cell

physiology, even if these genes are also affected by growth

rate or by the individual drugs alone. To identify the emergent

effects of each drug combination, we sorted the genes by their

third PC score and, after accounting for the sign of the third

PC, performed gene ontology enrichment analysis (STAR

Methods). This procedure revealed functional groups (Tables

S2 and S3) that showed significant emergent upregulation (for

five drug pairs) or downregulation (for two drug pairs, Figure S2).

In particular, a DNA replication checkpoint showed an emergent

response to the myriocin-cycloheximide combination (Fig-

ure S2). Similarly, myriocin and lithium chloride together trig-

gered a specific increase in ribosome biogenesis. Our analysis

thus identified cellular functions that specifically respond to the

drug combinations.

To validate this analysis and explore its utility, we made spe-

cific testable predictions based on the identified emergent

gene regulation. We reasoned that the upregulation of functional

groups of genes in response to drug combinations may not al-

ways be adaptive. If upregulation is non-adaptive, it could create

a buffer for the cell when exposed to a third drug that inhibits

the upregulated pathway, rendering the cell less sensitive to

the third drug (Figure 5A). In other words, this would lead to

three-way drug antagonism. To test this idea, we added the

DNA damaging agent methyl methanesulfonate (MMS) on top
of the myriocin-cycloheximide combination, since the myrio-

cin-cycloheximide combination on its own triggered emergent

upregulation of a DNA replication checkpoint (Figure 5B).

Indeed, the addition of this third compound inverted the syner-

gism between myriocin and cycloheximide to antagonism

(Figure 5C). Similarly, adding the translation inhibitor cyclohexi-

mide on top of the myriocin-lithium chloride combination, which

triggered an emergent increase in ribosome synthesis (Fig-

ure 5B), strongly amplified antagonism (Figure 5D). These results

suggest that emergent gene regulation in response to drug

combinations, identified upon proper accounting for non-spe-

cific effects and individual drug effects, often enables faithful

predictions of higher-order interactions with additional drugs.

Emergent Responses to Drug Combinations Should Be
Measured Where the Drug Interaction Is Strongest
While this functional analysis of the third PC is valuable for char-

acterizing the specific effects of drug combinations, this

approach is relatively hard to utilize: our gene expression mea-

surements along the two-drug growth isobole (Figures 1 and 2)

require feedback-controlled liquid handling and are not readily

scalable to larger numbers of drug pairs. Therefore, we aimed

to establish a more accessible protocol that provides compara-

ble information on emergent gene regulation under drug combi-

nations at a lower experimental effort. To identify genes strongly

governed by the third PC, it would in principle suffice to measure

gene expression in the presence of the individual drugs alone

(i.e., at both ends of the isoboles) and at one point in drug con-

centration space in the middle of the isobole, where both drugs

are present. The ideal choice for the latter would be the point in

drug combination space where the third PC has its peak, as this

point can provide maximum information about emergent gene

expression. We asked whether such a point on the isobole could

be identified without measuring the gene expression along the

entire isobole.

We observed that the peak of the third PC generally coincides

well with the point in drug space where the deviation of growth

rate from the additive expectation is most pronounced (Figures

6A and S3). In other words, the third PC is maximal at the drug

ratio where the drug interaction is strongest. This observation

exposes a simple, yet powerful principle for gaining maximum

information from a single gene expression measurement under

a drug combination: such measurements should be performed

at drug concentrations where the growth rate deviatesmaximally

from the additive expectation (Figures 6B and S4)—apoint that is

readily identified from a standard growth-rate-response surface

measurement.

DISCUSSION

Understanding the principles that govern gene expression re-

sponses to multiple drugs can facilitate the design of new com-

bination therapies. However, measurements of gene expression

responses to drugs are obfuscated by changes in growth rate

(Bollenbach and Kishony, 2011; O’Duibhir et al., 2014). We found

that at least 75% of all variations in gene expression in yeast re-

sponding to combinations of two drugs can be attributed simply

to changes in growth rate. Thus, we introduced isogrowth

profiling, a framework for measuring gene expression changes
Cell Systems 10, 1–11, January 22, 2020 7
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Figure 5. Cellular Functions Showing Emergent Responses to Drug Combinations Enable Predictions of Higher-Order Drug Interactions

(A) Schematic: non-adaptive upregulation of gene expression in response to the combination of two drugs (left; green shading) may protect against a third drug

targeting the upregulated pathway (middle) and thus lead to higher-order antagonism (right panel). The solid red line is the 50% growth rate isobole in each

condition, the dashed red line shows a 50% growth rate isobole in the absence of drug C for comparison.

(B) Cumulative distribution functions of relative third PC scores for individual genes for the drug combinations shown in C (top) and D (bottom). Cellular functions

that are enriched based on gene ontology (GO) analysis of upregulated genes are highlighted in green; only the most significant GO term that has no offspring

(more specific) term with p % 10�6 is shown (STAR Methods). For other drug pairs, see Figure S2 and Tables S2 and S3.

(C) Dose-response surfaces for the myriocin-cycloheximide combination in the absence (left) and in the presence (right) of the DNA damaging agent methyl

methanesulfonate (MMS). The interaction is modified by a third drug targeting the pathway upregulated in the two-drug combination: MMS inverts synergism

between myriocin and cycloheximide into antagonism. Growth rates are normalized to the growth rates in the absence of both myriocin and cycloheximide.

(D) Ribosomal inhibitor cycloheximide increases antagonism between myriocin and LiCl, leading to strong suppression. Yellow arrows highlight the change to

stronger antagonism. Growth rates are normalized to the growth rates in the absence of both myriocin and LiCl. Measured values are reported in Table S5.
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A

B

Figure 6. Gene Expression Responses to

Drug Combinations Yield Maximum Infor-

mation at Drug Concentrations that Deviate

Maximally from Additivity

(A) Third PC as in Figure 3A (yellow) and deviation

of growth isobole from theoretical additivity line

(green; see Figure S3 for definition) for selected

drug pairs. Green dot labels the point of maximum

deviation. For other drug pairs, see Figure S3.

(B) Schematic of detailed (left) versus simplified

(right) isogrowth profiling: in the simplified version,

the effects of single drugs are measured at the

same growth rate (red and blue circles), but only a

single measurement is performed in the presence

of both drugs, at the point in two-drug space

where the drug interaction is maximum (magenta

circle). See also Figures S4 and S5 for the justifi-

cation of the choice of measurement points.
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in drug combinations while keeping growth rate constant (Fig-

ure 2). Beyond growth effects, most of the gene expression vari-

ance is well approximated by interpolating the responses to the

individual drugs (Figure 3). These data corroborate the view that

regulatory responses to drug combinations are largely predict-

able from the responses to the constituent drugs, as previously

observed in prokaryotes and in human cells (Bollenbach and

Kishony, 2011; Geva-Zatorsky et al., 2010).

We found that some genes show emergent responses to

drug combinations. Even though these genes contribute little

to global gene expression variance, they are likely responsible

for key phenomena caused by drug combinations that are

otherwise hard to rationalize. Identifying cellular functions

that show emergent responses enabled us to predict antago-

nisms with a third drug (Figure 5). Our growth-rate-controlled

experiment enabled abstracting both growth-rate-dependent

and drug-specific gene expression changes from emergent

drug-combination-specific changes even for highly growth-

rate-dependent genes, such as ribosomal genes. In this way,

we discovered emergent responses that would otherwise be

masked by strong growth-rate-dependent effects (Figure S5).

In particular, the combination of myriocin and cycloheximide

caused upregulation of a DNA replication checkpoint, protect-

ing the cells from a DNA damaging agent as predicted; simi-

larly, the combination of lithium chloride and myriocin upregu-

lated cytoplasmic ribosomes and protected cells from a

translation inhibitor (Figure 5). We identified various other

emergent responses (Tables S2 and S3). In many cases, the

higher-order antagonisms predicted based on these observa-

tions cannot be easily tested because drugs targeting the up-

regulated pathway are unavailable. For example, the func-

tional consequences of upregulating vesicular trafficking in

the combination of myriocin and rapamycin would have to

be tested by other assays. Our results suggest that emergent

gene regulation under drug pairs often singles out cellular

functions at the heart of higher-order drug interactions.
Recent work suggested that growth

rates in higher-order drug cocktails may

be largely predictable from the pairwise

interactions between the constituent
drugs (Wood et al., 2012; Zimmer et al., 2016, 2017). However,

true higher-order drug interactions also seem common (Tekin

et al., 2018). Our results indicate that emergent gene expression

responses to pairwise drug interactions enable predictions of

such higher-order interactions. Why is that so? Yeast evolved

to respond to stresses it frequently encounters in its natural

environment. During the course of evolution, stress caused by

drugs targeting specific parts of the cellularmachinery was prob-

ably rare compared to changes in nutrient availability, tempera-

ture, pH, etc. Thus, yeast may not have adaptive responses to all

specific stresses caused by drugs, and this seems even less

likely for combinatorial stressors. Hence, drug combinations

likely trigger non-adaptive gene expression changes, which do

not increase fitness. In other words, the emergent regulation

of specific pathways under drug combinations is likely caused

indirectly by a regulatory machinery that evolved for other pur-

poses (Price et al., 2013). The non-adaptive emergent upregula-

tion of a cellular pathway in response to a drug pair can create a

‘‘buffer’’ against the action of a third drug that inhibits the upre-

gulated pathway, or, conversely, a susceptibility for a drug that

requires the upregulated pathway for its action.

Isogrowth profiling can identify detailed effects of individual

drugs and drug combinations on cell physiology, which can

be used to predict certain three-way drug interactions. While

we focused on a single model organism and a limited number

of drugs, we anticipate that the basic principles uncovered

here are more broadly applicable to other systems and drugs.

However, isogrowth profiling requires a large number of gene

expression measurements. To increase its applicability, we pro-

pose a simplified version that requires measuring gene expres-

sion at only four well-chosen points in two-dimensional drug

concentration space, where the drug interaction is maximal

while the overall inhibitory effect is kept constant (Figure 6).

This simplified framework provides almost complete information

on emergent gene regulation (Figure S4) and facilitates system-

atic investigations of gene expression responses for all pairwise
Cell Systems 10, 1–11, January 22, 2020 9
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combinations of larger sets of drugs. This approach should, in

principle, not be limited to drugs that inhibit growth but extend-

able to inhibitors of any cellular function as long as the inhibitory

effect can be quantified. A large-scale characterization of the

emergent physiological changes under drug combinations

using the approach introduced here has the potential to inform

predictive algorithms for the design of advanced multidrug

therapies.

Key Changes Prompted by Reviewers Comments
In response to reviewers comments, the discussion was slightly

modified to better reflect that the current study is limited to a sin-

gle model organism and a few drugs. Further, an explicit mention

of the limitations of PCA with respect to discovering responses

caused by a small number of genes was added. A more detailed

explanation of the evolutionary argument that responses to

combinatorial drug perturbations are likely non-adaptive was

also included. For context, the complete Transparent Peer Re-

view Record is included within the Supplemental Information.
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and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY
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B RNA Extraction and Sequencing
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Lithium chloride Sigma Aldrich L9650

Cycloheximide Sigma Aldrich 37094

Myriocin Sigma Aldrich M1177

Rapamycin Sigma Aldrich 37094

Yeast extract Sigma Aldrich Y1625

Peptone Sigma Aldrich 91249

Dextrose Sigma Aldrich D9434

Methyl methanesulfonate Sigma Aldrich 129925

Glycerol Sigma Aldrich G5516

Critical Commercial Assays

RiboPure RNA Purification Kit for yeast Thermo Scientific AM1926

NEBNext Magnesium RNA Fragmentation Module New England Biolabs E6150S

Dynabeads oligo-dT kit Invitrogen 61012

Agencourt AMPure XP Beckman Coulter A63881

Quick Ligation Kit New England Biolabs M2200S

KAPAHiFi Hot-Start ReadyMix VWR 733-2430

RNase H New England Biolabs M0297S

Deposited Data

RNA sequencing data GEO GSE138256

Experimental Models: Organisms/Strains

Saccharomyces cerevisiae BY4741 EuroScarf Y00000

Software and Algorithms

Matlab Mathworks

TopHat Kim et al., 2013

UMI-tools Smith et al., 2017

featureCounts Liao et al., 2014

Gorilla Eden et al., 2009
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Tobias Bollenbach

(t.bollenbach@uni-koeln.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Saccharomyces cerevisiae strain BY4741 was obtained from EuroScarf repository, cat. No. Y00000.

METHOD DETAILS

Automated Re-inoculation Setup for Reproducible Yeast Culture
Saccharomyces cerevisiae strain BY4741 was grown in 20 ml of YPD broth - yeast extract (Sigma Aldrich cat. No. Y1625), peptone

(Sigma Aldrich cat. No. 91249), dextrose (Sigma Aldrich cat. No. D9434) in a 100 ml conical flask shaken 220 rpm at 30�C overnight

and then distributed into a 96-well plate (non-treated transparent flat bottom, Nunc). A customized liquid handling robot (Tecan

Freedom Evo 150) with 8 liquid handling channels and a robotic manipulator was used to produce a two-dimensional discretised

two drug 24 3 24-well gradient in YPD spread over six 96-well plates and to inoculate the yeast overnight culture to final optical
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density at 600 nm (OD600) of 0.15 and final liquid volume in thewell of 200 ml. The discretized drug gradient was set up as in Chevereau

and Bollenbach (2015), that is the concentration of each drug was spaced according to c = cmaxðx3 + axÞ=ð1 + aÞ, where cmax was

the highest concentration used, x was linearly spaced from 0 to 22 steps (with replicate for no drug condition) and a = 1=3. Working

drug solutions were prepared either by adding the respective amounts of concentrated DMSO drug stocks thawed from�20�C stor-

age (no refreezing) previously prepared from stock chemicals (cycloheximide cat. No. 37094, myriocin cat. No. M1177, rapamycin

cat. No. 37094, all from Sigma Aldrich), or by dissolving directly in YPD and sterile-filtering (LiCl, cat. No. L9650 Sigma Aldrich).

The six plates were incubated for three iterations, each lasting �8 h. Each iteration consisted of incubation and a re-inoculation.

Plates were incubated in an automated incubator (Liconic Storex) kept at 30�C, >95% humidity, vigorously shaken at >1,000 rpm.

During the incubation, OD600 was measured every �15 min in a Tecan Infinite F500 plate reader. In addition to shaking during incu-

bation, directly before each measurement, plates were shaken on a magnetic shaker (Teleshake; Thermo Scientific) at 1,100 rpm for

20 s. During re-inoculation, a volume Vi of yeast culture specifically calculated for each well so as to achieve OD600=0.15 after dilution

(while 1.5 ml% Vi%100 ml) was added to a fresh medium in a new 96-well plate containing a drug cocktail pipetted in such a way that

the final concentration of both drugs, when accounted for the size of the inoculum, was the same as before the re-inoculation step,

and the total volume of liquid in the well was 200 ml. During the re-inoculation the plate to be re-inoculated was not shaken for a max.

of 15 mins. The entire setup was kept in a climate room at 30�C and �50% humidity. The growth rate for each well for each iteration

was quantified from the OD600 increase over time by a linear fit of log2(OD600) for the last 10 measurements (�2.5 h) before re-inoc-

ulation. All growth rates were normalized to the growth rate of the parent strain in the absence of any drugs measured on the

same day.

RNA Extraction and Sequencing
For RNA extraction, wells growing at a relative growth rate close to 50% at the end of the third iteration of the automated re-inocu-

lation culture were selected. RNA extraction was performed using the RiboPure RNA Purification Kit for yeast (Thermo Scientific, cat.

No. AM1926). The purity of extracted RNAwas confirmed for selected samples using the Agilent RNA 6000Nano Bioanalyzer Kit. The

library was prepared as in (Bar-Ziv et al., 2016). In brief, the purified RNA was fragmented using the NEBNext� Magnesium RNA

Fragmentation Module (New England Biolabs cat. No. E6150S), poly(A)-selected using Dynabeads oligo-dT kit (Invitrogen, cat.

No. 61012) and reverse-transcribed to cDNA using custom poly(T) primers barcoded for multiplexing as well as containing 4-nt-

long unique molecular identifier. The resulting complementary DNA strands were pooled and purified [RNase H (NEB cat. No.

M0297S), Agencourt AMPure XP (Beckman Coulter cat. No. A63881)], a custom double-stranded adapter ligated to the 30 end using

Quick Ligation Kit (NEB cat. No. M2200S), second cDNA strand synthesized with KAPAHiFi Hot-Start ReadyMix (VWR cat. No. 733–

2430), amplified and 50 bp single-end sequenced on Illumina HiSeq 2500 using a primer complementary to the adaptor at the end

opposite to the poly(A).

Diauxic Shift Measurements
S. cerevisiae strain BY4741 was grown in YPD broth overnight and diluted�100-fold into YPGmedium [yeast extract (Sigma Aldrich

cat. No. Y1625), peptone (Sigma Aldrich cat. No. 91249), glycerol (Sigma Aldrich cat. No. G5516), final glycerol conc. 3% v/v] con-

taining varying amounts of myriocin or cycloheximide. The antifungal drugs were arranged in an exponential gradient created by 2-

fold serial dilution. The cultures were incubated in a 96-well microplate in total volume of 200 ml, in an automated incubator (Liconic

Storex) kept at 30�C, > 95% humidity, vigorously shaken at >1,000 rpm; OD600 was measured every�30 min in a Tecan Infinite F500

plate reader. In addition to shaking during incubation, directly before each measurement, plates were shaken on a magnetic shaker

(Teleshake; Thermo Scientific) at 1,100 rpm for 20 s.

Three-Drug Interaction Measurements
For three-drug interaction assays, S. cerevisiae strain BY4741 was diluted into YPDmedium (53103-fold final dilution) from a thawed

overnight culture kept at �80�C with 15% glycerol. An 83 83 8 discretized gradient of the respective drugs was prepared by serial

dilution and distributed across eight 96-well plates. The plates were sealed with Parafilm M and shaken at�1,000 rpm on a Titramax

1000 shaker in a 30�C incubator overnight. The next day, measurements were performed manually approximately every hour in a

Biotek Synergy H1 microplate reader. The plates were re-sealed with Parafilm after each measurement, and incubation was

continued as before. Growth rates for each well were quantified from the OD600 increase over time by a fit to the linear section of

log2(OD600) in the range 0.01 % OD600 % 3.

QUANTIFICATION AND STATISTICAL ANALYSIS

The reads resulting from sequencing were demultiplexed, aligned to annotated reference S. cerevisiae genome R64-2 using TopHat

(Kim et al., 2013), deduplicated using UMI-tools (Smith et al., 2017) and quantified using featureCounts (Liao et al., 2014). Gene

expression changes were further analyzed using custom written MATLAB scripts. Briefly, to account for sample-to-sample variation

and low molecule noise, quantile normalization was applied using the quantilenorm function over the entire dataset, and the most

highly expressed two-thirds of the genes were used for further analysis. Principal component (PC) analysis was performed for
Cell Systems 10, 1–11.e1–e3, January 22, 2020 e2
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each drug combination separately using MATLAB function pca on log2 values of gene expression data normalized to the median

expression in YPD medium containing no drug, median-filtered along the growth isobole. Results along the growth isobole were

visualized using the relative drug fraction qA = cA
ICA

50

=

 
cA

ICA
50

+
cB

ICB
50

!
. Gene ontology enrichment analysis for genes up- or down-regu-

lated and strongly governed by the third PC was performed by sorting the genes by their relative third PC loading in descending or

ascending order, respectively, and looking for Gene Ontology (GO) terms enriched in the upper part of the list (all possible partitions)

using GOrilla (Eden et al., 2009). The relative third PC loading for each gene was calculated by dividing the third PC loading for that

gene by the Euclidean norm of the vector containing loadings for all the principal components for that gene. GO terms associatedwith

retrotransposon activity were disregarded in the analysis. Gene enrichment analysis for genes up- or down-regulated and strongly

governed by the second PCwas performed analogously, except for each drug the relative second PC loadingswere averaged across

experiments containing the respective drug. Before averaging, the sign of the second PC coefficients and loadings was inverted for

experiments where the respective drug is shown on the left side of the x-axis in Figure 3A, so as to ensure consistency in keeping the

relative second PC positive if the gene was upregulated in that drug.

DATA AND CODE AVAILABILITY

The RNA sequencing dataset generated during this study is available at the Gene Expression Omnibus, accession code GSE138256.
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